Home | History | Annotate | Download | only in CodeGen
      1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TwoAddress instruction pass which is used
     11 // by most register allocators. Two-Address instructions are rewritten
     12 // from:
     13 //
     14 //     A = B op C
     15 //
     16 // to:
     17 //
     18 //     A = B
     19 //     A op= C
     20 //
     21 // Note that if a register allocator chooses to use this pass, that it
     22 // has to be capable of handling the non-SSA nature of these rewritten
     23 // virtual registers.
     24 //
     25 // It is also worth noting that the duplicate operand of the two
     26 // address instruction is removed.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #define DEBUG_TYPE "twoaddrinstr"
     31 #include "llvm/CodeGen/Passes.h"
     32 #include "llvm/Function.h"
     33 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     34 #include "llvm/CodeGen/LiveVariables.h"
     35 #include "llvm/CodeGen/MachineFunctionPass.h"
     36 #include "llvm/CodeGen/MachineInstr.h"
     37 #include "llvm/CodeGen/MachineInstrBuilder.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/Analysis/AliasAnalysis.h"
     40 #include "llvm/MC/MCInstrItineraries.h"
     41 #include "llvm/Target/TargetRegisterInfo.h"
     42 #include "llvm/Target/TargetInstrInfo.h"
     43 #include "llvm/Target/TargetMachine.h"
     44 #include "llvm/Target/TargetOptions.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/ErrorHandling.h"
     47 #include "llvm/ADT/BitVector.h"
     48 #include "llvm/ADT/DenseMap.h"
     49 #include "llvm/ADT/SmallSet.h"
     50 #include "llvm/ADT/Statistic.h"
     51 #include "llvm/ADT/STLExtras.h"
     52 using namespace llvm;
     53 
     54 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
     55 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
     56 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
     57 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
     58 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
     59 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
     60 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
     61 
     62 namespace {
     63   class TwoAddressInstructionPass : public MachineFunctionPass {
     64     MachineFunction *MF;
     65     const TargetInstrInfo *TII;
     66     const TargetRegisterInfo *TRI;
     67     const InstrItineraryData *InstrItins;
     68     MachineRegisterInfo *MRI;
     69     LiveVariables *LV;
     70     SlotIndexes *Indexes;
     71     LiveIntervals *LIS;
     72     AliasAnalysis *AA;
     73     CodeGenOpt::Level OptLevel;
     74 
     75     // DistanceMap - Keep track the distance of a MI from the start of the
     76     // current basic block.
     77     DenseMap<MachineInstr*, unsigned> DistanceMap;
     78 
     79     // SrcRegMap - A map from virtual registers to physical registers which
     80     // are likely targets to be coalesced to due to copies from physical
     81     // registers to virtual registers. e.g. v1024 = move r0.
     82     DenseMap<unsigned, unsigned> SrcRegMap;
     83 
     84     // DstRegMap - A map from virtual registers to physical registers which
     85     // are likely targets to be coalesced to due to copies to physical
     86     // registers from virtual registers. e.g. r1 = move v1024.
     87     DenseMap<unsigned, unsigned> DstRegMap;
     88 
     89     /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
     90     /// during the initial walk of the machine function.
     91     SmallVector<MachineInstr*, 16> RegSequences;
     92 
     93     bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
     94                               unsigned Reg,
     95                               MachineBasicBlock::iterator OldPos);
     96 
     97     bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
     98                            unsigned &LastDef);
     99 
    100     bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    101                                MachineInstr *MI, MachineBasicBlock *MBB,
    102                                unsigned Dist);
    103 
    104     bool CommuteInstruction(MachineBasicBlock::iterator &mi,
    105                             MachineFunction::iterator &mbbi,
    106                             unsigned RegB, unsigned RegC, unsigned Dist);
    107 
    108     bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
    109 
    110     bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
    111                             MachineBasicBlock::iterator &nmi,
    112                             MachineFunction::iterator &mbbi,
    113                             unsigned RegA, unsigned RegB, unsigned Dist);
    114 
    115     bool isDefTooClose(unsigned Reg, unsigned Dist,
    116                        MachineInstr *MI, MachineBasicBlock *MBB);
    117 
    118     bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
    119                                MachineBasicBlock::iterator &mi,
    120                                MachineBasicBlock::iterator &nmi,
    121                                unsigned Reg);
    122     bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
    123                                MachineBasicBlock::iterator &mi,
    124                                MachineBasicBlock::iterator &nmi,
    125                                unsigned Reg);
    126 
    127     bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
    128                                  MachineBasicBlock::iterator &nmi,
    129                                  MachineFunction::iterator &mbbi,
    130                                  unsigned SrcIdx, unsigned DstIdx,
    131                                  unsigned Dist,
    132                                  SmallPtrSet<MachineInstr*, 8> &Processed);
    133 
    134     void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
    135                   SmallPtrSet<MachineInstr*, 8> &Processed);
    136 
    137     void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
    138                      SmallPtrSet<MachineInstr*, 8> &Processed);
    139 
    140     typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
    141     typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
    142     bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
    143     void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
    144 
    145     void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
    146 
    147     /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
    148     /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
    149     /// sub-register references of the register defined by REG_SEQUENCE.
    150     bool EliminateRegSequences();
    151 
    152   public:
    153     static char ID; // Pass identification, replacement for typeid
    154     TwoAddressInstructionPass() : MachineFunctionPass(ID) {
    155       initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
    156     }
    157 
    158     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    159       AU.setPreservesCFG();
    160       AU.addRequired<AliasAnalysis>();
    161       AU.addPreserved<LiveVariables>();
    162       AU.addPreserved<SlotIndexes>();
    163       AU.addPreserved<LiveIntervals>();
    164       AU.addPreservedID(MachineLoopInfoID);
    165       AU.addPreservedID(MachineDominatorsID);
    166       MachineFunctionPass::getAnalysisUsage(AU);
    167     }
    168 
    169     /// runOnMachineFunction - Pass entry point.
    170     bool runOnMachineFunction(MachineFunction&);
    171   };
    172 }
    173 
    174 char TwoAddressInstructionPass::ID = 0;
    175 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
    176                 "Two-Address instruction pass", false, false)
    177 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    178 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
    179                 "Two-Address instruction pass", false, false)
    180 
    181 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
    182 
    183 /// Sink3AddrInstruction - A two-address instruction has been converted to a
    184 /// three-address instruction to avoid clobbering a register. Try to sink it
    185 /// past the instruction that would kill the above mentioned register to reduce
    186 /// register pressure.
    187 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
    188                                            MachineInstr *MI, unsigned SavedReg,
    189                                            MachineBasicBlock::iterator OldPos) {
    190   // FIXME: Shouldn't we be trying to do this before we three-addressify the
    191   // instruction?  After this transformation is done, we no longer need
    192   // the instruction to be in three-address form.
    193 
    194   // Check if it's safe to move this instruction.
    195   bool SeenStore = true; // Be conservative.
    196   if (!MI->isSafeToMove(TII, AA, SeenStore))
    197     return false;
    198 
    199   unsigned DefReg = 0;
    200   SmallSet<unsigned, 4> UseRegs;
    201 
    202   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    203     const MachineOperand &MO = MI->getOperand(i);
    204     if (!MO.isReg())
    205       continue;
    206     unsigned MOReg = MO.getReg();
    207     if (!MOReg)
    208       continue;
    209     if (MO.isUse() && MOReg != SavedReg)
    210       UseRegs.insert(MO.getReg());
    211     if (!MO.isDef())
    212       continue;
    213     if (MO.isImplicit())
    214       // Don't try to move it if it implicitly defines a register.
    215       return false;
    216     if (DefReg)
    217       // For now, don't move any instructions that define multiple registers.
    218       return false;
    219     DefReg = MO.getReg();
    220   }
    221 
    222   // Find the instruction that kills SavedReg.
    223   MachineInstr *KillMI = NULL;
    224   for (MachineRegisterInfo::use_nodbg_iterator
    225          UI = MRI->use_nodbg_begin(SavedReg),
    226          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    227     MachineOperand &UseMO = UI.getOperand();
    228     if (!UseMO.isKill())
    229       continue;
    230     KillMI = UseMO.getParent();
    231     break;
    232   }
    233 
    234   // If we find the instruction that kills SavedReg, and it is in an
    235   // appropriate location, we can try to sink the current instruction
    236   // past it.
