1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the MachineInstr class, which is the 11 // basic representation for all target dependent machine instructions used by 12 // the back end. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 17 #define LLVM_CODEGEN_MACHINEINSTR_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMapInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/ilist.h" 24 #include "llvm/ADT/ilist_node.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/IR/DebugInfo.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/Support/ArrayRecycler.h" 33 #include "llvm/Target/TargetOpcodes.h" 34 35 namespace llvm { 36 37 template <typename T> class SmallVectorImpl; 38 class TargetInstrInfo; 39 class TargetRegisterClass; 40 class TargetRegisterInfo; 41 class MachineFunction; 42 class MachineMemOperand; 43 44 //===----------------------------------------------------------------------===// 45 /// Representation of each machine instruction. 46 /// 47 /// This class isn't a POD type, but it must have a trivial destructor. When a 48 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 49 /// without having their destructor called. 50 /// 51 class MachineInstr 52 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock> { 53 public: 54 typedef MachineMemOperand **mmo_iterator; 55 56 /// Flags to specify different kinds of comments to output in 57 /// assembly code. These flags carry semantic information not 58 /// otherwise easily derivable from the IR text. 59 /// 60 enum CommentFlag { 61 ReloadReuse = 0x1 62 }; 63 64 enum MIFlag { 65 NoFlags = 0, 66 FrameSetup = 1 << 0, // Instruction is used as a part of 67 // function frame setup code. 68 FrameDestroy = 1 << 1, // Instruction is used as a part of 69 // function frame destruction code. 70 BundledPred = 1 << 2, // Instruction has bundled predecessors. 71 BundledSucc = 1 << 3 // Instruction has bundled successors. 72 }; 73 private: 74 const MCInstrDesc *MCID; // Instruction descriptor. 75 MachineBasicBlock *Parent; // Pointer to the owning basic block. 76 77 // Operands are allocated by an ArrayRecycler. 78 MachineOperand *Operands; // Pointer to the first operand. 79 unsigned NumOperands; // Number of operands on instruction. 80 typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity; 81 OperandCapacity CapOperands; // Capacity of the Operands array. 82 83 uint8_t Flags; // Various bits of additional 84 // information about machine 85 // instruction. 86 87 uint8_t AsmPrinterFlags; // Various bits of information used by 88 // the AsmPrinter to emit helpful 89 // comments. This is *not* semantic 90 // information. Do not use this for 91 // anything other than to convey comment 92 // information to AsmPrinter. 93 94 uint8_t NumMemRefs; // Information on memory references. 95 mmo_iterator MemRefs; 96 97 DebugLoc debugLoc; // Source line information. 98 99 MachineInstr(const MachineInstr&) = delete; 100 void operator=(const MachineInstr&) = delete; 101 // Use MachineFunction::DeleteMachineInstr() instead. 102 ~MachineInstr() = delete; 103 104 // Intrusive list support 105 friend struct ilist_traits<MachineInstr>; 106 friend struct ilist_traits<MachineBasicBlock>; 107 void setParent(MachineBasicBlock *P) { Parent = P; } 108 109 /// This constructor creates a copy of the given 110 /// MachineInstr in the given MachineFunction. 111 MachineInstr(MachineFunction &, const MachineInstr &); 112 113 /// This constructor create a MachineInstr and add the implicit operands. 114 /// It reserves space for number of operands specified by 115 /// MCInstrDesc. An explicit DebugLoc is supplied. 116 MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl, 117 bool NoImp = false); 118 119 // MachineInstrs are pool-allocated and owned by MachineFunction. 120 friend class MachineFunction; 121 122 public: 123 const MachineBasicBlock* getParent() const { return Parent; } 124 MachineBasicBlock* getParent() { return Parent; } 125 126 /// Return the asm printer flags bitvector. 127 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 128 129 /// Clear the AsmPrinter bitvector. 130 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 131 132 /// Return whether an AsmPrinter flag is set. 133 bool getAsmPrinterFlag(CommentFlag Flag) const { 134 return AsmPrinterFlags & Flag; 135 } 136 137 /// Set a flag for the AsmPrinter. 138 void setAsmPrinterFlag(CommentFlag Flag) { 139 AsmPrinterFlags |= (uint8_t)Flag; 140 } 141 142 /// Clear specific AsmPrinter flags. 143 void clearAsmPrinterFlag(CommentFlag Flag) { 144 AsmPrinterFlags &= ~Flag; 145 } 146 147 /// Return the MI flags bitvector. 148 uint8_t getFlags() const { 149 return Flags; 150 } 151 152 /// Return whether an MI flag is set. 153 bool getFlag(MIFlag Flag) const { 154 return Flags & Flag; 155 } 156 157 /// Set a MI flag. 158 void setFlag(MIFlag Flag) { 159 Flags |= (uint8_t)Flag; 160 } 161 162 void setFlags(unsigned flags) { 163 // Filter out the automatically maintained flags. 164 unsigned Mask = BundledPred | BundledSucc; 165 Flags = (Flags & Mask) | (flags & ~Mask); 166 } 167 168 /// clearFlag - Clear a MI flag. 169 void clearFlag(MIFlag Flag) { 170 Flags &= ~((uint8_t)Flag); 171 } 172 173 /// Return true if MI is in a bundle (but not the first MI in a bundle). 174 /// 175 /// A bundle looks like this before it's finalized: 176 /// ---------------- 177 /// | MI | 178 /// ---------------- 179 /// | 180 /// ---------------- 181 /// | MI * | 182 /// ---------------- 183 /// | 184 /// ---------------- 185 /// | MI * | 186 /// ---------------- 187 /// In this case, the first MI starts a bundle but is not inside a bundle, the 188 /// next 2 MIs are considered "inside" the bundle. 189 /// 190 /// After a bundle is finalized, it looks like this: 191 /// ---------------- 192 /// | Bundle | 193 /// ---------------- 194 /// | 195 /// ---------------- 196 /// | MI * | 197 /// ---------------- 198 /// | 199 /// ---------------- 200 /// | MI * | 201 /// ---------------- 202 /// | 203 /// ---------------- 204 /// | MI * | 205 /// ---------------- 206 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 207 /// a bundle, but the next three MIs are. 208 bool isInsideBundle() const { 209 return getFlag(BundledPred); 210 } 211 212 /// Return true if this instruction part of a bundle. This is true 213 /// if either itself or its following instruction is marked "InsideBundle". 