Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMapInfo.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/StringRef.h"
     23 #include "llvm/ADT/ilist.h"
     24 #include "llvm/ADT/ilist_node.h"
     25 #include "llvm/ADT/iterator_range.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/CodeGen/MachineOperand.h"
     28 #include "llvm/IR/DebugInfo.h"
     29 #include "llvm/IR/DebugLoc.h"
     30 #include "llvm/IR/InlineAsm.h"
     31 #include "llvm/MC/MCInstrDesc.h"
     32 #include "llvm/Support/ArrayRecycler.h"
     33 #include "llvm/Target/TargetOpcodes.h"
     34 
     35 namespace llvm {
     36 
     37 template <typename T> class SmallVectorImpl;
     38 class TargetInstrInfo;
     39 class TargetRegisterClass;
     40 class TargetRegisterInfo;
     41 class MachineFunction;
     42 class MachineMemOperand;
     43 
     44 //===----------------------------------------------------------------------===//
     45 /// Representation of each machine instruction.
     46 ///
     47 /// This class isn't a POD type, but it must have a trivial destructor. When a
     48 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     49 /// without having their destructor called.
     50 ///
     51 class MachineInstr
     52     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock> {
     53 public:
     54   typedef MachineMemOperand **mmo_iterator;
     55 
     56   /// Flags to specify different kinds of comments to output in
     57   /// assembly code.  These flags carry semantic information not
     58   /// otherwise easily derivable from the IR text.
     59   ///
     60   enum CommentFlag {
     61     ReloadReuse = 0x1
     62   };
     63 
     64   enum MIFlag {
     65     NoFlags      = 0,
     66     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     67                                         // function frame setup code.
     68     FrameDestroy = 1 << 1,              // Instruction is used as a part of
     69                                         // function frame destruction code.
     70     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
     71     BundledSucc  = 1 << 3               // Instruction has bundled successors.
     72   };
     73 private:
     74   const MCInstrDesc *MCID;              // Instruction descriptor.
     75   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
     76 
     77   // Operands are allocated by an ArrayRecycler.
     78   MachineOperand *Operands;             // Pointer to the first operand.
     79   unsigned NumOperands;                 // Number of operands on instruction.
     80   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
     81   OperandCapacity CapOperands;          // Capacity of the Operands array.
     82 
     83   uint8_t Flags;                        // Various bits of additional
     84                                         // information about machine
     85                                         // instruction.
     86 
     87   uint8_t AsmPrinterFlags;              // Various bits of information used by
     88                                         // the AsmPrinter to emit helpful
     89                                         // comments.  This is *not* semantic
     90                                         // information.  Do not use this for
     91                                         // anything other than to convey comment
     92                                         // information to AsmPrinter.
     93 
     94   uint8_t NumMemRefs;                   // Information on memory references.
     95   mmo_iterator MemRefs;
     96 
     97   DebugLoc debugLoc;                    // Source line information.
     98 
     99   MachineInstr(const MachineInstr&) = delete;
    100   void operator=(const MachineInstr&) = delete;
    101   // Use MachineFunction::DeleteMachineInstr() instead.
    102   ~MachineInstr() = delete;
    103 
    104   // Intrusive list support
    105   friend struct ilist_traits<MachineInstr>;
    106   friend struct ilist_traits<MachineBasicBlock>;
    107   void setParent(MachineBasicBlock *P) { Parent = P; }
    108 
    109   /// This constructor creates a copy of the given
    110   /// MachineInstr in the given MachineFunction.
    111   MachineInstr(MachineFunction &, const MachineInstr &);
    112 
    113   /// This constructor create a MachineInstr and add the implicit operands.
    114   /// It reserves space for number of operands specified by
    115   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    116   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
    117                bool NoImp = false);
    118 
    119   // MachineInstrs are pool-allocated and owned by MachineFunction.
    120   friend class MachineFunction;
    121 
    122 public:
    123   const MachineBasicBlock* getParent() const { return Parent; }
    124   MachineBasicBlock* getParent() { return Parent; }
    125 
    126   /// Return the asm printer flags bitvector.
    127   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    128 
    129   /// Clear the AsmPrinter bitvector.
    130   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    131 
    132   /// Return whether an AsmPrinter flag is set.
    133   bool getAsmPrinterFlag(CommentFlag Flag) const {
    134     return AsmPrinterFlags & Flag;
    135   }
    136 
    137   /// Set a flag for the AsmPrinter.
    138   void setAsmPrinterFlag(CommentFlag Flag) {
    139     AsmPrinterFlags |= (uint8_t)Flag;
    140   }
    141 
    142   /// Clear specific AsmPrinter flags.
    143   void clearAsmPrinterFlag(CommentFlag Flag) {
    144     AsmPrinterFlags &= ~Flag;
    145   }
    146 
    147   /// Return the MI flags bitvector.
    148   uint8_t getFlags() const {
    149     return Flags;
    150   }
    151 
    152   /// Return whether an MI flag is set.
    153   bool getFlag(MIFlag Flag) const {
    154     return Flags & Flag;
    155   }
    156 
    157   /// Set a MI flag.
    158   void setFlag(MIFlag Flag) {
    159     Flags |= (uint8_t)Flag;
    160   }
    161 
    162   void setFlags(unsigned flags) {
    163     // Filter out the automatically maintained flags.
    164     unsigned Mask = BundledPred | BundledSucc;
    165     Flags = (Flags & Mask) | (flags & ~Mask);
    166   }
    167 
    168   /// clearFlag - Clear a MI flag.
    169   void clearFlag(MIFlag Flag) {
    170     Flags &= ~((uint8_t)Flag);
    171   }
    172 
    173   /// Return true if MI is in a bundle (but not the first MI in a bundle).
    174   ///
    175   /// A bundle looks like this before it's finalized:
    176   ///   ----------------
    177   ///   |      MI      |
    178   ///   ----------------
    179   ///          |
    180   ///   ----------------
    181   ///   |      MI    * |
    182   ///   ----------------
    183   ///          |
    184   ///   ----------------
    185   ///   |      MI    * |
    186   ///   ----------------
    187   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    188   /// next 2 MIs are considered "inside" the bundle.