    237   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
    238       KillMI == OldPos || KillMI->isTerminator())
    239     return false;
    240 
    241   // If any of the definitions are used by another instruction between the
    242   // position and the kill use, then it's not safe to sink it.
    243   //
    244   // FIXME: This can be sped up if there is an easy way to query whether an
    245   // instruction is before or after another instruction. Then we can use
    246   // MachineRegisterInfo def / use instead.
    247   MachineOperand *KillMO = NULL;
    248   MachineBasicBlock::iterator KillPos = KillMI;
    249   ++KillPos;
    250 
    251   unsigned NumVisited = 0;
    252   for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
    253     MachineInstr *OtherMI = I;
    254     // DBG_VALUE cannot be counted against the limit.
    255     if (OtherMI->isDebugValue())
    256       continue;
    257     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
    258       return false;
    259     ++NumVisited;
    260     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    261       MachineOperand &MO = OtherMI->getOperand(i);
    262       if (!MO.isReg())
    263         continue;
    264       unsigned MOReg = MO.getReg();
    265       if (!MOReg)
    266         continue;
    267       if (DefReg == MOReg)
    268         return false;
    269 
    270       if (MO.isKill()) {
    271         if (OtherMI == KillMI && MOReg == SavedReg)
    272           // Save the operand that kills the register. We want to unset the kill
    273           // marker if we can sink MI past it.
    274           KillMO = &MO;
    275         else if (UseRegs.count(MOReg))
    276           // One of the uses is killed before the destination.
    277           return false;
    278       }
    279     }
    280   }
    281   assert(KillMO && "Didn't find kill");
    282 
    283   // Update kill and LV information.
    284   KillMO->setIsKill(false);
    285   KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
    286   KillMO->setIsKill(true);
    287 
    288   if (LV)
    289     LV->replaceKillInstruction(SavedReg, KillMI, MI);
    290 
    291   // Move instruction to its destination.
    292   MBB->remove(MI);
    293   MBB->insert(KillPos, MI);
    294 
    295   if (LIS)
    296     LIS->handleMove(MI);
    297 
    298   ++Num3AddrSunk;
    299   return true;
    300 }
    301 
    302 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
    303 /// last instruction in the MBB that defines the specified register and the
    304 /// two-address instruction which is being processed. It also returns the last
    305 /// def location by reference
    306 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
    307                                            MachineBasicBlock *MBB, unsigned Dist,
    308                                            unsigned &LastDef) {
    309   LastDef = 0;
    310   unsigned LastUse = Dist;
    311   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
    312          E = MRI->reg_end(); I != E; ++I) {
    313     MachineOperand &MO = I.getOperand();
    314     MachineInstr *MI = MO.getParent();
    315     if (MI->getParent() != MBB || MI->isDebugValue())
    316       continue;
    317     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    318     if (DI == DistanceMap.end())
    319       continue;
    320     if (MO.isUse() && DI->second < LastUse)
    321       LastUse = DI->second;
    322     if (MO.isDef() && DI->second > LastDef)
    323       LastDef = DI->second;
    324   }
    325 
    326   return !(LastUse > LastDef && LastUse < Dist);
    327 }
    328 
    329 /// isCopyToReg - Return true if the specified MI is a copy instruction or
    330 /// a extract_subreg instruction. It also returns the source and destination
    331 /// registers and whether they are physical registers by reference.
    332 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
    333                         unsigned &SrcReg, unsigned &DstReg,
    334                         bool &IsSrcPhys, bool &IsDstPhys) {
    335   SrcReg = 0;
    336   DstReg = 0;
    337   if (MI.isCopy()) {
    338     DstReg = MI.getOperand(0).getReg();
    339     SrcReg = MI.getOperand(1).getReg();
    340   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
    341     DstReg = MI.getOperand(0).getReg();
    342     SrcReg = MI.getOperand(2).getReg();
    343   } else
    344     return false;
    345 
    346   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    347   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    348   return true;
    349 }
    350 
    351 /// isKilled - Test if the given register value, which is used by the given
    352 /// instruction, is killed by the given instruction. This looks through
    353 /// coalescable copies to see if the original value is potentially not killed.
    354 ///
    355 /// For example, in this code:
    356 ///
    357 ///   %reg1034 = copy %reg1024
    358 ///   %reg1035 = copy %reg1025<kill>
    359 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
    360 ///
    361 /// %reg1034 is not considered to be killed, since it is copied from a
    362 /// register which is not killed. Treating it as not killed lets the
    363 /// normal heuristics commute the (two-address) add, which lets
    364 /// coalescing eliminate the extra copy.
    365 ///
    366 static bool isKilled(MachineInstr &MI, unsigned Reg,
    367                      const MachineRegisterInfo *MRI,
    368                      const TargetInstrInfo *TII) {
    369   MachineInstr *DefMI = &MI;
    370   for (;;) {
    371     if (!DefMI->killsRegister(Reg))
    372       return false;
    373     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    374       return true;
    375     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    376     // If there are multiple defs, we can't do a simple analysis, so just
    377     // go with what the kill flag says.
    378     if (llvm::next(Begin) != MRI->def_end())
    379       return true;
    380     DefMI = &*Begin;
    381     bool IsSrcPhys, IsDstPhys;
    382     unsigned SrcReg,  DstReg;
    383     // If the def is something other than a copy, then it isn't going to
    384     // be coalesced, so follow the kill flag.
    385     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    386       return true;
    387     Reg = SrcReg;
    388   }
    389 }
    390 
    391 /// isTwoAddrUse - Return true if the specified MI uses the specified register
    392 /// as a two-address use. If so, return the destination register by reference.
    393 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
    394   const MCInstrDesc &MCID = MI.getDesc();
    395   unsigned NumOps = MI.isInlineAsm()
    396     ? MI.getNumOperands() : MCID.getNumOperands();
    397   for (unsigned i = 0; i != NumOps; ++i) {
    398     const MachineOperand &MO = MI.getOperand(i);
    399     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
    400       continue;
    401     unsigned ti;
    402     if (MI.isRegTiedToDefOperand(i, &ti)) {
    403       DstReg = MI.getOperand(ti).getReg();
    404       return true;
    405     }
    406   }
    407   return false;
    408 }
    409 
    410 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
    411 /// use, return the use instruction if it's a copy or a two-address use.
    412 static
    413 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
    414                                      MachineRegisterInfo *MRI,
    415                                      const TargetInstrInfo *TII,
    416                                      bool &IsCopy,
    417                                      unsigned &DstReg, bool &IsDstPhys) {
    418   if (!MRI->hasOneNonDBGUse(Reg))
    419     // None or more than one use.
    420     return 0;
    421   MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
    422   if (UseMI.getParent() != MBB)
    423     return 0;
    424   unsigned SrcReg;
    425   bool IsSrcPhys;
    426   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    427     IsCopy = true;
    428     return &UseMI;
    429   }
    430   IsDstPhys = false;
    431   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    432     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    433     return &UseMI;
    434   }
    435   return 0;
    436 }
    437 
    438 /// getMappedReg - Return the physical register the specified virtual register
    439 /// might be mapped to.
    440 static unsigned
    441 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
    442   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
    443     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    444     if (SI == RegMap.end())
    445       return 0;
    446     Reg = SI->second;
    447   }
    448   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    449     return Reg;
    450   return 0;
    451 }
    452 
    453 /// regsAreCompatible - Return true if the two registers are equal or aliased.
    454 ///
    455 static bool
    456 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
    457   if (RegA == RegB)
    458     return true;
    459   if (!RegA || !RegB)
    460     return false;
    461   return TRI->regsOverlap(RegA, RegB);
    462 }
    463 
    464 
    465 /// isProfitableToCommute - Return true if it's potentially profitable to commute
    466 /// the two-address instruction that's being processed.
