Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86ISelLowering.h"
     19 #include "X86TargetMachine.h"
     20 #include "X86TargetObjectFile.h"
     21 #include "Utils/X86ShuffleDecode.h"
     22 #include "llvm/CallingConv.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/GlobalAlias.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/Intrinsics.h"
     30 #include "llvm/LLVMContext.h"
     31 #include "llvm/CodeGen/IntrinsicLowering.h"
     32 #include "llvm/CodeGen/MachineFrameInfo.h"
     33 #include "llvm/CodeGen/MachineFunction.h"
     34 #include "llvm/CodeGen/MachineInstrBuilder.h"
     35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     36 #include "llvm/CodeGen/MachineModuleInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/PseudoSourceValue.h"
     39 #include "llvm/MC/MCAsmInfo.h"
     40 #include "llvm/MC/MCContext.h"
     41 #include "llvm/MC/MCExpr.h"
     42 #include "llvm/MC/MCSymbol.h"
     43 #include "llvm/ADT/BitVector.h"
     44 #include "llvm/ADT/SmallSet.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/ADT/StringExtras.h"
     47 #include "llvm/ADT/VectorExtras.h"
     48 #include "llvm/Support/CallSite.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/Dwarf.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/MathExtras.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include "llvm/Target/TargetOptions.h"
     55 using namespace llvm;
     56 using namespace dwarf;
     57 
     58 STATISTIC(NumTailCalls, "Number of tail calls");
     59 
     60 // Forward declarations.
     61 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
     62                        SDValue V2);
     63 
     64 static SDValue Insert128BitVector(SDValue Result,
     65                                   SDValue Vec,
     66                                   SDValue Idx,
     67                                   SelectionDAG &DAG,
     68                                   DebugLoc dl);
     69 
     70 static SDValue Extract128BitVector(SDValue Vec,
     71                                    SDValue Idx,
     72                                    SelectionDAG &DAG,
     73                                    DebugLoc dl);
     74 
     75 /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
     76 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
     77 /// simple subregister reference.  Idx is an index in the 128 bits we
     78 /// want.  It need not be aligned to a 128-bit bounday.  That makes
     79 /// lowering EXTRACT_VECTOR_ELT operations easier.
     80 static SDValue Extract128BitVector(SDValue Vec,
     81                                    SDValue Idx,
     82                                    SelectionDAG &DAG,
     83                                    DebugLoc dl) {
     84   EVT VT = Vec.getValueType();
     85   assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
     86   EVT ElVT = VT.getVectorElementType();
     87   int Factor = VT.getSizeInBits()/128;
     88   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
     89                                   VT.getVectorNumElements()/Factor);
     90 
     91   // Extract from UNDEF is UNDEF.
     92   if (Vec.getOpcode() == ISD::UNDEF)
     93     return DAG.getNode(ISD::UNDEF, dl, ResultVT);
     94 
     95   if (isa<ConstantSDNode>(Idx)) {
     96     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
     97 
     98     // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
     99     // we can match to VEXTRACTF128.
    100     unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
    101 
    102     // This is the index of the first element of the 128-bit chunk
    103     // we want.
    104     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
    105                                  * ElemsPerChunk);
    106 
    107     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
    108     SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
    109                                  VecIdx);
    110 
    111     return Result;
    112   }
    113 
    114   return SDValue();
    115 }
    116 
    117 /// Generate a DAG to put 128-bits into a vector > 128 bits.  This
    118 /// sets things up to match to an AVX VINSERTF128 instruction or a
    119 /// simple superregister reference.  Idx is an index in the 128 bits
    120 /// we want.  It need not be aligned to a 128-bit bounday.  That makes
    121 /// lowering INSERT_VECTOR_ELT operations easier.
    122 static SDValue Insert128BitVector(SDValue Result,
    123                                   SDValue Vec,
    124                                   SDValue Idx,
    125                                   SelectionDAG &DAG,
    126                                   DebugLoc dl) {
    127   if (isa<ConstantSDNode>(Idx)) {
    128     EVT VT = Vec.getValueType();
    129     assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
    130 
    131     EVT ElVT = VT.getVectorElementType();
    132     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
    133     EVT ResultVT = Result.getValueType();
    134 
    135     // Insert the relevant 128 bits.
    136     unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
    137 
    138     // This is the index of the first element of the 128-bit chunk
    139     // we want.
    140     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
    141                                  * ElemsPerChunk);
    142 
    143     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
    144     Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
    145                          VecIdx);
    146     return Result;
    147   }
    148 
    149   return SDValue();
    150 }
    151 
    152 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
    153   const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
    154   bool is64Bit = Subtarget->is64Bit();
    155 
    156   if (Subtarget->isTargetEnvMacho()) {
    157     if (is64Bit)
    158       return new X8664_MachoTargetObjectFile();
    159     return new TargetLoweringObjectFileMachO();
    160   }
    161 
    162   if (Subtarget->isTargetELF())
    163     return new TargetLoweringObjectFileELF();
    164   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    165     return new TargetLoweringObjectFileCOFF();
    166   llvm_unreachable("unknown subtarget type");
    167 }
    168 
    169 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
    170   : TargetLowering(TM, createTLOF(TM)) {
    171   Subtarget = &TM.getSubtarget<X86Subtarget>();
    172   X86ScalarSSEf64 = Subtarget->hasXMMInt();
    173   X86ScalarSSEf32 = Subtarget->hasXMM();
    174   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
    175 
    176   RegInfo = TM.getRegisterInfo();
    177   TD = getTargetData();
    178 
    179   // Set up the TargetLowering object.
    180   static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
    181 
    182   // X86 is weird, it always uses i8 for shift amounts and setcc results.
    183   setBooleanContents(ZeroOrOneBooleanContent);
    184   // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
    185   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    186 
    187   // For 64-bit since we have so many registers use the ILP scheduler, for
    188   // 32-bit code use the register pressure specific scheduling.
    189   if (Subtarget->is64Bit())
    190     setSchedulingPreference(Sched::ILP);
    191   else
    192     setSchedulingPreference(Sched::RegPressure);
    193   setStackPointerRegisterToSaveRestore(X86StackPtr);
    194 
    195   if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
    196     // Setup Windows compiler runtime calls.
    197     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
    198     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
    199     setLibcallName(RTLIB::SREM_I64, "_allrem");
    200     setLibcallName(RTLIB::UREM_I64, "_aullrem");
    201     setLibcallName(RTLIB::MUL_I64, "_allmul");
    202     setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
    203     setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
    204     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
    205     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
    206     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
    207     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
    208     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
    209     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
    210     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
    211   }
    212 
    213   if (Subtarget->isTargetDarwin()) {
    214     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
    215     setUseUnderscoreSetJmp(false);
    216     setUseUnderscoreLongJmp(false);
    217   } else if (Subtarget->isTargetMingw()) {
    218     // MS runtime is weird: it exports _setjmp, but longjmp!
    219     setUseUnderscoreSetJmp(true);
    220     setUseUnderscoreLongJmp(false);
    221   } else {
    222     setUseUnderscoreSetJmp(true);
    223     setUseUnderscoreLongJmp(true);
    224   }
    225 
    226   // Set up the register classes.
    227   addRegisterClass(MVT::i8, X86::GR8RegisterClass);
    228   addRegisterClass(MVT::i16, X86::GR16RegisterClass);
    229   addRegisterClass(MVT::i32, X86::GR32RegisterClass);
    230   if (Subtarget->is64Bit())
    231     addRegisterClass(MVT::i64, X86::GR64RegisterClass);
    232 
    233   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    234 
    235   // We don't accept any truncstore of integer registers.
    236   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
    237   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    238   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
    239   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
    240   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
    241   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
    242 
    243   // SETOEQ and SETUNE require checking two conditions.
    244   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
    245   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
    246   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
    247   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
    248   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
    249   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
    250 
    251   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
    252   // operation.
    253   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
    254   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
    255   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
    256 
    257   if (Subtarget->is64Bit()) {
    258     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
    259     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
    260   } else if (!UseSoftFloat) {
    261     // We have an algorithm for SSE2->double, and we turn this into a
    262     // 64-bit FILD followed by conditional FADD for other targets.
    263     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
    264     // We have an algorithm for SSE2, and we turn this into a 64-bit
    265     // FILD for other targets.
    266     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
    267   }
    268 
    269   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
    270   // this operation.
    271   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
    272   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
    273 
    274   if (!UseSoftFloat) {
    275     // SSE has no i16 to fp conversion, only i32
    276     if (X86ScalarSSEf32) {
    277       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    278       // f32 and f64 cases are Legal, f80 case is not
    279       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    280     } else {
    281       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
    282       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    283     }
    284   } else {
    285     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    286     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
    287   }
    288 
    289   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
    290   // are Legal, f80 is custom lowered.
    291   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
    292   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
    293 
    294   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
    295   // this operation.
    296   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
    297   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
    298 
    299   if (X86ScalarSSEf32) {
    300     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
    301     // f32 and f64 cases are Legal, f80 case is not
    302     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    303   } else {
    304     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
    305     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    306   }
    307 
    308   // Handle FP_TO_UINT by promoting the destination to a larger signed
    309   // conversion.
    310   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
    311   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
    312   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
    313 
    314   if (Subtarget->is64Bit()) {
    315     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
    316     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
    317   } else if (!UseSoftFloat) {
    318     // Since AVX is a superset of SSE3, only check for SSE here.
    319     if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
    320       // Expand FP_TO_UINT into a select.
    321       // FIXME: We would like to use a Custom expander here eventually to do
    322       // the optimal thing for SSE vs. the default expansion in the legalizer.
    323       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
    324     else
    325       // With SSE3 we can use fisttpll to convert to a signed i64; without
    326       // SSE, we're stuck with a fistpll.
    327       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
    328   }
    329 
    330   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
    331   if (!X86ScalarSSEf64) {
    332     setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
    333     setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
    334     if (Subtarget->is64Bit()) {
    335       setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
    336       // Without SSE, i64->f64 goes through memory.
    337       setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
    338     }
    339   }
    340 
    341   // Scalar integer divide and remainder are lowered to use operations that
    342   // produce two results, to match the available instructions. This exposes
    343   // the two-result form to trivial CSE, which is able to combine x/y and x%y
    344   // into a single instruction.
    345   //
    346   // Scalar integer multiply-high is also lowered to use two-result
    347   // operations, to match the available instructions. However, plain multiply
    348   // (low) operations are left as Legal, as there are single-result
    349   // instructions for this in x86. Using the two-result multiply instructions
    350   // when both high and low results are needed must be arranged by dagcombine.
    351   for (unsigned i = 0, e = 4; i != e; ++i) {
    352     MVT VT = IntVTs[i];
    353     setOperationAction(ISD::MULHS, VT, Expand);
    354     setOperationAction(ISD::MULHU, VT, Expand);
    355     setOperationAction(ISD::SDIV, VT, Expand);
    356     setOperationAction(ISD::UDIV, VT, Expand);
    357     setOperationAction(ISD::SREM, VT, Expand);
    358     setOperationAction(ISD::UREM, VT, Expand);
    359 
    360     // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
    361     setOperationAction(ISD::ADDC, VT, Custom);
    362     setOperationAction(ISD::ADDE, VT, Custom);
    363     setOperationAction(ISD::SUBC, VT, Custom);
    364     setOperationAction(ISD::SUBE, VT, Custom);
    365   }
    366 
    367   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
    368   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
    369   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
    370   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
    371   if (Subtarget->is64Bit())
    372     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
    373   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
    374   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
    375   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
    376   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
    377   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
    378   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
    379   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
    380   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
    381 
    382   if (Subtarget->hasBMI()) {
    383     setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
    384   } else {
    385     setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
    386     setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
    387     setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
    388     if (Subtarget->is64Bit())
    389       setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
    390   }
    391 
    392   if (Subtarget->hasLZCNT()) {
    393     setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
    394   } else {
    395     setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
    396     setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
    397     setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
    398     if (Subtarget->is64Bit())
    399       setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
    400   }
    401 
    402   if (Subtarget->hasPOPCNT()) {
    403     setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
    404   } else {
    405     setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
    406     setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
    407     setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
    408     if (Subtarget->is64Bit())
    409       setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
    410   }
    411 
    412   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
    413   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
    414 
    415   // These should be promoted to a larger select which is supported.
    416   setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
    417   // X86 wants to expand cmov itself.
    418   setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
    419   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
    420   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
    421   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
    422   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
    423   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
    424   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
    425   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
    426   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
    427   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
    428   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
    429   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
    430   if (Subtarget->is64Bit()) {
    431     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
    432     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
    433   }
    434   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
    435 
    436   // Darwin ABI issue.
    437   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
    438   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
    439   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
    440   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
    441   if (Subtarget->is64Bit())
    442     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    443   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
    444   setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
    445   if (Subtarget->is64Bit()) {
    446     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
    447     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
    448     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
    449     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
    450     setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
    451   }
    452   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
    453   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
    454   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
    455   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
    456   if (Subtarget->is64Bit()) {
    457     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
    458     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
    459     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
    460   }
    461 
    462   if (Subtarget->hasXMM())
    463     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
    464 
    465   setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
    466   setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
    467 
    468   // On X86 and X86-64, atomic operations are lowered to locked instructions.
    469   // Locked instructions, in turn, have implicit fence semantics (all memory
    470   // operations are flushed before issuing the locked instruction, and they
    471   // are not buffered), so we can fold away the common pattern of
    472   // fence-atomic-fence.
    473   setShouldFoldAtomicFences(true);
    474 
    475   // Expand certain atomics
    476   for (unsigned i = 0, e = 4; i != e; ++i) {
    477     MVT VT = IntVTs[i];
    478     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
    479     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    480     setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    481   }
    482 
    483   if (!Subtarget->is64Bit()) {
    484     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
    485     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
    486     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
    487     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
    488     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
    489     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
    490     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
    491     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
    492   }
    493 
    494   if (Subtarget->hasCmpxchg16b()) {
    495     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
    496   }
    497 
    498   // FIXME - use subtarget debug flags
    499   if (!Subtarget->isTargetDarwin() &&
    500       !Subtarget->isTargetELF() &&
    501       !Subtarget->isTargetCygMing()) {
    502     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
    503   }
    504 
    505   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    506   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    507   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    508   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
    509   if (Subtarget->is64Bit()) {
    510     setExceptionPointerRegister(X86::RAX);
    511     setExceptionSelectorRegister(X86::RDX);
    512   } else {
    513     setExceptionPointerRegister(X86::EAX);
    514     setExceptionSelectorRegister(X86::EDX);
    515   }
    516   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    517   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
    518 
    519   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    520   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    521 
    522   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    523 
    524   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    525   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    526   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    527   if (Subtarget->is64Bit()) {
    528     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
    529     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
    530   } else {
    531     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
    532     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
    533   }
    534 
    535   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    536   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    537 
    538   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    539     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    540                        MVT::i64 : MVT::i32, Custom);
    541   else if (EnableSegmentedStacks)
    542     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    543                        MVT::i64 : MVT::i32, Custom);
    544   else
    545     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    546                        MVT::i64 : MVT::i32, Expand);
    547 
    548   if (!UseSoftFloat && X86ScalarSSEf64) {
    549     // f32 and f64 use SSE.
    550     // Set up the FP register classes.
    551     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    552     addRegisterClass(MVT::f64, X86::FR64RegisterClass);
    553 
    554     // Use ANDPD to simulate FABS.
    555     setOperationAction(ISD::FABS , MVT::f64, Custom);
    556     setOperationAction(ISD::FABS , MVT::f32, Custom);
    557 
    558     // Use XORP to simulate FNEG.
    559     setOperationAction(ISD::FNEG , MVT::f64, Custom);
    560     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    561 
    562     // Use ANDPD and ORPD to simulate FCOPYSIGN.
    563     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    564     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    565 
    566     // Lower this to FGETSIGNx86 plus an AND.
    567     setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
    568     setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
    569 
    570     // We don't support sin/cos/fmod
    571     setOperationAction(ISD::FSIN , MVT::f64, Expand);
    572     setOperationAction(ISD::FCOS , MVT::f64, Expand);
    573     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    574     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    575 
    576     // Expand FP immediates into loads from the stack, except for the special
    577     // cases we handle.
    578     addLegalFPImmediate(APFloat(+0.0)); // xorpd
    579     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    580   } else if (!UseSoftFloat && X86ScalarSSEf32) {
    581     // Use SSE for f32, x87 for f64.
    582     // Set up the FP register classes.
    583     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    584     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
    585 
    586     // Use ANDPS to simulate FABS.
    587     setOperationAction(ISD::FABS , MVT::f32, Custom);
    588 
    589     // Use XORP to simulate FNEG.
    590     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    591 
    592     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    593 
    594     // Use ANDPS and ORPS to simulate FCOPYSIGN.
    595     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    596     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    597 
    598     // We don't support sin/cos/fmod
    599     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    600     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    601 
    602     // Special cases we handle for FP constants.
    603     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    604     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    605     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    606     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    607     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    608 
    609     if (!UnsafeFPMath) {
    610       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    611       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    612     }
    613   } else if (!UseSoftFloat) {
    614     // f32 and f64 in x87.
    615     // Set up the FP register classes.
    616     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
    617     addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
    618 
    619     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    620     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
    621     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    622     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    623 
    624     if (!UnsafeFPMath) {
    625       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    626       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    627     }
    628     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    629     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    630     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    631     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    632     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
    633     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
    634     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
    635     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
    636   }
    637 
    638   // We don't support FMA.
    639   setOperationAction(ISD::FMA, MVT::f64, Expand);
    640   setOperationAction(ISD::FMA, MVT::f32, Expand);
    641 
    642   // Long double always uses X87.
    643   if (!UseSoftFloat) {
    644     addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
    645     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
    646     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
    647     {
    648       APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
    649       addLegalFPImmediate(TmpFlt);  // FLD0
    650       TmpFlt.changeSign();
    651       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
    652 
    653       bool ignored;
    654       APFloat TmpFlt2(+1.0);
    655       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
    656                       &ignored);
    657       addLegalFPImmediate(TmpFlt2);  // FLD1
    658       TmpFlt2.changeSign();
    659       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
    660     }
    661 
    662     if (!UnsafeFPMath) {
    663       setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
    664       setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
    665     }
    666 
    667     setOperationAction(ISD::FMA, MVT::f80, Expand);
    668   }
    669 
    670   // Always use a library call for pow.
    671   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
    672   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
    673   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
    674 
    675   setOperationAction(ISD::FLOG, MVT::f80, Expand);
    676   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
    677   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
    678   setOperationAction(ISD::FEXP, MVT::f80, Expand);
    679   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
    680 
    681   // First set operation action for all vector types to either promote
    682   // (for widening) or expand (for scalarization). Then we will selectively
    683   // turn on ones that can be effectively codegen'd.
    684   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    685        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    686     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
    687     setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
    688     setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
    689     setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
    690     setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
    691     setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
    692     setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
    693     setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
    694     setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
    695     setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
    696     setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
    697     setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
    698     setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
    699     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
    700     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
    701     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
    702     setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    703     setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    704     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
    705     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
    706     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
    707     setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
    708     setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
    709     setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
    710     setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
    711     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    712     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    713     setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
    714     setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
    715     setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
    716     setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
    717     setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
    718     setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
    719     setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
    720     setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
    721     setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
    722     setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
    723     setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
    724     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
    725     setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
    726     setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
    727     setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
    728     setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
    729     setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
    730     setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
    731     setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
    732     setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
    733     setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    734     setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    735     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
    736     setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
    737     setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    738     setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    739     setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    740     setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
    741     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    742          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    743       setTruncStoreAction((MVT::SimpleValueType)VT,
    744                           (MVT::SimpleValueType)InnerVT, Expand);
    745     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    746     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    747     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
    748   }
    749 
    750   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
    751   // with -msoft-float, disable use of MMX as well.
    752   if (!UseSoftFloat && Subtarget->hasMMX()) {
    753     addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
    754     // No operations on x86mmx supported, everything uses intrinsics.
    755   }
    756 
    757   // MMX-sized vectors (other than x86mmx) are expected to be expanded
    758   // into smaller operations.
    759   setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
    760   setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
    761   setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
    762   setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
    763   setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
    764   setOperationAction(ISD::AND,                MVT::v4i16, Expand);
    765   setOperationAction(ISD::AND,                MVT::v2i32, Expand);
    766   setOperationAction(ISD::AND,                MVT::v1i64, Expand);
    767   setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
    768   setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
    769   setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
    770   setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
    771   setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
    772   setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
    773   setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
    774   setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
    775   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
    776   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
    777   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
    778   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
    779   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
    780   setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
    781   setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
    782   setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
    783   setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
    784   setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
    785   setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
    786   setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
    787   setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
    788 
    789   if (!UseSoftFloat && Subtarget->hasXMM()) {
    790     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
    791 
    792     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
    793     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
    794     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
    795     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
    796     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
    797     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
    798     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
    799     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
    800     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
    801     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    802     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
    803     setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
    804   }
    805 
    806   if (!UseSoftFloat && Subtarget->hasXMMInt()) {
    807     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
    808 
    809     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
    810     // registers cannot be used even for integer operations.
    811     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
    812     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
    813     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
    814     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
    815 
    816     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
    817     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
    818     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
    819     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
    820     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
    821     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
    822     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
    823     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
    824     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
    825     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
    826     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
    827     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
    828     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
    829     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
    830     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
    831     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
    832 
    833     setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
    834     setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
    835     setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
    836     setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
    837 
    838     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
    839     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
    840     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    841     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    842     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    843 
    844     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
    845     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
    846     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
    847     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
    848     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
    849 
    850     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
    851     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
    852       EVT VT = (MVT::SimpleValueType)i;
    853       // Do not attempt to custom lower non-power-of-2 vectors
    854       if (!isPowerOf2_32(VT.getVectorNumElements()))
    855         continue;
    856       // Do not attempt to custom lower non-128-bit vectors
    857       if (!VT.is128BitVector())
    858         continue;
    859       setOperationAction(ISD::BUILD_VECTOR,
    860                          VT.getSimpleVT().SimpleTy, Custom);
    861       setOperationAction(ISD::VECTOR_SHUFFLE,
    862                          VT.getSimpleVT().SimpleTy, Custom);
    863       setOperationAction(ISD::EXTRACT_VECTOR_ELT,
    864                          VT.getSimpleVT().SimpleTy, Custom);
    865     }
    866 
    867     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
    868     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
    869     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
    870     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
    871     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
    872     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    873 
    874     if (Subtarget->is64Bit()) {
    875       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
    876       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
    877     }
    878 
    879     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
    880     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
    881       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
    882       EVT VT = SVT;
    883 
    884       // Do not attempt to promote non-128-bit vectors
    885       if (!VT.is128BitVector())
    886         continue;
    887 
    888       setOperationAction(ISD::AND,    SVT, Promote);
    889       AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
    890       setOperationAction(ISD::OR,     SVT, Promote);
    891       AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
    892       setOperationAction(ISD::XOR,    SVT, Promote);
    893       AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
    894       setOperationAction(ISD::LOAD,   SVT, Promote);
    895       AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
    896       setOperationAction(ISD::SELECT, SVT, Promote);
    897       AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
    898     }
    899 
    900     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    901 
    902     // Custom lower v2i64 and v2f64 selects.