    189   ///
    190   /// After a bundle is finalized, it looks like this:
    191   ///   ----------------
    192   ///   |    Bundle    |
    193   ///   ----------------
    194   ///          |
    195   ///   ----------------
    196   ///   |      MI    * |
    197   ///   ----------------
    198   ///          |
    199   ///   ----------------
    200   ///   |      MI    * |
    201   ///   ----------------
    202   ///          |
    203   ///   ----------------
    204   ///   |      MI    * |
    205   ///   ----------------
    206   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    207   /// a bundle, but the next three MIs are.
    208   bool isInsideBundle() const {
    209     return getFlag(BundledPred);
    210   }
    211 
    212   /// Return true if this instruction part of a bundle. This is true
    213   /// if either itself or its following instruction is marked "InsideBundle".
    214   bool isBundled() const {
    215     return isBundledWithPred() || isBundledWithSucc();
    216   }
    217 
    218   /// Return true if this instruction is part of a bundle, and it is not the
    219   /// first instruction in the bundle.
    220   bool isBundledWithPred() const { return getFlag(BundledPred); }
    221 
    222   /// Return true if this instruction is part of a bundle, and it is not the
    223   /// last instruction in the bundle.
    224   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    225 
    226   /// Bundle this instruction with its predecessor. This can be an unbundled
    227   /// instruction, or it can be the first instruction in a bundle.
    228   void bundleWithPred();
    229 
    230   /// Bundle this instruction with its successor. This can be an unbundled
    231   /// instruction, or it can be the last instruction in a bundle.
    232   void bundleWithSucc();
    233 
    234   /// Break bundle above this instruction.
    235   void unbundleFromPred();
    236 
    237   /// Break bundle below this instruction.
    238   void unbundleFromSucc();
    239 
    240   /// Returns the debug location id of this MachineInstr.
    241   const DebugLoc &getDebugLoc() const { return debugLoc; }
    242 
    243   /// Return the debug variable referenced by
    244   /// this DBG_VALUE instruction.
    245   const DILocalVariable *getDebugVariable() const {
    246     assert(isDebugValue() && "not a DBG_VALUE");
    247     return cast<DILocalVariable>(getOperand(2).getMetadata());
    248   }
    249 
    250   /// Return the complex address expression referenced by
    251   /// this DBG_VALUE instruction.
    252   const DIExpression *getDebugExpression() const {
    253     assert(isDebugValue() && "not a DBG_VALUE");
    254     return cast<DIExpression>(getOperand(3).getMetadata());
    255   }
    256 
    257   /// Emit an error referring to the source location of this instruction.
    258   /// This should only be used for inline assembly that is somehow
    259   /// impossible to compile. Other errors should have been handled much
    260   /// earlier.
    261   ///
    262   /// If this method returns, the caller should try to recover from the error.
    263   ///
    264   void emitError(StringRef Msg) const;
    265 
    266   /// Returns the target instruction descriptor of this MachineInstr.
    267   const MCInstrDesc &getDesc() const { return *MCID; }
    268 
    269   /// Returns the opcode of this MachineInstr.
    270   unsigned getOpcode() const { return MCID->Opcode; }
    271 
    272   /// Access to explicit operands of the instruction.
    273   ///
    274   unsigned getNumOperands() const { return NumOperands; }
    275 
    276   const MachineOperand& getOperand(unsigned i) const {
    277     assert(i < getNumOperands() && "getOperand() out of range!");
    278     return Operands[i];
    279   }
    280   MachineOperand& getOperand(unsigned i) {
    281     assert(i < getNumOperands() && "getOperand() out of range!");
    282     return Operands[i];
    283   }
    284 
    285   /// Returns the number of non-implicit operands.
    286   unsigned getNumExplicitOperands() const;
    287 
    288   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    289   typedef MachineOperand *mop_iterator;
    290   typedef const MachineOperand *const_mop_iterator;
    291 
    292   mop_iterator operands_begin() { return Operands; }
    293   mop_iterator operands_end() { return Operands + NumOperands; }
    294 
    295   const_mop_iterator operands_begin() const { return Operands; }
    296   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    297 
    298   iterator_range<mop_iterator> operands() {
    299     return make_range(operands_begin(), operands_end());
    300   }
    301   iterator_range<const_mop_iterator> operands() const {
    302     return make_range(operands_begin(), operands_end());
    303   }
    304   iterator_range<mop_iterator> explicit_operands() {
    305     return make_range(operands_begin(),
    306                       operands_begin() + getNumExplicitOperands());
    307   }
    308   iterator_range<const_mop_iterator> explicit_operands() const {
    309     return make_range(operands_begin(),
    310                       operands_begin() + getNumExplicitOperands());
    311   }
    312   iterator_range<mop_iterator> implicit_operands() {
    313     return make_range(explicit_operands().end(), operands_end());
    314   }
    315   iterator_range<const_mop_iterator> implicit_operands() const {
    316     return make_range(explicit_operands().end(), operands_end());
    317   }
    318   /// Returns a range over all explicit operands that are register definitions.
    319   /// Implicit definition are not included!
    320   iterator_range<mop_iterator> defs() {
    321     return make_range(operands_begin(),
    322                       operands_begin() + getDesc().getNumDefs());
    323   }
    324   /// \copydoc defs()
    325   iterator_range<const_mop_iterator> defs() const {
    326     return make_range(operands_begin(),
    327                       operands_begin() + getDesc().getNumDefs());
    328   }
    329   /// Returns a range that includes all operands that are register uses.
    330   /// This may include unrelated operands which are not register uses.