    467 bool
    468 TwoAddressInstructionPass::isProfitableToCommute(unsigned regA, unsigned regB,
    469                                        unsigned regC,
    470                                        MachineInstr *MI, MachineBasicBlock *MBB,
    471                                        unsigned Dist) {
    472   if (OptLevel == CodeGenOpt::None)
    473     return false;
    474 
    475   // Determine if it's profitable to commute this two address instruction. In
    476   // general, we want no uses between this instruction and the definition of
    477   // the two-address register.
    478   // e.g.
    479   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    480   // %reg1029<def> = MOV8rr %reg1028
    481   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    482   // insert => %reg1030<def> = MOV8rr %reg1028
    483   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    484   // In this case, it might not be possible to coalesce the second MOV8rr
    485   // instruction if the first one is coalesced. So it would be profitable to
    486   // commute it:
    487   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    488   // %reg1029<def> = MOV8rr %reg1028
    489   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    490   // insert => %reg1030<def> = MOV8rr %reg1029
    491   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
    492 
    493   if (!MI->killsRegister(regC))
    494     return false;
    495 
    496   // Ok, we have something like:
    497   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    498   // let's see if it's worth commuting it.
    499 
    500   // Look for situations like this:
    501   // %reg1024<def> = MOV r1
    502   // %reg1025<def> = MOV r0
    503   // %reg1026<def> = ADD %reg1024, %reg1025
    504   // r0            = MOV %reg1026
    505   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
    506   unsigned ToRegA = getMappedReg(regA, DstRegMap);
    507   if (ToRegA) {
    508     unsigned FromRegB = getMappedReg(regB, SrcRegMap);
    509     unsigned FromRegC = getMappedReg(regC, SrcRegMap);
    510     bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI);
    511     bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI);
    512     if (BComp != CComp)
    513       return !BComp && CComp;
    514   }
    515 
    516   // If there is a use of regC between its last def (could be livein) and this
    517   // instruction, then bail.
    518   unsigned LastDefC = 0;
    519   if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
    520     return false;
    521 
    522   // If there is a use of regB between its last def (could be livein) and this
    523   // instruction, then go ahead and make this transformation.
    524   unsigned LastDefB = 0;
    525   if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
    526     return true;
    527 
    528   // Since there are no intervening uses for both registers, then commute
    529   // if the def of regC is closer. Its live interval is shorter.
    530   return LastDefB && LastDefC && LastDefC > LastDefB;
    531 }
    532 
    533 /// CommuteInstruction - Commute a two-address instruction and update the basic
    534 /// block, distance map, and live variables if needed. Return true if it is
    535 /// successful.
    536 bool
    537 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
    538                                MachineFunction::iterator &mbbi,
    539                                unsigned RegB, unsigned RegC, unsigned Dist) {
    540   MachineInstr *MI = mi;
    541   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
    542   MachineInstr *NewMI = TII->commuteInstruction(MI);
    543 
    544   if (NewMI == 0) {
    545     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    546     return false;
    547   }
    548 
    549   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
    550   // If the instruction changed to commute it, update livevar.
    551   if (NewMI != MI) {
    552     if (LV)
    553       // Update live variables
    554       LV->replaceKillInstruction(RegC, MI, NewMI);
    555     if (Indexes)
    556       Indexes->replaceMachineInstrInMaps(MI, NewMI);
    557 
    558     mbbi->insert(mi, NewMI);           // Insert the new inst
    559     mbbi->erase(mi);                   // Nuke the old inst.
    560     mi = NewMI;
    561     DistanceMap.insert(std::make_pair(NewMI, Dist));
    562   }
    563 
    564   // Update source register map.
    565   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
    566   if (FromRegC) {
    567     unsigned RegA = MI->getOperand(0).getReg();
    568     SrcRegMap[RegA] = FromRegC;
    569   }
    570 
    571   return true;
    572 }
    573 
    574 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
    575 /// given 2-address instruction to a 3-address one.
    576 bool
    577 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
    578   // Look for situations like this:
    579   // %reg1024<def> = MOV r1
    580   // %reg1025<def> = MOV r0
    581   // %reg1026<def> = ADD %reg1024, %reg1025
    582   // r2            = MOV %reg1026
    583   // Turn ADD into a 3-address instruction to avoid a copy.
    584   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
    585   if (!FromRegB)
    586     return false;
    587   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
    588   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
    589 }
    590 
    591 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
    592 /// three address one. Return true if this transformation was successful.
    593 bool
    594 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
    595                                               MachineBasicBlock::iterator &nmi,
    596                                               MachineFunction::iterator &mbbi,
    597                                               unsigned RegA, unsigned RegB,
    598                                               unsigned Dist) {
    599   MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
    600   if (NewMI) {
    601     DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
    602     DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
    603     bool Sunk = false;
    604 
    605     if (Indexes)
    606       Indexes->replaceMachineInstrInMaps(mi, NewMI);
    607 
    608     if (NewMI->findRegisterUseOperand(RegB, false, TRI))
    609       // FIXME: Temporary workaround. If the new instruction doesn't
    610       // uses RegB, convertToThreeAddress must have created more
    611       // then one instruction.
    612       Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
    613 
    614     mbbi->erase(mi); // Nuke the old inst.
    615 
    616     if (!Sunk) {
    617       DistanceMap.insert(std::make_pair(NewMI, Dist));
    618       mi = NewMI;
    619       nmi = llvm::next(mi);
    620     }
    621 
    622     // Update source and destination register maps.
    623     SrcRegMap.erase(RegA);
    624     DstRegMap.erase(RegB);
    625     return true;
    626   }
    627 
    628   return false;
    629 }
    630 
    631 /// ScanUses - Scan forward recursively for only uses, update maps if the use
    632 /// is a copy or a two-address instruction.
    633 void
    634 TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
    635                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
    636   SmallVector<unsigned, 4> VirtRegPairs;
    637   bool IsDstPhys;
    638   bool IsCopy = false;
    639   unsigned NewReg = 0;
    640   unsigned Reg = DstReg;
    641   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
    642                                                       NewReg, IsDstPhys)) {
    643     if (IsCopy && !Processed.insert(UseMI))
    644       break;
    645 
    646     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    647     if (DI != DistanceMap.end())
    648       // Earlier in the same MBB.Reached via a back edge.
    649       break;
    650 
    651     if (IsDstPhys) {
    652       VirtRegPairs.push_back(NewReg);
    653       break;
    654     }
    655     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
    656     if (!isNew)
    657       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
    658     VirtRegPairs.push_back(NewReg);
    659     Reg = NewReg;
    660   }
    661 
    662   if (!VirtRegPairs.empty()) {
    663     unsigned ToReg = VirtRegPairs.back();
    664     VirtRegPairs.pop_back();
    665     while (!VirtRegPairs.empty()) {
    666       unsigned FromReg = VirtRegPairs.back();
    667       VirtRegPairs.pop_back();
    668       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
    669       if (!isNew)
    670         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
    671       ToReg = FromReg;
    672     }
    673     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
    674     if (!isNew)
    675       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
    676   }
    677 }
    678 
    679 /// ProcessCopy - If the specified instruction is not yet processed, process it
    680 /// if it's a copy. For a copy instruction, we find the physical registers the
    681 /// source and destination registers might be mapped to. These are kept in
    682 /// point-to maps used to determine future optimizations. e.g.
    683 /// v1024 = mov r0
    684 /// v1025 = mov r1
    685 /// v1026 = add v1024, v1025
    686 /// r1    = mov r1026
    687 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
    688 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
    689 /// potentially joined with r1 on the output side. It's worthwhile to commute
    690 /// 'add' to eliminate a copy.
    691 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
    692                                      MachineBasicBlock *MBB,
    693                                      SmallPtrSet<MachineInstr*, 8> &Processed) {
    694   if (Processed.count(MI))
    695     return;
    696 
    697   bool IsSrcPhys, IsDstPhys;
    698   unsigned SrcReg, DstReg;
    699   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    700     return;
    701 
    702   if (IsDstPhys && !IsSrcPhys)
    703     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
    704   else if (!IsDstPhys && IsSrcPhys) {
    705     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    706     if (!isNew)
    707       assert(SrcRegMap[DstReg] == SrcReg &&
    708              "Can't map to two src physical registers!");
    709 
    710     ScanUses(DstReg, MBB, Processed);
    711   }
    712 
    713   Processed.insert(MI);
    714   return;
    715 }
    716 
    717 /// RescheduleMIBelowKill - If there is one more local instruction that reads
    718 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
    719 /// instruction in order to eliminate the need for the copy.
