Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/MC/MCInstrInfo.h"
     19 #include "llvm/CodeGen/DFAPacketizer.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 
     22 namespace llvm {
     23 
     24 class InstrItineraryData;
     25 class LiveVariables;
     26 class MCAsmInfo;
     27 class MachineMemOperand;
     28 class MachineRegisterInfo;
     29 class MDNode;
     30 class MCInst;
     31 class MCSchedModel;
     32 class SDNode;
     33 class ScheduleHazardRecognizer;
     34 class SelectionDAG;
     35 class ScheduleDAG;
     36 class TargetRegisterClass;
     37 class TargetRegisterInfo;
     38 class BranchProbability;
     39 
     40 template<class T> class SmallVectorImpl;
     41 
     42 
     43 //---------------------------------------------------------------------------
     44 ///
     45 /// TargetInstrInfo - Interface to description of machine instruction set
     46 ///
     47 class TargetInstrInfo : public MCInstrInfo {
     48   TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
     49   void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
     50 public:
     51   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
     52     : CallFrameSetupOpcode(CFSetupOpcode),
     53       CallFrameDestroyOpcode(CFDestroyOpcode) {
     54   }
     55 
     56   virtual ~TargetInstrInfo();
     57 
     58   /// getRegClass - Givem a machine instruction descriptor, returns the register
     59   /// class constraint for OpNum, or NULL.
     60   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
     61                                          unsigned OpNum,
     62                                          const TargetRegisterInfo *TRI,
     63                                          const MachineFunction &MF) const;
     64 
     65   /// isTriviallyReMaterializable - Return true if the instruction is trivially
     66   /// rematerializable, meaning it has no side effects and requires no operands
     67   /// that aren't always available.
     68   bool isTriviallyReMaterializable(const MachineInstr *MI,
     69                                    AliasAnalysis *AA = 0) const {
     70     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     71            (MI->getDesc().isRematerializable() &&
     72             (isReallyTriviallyReMaterializable(MI, AA) ||
     73              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     74   }
     75 
     76 protected:
     77   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
     78   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
     79   /// specify whether the instruction is actually trivially rematerializable,
     80   /// taking into consideration its operands. This predicate must return false
     81   /// if the instruction has any side effects other than producing a value, or
     82   /// if it requres any address registers that are not always available.
     83   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
     84                                                  AliasAnalysis *AA) const {
     85     return false;
     86   }
     87 
     88 private:
     89   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
     90   /// for which the M_REMATERIALIZABLE flag is set and the target hook
     91   /// isReallyTriviallyReMaterializable returns false, this function does
     92   /// target-independent tests to determine if the instruction is really
     93   /// trivially rematerializable.
     94   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
     95                                                 AliasAnalysis *AA) const;
     96 
     97 public:
     98   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
     99   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
    100   /// targets use pseudo instructions in order to abstract away the difference
    101   /// between operating with a frame pointer and operating without, through the
    102   /// use of these two instructions.
    103   ///
    104   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    105   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    106 
    107   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    108   /// extension instruction. That is, it's like a copy where it's legal for the
    109   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    110   /// true, then it's expected the pre-extension value is available as a subreg
    111   /// of the result register. This also returns the sub-register index in
    112   /// SubIdx.
    113   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    114                                      unsigned &SrcReg, unsigned &DstReg,
    115                                      unsigned &SubIdx) const {
    116     return false;
    117   }
    118 
    119   /// isLoadFromStackSlot - If the specified machine instruction is a direct
    120   /// load from a stack slot, return the virtual or physical register number of
    121   /// the destination along with the FrameIndex of the loaded stack slot.  If
    122   /// not, return 0.  This predicate must return 0 if the instruction has
    123   /// any side effects other than loading from the stack slot.
    124   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
    125                                        int &FrameIndex) const {
    126     return 0;
    127   }
    128 
    129   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    130   /// stack locations as well.  This uses a heuristic so it isn't
    131   /// reliable for correctness.
    132   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    133                                              int &FrameIndex) const {
    134     return 0;
    135   }
    136 
    137   /// hasLoadFromStackSlot - If the specified machine instruction has
    138   /// a load from a stack slot, return true along with the FrameIndex
    139   /// of the loaded stack slot and the machine mem operand containing
    140   /// the reference.  If not, return false.  Unlike
    141   /// isLoadFromStackSlot, this returns true for any instructions that
    142   /// loads from the stack.  This is just a hint, as some cases may be
    143   /// missed.
    144   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    145                                     const MachineMemOperand *&MMO,
    146                                     int &FrameIndex) const {
    147     return 0;
    148   }
    149 
    150   /// isStoreToStackSlot - If the specified machine instruction is a direct
    151   /// store to a stack slot, return the virtual or physical register number of
    152   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    153   /// not, return 0.  This predicate must return 0 if the instruction has
    154   /// any side effects other than storing to the stack slot.
    155   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
    156                                       int &FrameIndex) const {
    157     return 0;
    158   }
    159 
    160   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    161   /// stack locations as well.  This uses a heuristic so it isn't
    162   /// reliable for correctness.