214 bool isBundled() const { 215 return isBundledWithPred() || isBundledWithSucc(); 216 } 217 218 /// Return true if this instruction is part of a bundle, and it is not the 219 /// first instruction in the bundle. 220 bool isBundledWithPred() const { return getFlag(BundledPred); } 221 222 /// Return true if this instruction is part of a bundle, and it is not the 223 /// last instruction in the bundle. 224 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 225 226 /// Bundle this instruction with its predecessor. This can be an unbundled 227 /// instruction, or it can be the first instruction in a bundle. 228 void bundleWithPred(); 229 230 /// Bundle this instruction with its successor. This can be an unbundled 231 /// instruction, or it can be the last instruction in a bundle. 232 void bundleWithSucc(); 233 234 /// Break bundle above this instruction. 235 void unbundleFromPred(); 236 237 /// Break bundle below this instruction. 238 void unbundleFromSucc(); 239 240 /// Returns the debug location id of this MachineInstr. 241 const DebugLoc &getDebugLoc() const { return debugLoc; } 242 243 /// Return the debug variable referenced by 244 /// this DBG_VALUE instruction. 245 const DILocalVariable *getDebugVariable() const { 246 assert(isDebugValue() && "not a DBG_VALUE"); 247 return cast<DILocalVariable>(getOperand(2).getMetadata()); 248 } 249 250 /// Return the complex address expression referenced by 251 /// this DBG_VALUE instruction. 252 const DIExpression *getDebugExpression() const { 253 assert(isDebugValue() && "not a DBG_VALUE"); 254 return cast<DIExpression>(getOperand(3).getMetadata()); 255 } 256 257 /// Emit an error referring to the source location of this instruction. 258 /// This should only be used for inline assembly that is somehow 259 /// impossible to compile. Other errors should have been handled much 260 /// earlier. 261 /// 262 /// If this method returns, the caller should try to recover from the error. 263 /// 264 void emitError(StringRef Msg) const; 265 266 /// Returns the target instruction descriptor of this MachineInstr. 267 const MCInstrDesc &getDesc() const { return *MCID; } 268 269 /// Returns the opcode of this MachineInstr. 270 unsigned getOpcode() const { return MCID->Opcode; } 271 272 /// Access to explicit operands of the instruction. 273 /// 274 unsigned getNumOperands() const { return NumOperands; } 275 276 const MachineOperand& getOperand(unsigned i) const { 277 assert(i < getNumOperands() && "getOperand() out of range!"); 278 return Operands[i]; 279 } 280 MachineOperand& getOperand(unsigned i) { 281 assert(i < getNumOperands() && "getOperand() out of range!"); 282 return Operands[i]; 283 } 284 285 /// Returns the number of non-implicit operands. 286 unsigned getNumExplicitOperands() const; 287 288 /// iterator/begin/end - Iterate over all operands of a machine instruction. 289 typedef MachineOperand *mop_iterator; 290 typedef const MachineOperand *const_mop_iterator; 291 292 mop_iterator operands_begin() { return Operands; } 293 mop_iterator operands_end() { return Operands + NumOperands; } 294 295 const_mop_iterator operands_begin() const { return Operands; } 296 const_mop_iterator operands_end() const { return Operands + NumOperands; } 297 298 iterator_range<mop_iterator> operands() { 299 return make_range(operands_begin(), operands_end()); 300 } 301 iterator_range<const_mop_iterator> operands() const { 302 return make_range(operands_begin(), operands_end()); 303 } 304 iterator_range<mop_iterator> explicit_operands() { 305 return make_range(operands_begin(), 306 operands_begin() + getNumExplicitOperands()); 307 } 308 iterator_range<const_mop_iterator> explicit_operands() const { 309 return make_range(operands_begin(), 310 operands_begin() + getNumExplicitOperands()); 311 } 312 iterator_range<mop_iterator> implicit_operands() { 313 return make_range(explicit_operands().end(), operands_end()); 314 } 315 iterator_range<const_mop_iterator> implicit_operands() const { 316 return make_range(explicit_operands().end(), operands_end()); 317 } 318 /// Returns a range over all explicit operands that are register definitions. 319 /// Implicit definition are not included! 320 iterator_range<mop_iterator> defs() { 321 return make_range(operands_begin(), 322 operands_begin() + getDesc().getNumDefs()); 323 } 324 /// \copydoc defs() 325 iterator_range<const_mop_iterator> defs() const { 326 return make_range(operands_begin(), 327 operands_begin() + getDesc().getNumDefs()); 328 } 329 /// Returns a range that includes all operands that are register uses. 330 /// This may include unrelated operands which are not register uses. 331 iterator_range<mop_iterator> uses() { 332 return make_range(operands_begin() + getDesc().getNumDefs(), 333 operands_end()); 334 } 335 /// \copydoc uses() 336 iterator_range<const_mop_iterator> uses() const { 337 return make_range(operands_begin() + getDesc().getNumDefs(), 338 operands_end()); 339 } 340 341 /// Returns the number of the operand iterator \p I points to. 342 unsigned getOperandNo(const_mop_iterator I) const { 343 return I - operands_begin(); 344 } 345 346 /// Access to memory operands of the instruction 347 mmo_iterator memoperands_begin() const { return MemRefs; } 348 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } 349 bool memoperands_empty() const { return NumMemRefs == 0; } 350 351 iterator_range<mmo_iterator> memoperands() { 352 return make_range(memoperands_begin(), memoperands_end()); 353 } 354 iterator_range<mmo_iterator> memoperands() const { 355 return make_range(memoperands_begin(), memoperands_end()); 356 } 357 358 /// Return true if this instruction has exactly one MachineMemOperand. 359 bool hasOneMemOperand() const { 360 return NumMemRefs == 1; 361 } 362 363 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 364 /// queries but they are bundle aware. 365 366 enum QueryType { 367 IgnoreBundle, // Ignore bundles 368 AnyInBundle, // Return true if any instruction in bundle has property 369 AllInBundle // Return true if all instructions in bundle have property 370 }; 371 372 /// Return true if the instruction (or in the case of a bundle, 373 /// the instructions inside the bundle) has the specified property. 374 /// The first argument is the property being queried. 