    720 bool
    721 TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
    722                                      MachineBasicBlock::iterator &mi,
    723                                      MachineBasicBlock::iterator &nmi,
    724                                      unsigned Reg) {
    725   // Bail immediately if we don't have LV available. We use it to find kills
    726   // efficiently.
    727   if (!LV)
    728     return false;
    729 
    730   MachineInstr *MI = &*mi;
    731   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    732   if (DI == DistanceMap.end())
    733     // Must be created from unfolded load. Don't waste time trying this.
    734     return false;
    735 
    736   MachineInstr *KillMI = LV->getVarInfo(Reg).findKill(MBB);
    737   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    738     // Don't mess with copies, they may be coalesced later.
    739     return false;
    740 
    741   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
    742       KillMI->isBranch() || KillMI->isTerminator())
    743     // Don't move pass calls, etc.
    744     return false;
    745 
    746   unsigned DstReg;
    747   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    748     return false;
    749 
    750   bool SeenStore = true;
    751   if (!MI->isSafeToMove(TII, AA, SeenStore))
    752     return false;
    753 
    754   if (TII->getInstrLatency(InstrItins, MI) > 1)
    755     // FIXME: Needs more sophisticated heuristics.
    756     return false;
    757 
    758   SmallSet<unsigned, 2> Uses;
    759   SmallSet<unsigned, 2> Kills;
    760   SmallSet<unsigned, 2> Defs;
    761   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    762     const MachineOperand &MO = MI->getOperand(i);
    763     if (!MO.isReg())
    764       continue;
    765     unsigned MOReg = MO.getReg();
    766     if (!MOReg)
    767       continue;
    768     if (MO.isDef())
    769       Defs.insert(MOReg);
    770     else {
    771       Uses.insert(MOReg);
    772       if (MO.isKill() && MOReg != Reg)
    773         Kills.insert(MOReg);
    774     }
    775   }
    776 
    777   // Move the copies connected to MI down as well.
    778   MachineBasicBlock::iterator From = MI;
    779   MachineBasicBlock::iterator To = llvm::next(From);
    780   while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
    781     Defs.insert(To->getOperand(0).getReg());
    782     ++To;
    783   }
    784 
    785   // Check if the reschedule will not break depedencies.
    786   unsigned NumVisited = 0;
    787   MachineBasicBlock::iterator KillPos = KillMI;
    788   ++KillPos;
    789   for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
    790     MachineInstr *OtherMI = I;
    791     // DBG_VALUE cannot be counted against the limit.
    792     if (OtherMI->isDebugValue())
    793       continue;
    794     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
    795       return false;
    796     ++NumVisited;
    797     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
    798         OtherMI->isBranch() || OtherMI->isTerminator())
    799       // Don't move pass calls, etc.
    800       return false;
    801     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    802       const MachineOperand &MO = OtherMI->getOperand(i);
    803       if (!MO.isReg())
    804         continue;
    805       unsigned MOReg = MO.getReg();
    806       if (!MOReg)
    807         continue;
    808       if (MO.isDef()) {
    809         if (Uses.count(MOReg))
    810           // Physical register use would be clobbered.
    811           return false;
    812         if (!MO.isDead() && Defs.count(MOReg))
    813           // May clobber a physical register def.
    814           // FIXME: This may be too conservative. It's ok if the instruction
    815           // is sunken completely below the use.
    816           return false;
    817       } else {
    818         if (Defs.count(MOReg))
    819           return false;
    820         if (MOReg != Reg &&
    821             ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
    822           // Don't want to extend other live ranges and update kills.
    823           return false;
    824         if (MOReg == Reg && !MO.isKill())
    825           // We can't schedule across a use of the register in question.
    826           return false;
    827         // Ensure that if this is register in question, its the kill we expect.
    828         assert((MOReg != Reg || OtherMI == KillMI) &&
    829                "Found multiple kills of a register in a basic block");
    830       }
    831     }
    832   }
    833 
    834   // Move debug info as well.
    835   while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
    836     --From;
    837 
    838   // Copies following MI may have been moved as well.
    839   nmi = To;
    840   MBB->splice(KillPos, MBB, From, To);
    841   DistanceMap.erase(DI);
    842 
    843   // Update live variables
    844   LV->removeVirtualRegisterKilled(Reg, KillMI);
    845   LV->addVirtualRegisterKilled(Reg, MI);
    846   if (LIS)
    847     LIS->handleMove(MI);
    848 
    849   DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
    850   return true;
    851 }
    852 
    853 /// isDefTooClose - Return true if the re-scheduling will put the given
    854 /// instruction too close to the defs of its register dependencies.
    855 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
    856                                               MachineInstr *MI,
    857                                               MachineBasicBlock *MBB) {
    858   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
    859          DE = MRI->def_end(); DI != DE; ++DI) {
    860     MachineInstr *DefMI = &*DI;
    861     if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
    862       continue;
    863     if (DefMI == MI)
    864       return true; // MI is defining something KillMI uses
    865     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
    866     if (DDI == DistanceMap.end())
    867       return true;  // Below MI
    868     unsigned DefDist = DDI->second;
    869     assert(Dist > DefDist && "Visited def already?");
    870     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
    871       return true;
    872   }
    873   return false;
    874 }
    875 
    876 /// RescheduleKillAboveMI - If there is one more local instruction that reads
    877 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
    878 /// current two-address instruction in order to eliminate the need for the
    879 /// copy.
    880 bool
    881 TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
    882                                      MachineBasicBlock::iterator &mi,
    883                                      MachineBasicBlock::iterator &nmi,
    884                                      unsigned Reg) {
    885   // Bail immediately if we don't have LV available. We use it to find kills
    886   // efficiently.
    887   if (!LV)
    888     return false;
    889 
    890   MachineInstr *MI = &*mi;
    891   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    892   if (DI == DistanceMap.end())
    893     // Must be created from unfolded load. Don't waste time trying this.
    894     return false;
    895 
    896   MachineInstr *KillMI = LV->getVarInfo(Reg).findKill(MBB);
    897   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    898     // Don't mess with copies, they may be coalesced later.
    899     return false;
    900 
    901   unsigned DstReg;
    902   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    903     return false;
    904 
    905   bool SeenStore = true;
    906   if (!KillMI->isSafeToMove(TII, AA, SeenStore))
    907     return false;
    908 
    909   SmallSet<unsigned, 2> Uses;
    910   SmallSet<unsigned, 2> Kills;
    911   SmallSet<unsigned, 2> Defs;
    912   SmallSet<unsigned, 2> LiveDefs;
    913   for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
    914     const MachineOperand &MO = KillMI->getOperand(i);
    915     if (!MO.isReg())
    916       continue;
    917     unsigned MOReg = MO.getReg();
    918     if (MO.isUse()) {
    919       if (!MOReg)
    920         continue;
    921       if (isDefTooClose(MOReg, DI->second, MI, MBB))
    922         return false;
    923       if (MOReg == Reg && !MO.isKill())
    924         return false;
    925       Uses.insert(MOReg);
    926       if (MO.isKill() && MOReg != Reg)
    927         Kills.insert(MOReg);
    928     } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
    929       Defs.insert(MOReg);
    930       if (!MO.isDead())
    931         LiveDefs.insert(MOReg);
    932     }
    933   }
    934 
    935   // Check if the reschedule will not break depedencies.
    936   unsigned NumVisited = 0;
    937   MachineBasicBlock::iterator KillPos = KillMI;
    938   for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
    939     MachineInstr *OtherMI = I;
    940     // DBG_VALUE cannot be counted against the limit.
    941     if (OtherMI->isDebugValue())
    942       continue;
    943     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
    944       return false;
    945     ++NumVisited;
    946     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
    947         OtherMI->isBranch() || OtherMI->isTerminator())
    948       // Don't move pass calls, etc.