    163   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    164                                             int &FrameIndex) const {
    165     return 0;
    166   }
    167 
    168   /// hasStoreToStackSlot - If the specified machine instruction has a
    169   /// store to a stack slot, return true along with the FrameIndex of
    170   /// the loaded stack slot and the machine mem operand containing the
    171   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
    172   /// this returns true for any instructions that stores to the
    173   /// stack.  This is just a hint, as some cases may be missed.
    174   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    175                                    const MachineMemOperand *&MMO,
    176                                    int &FrameIndex) const {
    177     return 0;
    178   }
    179 
    180   /// reMaterialize - Re-issue the specified 'original' instruction at the
    181   /// specific location targeting a new destination register.
    182   /// The register in Orig->getOperand(0).getReg() will be substituted by
    183   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    184   /// SubIdx.
    185   virtual void reMaterialize(MachineBasicBlock &MBB,
    186                              MachineBasicBlock::iterator MI,
    187                              unsigned DestReg, unsigned SubIdx,
    188                              const MachineInstr *Orig,
    189                              const TargetRegisterInfo &TRI) const = 0;
    190 
    191   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
    192   /// MachineFunction::CloneMachineInstr(), but the target may update operands
    193   /// that are required to be unique.
    194   ///
    195   /// The instruction must be duplicable as indicated by isNotDuplicable().
    196   virtual MachineInstr *duplicate(MachineInstr *Orig,
    197                                   MachineFunction &MF) const = 0;
    198 
    199   /// convertToThreeAddress - This method must be implemented by targets that
    200   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    201   /// may be able to convert a two-address instruction into one or more true
    202   /// three-address instructions on demand.  This allows the X86 target (for
    203   /// example) to convert ADD and SHL instructions into LEA instructions if they
    204   /// would require register copies due to two-addressness.
    205   ///
    206   /// This method returns a null pointer if the transformation cannot be
    207   /// performed, otherwise it returns the last new instruction.
    208   ///
    209   virtual MachineInstr *
    210   convertToThreeAddress(MachineFunction::iterator &MFI,
    211                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    212     return 0;
    213   }
    214 
    215   /// commuteInstruction - If a target has any instructions that are
    216   /// commutable but require converting to different instructions or making
    217   /// non-trivial changes to commute them, this method can overloaded to do
    218   /// that.  The default implementation simply swaps the commutable operands.
    219   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    220   /// new machine instruction is created and returned.  Do not call this
    221   /// method for a non-commutable instruction, but there may be some cases
    222   /// where this method fails and returns null.
    223   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    224                                            bool NewMI = false) const = 0;
    225 
    226   /// findCommutedOpIndices - If specified MI is commutable, return the two
    227   /// operand indices that would swap value. Return false if the instruction
    228   /// is not in a form which this routine understands.
    229   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    230                                      unsigned &SrcOpIdx2) const = 0;
    231 
    232   /// produceSameValue - Return true if two machine instructions would produce
    233   /// identical values. By default, this is only true when the two instructions
    234   /// are deemed identical except for defs. If this function is called when the
    235   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    236   /// aggressive checks.
    237   virtual bool produceSameValue(const MachineInstr *MI0,
    238                                 const MachineInstr *MI1,
    239                                 const MachineRegisterInfo *MRI = 0) const = 0;
    240 
    241   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
    242   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    243   /// implemented for a target).  Upon success, this returns false and returns
    244   /// with the following information in various cases:
    245   ///
    246   /// 1. If this block ends with no branches (it just falls through to its succ)
    247   ///    just return false, leaving TBB/FBB null.
    248   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    249   ///    the destination block.
    250   /// 3. If this block ends with a conditional branch and it falls through to a
    251   ///    successor block, it sets TBB to be the branch destination block and a
    252   ///    list of operands that evaluate the condition. These operands can be
    253   ///    passed to other TargetInstrInfo methods to create new branches.
    254   /// 4. If this block ends with a conditional branch followed by an
    255   ///    unconditional branch, it returns the 'true' destination in TBB, the
    256   ///    'false' destination in FBB, and a list of operands that evaluate the
    257   ///    condition.  These operands can be passed to other TargetInstrInfo
    258   ///    methods to create new branches.
    259   ///
    260   /// Note that RemoveBranch and InsertBranch must be implemented to support
    261   /// cases where this method returns success.
    262   ///
    263   /// If AllowModify is true, then this routine is allowed to modify the basic
    264   /// block (e.g. delete instructions after the unconditional branch).
    265   ///
    266   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    267                              MachineBasicBlock *&FBB,
    268                              SmallVectorImpl<MachineOperand> &Cond,
    269                              bool AllowModify = false) const {
    270     return true;
    271   }
    272 
    273   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
    274   /// This is only invoked in cases where AnalyzeBranch returns success. It
    275   /// returns the number of instructions that were removed.
    276   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    277     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
    278   }
    279 
    280   /// InsertBranch - Insert branch code into the end of the specified
    281   /// MachineBasicBlock.  The operands to this method are the same as those
    282   /// returned by AnalyzeBranch.  This is only invoked in cases where
    283   /// AnalyzeBranch returns success. It returns the number of instructions
    284   /// inserted.