    903     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
    904     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
    905     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
    906     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
    907 
    908     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
    909     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
    910   }
    911 
    912   if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
    913     setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
    914     setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
    915     setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
    916     setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
    917     setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
    918     setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
    919     setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
    920     setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
    921     setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
    922     setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
    923 
    924     // FIXME: Do we need to handle scalar-to-vector here?
    925     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
    926 
    927     // Can turn SHL into an integer multiply.
    928     setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
    929     setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
    930 
    931     setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
    932     setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
    933     setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
    934     setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
    935     setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
    936 
    937     // i8 and i16 vectors are custom , because the source register and source
    938     // source memory operand types are not the same width.  f32 vectors are
    939     // custom since the immediate controlling the insert encodes additional
    940     // information.
    941     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
    942     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    943     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    944     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    945 
    946     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
    947     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
    948     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
    949     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    950 
    951     if (Subtarget->is64Bit()) {
    952       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
    953       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    954     }
    955   }
    956 
    957   if (Subtarget->hasXMMInt()) {
    958     setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
    959     setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
    960     setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
    961     setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
    962 
    963     setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
    964     setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
    965     setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
    966 
    967     setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
    968     setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
    969   }
    970 
    971   if (Subtarget->hasSSE42() || Subtarget->hasAVX())
    972     setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
    973 
    974   if (!UseSoftFloat && Subtarget->hasAVX()) {
    975     addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
    976     addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
    977     addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
    978     addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
    979     addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
    980     addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
    981 
    982     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
    983     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
    984     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
    985 
    986     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
    987     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
    988     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
    989     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
    990     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
    991     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
    992 
    993     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
    994     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
    995     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
    996     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
    997     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
    998     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
    999 
   1000     setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
   1001     setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
   1002     setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
   1003 
   1004     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
   1005     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
   1006     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
   1007     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
   1008     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
   1009     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
   1010 
   1011     setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
   1012     setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
   1013     setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
   1014     setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
   1015 
   1016     setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
   1017     setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
   1018     setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
   1019     setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
   1020 
   1021     setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
   1022     setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
   1023 
   1024     setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
   1025     setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
   1026     setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
   1027     setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
   1028 
   1029     setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
   1030     setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
   1031     setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
   1032 
   1033     setOperationAction(ISD::VSELECT,            MVT::v4f64, Legal);
   1034     setOperationAction(ISD::VSELECT,            MVT::v4i64, Legal);
   1035     setOperationAction(ISD::VSELECT,            MVT::v8i32, Legal);
   1036     setOperationAction(ISD::VSELECT,            MVT::v8f32, Legal);
   1037 
   1038     setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
   1039     setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
   1040     setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
   1041     setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
   1042 
   1043     setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
   1044     setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
   1045     setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
   1046     setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
   1047 
   1048     setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
   1049     setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
   1050     setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
   1051     // Don't lower v32i8 because there is no 128-bit byte mul
   1052 
   1053     // Custom lower several nodes for 256-bit types.
   1054     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
   1055                   i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1056       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
   1057       EVT VT = SVT;
   1058 
   1059       // Extract subvector is special because the value type
   1060       // (result) is 128-bit but the source is 256-bit wide.
   1061       if (VT.is128BitVector())
   1062         setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
   1063 
   1064       // Do not attempt to custom lower other non-256-bit vectors
   1065       if (!VT.is256BitVector())
   1066         continue;
   1067 
   1068       setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
   1069       setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
   1070       setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
   1071       setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
   1072       setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
   1073       setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
   1074     }
   1075 
   1076     // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
   1077     for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
   1078       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
   1079       EVT VT = SVT;
   1080 
   1081       // Do not attempt to promote non-256-bit vectors
   1082       if (!VT.is256BitVector())
   1083         continue;
   1084 
   1085       setOperationAction(ISD::AND,    SVT, Promote);
   1086       AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
   1087       setOperationAction(ISD::OR,     SVT, Promote);
   1088       AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
   1089       setOperationAction(ISD::XOR,    SVT, Promote);
   1090       AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
   1091       setOperationAction(ISD::LOAD,   SVT, Promote);
   1092       AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
   1093       setOperationAction(ISD::SELECT, SVT, Promote);
   1094       AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
   1095     }
   1096   }
   1097 
   1098   // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
   1099   // of this type with custom code.
   1100   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
   1101          VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
   1102     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
   1103   }
   1104 
   1105   // We want to custom lower some of our intrinsics.
   1106   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
   1107 
   1108 
   1109   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
   1110   // handle type legalization for these operations here.
   1111   //
   1112   // FIXME: We really should do custom legalization for addition and
   1113   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
   1114   // than generic legalization for 64-bit multiplication-with-overflow, though.
   1115   for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
   1116     // Add/Sub/Mul with overflow operations are custom lowered.
   1117     MVT VT = IntVTs[i];
   1118     setOperationAction(ISD::SADDO, VT, Custom);
   1119     setOperationAction(ISD::UADDO, VT, Custom);
   1120     setOperationAction(ISD::SSUBO, VT, Custom);
   1121     setOperationAction(ISD::USUBO, VT, Custom);
   1122     setOperationAction(ISD::SMULO, VT, Custom);
   1123     setOperationAction(ISD::UMULO, VT, Custom);
   1124   }
   1125 
   1126   // There are no 8-bit 3-address imul/mul instructions
   1127   setOperationAction(ISD::SMULO, MVT::i8, Expand);
   1128   setOperationAction(ISD::UMULO, MVT::i8, Expand);
   1129 
   1130   if (!Subtarget->is64Bit()) {
   1131     // These libcalls are not available in 32-bit.
   1132     setLibcallName(RTLIB::SHL_I128, 0);
   1133     setLibcallName(RTLIB::SRL_I128, 0);
   1134     setLibcallName(RTLIB::SRA_I128, 0);
   1135   }
   1136 
   1137   // We have target-specific dag combine patterns for the following nodes:
   1138   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
   1139   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
   1140   setTargetDAGCombine(ISD::BITCAST);
   1141   setTargetDAGCombine(ISD::BUILD_VECTOR);
   1142   setTargetDAGCombine(ISD::VSELECT);
   1143   setTargetDAGCombine(ISD::SELECT);
   1144   setTargetDAGCombine(ISD::SHL);
   1145   setTargetDAGCombine(ISD::SRA);
   1146   setTargetDAGCombine(ISD::SRL);
   1147   setTargetDAGCombine(ISD::OR);
   1148   setTargetDAGCombine(ISD::AND);
   1149   setTargetDAGCombine(ISD::ADD);
   1150   setTargetDAGCombine(ISD::FADD);
   1151   setTargetDAGCombine(ISD::FSUB);
   1152   setTargetDAGCombine(ISD::SUB);
   1153   setTargetDAGCombine(ISD::LOAD);
   1154   setTargetDAGCombine(ISD::STORE);
   1155   setTargetDAGCombine(ISD::ZERO_EXTEND);
   1156   setTargetDAGCombine(ISD::SINT_TO_FP);
   1157   if (Subtarget->is64Bit())
   1158     setTargetDAGCombine(ISD::MUL);
   1159 
   1160   computeRegisterProperties();
   1161 
   1162   // On Darwin, -Os means optimize for size without hurting performance,
   1163   // do not reduce the limit.
   1164   maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
   1165   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
   1166   maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
   1167   maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1168   maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
   1169   maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1170   setPrefLoopAlignment(16);
   1171   benefitFromCodePlacementOpt = true;
   1172 
   1173   setPrefFunctionAlignment(4);
   1174 }
   1175 
   1176 
   1177 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
   1178   if (!VT.isVector()) return MVT::i8;
   1179   return VT.changeVectorElementTypeToInteger();
   1180 }
   1181 
   1182 
   1183 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
   1184 /// the desired ByVal argument alignment.
   1185 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
   1186   if (MaxAlign == 16)
   1187     return;
   1188   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
   1189     if (VTy->getBitWidth() == 128)
   1190       MaxAlign = 16;
   1191   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1192     unsigned EltAlign = 0;
   1193     getMaxByValAlign(ATy->getElementType(), EltAlign);
   1194     if (EltAlign > MaxAlign)
   1195       MaxAlign = EltAlign;
   1196   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1197     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1198       unsigned EltAlign = 0;
   1199       getMaxByValAlign(STy->getElementType(i), EltAlign);
   1200       if (EltAlign > MaxAlign)
   1201         MaxAlign = EltAlign;
   1202       if (MaxAlign == 16)
   1203         break;
   1204     }
   1205   }
   1206   return;
   1207 }
   1208 
   1209 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1210 /// function arguments in the caller parameter area. For X86, aggregates
   1211 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
   1212 /// are at 4-byte boundaries.
   1213 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1214   if (Subtarget->is64Bit()) {
   1215     // Max of 8 and alignment of type.
   1216     unsigned TyAlign = TD->getABITypeAlignment(Ty);
   1217     if (TyAlign > 8)
   1218       return TyAlign;
   1219     return 8;
   1220   }
   1221 
   1222   unsigned Align = 4;
   1223   if (Subtarget->hasXMM())
   1224     getMaxByValAlign(Ty, Align);
   1225   return Align;
   1226 }
   1227 
   1228 /// getOptimalMemOpType - Returns the target specific optimal type for load
   1229 /// and store operations as a result of memset, memcpy, and memmove
   1230 /// lowering. If DstAlign is zero that means it's safe to destination
   1231 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   1232 /// means there isn't a need to check it against alignment requirement,
   1233 /// probably because the source does not need to be loaded. If
   1234 /// 'NonScalarIntSafe' is true, that means it's safe to return a
   1235 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
   1236 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
   1237 /// constant so it does not need to be loaded.
   1238 /// It returns EVT::Other if the type should be determined using generic
   1239 /// target-independent logic.
   1240 EVT
   1241 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
   1242                                        unsigned DstAlign, unsigned SrcAlign,
   1243                                        bool NonScalarIntSafe,
   1244                                        bool MemcpyStrSrc,
   1245                                        MachineFunction &MF) const {
   1246   // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
   1247   // linux.  This is because the stack realignment code can't handle certain
   1248   // cases like PR2962.  This should be removed when PR2962 is fixed.
   1249   const Function *F = MF.getFunction();
   1250   if (NonScalarIntSafe &&
   1251       !F->hasFnAttr(Attribute::NoImplicitFloat)) {
   1252     if (Size >= 16 &&
   1253         (Subtarget->isUnalignedMemAccessFast() ||
   1254          ((DstAlign == 0 || DstAlign >= 16) &&
   1255           (SrcAlign == 0 || SrcAlign >= 16))) &&
   1256         Subtarget->getStackAlignment() >= 16) {
   1257       if (Subtarget->hasAVX() &&
   1258           Subtarget->getStackAlignment() >= 32)
   1259         return MVT::v8f32;
   1260       if (Subtarget->hasXMMInt())
   1261         return MVT::v4i32;
   1262       if (Subtarget->hasXMM())
   1263         return MVT::v4f32;
   1264     } else if (!MemcpyStrSrc && Size >= 8 &&
   1265                !Subtarget->is64Bit() &&
   1266                Subtarget->getStackAlignment() >= 8 &&
   1267                Subtarget->hasXMMInt()) {
   1268       // Do not use f64 to lower memcpy if source is string constant. It's
   1269       // better to use i32 to avoid the loads.
   1270       return MVT::f64;
   1271     }
   1272   }
   1273   if (Subtarget->is64Bit() && Size >= 8)
   1274     return MVT::i64;
   1275   return MVT::i32;
   1276 }
   1277 
   1278 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1279 /// current function.  The returned value is a member of the
   1280 /// MachineJumpTableInfo::JTEntryKind enum.
   1281 unsigned X86TargetLowering::getJumpTableEncoding() const {
   1282   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
   1283   // symbol.
   1284   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1285       Subtarget->isPICStyleGOT())
   1286     return MachineJumpTableInfo::EK_Custom32;
   1287 
   1288   // Otherwise, use the normal jump table encoding heuristics.
   1289   return TargetLowering::getJumpTableEncoding();
   1290 }
   1291 
   1292 const MCExpr *
   1293 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1294                                              const MachineBasicBlock *MBB,
   1295                                              unsigned uid,MCContext &Ctx) const{
   1296   assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1297          Subtarget->isPICStyleGOT());
   1298   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
   1299   // entries.
   1300   return MCSymbolRefExpr::Create(MBB->getSymbol(),
   1301                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
   1302 }
   1303 
   1304 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
   1305 /// jumptable.
   1306 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1307                                                     SelectionDAG &DAG) const {
   1308   if (!Subtarget->is64Bit())
   1309     // This doesn't have DebugLoc associated with it, but is not really the
   1310     // same as a Register.
   1311     return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
   1312   return Table;
   1313 }
   1314 
   1315 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1316 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1317 /// MCExpr.
   1318 const MCExpr *X86TargetLowering::
   1319 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
   1320                              MCContext &Ctx) const {
   1321   // X86-64 uses RIP relative addressing based on the jump table label.
   1322   if (Subtarget->isPICStyleRIPRel())
   1323     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
   1324 
   1325   // Otherwise, the reference is relative to the PIC base.
   1326   return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
   1327 }
   1328 
   1329 // FIXME: Why this routine is here? Move to RegInfo!
   1330 std::pair<const TargetRegisterClass*, uint8_t>
   1331 X86TargetLowering::findRepresentativeClass(EVT VT) const{
   1332   const TargetRegisterClass *RRC = 0;
   1333   uint8_t Cost = 1;
   1334   switch (VT.getSimpleVT().SimpleTy) {
   1335   default:
   1336     return TargetLowering::findRepresentativeClass(VT);
   1337   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
   1338     RRC = (Subtarget->is64Bit()
   1339            ? X86::GR64RegisterClass : X86::GR32RegisterClass);
   1340     break;
   1341   case MVT::x86mmx:
   1342     RRC = X86::VR64RegisterClass;
   1343     break;
   1344   case MVT::f32: case MVT::f64:
   1345   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1346   case MVT::v4f32: case MVT::v2f64:
   1347   case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
   1348   case MVT::v4f64:
   1349     RRC = X86::VR128RegisterClass;
   1350     break;
   1351   }
   1352   return std::make_pair(RRC, Cost);
   1353 }
   1354 
   1355 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
   1356                                                unsigned &Offset) const {
   1357   if (!Subtarget->isTargetLinux())
   1358     return false;
   1359 
   1360   if (Subtarget->is64Bit()) {
   1361     // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
   1362     Offset = 0x28;
   1363     if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
   1364       AddressSpace = 256;
   1365     else
   1366       AddressSpace = 257;
   1367   } else {
   1368     // %gs:0x14 on i386
   1369     Offset = 0x14;
   1370     AddressSpace = 256;
   1371   }
   1372   return true;
   1373 }
   1374 
   1375 
   1376 //===----------------------------------------------------------------------===//
   1377 //               Return Value Calling Convention Implementation
   1378 //===----------------------------------------------------------------------===//
   1379 
   1380 #include "X86GenCallingConv.inc"
   1381 
   1382 bool
   1383 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   1384 				  MachineFunction &MF, bool isVarArg,
   1385                         const SmallVectorImpl<ISD::OutputArg> &Outs,
   1386                         LLVMContext &Context) const {
   1387   SmallVector<CCValAssign, 16> RVLocs;
   1388   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1389                  RVLocs, Context);
   1390   return CCInfo.CheckReturn(Outs, RetCC_X86);
   1391 }
   1392 
   1393 SDValue
   1394 X86TargetLowering::LowerReturn(SDValue Chain,
   1395                                CallingConv::ID CallConv, bool isVarArg,
   1396                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1397                                const SmallVectorImpl<SDValue> &OutVals,
   1398                                DebugLoc dl, SelectionDAG &DAG) const {
   1399   MachineFunction &MF = DAG.getMachineFunction();
   1400   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1401 
   1402   SmallVector<CCValAssign, 16> RVLocs;
   1403   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1404                  RVLocs, *DAG.getContext());
   1405   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
   1406 
   1407   // Add the regs to the liveout set for the function.
   1408   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
   1409   for (unsigned i = 0; i != RVLocs.size(); ++i)
   1410     if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
   1411       MRI.addLiveOut(RVLocs[i].getLocReg());
   1412 
   1413   SDValue Flag;
   1414 
   1415   SmallVector<SDValue, 6> RetOps;
   1416   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   1417   // Operand #1 = Bytes To Pop
   1418   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
   1419                    MVT::i16));
   1420 
   1421   // Copy the result values into the output registers.
   1422   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1423     CCValAssign &VA = RVLocs[i];
   1424     assert(VA.isRegLoc() && "Can only return in registers!");
   1425     SDValue ValToCopy = OutVals[i];
   1426     EVT ValVT = ValToCopy.getValueType();
   1427 
   1428     // If this is x86-64, and we disabled SSE, we can't return FP values,
   1429     // or SSE or MMX vectors.
   1430     if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
   1431          VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
   1432           (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
   1433       report_fatal_error("SSE register return with SSE disabled");
   1434     }
   1435     // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
   1436     // llvm-gcc has never done it right and no one has noticed, so this
   1437     // should be OK for now.
   1438     if (ValVT == MVT::f64 &&
   1439         (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
   1440       report_fatal_error("SSE2 register return with SSE2 disabled");
   1441 
   1442     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
   1443     // the RET instruction and handled by the FP Stackifier.
   1444     if (VA.getLocReg() == X86::ST0 ||
   1445         VA.getLocReg() == X86::ST1) {
   1446       // If this is a copy from an xmm register to ST(0), use an FPExtend to
   1447       // change the value to the FP stack register class.
   1448       if (isScalarFPTypeInSSEReg(VA.getValVT()))
   1449         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
   1450       RetOps.push_back(ValToCopy);
   1451       // Don't emit a copytoreg.
   1452       continue;
   1453     }
   1454 
   1455     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
   1456     // which is returned in RAX / RDX.
   1457     if (Subtarget->is64Bit()) {
   1458       if (ValVT == MVT::x86mmx) {
   1459         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
   1460           ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
   1461           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
   1462                                   ValToCopy);
   1463           // If we don't have SSE2 available, convert to v4f32 so the generated
   1464           // register is legal.
   1465           if (!Subtarget->hasXMMInt())
   1466             ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
   1467         }
   1468       }
   1469     }
   1470 
   1471     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
   1472     Flag = Chain.getValue(1);
   1473   }
   1474 
   1475   // The x86-64 ABI for returning structs by value requires that we copy
   1476   // the sret argument into %rax for the return. We saved the argument into
   1477   // a virtual register in the entry block, so now we copy the value out
   1478   // and into %rax.
   1479   if (Subtarget->is64Bit() &&
   1480       DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
   1481     MachineFunction &MF = DAG.getMachineFunction();
   1482     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1483     unsigned Reg = FuncInfo->getSRetReturnReg();
   1484     assert(Reg &&
   1485            "SRetReturnReg should have been set in LowerFormalArguments().");
   1486     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
   1487 
   1488     Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
   1489     Flag = Chain.getValue(1);
   1490 
   1491     // RAX now acts like a return value.
   1492     MRI.addLiveOut(X86::RAX);
   1493   }
   1494 
   1495   RetOps[0] = Chain;  // Update chain.
   1496 
   1497   // Add the flag if we have it.
   1498   if (Flag.getNode())
   1499     RetOps.push_back(Flag);
   1500 
   1501   return DAG.getNode(X86ISD::RET_FLAG, dl,
   1502                      MVT::Other, &RetOps[0], RetOps.size());
   1503 }
   1504 
   1505 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
   1506   if (N->getNumValues() != 1)
   1507     return false;
   1508   if (!N->hasNUsesOfValue(1, 0))
   1509     return false;
   1510 
   1511   SDNode *Copy = *N->use_begin();
   1512   if (Copy->getOpcode() != ISD::CopyToReg &&
   1513       Copy->getOpcode() != ISD::FP_EXTEND)
   1514     return false;
   1515 
   1516   bool HasRet = false;
   1517   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   1518        UI != UE; ++UI) {
   1519     if (UI->getOpcode() != X86ISD::RET_FLAG)
   1520       return false;
   1521     HasRet = true;
   1522   }
   1523 
   1524   return HasRet;
   1525 }
   1526 
   1527 EVT
   1528 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1529                                             ISD::NodeType ExtendKind) const {
   1530   MVT ReturnMVT;
   1531   // TODO: Is this also valid on 32-bit?
   1532   if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
   1533     ReturnMVT = MVT::i8;
   1534   else
   1535     ReturnMVT = MVT::i32;
   1536 
   1537   EVT MinVT = getRegisterType(Context, ReturnMVT);
   1538   return VT.bitsLT(MinVT) ? MinVT : VT;
   1539 }
   1540 
   1541 /// LowerCallResult - Lower the result values of a call into the
   1542 /// appropriate copies out of appropriate physical registers.
   1543 ///
   1544 SDValue
   1545 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1546                                    CallingConv::ID CallConv, bool isVarArg,
   1547                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1548                                    DebugLoc dl, SelectionDAG &DAG,
   1549                                    SmallVectorImpl<SDValue> &InVals) const {
   1550 
   1551   // Assign locations to each value returned by this call.
   1552   SmallVector<CCValAssign, 16> RVLocs;
   1553   bool Is64Bit = Subtarget->is64Bit();
   1554   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1555 		 getTargetMachine(), RVLocs, *DAG.getContext());
   1556   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   1557 
   1558   // Copy all of the result registers out of their specified physreg.