    331   iterator_range<mop_iterator> uses() {
    332     return make_range(operands_begin() + getDesc().getNumDefs(),
    333                       operands_end());
    334   }
    335   /// \copydoc uses()
    336   iterator_range<const_mop_iterator> uses() const {
    337     return make_range(operands_begin() + getDesc().getNumDefs(),
    338                       operands_end());
    339   }
    340 
    341   /// Returns the number of the operand iterator \p I points to.
    342   unsigned getOperandNo(const_mop_iterator I) const {
    343     return I - operands_begin();
    344   }
    345 
    346   /// Access to memory operands of the instruction
    347   mmo_iterator memoperands_begin() const { return MemRefs; }
    348   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    349   bool memoperands_empty() const { return NumMemRefs == 0; }
    350 
    351   iterator_range<mmo_iterator>  memoperands() {
    352     return make_range(memoperands_begin(), memoperands_end());
    353   }
    354   iterator_range<mmo_iterator> memoperands() const {
    355     return make_range(memoperands_begin(), memoperands_end());
    356   }
    357 
    358   /// Return true if this instruction has exactly one MachineMemOperand.
    359   bool hasOneMemOperand() const {
    360     return NumMemRefs == 1;
    361   }
    362 
    363   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    364   /// queries but they are bundle aware.
    365 
    366   enum QueryType {
    367     IgnoreBundle,    // Ignore bundles
    368     AnyInBundle,     // Return true if any instruction in bundle has property
    369     AllInBundle      // Return true if all instructions in bundle have property
    370   };
    371 
    372   /// Return true if the instruction (or in the case of a bundle,
    373   /// the instructions inside the bundle) has the specified property.
    374   /// The first argument is the property being queried.
    375   /// The second argument indicates whether the query should look inside
    376   /// instruction bundles.
    377   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    378     // Inline the fast path for unbundled or bundle-internal instructions.
    379     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    380       return getDesc().getFlags() & (1 << MCFlag);
    381 
    382     // If this is the first instruction in a bundle, take the slow path.
    383     return hasPropertyInBundle(1 << MCFlag, Type);
    384   }
    385 
    386   /// Return true if this instruction can have a variable number of operands.
    387   /// In this case, the variable operands will be after the normal
    388   /// operands but before the implicit definitions and uses (if any are
    389   /// present).
    390   bool isVariadic(QueryType Type = IgnoreBundle) const {
    391     return hasProperty(MCID::Variadic, Type);
    392   }
    393 
    394   /// Set if this instruction has an optional definition, e.g.
    395   /// ARM instructions which can set condition code if 's' bit is set.
    396   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    397     return hasProperty(MCID::HasOptionalDef, Type);
    398   }
    399 
    400   /// Return true if this is a pseudo instruction that doesn't
    401   /// correspond to a real machine instruction.
    402   bool isPseudo(QueryType Type = IgnoreBundle) const {
    403     return hasProperty(MCID::Pseudo, Type);
    404   }
    405 
    406   bool isReturn(QueryType Type = AnyInBundle) const {
    407     return hasProperty(MCID::Return, Type);
    408   }
    409 
    410   bool isCall(QueryType Type = AnyInBundle) const {
    411     return hasProperty(MCID::Call, Type);
    412   }
    413 
    414   /// Returns true if the specified instruction stops control flow
    415   /// from executing the instruction immediately following it.  Examples include
    416   /// unconditional branches and return instructions.
    417   bool isBarrier(QueryType Type = AnyInBundle) const {
    418     return hasProperty(MCID::Barrier, Type);
    419   }
    420 
    421   /// Returns true if this instruction part of the terminator for a basic block.
    422   /// Typically this is things like return and branch instructions.
    423   ///
    424   /// Various passes use this to insert code into the bottom of a basic block,
    425   /// but before control flow occurs.
    426   bool isTerminator(QueryType Type = AnyInBundle) const {
    427     return hasProperty(MCID::Terminator, Type);
    428   }
    429 
    430   /// Returns true if this is a conditional, unconditional, or indirect branch.
    431   /// Predicates below can be used to discriminate between
    432   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    433   /// get more information.
    434   bool isBranch(QueryType Type = AnyInBundle) const {
    435     return hasProperty(MCID::Branch, Type);
    436   }
    437 
    438   /// Return true if this is an indirect branch, such as a
    439   /// branch through a register.
    440   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    441     return hasProperty(MCID::IndirectBranch, Type);
    442   }
    443 
    444   /// Return true if this is a branch which may fall
    445   /// through to the next instruction or may transfer control flow to some other
    446   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    447   /// information about this branch.
    448   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    449     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    450   }
    451 
    452   /// Return true if this is a branch which always
    453   /// transfers control flow to some other block.  The
    454   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    455   /// about this branch.
    456   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    457     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    458   }
    459 
    460   /// Return true if this instruction has a predicate operand that
    461   /// controls execution.  It may be set to 'always', or may be set to other
    462   /// values.   There are various methods in TargetInstrInfo that can be used to
    463   /// control and modify the predicate in this instruction.
    464   bool isPredicable(QueryType Type = AllInBundle) const {
    465     // If it's a bundle than all bundled instructions must be predicable for this
    466     // to return true.
    467     return hasProperty(MCID::Predicable, Type);
    468   }
    469 
    470   /// Return true if this instruction is a comparison.
    471   bool isCompare(QueryType Type = IgnoreBundle) const {
    472     return hasProperty(MCID::Compare, Type);
    473   }
    474 
    475   /// Return true if this instruction is a move immediate
    476   /// (including conditional moves) instruction.
    477   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    478     return hasProperty(MCID::MoveImm, Type);
    479   }
    480 
    481   /// Return true if this instruction is a bitcast instruction.
    482   bool isBitcast(QueryType Type = IgnoreBundle) const {
    483     return hasProperty(MCID::Bitcast, Type);
    484   }
    485 
    486   /// Return true if this instruction is a select instruction.
    487   bool isSelect(QueryType Type = IgnoreBundle) const {
    488     return hasProperty(MCID::Select, Type);
    489   }
    490 
    491   /// Return true if this instruction cannot be safely duplicated.