    285   ///
    286   /// It is also invoked by tail merging to add unconditional branches in
    287   /// cases where AnalyzeBranch doesn't apply because there was no original
    288   /// branch to analyze.  At least this much must be implemented, else tail
    289   /// merging needs to be disabled.
    290   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    291                                 MachineBasicBlock *FBB,
    292                                 const SmallVectorImpl<MachineOperand> &Cond,
    293                                 DebugLoc DL) const {
    294     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
    295   }
    296 
    297   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
    298   /// after it, replacing it with an unconditional branch to NewDest. This is
    299   /// used by the tail merging pass.
    300   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    301                                        MachineBasicBlock *NewDest) const = 0;
    302 
    303   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
    304   /// block at the specified instruction (i.e. instruction would be the start
    305   /// of a new basic block).
    306   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    307                                    MachineBasicBlock::iterator MBBI) const {
    308     return true;
    309   }
    310 
    311   /// isProfitableToIfCvt - Return true if it's profitable to predicate
    312   /// instructions with accumulated instruction latency of "NumCycles"
    313   /// of the specified basic block, where the probability of the instructions
    314   /// being executed is given by Probability, and Confidence is a measure
    315   /// of our confidence that it will be properly predicted.
    316   virtual
    317   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    318                            unsigned ExtraPredCycles,
    319                            const BranchProbability &Probability) const {
    320     return false;
    321   }
    322 
    323   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
    324   /// checks for the case where two basic blocks from true and false path
    325   /// of a if-then-else (diamond) are predicated on mutally exclusive
    326   /// predicates, where the probability of the true path being taken is given
    327   /// by Probability, and Confidence is a measure of our confidence that it
    328   /// will be properly predicted.
    329   virtual bool
    330   isProfitableToIfCvt(MachineBasicBlock &TMBB,
    331                       unsigned NumTCycles, unsigned ExtraTCycles,
    332                       MachineBasicBlock &FMBB,
    333                       unsigned NumFCycles, unsigned ExtraFCycles,
    334                       const BranchProbability &Probability) const {
    335     return false;
    336   }
    337 
    338   /// isProfitableToDupForIfCvt - Return true if it's profitable for
    339   /// if-converter to duplicate instructions of specified accumulated
    340   /// instruction latencies in the specified MBB to enable if-conversion.
    341   /// The probability of the instructions being executed is given by
    342   /// Probability, and Confidence is a measure of our confidence that it
    343   /// will be properly predicted.
    344   virtual bool
    345   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    346                             const BranchProbability &Probability) const {
    347     return false;
    348   }
    349 
    350   /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
    351   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
    352   /// exclusive predicates.
    353   /// e.g.
    354   ///   subeq  r0, r1, #1
    355   ///   addne  r0, r1, #1
    356   /// =>
    357   ///   sub    r0, r1, #1
    358   ///   addne  r0, r1, #1
    359   ///
    360   /// This may be profitable is conditional instructions are always executed.
    361   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
    362                                          MachineBasicBlock &FMBB) const {
    363     return false;
    364   }
    365 
    366   /// canInsertSelect - Return true if it is possible to insert a select
    367   /// instruction that chooses between TrueReg and FalseReg based on the
    368   /// condition code in Cond.
    369   ///
    370   /// When successful, also return the latency in cycles from TrueReg,
    371   /// FalseReg, and Cond to the destination register. The Cond latency should
    372   /// compensate for a conditional branch being removed. For example, if a
    373   /// conditional branch has a 3 cycle latency from the condition code read,
    374   /// and a cmov instruction has a 2 cycle latency from the condition code
    375   /// read, CondCycles should be returned as -1.
    376   ///
    377   /// @param MBB         Block where select instruction would be inserted.
    378   /// @param Cond        Condition returned by AnalyzeBranch.
    379   /// @param TrueReg     Virtual register to select when Cond is true.
    380   /// @param FalseReg    Virtual register to select when Cond is false.
    381   /// @param CondCycles  Latency from Cond+Branch to select output.
    382   /// @param TrueCycles  Latency from TrueReg to select output.
    383   /// @param FalseCycles Latency from FalseReg to select output.
    384   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
    385                                const SmallVectorImpl<MachineOperand> &Cond,
    386                                unsigned TrueReg, unsigned FalseReg,
    387                                int &CondCycles,
    388                                int &TrueCycles, int &FalseCycles) const {
    389     return false;
    390   }
    391 
    392   /// insertSelect - Insert a select instruction into MBB before I that will
    393   /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
    394   /// Cond is false.
    395   ///
    396   /// This function can only be called after canInsertSelect() returned true.
    397   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
    398   /// that the same flags or registers required by Cond are available at the
    399   /// insertion point.
    400   ///
    401   /// @param MBB      Block where select instruction should be inserted.
    402   /// @param I        Insertion point.
    403   /// @param DL       Source location for debugging.
    404   /// @param DstReg   Virtual register to be defined by select instruction.
    405   /// @param Cond     Condition as computed by AnalyzeBranch.
    406   /// @param TrueReg  Virtual register to copy when Cond is true.