375 /// The second argument indicates whether the query should look inside 376 /// instruction bundles. 377 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 378 // Inline the fast path for unbundled or bundle-internal instructions. 379 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 380 return getDesc().getFlags() & (1 << MCFlag); 381 382 // If this is the first instruction in a bundle, take the slow path. 383 return hasPropertyInBundle(1 << MCFlag, Type); 384 } 385 386 /// Return true if this instruction can have a variable number of operands. 387 /// In this case, the variable operands will be after the normal 388 /// operands but before the implicit definitions and uses (if any are 389 /// present). 390 bool isVariadic(QueryType Type = IgnoreBundle) const { 391 return hasProperty(MCID::Variadic, Type); 392 } 393 394 /// Set if this instruction has an optional definition, e.g. 395 /// ARM instructions which can set condition code if 's' bit is set. 396 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 397 return hasProperty(MCID::HasOptionalDef, Type); 398 } 399 400 /// Return true if this is a pseudo instruction that doesn't 401 /// correspond to a real machine instruction. 402 bool isPseudo(QueryType Type = IgnoreBundle) const { 403 return hasProperty(MCID::Pseudo, Type); 404 } 405 406 bool isReturn(QueryType Type = AnyInBundle) const { 407 return hasProperty(MCID::Return, Type); 408 } 409 410 bool isCall(QueryType Type = AnyInBundle) const { 411 return hasProperty(MCID::Call, Type); 412 } 413 414 /// Returns true if the specified instruction stops control flow 415 /// from executing the instruction immediately following it. Examples include 416 /// unconditional branches and return instructions. 417 bool isBarrier(QueryType Type = AnyInBundle) const { 418 return hasProperty(MCID::Barrier, Type); 419 } 420 421 /// Returns true if this instruction part of the terminator for a basic block. 422 /// Typically this is things like return and branch instructions. 423 /// 424 /// Various passes use this to insert code into the bottom of a basic block, 425 /// but before control flow occurs. 426 bool isTerminator(QueryType Type = AnyInBundle) const { 427 return hasProperty(MCID::Terminator, Type); 428 } 429 430 /// Returns true if this is a conditional, unconditional, or indirect branch. 431 /// Predicates below can be used to discriminate between 432 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 433 /// get more information. 434 bool isBranch(QueryType Type = AnyInBundle) const { 435 return hasProperty(MCID::Branch, Type); 436 } 437 438 /// Return true if this is an indirect branch, such as a 439 /// branch through a register. 440 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 441 return hasProperty(MCID::IndirectBranch, Type); 442 } 443 444 /// Return true if this is a branch which may fall 445 /// through to the next instruction or may transfer control flow to some other 446 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 447 /// information about this branch. 448 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 449 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 450 } 451 452 /// Return true if this is a branch which always 453 /// transfers control flow to some other block. The 454 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 455 /// about this branch. 456 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 457 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 458 } 459 460 /// Return true if this instruction has a predicate operand that 461 /// controls execution. It may be set to 'always', or may be set to other 462 /// values. There are various methods in TargetInstrInfo that can be used to 463 /// control and modify the predicate in this instruction. 464 bool isPredicable(QueryType Type = AllInBundle) const { 465 // If it's a bundle than all bundled instructions must be predicable for this 466 // to return true. 467 return hasProperty(MCID::Predicable, Type); 468 } 469 470 /// Return true if this instruction is a comparison. 471 bool isCompare(QueryType Type = IgnoreBundle) const { 472 return hasProperty(MCID::Compare, Type); 473 } 474 475 /// Return true if this instruction is a move immediate 476 /// (including conditional moves) instruction. 477 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 478 return hasProperty(MCID::MoveImm, Type); 479 } 480 481 /// Return true if this instruction is a bitcast instruction. 482 bool isBitcast(QueryType Type = IgnoreBundle) const { 483 return hasProperty(MCID::Bitcast, Type); 484 } 485 486 /// Return true if this instruction is a select instruction. 487 bool isSelect(QueryType Type = IgnoreBundle) const { 488 return hasProperty(MCID::Select, Type); 489 } 490 491 /// Return true if this instruction cannot be safely duplicated. 492 /// For example, if the instruction has a unique labels attached 493 /// to it, duplicating it would cause multiple definition errors. 494 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 495 return hasProperty(MCID::NotDuplicable, Type); 496 } 497 498 /// Return true if this instruction is convergent. 499 /// Convergent instructions can not be made control-dependent on any 500 /// additional values. 501 bool isConvergent(QueryType Type = AnyInBundle) const { 502 return hasProperty(MCID::Convergent, Type); 503 } 504 505 /// Returns true if the specified instruction has a delay slot 506 /// which must be filled by the code generator. 507 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 508 return hasProperty(MCID::DelaySlot, Type); 509 } 510 511 /// Return true for instructions that can be folded as 512 /// memory operands in other instructions. The most common use for this 513 /// is instructions that are simple loads from memory that don't modify 514 /// the loaded value in any way, but it can also be used for instructions 515 /// that can be expressed as constant-pool loads, such as V_SETALLONES 516 /// on x86, to allow them to be folded when it is beneficial. 517 /// This should only be set on instructions that return a value in their 518 /// only virtual register definition. 519 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 520 return hasProperty(MCID::FoldableAsLoad, Type); 521 } 522 523 /// \brief Return true if this instruction behaves 524 /// the same way as the generic REG_SEQUENCE instructions. 