   1559   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1560     CCValAssign &VA = RVLocs[i];
   1561     EVT CopyVT = VA.getValVT();
   1562 
   1563     // If this is x86-64, and we disabled SSE, we can't return FP values
   1564     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
   1565         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
   1566       report_fatal_error("SSE register return with SSE disabled");
   1567     }
   1568 
   1569     SDValue Val;
   1570 
   1571     // If this is a call to a function that returns an fp value on the floating
   1572     // point stack, we must guarantee the the value is popped from the stack, so
   1573     // a CopyFromReg is not good enough - the copy instruction may be eliminated
   1574     // if the return value is not used. We use the FpPOP_RETVAL instruction
   1575     // instead.
   1576     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
   1577       // If we prefer to use the value in xmm registers, copy it out as f80 and
   1578       // use a truncate to move it from fp stack reg to xmm reg.
   1579       if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
   1580       SDValue Ops[] = { Chain, InFlag };
   1581       Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
   1582                                          MVT::Other, MVT::Glue, Ops, 2), 1);
   1583       Val = Chain.getValue(0);
   1584 
   1585       // Round the f80 to the right size, which also moves it to the appropriate
   1586       // xmm register.
   1587       if (CopyVT != VA.getValVT())
   1588         Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
   1589                           // This truncation won't change the value.
   1590                           DAG.getIntPtrConstant(1));
   1591     } else {
   1592       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
   1593                                  CopyVT, InFlag).getValue(1);
   1594       Val = Chain.getValue(0);
   1595     }
   1596     InFlag = Chain.getValue(2);
   1597     InVals.push_back(Val);
   1598   }
   1599 
   1600   return Chain;
   1601 }
   1602 
   1603 
   1604 //===----------------------------------------------------------------------===//
   1605 //                C & StdCall & Fast Calling Convention implementation
   1606 //===----------------------------------------------------------------------===//
   1607 //  StdCall calling convention seems to be standard for many Windows' API
   1608 //  routines and around. It differs from C calling convention just a little:
   1609 //  callee should clean up the stack, not caller. Symbols should be also
   1610 //  decorated in some fancy way :) It doesn't support any vector arguments.
   1611 //  For info on fast calling convention see Fast Calling Convention (tail call)
   1612 //  implementation LowerX86_32FastCCCallTo.
   1613 
   1614 /// CallIsStructReturn - Determines whether a call uses struct return
   1615 /// semantics.
   1616 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
   1617   if (Outs.empty())
   1618     return false;
   1619 
   1620   return Outs[0].Flags.isSRet();
   1621 }
   1622 
   1623 /// ArgsAreStructReturn - Determines whether a function uses struct
   1624 /// return semantics.
   1625 static bool
   1626 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
   1627   if (Ins.empty())
   1628     return false;
   1629 
   1630   return Ins[0].Flags.isSRet();
   1631 }
   1632 
   1633 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   1634 /// by "Src" to address "Dst" with size and alignment information specified by
   1635 /// the specific parameter attribute. The copy will be passed as a byval
   1636 /// function parameter.
   1637 static SDValue
   1638 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   1639                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   1640                           DebugLoc dl) {
   1641   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   1642 
   1643   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   1644                        /*isVolatile*/false, /*AlwaysInline=*/true,
   1645                        MachinePointerInfo(), MachinePointerInfo());
   1646 }
   1647 
   1648 /// IsTailCallConvention - Return true if the calling convention is one that
   1649 /// supports tail call optimization.
   1650 static bool IsTailCallConvention(CallingConv::ID CC) {
   1651   return (CC == CallingConv::Fast || CC == CallingConv::GHC);
   1652 }
   1653 
   1654 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   1655   if (!CI->isTailCall())
   1656     return false;
   1657 
   1658   CallSite CS(CI);
   1659   CallingConv::ID CalleeCC = CS.getCallingConv();
   1660   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
   1661     return false;
   1662 
   1663   return true;
   1664 }
   1665 
   1666 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
   1667 /// a tailcall target by changing its ABI.
   1668 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
   1669   return GuaranteedTailCallOpt && IsTailCallConvention(CC);
   1670 }
   1671 
   1672 SDValue
   1673 X86TargetLowering::LowerMemArgument(SDValue Chain,
   1674                                     CallingConv::ID CallConv,
   1675                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1676                                     DebugLoc dl, SelectionDAG &DAG,
   1677                                     const CCValAssign &VA,
   1678                                     MachineFrameInfo *MFI,
   1679                                     unsigned i) const {
   1680   // Create the nodes corresponding to a load from this parameter slot.
   1681   ISD::ArgFlagsTy Flags = Ins[i].Flags;
   1682   bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
   1683   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
   1684   EVT ValVT;
   1685 
   1686   // If value is passed by pointer we have address passed instead of the value
   1687   // itself.
   1688   if (VA.getLocInfo() == CCValAssign::Indirect)
   1689     ValVT = VA.getLocVT();
   1690   else
   1691     ValVT = VA.getValVT();
   1692 
   1693   // FIXME: For now, all byval parameter objects are marked mutable. This can be
   1694   // changed with more analysis.
   1695   // In case of tail call optimization mark all arguments mutable. Since they
   1696   // could be overwritten by lowering of arguments in case of a tail call.
   1697   if (Flags.isByVal()) {
   1698     unsigned Bytes = Flags.getByValSize();
   1699     if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   1700     int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
   1701     return DAG.getFrameIndex(FI, getPointerTy());
   1702   } else {
   1703     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
   1704                                     VA.getLocMemOffset(), isImmutable);
   1705     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   1706     return DAG.getLoad(ValVT, dl, Chain, FIN,
   1707                        MachinePointerInfo::getFixedStack(FI),
   1708                        false, false, 0);
   1709   }
   1710 }
   1711 
   1712 SDValue
   1713 X86TargetLowering::LowerFormalArguments(SDValue Chain,
   1714                                         CallingConv::ID CallConv,
   1715                                         bool isVarArg,
   1716                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   1717                                         DebugLoc dl,
   1718                                         SelectionDAG &DAG,
   1719                                         SmallVectorImpl<SDValue> &InVals)
   1720                                           const {
   1721   MachineFunction &MF = DAG.getMachineFunction();
   1722   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1723 
   1724   const Function* Fn = MF.getFunction();
   1725   if (Fn->hasExternalLinkage() &&
   1726       Subtarget->isTargetCygMing() &&
   1727       Fn->getName() == "main")
   1728     FuncInfo->setForceFramePointer(true);
   1729 
   1730   MachineFrameInfo *MFI = MF.getFrameInfo();
   1731   bool Is64Bit = Subtarget->is64Bit();
   1732   bool IsWin64 = Subtarget->isTargetWin64();
   1733 
   1734   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   1735          "Var args not supported with calling convention fastcc or ghc");
   1736 
   1737   // Assign locations to all of the incoming arguments.
   1738   SmallVector<CCValAssign, 16> ArgLocs;
   1739   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1740                  ArgLocs, *DAG.getContext());
   1741 
   1742   // Allocate shadow area for Win64
   1743   if (IsWin64) {
   1744     CCInfo.AllocateStack(32, 8);
   1745   }
   1746 
   1747   CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
   1748 
   1749   unsigned LastVal = ~0U;
   1750   SDValue ArgValue;
   1751   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1752     CCValAssign &VA = ArgLocs[i];
   1753     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
   1754     // places.
   1755     assert(VA.getValNo() != LastVal &&
   1756            "Don't support value assigned to multiple locs yet");
   1757     (void)LastVal;
   1758     LastVal = VA.getValNo();
   1759 
   1760     if (VA.isRegLoc()) {
   1761       EVT RegVT = VA.getLocVT();
   1762       TargetRegisterClass *RC = NULL;
   1763       if (RegVT == MVT::i32)
   1764         RC = X86::GR32RegisterClass;
   1765       else if (Is64Bit && RegVT == MVT::i64)
   1766         RC = X86::GR64RegisterClass;
   1767       else if (RegVT == MVT::f32)
   1768         RC = X86::FR32RegisterClass;
   1769       else if (RegVT == MVT::f64)
   1770         RC = X86::FR64RegisterClass;
   1771       else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
   1772         RC = X86::VR256RegisterClass;
   1773       else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
   1774         RC = X86::VR128RegisterClass;
   1775       else if (RegVT == MVT::x86mmx)
   1776         RC = X86::VR64RegisterClass;
   1777       else
   1778         llvm_unreachable("Unknown argument type!");
   1779 
   1780       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   1781       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   1782 
   1783       // If this is an 8 or 16-bit value, it is really passed promoted to 32
   1784       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
   1785       // right size.
   1786       if (VA.getLocInfo() == CCValAssign::SExt)
   1787         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   1788                                DAG.getValueType(VA.getValVT()));
   1789       else if (VA.getLocInfo() == CCValAssign::ZExt)
   1790         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   1791                                DAG.getValueType(VA.getValVT()));
   1792       else if (VA.getLocInfo() == CCValAssign::BCvt)
   1793         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   1794 
   1795       if (VA.isExtInLoc()) {
   1796         // Handle MMX values passed in XMM regs.
   1797         if (RegVT.isVector()) {
   1798           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
   1799                                  ArgValue);
   1800         } else
   1801           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   1802       }
   1803     } else {
   1804       assert(VA.isMemLoc());
   1805       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
   1806     }
   1807 
   1808     // If value is passed via pointer - do a load.
   1809     if (VA.getLocInfo() == CCValAssign::Indirect)
   1810       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
   1811                              MachinePointerInfo(), false, false, 0);
   1812 
   1813     InVals.push_back(ArgValue);
   1814   }
   1815 
   1816   // The x86-64 ABI for returning structs by value requires that we copy
   1817   // the sret argument into %rax for the return. Save the argument into
   1818   // a virtual register so that we can access it from the return points.
   1819   if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
   1820     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1821     unsigned Reg = FuncInfo->getSRetReturnReg();
   1822     if (!Reg) {
   1823       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
   1824       FuncInfo->setSRetReturnReg(Reg);
   1825     }
   1826     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
   1827     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
   1828   }
   1829 
   1830   unsigned StackSize = CCInfo.getNextStackOffset();
   1831   // Align stack specially for tail calls.
   1832   if (FuncIsMadeTailCallSafe(CallConv))
   1833     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
   1834 
   1835   // If the function takes variable number of arguments, make a frame index for
   1836   // the start of the first vararg value... for expansion of llvm.va_start.
   1837   if (isVarArg) {
   1838     if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
   1839                     CallConv != CallingConv::X86_ThisCall)) {
   1840       FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
   1841     }
   1842     if (Is64Bit) {
   1843       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
   1844 
   1845       // FIXME: We should really autogenerate these arrays
   1846       static const unsigned GPR64ArgRegsWin64[] = {
   1847         X86::RCX, X86::RDX, X86::R8,  X86::R9
   1848       };
   1849       static const unsigned GPR64ArgRegs64Bit[] = {
   1850         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
   1851       };
   1852       static const unsigned XMMArgRegs64Bit[] = {
   1853         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   1854         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   1855       };
   1856       const unsigned *GPR64ArgRegs;
   1857       unsigned NumXMMRegs = 0;
   1858 
   1859       if (IsWin64) {
   1860         // The XMM registers which might contain var arg parameters are shadowed
   1861         // in their paired GPR.  So we only need to save the GPR to their home
   1862         // slots.
   1863         TotalNumIntRegs = 4;
   1864         GPR64ArgRegs = GPR64ArgRegsWin64;
   1865       } else {
   1866         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
   1867         GPR64ArgRegs = GPR64ArgRegs64Bit;
   1868 
   1869         NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
   1870       }
   1871       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
   1872                                                        TotalNumIntRegs);
   1873 
   1874       bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
   1875       assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
   1876              "SSE register cannot be used when SSE is disabled!");
   1877       assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
   1878              "SSE register cannot be used when SSE is disabled!");
   1879       if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
   1880         // Kernel mode asks for SSE to be disabled, so don't push them
   1881         // on the stack.
   1882         TotalNumXMMRegs = 0;
   1883 
   1884       if (IsWin64) {
   1885         const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
   1886         // Get to the caller-allocated home save location.  Add 8 to account
   1887         // for the return address.
   1888         int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
   1889         FuncInfo->setRegSaveFrameIndex(
   1890           MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
   1891         // Fixup to set vararg frame on shadow area (4 x i64).
   1892         if (NumIntRegs < 4)
   1893           FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
   1894       } else {
   1895         // For X86-64, if there are vararg parameters that are passed via
   1896         // registers, then we must store them to their spots on the stack so they
   1897         // may be loaded by deferencing the result of va_next.
   1898         FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
   1899         FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
   1900         FuncInfo->setRegSaveFrameIndex(
   1901           MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
   1902                                false));
   1903       }
   1904 
   1905       // Store the integer parameter registers.
   1906       SmallVector<SDValue, 8> MemOps;
   1907       SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   1908                                         getPointerTy());
   1909       unsigned Offset = FuncInfo->getVarArgsGPOffset();
   1910       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
   1911         SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
   1912                                   DAG.getIntPtrConstant(Offset));
   1913         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
   1914                                      X86::GR64RegisterClass);
   1915         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   1916         SDValue Store =
   1917           DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1918                        MachinePointerInfo::getFixedStack(
   1919                          FuncInfo->getRegSaveFrameIndex(), Offset),
   1920                        false, false, 0);
   1921         MemOps.push_back(Store);
   1922         Offset += 8;
   1923       }
   1924 
   1925       if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
   1926         // Now store the XMM (fp + vector) parameter registers.
   1927         SmallVector<SDValue, 11> SaveXMMOps;
   1928         SaveXMMOps.push_back(Chain);
   1929 
   1930         unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
   1931         SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
   1932         SaveXMMOps.push_back(ALVal);
   1933 
   1934         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   1935                                FuncInfo->getRegSaveFrameIndex()));
   1936         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   1937                                FuncInfo->getVarArgsFPOffset()));
   1938 
   1939         for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
   1940           unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
   1941                                        X86::VR128RegisterClass);
   1942           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
   1943           SaveXMMOps.push_back(Val);
   1944         }
   1945         MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
   1946                                      MVT::Other,
   1947                                      &SaveXMMOps[0], SaveXMMOps.size()));
   1948       }
   1949 
   1950       if (!MemOps.empty())
   1951         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1952                             &MemOps[0], MemOps.size());
   1953     }
   1954   }
   1955 
   1956   // Some CCs need callee pop.
   1957   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
   1958     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
   1959   } else {
   1960     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
   1961     // If this is an sret function, the return should pop the hidden pointer.
   1962     if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
   1963       FuncInfo->setBytesToPopOnReturn(4);
   1964   }
   1965 
   1966   if (!Is64Bit) {
   1967     // RegSaveFrameIndex is X86-64 only.
   1968     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
   1969     if (CallConv == CallingConv::X86_FastCall ||
   1970         CallConv == CallingConv::X86_ThisCall)
   1971       // fastcc functions can't have varargs.
   1972       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
   1973   }
   1974 
   1975   FuncInfo->setArgumentStackSize(StackSize);
   1976 
   1977   return Chain;
   1978 }
   1979 
   1980 SDValue
   1981 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
   1982                                     SDValue StackPtr, SDValue Arg,
   1983                                     DebugLoc dl, SelectionDAG &DAG,
   1984                                     const CCValAssign &VA,
   1985                                     ISD::ArgFlagsTy Flags) const {
   1986   unsigned LocMemOffset = VA.getLocMemOffset();
   1987   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1988   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1989   if (Flags.isByVal())
   1990     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
   1991 
   1992   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1993                       MachinePointerInfo::getStack(LocMemOffset),
   1994                       false, false, 0);
   1995 }
   1996 
   1997 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
   1998 /// optimization is performed and it is required.
   1999 SDValue
   2000 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
   2001                                            SDValue &OutRetAddr, SDValue Chain,
   2002                                            bool IsTailCall, bool Is64Bit,
   2003                                            int FPDiff, DebugLoc dl) const {
   2004   // Adjust the Return address stack slot.
   2005   EVT VT = getPointerTy();
   2006   OutRetAddr = getReturnAddressFrameIndex(DAG);
   2007 
   2008   // Load the "old" Return address.
   2009   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
   2010                            false, false, 0);
   2011   return SDValue(OutRetAddr.getNode(), 1);
   2012 }
   2013 
   2014 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
   2015 /// optimization is performed and it is required (FPDiff!=0).
   2016 static SDValue
   2017 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
   2018                          SDValue Chain, SDValue RetAddrFrIdx,
   2019                          bool Is64Bit, int FPDiff, DebugLoc dl) {
   2020   // Store the return address to the appropriate stack slot.
   2021   if (!FPDiff) return Chain;
   2022   // Calculate the new stack slot for the return address.
   2023   int SlotSize = Is64Bit ? 8 : 4;
   2024   int NewReturnAddrFI =
   2025     MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
   2026   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   2027   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
   2028   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
   2029                        MachinePointerInfo::getFixedStack(NewReturnAddrFI),
   2030                        false, false, 0);
   2031   return Chain;
   2032 }
   2033 
   2034 SDValue
   2035 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
   2036                              CallingConv::ID CallConv, bool isVarArg,
   2037                              bool &isTailCall,
   2038                              const SmallVectorImpl<ISD::OutputArg> &Outs,
   2039                              const SmallVectorImpl<SDValue> &OutVals,
   2040                              const SmallVectorImpl<ISD::InputArg> &Ins,
   2041                              DebugLoc dl, SelectionDAG &DAG,
   2042                              SmallVectorImpl<SDValue> &InVals) const {
   2043   MachineFunction &MF = DAG.getMachineFunction();
   2044   bool Is64Bit        = Subtarget->is64Bit();
   2045   bool IsWin64        = Subtarget->isTargetWin64();
   2046   bool IsStructRet    = CallIsStructReturn(Outs);
   2047   bool IsSibcall      = false;
   2048 
   2049   if (isTailCall) {
   2050     // Check if it's really possible to do a tail call.
   2051     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   2052                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
   2053                                                    Outs, OutVals, Ins, DAG);
   2054 
   2055     // Sibcalls are automatically detected tailcalls which do not require
   2056     // ABI changes.
   2057     if (!GuaranteedTailCallOpt && isTailCall)
   2058       IsSibcall = true;
   2059 
   2060     if (isTailCall)
   2061       ++NumTailCalls;
   2062   }
   2063 
   2064   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   2065          "Var args not supported with calling convention fastcc or ghc");
   2066 
   2067   // Analyze operands of the call, assigning locations to each operand.
   2068   SmallVector<CCValAssign, 16> ArgLocs;
   2069   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   2070                  ArgLocs, *DAG.getContext());
   2071 
   2072   // Allocate shadow area for Win64
   2073   if (IsWin64) {
   2074     CCInfo.AllocateStack(32, 8);
   2075   }
   2076 
   2077   CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2078 
   2079   // Get a count of how many bytes are to be pushed on the stack.
   2080   unsigned NumBytes = CCInfo.getNextStackOffset();
   2081   if (IsSibcall)
   2082     // This is a sibcall. The memory operands are available in caller's
   2083     // own caller's stack.
   2084     NumBytes = 0;
   2085   else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
   2086     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
   2087 
   2088   int FPDiff = 0;
   2089   if (isTailCall && !IsSibcall) {
   2090     // Lower arguments at fp - stackoffset + fpdiff.
   2091     unsigned NumBytesCallerPushed =
   2092       MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
   2093     FPDiff = NumBytesCallerPushed - NumBytes;
   2094 
   2095     // Set the delta of movement of the returnaddr stackslot.
   2096     // But only set if delta is greater than previous delta.
   2097     if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
   2098       MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
   2099   }
   2100 
   2101   if (!IsSibcall)
   2102     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   2103 
   2104   SDValue RetAddrFrIdx;
   2105   // Load return address for tail calls.
   2106   if (isTailCall && FPDiff)
   2107     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
   2108                                     Is64Bit, FPDiff, dl);
   2109 
   2110   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2111   SmallVector<SDValue, 8> MemOpChains;
   2112   SDValue StackPtr;
   2113 
   2114   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   2115   // of tail call optimization arguments are handle later.
   2116   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2117     CCValAssign &VA = ArgLocs[i];
   2118     EVT RegVT = VA.getLocVT();
   2119     SDValue Arg = OutVals[i];
   2120     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2121     bool isByVal = Flags.isByVal();
   2122 
   2123     // Promote the value if needed.
   2124     switch (VA.getLocInfo()) {
   2125     default: llvm_unreachable("Unknown loc info!");
   2126     case CCValAssign::Full: break;
   2127     case CCValAssign::SExt:
   2128       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
   2129       break;
   2130     case CCValAssign::ZExt:
   2131       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
   2132       break;
   2133     case CCValAssign::AExt:
   2134       if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
   2135         // Special case: passing MMX values in XMM registers.
   2136         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   2137         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
   2138         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
   2139       } else
   2140         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
   2141       break;
   2142     case CCValAssign::BCvt:
   2143       Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
   2144       break;
   2145     case CCValAssign::Indirect: {
   2146       // Store the argument.
   2147       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
   2148       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   2149       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
   2150                            MachinePointerInfo::getFixedStack(FI),
   2151                            false, false, 0);
   2152       Arg = SpillSlot;
   2153       break;
   2154     }
   2155     }
   2156 
   2157     if (VA.isRegLoc()) {
   2158       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2159       if (isVarArg && IsWin64) {
   2160         // Win64 ABI requires argument XMM reg to be copied to the corresponding
   2161         // shadow reg if callee is a varargs function.
   2162         unsigned ShadowReg = 0;
   2163         switch (VA.getLocReg()) {
   2164         case X86::XMM0: ShadowReg = X86::RCX; break;
   2165         case X86::XMM1: ShadowReg = X86::RDX; break;
   2166         case X86::XMM2: ShadowReg = X86::R8; break;
   2167         case X86::XMM3: ShadowReg = X86::R9; break;
   2168         }
   2169         if (ShadowReg)
   2170           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
   2171       }
   2172     } else if (!IsSibcall && (!isTailCall || isByVal)) {
   2173       assert(VA.isMemLoc());
   2174       if (StackPtr.getNode() == 0)
   2175         StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
   2176       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   2177                                              dl, DAG, VA, Flags));
   2178     }
   2179   }
   2180 
   2181   if (!MemOpChains.empty())
   2182     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2183                         &MemOpChains[0], MemOpChains.size());
   2184 
   2185   // Build a sequence of copy-to-reg nodes chained together with token chain
   2186   // and flag operands which copy the outgoing args into registers.