    492   /// For example, if the instruction has a unique labels attached
    493   /// to it, duplicating it would cause multiple definition errors.
    494   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    495     return hasProperty(MCID::NotDuplicable, Type);
    496   }
    497 
    498   /// Return true if this instruction is convergent.
    499   /// Convergent instructions can not be made control-dependent on any
    500   /// additional values.
    501   bool isConvergent(QueryType Type = AnyInBundle) const {
    502     return hasProperty(MCID::Convergent, Type);
    503   }
    504 
    505   /// Returns true if the specified instruction has a delay slot
    506   /// which must be filled by the code generator.
    507   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    508     return hasProperty(MCID::DelaySlot, Type);
    509   }
    510 
    511   /// Return true for instructions that can be folded as
    512   /// memory operands in other instructions. The most common use for this
    513   /// is instructions that are simple loads from memory that don't modify
    514   /// the loaded value in any way, but it can also be used for instructions
    515   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    516   /// on x86, to allow them to be folded when it is beneficial.
    517   /// This should only be set on instructions that return a value in their
    518   /// only virtual register definition.
    519   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    520     return hasProperty(MCID::FoldableAsLoad, Type);
    521   }
    522 
    523   /// \brief Return true if this instruction behaves
    524   /// the same way as the generic REG_SEQUENCE instructions.
    525   /// E.g., on ARM,
    526   /// dX VMOVDRR rY, rZ
    527   /// is equivalent to
    528   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
    529   ///
    530   /// Note that for the optimizers to be able to take advantage of
    531   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
    532   /// override accordingly.
    533   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
    534     return hasProperty(MCID::RegSequence, Type);
    535   }
    536 
    537   /// \brief Return true if this instruction behaves
    538   /// the same way as the generic EXTRACT_SUBREG instructions.
    539   /// E.g., on ARM,
    540   /// rX, rY VMOVRRD dZ
    541   /// is equivalent to two EXTRACT_SUBREG:
    542   /// rX = EXTRACT_SUBREG dZ, ssub_0
    543   /// rY = EXTRACT_SUBREG dZ, ssub_1
    544   ///
    545   /// Note that for the optimizers to be able to take advantage of
    546   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
    547   /// override accordingly.
    548   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
    549     return hasProperty(MCID::ExtractSubreg, Type);
    550   }
    551 
    552   /// \brief Return true if this instruction behaves
    553   /// the same way as the generic INSERT_SUBREG instructions.
    554   /// E.g., on ARM,
    555   /// dX = VSETLNi32 dY, rZ, Imm
    556   /// is equivalent to a INSERT_SUBREG:
    557   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
    558   ///
    559   /// Note that for the optimizers to be able to take advantage of
    560   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
    561   /// override accordingly.
    562   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
    563     return hasProperty(MCID::InsertSubreg, Type);
    564   }
    565 
    566   //===--------------------------------------------------------------------===//
    567   // Side Effect Analysis
    568   //===--------------------------------------------------------------------===//
    569 
    570   /// Return true if this instruction could possibly read memory.
    571   /// Instructions with this flag set are not necessarily simple load
    572   /// instructions, they may load a value and modify it, for example.
    573   bool mayLoad(QueryType Type = AnyInBundle) const {
    574     if (isInlineAsm()) {
    575       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    576       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    577         return true;
    578     }
    579     return hasProperty(MCID::MayLoad, Type);
    580   }
    581 
    582   /// Return true if this instruction could possibly modify memory.
    583   /// Instructions with this flag set are not necessarily simple store
    584   /// instructions, they may store a modified value based on their operands, or
    585   /// may not actually modify anything, for example.
    586   bool mayStore(QueryType Type = AnyInBundle) const {
    587     if (isInlineAsm()) {
    588       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    589       if (ExtraInfo & InlineAsm::Extra_MayStore)
    590         return true;
    591     }
    592     return hasProperty(MCID::MayStore, Type);
    593   }
    594 
    595   /// Return true if this instruction could possibly read or modify memory.
    596   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
    597     return mayLoad(Type) || mayStore(Type);
    598   }
    599 
    600   //===--------------------------------------------------------------------===//
    601   // Flags that indicate whether an instruction can be modified by a method.
    602   //===--------------------------------------------------------------------===//
    603 
    604   /// Return true if this may be a 2- or 3-address
    605   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    606   /// result if Y and Z are exchanged.  If this flag is set, then the
    607   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    608   /// instruction.
    609   ///
    610   /// Note that this flag may be set on instructions that are only commutable
    611   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    612   /// Also note that some instructions require non-trivial modification to
    613   /// commute them.
    614   bool isCommutable(QueryType Type = IgnoreBundle) const {
    615     return hasProperty(MCID::Commutable, Type);
    616   }
    617 
    618   /// Return true if this is a 2-address instruction
    619   /// which can be changed into a 3-address instruction if needed.  Doing this
    620   /// transformation can be profitable in the register allocator, because it
    621   /// means that the instruction can use a 2-address form if possible, but
    622   /// degrade into a less efficient form if the source and dest register cannot
    623   /// be assigned to the same register.  For example, this allows the x86
    624   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    625   /// is the same speed as the shift but has bigger code size.
    626   ///
    627   /// If this returns true, then the target must implement the
    628   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    629   /// is allowed to fail if the transformation isn't valid for this specific
    630   /// instruction (e.g. shl reg, 4 on x86).
    631   ///
    632   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    633     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    634   }
    635 
    636   /// Return true if this instruction requires
    637   /// custom insertion support when the DAG scheduler is inserting it into a
    638   /// machine basic block.  If this is true for the instruction, it basically
    639   /// means that it is a pseudo instruction used at SelectionDAG time that is
    640   /// expanded out into magic code by the target when MachineInstrs are formed.
    641   ///
    642   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    643   /// is used to insert this into the MachineBasicBlock.