525 /// E.g., on ARM, 526 /// dX VMOVDRR rY, rZ 527 /// is equivalent to 528 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 529 /// 530 /// Note that for the optimizers to be able to take advantage of 531 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 532 /// override accordingly. 533 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 534 return hasProperty(MCID::RegSequence, Type); 535 } 536 537 /// \brief Return true if this instruction behaves 538 /// the same way as the generic EXTRACT_SUBREG instructions. 539 /// E.g., on ARM, 540 /// rX, rY VMOVRRD dZ 541 /// is equivalent to two EXTRACT_SUBREG: 542 /// rX = EXTRACT_SUBREG dZ, ssub_0 543 /// rY = EXTRACT_SUBREG dZ, ssub_1 544 /// 545 /// Note that for the optimizers to be able to take advantage of 546 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 547 /// override accordingly. 548 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 549 return hasProperty(MCID::ExtractSubreg, Type); 550 } 551 552 /// \brief Return true if this instruction behaves 553 /// the same way as the generic INSERT_SUBREG instructions. 554 /// E.g., on ARM, 555 /// dX = VSETLNi32 dY, rZ, Imm 556 /// is equivalent to a INSERT_SUBREG: 557 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 558 /// 559 /// Note that for the optimizers to be able to take advantage of 560 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 561 /// override accordingly. 562 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 563 return hasProperty(MCID::InsertSubreg, Type); 564 } 565 566 //===--------------------------------------------------------------------===// 567 // Side Effect Analysis 568 //===--------------------------------------------------------------------===// 569 570 /// Return true if this instruction could possibly read memory. 571 /// Instructions with this flag set are not necessarily simple load 572 /// instructions, they may load a value and modify it, for example. 573 bool mayLoad(QueryType Type = AnyInBundle) const { 574 if (isInlineAsm()) { 575 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 576 if (ExtraInfo & InlineAsm::Extra_MayLoad) 577 return true; 578 } 579 return hasProperty(MCID::MayLoad, Type); 580 } 581 582 /// Return true if this instruction could possibly modify memory. 583 /// Instructions with this flag set are not necessarily simple store 584 /// instructions, they may store a modified value based on their operands, or 585 /// may not actually modify anything, for example. 586 bool mayStore(QueryType Type = AnyInBundle) const { 587 if (isInlineAsm()) { 588 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 589 if (ExtraInfo & InlineAsm::Extra_MayStore) 590 return true; 591 } 592 return hasProperty(MCID::MayStore, Type); 593 } 594 595 /// Return true if this instruction could possibly read or modify memory. 596 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 597 return mayLoad(Type) || mayStore(Type); 598 } 599 600 //===--------------------------------------------------------------------===// 601 // Flags that indicate whether an instruction can be modified by a method. 602 //===--------------------------------------------------------------------===// 603 604 /// Return true if this may be a 2- or 3-address 605 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 606 /// result if Y and Z are exchanged. If this flag is set, then the 607 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 608 /// instruction. 609 /// 610 /// Note that this flag may be set on instructions that are only commutable 611 /// sometimes. In these cases, the call to commuteInstruction will fail. 612 /// Also note that some instructions require non-trivial modification to 613 /// commute them. 614 bool isCommutable(QueryType Type = IgnoreBundle) const { 615 return hasProperty(MCID::Commutable, Type); 616 } 617 618 /// Return true if this is a 2-address instruction 619 /// which can be changed into a 3-address instruction if needed. Doing this 620 /// transformation can be profitable in the register allocator, because it 621 /// means that the instruction can use a 2-address form if possible, but 622 /// degrade into a less efficient form if the source and dest register cannot 623 /// be assigned to the same register. For example, this allows the x86 624 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 625 /// is the same speed as the shift but has bigger code size. 626 /// 627 /// If this returns true, then the target must implement the 628 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 629 /// is allowed to fail if the transformation isn't valid for this specific 630 /// instruction (e.g. shl reg, 4 on x86). 631 /// 632 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 633 return hasProperty(MCID::ConvertibleTo3Addr, Type); 634 } 635 636 /// Return true if this instruction requires 637 /// custom insertion support when the DAG scheduler is inserting it into a 638 /// machine basic block. If this is true for the instruction, it basically 639 /// means that it is a pseudo instruction used at SelectionDAG time that is 640 /// expanded out into magic code by the target when MachineInstrs are formed. 641 /// 642 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 643 /// is used to insert this into the MachineBasicBlock. 644 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 645 return hasProperty(MCID::UsesCustomInserter, Type); 646 } 647 648 /// Return true if this instruction requires *adjustment* 649 /// after instruction selection by calling a target hook. For example, this 650 /// can be used to fill in ARM 's' optional operand depending on whether 651 /// the conditional flag register is used. 652 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 653 return hasProperty(MCID::HasPostISelHook, Type); 654 } 655 656 /// Returns true if this instruction is a candidate for remat. 657 /// This flag is deprecated, please don't use it anymore. If this 658 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 659 /// verify the instruction is really rematable. 660 bool isRematerializable(QueryType Type = AllInBundle) const { 661 // It's only possible to re-mat a bundle if all bundled instructions are 662 // re-materializable. 