Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86MCCodeEmitter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "mccodeemitter"
     15 #include "MCTargetDesc/X86MCTargetDesc.h"
     16 #include "MCTargetDesc/X86BaseInfo.h"
     17 #include "MCTargetDesc/X86FixupKinds.h"
     18 #include "llvm/MC/MCCodeEmitter.h"
     19 #include "llvm/MC/MCExpr.h"
     20 #include "llvm/MC/MCInst.h"
     21 #include "llvm/MC/MCInstrInfo.h"
     22 #include "llvm/MC/MCRegisterInfo.h"
     23 #include "llvm/MC/MCSubtargetInfo.h"
     24 #include "llvm/MC/MCSymbol.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 
     27 using namespace llvm;
     28 
     29 namespace {
     30 class X86MCCodeEmitter : public MCCodeEmitter {
     31   X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
     32   void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
     33   const MCInstrInfo &MCII;
     34   const MCSubtargetInfo &STI;
     35   MCContext &Ctx;
     36 public:
     37   X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
     38                    MCContext &ctx)
     39     : MCII(mcii), STI(sti), Ctx(ctx) {
     40   }
     41 
     42   ~X86MCCodeEmitter() {}
     43 
     44   bool is64BitMode() const {
     45     // FIXME: Can tablegen auto-generate this?
     46     return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
     47   }
     48 
     49   bool is32BitMode() const {
     50     // FIXME: Can tablegen auto-generate this?
     51     return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
     52   }
     53 
     54   static unsigned GetX86RegNum(const MCOperand &MO) {
     55     return X86_MC::getX86RegNum(MO.getReg());
     56   }
     57 
     58   // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
     59   // 0-7 and the difference between the 2 groups is given by the REX prefix.
     60   // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
     61   // in 1's complement form, example:
     62   //
     63   //  ModRM field => XMM9 => 1
     64   //  VEX.VVVV    => XMM9 => ~9
     65   //
     66   // See table 4-35 of Intel AVX Programming Reference for details.
     67   static unsigned char getVEXRegisterEncoding(const MCInst &MI,
     68                                               unsigned OpNum) {
     69     unsigned SrcReg = MI.getOperand(OpNum).getReg();
     70     unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
     71     if (X86II::isX86_64ExtendedReg(SrcReg))
     72       SrcRegNum |= 8;
     73 
     74     // The registers represented through VEX_VVVV should
     75     // be encoded in 1's complement form.
     76     return (~SrcRegNum) & 0xf;
     77   }
     78 
     79   void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
     80     OS << (char)C;
     81     ++CurByte;
     82   }
     83 
     84   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
     85                     raw_ostream &OS) const {
     86     // Output the constant in little endian byte order.
     87     for (unsigned i = 0; i != Size; ++i) {
     88       EmitByte(Val & 255, CurByte, OS);
     89       Val >>= 8;
     90     }
     91   }
     92 
     93   void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
     94                      unsigned ImmSize, MCFixupKind FixupKind,
     95                      unsigned &CurByte, raw_ostream &OS,
     96                      SmallVectorImpl<MCFixup> &Fixups,
     97                      int ImmOffset = 0) const;
     98 
     99   inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
    100                                         unsigned RM) {
    101     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    102     return RM | (RegOpcode << 3) | (Mod << 6);
    103   }
    104 
    105   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
    106                         unsigned &CurByte, raw_ostream &OS) const {
    107     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
    108   }
    109 
    110   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
    111                    unsigned &CurByte, raw_ostream &OS) const {
    112     // SIB byte is in the same format as the ModRMByte.
    113     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
    114   }
    115 
    116 
    117   void EmitMemModRMByte(const MCInst &MI, unsigned Op,
    118                         unsigned RegOpcodeField,
    119                         uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
    120                         SmallVectorImpl<MCFixup> &Fixups) const;
    121 
    122   void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
    123                          SmallVectorImpl<MCFixup> &Fixups) const;
    124 
    125   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    126                            const MCInst &MI, const MCInstrDesc &Desc,
    127                            raw_ostream &OS) const;
    128 
    129   void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
    130                                  int MemOperand, const MCInst &MI,
    131                                  raw_ostream &OS) const;
    132 
    133   void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    134                         const MCInst &MI, const MCInstrDesc &Desc,
    135                         raw_ostream &OS) const;
    136 };
    137 
    138 } // end anonymous namespace
    139 
    140 
    141 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
    142                                             const MCRegisterInfo &MRI,
    143                                             const MCSubtargetInfo &STI,
    144                                             MCContext &Ctx) {
    145   return new X86MCCodeEmitter(MCII, STI, Ctx);
    146 }
    147 
    148 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
    149 /// sign-extended field.
    150 static bool isDisp8(int Value) {
    151   return Value == (signed char)Value;
    152 }
    153 
    154 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
    155 /// in an instruction with the specified TSFlags.