   2187   SDValue InFlag;
   2188   // Tail call byval lowering might overwrite argument registers so in case of
   2189   // tail call optimization the copies to registers are lowered later.
   2190   if (!isTailCall)
   2191     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2192       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2193                                RegsToPass[i].second, InFlag);
   2194       InFlag = Chain.getValue(1);
   2195     }
   2196 
   2197   if (Subtarget->isPICStyleGOT()) {
   2198     // ELF / PIC requires GOT in the EBX register before function calls via PLT
   2199     // GOT pointer.
   2200     if (!isTailCall) {
   2201       Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
   2202                                DAG.getNode(X86ISD::GlobalBaseReg,
   2203                                            DebugLoc(), getPointerTy()),
   2204                                InFlag);
   2205       InFlag = Chain.getValue(1);
   2206     } else {
   2207       // If we are tail calling and generating PIC/GOT style code load the
   2208       // address of the callee into ECX. The value in ecx is used as target of
   2209       // the tail jump. This is done to circumvent the ebx/callee-saved problem
   2210       // for tail calls on PIC/GOT architectures. Normally we would just put the
   2211       // address of GOT into ebx and then call target@PLT. But for tail calls
   2212       // ebx would be restored (since ebx is callee saved) before jumping to the
   2213       // target@PLT.
   2214 
   2215       // Note: The actual moving to ECX is done further down.
   2216       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
   2217       if (G && !G->getGlobal()->hasHiddenVisibility() &&
   2218           !G->getGlobal()->hasProtectedVisibility())
   2219         Callee = LowerGlobalAddress(Callee, DAG);
   2220       else if (isa<ExternalSymbolSDNode>(Callee))
   2221         Callee = LowerExternalSymbol(Callee, DAG);
   2222     }
   2223   }
   2224 
   2225   if (Is64Bit && isVarArg && !IsWin64) {
   2226     // From AMD64 ABI document:
   2227     // For calls that may call functions that use varargs or stdargs
   2228     // (prototype-less calls or calls to functions containing ellipsis (...) in
   2229     // the declaration) %al is used as hidden argument to specify the number
   2230     // of SSE registers used. The contents of %al do not need to match exactly
   2231     // the number of registers, but must be an ubound on the number of SSE
   2232     // registers used and is in the range 0 - 8 inclusive.
   2233 
   2234     // Count the number of XMM registers allocated.
   2235     static const unsigned XMMArgRegs[] = {
   2236       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2237       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2238     };
   2239     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   2240     assert((Subtarget->hasXMM() || !NumXMMRegs)
   2241            && "SSE registers cannot be used when SSE is disabled");
   2242 
   2243     Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
   2244                              DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
   2245     InFlag = Chain.getValue(1);
   2246   }
   2247 
   2248 
   2249   // For tail calls lower the arguments to the 'real' stack slot.
   2250   if (isTailCall) {
   2251     // Force all the incoming stack arguments to be loaded from the stack
   2252     // before any new outgoing arguments are stored to the stack, because the
   2253     // outgoing stack slots may alias the incoming argument stack slots, and
   2254     // the alias isn't otherwise explicit. This is slightly more conservative
   2255     // than necessary, because it means that each store effectively depends
   2256     // on every argument instead of just those arguments it would clobber.
   2257     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
   2258 
   2259     SmallVector<SDValue, 8> MemOpChains2;
   2260     SDValue FIN;
   2261     int FI = 0;
   2262     // Do not flag preceding copytoreg stuff together with the following stuff.
   2263     InFlag = SDValue();
   2264     if (GuaranteedTailCallOpt) {
   2265       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2266         CCValAssign &VA = ArgLocs[i];
   2267         if (VA.isRegLoc())
   2268           continue;
   2269         assert(VA.isMemLoc());
   2270         SDValue Arg = OutVals[i];
   2271         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2272         // Create frame index.
   2273         int32_t Offset = VA.getLocMemOffset()+FPDiff;
   2274         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
   2275         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2276         FIN = DAG.getFrameIndex(FI, getPointerTy());
   2277 
   2278         if (Flags.isByVal()) {
   2279           // Copy relative to framepointer.
   2280           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
   2281           if (StackPtr.getNode() == 0)
   2282             StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
   2283                                           getPointerTy());
   2284           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
   2285 
   2286           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
   2287                                                            ArgChain,
   2288                                                            Flags, DAG, dl));
   2289         } else {
   2290           // Store relative to framepointer.
   2291           MemOpChains2.push_back(
   2292             DAG.getStore(ArgChain, dl, Arg, FIN,
   2293                          MachinePointerInfo::getFixedStack(FI),
   2294                          false, false, 0));
   2295         }
   2296       }
   2297     }
   2298 
   2299     if (!MemOpChains2.empty())
   2300       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2301                           &MemOpChains2[0], MemOpChains2.size());
   2302 
   2303     // Copy arguments to their registers.
   2304     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2305       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2306                                RegsToPass[i].second, InFlag);
   2307       InFlag = Chain.getValue(1);
   2308     }
   2309     InFlag =SDValue();
   2310 
   2311     // Store the return address to the appropriate stack slot.
   2312     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
   2313                                      FPDiff, dl);
   2314   }
   2315 
   2316   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
   2317     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
   2318     // In the 64-bit large code model, we have to make all calls
   2319     // through a register, since the call instruction's 32-bit
   2320     // pc-relative offset may not be large enough to hold the whole
   2321     // address.
   2322   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2323     // If the callee is a GlobalAddress node (quite common, every direct call
   2324     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
   2325     // it.
   2326 
   2327     // We should use extra load for direct calls to dllimported functions in
   2328     // non-JIT mode.
   2329     const GlobalValue *GV = G->getGlobal();
   2330     if (!GV->hasDLLImportLinkage()) {
   2331       unsigned char OpFlags = 0;
   2332       bool ExtraLoad = false;
   2333       unsigned WrapperKind = ISD::DELETED_NODE;
   2334 
   2335       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   2336       // external symbols most go through the PLT in PIC mode.  If the symbol
   2337       // has hidden or protected visibility, or if it is static or local, then
   2338       // we don't need to use the PLT - we can directly call it.
   2339       if (Subtarget->isTargetELF() &&
   2340           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   2341           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   2342         OpFlags = X86II::MO_PLT;
   2343       } else if (Subtarget->isPICStyleStubAny() &&
   2344                  (GV->isDeclaration() || GV->isWeakForLinker()) &&
   2345                  (!Subtarget->getTargetTriple().isMacOSX() ||
   2346                   Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2347         // PC-relative references to external symbols should go through $stub,
   2348         // unless we're building with the leopard linker or later, which
   2349         // automatically synthesizes these stubs.
   2350         OpFlags = X86II::MO_DARWIN_STUB;
   2351       } else if (Subtarget->isPICStyleRIPRel() &&
   2352                  isa<Function>(GV) &&
   2353                  cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
   2354         // If the function is marked as non-lazy, generate an indirect call
   2355         // which loads from the GOT directly. This avoids runtime overhead
   2356         // at the cost of eager binding (and one extra byte of encoding).
   2357         OpFlags = X86II::MO_GOTPCREL;
   2358         WrapperKind = X86ISD::WrapperRIP;
   2359         ExtraLoad = true;
   2360       }
   2361 
   2362       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
   2363                                           G->getOffset(), OpFlags);
   2364 
   2365       // Add a wrapper if needed.
   2366       if (WrapperKind != ISD::DELETED_NODE)
   2367         Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
   2368       // Add extra indirection if needed.
   2369       if (ExtraLoad)
   2370         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
   2371                              MachinePointerInfo::getGOT(),
   2372                              false, false, 0);
   2373     }
   2374   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2375     unsigned char OpFlags = 0;
   2376 
   2377     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
   2378     // external symbols should go through the PLT.
   2379     if (Subtarget->isTargetELF() &&
   2380         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2381       OpFlags = X86II::MO_PLT;
   2382     } else if (Subtarget->isPICStyleStubAny() &&
   2383                (!Subtarget->getTargetTriple().isMacOSX() ||
   2384                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2385       // PC-relative references to external symbols should go through $stub,
   2386       // unless we're building with the leopard linker or later, which
   2387       // automatically synthesizes these stubs.
   2388       OpFlags = X86II::MO_DARWIN_STUB;
   2389     }
   2390 
   2391     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
   2392                                          OpFlags);
   2393   }
   2394 
   2395   // Returns a chain & a flag for retval copy to use.
   2396   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2397   SmallVector<SDValue, 8> Ops;
   2398 
   2399   if (!IsSibcall && isTailCall) {
   2400     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2401                            DAG.getIntPtrConstant(0, true), InFlag);
   2402     InFlag = Chain.getValue(1);
   2403   }
   2404 
   2405   Ops.push_back(Chain);
   2406   Ops.push_back(Callee);
   2407 
   2408   if (isTailCall)
   2409     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
   2410 
   2411   // Add argument registers to the end of the list so that they are known live
   2412   // into the call.
   2413   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2414     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2415                                   RegsToPass[i].second.getValueType()));
   2416 
   2417   // Add an implicit use GOT pointer in EBX.
   2418   if (!isTailCall && Subtarget->isPICStyleGOT())
   2419     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
   2420 
   2421   // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
   2422   if (Is64Bit && isVarArg && !IsWin64)
   2423     Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
   2424 
   2425   if (InFlag.getNode())
   2426     Ops.push_back(InFlag);
   2427 
   2428   if (isTailCall) {
   2429     // We used to do:
   2430     //// If this is the first return lowered for this function, add the regs
   2431     //// to the liveout set for the function.
   2432     // This isn't right, although it's probably harmless on x86; liveouts
   2433     // should be computed from returns not tail calls.  Consider a void
   2434     // function making a tail call to a function returning int.
   2435     return DAG.getNode(X86ISD::TC_RETURN, dl,
   2436                        NodeTys, &Ops[0], Ops.size());
   2437   }
   2438 
   2439   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
   2440   InFlag = Chain.getValue(1);
   2441 
   2442   // Create the CALLSEQ_END node.
   2443   unsigned NumBytesForCalleeToPush;
   2444   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
   2445     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
   2446   else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
   2447     // If this is a call to a struct-return function, the callee
   2448     // pops the hidden struct pointer, so we have to push it back.
   2449     // This is common for Darwin/X86, Linux & Mingw32 targets.
   2450     NumBytesForCalleeToPush = 4;
   2451   else
   2452     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
   2453 
   2454   // Returns a flag for retval copy to use.
   2455   if (!IsSibcall) {
   2456     Chain = DAG.getCALLSEQ_END(Chain,
   2457                                DAG.getIntPtrConstant(NumBytes, true),
   2458                                DAG.getIntPtrConstant(NumBytesForCalleeToPush,
   2459                                                      true),
   2460                                InFlag);
   2461     InFlag = Chain.getValue(1);
   2462   }
   2463 
   2464   // Handle result values, copying them out of physregs into vregs that we
   2465   // return.
   2466   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   2467                          Ins, dl, DAG, InVals);
   2468 }
   2469 
   2470 
   2471 //===----------------------------------------------------------------------===//
   2472 //                Fast Calling Convention (tail call) implementation
   2473 //===----------------------------------------------------------------------===//
   2474 
   2475 //  Like std call, callee cleans arguments, convention except that ECX is
   2476 //  reserved for storing the tail called function address. Only 2 registers are
   2477 //  free for argument passing (inreg). Tail call optimization is performed
   2478 //  provided:
   2479 //                * tailcallopt is enabled
   2480 //                * caller/callee are fastcc
   2481 //  On X86_64 architecture with GOT-style position independent code only local
   2482 //  (within module) calls are supported at the moment.
   2483 //  To keep the stack aligned according to platform abi the function
   2484 //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
   2485 //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
   2486 //  If a tail called function callee has more arguments than the caller the
   2487 //  caller needs to make sure that there is room to move the RETADDR to. This is
   2488 //  achieved by reserving an area the size of the argument delta right after the
   2489 //  original REtADDR, but before the saved framepointer or the spilled registers
   2490 //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
   2491 //  stack layout:
   2492 //    arg1
   2493 //    arg2
   2494 //    RETADDR
   2495 //    [ new RETADDR
   2496 //      move area ]
   2497 //    (possible EBP)
   2498 //    ESI
   2499 //    EDI
   2500 //    local1 ..
   2501 
   2502 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
   2503 /// for a 16 byte align requirement.
   2504 unsigned
   2505 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
   2506                                                SelectionDAG& DAG) const {
   2507   MachineFunction &MF = DAG.getMachineFunction();
   2508   const TargetMachine &TM = MF.getTarget();
   2509   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   2510   unsigned StackAlignment = TFI.getStackAlignment();
   2511   uint64_t AlignMask = StackAlignment - 1;
   2512   int64_t Offset = StackSize;
   2513   uint64_t SlotSize = TD->getPointerSize();
   2514   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
   2515     // Number smaller than 12 so just add the difference.
   2516     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
   2517   } else {
   2518     // Mask out lower bits, add stackalignment once plus the 12 bytes.
   2519     Offset = ((~AlignMask) & Offset) + StackAlignment +
   2520       (StackAlignment-SlotSize);
   2521   }
   2522   return Offset;
   2523 }
   2524 
   2525 /// MatchingStackOffset - Return true if the given stack call argument is
   2526 /// already available in the same position (relatively) of the caller's
   2527 /// incoming argument stack.
   2528 static
   2529 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2530                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   2531                          const X86InstrInfo *TII) {
   2532   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   2533   int FI = INT_MAX;
   2534   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2535     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2536     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2537       return false;
   2538     MachineInstr *Def = MRI->getVRegDef(VR);
   2539     if (!Def)
   2540       return false;
   2541     if (!Flags.isByVal()) {
   2542       if (!TII->isLoadFromStackSlot(Def, FI))
   2543         return false;
   2544     } else {
   2545       unsigned Opcode = Def->getOpcode();
   2546       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
   2547           Def->getOperand(1).isFI()) {
   2548         FI = Def->getOperand(1).getIndex();
   2549         Bytes = Flags.getByValSize();
   2550       } else
   2551         return false;
   2552     }
   2553   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2554     if (Flags.isByVal())
   2555       // ByVal argument is passed in as a pointer but it's now being
   2556       // dereferenced. e.g.
   2557       // define @foo(%struct.X* %A) {
   2558       //   tail call @bar(%struct.X* byval %A)
   2559       // }
   2560       return false;
   2561     SDValue Ptr = Ld->getBasePtr();
   2562     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2563     if (!FINode)
   2564       return false;
   2565     FI = FINode->getIndex();
   2566   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
   2567     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
   2568     FI = FINode->getIndex();
   2569     Bytes = Flags.getByValSize();
   2570   } else
   2571     return false;
   2572 
   2573   assert(FI != INT_MAX);
   2574   if (!MFI->isFixedObjectIndex(FI))
   2575     return false;
   2576   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   2577 }
   2578 
   2579 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2580 /// for tail call optimization. Targets which want to do tail call
   2581 /// optimization should implement this function.
   2582 bool
   2583 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2584                                                      CallingConv::ID CalleeCC,
   2585                                                      bool isVarArg,
   2586                                                      bool isCalleeStructRet,
   2587                                                      bool isCallerStructRet,
   2588                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2589                                     const SmallVectorImpl<SDValue> &OutVals,
   2590                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2591                                                      SelectionDAG& DAG) const {
   2592   if (!IsTailCallConvention(CalleeCC) &&
   2593       CalleeCC != CallingConv::C)
   2594     return false;
   2595 
   2596   // If -tailcallopt is specified, make fastcc functions tail-callable.
   2597   const MachineFunction &MF = DAG.getMachineFunction();
   2598   const Function *CallerF = DAG.getMachineFunction().getFunction();
   2599   CallingConv::ID CallerCC = CallerF->getCallingConv();
   2600   bool CCMatch = CallerCC == CalleeCC;
   2601 
   2602   if (GuaranteedTailCallOpt) {
   2603     if (IsTailCallConvention(CalleeCC) && CCMatch)
   2604       return true;
   2605     return false;
   2606   }
   2607 
   2608   // Look for obvious safe cases to perform tail call optimization that do not
   2609   // require ABI changes. This is what gcc calls sibcall.
   2610 
   2611   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
   2612   // emit a special epilogue.
   2613   if (RegInfo->needsStackRealignment(MF))
   2614     return false;
   2615 
   2616   // Also avoid sibcall optimization if either caller or callee uses struct
   2617   // return semantics.
   2618   if (isCalleeStructRet || isCallerStructRet)
   2619     return false;
   2620 
   2621   // An stdcall caller is expected to clean up its arguments; the callee
   2622   // isn't going to do that.
   2623   if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
   2624     return false;
   2625 
   2626   // Do not sibcall optimize vararg calls unless all arguments are passed via
   2627   // registers.
   2628   if (isVarArg && !Outs.empty()) {
   2629 
   2630     // Optimizing for varargs on Win64 is unlikely to be safe without
   2631     // additional testing.
   2632     if (Subtarget->isTargetWin64())
   2633       return false;
   2634 
   2635     SmallVector<CCValAssign, 16> ArgLocs;
   2636     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2637 		   getTargetMachine(), ArgLocs, *DAG.getContext());
   2638 
   2639     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2640     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
   2641       if (!ArgLocs[i].isRegLoc())
   2642         return false;
   2643   }
   2644 
   2645   // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
   2646   // Therefore if it's not used by the call it is not safe to optimize this into
   2647   // a sibcall.
   2648   bool Unused = false;
   2649   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   2650     if (!Ins[i].Used) {
   2651       Unused = true;
   2652       break;
   2653     }
   2654   }
   2655   if (Unused) {
   2656     SmallVector<CCValAssign, 16> RVLocs;
   2657     CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
   2658 		   getTargetMachine(), RVLocs, *DAG.getContext());
   2659     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   2660     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   2661       CCValAssign &VA = RVLocs[i];
   2662       if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
   2663         return false;
   2664     }
   2665   }
   2666 
   2667   // If the calling conventions do not match, then we'd better make sure the
   2668   // results are returned in the same way as what the caller expects.
   2669   if (!CCMatch) {
   2670     SmallVector<CCValAssign, 16> RVLocs1;
   2671     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   2672 		    getTargetMachine(), RVLocs1, *DAG.getContext());
   2673     CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
   2674 
   2675     SmallVector<CCValAssign, 16> RVLocs2;
   2676     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   2677 		    getTargetMachine(), RVLocs2, *DAG.getContext());
   2678     CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
   2679 
   2680     if (RVLocs1.size() != RVLocs2.size())
   2681       return false;
   2682     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   2683       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   2684         return false;
   2685       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   2686         return false;
   2687       if (RVLocs1[i].isRegLoc()) {
   2688         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   2689           return false;
   2690       } else {
   2691         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   2692           return false;
   2693       }
   2694     }
   2695   }
   2696 
   2697   // If the callee takes no arguments then go on to check the results of the
   2698   // call.
   2699   if (!Outs.empty()) {
   2700     // Check if stack adjustment is needed. For now, do not do this if any
   2701     // argument is passed on the stack.
   2702     SmallVector<CCValAssign, 16> ArgLocs;
   2703     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2704 		   getTargetMachine(), ArgLocs, *DAG.getContext());
   2705 
   2706     // Allocate shadow area for Win64
   2707     if (Subtarget->isTargetWin64()) {
   2708       CCInfo.AllocateStack(32, 8);
   2709     }
   2710 
   2711     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2712     if (CCInfo.getNextStackOffset()) {
   2713       MachineFunction &MF = DAG.getMachineFunction();
   2714       if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
   2715         return false;
   2716 
   2717       // Check if the arguments are already laid out in the right way as
   2718       // the caller's fixed stack objects.
   2719       MachineFrameInfo *MFI = MF.getFrameInfo();
   2720       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2721       const X86InstrInfo *TII =
   2722         ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
   2723       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2724         CCValAssign &VA = ArgLocs[i];
   2725         SDValue Arg = OutVals[i];
   2726         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2727         if (VA.getLocInfo() == CCValAssign::Indirect)
   2728           return false;
   2729         if (!VA.isRegLoc()) {
   2730           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2731                                    MFI, MRI, TII))
   2732             return false;
   2733         }
   2734       }
   2735     }
   2736 
   2737     // If the tailcall address may be in a register, then make sure it's
   2738     // possible to register allocate for it. In 32-bit, the call address can
   2739     // only target EAX, EDX, or ECX since the tail call must be scheduled after
   2740     // callee-saved registers are restored. These happen to be the same
   2741     // registers used to pass 'inreg' arguments so watch out for those.