663 return hasProperty(MCID::Rematerializable, Type); 664 } 665 666 /// Returns true if this instruction has the same cost (or less) than a move 667 /// instruction. This is useful during certain types of optimizations 668 /// (e.g., remat during two-address conversion or machine licm) 669 /// where we would like to remat or hoist the instruction, but not if it costs 670 /// more than moving the instruction into the appropriate register. Note, we 671 /// are not marking copies from and to the same register class with this flag. 672 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 673 // Only returns true for a bundle if all bundled instructions are cheap. 674 return hasProperty(MCID::CheapAsAMove, Type); 675 } 676 677 /// Returns true if this instruction source operands 678 /// have special register allocation requirements that are not captured by the 679 /// operand register classes. e.g. ARM::STRD's two source registers must be an 680 /// even / odd pair, ARM::STM registers have to be in ascending order. 681 /// Post-register allocation passes should not attempt to change allocations 682 /// for sources of instructions with this flag. 683 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 684 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 685 } 686 687 /// Returns true if this instruction def operands 688 /// have special register allocation requirements that are not captured by the 689 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 690 /// even / odd pair, ARM::LDM registers have to be in ascending order. 691 /// Post-register allocation passes should not attempt to change allocations 692 /// for definitions of instructions with this flag. 693 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 694 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 695 } 696 697 698 enum MICheckType { 699 CheckDefs, // Check all operands for equality 700 CheckKillDead, // Check all operands including kill / dead markers 701 IgnoreDefs, // Ignore all definitions 702 IgnoreVRegDefs // Ignore virtual register definitions 703 }; 704 705 /// Return true if this instruction is identical to (same 706 /// opcode and same operands as) the specified instruction. 707 bool isIdenticalTo(const MachineInstr *Other, 708 MICheckType Check = CheckDefs) const; 709 710 /// Unlink 'this' from the containing basic block, and return it without 711 /// deleting it. 712 /// 713 /// This function can not be used on bundled instructions, use 714 /// removeFromBundle() to remove individual instructions from a bundle. 715 MachineInstr *removeFromParent(); 716 717 /// Unlink this instruction from its basic block and return it without 718 /// deleting it. 719 /// 720 /// If the instruction is part of a bundle, the other instructions in the 721 /// bundle remain bundled. 722 MachineInstr *removeFromBundle(); 723 724 /// Unlink 'this' from the containing basic block and delete it. 725 /// 726 /// If this instruction is the header of a bundle, the whole bundle is erased. 727 /// This function can not be used for instructions inside a bundle, use 728 /// eraseFromBundle() to erase individual bundled instructions. 729 void eraseFromParent(); 730 731 /// Unlink 'this' from the containing basic block and delete it. 732 /// 733 /// For all definitions mark their uses in DBG_VALUE nodes 734 /// as undefined. Otherwise like eraseFromParent(). 735 void eraseFromParentAndMarkDBGValuesForRemoval(); 736 737 /// Unlink 'this' form its basic block and delete it. 738 /// 739 /// If the instruction is part of a bundle, the other instructions in the 740 /// bundle remain bundled. 741 void eraseFromBundle(); 742 743 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 744 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 745 746 /// Returns true if the MachineInstr represents a label. 747 bool isLabel() const { return isEHLabel() || isGCLabel(); } 748 bool isCFIInstruction() const { 749 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 750 } 751 752 // True if the instruction represents a position in the function. 753 bool isPosition() const { return isLabel() || isCFIInstruction(); } 754 755 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 756 /// A DBG_VALUE is indirect iff the first operand is a register and 757 /// the second operand is an immediate. 758 bool isIndirectDebugValue() const { 759 return isDebugValue() 760 && getOperand(0).isReg() 761 && getOperand(1).isImm(); 762 } 763 764 bool isPHI() const { return getOpcode() == TargetOpcode::PHI; } 765 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 766 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 767 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 768 bool isMSInlineAsm() const { 769 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect(); 770 } 771 bool isStackAligningInlineAsm() const; 772 InlineAsm::AsmDialect getInlineAsmDialect() const; 773 bool isInsertSubreg() const { 774 return getOpcode() == TargetOpcode::INSERT_SUBREG; 775 } 776 bool isSubregToReg() const { 777 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 778 } 779 bool isRegSequence() const { 780 return getOpcode() == TargetOpcode::REG_SEQUENCE; 781 } 782 bool isBundle() const { 783 return getOpcode() == TargetOpcode::BUNDLE; 784 } 785 bool isCopy() const { 786 return getOpcode() == TargetOpcode::COPY; 787 } 788 bool isFullCopy() const { 789 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 790 } 791 bool isExtractSubreg() const { 792 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 793 } 794 795 /// Return true if the instruction behaves like a copy. 796 /// This does not include native copy instructions. 797 bool isCopyLike() const { 798 return isCopy() || isSubregToReg(); 799 } 800 801 /// Return true is the instruction is an identity copy. 802 bool isIdentityCopy() const { 803 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 804 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 805 } 806 807 /// Return true if this is a transient instruction that is 808 /// either very likely to be eliminated during register allocation (such as 809 /// copy-like instructions), or if this instruction doesn't have an 810 /// execution-time cost. 811 bool isTransient() const { 812 switch(getOpcode()) { 813 default: return false; 814 // Copy-like instructions are usually eliminated during register allocation. 