    949       return false;
    950     SmallVector<unsigned, 2> OtherDefs;
    951     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    952       const MachineOperand &MO = OtherMI->getOperand(i);
    953       if (!MO.isReg())
    954         continue;
    955       unsigned MOReg = MO.getReg();
    956       if (!MOReg)
    957         continue;
    958       if (MO.isUse()) {
    959         if (Defs.count(MOReg))
    960           // Moving KillMI can clobber the physical register if the def has
    961           // not been seen.
    962           return false;
    963         if (Kills.count(MOReg))
    964           // Don't want to extend other live ranges and update kills.
    965           return false;
    966         if (OtherMI != MI && MOReg == Reg && !MO.isKill())
    967           // We can't schedule across a use of the register in question.
    968           return false;
    969       } else {
    970         OtherDefs.push_back(MOReg);
    971       }
    972     }
    973 
    974     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
    975       unsigned MOReg = OtherDefs[i];
    976       if (Uses.count(MOReg))
    977         return false;
    978       if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
    979           LiveDefs.count(MOReg))
    980         return false;
    981       // Physical register def is seen.
    982       Defs.erase(MOReg);
    983     }
    984   }
    985 
    986   // Move the old kill above MI, don't forget to move debug info as well.
    987   MachineBasicBlock::iterator InsertPos = mi;
    988   while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
    989     --InsertPos;
    990   MachineBasicBlock::iterator From = KillMI;
    991   MachineBasicBlock::iterator To = llvm::next(From);
    992   while (llvm::prior(From)->isDebugValue())
    993     --From;
    994   MBB->splice(InsertPos, MBB, From, To);
    995 
    996   nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
    997   DistanceMap.erase(DI);
    998 
    999   // Update live variables
   1000   LV->removeVirtualRegisterKilled(Reg, KillMI);
   1001   LV->addVirtualRegisterKilled(Reg, MI);
   1002   if (LIS)
   1003     LIS->handleMove(KillMI);
   1004 
   1005   DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
   1006   return true;
   1007 }
   1008 
   1009 /// TryInstructionTransform - For the case where an instruction has a single
   1010 /// pair of tied register operands, attempt some transformations that may
   1011 /// either eliminate the tied operands or improve the opportunities for
   1012 /// coalescing away the register copy.  Returns true if no copy needs to be
   1013 /// inserted to untie mi's operands (either because they were untied, or
   1014 /// because mi was rescheduled, and will be visited again later).
   1015 bool TwoAddressInstructionPass::
   1016 TryInstructionTransform(MachineBasicBlock::iterator &mi,
   1017                         MachineBasicBlock::iterator &nmi,
   1018                         MachineFunction::iterator &mbbi,
   1019                         unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
   1020                         SmallPtrSet<MachineInstr*, 8> &Processed) {
   1021   if (OptLevel == CodeGenOpt::None)
   1022     return false;
   1023 
   1024   MachineInstr &MI = *mi;
   1025   unsigned regA = MI.getOperand(DstIdx).getReg();
   1026   unsigned regB = MI.getOperand(SrcIdx).getReg();
   1027 
   1028   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
   1029          "cannot make instruction into two-address form");
   1030   bool regBKilled = isKilled(MI, regB, MRI, TII);
   1031 
   1032   if (TargetRegisterInfo::isVirtualRegister(regA))
   1033     ScanUses(regA, &*mbbi, Processed);
   1034 
   1035   // Check if it is profitable to commute the operands.
   1036   unsigned SrcOp1, SrcOp2;
   1037   unsigned regC = 0;
   1038   unsigned regCIdx = ~0U;
   1039   bool TryCommute = false;
   1040   bool AggressiveCommute = false;
   1041   if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
   1042       TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
   1043     if (SrcIdx == SrcOp1)
   1044       regCIdx = SrcOp2;
   1045     else if (SrcIdx == SrcOp2)
   1046       regCIdx = SrcOp1;
   1047 
   1048     if (regCIdx != ~0U) {
   1049       regC = MI.getOperand(regCIdx).getReg();
   1050       if (!regBKilled && isKilled(MI, regC, MRI, TII))
   1051         // If C dies but B does not, swap the B and C operands.
   1052         // This makes the live ranges of A and C joinable.
   1053         TryCommute = true;
   1054       else if (isProfitableToCommute(regA, regB, regC, &MI, mbbi, Dist)) {
   1055         TryCommute = true;
   1056         AggressiveCommute = true;
   1057       }
   1058     }
   1059   }
   1060 
   1061   // If it's profitable to commute, try to do so.
   1062   if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
   1063     ++NumCommuted;
   1064     if (AggressiveCommute)
   1065       ++NumAggrCommuted;
   1066     return false;
   1067   }
   1068 
   1069   // If there is one more use of regB later in the same MBB, consider
   1070   // re-schedule this MI below it.
   1071   if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
   1072     ++NumReSchedDowns;
   1073     return true;
   1074   }
   1075 
   1076   if (MI.isConvertibleTo3Addr()) {
   1077     // This instruction is potentially convertible to a true
   1078     // three-address instruction.  Check if it is profitable.
   1079     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
   1080       // Try to convert it.
   1081       if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
   1082         ++NumConvertedTo3Addr;
   1083         return true; // Done with this instruction.
   1084       }
   1085     }
   1086   }
   1087 
   1088   // If there is one more use of regB later in the same MBB, consider
   1089   // re-schedule it before this MI if it's legal.
   1090   if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
   1091     ++NumReSchedUps;
   1092     return true;
   1093   }
   1094 
   1095   // If this is an instruction with a load folded into it, try unfolding
   1096   // the load, e.g. avoid this:
   1097   //   movq %rdx, %rcx
   1098   //   addq (%rax), %rcx
   1099   // in favor of this:
   1100   //   movq (%rax), %rcx
   1101   //   addq %rdx, %rcx
   1102   // because it's preferable to schedule a load than a register copy.
   1103   if (MI.mayLoad() && !regBKilled) {
   1104     // Determine if a load can be unfolded.
   1105     unsigned LoadRegIndex;
   1106     unsigned NewOpc =
   1107       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
   1108                                       /*UnfoldLoad=*/true,
   1109                                       /*UnfoldStore=*/false,
   1110                                       &LoadRegIndex);
   1111     if (NewOpc != 0) {
   1112       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
   1113       if (UnfoldMCID.getNumDefs() == 1) {
   1114         // Unfold the load.
   1115         DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
   1116         const TargetRegisterClass *RC =
   1117           TRI->getAllocatableClass(
   1118             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
   1119         unsigned Reg = MRI->createVirtualRegister(RC);
   1120         SmallVector<MachineInstr *, 2> NewMIs;
   1121         if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
   1122                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
   1123                                       NewMIs)) {
   1124           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1125           return false;
   1126         }
   1127         assert(NewMIs.size() == 2 &&
   1128                "Unfolded a load into multiple instructions!");
   1129         // The load was previously folded, so this is the only use.
   1130         NewMIs[1]->addRegisterKilled(Reg, TRI);
   1131 
   1132         // Tentatively insert the instructions into the block so that they
   1133         // look "normal" to the transformation logic.
   1134         mbbi->insert(mi, NewMIs[0]);
   1135         mbbi->insert(mi, NewMIs[1]);
   1136 
   1137         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
   1138                      << "2addr:    NEW INST: " << *NewMIs[1]);
   1139 
   1140         // Transform the instruction, now that it no longer has a load.
   1141         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
   1142         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
   1143         MachineBasicBlock::iterator NewMI = NewMIs[1];
   1144         bool TransformSuccess =
   1145           TryInstructionTransform(NewMI, mi, mbbi,
   1146                                   NewSrcIdx, NewDstIdx, Dist, Processed);
   1147         if (TransformSuccess ||
   1148             NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
   1149           // Success, or at least we made an improvement. Keep the unfolded
   1150           // instructions and discard the original.