   2742     if (!Subtarget->is64Bit() &&
   2743         !isa<GlobalAddressSDNode>(Callee) &&
   2744         !isa<ExternalSymbolSDNode>(Callee)) {
   2745       unsigned NumInRegs = 0;
   2746       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2747         CCValAssign &VA = ArgLocs[i];
   2748         if (!VA.isRegLoc())
   2749           continue;
   2750         unsigned Reg = VA.getLocReg();
   2751         switch (Reg) {
   2752         default: break;
   2753         case X86::EAX: case X86::EDX: case X86::ECX:
   2754           if (++NumInRegs == 3)
   2755             return false;
   2756           break;
   2757         }
   2758       }
   2759     }
   2760   }
   2761 
   2762   return true;
   2763 }
   2764 
   2765 FastISel *
   2766 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
   2767   return X86::createFastISel(funcInfo);
   2768 }
   2769 
   2770 
   2771 //===----------------------------------------------------------------------===//
   2772 //                           Other Lowering Hooks
   2773 //===----------------------------------------------------------------------===//
   2774 
   2775 static bool MayFoldLoad(SDValue Op) {
   2776   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
   2777 }
   2778 
   2779 static bool MayFoldIntoStore(SDValue Op) {
   2780   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
   2781 }
   2782 
   2783 static bool isTargetShuffle(unsigned Opcode) {
   2784   switch(Opcode) {
   2785   default: return false;
   2786   case X86ISD::PSHUFD:
   2787   case X86ISD::PSHUFHW:
   2788   case X86ISD::PSHUFLW:
   2789   case X86ISD::SHUFPD:
   2790   case X86ISD::PALIGN:
   2791   case X86ISD::SHUFPS:
   2792   case X86ISD::MOVLHPS:
   2793   case X86ISD::MOVLHPD:
   2794   case X86ISD::MOVHLPS:
   2795   case X86ISD::MOVLPS:
   2796   case X86ISD::MOVLPD:
   2797   case X86ISD::MOVSHDUP:
   2798   case X86ISD::MOVSLDUP:
   2799   case X86ISD::MOVDDUP:
   2800   case X86ISD::MOVSS:
   2801   case X86ISD::MOVSD:
   2802   case X86ISD::UNPCKLPS:
   2803   case X86ISD::UNPCKLPD:
   2804   case X86ISD::VUNPCKLPSY:
   2805   case X86ISD::VUNPCKLPDY:
   2806   case X86ISD::PUNPCKLWD:
   2807   case X86ISD::PUNPCKLBW:
   2808   case X86ISD::PUNPCKLDQ:
   2809   case X86ISD::PUNPCKLQDQ:
   2810   case X86ISD::UNPCKHPS:
   2811   case X86ISD::UNPCKHPD:
   2812   case X86ISD::VUNPCKHPSY:
   2813   case X86ISD::VUNPCKHPDY:
   2814   case X86ISD::PUNPCKHWD:
   2815   case X86ISD::PUNPCKHBW:
   2816   case X86ISD::PUNPCKHDQ:
   2817   case X86ISD::PUNPCKHQDQ:
   2818   case X86ISD::VPERMILPS:
   2819   case X86ISD::VPERMILPSY:
   2820   case X86ISD::VPERMILPD:
   2821   case X86ISD::VPERMILPDY:
   2822   case X86ISD::VPERM2F128:
   2823     return true;
   2824   }
   2825   return false;
   2826 }
   2827 
   2828 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2829                                                SDValue V1, SelectionDAG &DAG) {
   2830   switch(Opc) {
   2831   default: llvm_unreachable("Unknown x86 shuffle node");
   2832   case X86ISD::MOVSHDUP:
   2833   case X86ISD::MOVSLDUP:
   2834   case X86ISD::MOVDDUP:
   2835     return DAG.getNode(Opc, dl, VT, V1);
   2836   }
   2837 
   2838   return SDValue();
   2839 }
   2840 
   2841 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2842                           SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
   2843   switch(Opc) {
   2844   default: llvm_unreachable("Unknown x86 shuffle node");
   2845   case X86ISD::PSHUFD:
   2846   case X86ISD::PSHUFHW:
   2847   case X86ISD::PSHUFLW:
   2848   case X86ISD::VPERMILPS:
   2849   case X86ISD::VPERMILPSY:
   2850   case X86ISD::VPERMILPD:
   2851   case X86ISD::VPERMILPDY:
   2852     return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
   2853   }
   2854 
   2855   return SDValue();
   2856 }
   2857 
   2858 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2859                SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
   2860   switch(Opc) {
   2861   default: llvm_unreachable("Unknown x86 shuffle node");
   2862   case X86ISD::PALIGN:
   2863   case X86ISD::SHUFPD:
   2864   case X86ISD::SHUFPS:
   2865   case X86ISD::VPERM2F128:
   2866     return DAG.getNode(Opc, dl, VT, V1, V2,
   2867                        DAG.getConstant(TargetMask, MVT::i8));
   2868   }
   2869   return SDValue();
   2870 }
   2871 
   2872 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2873                                     SDValue V1, SDValue V2, SelectionDAG &DAG) {
   2874   switch(Opc) {
   2875   default: llvm_unreachable("Unknown x86 shuffle node");
   2876   case X86ISD::MOVLHPS:
   2877   case X86ISD::MOVLHPD:
   2878   case X86ISD::MOVHLPS:
   2879   case X86ISD::MOVLPS:
   2880   case X86ISD::MOVLPD:
   2881   case X86ISD::MOVSS:
   2882   case X86ISD::MOVSD:
   2883   case X86ISD::UNPCKLPS:
   2884   case X86ISD::UNPCKLPD:
   2885   case X86ISD::VUNPCKLPSY:
   2886   case X86ISD::VUNPCKLPDY:
   2887   case X86ISD::PUNPCKLWD:
   2888   case X86ISD::PUNPCKLBW:
   2889   case X86ISD::PUNPCKLDQ:
   2890   case X86ISD::PUNPCKLQDQ:
   2891   case X86ISD::UNPCKHPS:
   2892   case X86ISD::UNPCKHPD:
   2893   case X86ISD::VUNPCKHPSY:
   2894   case X86ISD::VUNPCKHPDY:
   2895   case X86ISD::PUNPCKHWD:
   2896   case X86ISD::PUNPCKHBW:
   2897   case X86ISD::PUNPCKHDQ:
   2898   case X86ISD::PUNPCKHQDQ:
   2899     return DAG.getNode(Opc, dl, VT, V1, V2);
   2900   }
   2901   return SDValue();
   2902 }
   2903 
   2904 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   2905   MachineFunction &MF = DAG.getMachineFunction();
   2906   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   2907   int ReturnAddrIndex = FuncInfo->getRAIndex();
   2908 
   2909   if (ReturnAddrIndex == 0) {
   2910     // Set up a frame object for the return address.
   2911     uint64_t SlotSize = TD->getPointerSize();
   2912     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
   2913                                                            false);
   2914     FuncInfo->setRAIndex(ReturnAddrIndex);
   2915   }
   2916 
   2917   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
   2918 }
   2919 
   2920 
   2921 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
   2922                                        bool hasSymbolicDisplacement) {
   2923   // Offset should fit into 32 bit immediate field.
   2924   if (!isInt<32>(Offset))
   2925     return false;
   2926 
   2927   // If we don't have a symbolic displacement - we don't have any extra
   2928   // restrictions.
   2929   if (!hasSymbolicDisplacement)
   2930     return true;
   2931 
   2932   // FIXME: Some tweaks might be needed for medium code model.
   2933   if (M != CodeModel::Small && M != CodeModel::Kernel)
   2934     return false;
   2935 
   2936   // For small code model we assume that latest object is 16MB before end of 31
   2937   // bits boundary. We may also accept pretty large negative constants knowing
   2938   // that all objects are in the positive half of address space.
   2939   if (M == CodeModel::Small && Offset < 16*1024*1024)
   2940     return true;
   2941 
   2942   // For kernel code model we know that all object resist in the negative half
   2943   // of 32bits address space. We may not accept negative offsets, since they may
   2944   // be just off and we may accept pretty large positive ones.
   2945   if (M == CodeModel::Kernel && Offset > 0)
   2946     return true;
   2947 
   2948   return false;
   2949 }
   2950 
   2951 /// isCalleePop - Determines whether the callee is required to pop its
   2952 /// own arguments. Callee pop is necessary to support tail calls.
   2953 bool X86::isCalleePop(CallingConv::ID CallingConv,
   2954                       bool is64Bit, bool IsVarArg, bool TailCallOpt) {
   2955   if (IsVarArg)
   2956     return false;
   2957 
   2958   switch (CallingConv) {
   2959   default:
   2960     return false;
   2961   case CallingConv::X86_StdCall:
   2962     return !is64Bit;
   2963   case CallingConv::X86_FastCall:
   2964     return !is64Bit;
   2965   case CallingConv::X86_ThisCall:
   2966     return !is64Bit;
   2967   case CallingConv::Fast:
   2968     return TailCallOpt;
   2969   case CallingConv::GHC:
   2970     return TailCallOpt;
   2971   }
   2972 }
   2973 
   2974 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
   2975 /// specific condition code, returning the condition code and the LHS/RHS of the
   2976 /// comparison to make.
   2977 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
   2978                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
   2979   if (!isFP) {
   2980     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   2981       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
   2982         // X > -1   -> X == 0, jump !sign.
   2983         RHS = DAG.getConstant(0, RHS.getValueType());
   2984         return X86::COND_NS;
   2985       } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
   2986         // X < 0   -> X == 0, jump on sign.
   2987         return X86::COND_S;
   2988       } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
   2989         // X < 1   -> X <= 0
   2990         RHS = DAG.getConstant(0, RHS.getValueType());
   2991         return X86::COND_LE;
   2992       }
   2993     }
   2994 
   2995     switch (SetCCOpcode) {
   2996     default: llvm_unreachable("Invalid integer condition!");
   2997     case ISD::SETEQ:  return X86::COND_E;
   2998     case ISD::SETGT:  return X86::COND_G;
   2999     case ISD::SETGE:  return X86::COND_GE;
   3000     case ISD::SETLT:  return X86::COND_L;
   3001     case ISD::SETLE:  return X86::COND_LE;
   3002     case ISD::SETNE:  return X86::COND_NE;
   3003     case ISD::SETULT: return X86::COND_B;
   3004     case ISD::SETUGT: return X86::COND_A;
   3005     case ISD::SETULE: return X86::COND_BE;
   3006     case ISD::SETUGE: return X86::COND_AE;
   3007     }
   3008   }
   3009 
   3010   // First determine if it is required or is profitable to flip the operands.
   3011 
   3012   // If LHS is a foldable load, but RHS is not, flip the condition.
   3013   if (ISD::isNON_EXTLoad(LHS.getNode()) &&
   3014       !ISD::isNON_EXTLoad(RHS.getNode())) {
   3015     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
   3016     std::swap(LHS, RHS);
   3017   }
   3018 
   3019   switch (SetCCOpcode) {
   3020   default: break;
   3021   case ISD::SETOLT:
   3022   case ISD::SETOLE:
   3023   case ISD::SETUGT:
   3024   case ISD::SETUGE:
   3025     std::swap(LHS, RHS);
   3026     break;
   3027   }
   3028 
   3029   // On a floating point condition, the flags are set as follows:
   3030   // ZF  PF  CF   op
   3031   //  0 | 0 | 0 | X > Y
   3032   //  0 | 0 | 1 | X < Y
   3033   //  1 | 0 | 0 | X == Y
   3034   //  1 | 1 | 1 | unordered
   3035   switch (SetCCOpcode) {
   3036   default: llvm_unreachable("Condcode should be pre-legalized away");
   3037   case ISD::SETUEQ:
   3038   case ISD::SETEQ:   return X86::COND_E;
   3039   case ISD::SETOLT:              // flipped
   3040   case ISD::SETOGT:
   3041   case ISD::SETGT:   return X86::COND_A;
   3042   case ISD::SETOLE:              // flipped
   3043   case ISD::SETOGE:
   3044   case ISD::SETGE:   return X86::COND_AE;
   3045   case ISD::SETUGT:              // flipped
   3046   case ISD::SETULT:
   3047   case ISD::SETLT:   return X86::COND_B;
   3048   case ISD::SETUGE:              // flipped
   3049   case ISD::SETULE:
   3050   case ISD::SETLE:   return X86::COND_BE;
   3051   case ISD::SETONE:
   3052   case ISD::SETNE:   return X86::COND_NE;
   3053   case ISD::SETUO:   return X86::COND_P;
   3054   case ISD::SETO:    return X86::COND_NP;
   3055   case ISD::SETOEQ:
   3056   case ISD::SETUNE:  return X86::COND_INVALID;
   3057   }
   3058 }
   3059 
   3060 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
   3061 /// code. Current x86 isa includes the following FP cmov instructions:
   3062 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
   3063 static bool hasFPCMov(unsigned X86CC) {
   3064   switch (X86CC) {
   3065   default:
   3066     return false;
   3067   case X86::COND_B:
   3068   case X86::COND_BE:
   3069   case X86::COND_E:
   3070   case X86::COND_P:
   3071   case X86::COND_A:
   3072   case X86::COND_AE:
   3073   case X86::COND_NE:
   3074   case X86::COND_NP:
   3075     return true;
   3076   }
   3077 }
   3078 
   3079 /// isFPImmLegal - Returns true if the target can instruction select the
   3080 /// specified FP immediate natively. If false, the legalizer will
   3081 /// materialize the FP immediate as a load from a constant pool.
   3082 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3083   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
   3084     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
   3085       return true;
   3086   }
   3087   return false;
   3088 }
   3089 
   3090 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
   3091 /// the specified range (L, H].
   3092 static bool isUndefOrInRange(int Val, int Low, int Hi) {
   3093   return (Val < 0) || (Val >= Low && Val < Hi);
   3094 }
   3095 
   3096 /// isUndefOrInRange - Return true if every element in Mask, begining
   3097 /// from position Pos and ending in Pos+Size, falls within the specified
   3098 /// range (L, L+Pos]. or is undef.
   3099 static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
   3100                              int Pos, int Size, int Low, int Hi) {
   3101   for (int i = Pos, e = Pos+Size; i != e; ++i)
   3102     if (!isUndefOrInRange(Mask[i], Low, Hi))
   3103       return false;
   3104   return true;
   3105 }
   3106 
   3107 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
   3108 /// specified value.
   3109 static bool isUndefOrEqual(int Val, int CmpVal) {
   3110   if (Val < 0 || Val == CmpVal)
   3111     return true;
   3112   return false;
   3113 }
   3114 
   3115 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
   3116 /// from position Pos and ending in Pos+Size, falls within the specified
   3117 /// sequential range (L, L+Pos]. or is undef.
   3118 static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
   3119                                        int Pos, int Size, int Low) {
   3120   for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
   3121     if (!isUndefOrEqual(Mask[i], Low))
   3122       return false;
   3123   return true;
   3124 }
   3125 
   3126 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
   3127 /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
   3128 /// the second operand.
   3129 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3130   if (VT == MVT::v4f32 || VT == MVT::v4i32 )
   3131     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
   3132   if (VT == MVT::v2f64 || VT == MVT::v2i64)
   3133     return (Mask[0] < 2 && Mask[1] < 2);
   3134   return false;
   3135 }
   3136 
   3137 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
   3138   SmallVector<int, 8> M;
   3139   N->getMask(M);
   3140   return ::isPSHUFDMask(M, N->getValueType(0));
   3141 }
   3142 
   3143 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
   3144 /// is suitable for input to PSHUFHW.
   3145 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3146   if (VT != MVT::v8i16)
   3147     return false;
   3148 
   3149   // Lower quadword copied in order or undef.
   3150   for (int i = 0; i != 4; ++i)
   3151     if (Mask[i] >= 0 && Mask[i] != i)
   3152       return false;
   3153 
   3154   // Upper quadword shuffled.
   3155   for (int i = 4; i != 8; ++i)
   3156     if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
   3157       return false;
   3158 
   3159   return true;
   3160 }
   3161 
   3162 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
   3163   SmallVector<int, 8> M;
   3164   N->getMask(M);
   3165   return ::isPSHUFHWMask(M, N->getValueType(0));
   3166 }
   3167 
   3168 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
   3169 /// is suitable for input to PSHUFLW.
   3170 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3171   if (VT != MVT::v8i16)
   3172     return false;
   3173 
   3174   // Upper quadword copied in order.
   3175   for (int i = 4; i != 8; ++i)
   3176     if (Mask[i] >= 0 && Mask[i] != i)
   3177       return false;
   3178 
   3179   // Lower quadword shuffled.
   3180   for (int i = 0; i != 4; ++i)
   3181     if (Mask[i] >= 4)
   3182       return false;
   3183 
   3184   return true;
   3185 }
   3186 
   3187 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
   3188   SmallVector<int, 8> M;
   3189   N->getMask(M);
   3190   return ::isPSHUFLWMask(M, N->getValueType(0));
   3191 }
   3192 
   3193 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
   3194 /// is suitable for input to PALIGNR.
   3195 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3196                           bool hasSSSE3OrAVX) {
   3197   int i, e = VT.getVectorNumElements();
   3198   if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
   3199     return false;
   3200 
   3201   // Do not handle v2i64 / v2f64 shuffles with palignr.
   3202   if (e < 4 || !hasSSSE3OrAVX)
   3203     return false;
   3204 
   3205   for (i = 0; i != e; ++i)
   3206     if (Mask[i] >= 0)
   3207       break;
   3208 
   3209   // All undef, not a palignr.
   3210   if (i == e)
   3211     return false;
   3212 
   3213   // Make sure we're shifting in the right direction.
   3214   if (Mask[i] <= i)
   3215     return false;
   3216 
   3217   int s = Mask[i] - i;
   3218 
   3219   // Check the rest of the elements to see if they are consecutive.
   3220   for (++i; i != e; ++i) {
   3221     int m = Mask[i];
   3222     if (m >= 0 && m != s+i)
   3223       return false;
   3224   }
   3225   return true;
   3226 }
   3227 
   3228 /// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
   3229 /// specifies a shuffle of elements that is suitable for input to 256-bit
   3230 /// VSHUFPSY.
   3231 static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3232                           const X86Subtarget *Subtarget) {
   3233   int NumElems = VT.getVectorNumElements();
   3234 
   3235   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
   3236     return false;
   3237 
   3238   if (NumElems != 8)
   3239     return false;
   3240 
   3241   // VSHUFPSY divides the resulting vector into 4 chunks.
   3242   // The sources are also splitted into 4 chunks, and each destination
   3243   // chunk must come from a different source chunk.
   3244   //
   3245   //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
   3246   //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
   3247   //
   3248   //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
   3249   //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
   3250   //
   3251   int QuarterSize = NumElems/4;
   3252   int HalfSize = QuarterSize*2;
   3253   for (int i = 0; i < QuarterSize; ++i)
   3254     if (!isUndefOrInRange(Mask[i], 0, HalfSize))
   3255       return false;
   3256   for (int i = QuarterSize; i < QuarterSize*2; ++i)
   3257     if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
   3258       return false;
   3259 
   3260   // The mask of the second half must be the same as the first but with
   3261   // the appropriate offsets. This works in the same way as VPERMILPS
   3262   // works with masks.
   3263   for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
   3264     if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
   3265       return false;
   3266     int FstHalfIdx = i-HalfSize;
   3267     if (Mask[FstHalfIdx] < 0)
   3268       continue;
   3269     if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
   3270       return false;
   3271   }
   3272   for (int i = QuarterSize*3; i < NumElems; ++i) {
   3273     if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
   3274       return false;
   3275     int FstHalfIdx = i-HalfSize;
   3276     if (Mask[FstHalfIdx] < 0)
   3277       continue;
   3278     if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
   3279       return false;
   3280 
   3281   }
   3282 
   3283   return true;
   3284 }
   3285 
   3286 /// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
   3287 /// the specified VECTOR_MASK mask with VSHUFPSY instruction.
   3288 static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
   3289   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3290   EVT VT = SVOp->getValueType(0);
   3291   int NumElems = VT.getVectorNumElements();
   3292 
   3293   assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
   3294          "Only supports v8i32 and v8f32 types");
   3295 
   3296   int HalfSize = NumElems/2;
   3297   unsigned Mask = 0;
   3298   for (int i = 0; i != NumElems ; ++i) {
   3299     if (SVOp->getMaskElt(i) < 0)
   3300       continue;
   3301     // The mask of the first half must be equal to the second one.
   3302     unsigned Shamt = (i%HalfSize)*2;
   3303     unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
   3304     Mask |= Elt << Shamt;
   3305   }
   3306 
   3307   return Mask;
   3308 }
   3309 
   3310 /// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
   3311 /// specifies a shuffle of elements that is suitable for input to 256-bit
   3312 /// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
   3313 /// version and the mask of the second half isn't binded with the first
   3314 /// one.
   3315 static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3316                            const X86Subtarget *Subtarget) {
   3317   int NumElems = VT.getVectorNumElements();
   3318 
   3319   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
   3320     return false;
   3321 
   3322   if (NumElems != 4)
   3323     return false;
   3324 
   3325   // VSHUFPSY divides the resulting vector into 4 chunks.
   3326   // The sources are also splitted into 4 chunks, and each destination
   3327   // chunk must come from a different source chunk.
   3328   //
   3329   //  SRC1 =>      X3       X2       X1       X0
   3330   //  SRC2 =>      Y3       Y2       Y1       Y0
   3331   //
   3332   //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
   3333   //
   3334   int QuarterSize = NumElems/4;
   3335   int HalfSize = QuarterSize*2;
   3336   for (int i = 0; i < QuarterSize; ++i)
   3337     if (!isUndefOrInRange(Mask[i], 0, HalfSize))
   3338       return false;
   3339   for (int i = QuarterSize; i < QuarterSize*2; ++i)
   3340     if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
   3341       return false;
   3342   for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
   3343     if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
   3344       return false;
   3345   for (int i = QuarterSize*3; i < NumElems; ++i)
   3346     if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
   3347       return false;
   3348 
   3349   return true;
   3350 }
   3351 
   3352 /// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
   3353 /// the specified VECTOR_MASK mask with VSHUFPDY instruction.
   3354 static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
   3355   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3356   EVT VT = SVOp->getValueType(0);
   3357   int NumElems = VT.getVectorNumElements();
   3358 
   3359   assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
   3360          "Only supports v4i64 and v4f64 types");
   3361 
   3362   int HalfSize = NumElems/2;
   3363   unsigned Mask = 0;
   3364   for (int i = 0; i != NumElems ; ++i) {
   3365     if (SVOp->getMaskElt(i) < 0)
   3366       continue;
   3367     int Elt = SVOp->getMaskElt(i) % HalfSize;
   3368     Mask |= Elt << i;
   3369   }
   3370 
   3371   return Mask;
   3372 }
   3373 
   3374 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
   3375 /// specifies a shuffle of elements that is suitable for input to 128-bit
   3376 /// SHUFPS and SHUFPD.
   3377 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3378   int NumElems = VT.getVectorNumElements();
   3379 
   3380   if (VT.getSizeInBits() != 128)
   3381     return false;
   3382 
   3383   if (NumElems != 2 && NumElems != 4)
   3384     return false;
   3385 
   3386   int Half = NumElems / 2;
   3387   for (int i = 0; i < Half; ++i)
   3388     if (!isUndefOrInRange(Mask[i], 0, NumElems))
   3389       return false;
   3390   for (int i = Half; i < NumElems; ++i)
   3391     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
   3392       return false;
   3393 
   3394   return true;
   3395 }
   3396 
   3397 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
   3398   SmallVector<int, 8> M;
   3399   N->getMask(M);
   3400   return ::isSHUFPMask(M, N->getValueType(0));
   3401 }
   3402 
   3403 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
   3404 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
   3405 /// half elements to come from vector 1 (which would equal the dest.) and
   3406 /// the upper half to come from vector 2.