    156 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
    157   unsigned Size = X86II::getSizeOfImm(TSFlags);
    158   bool isPCRel = X86II::isImmPCRel(TSFlags);
    159 
    160   return MCFixup::getKindForSize(Size, isPCRel);
    161 }
    162 
    163 /// Is32BitMemOperand - Return true if the specified instruction has
    164 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
    165 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
    166   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    167   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    168 
    169   if ((BaseReg.getReg() != 0 &&
    170        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
    171       (IndexReg.getReg() != 0 &&
    172        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    173     return true;
    174   return false;
    175 }
    176 
    177 /// Is64BitMemOperand - Return true if the specified instruction has
    178 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
    179 #ifndef NDEBUG
    180 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
    181   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    182   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    183 
    184   if ((BaseReg.getReg() != 0 &&
    185        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
    186       (IndexReg.getReg() != 0 &&
    187        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    188     return true;
    189   return false;
    190 }
    191 #endif
    192 
    193 /// Is16BitMemOperand - Return true if the specified instruction has
    194 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
    195 static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
    196   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    197   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    198 
    199   if ((BaseReg.getReg() != 0 &&
    200        X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
    201       (IndexReg.getReg() != 0 &&
    202        X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
    203     return true;
    204   return false;
    205 }
    206 
    207 /// StartsWithGlobalOffsetTable - Check if this expression starts with
    208 ///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
    209 ///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
    210 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
    211 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
    212 /// of a binary expression.
    213 enum GlobalOffsetTableExprKind {
    214   GOT_None,
    215   GOT_Normal,
    216   GOT_SymDiff
    217 };
    218 static GlobalOffsetTableExprKind
    219 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
    220   const MCExpr *RHS = 0;
    221   if (Expr->getKind() == MCExpr::Binary) {
    222     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    223     Expr = BE->getLHS();
    224     RHS = BE->getRHS();
    225   }
    226 
    227   if (Expr->getKind() != MCExpr::SymbolRef)
    228     return GOT_None;
    229 
    230   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    231   const MCSymbol &S = Ref->getSymbol();
    232   if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
    233     return GOT_None;
    234   if (RHS && RHS->getKind() == MCExpr::SymbolRef)
    235     return GOT_SymDiff;
    236   return GOT_Normal;
    237 }
    238 
    239 void X86MCCodeEmitter::
    240 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
    241               MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
    242               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
    243   const MCExpr *Expr = NULL;
    244   if (DispOp.isImm()) {
    245     // If this is a simple integer displacement that doesn't require a
    246     // relocation, emit it now.
    247     if (FixupKind != FK_PCRel_1 &&
    248         FixupKind != FK_PCRel_2 &&
    249         FixupKind != FK_PCRel_4) {
    250       EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
    251       return;
    252     }
    253     Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
    254   } else {
    255     Expr = DispOp.getExpr();
    256   }
    257 
    258   // If we have an immoffset, add it to the expression.
    259   if ((FixupKind == FK_Data_4 ||
    260        FixupKind == FK_Data_8 ||
    261        FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
    262     GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
    263     if (Kind != GOT_None) {
    264       assert(ImmOffset == 0);
    265 
    266       FixupKind = MCFixupKind(X86::reloc_global_offset_table);
    267       if (Kind == GOT_Normal)
    268         ImmOffset = CurByte;
    269     } else if (Expr->getKind() == MCExpr::SymbolRef) {
    270       const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    271       if (Ref->getKind() == MCSymbolRefExpr::VK_SECREL) {
    272         FixupKind = MCFixupKind(FK_SecRel_4);
    273       }
    274     }
    275   }
    276 
    277   // If the fixup is pc-relative, we need to bias the value to be relative to
    278   // the start of the field, not the end of the field.
    279   if (FixupKind == FK_PCRel_4 ||
    280       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
    281       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
    282     ImmOffset -= 4;
    283   if (FixupKind == FK_PCRel_2)
    284     ImmOffset -= 2;
    285   if (FixupKind == FK_PCRel_1)
    286     ImmOffset -= 1;
    287 
    288   if (ImmOffset)
    289     Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
    290                                    Ctx);
    291 
    292   // Emit a symbolic constant as a fixup and 4 zeros.
    293   Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
    294   EmitConstant(0, Size, CurByte, OS);
    295 }
    296 
    297 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
    298                                         unsigned RegOpcodeField,
    299                                         uint64_t TSFlags, unsigned &CurByte,
    300                                         raw_ostream &OS,
    301                                         SmallVectorImpl<MCFixup> &Fixups) const{
    302   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
    303   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
    304   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
    305   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    306   unsigned BaseReg = Base.getReg();
    307 
    308   // Handle %rip relative addressing.
    309   if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
    310     assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
    311     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    312     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    313 
    314     unsigned FixupKind = X86::reloc_riprel_4byte;
    315 
    316     // movq loads are handled with a special relocation form which allows the
    317     // linker to eliminate some loads for GOT references which end up in the
    318     // same linkage unit.
    319     if (MI.getOpcode() == X86::MOV64rm)
    320       FixupKind = X86::reloc_riprel_4byte_movq_load;
    321 
    322     // rip-relative addressing is actually relative to the *next* instruction.
    323     // Since an immediate can follow the mod/rm byte for an instruction, this
    324     // means that we need to bias the immediate field of the instruction with
    325     // the size of the immediate field.  If we have this case, add it into the
    326     // expression to emit.
    327     int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
    328 
    329     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
    330                   CurByte, OS, Fixups, -ImmSize);
    331     return;
    332   }
    333 
    334   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
    335 
    336   // Determine whether a SIB byte is needed.
    337   // If no BaseReg, issue a RIP relative instruction only if the MCE can
    338   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
    339   // 2-7) and absolute references.
    340 
    341   if (// The SIB byte must be used if there is an index register.
    342       IndexReg.getReg() == 0 &&
    343       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
    344       // encode to an R/M value of 4, which indicates that a SIB byte is
    345       // present.