    407   /// @param FalseReg Virtual register to copy when Cons is false.
    408   virtual void insertSelect(MachineBasicBlock &MBB,
    409                             MachineBasicBlock::iterator I, DebugLoc DL,
    410                             unsigned DstReg,
    411                             const SmallVectorImpl<MachineOperand> &Cond,
    412                             unsigned TrueReg, unsigned FalseReg) const {
    413     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
    414   }
    415 
    416   /// analyzeSelect - Analyze the given select instruction, returning true if
    417   /// it cannot be understood. It is assumed that MI->isSelect() is true.
    418   ///
    419   /// When successful, return the controlling condition and the operands that
    420   /// determine the true and false result values.
    421   ///
    422   ///   Result = SELECT Cond, TrueOp, FalseOp
    423   ///
    424   /// Some targets can optimize select instructions, for example by predicating
    425   /// the instruction defining one of the operands. Such targets should set
    426   /// Optimizable.
    427   ///
    428   /// @param         MI Select instruction to analyze.
    429   /// @param Cond    Condition controlling the select.
    430   /// @param TrueOp  Operand number of the value selected when Cond is true.
    431   /// @param FalseOp Operand number of the value selected when Cond is false.
    432   /// @param Optimizable Returned as true if MI is optimizable.
    433   /// @returns False on success.
    434   virtual bool analyzeSelect(const MachineInstr *MI,
    435                              SmallVectorImpl<MachineOperand> &Cond,
    436                              unsigned &TrueOp, unsigned &FalseOp,
    437                              bool &Optimizable) const {
    438     assert(MI && MI->isSelect() && "MI must be a select instruction");
    439     return true;
    440   }
    441 
    442   /// optimizeSelect - Given a select instruction that was understood by
    443   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
    444   /// merging it with one of its operands. Returns NULL on failure.
    445   ///
    446   /// When successful, returns the new select instruction. The client is
    447   /// responsible for deleting MI.
    448   ///
    449   /// If both sides of the select can be optimized, PreferFalse is used to pick
    450   /// a side.
    451   ///
    452   /// @param MI          Optimizable select instruction.
    453   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
    454   /// @returns Optimized instruction or NULL.
    455   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
    456                                        bool PreferFalse = false) const {
    457     // This function must be implemented if Optimizable is ever set.
    458     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
    459   }
    460 
    461   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
    462   ///
    463   /// This function should support copies within any legal register class as
    464   /// well as any cross-class copies created during instruction selection.
    465   ///
    466   /// The source and destination registers may overlap, which may require a
    467   /// careful implementation when multiple copy instructions are required for
    468   /// large registers. See for example the ARM target.
    469   virtual void copyPhysReg(MachineBasicBlock &MBB,
    470                            MachineBasicBlock::iterator MI, DebugLoc DL,
    471                            unsigned DestReg, unsigned SrcReg,
    472                            bool KillSrc) const {
    473     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
    474   }
    475 
    476   /// storeRegToStackSlot - Store the specified register of the given register
    477   /// class to the specified stack frame index. The store instruction is to be
    478   /// added to the given machine basic block before the specified machine
    479   /// instruction. If isKill is true, the register operand is the last use and
    480   /// must be marked kill.
    481   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    482                                    MachineBasicBlock::iterator MI,
    483                                    unsigned SrcReg, bool isKill, int FrameIndex,
    484                                    const TargetRegisterClass *RC,
    485                                    const TargetRegisterInfo *TRI) const {
    486     llvm_unreachable("Target didn't implement "
    487                      "TargetInstrInfo::storeRegToStackSlot!");
    488   }
    489 
    490   /// loadRegFromStackSlot - Load the specified register of the given register
    491   /// class from the specified stack frame index. The load instruction is to be
    492   /// added to the given machine basic block before the specified machine
    493   /// instruction.
    494   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    495                                     MachineBasicBlock::iterator MI,
    496                                     unsigned DestReg, int FrameIndex,
    497                                     const TargetRegisterClass *RC,
    498                                     const TargetRegisterInfo *TRI) const {
    499     llvm_unreachable("Target didn't implement "
    500                      "TargetInstrInfo::loadRegFromStackSlot!");
    501   }
    502 
    503   /// expandPostRAPseudo - This function is called for all pseudo instructions
    504   /// that remain after register allocation. Many pseudo instructions are
    505   /// created to help register allocation. This is the place to convert them
    506   /// into real instructions. The target can edit MI in place, or it can insert
    507   /// new instructions and erase MI. The function should return true if
    508   /// anything was changed.
    509   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    510     return false;
    511   }
    512 
    513   /// emitFrameIndexDebugValue - Emit a target-dependent form of
    514   /// DBG_VALUE encoding the address of a frame index.  Addresses would
    515   /// normally be lowered the same way as other addresses on the target,
    516   /// e.g. in load instructions.  For targets that do not support this
    517   /// the debug info is simply lost.
    518   /// If you add this for a target you should handle this DBG_VALUE in the
    519   /// target-specific AsmPrinter code as well; you will probably get invalid
    520   /// assembly output if you don't.