815 case TargetOpcode::PHI: 816 case TargetOpcode::COPY: 817 case TargetOpcode::INSERT_SUBREG: 818 case TargetOpcode::SUBREG_TO_REG: 819 case TargetOpcode::REG_SEQUENCE: 820 // Pseudo-instructions that don't produce any real output. 821 case TargetOpcode::IMPLICIT_DEF: 822 case TargetOpcode::KILL: 823 case TargetOpcode::CFI_INSTRUCTION: 824 case TargetOpcode::EH_LABEL: 825 case TargetOpcode::GC_LABEL: 826 case TargetOpcode::DBG_VALUE: 827 return true; 828 } 829 } 830 831 /// Return the number of instructions inside the MI bundle, excluding the 832 /// bundle header. 833 /// 834 /// This is the number of instructions that MachineBasicBlock::iterator 835 /// skips, 0 for unbundled instructions. 836 unsigned getBundleSize() const; 837 838 /// Return true if the MachineInstr reads the specified register. 839 /// If TargetRegisterInfo is passed, then it also checks if there 840 /// is a read of a super-register. 841 /// This does not count partial redefines of virtual registers as reads: 842 /// %reg1024:6 = OP. 843 bool readsRegister(unsigned Reg, 844 const TargetRegisterInfo *TRI = nullptr) const { 845 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 846 } 847 848 /// Return true if the MachineInstr reads the specified virtual register. 849 /// Take into account that a partial define is a 850 /// read-modify-write operation. 851 bool readsVirtualRegister(unsigned Reg) const { 852 return readsWritesVirtualRegister(Reg).first; 853 } 854 855 /// Return a pair of bools (reads, writes) indicating if this instruction 856 /// reads or writes Reg. This also considers partial defines. 857 /// If Ops is not null, all operand indices for Reg are added. 858 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 859 SmallVectorImpl<unsigned> *Ops = nullptr) const; 860 861 /// Return true if the MachineInstr kills the specified register. 862 /// If TargetRegisterInfo is passed, then it also checks if there is 863 /// a kill of a super-register. 864 bool killsRegister(unsigned Reg, 865 const TargetRegisterInfo *TRI = nullptr) const { 866 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 867 } 868 869 /// Return true if the MachineInstr fully defines the specified register. 870 /// If TargetRegisterInfo is passed, then it also checks 871 /// if there is a def of a super-register. 872 /// NOTE: It's ignoring subreg indices on virtual registers. 873 bool definesRegister(unsigned Reg, 874 const TargetRegisterInfo *TRI = nullptr) const { 875 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 876 } 877 878 /// Return true if the MachineInstr modifies (fully define or partially 879 /// define) the specified register. 880 /// NOTE: It's ignoring subreg indices on virtual registers. 881 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 882 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 883 } 884 885 /// Returns true if the register is dead in this machine instruction. 886 /// If TargetRegisterInfo is passed, then it also checks 887 /// if there is a dead def of a super-register. 888 bool registerDefIsDead(unsigned Reg, 889 const TargetRegisterInfo *TRI = nullptr) const { 890 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 891 } 892 893 /// Returns the operand index that is a use of the specific register or -1 894 /// if it is not found. It further tightens the search criteria to a use 895 /// that kills the register if isKill is true. 896 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 897 const TargetRegisterInfo *TRI = nullptr) const; 898 899 /// Wrapper for findRegisterUseOperandIdx, it returns 900 /// a pointer to the MachineOperand rather than an index. 901 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 902 const TargetRegisterInfo *TRI = nullptr) { 903 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 904 return (Idx == -1) ? nullptr : &getOperand(Idx); 905 } 906 907 const MachineOperand *findRegisterUseOperand( 908 unsigned Reg, bool isKill = false, 909 const TargetRegisterInfo *TRI = nullptr) const { 910 return const_cast<MachineInstr *>(this)-> 911 findRegisterUseOperand(Reg, isKill, TRI); 912 } 913 914 /// Returns the operand index that is a def of the specified register or 915 /// -1 if it is not found. If isDead is true, defs that are not dead are 916 /// skipped. If Overlap is true, then it also looks for defs that merely 917 /// overlap the specified register. If TargetRegisterInfo is non-null, 918 /// then it also checks if there is a def of a super-register. 919 /// This may also return a register mask operand when Overlap is true. 920 int findRegisterDefOperandIdx(unsigned Reg, 921 bool isDead = false, bool Overlap = false, 922 const TargetRegisterInfo *TRI = nullptr) const; 923 924 /// Wrapper for findRegisterDefOperandIdx, it returns 925 /// a pointer to the MachineOperand rather than an index. 926 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 927 const TargetRegisterInfo *TRI = nullptr) { 928 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 929 return (Idx == -1) ? nullptr : &getOperand(Idx); 930 } 931 932 /// Find the index of the first operand in the 933 /// operand list that is used to represent the predicate. It returns -1 if 934 /// none is found. 935 int findFirstPredOperandIdx() const; 936 937 /// Find the index of the flag word operand that 938 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 939 /// getOperand(OpIdx) does not belong to an inline asm operand group. 940 /// 941 /// If GroupNo is not NULL, it will receive the number of the operand group 942 /// containing OpIdx. 943 /// 944 /// The flag operand is an immediate that can be decoded with methods like 945 /// InlineAsm::hasRegClassConstraint(). 946 /// 947 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 948 949 /// Compute the static register class constraint for operand OpIdx. 950 /// For normal instructions, this is derived from the MCInstrDesc. 951 /// For inline assembly it is derived from the flag words. 952 /// 953 /// Returns NULL if the static register class constraint cannot be 954 /// determined. 955 /// 956 const TargetRegisterClass* 957 getRegClassConstraint(unsigned OpIdx, 958 const TargetInstrInfo *TII, 959 const TargetRegisterInfo *TRI) const; 960 961 /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to 962 /// the given \p CurRC. 