    346       BaseRegNo != N86::ESP &&
    347       // If there is no base register and we're in 64-bit mode, we need a SIB
    348       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    349       (!is64BitMode() || BaseReg != 0)) {
    350 
    351     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
    352       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    353       EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
    354       return;
    355     }
    356 
    357     // If the base is not EBP/ESP and there is no displacement, use simple
    358     // indirect register encoding, this handles addresses like [EAX].  The
    359     // encoding for [EBP] with no displacement means [disp32] so we handle it
    360     // by emitting a displacement of 0 below.
    361     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
    362       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
    363       return;
    364     }
    365 
    366     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    367     if (Disp.isImm() && isDisp8(Disp.getImm())) {
    368       EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
    369       EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    370       return;
    371     }
    372 
    373     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    374     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    375     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
    376                   Fixups);
    377     return;
    378   }
    379 
    380   // We need a SIB byte, so start by outputting the ModR/M byte first
    381   assert(IndexReg.getReg() != X86::ESP &&
    382          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
    383 
    384   bool ForceDisp32 = false;
    385   bool ForceDisp8  = false;
    386   if (BaseReg == 0) {
    387     // If there is no base register, we emit the special case SIB byte with
    388     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    389     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    390     ForceDisp32 = true;
    391   } else if (!Disp.isImm()) {
    392     // Emit the normal disp32 encoding.
    393     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    394     ForceDisp32 = true;
    395   } else if (Disp.getImm() == 0 &&
    396              // Base reg can't be anything that ends up with '5' as the base
    397              // reg, it is the magic [*] nomenclature that indicates no base.
    398              BaseRegNo != N86::EBP) {
    399     // Emit no displacement ModR/M byte
    400     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    401   } else if (isDisp8(Disp.getImm())) {
    402     // Emit the disp8 encoding.
    403     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    404     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    405   } else {
    406     // Emit the normal disp32 encoding.
    407     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    408   }
    409 
    410   // Calculate what the SS field value should be...
    411   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
    412   unsigned SS = SSTable[Scale.getImm()];
    413 
    414   if (BaseReg == 0) {
    415     // Handle the SIB byte for the case where there is no base, see Intel
    416     // Manual 2A, table 2-7. The displacement has already been output.
    417     unsigned IndexRegNo;
    418     if (IndexReg.getReg())
    419       IndexRegNo = GetX86RegNum(IndexReg);
    420     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
    421       IndexRegNo = 4;
    422     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
    423   } else {
    424     unsigned IndexRegNo;
    425     if (IndexReg.getReg())
    426       IndexRegNo = GetX86RegNum(IndexReg);
    427     else
    428       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    429     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
    430   }
    431 
    432   // Do we need to output a displacement?
    433   if (ForceDisp8)
    434     EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    435   else if (ForceDisp32 || Disp.getImm() != 0)
    436     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
    437                   CurByte, OS, Fixups);
    438 }
    439 
    440 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
    441 /// called VEX.
    442 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    443                                            int MemOperand, const MCInst &MI,
    444                                            const MCInstrDesc &Desc,
    445                                            raw_ostream &OS) const {
    446   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    447   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
    448 
    449   // VEX_R: opcode externsion equivalent to REX.R in
    450   // 1's complement (inverted) form
    451   //
    452   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
    453   //  0: Same as REX_R=1 (64 bit mode only)
    454   //
    455   unsigned char VEX_R = 0x1;
    456 
    457   // VEX_X: equivalent to REX.X, only used when a
    458   // register is used for index in SIB Byte.
    459   //
    460   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
    461   //  0: Same as REX.X=1 (64-bit mode only)
    462   unsigned char VEX_X = 0x1;
    463 
    464   // VEX_B:
    465   //
    466   //  1: Same as REX_B=0 (ignored in 32-bit mode)
    467   //  0: Same as REX_B=1 (64 bit mode only)
    468   //
    469   unsigned char VEX_B = 0x1;
    470 
    471   // VEX_W: opcode specific (use like REX.W, or used for
    472   // opcode extension, or ignored, depending on the opcode byte)
    473   unsigned char VEX_W = 0;
    474 
    475   // XOP: Use XOP prefix byte 0x8f instead of VEX.
    476   unsigned char XOP = 0;
    477 
    478   // VEX_5M (VEX m-mmmmm field):
    479   //
    480   //  0b00000: Reserved for future use
    481   //  0b00001: implied 0F leading opcode
    482   //  0b00010: implied 0F 38 leading opcode bytes
    483   //  0b00011: implied 0F 3A leading opcode bytes
    484   //  0b00100-0b11111: Reserved for future use
    485   //  0b01000: XOP map select - 08h instructions with imm byte
    486   //  0b10001: XOP map select - 09h instructions with no imm byte
    487   unsigned char VEX_5M = 0x1;
    488 
    489   // VEX_4V (VEX vvvv field): a register specifier
    490   // (in 1's complement form) or 1111 if unused.
    491   unsigned char VEX_4V = 0xf;
    492 
    493   // VEX_L (Vector Length):
    494   //
    495   //  0: scalar or 128-bit vector
    496   //  1: 256-bit vector
    497   //
    498   unsigned char VEX_L = 0;
    499 
    500   // VEX_PP: opcode extension providing equivalent
    501   // functionality of a SIMD prefix
    502   //
    503   //  0b00: None
    504   //  0b01: 66
    505   //  0b10: F3
    506   //  0b11: F2
    507   //
    508   unsigned char VEX_PP = 0;
    509 
    510   // Encode the operand size opcode prefix as needed.