    521   virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
    522                                                  int FrameIx,
    523                                                  uint64_t Offset,
    524                                                  const MDNode *MDPtr,
    525                                                  DebugLoc dl) const {
    526     return 0;
    527   }
    528 
    529   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    530   /// slot into the specified machine instruction for the specified operand(s).
    531   /// If this is possible, a new instruction is returned with the specified
    532   /// operand folded, otherwise NULL is returned.
    533   /// The new instruction is inserted before MI, and the client is responsible
    534   /// for removing the old instruction.
    535   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    536                                   const SmallVectorImpl<unsigned> &Ops,
    537                                   int FrameIndex) const;
    538 
    539   /// foldMemoryOperand - Same as the previous version except it allows folding
    540   /// of any load and store from / to any address, not just from a specific
    541   /// stack slot.
    542   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    543                                   const SmallVectorImpl<unsigned> &Ops,
    544                                   MachineInstr* LoadMI) const;
    545 
    546 protected:
    547   /// foldMemoryOperandImpl - Target-dependent implementation for
    548   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    549   /// take care of adding a MachineMemOperand to the newly created instruction.
    550   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    551                                           MachineInstr* MI,
    552                                           const SmallVectorImpl<unsigned> &Ops,
    553                                           int FrameIndex) const {
    554     return 0;
    555   }
    556 
    557   /// foldMemoryOperandImpl - Target-dependent implementation for
    558   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    559   /// take care of adding a MachineMemOperand to the newly created instruction.
    560   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    561                                               MachineInstr* MI,
    562                                           const SmallVectorImpl<unsigned> &Ops,
    563                                               MachineInstr* LoadMI) const {
    564     return 0;
    565   }
    566 
    567 public:
    568   /// canFoldMemoryOperand - Returns true for the specified load / store if
    569   /// folding is possible.
    570   virtual
    571   bool canFoldMemoryOperand(const MachineInstr *MI,
    572                             const SmallVectorImpl<unsigned> &Ops) const =0;
    573 
    574   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    575   /// a store or a load and a store into two or more instruction. If this is
    576   /// possible, returns true as well as the new instructions by reference.
    577   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    578                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    579                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    580     return false;
    581   }
    582 
    583   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    584                                    SmallVectorImpl<SDNode*> &NewNodes) const {
    585     return false;
    586   }
    587 
    588   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    589   /// instruction after load / store are unfolded from an instruction of the
    590   /// specified opcode. It returns zero if the specified unfolding is not
    591   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    592   /// index of the operand which will hold the register holding the loaded
    593   /// value.
    594   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    595                                       bool UnfoldLoad, bool UnfoldStore,
    596                                       unsigned *LoadRegIndex = 0) const {
    597     return 0;
    598   }
    599 
    600   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    601   /// to determine if two loads are loading from the same base address. It
    602   /// should only return true if the base pointers are the same and the
    603   /// only differences between the two addresses are the offset. It also returns
    604   /// the offsets by reference.
    605   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    606                                     int64_t &Offset1, int64_t &Offset2) const {
    607     return false;
    608   }
    609 
    610   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    611   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    612   /// be scheduled togther. On some targets if two loads are loading from
    613   /// addresses in the same cache line, it's better if they are scheduled
    614   /// together. This function takes two integers that represent the load offsets
    615   /// from the common base address. It returns true if it decides it's desirable
    616   /// to schedule the two loads together. "NumLoads" is the number of loads that
    617   /// have already been scheduled after Load1.
    618   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    619                                        int64_t Offset1, int64_t Offset2,
    620                                        unsigned NumLoads) const {
    621     return false;
    622   }
    623 
    624   /// ReverseBranchCondition - Reverses the branch condition of the specified
    625   /// condition list, returning false on success and true if it cannot be
    626   /// reversed.
    627   virtual
    628   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    629     return true;
    630   }
    631 
    632   /// insertNoop - Insert a noop into the instruction stream at the specified
    633   /// point.
    634   virtual void insertNoop(MachineBasicBlock &MBB,
    635                           MachineBasicBlock::iterator MI) const;
    636 
    637 
    638   /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    639   virtual void getNoopForMachoTarget(MCInst &NopInst) const {
    640     // Default to just using 'nop' string.
    641   }
    642 
    643 
    644   /// isPredicated - Returns true if the instruction is already predicated.
    645   ///
    646   virtual bool isPredicated(const MachineInstr *MI) const {
    647     return false;
    648   }
    649 
    650   /// isUnpredicatedTerminator - Returns true if the instruction is a
    651   /// terminator instruction that has not been predicated.
    652   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
    653 
    654   /// PredicateInstruction - Convert the instruction into a predicated
    655   /// instruction. It returns true if the operation was successful.
    656   virtual
    657   bool PredicateInstruction(MachineInstr *MI,
    658                         const SmallVectorImpl<MachineOperand> &Pred) const = 0;
    659 
    660   /// SubsumesPredicate - Returns true if the first specified predicate
    661   /// subsumes the second, e.g. GE subsumes GT.