   1151           if (LV) {
   1152             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1153               MachineOperand &MO = MI.getOperand(i);
   1154               if (MO.isReg() &&
   1155                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
   1156                 if (MO.isUse()) {
   1157                   if (MO.isKill()) {
   1158                     if (NewMIs[0]->killsRegister(MO.getReg()))
   1159                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
   1160                     else {
   1161                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
   1162                              "Kill missing after load unfold!");
   1163                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
   1164                     }
   1165                   }
   1166                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
   1167                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
   1168                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
   1169                   else {
   1170                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
   1171                            "Dead flag missing after load unfold!");
   1172                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
   1173                   }
   1174                 }
   1175               }
   1176             }
   1177             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
   1178           }
   1179           MI.eraseFromParent();
   1180           mi = NewMIs[1];
   1181           if (TransformSuccess)
   1182             return true;
   1183         } else {
   1184           // Transforming didn't eliminate the tie and didn't lead to an
   1185           // improvement. Clean up the unfolded instructions and keep the
   1186           // original.
   1187           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1188           NewMIs[0]->eraseFromParent();
   1189           NewMIs[1]->eraseFromParent();
   1190         }
   1191       }
   1192     }
   1193   }
   1194 
   1195   return false;
   1196 }
   1197 
   1198 // Collect tied operands of MI that need to be handled.
   1199 // Rewrite trivial cases immediately.
   1200 // Return true if any tied operands where found, including the trivial ones.
   1201 bool TwoAddressInstructionPass::
   1202 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
   1203   const MCInstrDesc &MCID = MI->getDesc();
   1204   bool AnyOps = false;
   1205   unsigned NumOps = MI->getNumOperands();
   1206 
   1207   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
   1208     unsigned DstIdx = 0;
   1209     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
   1210       continue;
   1211     AnyOps = true;
   1212     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
   1213     MachineOperand &DstMO = MI->getOperand(DstIdx);
   1214     unsigned SrcReg = SrcMO.getReg();
   1215     unsigned DstReg = DstMO.getReg();
   1216     // Tied constraint already satisfied?
   1217     if (SrcReg == DstReg)
   1218       continue;
   1219 
   1220     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
   1221 
   1222     // Deal with <undef> uses immediately - simply rewrite the src operand.
   1223     if (SrcMO.isUndef()) {
   1224       // Constrain the DstReg register class if required.
   1225       if (TargetRegisterInfo::isVirtualRegister(DstReg))
   1226         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
   1227                                                              TRI, *MF))
   1228           MRI->constrainRegClass(DstReg, RC);
   1229       SrcMO.setReg(DstReg);
   1230       DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
   1231       continue;
   1232     }
   1233     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
   1234   }
   1235   return AnyOps;
   1236 }
   1237 
   1238 // Process a list of tied MI operands that all use the same source register.
   1239 // The tied pairs are of the form (SrcIdx, DstIdx).
   1240 void
   1241 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
   1242                                             TiedPairList &TiedPairs,
   1243                                             unsigned &Dist) {
   1244   bool IsEarlyClobber = false;
   1245   bool RemovedKillFlag = false;
   1246   bool AllUsesCopied = true;
   1247   unsigned LastCopiedReg = 0;
   1248   unsigned RegB = 0;
   1249   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1250     unsigned SrcIdx = TiedPairs[tpi].first;
   1251     unsigned DstIdx = TiedPairs[tpi].second;
   1252 
   1253     const MachineOperand &DstMO = MI->getOperand(DstIdx);
   1254     unsigned RegA = DstMO.getReg();
   1255     IsEarlyClobber |= DstMO.isEarlyClobber();
   1256 
   1257     // Grab RegB from the instruction because it may have changed if the
   1258     // instruction was commuted.
   1259     RegB = MI->getOperand(SrcIdx).getReg();
   1260 
   1261     if (RegA == RegB) {
   1262       // The register is tied to multiple destinations (or else we would
   1263       // not have continued this far), but this use of the register
   1264       // already matches the tied destination.  Leave it.
   1265       AllUsesCopied = false;
   1266       continue;
   1267     }
   1268     LastCopiedReg = RegA;
   1269 
   1270     assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
   1271            "cannot make instruction into two-address form");
   1272 
   1273 #ifndef NDEBUG
   1274     // First, verify that we don't have a use of "a" in the instruction
   1275     // (a = b + a for example) because our transformation will not
   1276     // work. This should never occur because we are in SSA form.
   1277     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
   1278       assert(i == DstIdx ||
   1279              !MI->getOperand(i).isReg() ||
   1280              MI->getOperand(i).getReg() != RegA);
   1281 #endif
   1282 
   1283     // Emit a copy.
   1284     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1285             TII->get(TargetOpcode::COPY), RegA).addReg(RegB);
   1286 
   1287     // Update DistanceMap.
   1288     MachineBasicBlock::iterator PrevMI = MI;
   1289     --PrevMI;
   1290     DistanceMap.insert(std::make_pair(PrevMI, Dist));
   1291     DistanceMap[MI] = ++Dist;
   1292 
   1293     SlotIndex CopyIdx;
   1294     if (Indexes)
   1295       CopyIdx = Indexes->insertMachineInstrInMaps(PrevMI).getRegSlot();
   1296 
   1297     DEBUG(dbgs() << "\t\tprepend:\t" << *PrevMI);
   1298 
   1299     MachineOperand &MO = MI->getOperand(SrcIdx);
   1300     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
   1301            "inconsistent operand info for 2-reg pass");
   1302     if (MO.isKill()) {
   1303       MO.setIsKill(false);
   1304       RemovedKillFlag = true;
   1305     }
   1306 
   1307     // Make sure regA is a legal regclass for the SrcIdx operand.
   1308     if (TargetRegisterInfo::isVirtualRegister(RegA) &&
   1309         TargetRegisterInfo::isVirtualRegister(RegB))
   1310       MRI->constrainRegClass(RegA, MRI->getRegClass(RegB));
   1311 
   1312     MO.setReg(RegA);
   1313 
   1314     // Propagate SrcRegMap.
   1315     SrcRegMap[RegA] = RegB;
   1316   }
   1317 
   1318 
   1319   if (AllUsesCopied) {
   1320     if (!IsEarlyClobber) {
   1321       // Replace other (un-tied) uses of regB with LastCopiedReg.
   1322       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1323         MachineOperand &MO = MI->getOperand(i);
   1324         if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
   1325           if (MO.isKill()) {
   1326             MO.setIsKill(false);
   1327             RemovedKillFlag = true;
   1328           }
   1329           MO.setReg(LastCopiedReg);
   1330         }
   1331       }
   1332     }
   1333 
   1334     // Update live variables for regB.
   1335     if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
   1336       MachineBasicBlock::iterator PrevMI = MI;
   1337       --PrevMI;
   1338       LV->addVirtualRegisterKilled(RegB, PrevMI);
   1339     }
   1340 
   1341   } else if (RemovedKillFlag) {
   1342     // Some tied uses of regB matched their destination registers, so
   1343     // regB is still used in this instruction, but a kill flag was
   1344     // removed from a different tied use of regB, so now we need to add
   1345     // a kill flag to one of the remaining uses of regB.
   1346     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1347       MachineOperand &MO = MI->getOperand(i);
   1348       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
   1349         MO.setIsKill(true);
   1350         break;
   1351       }
   1352     }
   1353   }
   1354 }
   1355 
   1356 /// runOnMachineFunction - Reduce two-address instructions to two operands.
   1357 ///
   1358 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
   1359   MF = &Func;
   1360   const TargetMachine &TM = MF->getTarget();
   1361   MRI = &MF->getRegInfo();
   1362   TII = TM.getInstrInfo();
   1363   TRI = TM.getRegisterInfo();
   1364   InstrItins = TM.getInstrItineraryData();
   1365   Indexes = getAnalysisIfAvailable<SlotIndexes>();
   1366   LV = getAnalysisIfAvailable<LiveVariables>();
   1367   LIS = getAnalysisIfAvailable<LiveIntervals>();
   1368   AA = &getAnalysis<AliasAnalysis>();
   1369   OptLevel = TM.getOptLevel();
   1370 
   1371   bool MadeChange = false;
   1372 
   1373   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
   1374   DEBUG(dbgs() << "********** Function: "
   1375         << MF->getName() << '\n');
   1376 
   1377   // This pass takes the function out of SSA form.