    511   if (TSFlags & X86II::OpSize)
    512     VEX_PP = 0x01;
    513 
    514   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
    515     VEX_W = 1;
    516 
    517   if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
    518     XOP = 1;
    519 
    520   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
    521     VEX_L = 1;
    522 
    523   switch (TSFlags & X86II::Op0Mask) {
    524   default: llvm_unreachable("Invalid prefix!");
    525   case X86II::T8:  // 0F 38
    526     VEX_5M = 0x2;
    527     break;
    528   case X86II::TA:  // 0F 3A
    529     VEX_5M = 0x3;
    530     break;
    531   case X86II::T8XS: // F3 0F 38
    532     VEX_PP = 0x2;
    533     VEX_5M = 0x2;
    534     break;
    535   case X86II::T8XD: // F2 0F 38
    536     VEX_PP = 0x3;
    537     VEX_5M = 0x2;
    538     break;
    539   case X86II::TAXD: // F2 0F 3A
    540     VEX_PP = 0x3;
    541     VEX_5M = 0x3;
    542     break;
    543   case X86II::XS:  // F3 0F
    544     VEX_PP = 0x2;
    545     break;
    546   case X86II::XD:  // F2 0F
    547     VEX_PP = 0x3;
    548     break;
    549   case X86II::XOP8:
    550     VEX_5M = 0x8;
    551     break;
    552   case X86II::XOP9:
    553     VEX_5M = 0x9;
    554     break;
    555   case X86II::A6:  // Bypass: Not used by VEX
    556   case X86II::A7:  // Bypass: Not used by VEX
    557   case X86II::TB:  // Bypass: Not used by VEX
    558   case 0:
    559     break;  // No prefix!
    560   }
    561 
    562 
    563   // Set the vector length to 256-bit if YMM0-YMM15 is used
    564   for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
    565     if (!MI.getOperand(i).isReg())
    566       continue;
    567     unsigned SrcReg = MI.getOperand(i).getReg();
    568     if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
    569       VEX_L = 1;
    570   }
    571 
    572   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
    573   unsigned NumOps = Desc.getNumOperands();
    574   unsigned CurOp = 0;
    575   if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    576     ++CurOp;
    577   else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0) {
    578     assert(Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
    579     // Special case for GATHER with 2 TIED_TO operands
    580     // Skip the first 2 operands: dst, mask_wb
    581     CurOp += 2;
    582   }
    583 
    584   switch (TSFlags & X86II::FormMask) {
    585   case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
    586   case X86II::MRMDestMem: {
    587     // MRMDestMem instructions forms:
    588     //  MemAddr, src1(ModR/M)
    589     //  MemAddr, src1(VEX_4V), src2(ModR/M)
    590     //  MemAddr, src1(ModR/M), imm8
    591     //
    592     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
    593       VEX_B = 0x0;
    594     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
    595       VEX_X = 0x0;
    596 
    597     CurOp = X86::AddrNumOperands;
    598     if (HasVEX_4V)
    599       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    600 
    601     const MCOperand &MO = MI.getOperand(CurOp);
    602     if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    603       VEX_R = 0x0;
    604     break;
    605   }
    606   case X86II::MRMSrcMem:
    607     // MRMSrcMem instructions forms:
    608     //  src1(ModR/M), MemAddr
    609     //  src1(ModR/M), src2(VEX_4V), MemAddr
    610     //  src1(ModR/M), MemAddr, imm8
    611     //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
    612     //
    613     //  FMA4:
    614     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    615     //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
    616     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp++).getReg()))
    617       VEX_R = 0x0;
    618 
    619     if (HasVEX_4V)
    620       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    621 
    622     if (X86II::isX86_64ExtendedReg(
    623                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    624       VEX_B = 0x0;
    625     if (X86II::isX86_64ExtendedReg(
    626                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
    627       VEX_X = 0x0;
    628 
    629     if (HasVEX_4VOp3)
    630       // Instruction format for 4VOp3:
    631       //   src1(ModR/M), MemAddr, src3(VEX_4V)
    632       // CurOp points to start of the MemoryOperand,
    633       //   it skips TIED_TO operands if exist, then increments past src1.
    634       // CurOp + X86::AddrNumOperands will point to src3.
    635       VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
    636     break;
    637   case X86II::MRM0m: case X86II::MRM1m:
    638   case X86II::MRM2m: case X86II::MRM3m:
    639   case X86II::MRM4m: case X86II::MRM5m:
    640   case X86II::MRM6m: case X86II::MRM7m: {
    641     // MRM[0-9]m instructions forms:
    642     //  MemAddr
    643     //  src1(VEX_4V), MemAddr
    644     if (HasVEX_4V)
    645       VEX_4V = getVEXRegisterEncoding(MI, 0);
    646 
    647     if (X86II::isX86_64ExtendedReg(
    648                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    649       VEX_B = 0x0;
    650     if (X86II::isX86_64ExtendedReg(
    651                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
    652       VEX_X = 0x0;
    653     break;
    654   }
    655   case X86II::MRMSrcReg:
    656     // MRMSrcReg instructions forms:
    657     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    658     //  dst(ModR/M), src1(ModR/M)
    659     //  dst(ModR/M), src1(ModR/M), imm8
    660     //
    661     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    662       VEX_R = 0x0;
    663     CurOp++;
    664 
    665     if (HasVEX_4V)
    666       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    667     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    668       VEX_B = 0x0;
    669     CurOp++;
    670     if (HasVEX_4VOp3)
    671       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    672     break;
    673   case X86II::MRMDestReg:
    674     // MRMDestReg instructions forms:
    675     //  dst(ModR/M), src(ModR/M)
    676     //  dst(ModR/M), src(ModR/M), imm8
    677     if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    678       VEX_B = 0x0;
    679     if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
    680       VEX_R = 0x0;
    681     break;
    682   case X86II::MRM0r: case X86II::MRM1r:
    683   case X86II::MRM2r: case X86II::MRM3r:
    684   case X86II::MRM4r: case X86II::MRM5r:
    685   case X86II::MRM6r: case X86II::MRM7r:
    686     // MRM0r-MRM7r instructions forms:
    687     //  dst(VEX_4V), src(ModR/M), imm8
    688     VEX_4V = getVEXRegisterEncoding(MI, 0);
    689     if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
    690       VEX_B = 0x0;
    691     break;
    692   default: // RawFrm
    693     break;
    694   }
    695 
    696   // Emit segment override opcode prefix as needed.