    662   virtual
    663   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    664                          const SmallVectorImpl<MachineOperand> &Pred2) const {
    665     return false;
    666   }
    667 
    668   /// DefinesPredicate - If the specified instruction defines any predicate
    669   /// or condition code register(s) used for predication, returns true as well
    670   /// as the definition predicate(s) by reference.
    671   virtual bool DefinesPredicate(MachineInstr *MI,
    672                                 std::vector<MachineOperand> &Pred) const {
    673     return false;
    674   }
    675 
    676   /// isPredicable - Return true if the specified instruction can be predicated.
    677   /// By default, this returns true for every instruction with a
    678   /// PredicateOperand.
    679   virtual bool isPredicable(MachineInstr *MI) const {
    680     return MI->getDesc().isPredicable();
    681   }
    682 
    683   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    684   /// instruction that defines the specified register class.
    685   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    686     return true;
    687   }
    688 
    689   /// isSchedulingBoundary - Test if the given instruction should be
    690   /// considered a scheduling boundary. This primarily includes labels and
    691   /// terminators.
    692   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    693                                     const MachineBasicBlock *MBB,
    694                                     const MachineFunction &MF) const = 0;
    695 
    696   /// Measure the specified inline asm to determine an approximation of its
    697   /// length.
    698   virtual unsigned getInlineAsmLength(const char *Str,
    699                                       const MCAsmInfo &MAI) const;
    700 
    701   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
    702   /// use for this target when scheduling the machine instructions before
    703   /// register allocation.
    704   virtual ScheduleHazardRecognizer*
    705   CreateTargetHazardRecognizer(const TargetMachine *TM,
    706                                const ScheduleDAG *DAG) const = 0;
    707 
    708   /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
    709   /// to use for this target when scheduling the machine instructions before
    710   /// register allocation.
    711   virtual ScheduleHazardRecognizer*
    712   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
    713                                  const ScheduleDAG *DAG) const = 0;
    714 
    715   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
    716   /// recognizer to use for this target when scheduling the machine instructions
    717   /// after register allocation.
    718   virtual ScheduleHazardRecognizer*
    719   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    720                                      const ScheduleDAG *DAG) const = 0;
    721 
    722   /// analyzeCompare - For a comparison instruction, return the source registers
    723   /// in SrcReg and SrcReg2 if having two register operands, and the value it
    724   /// compares against in CmpValue. Return true if the comparison instruction
    725   /// can be analyzed.
    726   virtual bool analyzeCompare(const MachineInstr *MI,
    727                               unsigned &SrcReg, unsigned &SrcReg2,
    728                               int &Mask, int &Value) const {
    729     return false;
    730   }
    731 
    732   /// optimizeCompareInstr - See if the comparison instruction can be converted
    733   /// into something more efficient. E.g., on ARM most instructions can set the
    734   /// flags register, obviating the need for a separate CMP.
    735   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
    736                                     unsigned SrcReg, unsigned SrcReg2,
    737                                     int Mask, int Value,
    738                                     const MachineRegisterInfo *MRI) const {
    739     return false;
    740   }
    741 
    742   /// optimizeLoadInstr - Try to remove the load by folding it to a register
    743   /// operand at the use. We fold the load instructions if and only if the
    744   /// def and use are in the same BB. We only look at one load and see
    745   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
    746   /// defined by the load we are trying to fold. DefMI returns the machine
    747   /// instruction that defines FoldAsLoadDefReg, and the function returns
    748   /// the machine instruction generated due to folding.
    749   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
    750                         const MachineRegisterInfo *MRI,
    751                         unsigned &FoldAsLoadDefReg,
    752                         MachineInstr *&DefMI) const {
    753     return 0;
    754   }
    755 
    756   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
    757   /// instruction, try to fold the immediate into the use instruction.
    758   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    759                              unsigned Reg, MachineRegisterInfo *MRI) const {
    760     return false;
    761   }
    762 
    763   /// getNumMicroOps - Return the number of u-operations the given machine
    764   /// instruction will be decoded to on the target cpu. The itinerary's
    765   /// IssueWidth is the number of microops that can be dispatched each
    766   /// cycle. An instruction with zero microops takes no dispatch resources.
    767   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
    768                                   const MachineInstr *MI) const = 0;
    769 
    770   /// isZeroCost - Return true for pseudo instructions that don't consume any
    771   /// machine resources in their current form. These are common cases that the
    772   /// scheduler should consider free, rather than conservatively handling them
    773   /// as instructions with no itinerary.
    774   bool isZeroCost(unsigned Opcode) const {
    775     return Opcode <= TargetOpcode::COPY;
    776   }
    777 
    778   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    779                                 SDNode *DefNode, unsigned DefIdx,
    780                                 SDNode *UseNode, unsigned UseIdx) const = 0;
    781 
    782   /// getOperandLatency - Compute and return the use operand latency of a given
    783   /// pair of def and use.
    784   /// In most cases, the static scheduling itinerary was enough to determine the
    785   /// operand latency. But it may not be possible for instructions with variable
    786   /// number of defs / uses.
    787   ///
    788   /// This is a raw interface to the itinerary that may be directly overriden by
    789   /// a target. Use computeOperandLatency to get the best estimate of latency.