   1378   MRI->leaveSSA();
   1379 
   1380   TiedOperandMap TiedOperands;
   1381 
   1382   SmallPtrSet<MachineInstr*, 8> Processed;
   1383   for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
   1384        mbbi != mbbe; ++mbbi) {
   1385     unsigned Dist = 0;
   1386     DistanceMap.clear();
   1387     SrcRegMap.clear();
   1388     DstRegMap.clear();
   1389     Processed.clear();
   1390     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
   1391          mi != me; ) {
   1392       MachineBasicBlock::iterator nmi = llvm::next(mi);
   1393       if (mi->isDebugValue()) {
   1394         mi = nmi;
   1395         continue;
   1396       }
   1397 
   1398       // Remember REG_SEQUENCE instructions, we'll deal with them later.
   1399       if (mi->isRegSequence())
   1400         RegSequences.push_back(&*mi);
   1401 
   1402       DistanceMap.insert(std::make_pair(mi, ++Dist));
   1403 
   1404       ProcessCopy(&*mi, &*mbbi, Processed);
   1405 
   1406       // First scan through all the tied register uses in this instruction
   1407       // and record a list of pairs of tied operands for each register.
   1408       if (!collectTiedOperands(mi, TiedOperands)) {
   1409         mi = nmi;
   1410         continue;
   1411       }
   1412 
   1413       ++NumTwoAddressInstrs;
   1414       MadeChange = true;
   1415       DEBUG(dbgs() << '\t' << *mi);
   1416 
   1417       // If the instruction has a single pair of tied operands, try some
   1418       // transformations that may either eliminate the tied operands or
   1419       // improve the opportunities for coalescing away the register copy.
   1420       if (TiedOperands.size() == 1) {
   1421         SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs
   1422           = TiedOperands.begin()->second;
   1423         if (TiedPairs.size() == 1) {
   1424           unsigned SrcIdx = TiedPairs[0].first;
   1425           unsigned DstIdx = TiedPairs[0].second;
   1426           unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
   1427           unsigned DstReg = mi->getOperand(DstIdx).getReg();
   1428           if (SrcReg != DstReg &&
   1429               TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
   1430                                       Processed)) {
   1431             // The tied operands have been eliminated or shifted further down the
   1432             // block to ease elimination. Continue processing with 'nmi'.
   1433             TiedOperands.clear();
   1434             mi = nmi;
   1435             continue;
   1436           }
   1437         }
   1438       }
   1439 
   1440       // Now iterate over the information collected above.
   1441       for (TiedOperandMap::iterator OI = TiedOperands.begin(),
   1442              OE = TiedOperands.end(); OI != OE; ++OI) {
   1443         processTiedPairs(mi, OI->second, Dist);
   1444         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
   1445       }
   1446 
   1447       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
   1448       if (mi->isInsertSubreg()) {
   1449         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
   1450         // To   %reg:subidx = COPY %subreg
   1451         unsigned SubIdx = mi->getOperand(3).getImm();
   1452         mi->RemoveOperand(3);
   1453         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
   1454         mi->getOperand(0).setSubReg(SubIdx);
   1455         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
   1456         mi->RemoveOperand(1);
   1457         mi->setDesc(TII->get(TargetOpcode::COPY));
   1458         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
   1459       }
   1460 
   1461       // Clear TiedOperands here instead of at the top of the loop
   1462       // since most instructions do not have tied operands.
   1463       TiedOperands.clear();
   1464       mi = nmi;
   1465     }
   1466   }
   1467 
   1468   // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
   1469   // SSA form. It's now safe to de-SSA.
   1470   MadeChange |= EliminateRegSequences();
   1471 
   1472   return MadeChange;
   1473 }
   1474 
   1475 static void UpdateRegSequenceSrcs(unsigned SrcReg,
   1476                                   unsigned DstReg, unsigned SubIdx,
   1477                                   MachineRegisterInfo *MRI,
   1478                                   const TargetRegisterInfo &TRI) {
   1479   for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
   1480          RE = MRI->reg_end(); RI != RE; ) {
   1481     MachineOperand &MO = RI.getOperand();
   1482     ++RI;
   1483     MO.substVirtReg(DstReg, SubIdx, TRI);
   1484   }
   1485 }
   1486 
   1487 // Find the first def of Reg, assuming they are all in the same basic block.
   1488 static MachineInstr *findFirstDef(unsigned Reg, MachineRegisterInfo *MRI) {
   1489   SmallPtrSet<MachineInstr*, 8> Defs;
   1490   MachineInstr *First = 0;
   1491   for (MachineRegisterInfo::def_iterator RI = MRI->def_begin(Reg);
   1492        MachineInstr *MI = RI.skipInstruction(); Defs.insert(MI))
   1493     First = MI;
   1494   if (!First)
   1495     return 0;
   1496 
   1497   MachineBasicBlock *MBB = First->getParent();
   1498   MachineBasicBlock::iterator A = First, B = First;
   1499   bool Moving;
   1500   do {
   1501     Moving = false;
   1502     if (A != MBB->begin()) {
   1503       Moving = true;
   1504       --A;
   1505       if (Defs.erase(A)) First = A;
   1506     }
   1507     if (B != MBB->end()) {
   1508       Defs.erase(B);
   1509       ++B;
   1510       Moving = true;
   1511     }
   1512   } while (Moving && !Defs.empty());
   1513   assert(Defs.empty() && "Instructions outside basic block!");
   1514   return First;
   1515 }
   1516 
   1517 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
   1518 /// EXTRACT_SUBREG from the same register and to the same virtual register
   1519 /// with different sub-register indices, attempt to combine the
   1520 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
   1521 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
   1522 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
   1523 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
   1524 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
   1525 /// reg1026 to reg1029.
   1526 void
   1527 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
   1528                                               unsigned DstReg) {
   1529   SmallSet<unsigned, 4> Seen;
   1530   for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
   1531     unsigned SrcReg = Srcs[i];
   1532     if (!Seen.insert(SrcReg))
   1533       continue;
   1534 
   1535     // Check that the instructions are all in the same basic block.
   1536     MachineInstr *SrcDefMI = MRI->getUniqueVRegDef(SrcReg);
   1537     MachineInstr *DstDefMI = MRI->getUniqueVRegDef(DstReg);
   1538     if (!SrcDefMI || !DstDefMI ||
   1539         SrcDefMI->getParent() != DstDefMI->getParent())
   1540       continue;
   1541 
   1542     // If there are no other uses than copies which feed into
   1543     // the reg_sequence, then we might be able to coalesce them.
   1544     bool CanCoalesce = true;
   1545     SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
   1546     for (MachineRegisterInfo::use_nodbg_iterator
   1547            UI = MRI->use_nodbg_begin(SrcReg),
   1548            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
   1549       MachineInstr *UseMI = &*UI;
   1550       if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
   1551         CanCoalesce = false;
   1552         break;
   1553       }
   1554       SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
   1555       DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
   1556     }
   1557 
   1558     if (!CanCoalesce || SrcSubIndices.size() < 2)
   1559       continue;
   1560 
   1561     // Check that the source subregisters can be combined.
   1562     std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
   1563     unsigned NewSrcSubIdx = 0;
   1564     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
   1565                                       NewSrcSubIdx))
   1566       continue;
   1567 
   1568     // Check that the destination subregisters can also be combined.
   1569     std::sort(DstSubIndices.begin(), DstSubIndices.end());
   1570     unsigned NewDstSubIdx = 0;
   1571     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
   1572                                       NewDstSubIdx))
   1573       continue;
   1574 
   1575     // If neither source nor destination can be combined to the full register,
   1576     // just give up.  This could be improved if it ever matters.
   1577     if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
   1578       continue;
   1579 
   1580     // Now that we know that all the uses are extract_subregs and that those
   1581     // subregs can somehow be combined, scan all the extract_subregs again to
   1582     // make sure the subregs are in the right order and can be composed.