963 /// If \p ExploreBundle is set and MI is part of a bundle, all the 964 /// instructions inside the bundle will be taken into account. In other words, 965 /// this method accumulates all the constraints of the operand of this MI and 966 /// the related bundle if MI is a bundle or inside a bundle. 967 /// 968 /// Returns the register class that satisfies both \p CurRC and the 969 /// constraints set by MI. Returns NULL if such a register class does not 970 /// exist. 971 /// 972 /// \pre CurRC must not be NULL. 973 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 974 unsigned Reg, const TargetRegisterClass *CurRC, 975 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 976 bool ExploreBundle = false) const; 977 978 /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand 979 /// to the given \p CurRC. 980 /// 981 /// Returns the register class that satisfies both \p CurRC and the 982 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 983 /// does not exist. 984 /// 985 /// \pre CurRC must not be NULL. 986 /// \pre The operand at \p OpIdx must be a register. 987 const TargetRegisterClass * 988 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 989 const TargetInstrInfo *TII, 990 const TargetRegisterInfo *TRI) const; 991 992 /// Add a tie between the register operands at DefIdx and UseIdx. 993 /// The tie will cause the register allocator to ensure that the two 994 /// operands are assigned the same physical register. 995 /// 996 /// Tied operands are managed automatically for explicit operands in the 997 /// MCInstrDesc. This method is for exceptional cases like inline asm. 998 void tieOperands(unsigned DefIdx, unsigned UseIdx); 999 1000 /// Given the index of a tied register operand, find the 1001 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1002 /// index of the tied operand which must exist. 1003 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1004 1005 /// Given the index of a register def operand, 1006 /// check if the register def is tied to a source operand, due to either 1007 /// two-address elimination or inline assembly constraints. Returns the 1008 /// first tied use operand index by reference if UseOpIdx is not null. 1009 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1010 unsigned *UseOpIdx = nullptr) const { 1011 const MachineOperand &MO = getOperand(DefOpIdx); 1012 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1013 return false; 1014 if (UseOpIdx) 1015 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1016 return true; 1017 } 1018 1019 /// Return true if the use operand of the specified index is tied to a def 1020 /// operand. It also returns the def operand index by reference if DefOpIdx 1021 /// is not null. 1022 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1023 unsigned *DefOpIdx = nullptr) const { 1024 const MachineOperand &MO = getOperand(UseOpIdx); 1025 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1026 return false; 1027 if (DefOpIdx) 1028 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1029 return true; 1030 } 1031 1032 /// Clears kill flags on all operands. 1033 void clearKillInfo(); 1034 1035 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1036 /// properly composing subreg indices where necessary. 1037 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 1038 const TargetRegisterInfo &RegInfo); 1039 1040 /// We have determined MI kills a register. Look for the 1041 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1042 /// add a implicit operand if it's not found. Returns true if the operand 1043 /// exists / is added. 1044 bool addRegisterKilled(unsigned IncomingReg, 1045 const TargetRegisterInfo *RegInfo, 1046 bool AddIfNotFound = false); 1047 1048 /// Clear all kill flags affecting Reg. If RegInfo is 1049 /// provided, this includes super-register kills. 1050 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 1051 1052 /// We have determined MI defined a register without a use. 1053 /// Look for the operand that defines it and mark it as IsDead. If 1054 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1055 /// true if the operand exists / is added. 1056 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, 1057 bool AddIfNotFound = false); 1058 1059 /// Clear all dead flags on operands defining register @p Reg. 1060 void clearRegisterDeads(unsigned Reg); 1061 1062 /// Mark all subregister defs of register @p Reg with the undef flag. 1063 /// This function is used when we determined to have a subregister def in an 1064 /// otherwise undefined super register. 1065 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true); 1066 1067 /// We have determined MI defines a register. Make sure there is an operand 1068 /// defining Reg. 1069 void addRegisterDefined(unsigned Reg, 1070 const TargetRegisterInfo *RegInfo = nullptr); 1071 1072 /// Mark every physreg used by this instruction as 1073 /// dead except those in the UsedRegs list. 1074 /// 1075 /// On instructions with register mask operands, also add implicit-def 1076 /// operands for all registers in UsedRegs. 1077 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1078 const TargetRegisterInfo &TRI); 1079 1080 /// Return true if it is safe to move this instruction. If 1081 /// SawStore is set to true, it means that there is a store (or call) between 1082 /// the instruction's location and its intended destination. 1083 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const; 1084 1085 /// Return true if this instruction may have an ordered 1086 /// or volatile memory reference, or if the information describing the memory 1087 /// reference is not available. Return false if it is known to have no 1088 /// ordered or volatile memory references. 1089 bool hasOrderedMemoryRef() const; 1090 1091 /// Return true if this instruction is loading from a 1092 /// location whose value is invariant across the function. For example, 1093 /// loading a value from the constant pool or from the argument area of 1094 /// a function if it does not change. This should only return true of *all* 1095 /// loads the instruction does are invariant (if it does multiple loads). 1096 bool isInvariantLoad(AliasAnalysis *AA) const; 1097 1098 /// If the specified instruction is a PHI that always merges together the 1099 /// same virtual register, return the register, otherwise return 0. 