    790   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    791                                 const MachineInstr *DefMI, unsigned DefIdx,
    792                                 const MachineInstr *UseMI,
    793                                 unsigned UseIdx) const = 0;
    794 
    795   /// computeOperandLatency - Compute and return the latency of the given data
    796   /// dependent def and use when the operand indices are already known.
    797   ///
    798   /// FindMin may be set to get the minimum vs. expected latency.
    799   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
    800                                  const MachineInstr *DefMI, unsigned DefIdx,
    801                                  const MachineInstr *UseMI, unsigned UseIdx,
    802                                  bool FindMin = false) const;
    803 
    804   /// getOutputLatency - Compute and return the output dependency latency of a
    805   /// a given pair of defs which both target the same register. This is usually
    806   /// one.
    807   virtual unsigned getOutputLatency(const InstrItineraryData *ItinData,
    808                                     const MachineInstr *DefMI, unsigned DefIdx,
    809                                     const MachineInstr *DepMI) const {
    810     return 1;
    811   }
    812 
    813   /// getInstrLatency - Compute the instruction latency of a given instruction.
    814   /// If the instruction has higher cost when predicated, it's returned via
    815   /// PredCost.
    816   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
    817                                    const MachineInstr *MI,
    818                                    unsigned *PredCost = 0) const = 0;
    819 
    820   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    821                               SDNode *Node) const = 0;
    822 
    823   /// Return the default expected latency for a def based on it's opcode.
    824   unsigned defaultDefLatency(const MCSchedModel *SchedModel,
    825                              const MachineInstr *DefMI) const;
    826 
    827   /// isHighLatencyDef - Return true if this opcode has high latency to its
    828   /// result.
    829   virtual bool isHighLatencyDef(int opc) const { return false; }
    830 
    831   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
    832   /// and an use in the current loop, return true if the target considered
    833   /// it 'high'. This is used by optimization passes such as machine LICM to
    834   /// determine whether it makes sense to hoist an instruction out even in
    835   /// high register pressure situation.
    836   virtual
    837   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    838                              const MachineRegisterInfo *MRI,
    839                              const MachineInstr *DefMI, unsigned DefIdx,
    840                              const MachineInstr *UseMI, unsigned UseIdx) const {
    841     return false;
    842   }
    843 
    844   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
    845   /// if the target considered it 'low'.
    846   virtual
    847   bool hasLowDefLatency(const InstrItineraryData *ItinData,
    848                         const MachineInstr *DefMI, unsigned DefIdx) const = 0;
    849 
    850   /// verifyInstruction - Perform target specific instruction verification.
    851   virtual
    852   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
    853     return true;
    854   }
    855 
    856   /// getExecutionDomain - Return the current execution domain and bit mask of
    857   /// possible domains for instruction.
    858   ///
    859   /// Some micro-architectures have multiple execution domains, and multiple
    860   /// opcodes that perform the same operation in different domains.  For
    861   /// example, the x86 architecture provides the por, orps, and orpd
    862   /// instructions that all do the same thing.  There is a latency penalty if a
    863   /// register is written in one domain and read in another.
    864   ///
    865   /// This function returns a pair (domain, mask) containing the execution
    866   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
    867   /// function can be used to change the opcode to one of the domains in the
    868   /// bit mask.  Instructions whose execution domain can't be changed should
    869   /// return a 0 mask.
    870   ///
    871   /// The execution domain numbers don't have any special meaning except domain
    872   /// 0 is used for instructions that are not associated with any interesting
    873   /// execution domain.
    874   ///
    875   virtual std::pair<uint16_t, uint16_t>
    876   getExecutionDomain(const MachineInstr *MI) const {
    877     return std::make_pair(0, 0);
    878   }
    879 
    880   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
    881   ///
    882   /// The bit (1 << Domain) must be set in the mask returned from
    883   /// getExecutionDomain(MI).
    884   ///
    885   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
    886 
    887 
    888   /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
    889   /// before an instruction with an unwanted partial register update.
    890   ///
    891   /// Some instructions only write part of a register, and implicitly need to
    892   /// read the other parts of the register.  This may cause unwanted stalls
    893   /// preventing otherwise unrelated instructions from executing in parallel in
    894   /// an out-of-order CPU.
    895   ///
    896   /// For example, the x86 instruction cvtsi2ss writes its result to bits
    897   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
    898   /// the instruction needs to wait for the old value of the register to become
    899   /// available:
    900   ///
    901   ///   addps %xmm1, %xmm0
    902   ///   movaps %xmm0, (%rax)
    903   ///   cvtsi2ss %rbx, %xmm0
    904   ///
    905   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
    906   /// instruction before it can issue, even though the high bits of %xmm0
    907   /// probably aren't needed.
    908   ///
    909   /// This hook returns the preferred clearance before MI, measured in
    910   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
    911   /// instructions before MI.  It should only return a positive value for
    912   /// unwanted dependencies.  If the old bits of the defined register have
    913   /// useful values, or if MI is determined to otherwise read the dependency,
    914   /// the hook should return 0.
    915   ///
    916   /// The unwanted dependency may be handled by:
    917   ///
    918   /// 1. Allocating the same register for an MI def and use.  That makes the
    919   ///    unwanted dependency identical to a required dependency.