   1583     MachineInstr *SomeMI = 0;
   1584     CanCoalesce = true;
   1585     for (MachineRegisterInfo::use_nodbg_iterator
   1586            UI = MRI->use_nodbg_begin(SrcReg),
   1587            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
   1588       MachineInstr *UseMI = &*UI;
   1589       assert(UseMI->isCopy());
   1590       unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
   1591       unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
   1592       assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
   1593       if ((NewDstSubIdx == 0 &&
   1594            TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
   1595           (NewSrcSubIdx == 0 &&
   1596            TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
   1597         CanCoalesce = false;
   1598         break;
   1599       }
   1600       // Keep track of one of the uses.  Preferably the first one which has a
   1601       // <def,undef> flag.
   1602       if (!SomeMI || UseMI->getOperand(0).isUndef())
   1603         SomeMI = UseMI;
   1604     }
   1605     if (!CanCoalesce)
   1606       continue;
   1607 
   1608     // Insert a copy to replace the original.
   1609     MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
   1610                                    SomeMI->getDebugLoc(),
   1611                                    TII->get(TargetOpcode::COPY))
   1612       .addReg(DstReg, RegState::Define |
   1613                       getUndefRegState(SomeMI->getOperand(0).isUndef()),
   1614               NewDstSubIdx)
   1615       .addReg(SrcReg, 0, NewSrcSubIdx);
   1616 
   1617     // Remove all the old extract instructions.
   1618     for (MachineRegisterInfo::use_nodbg_iterator
   1619            UI = MRI->use_nodbg_begin(SrcReg),
   1620            UE = MRI->use_nodbg_end(); UI != UE; ) {
   1621       MachineInstr *UseMI = &*UI;
   1622       ++UI;
   1623       if (UseMI == CopyMI)
   1624         continue;
   1625       assert(UseMI->isCopy());
   1626       // Move any kills to the new copy or extract instruction.
   1627       if (UseMI->getOperand(1).isKill()) {
   1628         CopyMI->getOperand(1).setIsKill();
   1629         if (LV)
   1630           // Update live variables
   1631           LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
   1632       }
   1633       UseMI->eraseFromParent();
   1634     }
   1635   }
   1636 }
   1637 
   1638 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
   1639                                     MachineRegisterInfo *MRI) {
   1640   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
   1641          UE = MRI->use_end(); UI != UE; ++UI) {
   1642     MachineInstr *UseMI = &*UI;
   1643     if (UseMI != RegSeq && UseMI->isRegSequence())
   1644       return true;
   1645   }
   1646   return false;
   1647 }
   1648 
   1649 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
   1650 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
   1651 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
   1652 ///
   1653 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
   1654 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
   1655 /// =>
   1656 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
   1657 bool TwoAddressInstructionPass::EliminateRegSequences() {
   1658   if (RegSequences.empty())
   1659     return false;
   1660 
   1661   for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
   1662     MachineInstr *MI = RegSequences[i];
   1663     unsigned DstReg = MI->getOperand(0).getReg();
   1664     if (MI->getOperand(0).getSubReg() ||
   1665         TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   1666         !(MI->getNumOperands() & 1)) {
   1667       DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
   1668       llvm_unreachable(0);
   1669     }
   1670 
   1671     bool IsImpDef = true;
   1672     SmallVector<unsigned, 4> RealSrcs;
   1673     SmallSet<unsigned, 4> Seen;
   1674     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
   1675       // Nothing needs to be inserted for <undef> operands.
   1676       if (MI->getOperand(i).isUndef()) {
   1677         MI->getOperand(i).setReg(0);
   1678         continue;
   1679       }
   1680       unsigned SrcReg = MI->getOperand(i).getReg();
   1681       unsigned SrcSubIdx = MI->getOperand(i).getSubReg();
   1682       unsigned SubIdx = MI->getOperand(i+1).getImm();
   1683       // DefMI of NULL means the value does not have a vreg in this block
   1684       // i.e., its a physical register or a subreg.
   1685       // In either case we force a copy to be generated.
   1686       MachineInstr *DefMI = NULL;
   1687       if (!MI->getOperand(i).getSubReg() &&
   1688           !TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
   1689         DefMI = MRI->getUniqueVRegDef(SrcReg);
   1690       }
   1691 
   1692       if (DefMI && DefMI->isImplicitDef()) {
   1693         DefMI->eraseFromParent();
   1694         continue;
   1695       }
   1696       IsImpDef = false;
   1697 
   1698       // Remember COPY sources. These might be candidate for coalescing.
   1699       if (DefMI && DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
   1700         RealSrcs.push_back(DefMI->getOperand(1).getReg());
   1701 
   1702       bool isKill = MI->getOperand(i).isKill();
   1703       if (!DefMI || !Seen.insert(SrcReg) ||
   1704           MI->getParent() != DefMI->getParent() ||
   1705           !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
   1706           !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
   1707                                          MRI->getRegClass(SrcReg), SubIdx)) {
   1708         // REG_SEQUENCE cannot have duplicated operands, add a copy.
   1709         // Also add an copy if the source is live-in the block. We don't want
   1710         // to end up with a partial-redef of a livein, e.g.
   1711         // BB0:
   1712         // reg1051:10<def> =
   1713         // ...
   1714         // BB1:
   1715         // ... = reg1051:10
   1716         // BB2:
   1717         // reg1051:9<def> =
   1718         // LiveIntervalAnalysis won't like it.
   1719         //
   1720         // If the REG_SEQUENCE doesn't kill its source, keeping live variables
   1721         // correctly up to date becomes very difficult. Insert a copy.
   1722 
   1723         // Defer any kill flag to the last operand using SrcReg. Otherwise, we
   1724         // might insert a COPY that uses SrcReg after is was killed.
   1725         if (isKill)
   1726           for (unsigned j = i + 2; j < e; j += 2)
   1727             if (MI->getOperand(j).getReg() == SrcReg) {
   1728               MI->getOperand(j).setIsKill();
   1729               isKill = false;
   1730               break;
   1731             }
   1732 
   1733         MachineBasicBlock::iterator InsertLoc = MI;
   1734         MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
   1735                                 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
   1736             .addReg(DstReg, RegState::Define, SubIdx)
   1737             .addReg(SrcReg, getKillRegState(isKill), SrcSubIdx);
   1738         MI->getOperand(i).setReg(0);
   1739         if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
   1740           LV->replaceKillInstruction(SrcReg, MI, CopyMI);
   1741         DEBUG(dbgs() << "Inserted: " << *CopyMI);
   1742       }
   1743     }
   1744 
   1745     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
   1746       unsigned SrcReg = MI->getOperand(i).getReg();
   1747       if (!SrcReg) continue;
   1748       unsigned SubIdx = MI->getOperand(i+1).getImm();
   1749       UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
   1750     }
   1751 
   1752     // Set <def,undef> flags on the first DstReg def in the basic block.
   1753     // It marks the beginning of the live range. All the other defs are
   1754     // read-modify-write.
   1755     if (MachineInstr *Def = findFirstDef(DstReg, MRI)) {
   1756       for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
   1757         MachineOperand &MO = Def->getOperand(i);
   1758         if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
   1759           MO.setIsUndef();
   1760       }
   1761       // Make sure there is a full non-subreg imp-def operand on the
   1762       // instruction.  This shouldn't be necessary, but it seems that at least
   1763       // RAFast requires it.
   1764       Def->addRegisterDefined(DstReg, TRI);
   1765       DEBUG(dbgs() << "First def: " << *Def);
   1766     }
   1767 
   1768     if (IsImpDef) {
   1769       DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
   1770       MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
   1771       for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
   1772         MI->RemoveOperand(j);
   1773     } else {
   1774       DEBUG(dbgs() << "Eliminated: " << *MI);
   1775       MI->eraseFromParent();
   1776     }
   1777 
   1778     // Try coalescing some EXTRACT_SUBREG instructions. This can create
   1779     // INSERT_SUBREG instructions that must have <undef> flags added by
   1780     // LiveIntervalAnalysis, so only run it when LiveVariables is available.
   1781     if (LV)
   1782       CoalesceExtSubRegs(RealSrcs, DstReg);
   1783   }
   1784 
   1785   RegSequences.clear();
   1786   return true;
   1787 }
   1788