    697   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
    698 
    699   // VEX opcode prefix can have 2 or 3 bytes
    700   //
    701   //  3 bytes:
    702   //    +-----+ +--------------+ +-------------------+
    703   //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    704   //    +-----+ +--------------+ +-------------------+
    705   //  2 bytes:
    706   //    +-----+ +-------------------+
    707   //    | C5h | | R | vvvv | L | pp |
    708   //    +-----+ +-------------------+
    709   //
    710   unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
    711 
    712   if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
    713     EmitByte(0xC5, CurByte, OS);
    714     EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
    715     return;
    716   }
    717 
    718   // 3 byte VEX prefix
    719   EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
    720   EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
    721   EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
    722 }
    723 
    724 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
    725 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
    726 /// size, and 3) use of X86-64 extended registers.
    727 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
    728                                    const MCInstrDesc &Desc) {
    729   unsigned REX = 0;
    730   if (TSFlags & X86II::REX_W)
    731     REX |= 1 << 3; // set REX.W
    732 
    733   if (MI.getNumOperands() == 0) return REX;
    734 
    735   unsigned NumOps = MI.getNumOperands();
    736   // FIXME: MCInst should explicitize the two-addrness.
    737   bool isTwoAddr = NumOps > 1 &&
    738                       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
    739 
    740   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
    741   unsigned i = isTwoAddr ? 1 : 0;
    742   for (; i != NumOps; ++i) {
    743     const MCOperand &MO = MI.getOperand(i);
    744     if (!MO.isReg()) continue;
    745     unsigned Reg = MO.getReg();
    746     if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
    747     // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
    748     // that returns non-zero.
    749     REX |= 0x40; // REX fixed encoding prefix
    750     break;
    751   }
    752 
    753   switch (TSFlags & X86II::FormMask) {
    754   case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
    755   case X86II::MRMSrcReg:
    756     if (MI.getOperand(0).isReg() &&
    757         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    758       REX |= 1 << 2; // set REX.R
    759     i = isTwoAddr ? 2 : 1;
    760     for (; i != NumOps; ++i) {
    761       const MCOperand &MO = MI.getOperand(i);
    762       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    763         REX |= 1 << 0; // set REX.B
    764     }
    765     break;
    766   case X86II::MRMSrcMem: {
    767     if (MI.getOperand(0).isReg() &&
    768         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    769       REX |= 1 << 2; // set REX.R
    770     unsigned Bit = 0;
    771     i = isTwoAddr ? 2 : 1;
    772     for (; i != NumOps; ++i) {
    773       const MCOperand &MO = MI.getOperand(i);
    774       if (MO.isReg()) {
    775         if (X86II::isX86_64ExtendedReg(MO.getReg()))
    776           REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
    777         Bit++;
    778       }
    779     }
    780     break;
    781   }
    782   case X86II::MRM0m: case X86II::MRM1m:
    783   case X86II::MRM2m: case X86II::MRM3m:
    784   case X86II::MRM4m: case X86II::MRM5m:
    785   case X86II::MRM6m: case X86II::MRM7m:
    786   case X86II::MRMDestMem: {
    787     unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
    788     i = isTwoAddr ? 1 : 0;
    789     if (NumOps > e && MI.getOperand(e).isReg() &&
    790         X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
    791       REX |= 1 << 2; // set REX.R
    792     unsigned Bit = 0;
    793     for (; i != e; ++i) {
    794       const MCOperand &MO = MI.getOperand(i);
    795       if (MO.isReg()) {
    796         if (X86II::isX86_64ExtendedReg(MO.getReg()))
    797           REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
    798         Bit++;
    799       }
    800     }
    801     break;
    802   }
    803   default:
    804     if (MI.getOperand(0).isReg() &&
    805         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    806       REX |= 1 << 0; // set REX.B
    807     i = isTwoAddr ? 2 : 1;
    808     for (unsigned e = NumOps; i != e; ++i) {
    809       const MCOperand &MO = MI.getOperand(i);
    810       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    811         REX |= 1 << 2; // set REX.R
    812     }
    813     break;
    814   }
    815   return REX;
    816 }
    817 
    818 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
    819 void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
    820                                         unsigned &CurByte, int MemOperand,
    821                                         const MCInst &MI,
    822                                         raw_ostream &OS) const {
    823   switch (TSFlags & X86II::SegOvrMask) {
    824   default: llvm_unreachable("Invalid segment!");
    825   case 0:
    826     // No segment override, check for explicit one on memory operand.