   3407 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3408   int NumElems = VT.getVectorNumElements();
   3409 
   3410   if (NumElems != 2 && NumElems != 4)
   3411     return false;
   3412 
   3413   int Half = NumElems / 2;
   3414   for (int i = 0; i < Half; ++i)
   3415     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
   3416       return false;
   3417   for (int i = Half; i < NumElems; ++i)
   3418     if (!isUndefOrInRange(Mask[i], 0, NumElems))
   3419       return false;
   3420   return true;
   3421 }
   3422 
   3423 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
   3424   SmallVector<int, 8> M;
   3425   N->getMask(M);
   3426   return isCommutedSHUFPMask(M, N->getValueType(0));
   3427 }
   3428 
   3429 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3430 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
   3431 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
   3432   EVT VT = N->getValueType(0);
   3433   unsigned NumElems = VT.getVectorNumElements();
   3434 
   3435   if (VT.getSizeInBits() != 128)
   3436     return false;
   3437 
   3438   if (NumElems != 4)
   3439     return false;
   3440 
   3441   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
   3442   return isUndefOrEqual(N->getMaskElt(0), 6) &&
   3443          isUndefOrEqual(N->getMaskElt(1), 7) &&
   3444          isUndefOrEqual(N->getMaskElt(2), 2) &&
   3445          isUndefOrEqual(N->getMaskElt(3), 3);
   3446 }
   3447 
   3448 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
   3449 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
   3450 /// <2, 3, 2, 3>
   3451 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
   3452   EVT VT = N->getValueType(0);
   3453   unsigned NumElems = VT.getVectorNumElements();
   3454 
   3455   if (VT.getSizeInBits() != 128)
   3456     return false;
   3457 
   3458   if (NumElems != 4)
   3459     return false;
   3460 
   3461   return isUndefOrEqual(N->getMaskElt(0), 2) &&
   3462          isUndefOrEqual(N->getMaskElt(1), 3) &&
   3463          isUndefOrEqual(N->getMaskElt(2), 2) &&
   3464          isUndefOrEqual(N->getMaskElt(3), 3);
   3465 }
   3466 
   3467 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
   3468 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
   3469 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
   3470   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3471 
   3472   if (NumElems != 2 && NumElems != 4)
   3473     return false;
   3474 
   3475   for (unsigned i = 0; i < NumElems/2; ++i)
   3476     if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
   3477       return false;
   3478 
   3479   for (unsigned i = NumElems/2; i < NumElems; ++i)
   3480     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3481       return false;
   3482 
   3483   return true;
   3484 }
   3485 
   3486 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3487 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
   3488 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
   3489   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3490 
   3491   if ((NumElems != 2 && NumElems != 4)
   3492       || N->getValueType(0).getSizeInBits() > 128)
   3493     return false;
   3494 
   3495   for (unsigned i = 0; i < NumElems/2; ++i)
   3496     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3497       return false;
   3498 
   3499   for (unsigned i = 0; i < NumElems/2; ++i)
   3500     if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
   3501       return false;
   3502 
   3503   return true;
   3504 }
   3505 
   3506 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
   3507 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
   3508 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3509                          bool V2IsSplat = false) {
   3510   int NumElts = VT.getVectorNumElements();
   3511 
   3512   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3513          "Unsupported vector type for unpckh");
   3514 
   3515   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
   3516     return false;
   3517 
   3518   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3519   // independently on 128-bit lanes.
   3520   unsigned NumLanes = VT.getSizeInBits()/128;
   3521   unsigned NumLaneElts = NumElts/NumLanes;
   3522 
   3523   unsigned Start = 0;
   3524   unsigned End = NumLaneElts;
   3525   for (unsigned s = 0; s < NumLanes; ++s) {
   3526     for (unsigned i = Start, j = s * NumLaneElts;
   3527          i != End;
   3528          i += 2, ++j) {
   3529       int BitI  = Mask[i];
   3530       int BitI1 = Mask[i+1];
   3531       if (!isUndefOrEqual(BitI, j))
   3532         return false;
   3533       if (V2IsSplat) {
   3534         if (!isUndefOrEqual(BitI1, NumElts))
   3535           return false;
   3536       } else {
   3537         if (!isUndefOrEqual(BitI1, j + NumElts))
   3538           return false;
   3539       }
   3540     }
   3541     // Process the next 128 bits.
   3542     Start += NumLaneElts;
   3543     End += NumLaneElts;
   3544   }
   3545 
   3546   return true;
   3547 }
   3548 
   3549 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
   3550   SmallVector<int, 8> M;
   3551   N->getMask(M);
   3552   return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
   3553 }
   3554 
   3555 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
   3556 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
   3557 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3558                          bool V2IsSplat = false) {
   3559   int NumElts = VT.getVectorNumElements();
   3560 
   3561   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3562          "Unsupported vector type for unpckh");
   3563 
   3564   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
   3565     return false;
   3566 
   3567   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3568   // independently on 128-bit lanes.
   3569   unsigned NumLanes = VT.getSizeInBits()/128;
   3570   unsigned NumLaneElts = NumElts/NumLanes;
   3571 
   3572   unsigned Start = 0;
   3573   unsigned End = NumLaneElts;
   3574   for (unsigned l = 0; l != NumLanes; ++l) {
   3575     for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
   3576                              i != End; i += 2, ++j) {
   3577       int BitI  = Mask[i];
   3578       int BitI1 = Mask[i+1];
   3579       if (!isUndefOrEqual(BitI, j))
   3580         return false;
   3581       if (V2IsSplat) {
   3582         if (isUndefOrEqual(BitI1, NumElts))
   3583           return false;
   3584       } else {
   3585         if (!isUndefOrEqual(BitI1, j+NumElts))
   3586           return false;
   3587       }
   3588     }
   3589     // Process the next 128 bits.
   3590     Start += NumLaneElts;
   3591     End += NumLaneElts;
   3592   }
   3593   return true;
   3594 }
   3595 
   3596 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
   3597   SmallVector<int, 8> M;
   3598   N->getMask(M);
   3599   return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
   3600 }
   3601 
   3602 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
   3603 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
   3604 /// <0, 0, 1, 1>
   3605 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3606   int NumElems = VT.getVectorNumElements();
   3607   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
   3608     return false;
   3609 
   3610   // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
   3611   // FIXME: Need a better way to get rid of this, there's no latency difference
   3612   // between UNPCKLPD and MOVDDUP, the later should always be checked first and
   3613   // the former later. We should also remove the "_undef" special mask.
   3614   if (NumElems == 4 && VT.getSizeInBits() == 256)
   3615     return false;
   3616 
   3617   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3618   // independently on 128-bit lanes.
   3619   unsigned NumLanes = VT.getSizeInBits() / 128;
   3620   unsigned NumLaneElts = NumElems / NumLanes;
   3621 
   3622   for (unsigned s = 0; s < NumLanes; ++s) {
   3623     for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
   3624          i != NumLaneElts * (s + 1);
   3625          i += 2, ++j) {
   3626       int BitI  = Mask[i];
   3627       int BitI1 = Mask[i+1];
   3628 
   3629       if (!isUndefOrEqual(BitI, j))
   3630         return false;
   3631       if (!isUndefOrEqual(BitI1, j))
   3632         return false;
   3633     }
   3634   }
   3635 
   3636   return true;
   3637 }
   3638 
   3639 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
   3640   SmallVector<int, 8> M;
   3641   N->getMask(M);
   3642   return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
   3643 }
   3644 
   3645 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
   3646 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
   3647 /// <2, 2, 3, 3>
   3648 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3649   int NumElems = VT.getVectorNumElements();
   3650   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
   3651     return false;
   3652 
   3653   for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
   3654     int BitI  = Mask[i];
   3655     int BitI1 = Mask[i+1];
   3656     if (!isUndefOrEqual(BitI, j))
   3657       return false;
   3658     if (!isUndefOrEqual(BitI1, j))
   3659       return false;
   3660   }
   3661   return true;
   3662 }
   3663 
   3664 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
   3665   SmallVector<int, 8> M;
   3666   N->getMask(M);
   3667   return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
   3668 }
   3669 
   3670 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
   3671 /// specifies a shuffle of elements that is suitable for input to MOVSS,
   3672 /// MOVSD, and MOVD, i.e. setting the lowest element.
   3673 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3674   if (VT.getVectorElementType().getSizeInBits() < 32)
   3675     return false;
   3676 
   3677   int NumElts = VT.getVectorNumElements();
   3678 
   3679   if (!isUndefOrEqual(Mask[0], NumElts))
   3680     return false;
   3681 
   3682   for (int i = 1; i < NumElts; ++i)
   3683     if (!isUndefOrEqual(Mask[i], i))
   3684       return false;
   3685 
   3686   return true;
   3687 }
   3688 
   3689 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
   3690   SmallVector<int, 8> M;
   3691   N->getMask(M);
   3692   return ::isMOVLMask(M, N->getValueType(0));
   3693 }
   3694 
   3695 /// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
   3696 /// as permutations between 128-bit chunks or halves. As an example: this
   3697 /// shuffle bellow:
   3698 ///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
   3699 /// The first half comes from the second half of V1 and the second half from the
   3700 /// the second half of V2.
   3701 static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
   3702                              const X86Subtarget *Subtarget) {
   3703   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
   3704     return false;
   3705 
   3706   // The shuffle result is divided into half A and half B. In total the two
   3707   // sources have 4 halves, namely: C, D, E, F. The final values of A and
   3708   // B must come from C, D, E or F.
   3709   int HalfSize = VT.getVectorNumElements()/2;
   3710   bool MatchA = false, MatchB = false;
   3711 
   3712   // Check if A comes from one of C, D, E, F.
   3713   for (int Half = 0; Half < 4; ++Half) {
   3714     if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
   3715       MatchA = true;
   3716       break;
   3717     }
   3718   }
   3719 
   3720   // Check if B comes from one of C, D, E, F.
   3721   for (int Half = 0; Half < 4; ++Half) {
   3722     if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
   3723       MatchB = true;
   3724       break;
   3725     }
   3726   }
   3727 
   3728   return MatchA && MatchB;
   3729 }
   3730 
   3731 /// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
   3732 /// the specified VECTOR_MASK mask with VPERM2F128 instructions.
   3733 static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
   3734   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3735   EVT VT = SVOp->getValueType(0);
   3736 
   3737   int HalfSize = VT.getVectorNumElements()/2;
   3738 
   3739   int FstHalf = 0, SndHalf = 0;
   3740   for (int i = 0; i < HalfSize; ++i) {
   3741     if (SVOp->getMaskElt(i) > 0) {
   3742       FstHalf = SVOp->getMaskElt(i)/HalfSize;
   3743       break;
   3744     }
   3745   }
   3746   for (int i = HalfSize; i < HalfSize*2; ++i) {
   3747     if (SVOp->getMaskElt(i) > 0) {
   3748       SndHalf = SVOp->getMaskElt(i)/HalfSize;
   3749       break;
   3750     }
   3751   }
   3752 
   3753   return (FstHalf | (SndHalf << 4));
   3754 }
   3755 
   3756 /// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
   3757 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
   3758 /// Note that VPERMIL mask matching is different depending whether theunderlying
   3759 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
   3760 /// to the same elements of the low, but to the higher half of the source.
   3761 /// In VPERMILPD the two lanes could be shuffled independently of each other
   3762 /// with the same restriction that lanes can't be crossed.
   3763 static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3764                             const X86Subtarget *Subtarget) {
   3765   int NumElts = VT.getVectorNumElements();
   3766   int NumLanes = VT.getSizeInBits()/128;
   3767 
   3768   if (!Subtarget->hasAVX())
   3769     return false;
   3770 
   3771   // Only match 256-bit with 64-bit types
   3772   if (VT.getSizeInBits() != 256 || NumElts != 4)
   3773     return false;
   3774 
   3775   // The mask on the high lane is independent of the low. Both can match
   3776   // any element in inside its own lane, but can't cross.
   3777   int LaneSize = NumElts/NumLanes;
   3778   for (int l = 0; l < NumLanes; ++l)
   3779     for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
   3780       int LaneStart = l*LaneSize;
   3781       if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
   3782         return false;
   3783     }
   3784 
   3785   return true;
   3786 }
   3787 
   3788 /// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3789 /// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
   3790 /// Note that VPERMIL mask matching is different depending whether theunderlying
   3791 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
   3792 /// to the same elements of the low, but to the higher half of the source.
   3793 /// In VPERMILPD the two lanes could be shuffled independently of each other
   3794 /// with the same restriction that lanes can't be crossed.
   3795 static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3796                             const X86Subtarget *Subtarget) {
   3797   unsigned NumElts = VT.getVectorNumElements();
   3798   unsigned NumLanes = VT.getSizeInBits()/128;
   3799 
   3800   if (!Subtarget->hasAVX())
   3801     return false;
   3802 
   3803   // Only match 256-bit with 32-bit types
   3804   if (VT.getSizeInBits() != 256 || NumElts != 8)
   3805     return false;
   3806 
   3807   // The mask on the high lane should be the same as the low. Actually,
   3808   // they can differ if any of the corresponding index in a lane is undef
   3809   // and the other stays in range.
   3810   int LaneSize = NumElts/NumLanes;
   3811   for (int i = 0; i < LaneSize; ++i) {
   3812     int HighElt = i+LaneSize;
   3813     bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
   3814     bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
   3815 
   3816     if (!HighValid || !LowValid)
   3817       return false;
   3818     if (Mask[i] < 0 || Mask[HighElt] < 0)
   3819       continue;
   3820     if (Mask[HighElt]-Mask[i] != LaneSize)
   3821       return false;
   3822   }
   3823 
   3824   return true;
   3825 }
   3826 
   3827 /// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
   3828 /// the specified VECTOR_MASK mask with VPERMILPS* instructions.
   3829 static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
   3830   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3831   EVT VT = SVOp->getValueType(0);
   3832 
   3833   int NumElts = VT.getVectorNumElements();
   3834   int NumLanes = VT.getSizeInBits()/128;
   3835   int LaneSize = NumElts/NumLanes;
   3836 
   3837   // Although the mask is equal for both lanes do it twice to get the cases
   3838   // where a mask will match because the same mask element is undef on the
   3839   // first half but valid on the second. This would get pathological cases
   3840   // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
   3841   unsigned Mask = 0;
   3842   for (int l = 0; l < NumLanes; ++l) {
   3843     for (int i = 0; i < LaneSize; ++i) {
   3844       int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
   3845       if (MaskElt < 0)
   3846         continue;
   3847       if (MaskElt >= LaneSize)
   3848         MaskElt -= LaneSize;
   3849       Mask |= MaskElt << (i*2);
   3850     }
   3851   }
   3852 
   3853   return Mask;
   3854 }
   3855 
   3856 /// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
   3857 /// the specified VECTOR_MASK mask with VPERMILPD* instructions.
   3858 static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
   3859   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3860   EVT VT = SVOp->getValueType(0);
   3861 
   3862   int NumElts = VT.getVectorNumElements();
   3863   int NumLanes = VT.getSizeInBits()/128;
   3864 
   3865   unsigned Mask = 0;
   3866   int LaneSize = NumElts/NumLanes;
   3867   for (int l = 0; l < NumLanes; ++l)
   3868     for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
   3869       int MaskElt = SVOp->getMaskElt(i);
   3870       if (MaskElt < 0)
   3871         continue;
   3872       Mask |= (MaskElt-l*LaneSize) << i;
   3873     }
   3874 
   3875   return Mask;
   3876 }
   3877 
   3878 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
   3879 /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
   3880 /// element of vector 2 and the other elements to come from vector 1 in order.
   3881 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3882                                bool V2IsSplat = false, bool V2IsUndef = false) {
   3883   int NumOps = VT.getVectorNumElements();
   3884   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
   3885     return false;
   3886 
   3887   if (!isUndefOrEqual(Mask[0], 0))
   3888     return false;
   3889 
   3890   for (int i = 1; i < NumOps; ++i)
   3891     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
   3892           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
   3893           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
   3894       return false;
   3895 
   3896   return true;
   3897 }
   3898 
   3899 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
   3900                            bool V2IsUndef = false) {
   3901   SmallVector<int, 8> M;
   3902   N->getMask(M);
   3903   return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
   3904 }
   3905 
   3906 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3907 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
   3908 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
   3909 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
   3910                          const X86Subtarget *Subtarget) {
   3911   if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
   3912     return false;
   3913 
   3914   // The second vector must be undef
   3915   if (N->getOperand(1).getOpcode() != ISD::UNDEF)
   3916     return false;
   3917 
   3918   EVT VT = N->getValueType(0);
   3919   unsigned NumElems = VT.getVectorNumElements();
   3920 
   3921   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
   3922       (VT.getSizeInBits() == 256 && NumElems != 8))
   3923     return false;
   3924 
   3925   // "i+1" is the value the indexed mask element must have
   3926   for (unsigned i = 0; i < NumElems; i += 2)
   3927     if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
   3928         !isUndefOrEqual(N->getMaskElt(i+1), i+1))
   3929       return false;
   3930 
   3931   return true;
   3932 }
   3933 
   3934 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3935 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
   3936 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
   3937 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
   3938                          const X86Subtarget *Subtarget) {
   3939   if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
   3940     return false;
   3941 
   3942   // The second vector must be undef
   3943   if (N->getOperand(1).getOpcode() != ISD::UNDEF)
   3944     return false;
   3945 
   3946   EVT VT = N->getValueType(0);
   3947   unsigned NumElems = VT.getVectorNumElements();
   3948 
   3949   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
   3950       (VT.getSizeInBits() == 256 && NumElems != 8))
   3951     return false;
   3952 
   3953   // "i" is the value the indexed mask element must have
   3954   for (unsigned i = 0; i < NumElems; i += 2)
   3955     if (!isUndefOrEqual(N->getMaskElt(i), i) ||
   3956         !isUndefOrEqual(N->getMaskElt(i+1), i))
   3957       return false;
   3958 
   3959   return true;
   3960 }
   3961 
   3962 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
   3963 /// specifies a shuffle of elements that is suitable for input to 256-bit
   3964 /// version of MOVDDUP.
   3965 static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
   3966                            const X86Subtarget *Subtarget) {
   3967   EVT VT = N->getValueType(0);
   3968   int NumElts = VT.getVectorNumElements();
   3969   bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
   3970 
   3971   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
   3972       !V2IsUndef || NumElts != 4)
   3973     return false;
   3974 
   3975   for (int i = 0; i != NumElts/2; ++i)
   3976     if (!isUndefOrEqual(N->getMaskElt(i), 0))
   3977       return false;
   3978   for (int i = NumElts/2; i != NumElts; ++i)
   3979     if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
   3980       return false;
   3981   return true;
   3982 }
   3983 
   3984 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3985 /// specifies a shuffle of elements that is suitable for input to 128-bit
   3986 /// version of MOVDDUP.
   3987 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
   3988   EVT VT = N->getValueType(0);
   3989 
   3990   if (VT.getSizeInBits() != 128)
   3991     return false;
   3992 
   3993   int e = VT.getVectorNumElements() / 2;
   3994   for (int i = 0; i < e; ++i)
   3995     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3996       return false;
   3997   for (int i = 0; i < e; ++i)
   3998     if (!isUndefOrEqual(N->getMaskElt(e+i), i))
   3999       return false;
   4000   return true;
   4001 }
   4002 
   4003 /// isVEXTRACTF128Index - Return true if the specified
   4004 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
   4005 /// suitable for input to VEXTRACTF128.
   4006 bool X86::isVEXTRACTF128Index(SDNode *N) {
   4007   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   4008     return false;
   4009 
   4010   // The index should be aligned on a 128-bit boundary.
   4011   uint64_t Index =
   4012     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   4013 
   4014   unsigned VL = N->getValueType(0).getVectorNumElements();
   4015   unsigned VBits = N->getValueType(0).getSizeInBits();
   4016   unsigned ElSize = VBits / VL;
   4017   bool Result = (Index * ElSize) % 128 == 0;
   4018 
   4019   return Result;
   4020 }
   4021 
   4022 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
   4023 /// operand specifies a subvector insert that is suitable for input to
   4024 /// VINSERTF128.
   4025 bool X86::isVINSERTF128Index(SDNode *N) {
   4026   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   4027     return false;
   4028 
   4029   // The index should be aligned on a 128-bit boundary.
   4030   uint64_t Index =
   4031     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   4032 
   4033   unsigned VL = N->getValueType(0).getVectorNumElements();
   4034   unsigned VBits = N->getValueType(0).getSizeInBits();
   4035   unsigned ElSize = VBits / VL;
   4036   bool Result = (Index * ElSize) % 128 == 0;
   4037 
   4038   return Result;
   4039 }
   4040 
   4041 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
   4042 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
   4043 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
   4044   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4045   int NumOperands = SVOp->getValueType(0).getVectorNumElements();
   4046 
   4047   unsigned Shift = (NumOperands == 4) ? 2 : 1;
   4048   unsigned Mask = 0;
   4049   for (int i = 0; i < NumOperands; ++i) {
   4050     int Val = SVOp->getMaskElt(NumOperands-i-1);
   4051     if (Val < 0) Val = 0;
   4052     if (Val >= NumOperands) Val -= NumOperands;
   4053     Mask |= Val;
   4054     if (i != NumOperands - 1)
   4055       Mask <<= Shift;
   4056   }
   4057   return Mask;
   4058 }
   4059 
   4060 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
   4061 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
   4062 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
   4063   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4064   unsigned Mask = 0;
   4065   // 8 nodes, but we only care about the last 4.
   4066   for (unsigned i = 7; i >= 4; --i) {
   4067     int Val = SVOp->getMaskElt(i);
   4068     if (Val >= 0)
   4069       Mask |= (Val - 4);
   4070     if (i != 4)
   4071       Mask <<= 2;
   4072   }
   4073   return Mask;
   4074 }
   4075 
   4076 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
   4077 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
   4078 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
   4079   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4080   unsigned Mask = 0;
   4081   // 8 nodes, but we only care about the first 4.
   4082   for (int i = 3; i >= 0; --i) {
   4083     int Val = SVOp->getMaskElt(i);
   4084     if (Val >= 0)
   4085       Mask |= Val;
   4086     if (i != 0)
   4087       Mask <<= 2;
   4088   }
   4089   return Mask;
   4090 }
   4091 
   4092 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
   4093 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
   4094 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
   4095   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4096   EVT VVT = N->getValueType(0);
   4097   unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
   4098   int Val = 0;
   4099 
   4100   unsigned i, e;
   4101   for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
   4102     Val = SVOp->getMaskElt(i);
   4103     if (Val >= 0)
   4104       break;
   4105   }
   4106   assert(Val - i > 0 && "PALIGNR imm should be positive");
   4107   return (Val - i) * EltSize;
   4108 }
   4109 
   4110 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
   4111 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
   4112 /// instructions.