    644   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    645     return hasProperty(MCID::UsesCustomInserter, Type);
    646   }
    647 
    648   /// Return true if this instruction requires *adjustment*
    649   /// after instruction selection by calling a target hook. For example, this
    650   /// can be used to fill in ARM 's' optional operand depending on whether
    651   /// the conditional flag register is used.
    652   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    653     return hasProperty(MCID::HasPostISelHook, Type);
    654   }
    655 
    656   /// Returns true if this instruction is a candidate for remat.
    657   /// This flag is deprecated, please don't use it anymore.  If this
    658   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    659   /// verify the instruction is really rematable.
    660   bool isRematerializable(QueryType Type = AllInBundle) const {
    661     // It's only possible to re-mat a bundle if all bundled instructions are
    662     // re-materializable.
    663     return hasProperty(MCID::Rematerializable, Type);
    664   }
    665 
    666   /// Returns true if this instruction has the same cost (or less) than a move
    667   /// instruction. This is useful during certain types of optimizations
    668   /// (e.g., remat during two-address conversion or machine licm)
    669   /// where we would like to remat or hoist the instruction, but not if it costs
    670   /// more than moving the instruction into the appropriate register. Note, we
    671   /// are not marking copies from and to the same register class with this flag.
    672   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    673     // Only returns true for a bundle if all bundled instructions are cheap.
    674     return hasProperty(MCID::CheapAsAMove, Type);
    675   }
    676 
    677   /// Returns true if this instruction source operands
    678   /// have special register allocation requirements that are not captured by the
    679   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    680   /// even / odd pair, ARM::STM registers have to be in ascending order.
    681   /// Post-register allocation passes should not attempt to change allocations
    682   /// for sources of instructions with this flag.
    683   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    684     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    685   }
    686 
    687   /// Returns true if this instruction def operands
    688   /// have special register allocation requirements that are not captured by the
    689   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    690   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    691   /// Post-register allocation passes should not attempt to change allocations
    692   /// for definitions of instructions with this flag.
    693   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    694     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    695   }
    696 
    697 
    698   enum MICheckType {
    699     CheckDefs,      // Check all operands for equality
    700     CheckKillDead,  // Check all operands including kill / dead markers
    701     IgnoreDefs,     // Ignore all definitions
    702     IgnoreVRegDefs  // Ignore virtual register definitions
    703   };
    704 
    705   /// Return true if this instruction is identical to (same
    706   /// opcode and same operands as) the specified instruction.
    707   bool isIdenticalTo(const MachineInstr *Other,
    708                      MICheckType Check = CheckDefs) const;
    709 
    710   /// Unlink 'this' from the containing basic block, and return it without
    711   /// deleting it.
    712   ///
    713   /// This function can not be used on bundled instructions, use
    714   /// removeFromBundle() to remove individual instructions from a bundle.
    715   MachineInstr *removeFromParent();
    716 
    717   /// Unlink this instruction from its basic block and return it without
    718   /// deleting it.
    719   ///
    720   /// If the instruction is part of a bundle, the other instructions in the
    721   /// bundle remain bundled.
    722   MachineInstr *removeFromBundle();
    723 
    724   /// Unlink 'this' from the containing basic block and delete it.
    725   ///
    726   /// If this instruction is the header of a bundle, the whole bundle is erased.
    727   /// This function can not be used for instructions inside a bundle, use
    728   /// eraseFromBundle() to erase individual bundled instructions.
    729   void eraseFromParent();
    730 
    731   /// Unlink 'this' from the containing basic block and delete it.
    732   ///
    733   /// For all definitions mark their uses in DBG_VALUE nodes
    734   /// as undefined. Otherwise like eraseFromParent().
    735   void eraseFromParentAndMarkDBGValuesForRemoval();
    736 
    737   /// Unlink 'this' form its basic block and delete it.
    738   ///
    739   /// If the instruction is part of a bundle, the other instructions in the
    740   /// bundle remain bundled.
    741   void eraseFromBundle();
    742 
    743   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    744   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    745 
    746   /// Returns true if the MachineInstr represents a label.
    747   bool isLabel() const { return isEHLabel() || isGCLabel(); }
    748   bool isCFIInstruction() const {
    749     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
    750   }
    751 
    752   // True if the instruction represents a position in the function.
    753   bool isPosition() const { return isLabel() || isCFIInstruction(); }
    754 
    755   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    756   /// A DBG_VALUE is indirect iff the first operand is a register and
    757   /// the second operand is an immediate.
    758   bool isIndirectDebugValue() const {
    759     return isDebugValue()
    760       && getOperand(0).isReg()
    761       && getOperand(1).isImm();
    762   }
    763 
    764   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
    765   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    766   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    767   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    768   bool isMSInlineAsm() const {
    769     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    770   }
    771   bool isStackAligningInlineAsm() const;
    772   InlineAsm::AsmDialect getInlineAsmDialect() const;
    773   bool isInsertSubreg() const {
    774     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    775   }
    776   bool isSubregToReg() const {
    777     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    778   }
    779   bool isRegSequence() const {
    780     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    781   }
    782   bool isBundle() const {
    783     return getOpcode() == TargetOpcode::BUNDLE;
    784   }
    785   bool isCopy() const {
    786     return getOpcode() == TargetOpcode::COPY;
    787   }
    788   bool isFullCopy() const {
    789     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    790   }
    791   bool isExtractSubreg() const {
    792     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    793   }
    794 
    795   /// Return true if the instruction behaves like a copy.
    796   /// This does not include native copy instructions.
    797   bool isCopyLike() const {
    798     return isCopy() || isSubregToReg();
    799   }
    800 
    801   /// Return true is the instruction is an identity copy.
    802   bool isIdentityCopy() const {
    803     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    804       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    805   }
    806 
    807   /// Return true if this is a transient instruction that is
    808   /// either very likely to be eliminated during register allocation (such as
    809   /// copy-like instructions), or if this instruction doesn't have an
    810   /// execution-time cost.