    827     if (MemOperand != -1) {   // If the instruction has a memory operand.
    828       switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
    829       default: llvm_unreachable("Unknown segment register!");
    830       case 0: break;
    831       case X86::CS: EmitByte(0x2E, CurByte, OS); break;
    832       case X86::SS: EmitByte(0x36, CurByte, OS); break;
    833       case X86::DS: EmitByte(0x3E, CurByte, OS); break;
    834       case X86::ES: EmitByte(0x26, CurByte, OS); break;
    835       case X86::FS: EmitByte(0x64, CurByte, OS); break;
    836       case X86::GS: EmitByte(0x65, CurByte, OS); break;
    837       }
    838     }
    839     break;
    840   case X86II::FS:
    841     EmitByte(0x64, CurByte, OS);
    842     break;
    843   case X86II::GS:
    844     EmitByte(0x65, CurByte, OS);
    845     break;
    846   }
    847 }
    848 
    849 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
    850 ///
    851 /// MemOperand is the operand # of the start of a memory operand if present.  If
    852 /// Not present, it is -1.
    853 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    854                                         int MemOperand, const MCInst &MI,
    855                                         const MCInstrDesc &Desc,
    856                                         raw_ostream &OS) const {
    857 
    858   // Emit the lock opcode prefix as needed.
    859   if (TSFlags & X86II::LOCK)
    860     EmitByte(0xF0, CurByte, OS);
    861 
    862   // Emit segment override opcode prefix as needed.
    863   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
    864 
    865   // Emit the repeat opcode prefix as needed.
    866   if ((TSFlags & X86II::Op0Mask) == X86II::REP)
    867     EmitByte(0xF3, CurByte, OS);
    868 
    869   // Emit the address size opcode prefix as needed.
    870   bool need_address_override;
    871   if (TSFlags & X86II::AdSize) {
    872     need_address_override = true;
    873   } else if (MemOperand == -1) {
    874     need_address_override = false;
    875   } else if (is64BitMode()) {
    876     assert(!Is16BitMemOperand(MI, MemOperand));
    877     need_address_override = Is32BitMemOperand(MI, MemOperand);
    878   } else if (is32BitMode()) {
    879     assert(!Is64BitMemOperand(MI, MemOperand));
    880     need_address_override = Is16BitMemOperand(MI, MemOperand);
    881   } else {
    882     need_address_override = false;
    883   }
    884 
    885   if (need_address_override)
    886     EmitByte(0x67, CurByte, OS);
    887 
    888   // Emit the operand size opcode prefix as needed.
    889   if (TSFlags & X86II::OpSize)
    890     EmitByte(0x66, CurByte, OS);
    891 
    892   bool Need0FPrefix = false;
    893   switch (TSFlags & X86II::Op0Mask) {
    894   default: llvm_unreachable("Invalid prefix!");
    895   case 0: break;  // No prefix!
    896   case X86II::REP: break; // already handled.
    897   case X86II::TB:  // Two-byte opcode prefix
    898   case X86II::T8:  // 0F 38
    899   case X86II::TA:  // 0F 3A
    900   case X86II::A6:  // 0F A6
    901   case X86II::A7:  // 0F A7
    902     Need0FPrefix = true;
    903     break;
    904   case X86II::T8XS: // F3 0F 38
    905     EmitByte(0xF3, CurByte, OS);
    906     Need0FPrefix = true;
    907     break;
    908   case X86II::T8XD: // F2 0F 38
    909     EmitByte(0xF2, CurByte, OS);
    910     Need0FPrefix = true;
    911     break;
    912   case X86II::TAXD: // F2 0F 3A
    913     EmitByte(0xF2, CurByte, OS);
    914     Need0FPrefix = true;
    915     break;
    916   case X86II::XS:   // F3 0F
    917     EmitByte(0xF3, CurByte, OS);
    918     Need0FPrefix = true;
    919     break;
    920   case X86II::XD:   // F2 0F
    921     EmitByte(0xF2, CurByte, OS);
    922     Need0FPrefix = true;
    923     break;
    924   case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
    925   case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
    926   case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
    927   case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
    928   case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
    929   case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
    930   case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
    931   case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
    932   }
    933 
    934   // Handle REX prefix.
    935   // FIXME: Can this come before F2 etc to simplify emission?
    936   if (is64BitMode()) {
    937     if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
    938       EmitByte(0x40 | REX, CurByte, OS);
    939   }
    940 
    941   // 0x0F escape code must be emitted just before the opcode.
    942   if (Need0FPrefix)
    943     EmitByte(0x0F, CurByte, OS);
    944 
    945   // FIXME: Pull this up into previous switch if REX can be moved earlier.
    946   switch (TSFlags & X86II::Op0Mask) {
    947   case X86II::T8XS:  // F3 0F 38
    948   case X86II::T8XD:  // F2 0F 38
    949   case X86II::T8:    // 0F 38
    950     EmitByte(0x38, CurByte, OS);
    951     break;
    952   case X86II::TAXD:  // F2 0F 3A
    953   case X86II::TA:    // 0F 3A
    954     EmitByte(0x3A, CurByte, OS);
    955     break;
    956   case X86II::A6:    // 0F A6
    957     EmitByte(0xA6, CurByte, OS);
    958     break;
    959   case X86II::A7:    // 0F A7
    960     EmitByte(0xA7, CurByte, OS);
    961     break;
    962   }
    963 }
    964 
    965 void X86MCCodeEmitter::
    966 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
    967                   SmallVectorImpl<MCFixup> &Fixups) const {
    968   unsigned Opcode = MI.getOpcode();
    969   const MCInstrDesc &Desc = MCII.get(Opcode);
    970   uint64_t TSFlags = Desc.TSFlags;
    971 
    972   // Pseudo instructions don't get encoded.