   4113 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
   4114   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   4115     llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
   4116 
   4117   uint64_t Index =
   4118     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   4119 
   4120   EVT VecVT = N->getOperand(0).getValueType();
   4121   EVT ElVT = VecVT.getVectorElementType();
   4122 
   4123   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   4124   return Index / NumElemsPerChunk;
   4125 }
   4126 
   4127 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
   4128 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
   4129 /// instructions.
   4130 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
   4131   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   4132     llvm_unreachable("Illegal insert subvector for VINSERTF128");
   4133 
   4134   uint64_t Index =
   4135     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   4136 
   4137   EVT VecVT = N->getValueType(0);
   4138   EVT ElVT = VecVT.getVectorElementType();
   4139 
   4140   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   4141   return Index / NumElemsPerChunk;
   4142 }
   4143 
   4144 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
   4145 /// constant +0.0.
   4146 bool X86::isZeroNode(SDValue Elt) {
   4147   return ((isa<ConstantSDNode>(Elt) &&
   4148            cast<ConstantSDNode>(Elt)->isNullValue()) ||
   4149           (isa<ConstantFPSDNode>(Elt) &&
   4150            cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
   4151 }
   4152 
   4153 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
   4154 /// their permute mask.
   4155 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
   4156                                     SelectionDAG &DAG) {
   4157   EVT VT = SVOp->getValueType(0);
   4158   unsigned NumElems = VT.getVectorNumElements();
   4159   SmallVector<int, 8> MaskVec;
   4160 
   4161   for (unsigned i = 0; i != NumElems; ++i) {
   4162     int idx = SVOp->getMaskElt(i);
   4163     if (idx < 0)
   4164       MaskVec.push_back(idx);
   4165     else if (idx < (int)NumElems)
   4166       MaskVec.push_back(idx + NumElems);
   4167     else
   4168       MaskVec.push_back(idx - NumElems);
   4169   }
   4170   return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
   4171                               SVOp->getOperand(0), &MaskVec[0]);
   4172 }
   4173 
   4174 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
   4175 /// the two vector operands have swapped position.
   4176 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
   4177   unsigned NumElems = VT.getVectorNumElements();
   4178   for (unsigned i = 0; i != NumElems; ++i) {
   4179     int idx = Mask[i];
   4180     if (idx < 0)
   4181       continue;
   4182     else if (idx < (int)NumElems)
   4183       Mask[i] = idx + NumElems;
   4184     else
   4185       Mask[i] = idx - NumElems;
   4186   }
   4187 }
   4188 
   4189 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
   4190 /// match movhlps. The lower half elements should come from upper half of
   4191 /// V1 (and in order), and the upper half elements should come from the upper
   4192 /// half of V2 (and in order).
   4193 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
   4194   EVT VT = Op->getValueType(0);
   4195   if (VT.getSizeInBits() != 128)
   4196     return false;
   4197   if (VT.getVectorNumElements() != 4)
   4198     return false;
   4199   for (unsigned i = 0, e = 2; i != e; ++i)
   4200     if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
   4201       return false;
   4202   for (unsigned i = 2; i != 4; ++i)
   4203     if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
   4204       return false;
   4205   return true;
   4206 }
   4207 
   4208 /// isScalarLoadToVector - Returns true if the node is a scalar load that
   4209 /// is promoted to a vector. It also returns the LoadSDNode by reference if
   4210 /// required.
   4211 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
   4212   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
   4213     return false;
   4214   N = N->getOperand(0).getNode();
   4215   if (!ISD::isNON_EXTLoad(N))
   4216     return false;
   4217   if (LD)
   4218     *LD = cast<LoadSDNode>(N);
   4219   return true;
   4220 }
   4221 
   4222 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
   4223 /// match movlp{s|d}. The lower half elements should come from lower half of
   4224 /// V1 (and in order), and the upper half elements should come from the upper
   4225 /// half of V2 (and in order). And since V1 will become the source of the
   4226 /// MOVLP, it must be either a vector load or a scalar load to vector.
   4227 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
   4228                                ShuffleVectorSDNode *Op) {
   4229   EVT VT = Op->getValueType(0);
   4230   if (VT.getSizeInBits() != 128)
   4231     return false;
   4232 
   4233   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
   4234     return false;
   4235   // Is V2 is a vector load, don't do this transformation. We will try to use
   4236   // load folding shufps op.
   4237   if (ISD::isNON_EXTLoad(V2))
   4238     return false;
   4239 
   4240   unsigned NumElems = VT.getVectorNumElements();
   4241 
   4242   if (NumElems != 2 && NumElems != 4)
   4243     return false;
   4244   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   4245     if (!isUndefOrEqual(Op->getMaskElt(i), i))
   4246       return false;
   4247   for (unsigned i = NumElems/2; i != NumElems; ++i)
   4248     if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
   4249       return false;
   4250   return true;
   4251 }
   4252 
   4253 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
   4254 /// all the same.
   4255 static bool isSplatVector(SDNode *N) {
   4256   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4257     return false;
   4258 
   4259   SDValue SplatValue = N->getOperand(0);
   4260   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
   4261     if (N->getOperand(i) != SplatValue)
   4262       return false;
   4263   return true;
   4264 }
   4265 
   4266 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
   4267 /// to an zero vector.
   4268 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
   4269 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
   4270   SDValue V1 = N->getOperand(0);
   4271   SDValue V2 = N->getOperand(1);
   4272   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   4273   for (unsigned i = 0; i != NumElems; ++i) {
   4274     int Idx = N->getMaskElt(i);
   4275     if (Idx >= (int)NumElems) {
   4276       unsigned Opc = V2.getOpcode();
   4277       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
   4278         continue;
   4279       if (Opc != ISD::BUILD_VECTOR ||
   4280           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
   4281         return false;
   4282     } else if (Idx >= 0) {
   4283       unsigned Opc = V1.getOpcode();
   4284       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
   4285         continue;
   4286       if (Opc != ISD::BUILD_VECTOR ||
   4287           !X86::isZeroNode(V1.getOperand(Idx)))
   4288         return false;
   4289     }
   4290   }
   4291   return true;
   4292 }
   4293 
   4294 /// getZeroVector - Returns a vector of specified type with all zero elements.
   4295 ///
   4296 static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
   4297                              DebugLoc dl) {
   4298   assert(VT.isVector() && "Expected a vector type");
   4299 
   4300   // Always build SSE zero vectors as <4 x i32> bitcasted
   4301   // to their dest type. This ensures they get CSE'd.
   4302   SDValue Vec;
   4303   if (VT.getSizeInBits() == 128) {  // SSE
   4304     if (HasXMMInt) {  // SSE2
   4305       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
   4306       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4307     } else { // SSE1
   4308       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4309       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
   4310     }
   4311   } else if (VT.getSizeInBits() == 256) { // AVX
   4312     // 256-bit logic and arithmetic instructions in AVX are
   4313     // all floating-point, no support for integer ops. Default
   4314     // to emitting fp zeroed vectors then.
   4315     SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4316     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4317     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
   4318   }
   4319   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4320 }
   4321 
   4322 /// getOnesVector - Returns a vector of specified type with all bits set.
   4323 /// Always build ones vectors as <4 x i32>. For 256-bit types, use two
   4324 /// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
   4325 /// original type, ensuring they get CSE'd.
   4326 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   4327   assert(VT.isVector() && "Expected a vector type");
   4328   assert((VT.is128BitVector() || VT.is256BitVector())
   4329          && "Expected a 128-bit or 256-bit vector type");
   4330 
   4331   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
   4332   SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
   4333                             Cst, Cst, Cst, Cst);
   4334 
   4335   if (VT.is256BitVector()) {
   4336     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
   4337                               Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
   4338     Vec = Insert128BitVector(InsV, Vec,
   4339                   DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
   4340   }
   4341 
   4342   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4343 }
   4344 
   4345 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
   4346 /// that point to V2 points to its first element.
   4347 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   4348   EVT VT = SVOp->getValueType(0);
   4349   unsigned NumElems = VT.getVectorNumElements();
   4350 
   4351   bool Changed = false;
   4352   SmallVector<int, 8> MaskVec;
   4353   SVOp->getMask(MaskVec);
   4354 
   4355   for (unsigned i = 0; i != NumElems; ++i) {
   4356     if (MaskVec[i] > (int)NumElems) {
   4357       MaskVec[i] = NumElems;
   4358       Changed = true;
   4359     }
   4360   }
   4361   if (Changed)
   4362     return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
   4363                                 SVOp->getOperand(1), &MaskVec[0]);
   4364   return SDValue(SVOp, 0);
   4365 }
   4366 
   4367 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
   4368 /// operation of specified width.
   4369 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4370                        SDValue V2) {
   4371   unsigned NumElems = VT.getVectorNumElements();
   4372   SmallVector<int, 8> Mask;
   4373   Mask.push_back(NumElems);
   4374   for (unsigned i = 1; i != NumElems; ++i)
   4375     Mask.push_back(i);
   4376   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4377 }
   4378 
   4379 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
   4380 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4381                           SDValue V2) {
   4382   unsigned NumElems = VT.getVectorNumElements();
   4383   SmallVector<int, 8> Mask;
   4384   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
   4385     Mask.push_back(i);
   4386     Mask.push_back(i + NumElems);
   4387   }
   4388   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4389 }
   4390 
   4391 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
   4392 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4393                           SDValue V2) {
   4394   unsigned NumElems = VT.getVectorNumElements();
   4395   unsigned Half = NumElems/2;
   4396   SmallVector<int, 8> Mask;
   4397   for (unsigned i = 0; i != Half; ++i) {
   4398     Mask.push_back(i + Half);
   4399     Mask.push_back(i + NumElems + Half);
   4400   }
   4401   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4402 }
   4403 
   4404 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
   4405 // a generic shuffle instruction because the target has no such instructions.
   4406 // Generate shuffles which repeat i16 and i8 several times until they can be
   4407 // represented by v4f32 and then be manipulated by target suported shuffles.
   4408 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
   4409   EVT VT = V.getValueType();
   4410   int NumElems = VT.getVectorNumElements();
   4411   DebugLoc dl = V.getDebugLoc();
   4412 
   4413   while (NumElems > 4) {
   4414     if (EltNo < NumElems/2) {
   4415       V = getUnpackl(DAG, dl, VT, V, V);
   4416     } else {
   4417       V = getUnpackh(DAG, dl, VT, V, V);
   4418       EltNo -= NumElems/2;
   4419     }
   4420     NumElems >>= 1;
   4421   }
   4422   return V;
   4423 }
   4424 
   4425 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
   4426 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
   4427   EVT VT = V.getValueType();
   4428   DebugLoc dl = V.getDebugLoc();
   4429   assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
   4430          && "Vector size not supported");
   4431 
   4432   if (VT.getSizeInBits() == 128) {
   4433     V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
   4434     int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
   4435     V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
   4436                              &SplatMask[0]);
   4437   } else {
   4438     // To use VPERMILPS to splat scalars, the second half of indicies must
   4439     // refer to the higher part, which is a duplication of the lower one,
   4440     // because VPERMILPS can only handle in-lane permutations.
   4441     int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
   4442                          EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
   4443 
   4444     V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
   4445     V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
   4446                              &SplatMask[0]);
   4447   }
   4448 
   4449   return DAG.getNode(ISD::BITCAST, dl, VT, V);
   4450 }
   4451 
   4452 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
   4453 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
   4454   EVT SrcVT = SV->getValueType(0);
   4455   SDValue V1 = SV->getOperand(0);
   4456   DebugLoc dl = SV->getDebugLoc();
   4457 
   4458   int EltNo = SV->getSplatIndex();
   4459   int NumElems = SrcVT.getVectorNumElements();
   4460   unsigned Size = SrcVT.getSizeInBits();
   4461 
   4462   assert(((Size == 128 && NumElems > 4) || Size == 256) &&
   4463           "Unknown how to promote splat for type");
   4464 
   4465   // Extract the 128-bit part containing the splat element and update
   4466   // the splat element index when it refers to the higher register.
   4467   if (Size == 256) {
   4468     unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
   4469     V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
   4470     if (Idx > 0)
   4471       EltNo -= NumElems/2;
   4472   }
   4473 
   4474   // All i16 and i8 vector types can't be used directly by a generic shuffle
   4475   // instruction because the target has no such instruction. Generate shuffles
   4476   // which repeat i16 and i8 several times until they fit in i32, and then can
   4477   // be manipulated by target suported shuffles.
   4478   EVT EltVT = SrcVT.getVectorElementType();
   4479   if (EltVT == MVT::i8 || EltVT == MVT::i16)
   4480     V1 = PromoteSplati8i16(V1, DAG, EltNo);
   4481 
   4482   // Recreate the 256-bit vector and place the same 128-bit vector
   4483   // into the low and high part. This is necessary because we want
   4484   // to use VPERM* to shuffle the vectors
   4485   if (Size == 256) {
   4486     SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
   4487                          DAG.getConstant(0, MVT::i32), DAG, dl);
   4488     V1 = Insert128BitVector(InsV, V1,
   4489                DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
   4490   }
   4491 
   4492   return getLegalSplat(DAG, V1, EltNo);
   4493 }
   4494 
   4495 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
   4496 /// vector of zero or undef vector.  This produces a shuffle where the low
   4497 /// element of V2 is swizzled into the zero/undef vector, landing at element
   4498 /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
   4499 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
   4500                                            bool isZero, bool HasXMMInt,
   4501                                            SelectionDAG &DAG) {
   4502   EVT VT = V2.getValueType();
   4503   SDValue V1 = isZero
   4504     ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
   4505   unsigned NumElems = VT.getVectorNumElements();
   4506   SmallVector<int, 16> MaskVec;
   4507   for (unsigned i = 0; i != NumElems; ++i)
   4508     // If this is the insertion idx, put the low elt of V2 here.
   4509     MaskVec.push_back(i == Idx ? NumElems : i);
   4510   return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
   4511 }
   4512 
   4513 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
   4514 /// element of the result of the vector shuffle.
   4515 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
   4516                                    unsigned Depth) {
   4517   if (Depth == 6)
   4518     return SDValue();  // Limit search depth.
   4519 
   4520   SDValue V = SDValue(N, 0);
   4521   EVT VT = V.getValueType();
   4522   unsigned Opcode = V.getOpcode();
   4523 
   4524   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
   4525   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
   4526     Index = SV->getMaskElt(Index);
   4527 
   4528     if (Index < 0)
   4529       return DAG.getUNDEF(VT.getVectorElementType());
   4530 
   4531     int NumElems = VT.getVectorNumElements();
   4532     SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
   4533     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
   4534   }
   4535 
   4536   // Recurse into target specific vector shuffles to find scalars.
   4537   if (isTargetShuffle(Opcode)) {
   4538     int NumElems = VT.getVectorNumElements();
   4539     SmallVector<unsigned, 16> ShuffleMask;
   4540     SDValue ImmN;
   4541 
   4542     switch(Opcode) {
   4543     case X86ISD::SHUFPS:
   4544     case X86ISD::SHUFPD:
   4545       ImmN = N->getOperand(N->getNumOperands()-1);
   4546       DecodeSHUFPSMask(NumElems,
   4547                        cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4548                        ShuffleMask);
   4549       break;
   4550     case X86ISD::PUNPCKHBW:
   4551     case X86ISD::PUNPCKHWD:
   4552     case X86ISD::PUNPCKHDQ:
   4553     case X86ISD::PUNPCKHQDQ:
   4554       DecodePUNPCKHMask(NumElems, ShuffleMask);
   4555       break;
   4556     case X86ISD::UNPCKHPS:
   4557     case X86ISD::UNPCKHPD:
   4558     case X86ISD::VUNPCKHPSY:
   4559     case X86ISD::VUNPCKHPDY:
   4560       DecodeUNPCKHPMask(NumElems, ShuffleMask);
   4561       break;
   4562     case X86ISD::PUNPCKLBW:
   4563     case X86ISD::PUNPCKLWD:
   4564     case X86ISD::PUNPCKLDQ:
   4565     case X86ISD::PUNPCKLQDQ:
   4566       DecodePUNPCKLMask(VT, ShuffleMask);
   4567       break;
   4568     case X86ISD::UNPCKLPS:
   4569     case X86ISD::UNPCKLPD:
   4570     case X86ISD::VUNPCKLPSY:
   4571     case X86ISD::VUNPCKLPDY:
   4572       DecodeUNPCKLPMask(VT, ShuffleMask);
   4573       break;
   4574     case X86ISD::MOVHLPS:
   4575       DecodeMOVHLPSMask(NumElems, ShuffleMask);
   4576       break;
   4577     case X86ISD::MOVLHPS:
   4578       DecodeMOVLHPSMask(NumElems, ShuffleMask);
   4579       break;
   4580     case X86ISD::PSHUFD:
   4581       ImmN = N->getOperand(N->getNumOperands()-1);
   4582       DecodePSHUFMask(NumElems,
   4583                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4584                       ShuffleMask);
   4585       break;
   4586     case X86ISD::PSHUFHW:
   4587       ImmN = N->getOperand(N->getNumOperands()-1);
   4588       DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4589                         ShuffleMask);
   4590       break;
   4591     case X86ISD::PSHUFLW:
   4592       ImmN = N->getOperand(N->getNumOperands()-1);
   4593       DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4594                         ShuffleMask);
   4595       break;
   4596     case X86ISD::MOVSS:
   4597     case X86ISD::MOVSD: {
   4598       // The index 0 always comes from the first element of the second source,
   4599       // this is why MOVSS and MOVSD are used in the first place. The other
   4600       // elements come from the other positions of the first source vector.
   4601       unsigned OpNum = (Index == 0) ? 1 : 0;
   4602       return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
   4603                                  Depth+1);
   4604     }
   4605     case X86ISD::VPERMILPS:
   4606       ImmN = N->getOperand(N->getNumOperands()-1);
   4607       DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4608                         ShuffleMask);
   4609       break;
   4610     case X86ISD::VPERMILPSY:
   4611       ImmN = N->getOperand(N->getNumOperands()-1);
   4612       DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4613                         ShuffleMask);
   4614       break;
   4615     case X86ISD::VPERMILPD:
   4616       ImmN = N->getOperand(N->getNumOperands()-1);
   4617       DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4618                         ShuffleMask);
   4619       break;
   4620     case X86ISD::VPERMILPDY:
   4621       ImmN = N->getOperand(N->getNumOperands()-1);
   4622       DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4623                         ShuffleMask);
   4624       break;
   4625     case X86ISD::VPERM2F128:
   4626       ImmN = N->getOperand(N->getNumOperands()-1);
   4627       DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4628                            ShuffleMask);
   4629       break;
   4630     case X86ISD::MOVDDUP:
   4631     case X86ISD::MOVLHPD:
   4632     case X86ISD::MOVLPD:
   4633     case X86ISD::MOVLPS:
   4634     case X86ISD::MOVSHDUP:
   4635     case X86ISD::MOVSLDUP:
   4636     case X86ISD::PALIGN:
   4637       return SDValue(); // Not yet implemented.
   4638     default:
   4639       assert(0 && "unknown target shuffle node");
   4640       return SDValue();
   4641     }
   4642 
   4643     Index = ShuffleMask[Index];
   4644     if (Index < 0)
   4645       return DAG.getUNDEF(VT.getVectorElementType());
   4646 
   4647     SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
   4648     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
   4649                                Depth+1);
   4650   }
   4651 
   4652   // Actual nodes that may contain scalar elements
   4653   if (Opcode == ISD::BITCAST) {
   4654     V = V.getOperand(0);
   4655     EVT SrcVT = V.getValueType();
   4656     unsigned NumElems = VT.getVectorNumElements();
   4657 
   4658     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
   4659       return SDValue();
   4660   }
   4661 
   4662   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   4663     return (Index == 0) ? V.getOperand(0)
   4664                           : DAG.getUNDEF(VT.getVectorElementType());
   4665 
   4666   if (V.getOpcode() == ISD::BUILD_VECTOR)
   4667     return V.getOperand(Index);
   4668 
   4669   return SDValue();
   4670 }
   4671 
   4672 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
   4673 /// shuffle operation which come from a consecutively from a zero. The
   4674 /// search can start in two different directions, from left or right.
   4675 static
   4676 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
   4677                                   bool ZerosFromLeft, SelectionDAG &DAG) {
   4678   int i = 0;
   4679 
   4680   while (i < NumElems) {
   4681     unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
   4682     SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
   4683     if (!(Elt.getNode() &&
   4684          (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
   4685       break;
   4686     ++i;
   4687   }
   4688 
   4689   return i;
   4690 }
   4691 
   4692 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
   4693 /// MaskE correspond consecutively to elements from one of the vector operands,
   4694 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
   4695 static
   4696 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
   4697                               int OpIdx, int NumElems, unsigned &OpNum) {
   4698   bool SeenV1 = false;
   4699   bool SeenV2 = false;
   4700 
   4701   for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
   4702     int Idx = SVOp->getMaskElt(i);
   4703     // Ignore undef indicies
   4704     if (Idx < 0)
   4705       continue;
   4706 
   4707     if (Idx < NumElems)
   4708       SeenV1 = true;
   4709     else
   4710       SeenV2 = true;
   4711 
   4712     // Only accept consecutive elements from the same vector
   4713     if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
   4714       return false;
   4715   }
   4716 
   4717   OpNum = SeenV1 ? 0 : 1;
   4718   return true;
   4719 }
   4720 
   4721 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
   4722 /// logical left shift of a vector.
   4723 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4724                                bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4725   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4726   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4727               false /* check zeros from right */, DAG);
   4728   unsigned OpSrc;
   4729 
   4730   if (!NumZeros)
   4731     return false;
   4732 
   4733   // Considering the elements in the mask that are not consecutive zeros,
   4734   // check if they consecutively come from only one of the source vectors.