    811   bool isTransient() const {
    812     switch(getOpcode()) {
    813     default: return false;
    814     // Copy-like instructions are usually eliminated during register allocation.
    815     case TargetOpcode::PHI:
    816     case TargetOpcode::COPY:
    817     case TargetOpcode::INSERT_SUBREG:
    818     case TargetOpcode::SUBREG_TO_REG:
    819     case TargetOpcode::REG_SEQUENCE:
    820     // Pseudo-instructions that don't produce any real output.
    821     case TargetOpcode::IMPLICIT_DEF:
    822     case TargetOpcode::KILL:
    823     case TargetOpcode::CFI_INSTRUCTION:
    824     case TargetOpcode::EH_LABEL:
    825     case TargetOpcode::GC_LABEL:
    826     case TargetOpcode::DBG_VALUE:
    827       return true;
    828     }
    829   }
    830 
    831   /// Return the number of instructions inside the MI bundle, excluding the
    832   /// bundle header.
    833   ///
    834   /// This is the number of instructions that MachineBasicBlock::iterator
    835   /// skips, 0 for unbundled instructions.
    836   unsigned getBundleSize() const;
    837 
    838   /// Return true if the MachineInstr reads the specified register.
    839   /// If TargetRegisterInfo is passed, then it also checks if there
    840   /// is a read of a super-register.
    841   /// This does not count partial redefines of virtual registers as reads:
    842   ///   %reg1024:6 = OP.
    843   bool readsRegister(unsigned Reg,
    844                      const TargetRegisterInfo *TRI = nullptr) const {
    845     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    846   }
    847 
    848   /// Return true if the MachineInstr reads the specified virtual register.
    849   /// Take into account that a partial define is a
    850   /// read-modify-write operation.
    851   bool readsVirtualRegister(unsigned Reg) const {
    852     return readsWritesVirtualRegister(Reg).first;
    853   }
    854 
    855   /// Return a pair of bools (reads, writes) indicating if this instruction
    856   /// reads or writes Reg. This also considers partial defines.
    857   /// If Ops is not null, all operand indices for Reg are added.
    858   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    859                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    860 
    861   /// Return true if the MachineInstr kills the specified register.
    862   /// If TargetRegisterInfo is passed, then it also checks if there is
    863   /// a kill of a super-register.
    864   bool killsRegister(unsigned Reg,
    865                      const TargetRegisterInfo *TRI = nullptr) const {
    866     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    867   }
    868 
    869   /// Return true if the MachineInstr fully defines the specified register.
    870   /// If TargetRegisterInfo is passed, then it also checks
    871   /// if there is a def of a super-register.
    872   /// NOTE: It's ignoring subreg indices on virtual registers.
    873   bool definesRegister(unsigned Reg,
    874                        const TargetRegisterInfo *TRI = nullptr) const {
    875     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    876   }
    877 
    878   /// Return true if the MachineInstr modifies (fully define or partially
    879   /// define) the specified register.
    880   /// NOTE: It's ignoring subreg indices on virtual registers.
    881   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    882     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    883   }
    884 
    885   /// Returns true if the register is dead in this machine instruction.
    886   /// If TargetRegisterInfo is passed, then it also checks
    887   /// if there is a dead def of a super-register.
    888   bool registerDefIsDead(unsigned Reg,
    889                          const TargetRegisterInfo *TRI = nullptr) const {
    890     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    891   }
    892 
    893   /// Returns the operand index that is a use of the specific register or -1
    894   /// if it is not found. It further tightens the search criteria to a use
    895   /// that kills the register if isKill is true.
    896   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    897                                 const TargetRegisterInfo *TRI = nullptr) const;
    898 
    899   /// Wrapper for findRegisterUseOperandIdx, it returns
    900   /// a pointer to the MachineOperand rather than an index.
    901   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    902                                       const TargetRegisterInfo *TRI = nullptr) {
    903     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    904     return (Idx == -1) ? nullptr : &getOperand(Idx);
    905   }
    906 
    907   const MachineOperand *findRegisterUseOperand(
    908     unsigned Reg, bool isKill = false,
    909     const TargetRegisterInfo *TRI = nullptr) const {
    910     return const_cast<MachineInstr *>(this)->
    911       findRegisterUseOperand(Reg, isKill, TRI);
    912   }
    913 
    914   /// Returns the operand index that is a def of the specified register or
    915   /// -1 if it is not found. If isDead is true, defs that are not dead are
    916   /// skipped. If Overlap is true, then it also looks for defs that merely
    917   /// overlap the specified register. If TargetRegisterInfo is non-null,
    918   /// then it also checks if there is a def of a super-register.
    919   /// This may also return a register mask operand when Overlap is true.
    920   int findRegisterDefOperandIdx(unsigned Reg,
    921                                 bool isDead = false, bool Overlap = false,
    922                                 const TargetRegisterInfo *TRI = nullptr) const;
    923 
    924   /// Wrapper for findRegisterDefOperandIdx, it returns
    925   /// a pointer to the MachineOperand rather than an index.
    926   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    927                                       const TargetRegisterInfo *TRI = nullptr) {
    928     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    929     return (Idx == -1) ? nullptr : &getOperand(Idx);
    930   }
    931 
    932   /// Find the index of the first operand in the
    933   /// operand list that is used to represent the predicate. It returns -1 if
    934   /// none is found.
    935   int findFirstPredOperandIdx() const;
    936 
    937   /// Find the index of the flag word operand that
    938   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    939   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    940   ///
    941   /// If GroupNo is not NULL, it will receive the number of the operand group
    942   /// containing OpIdx.
    943   ///
    944   /// The flag operand is an immediate that can be decoded with methods like
    945   /// InlineAsm::hasRegClassConstraint().
    946   ///
    947   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
    948 
    949   /// Compute the static register class constraint for operand OpIdx.
    950   /// For normal instructions, this is derived from the MCInstrDesc.
    951   /// For inline assembly it is derived from the flag words.
    952   ///
    953   /// Returns NULL if the static register class constraint cannot be
    954   /// determined.