    973   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    974     return;
    975 
    976   // If this is a two-address instruction, skip one of the register operands.
    977   // FIXME: This should be handled during MCInst lowering.
    978   unsigned NumOps = Desc.getNumOperands();
    979   unsigned CurOp = 0;
    980   if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    981     ++CurOp;
    982   else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0) {
    983     assert(Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
    984     // Special case for GATHER with 2 TIED_TO operands
    985     // Skip the first 2 operands: dst, mask_wb
    986     CurOp += 2;
    987   }
    988 
    989   // Keep track of the current byte being emitted.
    990   unsigned CurByte = 0;
    991 
    992   // Is this instruction encoded using the AVX VEX prefix?
    993   bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
    994 
    995   // It uses the VEX.VVVV field?
    996   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    997   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
    998   bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
    999   const unsigned MemOp4_I8IMMOperand = 2;
   1000 
   1001   // Determine where the memory operand starts, if present.
   1002   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
   1003   if (MemoryOperand != -1) MemoryOperand += CurOp;
   1004 
   1005   if (!HasVEXPrefix)
   1006     EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
   1007   else
   1008     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
   1009 
   1010   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
   1011 
   1012   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
   1013     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
   1014 
   1015   unsigned SrcRegNum = 0;
   1016   switch (TSFlags & X86II::FormMask) {
   1017   case X86II::MRMInitReg:
   1018     llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
   1019   default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
   1020     llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
   1021   case X86II::Pseudo:
   1022     llvm_unreachable("Pseudo instruction shouldn't be emitted");
   1023   case X86II::RawFrm:
   1024     EmitByte(BaseOpcode, CurByte, OS);
   1025     break;
   1026   case X86II::RawFrmImm8:
   1027     EmitByte(BaseOpcode, CurByte, OS);
   1028     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1029                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1030                   CurByte, OS, Fixups);
   1031     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
   1032                   OS, Fixups);
   1033     break;
   1034   case X86II::RawFrmImm16:
   1035     EmitByte(BaseOpcode, CurByte, OS);
   1036     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1037                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1038                   CurByte, OS, Fixups);
   1039     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
   1040                   OS, Fixups);
   1041     break;
   1042 
   1043   case X86II::AddRegFrm:
   1044     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
   1045     break;
   1046 
   1047   case X86II::MRMDestReg:
   1048     EmitByte(BaseOpcode, CurByte, OS);
   1049     EmitRegModRMByte(MI.getOperand(CurOp),
   1050                      GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
   1051     CurOp += 2;
   1052     break;
   1053 
   1054   case X86II::MRMDestMem:
   1055     EmitByte(BaseOpcode, CurByte, OS);
   1056     SrcRegNum = CurOp + X86::AddrNumOperands;
   1057 
   1058     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1059       ++SrcRegNum;
   1060 
   1061     EmitMemModRMByte(MI, CurOp,
   1062                      GetX86RegNum(MI.getOperand(SrcRegNum)),
   1063                      TSFlags, CurByte, OS, Fixups);
   1064     CurOp = SrcRegNum + 1;
   1065     break;
   1066 
   1067   case X86II::MRMSrcReg:
   1068     EmitByte(BaseOpcode, CurByte, OS);
   1069     SrcRegNum = CurOp + 1;
   1070 
   1071     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1072       ++SrcRegNum;
   1073 
   1074     if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
   1075       ++SrcRegNum;
   1076 
   1077     EmitRegModRMByte(MI.getOperand(SrcRegNum),
   1078                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
   1079 
   1080     // 2 operands skipped with HasMemOp4, compensate accordingly
   1081     CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
   1082     if (HasVEX_4VOp3)
   1083       ++CurOp;
   1084     break;
   1085 
   1086   case X86II::MRMSrcMem: {
   1087     int AddrOperands = X86::AddrNumOperands;
   1088     unsigned FirstMemOp = CurOp+1;
   1089     if (HasVEX_4V) {
   1090       ++AddrOperands;
   1091       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
   1092     }
   1093     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
   1094       ++FirstMemOp;
   1095 
   1096     EmitByte(BaseOpcode, CurByte, OS);
   1097 
   1098     EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
   1099                      TSFlags, CurByte, OS, Fixups);
   1100     CurOp += AddrOperands + 1;
   1101     if (HasVEX_4VOp3)
   1102       ++CurOp;
   1103     break;
   1104   }
   1105 