1100 unsigned isConstantValuePHI() const; 1101 1102 /// Return true if this instruction has side effects that are not modeled 1103 /// by mayLoad / mayStore, etc. 1104 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1105 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1106 /// INLINEASM instruction, in which case the side effect property is encoded 1107 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1108 /// 1109 bool hasUnmodeledSideEffects() const; 1110 1111 /// Returns true if it is illegal to fold a load across this instruction. 1112 bool isLoadFoldBarrier() const; 1113 1114 /// Return true if all the defs of this instruction are dead. 1115 bool allDefsAreDead() const; 1116 1117 /// Copy implicit register operands from specified 1118 /// instruction to this instruction. 1119 void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI); 1120 1121 // 1122 // Debugging support 1123 // 1124 void print(raw_ostream &OS, bool SkipOpers = false) const; 1125 void print(raw_ostream &OS, ModuleSlotTracker &MST, 1126 bool SkipOpers = false) const; 1127 void dump() const; 1128 1129 //===--------------------------------------------------------------------===// 1130 // Accessors used to build up machine instructions. 1131 1132 /// Add the specified operand to the instruction. If it is an implicit 1133 /// operand, it is added to the end of the operand list. If it is an 1134 /// explicit operand it is added at the end of the explicit operand list 1135 /// (before the first implicit operand). 1136 /// 1137 /// MF must be the machine function that was used to allocate this 1138 /// instruction. 1139 /// 1140 /// MachineInstrBuilder provides a more convenient interface for creating 1141 /// instructions and adding operands. 1142 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1143 1144 /// Add an operand without providing an MF reference. This only works for 1145 /// instructions that are inserted in a basic block. 1146 /// 1147 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1148 /// preferred. 1149 void addOperand(const MachineOperand &Op); 1150 1151 /// Replace the instruction descriptor (thus opcode) of 1152 /// the current instruction with a new one. 1153 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1154 1155 /// Replace current source information with new such. 1156 /// Avoid using this, the constructor argument is preferable. 1157 void setDebugLoc(DebugLoc dl) { 1158 debugLoc = std::move(dl); 1159 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1160 } 1161 1162 /// Erase an operand from an instruction, leaving it with one 1163 /// fewer operand than it started with. 1164 void RemoveOperand(unsigned i); 1165 1166 /// Add a MachineMemOperand to the machine instruction. 1167 /// This function should be used only occasionally. The setMemRefs function 1168 /// is the primary method for setting up a MachineInstr's MemRefs list. 1169 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1170 1171 /// Assign this MachineInstr's memory reference descriptor list. 1172 /// This does not transfer ownership. 1173 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { 1174 MemRefs = NewMemRefs; 1175 NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs); 1176 assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs"); 1177 } 1178 1179 /// Clear this MachineInstr's memory reference descriptor list. 1180 void clearMemRefs() { 1181 MemRefs = nullptr; 1182 NumMemRefs = 0; 1183 } 1184 1185 /// Break any tie involving OpIdx. 1186 void untieRegOperand(unsigned OpIdx) { 1187 MachineOperand &MO = getOperand(OpIdx); 1188 if (MO.isReg() && MO.isTied()) { 1189 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1190 MO.TiedTo = 0; 1191 } 1192 } 1193 1194 /// Add all implicit def and use operands to this instruction. 1195 void addImplicitDefUseOperands(MachineFunction &MF); 1196 1197 private: 1198 /// If this instruction is embedded into a MachineFunction, return the 1199 /// MachineRegisterInfo object for the current function, otherwise 1200 /// return null. 1201 MachineRegisterInfo *getRegInfo(); 1202 1203 /// Unlink all of the register operands in this instruction from their 1204 /// respective use lists. This requires that the operands already be on their 1205 /// use lists. 1206 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1207 1208 /// Add all of the register operands in this instruction from their 1209 /// respective use lists. This requires that the operands not be on their 1210 /// use lists yet. 1211 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1212 1213 /// Slow path for hasProperty when we're dealing with a bundle. 1214 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; 1215 1216 /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the 1217 /// this MI and the given operand index \p OpIdx. 1218 /// If the related operand does not constrained Reg, this returns CurRC. 1219 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1220 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1221 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1222 }; 1223 1224 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1225 /// instruction rather than by pointer value. 1226 /// The hashing and equality testing functions ignore definitions so this is 1227 /// useful for CSE, etc. 1228 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1229 static inline MachineInstr *getEmptyKey() { 1230 return nullptr; 1231 } 1232 1233 static inline MachineInstr *getTombstoneKey() { 1234 return reinterpret_cast<MachineInstr*>(-1); 1235 } 1236 1237 static unsigned getHashValue(const MachineInstr* const &MI); 1238 1239 static bool isEqual(const MachineInstr* const &LHS, 1240 const MachineInstr* const &RHS) { 1241 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1242 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1243 return LHS == RHS; 1244 return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs); 1245 } 1246 }; 1247 1248 //===----------------------------------------------------------------------===// 1249 // Debugging Support 1250 1251 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1252 MI.print(OS); 1253 return OS; 1254 } 1255 1256 } // End llvm namespace 1257 1258 #endif 1259