    955   ///
    956   const TargetRegisterClass*
    957   getRegClassConstraint(unsigned OpIdx,
    958                         const TargetInstrInfo *TII,
    959                         const TargetRegisterInfo *TRI) const;
    960 
    961   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
    962   /// the given \p CurRC.
    963   /// If \p ExploreBundle is set and MI is part of a bundle, all the
    964   /// instructions inside the bundle will be taken into account. In other words,
    965   /// this method accumulates all the constraints of the operand of this MI and
    966   /// the related bundle if MI is a bundle or inside a bundle.
    967   ///
    968   /// Returns the register class that satisfies both \p CurRC and the
    969   /// constraints set by MI. Returns NULL if such a register class does not
    970   /// exist.
    971   ///
    972   /// \pre CurRC must not be NULL.
    973   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
    974       unsigned Reg, const TargetRegisterClass *CurRC,
    975       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
    976       bool ExploreBundle = false) const;
    977 
    978   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
    979   /// to the given \p CurRC.
    980   ///
    981   /// Returns the register class that satisfies both \p CurRC and the
    982   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
    983   /// does not exist.
    984   ///
    985   /// \pre CurRC must not be NULL.
    986   /// \pre The operand at \p OpIdx must be a register.
    987   const TargetRegisterClass *
    988   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
    989                               const TargetInstrInfo *TII,
    990                               const TargetRegisterInfo *TRI) const;
    991 
    992   /// Add a tie between the register operands at DefIdx and UseIdx.
    993   /// The tie will cause the register allocator to ensure that the two
    994   /// operands are assigned the same physical register.
    995   ///
    996   /// Tied operands are managed automatically for explicit operands in the
    997   /// MCInstrDesc. This method is for exceptional cases like inline asm.
    998   void tieOperands(unsigned DefIdx, unsigned UseIdx);
    999 
   1000   /// Given the index of a tied register operand, find the
   1001   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
   1002   /// index of the tied operand which must exist.
   1003   unsigned findTiedOperandIdx(unsigned OpIdx) const;
   1004 
   1005   /// Given the index of a register def operand,
   1006   /// check if the register def is tied to a source operand, due to either
   1007   /// two-address elimination or inline assembly constraints. Returns the
   1008   /// first tied use operand index by reference if UseOpIdx is not null.
   1009   bool isRegTiedToUseOperand(unsigned DefOpIdx,
   1010                              unsigned *UseOpIdx = nullptr) const {
   1011     const MachineOperand &MO = getOperand(DefOpIdx);
   1012     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
   1013       return false;
   1014     if (UseOpIdx)
   1015       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
   1016     return true;
   1017   }
   1018 
   1019   /// Return true if the use operand of the specified index is tied to a def
   1020   /// operand. It also returns the def operand index by reference if DefOpIdx
   1021   /// is not null.
   1022   bool isRegTiedToDefOperand(unsigned UseOpIdx,
   1023                              unsigned *DefOpIdx = nullptr) const {
   1024     const MachineOperand &MO = getOperand(UseOpIdx);
   1025     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
   1026       return false;
   1027     if (DefOpIdx)
   1028       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
   1029     return true;
   1030   }
   1031 
   1032   /// Clears kill flags on all operands.
   1033   void clearKillInfo();
   1034 
   1035   /// Replace all occurrences of FromReg with ToReg:SubIdx,
   1036   /// properly composing subreg indices where necessary.
   1037   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
   1038                           const TargetRegisterInfo &RegInfo);
   1039 
   1040   /// We have determined MI kills a register. Look for the
   1041   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
   1042   /// add a implicit operand if it's not found. Returns true if the operand
   1043   /// exists / is added.
   1044   bool addRegisterKilled(unsigned IncomingReg,
   1045                          const TargetRegisterInfo *RegInfo,
   1046                          bool AddIfNotFound = false);
   1047 
   1048   /// Clear all kill flags affecting Reg.  If RegInfo is
   1049   /// provided, this includes super-register kills.
   1050   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
   1051 
   1052   /// We have determined MI defined a register without a use.
   1053   /// Look for the operand that defines it and mark it as IsDead. If
   1054   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
   1055   /// true if the operand exists / is added.
   1056   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
   1057                        bool AddIfNotFound = false);
   1058 
   1059   /// Clear all dead flags on operands defining register @p Reg.
   1060   void clearRegisterDeads(unsigned Reg);
   1061 
   1062   /// Mark all subregister defs of register @p Reg with the undef flag.
   1063   /// This function is used when we determined to have a subregister def in an
   1064   /// otherwise undefined super register.
   1065   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
   1066 
   1067   /// We have determined MI defines a register. Make sure there is an operand
   1068   /// defining Reg.
   1069   void addRegisterDefined(unsigned Reg,
   1070                           const TargetRegisterInfo *RegInfo = nullptr);
   1071 
   1072   /// Mark every physreg used by this instruction as
   1073   /// dead except those in the UsedRegs list.
   1074   ///
   1075   /// On instructions with register mask operands, also add implicit-def
   1076   /// operands for all registers in UsedRegs.
   1077   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1078                              const TargetRegisterInfo &TRI);
   1079 
   1080   /// Return true if it is safe to move this instruction. If
   1081   /// SawStore is set to true, it means that there is a store (or call) between
   1082   /// the instruction's location and its intended destination.
   1083   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
   1084 
   1085   /// Return true if this instruction may have an ordered
   1086   /// or volatile memory reference, or if the information describing the memory
   1087   /// reference is not available. Return false if it is known to have no
   1088   /// ordered or volatile memory references.
   1089   bool hasOrderedMemoryRef() const;
   1090 
   1091   /// Return true if this instruction is loading from a
   1092   /// location whose value is invariant across the function.  For example,
   1093   /// loading a value from the constant pool or from the argument area of
   1094   /// a function if it does not change.  This should only return true of *all*
   1095   /// loads the instruction does are invariant (if it does multiple loads).