    920   ///
    921   /// 2. Allocating a register for the def that has no defs in the previous N
    922   ///    instructions.
    923   ///
    924   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
    925   ///    allows the target to insert a dependency breaking instruction.
    926   ///
    927   virtual unsigned
    928   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    929                                const TargetRegisterInfo *TRI) const {
    930     // The default implementation returns 0 for no partial register dependency.
    931     return 0;
    932   }
    933 
    934   /// breakPartialRegDependency - Insert a dependency-breaking instruction
    935   /// before MI to eliminate an unwanted dependency on OpNum.
    936   ///
    937   /// If it wasn't possible to avoid a def in the last N instructions before MI
    938   /// (see getPartialRegUpdateClearance), this hook will be called to break the
    939   /// unwanted dependency.
    940   ///
    941   /// On x86, an xorps instruction can be used as a dependency breaker:
    942   ///
    943   ///   addps %xmm1, %xmm0
    944   ///   movaps %xmm0, (%rax)
    945   ///   xorps %xmm0, %xmm0
    946   ///   cvtsi2ss %rbx, %xmm0
    947   ///
    948   /// An <imp-kill> operand should be added to MI if an instruction was
    949   /// inserted.  This ties the instructions together in the post-ra scheduler.
    950   ///
    951   virtual void
    952   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
    953                             const TargetRegisterInfo *TRI) const {}
    954 
    955   /// Create machine specific model for scheduling.
    956   virtual DFAPacketizer*
    957     CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
    958     return NULL;
    959   }
    960 
    961 private:
    962   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
    963 };
    964 
    965 /// TargetInstrInfoImpl - This is the default implementation of
    966 /// TargetInstrInfo, which just provides a couple of default implementations
    967 /// for various methods.  This separated out because it is implemented in
    968 /// libcodegen, not in libtarget.
    969 class TargetInstrInfoImpl : public TargetInstrInfo {
    970 protected:
    971   TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
    972                       int CallFrameDestroyOpcode = -1)
    973     : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
    974 public:
    975   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
    976                                        MachineBasicBlock *NewDest) const;
    977   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    978                                            bool NewMI = false) const;
    979   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    980                                      unsigned &SrcOpIdx2) const;
    981   virtual bool canFoldMemoryOperand(const MachineInstr *MI,
    982                                     const SmallVectorImpl<unsigned> &Ops) const;
    983   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    984                                     const MachineMemOperand *&MMO,
    985                                     int &FrameIndex) const;
    986   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    987                                    const MachineMemOperand *&MMO,
    988                                    int &FrameIndex) const;
    989   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
    990   virtual bool PredicateInstruction(MachineInstr *MI,
    991                             const SmallVectorImpl<MachineOperand> &Pred) const;
    992   virtual void reMaterialize(MachineBasicBlock &MBB,
    993                              MachineBasicBlock::iterator MI,
    994                              unsigned DestReg, unsigned SubReg,
    995                              const MachineInstr *Orig,
    996                              const TargetRegisterInfo &TRI) const;
    997   virtual MachineInstr *duplicate(MachineInstr *Orig,
    998                                   MachineFunction &MF) const;
    999   virtual bool produceSameValue(const MachineInstr *MI0,
   1000                                 const MachineInstr *MI1,
   1001                                 const MachineRegisterInfo *MRI) const;
   1002   virtual bool isSchedulingBoundary(const MachineInstr *MI,
   1003                                     const MachineBasicBlock *MBB,
   1004                                     const MachineFunction &MF) const;
   1005 
   1006   virtual int getOperandLatency(const InstrItineraryData *ItinData,
   1007                                 SDNode *DefNode, unsigned DefIdx,
   1008                                 SDNode *UseNode, unsigned UseIdx) const;
   1009 
   1010   virtual int getInstrLatency(const InstrItineraryData *ItinData,
   1011                               SDNode *Node) const;
   1012 
   1013   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
   1014                                   const MachineInstr *MI) const;
   1015 
   1016   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
   1017                                    const MachineInstr *MI,
   1018                                    unsigned *PredCost = 0) const;
   1019 
   1020   virtual
   1021   bool hasLowDefLatency(const InstrItineraryData *ItinData,
   1022                         const MachineInstr *DefMI, unsigned DefIdx) const;
   1023 
   1024   virtual int getOperandLatency(const InstrItineraryData *ItinData,
   1025                                 const MachineInstr *DefMI, unsigned DefIdx,
   1026                                 const MachineInstr *UseMI,
   1027                                 unsigned UseIdx) const;
   1028 
   1029   bool usePreRAHazardRecognizer() const;
   1030 
   1031   virtual ScheduleHazardRecognizer *
   1032   CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
   1033 
   1034   virtual ScheduleHazardRecognizer *
   1035   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
   1036                                  const ScheduleDAG*) const;
   1037 
   1038   virtual ScheduleHazardRecognizer *
   1039   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
   1040                                      const ScheduleDAG*) const;
   1041 };
   1042 
   1043 } // End llvm namespace
   1044 
   1045 #endif
   1046