   1106   case X86II::MRM0r: case X86II::MRM1r:
   1107   case X86II::MRM2r: case X86II::MRM3r:
   1108   case X86II::MRM4r: case X86II::MRM5r:
   1109   case X86II::MRM6r: case X86II::MRM7r:
   1110     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1111       ++CurOp;
   1112     EmitByte(BaseOpcode, CurByte, OS);
   1113     EmitRegModRMByte(MI.getOperand(CurOp++),
   1114                      (TSFlags & X86II::FormMask)-X86II::MRM0r,
   1115                      CurByte, OS);
   1116     break;
   1117   case X86II::MRM0m: case X86II::MRM1m:
   1118   case X86II::MRM2m: case X86II::MRM3m:
   1119   case X86II::MRM4m: case X86II::MRM5m:
   1120   case X86II::MRM6m: case X86II::MRM7m:
   1121     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1122       ++CurOp;
   1123     EmitByte(BaseOpcode, CurByte, OS);
   1124     EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
   1125                      TSFlags, CurByte, OS, Fixups);
   1126     CurOp += X86::AddrNumOperands;
   1127     break;
   1128   case X86II::MRM_C1: case X86II::MRM_C2:
   1129   case X86II::MRM_C3: case X86II::MRM_C4:
   1130   case X86II::MRM_C8: case X86II::MRM_C9:
   1131   case X86II::MRM_D0: case X86II::MRM_D1:
   1132   case X86II::MRM_D4: case X86II::MRM_D8:
   1133   case X86II::MRM_D9: case X86II::MRM_DA:
   1134   case X86II::MRM_DB: case X86II::MRM_DC:
   1135   case X86II::MRM_DD: case X86II::MRM_DE:
   1136   case X86II::MRM_DF: case X86II::MRM_E8:
   1137   case X86II::MRM_F0: case X86II::MRM_F8:
   1138   case X86II::MRM_F9:
   1139     EmitByte(BaseOpcode, CurByte, OS);
   1140 
   1141     unsigned char MRM;
   1142     switch (TSFlags & X86II::FormMask) {
   1143     default: llvm_unreachable("Invalid Form");
   1144     case X86II::MRM_C1: MRM = 0xC1; break;
   1145     case X86II::MRM_C2: MRM = 0xC2; break;
   1146     case X86II::MRM_C3: MRM = 0xC3; break;
   1147     case X86II::MRM_C4: MRM = 0xC4; break;
   1148     case X86II::MRM_C8: MRM = 0xC8; break;
   1149     case X86II::MRM_C9: MRM = 0xC9; break;
   1150     case X86II::MRM_D0: MRM = 0xD0; break;
   1151     case X86II::MRM_D1: MRM = 0xD1; break;
   1152     case X86II::MRM_D4: MRM = 0xD4; break;
   1153     case X86II::MRM_D8: MRM = 0xD8; break;
   1154     case X86II::MRM_D9: MRM = 0xD9; break;
   1155     case X86II::MRM_DA: MRM = 0xDA; break;
   1156     case X86II::MRM_DB: MRM = 0xDB; break;
   1157     case X86II::MRM_DC: MRM = 0xDC; break;
   1158     case X86II::MRM_DD: MRM = 0xDD; break;
   1159     case X86II::MRM_DE: MRM = 0xDE; break;
   1160     case X86II::MRM_DF: MRM = 0xDF; break;
   1161     case X86II::MRM_E8: MRM = 0xE8; break;
   1162     case X86II::MRM_F0: MRM = 0xF0; break;
   1163     case X86II::MRM_F8: MRM = 0xF8; break;
   1164     case X86II::MRM_F9: MRM = 0xF9; break;
   1165     }
   1166     EmitByte(MRM, CurByte, OS);
   1167     break;
   1168   }
   1169 
   1170   // If there is a remaining operand, it must be a trailing immediate.  Emit it
   1171   // according to the right size for the instruction. Some instructions
   1172   // (SSE4a extrq and insertq) have two trailing immediates.
   1173   while (CurOp != NumOps && NumOps - CurOp <= 2) {
   1174     // The last source register of a 4 operand instruction in AVX is encoded
   1175     // in bits[7:4] of a immediate byte.
   1176     if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
   1177       const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
   1178                                                     : CurOp);
   1179       ++CurOp;
   1180       unsigned RegNum = GetX86RegNum(MO) << 4;
   1181       if (X86II::isX86_64ExtendedReg(MO.getReg()))
   1182         RegNum |= 1 << 7;
   1183       // If there is an additional 5th operand it must be an immediate, which
   1184       // is encoded in bits[3:0]
   1185       if (CurOp != NumOps) {
   1186         const MCOperand &MIMM = MI.getOperand(CurOp++);
   1187         if (MIMM.isImm()) {
   1188           unsigned Val = MIMM.getImm();
   1189           assert(Val < 16 && "Immediate operand value out of range");
   1190           RegNum |= Val;
   1191         }
   1192       }
   1193       EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
   1194                     CurByte, OS, Fixups);
   1195     } else {
   1196       unsigned FixupKind;
   1197       // FIXME: Is there a better way to know that we need a signed relocation?
   1198       if (MI.getOpcode() == X86::ADD64ri32 ||
   1199           MI.getOpcode() == X86::MOV64ri32 ||
   1200           MI.getOpcode() == X86::MOV64mi32 ||
   1201           MI.getOpcode() == X86::PUSH64i32)
   1202         FixupKind = X86::reloc_signed_4byte;
   1203       else
   1204         FixupKind = getImmFixupKind(TSFlags);
   1205       EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1206                     X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
   1207                     CurByte, OS, Fixups);
   1208     }
   1209   }
   1210 
   1211   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
   1212     EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
   1213 
   1214 #ifndef NDEBUG
   1215   // FIXME: Verify.
   1216   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
   1217     errs() << "Cannot encode all operands of: ";
   1218     MI.dump();
   1219     errs() << '\n';
   1220     abort();
   1221   }
   1222 #endif
   1223 }
   1224