   1096   bool isInvariantLoad(AliasAnalysis *AA) const;
   1097 
   1098   /// If the specified instruction is a PHI that always merges together the
   1099   /// same virtual register, return the register, otherwise return 0.
   1100   unsigned isConstantValuePHI() const;
   1101 
   1102   /// Return true if this instruction has side effects that are not modeled
   1103   /// by mayLoad / mayStore, etc.
   1104   /// For all instructions, the property is encoded in MCInstrDesc::Flags
   1105   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
   1106   /// INLINEASM instruction, in which case the side effect property is encoded
   1107   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
   1108   ///
   1109   bool hasUnmodeledSideEffects() const;
   1110 
   1111   /// Returns true if it is illegal to fold a load across this instruction.
   1112   bool isLoadFoldBarrier() const;
   1113 
   1114   /// Return true if all the defs of this instruction are dead.
   1115   bool allDefsAreDead() const;
   1116 
   1117   /// Copy implicit register operands from specified
   1118   /// instruction to this instruction.
   1119   void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
   1120 
   1121   //
   1122   // Debugging support
   1123   //
   1124   void print(raw_ostream &OS, bool SkipOpers = false) const;
   1125   void print(raw_ostream &OS, ModuleSlotTracker &MST,
   1126              bool SkipOpers = false) const;
   1127   void dump() const;
   1128 
   1129   //===--------------------------------------------------------------------===//
   1130   // Accessors used to build up machine instructions.
   1131 
   1132   /// Add the specified operand to the instruction.  If it is an implicit
   1133   /// operand, it is added to the end of the operand list.  If it is an
   1134   /// explicit operand it is added at the end of the explicit operand list
   1135   /// (before the first implicit operand).
   1136   ///
   1137   /// MF must be the machine function that was used to allocate this
   1138   /// instruction.
   1139   ///
   1140   /// MachineInstrBuilder provides a more convenient interface for creating
   1141   /// instructions and adding operands.
   1142   void addOperand(MachineFunction &MF, const MachineOperand &Op);
   1143 
   1144   /// Add an operand without providing an MF reference. This only works for
   1145   /// instructions that are inserted in a basic block.
   1146   ///
   1147   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
   1148   /// preferred.
   1149   void addOperand(const MachineOperand &Op);
   1150 
   1151   /// Replace the instruction descriptor (thus opcode) of
   1152   /// the current instruction with a new one.
   1153   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
   1154 
   1155   /// Replace current source information with new such.
   1156   /// Avoid using this, the constructor argument is preferable.
   1157   void setDebugLoc(DebugLoc dl) {
   1158     debugLoc = std::move(dl);
   1159     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
   1160   }
   1161 
   1162   /// Erase an operand  from an instruction, leaving it with one
   1163   /// fewer operand than it started with.
   1164   void RemoveOperand(unsigned i);
   1165 
   1166   /// Add a MachineMemOperand to the machine instruction.
   1167   /// This function should be used only occasionally. The setMemRefs function
   1168   /// is the primary method for setting up a MachineInstr's MemRefs list.
   1169   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
   1170 
   1171   /// Assign this MachineInstr's memory reference descriptor list.
   1172   /// This does not transfer ownership.
   1173   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   1174     MemRefs = NewMemRefs;
   1175     NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
   1176     assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
   1177   }
   1178 
   1179   /// Clear this MachineInstr's memory reference descriptor list.
   1180   void clearMemRefs() {
   1181     MemRefs = nullptr;
   1182     NumMemRefs = 0;
   1183   }
   1184 
   1185   /// Break any tie involving OpIdx.
   1186   void untieRegOperand(unsigned OpIdx) {
   1187     MachineOperand &MO = getOperand(OpIdx);
   1188     if (MO.isReg() && MO.isTied()) {
   1189       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1190       MO.TiedTo = 0;
   1191     }
   1192   }
   1193 
   1194   /// Add all implicit def and use operands to this instruction.
   1195   void addImplicitDefUseOperands(MachineFunction &MF);
   1196 
   1197 private:
   1198   /// If this instruction is embedded into a MachineFunction, return the
   1199   /// MachineRegisterInfo object for the current function, otherwise
   1200   /// return null.
   1201   MachineRegisterInfo *getRegInfo();
   1202 
   1203   /// Unlink all of the register operands in this instruction from their
   1204   /// respective use lists.  This requires that the operands already be on their
   1205   /// use lists.
   1206   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1207 
   1208   /// Add all of the register operands in this instruction from their
   1209   /// respective use lists.  This requires that the operands not be on their
   1210   /// use lists yet.
   1211   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1212 
   1213   /// Slow path for hasProperty when we're dealing with a bundle.
   1214   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1215 
   1216   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
   1217   /// this MI and the given operand index \p OpIdx.
   1218   /// If the related operand does not constrained Reg, this returns CurRC.
   1219   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
   1220       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1221       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
   1222 };
   1223 
   1224 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
   1225 /// instruction rather than by pointer value.
   1226 /// The hashing and equality testing functions ignore definitions so this is
   1227 /// useful for CSE, etc.
   1228 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1229   static inline MachineInstr *getEmptyKey() {
   1230     return nullptr;
   1231   }
   1232 
   1233   static inline MachineInstr *getTombstoneKey() {
   1234     return reinterpret_cast<MachineInstr*>(-1);
   1235   }
   1236 
   1237   static unsigned getHashValue(const MachineInstr* const &MI);
   1238 
   1239   static bool isEqual(const MachineInstr* const &LHS,
   1240                       const MachineInstr* const &RHS) {
   1241     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1242         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1243       return LHS == RHS;
   1244     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
   1245   }
   1246 };
   1247 
   1248 //===----------------------------------------------------------------------===//
   1249 // Debugging Support
   1250 
   1251 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1252   MI.print(OS);
   1253   return OS;
   1254 }
   1255 
   1256 } // End llvm namespace
   1257 
   1258 #endif
   1259