   4735   //
   4736   //               V1 = {X, A, B, C}     0
   4737   //                         \  \  \    /
   4738   //   vector_shuffle V1, V2 <1, 2, 3, X>
   4739   //
   4740   if (!isShuffleMaskConsecutive(SVOp,
   4741             0,                   // Mask Start Index
   4742             NumElems-NumZeros-1, // Mask End Index
   4743             NumZeros,            // Where to start looking in the src vector
   4744             NumElems,            // Number of elements in vector
   4745             OpSrc))              // Which source operand ?
   4746     return false;
   4747 
   4748   isLeft = false;
   4749   ShAmt = NumZeros;
   4750   ShVal = SVOp->getOperand(OpSrc);
   4751   return true;
   4752 }
   4753 
   4754 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
   4755 /// logical left shift of a vector.
   4756 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4757                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4758   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4759   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4760               true /* check zeros from left */, DAG);
   4761   unsigned OpSrc;
   4762 
   4763   if (!NumZeros)
   4764     return false;
   4765 
   4766   // Considering the elements in the mask that are not consecutive zeros,
   4767   // check if they consecutively come from only one of the source vectors.
   4768   //
   4769   //                           0    { A, B, X, X } = V2
   4770   //                          / \    /  /
   4771   //   vector_shuffle V1, V2 <X, X, 4, 5>
   4772   //
   4773   if (!isShuffleMaskConsecutive(SVOp,
   4774             NumZeros,     // Mask Start Index
   4775             NumElems-1,   // Mask End Index
   4776             0,            // Where to start looking in the src vector
   4777             NumElems,     // Number of elements in vector
   4778             OpSrc))       // Which source operand ?
   4779     return false;
   4780 
   4781   isLeft = true;
   4782   ShAmt = NumZeros;
   4783   ShVal = SVOp->getOperand(OpSrc);
   4784   return true;
   4785 }
   4786 
   4787 /// isVectorShift - Returns true if the shuffle can be implemented as a
   4788 /// logical left or right shift of a vector.
   4789 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4790                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4791   // Although the logic below support any bitwidth size, there are no
   4792   // shift instructions which handle more than 128-bit vectors.
   4793   if (SVOp->getValueType(0).getSizeInBits() > 128)
   4794     return false;
   4795 
   4796   if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
   4797       isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
   4798     return true;
   4799 
   4800   return false;
   4801 }
   4802 
   4803 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
   4804 ///
   4805 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
   4806                                        unsigned NumNonZero, unsigned NumZero,
   4807                                        SelectionDAG &DAG,
   4808                                        const TargetLowering &TLI) {
   4809   if (NumNonZero > 8)
   4810     return SDValue();
   4811 
   4812   DebugLoc dl = Op.getDebugLoc();
   4813   SDValue V(0, 0);
   4814   bool First = true;
   4815   for (unsigned i = 0; i < 16; ++i) {
   4816     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
   4817     if (ThisIsNonZero && First) {
   4818       if (NumZero)
   4819         V = getZeroVector(MVT::v8i16, true, DAG, dl);
   4820       else
   4821         V = DAG.getUNDEF(MVT::v8i16);
   4822       First = false;
   4823     }
   4824 
   4825     if ((i & 1) != 0) {
   4826       SDValue ThisElt(0, 0), LastElt(0, 0);
   4827       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
   4828       if (LastIsNonZero) {
   4829         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
   4830                               MVT::i16, Op.getOperand(i-1));
   4831       }
   4832       if (ThisIsNonZero) {
   4833         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
   4834         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
   4835                               ThisElt, DAG.getConstant(8, MVT::i8));
   4836         if (LastIsNonZero)
   4837           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
   4838       } else
   4839         ThisElt = LastElt;
   4840 
   4841       if (ThisElt.getNode())
   4842         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
   4843                         DAG.getIntPtrConstant(i/2));
   4844     }
   4845   }
   4846 
   4847   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
   4848 }
   4849 
   4850 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
   4851 ///
   4852 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
   4853                                      unsigned NumNonZero, unsigned NumZero,
   4854                                      SelectionDAG &DAG,
   4855                                      const TargetLowering &TLI) {
   4856   if (NumNonZero > 4)
   4857     return SDValue();
   4858 
   4859   DebugLoc dl = Op.getDebugLoc();
   4860   SDValue V(0, 0);
   4861   bool First = true;
   4862   for (unsigned i = 0; i < 8; ++i) {
   4863     bool isNonZero = (NonZeros & (1 << i)) != 0;
   4864     if (isNonZero) {
   4865       if (First) {
   4866         if (NumZero)
   4867           V = getZeroVector(MVT::v8i16, true, DAG, dl);
   4868         else
   4869           V = DAG.getUNDEF(MVT::v8i16);
   4870         First = false;
   4871       }
   4872       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
   4873                       MVT::v8i16, V, Op.getOperand(i),
   4874                       DAG.getIntPtrConstant(i));
   4875     }
   4876   }
   4877 
   4878   return V;
   4879 }
   4880 
   4881 /// getVShift - Return a vector logical shift node.
   4882 ///
   4883 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
   4884                          unsigned NumBits, SelectionDAG &DAG,
   4885                          const TargetLowering &TLI, DebugLoc dl) {
   4886   assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
   4887   EVT ShVT = MVT::v2i64;
   4888   unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
   4889   SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
   4890   return DAG.getNode(ISD::BITCAST, dl, VT,
   4891                      DAG.getNode(Opc, dl, ShVT, SrcOp,
   4892                              DAG.getConstant(NumBits,
   4893                                   TLI.getShiftAmountTy(SrcOp.getValueType()))));
   4894 }
   4895 
   4896 SDValue
   4897 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
   4898                                           SelectionDAG &DAG) const {
   4899 
   4900   // Check if the scalar load can be widened into a vector load. And if
   4901   // the address is "base + cst" see if the cst can be "absorbed" into
   4902   // the shuffle mask.
   4903   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
   4904     SDValue Ptr = LD->getBasePtr();
   4905     if (!ISD::isNormalLoad(LD) || LD->isVolatile())
   4906       return SDValue();
   4907     EVT PVT = LD->getValueType(0);
   4908     if (PVT != MVT::i32 && PVT != MVT::f32)
   4909       return SDValue();
   4910 
   4911     int FI = -1;
   4912     int64_t Offset = 0;
   4913     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
   4914       FI = FINode->getIndex();
   4915       Offset = 0;
   4916     } else if (DAG.isBaseWithConstantOffset(Ptr) &&
   4917                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
   4918       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   4919       Offset = Ptr.getConstantOperandVal(1);
   4920       Ptr = Ptr.getOperand(0);
   4921     } else {
   4922       return SDValue();
   4923     }
   4924 
   4925     // FIXME: 256-bit vector instructions don't require a strict alignment,
   4926     // improve this code to support it better.
   4927     unsigned RequiredAlign = VT.getSizeInBits()/8;
   4928     SDValue Chain = LD->getChain();
   4929     // Make sure the stack object alignment is at least 16 or 32.
   4930     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4931     if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
   4932       if (MFI->isFixedObjectIndex(FI)) {
   4933         // Can't change the alignment. FIXME: It's possible to compute
   4934         // the exact stack offset and reference FI + adjust offset instead.
   4935         // If someone *really* cares about this. That's the way to implement it.
   4936         return SDValue();
   4937       } else {
   4938         MFI->setObjectAlignment(FI, RequiredAlign);
   4939       }
   4940     }
   4941 
   4942     // (Offset % 16 or 32) must be multiple of 4. Then address is then
   4943     // Ptr + (Offset & ~15).
   4944     if (Offset < 0)
   4945       return SDValue();
   4946     if ((Offset % RequiredAlign) & 3)
   4947       return SDValue();
   4948     int64_t StartOffset = Offset & ~(RequiredAlign-1);
   4949     if (StartOffset)
   4950       Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
   4951                         Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
   4952 
   4953     int EltNo = (Offset - StartOffset) >> 2;
   4954     int NumElems = VT.getVectorNumElements();
   4955 
   4956     EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
   4957     EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
   4958     SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
   4959                              LD->getPointerInfo().getWithOffset(StartOffset),
   4960                              false, false, 0);
   4961 
   4962     // Canonicalize it to a v4i32 or v8i32 shuffle.
   4963     SmallVector<int, 8> Mask;
   4964     for (int i = 0; i < NumElems; ++i)
   4965       Mask.push_back(EltNo);
   4966 
   4967     V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
   4968     return DAG.getNode(ISD::BITCAST, dl, NVT,
   4969                        DAG.getVectorShuffle(CanonVT, dl, V1,
   4970                                             DAG.getUNDEF(CanonVT),&Mask[0]));
   4971   }
   4972 
   4973   return SDValue();
   4974 }
   4975 
   4976 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
   4977 /// vector of type 'VT', see if the elements can be replaced by a single large
   4978 /// load which has the same value as a build_vector whose operands are 'elts'.
   4979 ///
   4980 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
   4981 ///
   4982 /// FIXME: we'd also like to handle the case where the last elements are zero
   4983 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
   4984 /// There's even a handy isZeroNode for that purpose.
   4985 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
   4986                                         DebugLoc &DL, SelectionDAG &DAG) {
   4987   EVT EltVT = VT.getVectorElementType();
   4988   unsigned NumElems = Elts.size();
   4989 
   4990   LoadSDNode *LDBase = NULL;
   4991   unsigned LastLoadedElt = -1U;
   4992 
   4993   // For each element in the initializer, see if we've found a load or an undef.
   4994   // If we don't find an initial load element, or later load elements are
   4995   // non-consecutive, bail out.
   4996   for (unsigned i = 0; i < NumElems; ++i) {
   4997     SDValue Elt = Elts[i];
   4998 
   4999     if (!Elt.getNode() ||
   5000         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
   5001       return SDValue();
   5002     if (!LDBase) {
   5003       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
   5004         return SDValue();
   5005       LDBase = cast<LoadSDNode>(Elt.getNode());
   5006       LastLoadedElt = i;
   5007       continue;
   5008     }
   5009     if (Elt.getOpcode() == ISD::UNDEF)
   5010       continue;
   5011 
   5012     LoadSDNode *LD = cast<LoadSDNode>(Elt);
   5013     if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
   5014       return SDValue();
   5015     LastLoadedElt = i;
   5016   }
   5017 
   5018   // If we have found an entire vector of loads and undefs, then return a large
   5019   // load of the entire vector width starting at the base pointer.  If we found
   5020   // consecutive loads for the low half, generate a vzext_load node.
   5021   if (LastLoadedElt == NumElems - 1) {
   5022     if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
   5023       return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   5024                          LDBase->getPointerInfo(),
   5025                          LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
   5026     return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   5027                        LDBase->getPointerInfo(),
   5028                        LDBase->isVolatile(), LDBase->isNonTemporal(),
   5029                        LDBase->getAlignment());
   5030   } else if (NumElems == 4 && LastLoadedElt == 1 &&
   5031              DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
   5032     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
   5033     SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
   5034     SDValue ResNode =
   5035         DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
   5036                                 LDBase->getPointerInfo(),
   5037                                 LDBase->getAlignment(),
   5038                                 false/*isVolatile*/, true/*ReadMem*/,
   5039                                 false/*WriteMem*/);
   5040     return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
   5041   }
   5042   return SDValue();
   5043 }
   5044 
   5045 SDValue
   5046 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   5047   DebugLoc dl = Op.getDebugLoc();
   5048 
   5049   EVT VT = Op.getValueType();
   5050   EVT ExtVT = VT.getVectorElementType();
   5051   unsigned NumElems = Op.getNumOperands();
   5052 
   5053   // Vectors containing all zeros can be matched by pxor and xorps later
   5054   if (ISD::isBuildVectorAllZeros(Op.getNode())) {
   5055     // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
   5056     // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
   5057     if (Op.getValueType() == MVT::v4i32 ||
   5058         Op.getValueType() == MVT::v8i32)
   5059       return Op;
   5060 
   5061     return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
   5062   }
   5063 
   5064   // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
   5065   // vectors or broken into v4i32 operations on 256-bit vectors.
   5066   if (ISD::isBuildVectorAllOnes(Op.getNode())) {
   5067     if (Op.getValueType() == MVT::v4i32)
   5068       return Op;
   5069 
   5070     return getOnesVector(Op.getValueType(), DAG, dl);
   5071   }
   5072 
   5073   unsigned EVTBits = ExtVT.getSizeInBits();
   5074 
   5075   unsigned NumZero  = 0;
   5076   unsigned NumNonZero = 0;
   5077   unsigned NonZeros = 0;
   5078   bool IsAllConstants = true;
   5079   SmallSet<SDValue, 8> Values;
   5080   for (unsigned i = 0; i < NumElems; ++i) {
   5081     SDValue Elt = Op.getOperand(i);
   5082     if (Elt.getOpcode() == ISD::UNDEF)
   5083       continue;
   5084     Values.insert(Elt);
   5085     if (Elt.getOpcode() != ISD::Constant &&
   5086         Elt.getOpcode() != ISD::ConstantFP)
   5087       IsAllConstants = false;
   5088     if (X86::isZeroNode(Elt))
   5089       NumZero++;
   5090     else {
   5091       NonZeros |= (1 << i);
   5092       NumNonZero++;
   5093     }
   5094   }
   5095 
   5096   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
   5097   if (NumNonZero == 0)
   5098     return DAG.getUNDEF(VT);
   5099 
   5100   // Special case for single non-zero, non-undef, element.
   5101   if (NumNonZero == 1) {
   5102     unsigned Idx = CountTrailingZeros_32(NonZeros);
   5103     SDValue Item = Op.getOperand(Idx);
   5104 
   5105     // If this is an insertion of an i64 value on x86-32, and if the top bits of
   5106     // the value are obviously zero, truncate the value to i32 and do the
   5107     // insertion that way.  Only do this if the value is non-constant or if the
   5108     // value is a constant being inserted into element 0.  It is cheaper to do
   5109     // a constant pool load than it is to do a movd + shuffle.
   5110     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
   5111         (!IsAllConstants || Idx == 0)) {
   5112       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
   5113         // Handle SSE only.
   5114         assert(VT == MVT::v2i64 && "Expected an SSE value type!");
   5115         EVT VecVT = MVT::v4i32;
   5116         unsigned VecElts = 4;
   5117 
   5118         // Truncate the value (which may itself be a constant) to i32, and
   5119         // convert it to a vector with movd (S2V+shuffle to zero extend).
   5120         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
   5121         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
   5122         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
   5123                                            Subtarget->hasXMMInt(), DAG);
   5124 
   5125         // Now we have our 32-bit value zero extended in the low element of
   5126         // a vector.  If Idx != 0, swizzle it into place.
   5127         if (Idx != 0) {
   5128           SmallVector<int, 4> Mask;
   5129           Mask.push_back(Idx);
   5130           for (unsigned i = 1; i != VecElts; ++i)
   5131             Mask.push_back(i);
   5132           Item = DAG.getVectorShuffle(VecVT, dl, Item,
   5133                                       DAG.getUNDEF(Item.getValueType()),
   5134                                       &Mask[0]);
   5135         }
   5136         return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
   5137       }
   5138     }
   5139 
   5140     // If we have a constant or non-constant insertion into the low element of
   5141     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
   5142     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
   5143     // depending on what the source datatype is.
   5144     if (Idx == 0) {
   5145       if (NumZero == 0) {
   5146         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5147       } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
   5148           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
   5149         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5150         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
   5151         return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
   5152                                            DAG);
   5153       } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
   5154         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
   5155         assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
   5156         EVT MiddleVT = MVT::v4i32;
   5157         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
   5158         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
   5159                                            Subtarget->hasXMMInt(), DAG);
   5160         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
   5161       }
   5162     }
   5163 
   5164     // Is it a vector logical left shift?
   5165     if (NumElems == 2 && Idx == 1 &&
   5166         X86::isZeroNode(Op.getOperand(0)) &&
   5167         !X86::isZeroNode(Op.getOperand(1))) {
   5168       unsigned NumBits = VT.getSizeInBits();
   5169       return getVShift(true, VT,
   5170                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   5171                                    VT, Op.getOperand(1)),
   5172                        NumBits/2, DAG, *this, dl);
   5173     }
   5174 
   5175     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
   5176       return SDValue();
   5177 
   5178     // Otherwise, if this is a vector with i32 or f32 elements, and the element
   5179     // is a non-constant being inserted into an element other than the low one,
   5180     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
   5181     // movd/movss) to move this into the low element, then shuffle it into
   5182     // place.
   5183     if (EVTBits == 32) {
   5184       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5185 
   5186       // Turn it into a shuffle of zero and zero-extended scalar to vector.
   5187       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
   5188                                          Subtarget->hasXMMInt(), DAG);
   5189       SmallVector<int, 8> MaskVec;
   5190       for (unsigned i = 0; i < NumElems; i++)
   5191         MaskVec.push_back(i == Idx ? 0 : 1);
   5192       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
   5193     }
   5194   }
   5195 
   5196   // Splat is obviously ok. Let legalizer expand it to a shuffle.
   5197   if (Values.size() == 1) {
   5198     if (EVTBits == 32) {
   5199       // Instead of a shuffle like this:
   5200       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
   5201       // Check if it's possible to issue this instead.
   5202       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
   5203       unsigned Idx = CountTrailingZeros_32(NonZeros);
   5204       SDValue Item = Op.getOperand(Idx);
   5205       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
   5206         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
   5207     }
   5208     return SDValue();
   5209   }
   5210 
   5211   // A vector full of immediates; various special cases are already
   5212   // handled, so this is best done with a single constant-pool load.
   5213   if (IsAllConstants)
   5214     return SDValue();
   5215 
   5216   // For AVX-length vectors, build the individual 128-bit pieces and use
   5217   // shuffles to put them in place.
   5218   if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
   5219     SmallVector<SDValue, 32> V;
   5220     for (unsigned i = 0; i < NumElems; ++i)
   5221       V.push_back(Op.getOperand(i));
   5222 
   5223     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
   5224 
   5225     // Build both the lower and upper subvector.
   5226     SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
   5227     SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
   5228                                 NumElems/2);
   5229 
   5230     // Recreate the wider vector with the lower and upper part.
   5231     SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
   5232                                 DAG.getConstant(0, MVT::i32), DAG, dl);
   5233     return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
   5234                               DAG, dl);
   5235   }
   5236 
   5237   // Let legalizer expand 2-wide build_vectors.
   5238   if (EVTBits == 64) {
   5239     if (NumNonZero == 1) {
   5240       // One half is zero or undef.
   5241       unsigned Idx = CountTrailingZeros_32(NonZeros);
   5242       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
   5243                                  Op.getOperand(Idx));
   5244       return getShuffleVectorZeroOrUndef(V2, Idx, true,
   5245                                          Subtarget->hasXMMInt(), DAG);
   5246     }
   5247     return SDValue();
   5248   }
   5249 
   5250   // If element VT is < 32 bits, convert it to inserts into a zero vector.
   5251   if (EVTBits == 8 && NumElems == 16) {
   5252     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
   5253                                         *this);
   5254     if (V.getNode()) return V;
   5255   }
   5256 
   5257   if (EVTBits == 16 && NumElems == 8) {
   5258     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
   5259                                       *this);
   5260     if (V.getNode()) return V;
   5261   }
   5262 
   5263   // If element VT is == 32 bits, turn it into a number of shuffles.
   5264   SmallVector<SDValue, 8> V;
   5265   V.resize(NumElems);
   5266   if (NumElems == 4 && NumZero > 0) {
   5267     for (unsigned i = 0; i < 4; ++i) {
   5268       bool isZero = !(NonZeros & (1 << i));
   5269       if (isZero)
   5270         V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
   5271       else
   5272         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   5273     }
   5274 
   5275     for (unsigned i = 0; i < 2; ++i) {
   5276       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
   5277         default: break;
   5278         case 0:
   5279           V[i] = V[i*2];  // Must be a zero vector.
   5280           break;
   5281         case 1:
   5282           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
   5283           break;
   5284         case 2:
   5285           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
   5286           break;
   5287         case 3:
   5288           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
   5289           break;
   5290       }
   5291     }
   5292 
   5293     SmallVector<int, 8> MaskVec;
   5294     bool Reverse = (NonZeros & 0x3) == 2;
   5295     for (unsigned i = 0; i < 2; ++i)
   5296       MaskVec.push_back(Reverse ? 1-i : i);
   5297     Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
   5298     for (unsigned i = 0; i < 2; ++i)
   5299       MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
   5300     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
   5301   }
   5302 
   5303   if (Values.size() > 1 && VT.getSizeInBits() == 128) {
   5304     // Check for a build vector of consecutive loads.
   5305     for (unsigned i = 0; i < NumElems; ++i)
   5306       V[i] = Op.getOperand(i);
   5307 
   5308     // Check for elements which are consecutive loads.
   5309     SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
   5310     if (LD.getNode())
   5311       return LD;
   5312 
   5313     // For SSE 4.1, use insertps to put the high elements into the low element.
   5314     if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
   5315       SDValue Result;
   5316       if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
   5317         Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
   5318       else
   5319         Result = DAG.getUNDEF(VT);
   5320 
   5321       for (unsigned i = 1; i < NumElems; ++i) {
   5322         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
   5323         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
   5324                              Op.getOperand(i), DAG.getIntPtrConstant(i));
   5325       }
   5326       return Result;
   5327     }
   5328 
   5329     // Otherwise, expand into a number of unpckl*, start by extending each of
   5330     // our (non-undef) elements to the full vector width with the element in the
   5331     // bottom slot of the vector (which generates no code for SSE).
   5332     for (unsigned i = 0; i < NumElems; ++i) {
   5333       if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
   5334         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   5335       else
   5336         V[i] = DAG.getUNDEF(VT);
   5337     }
   5338 
   5339     // Next, we iteratively mix elements, e.g. for v4f32:
   5340     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
   5341     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
   5342     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
   5343     unsigned EltStride = NumElems >> 1;
   5344     while (EltStride != 0) {
   5345       for (unsigned i = 0; i < EltStride; ++i) {
   5346         // If V[i+EltStride] is undef and this is the first round of mixing,
   5347         // then it is safe to just drop this shuffle: V[i] is already in the
   5348         // right place, the one element (since it's the first round) being
   5349         // inserted as undef can be dropped.  This isn't safe for successive
   5350         // rounds because they will permute elements within both vectors.
   5351         if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
   5352             EltStride == NumElems/2)
   5353           continue;
   5354 
   5355         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
   5356       }
   5357       EltStride >>= 1;
   5358     }
   5359     return V[0];
   5360   }
   5361   return SDValue();
   5362 }
   5363 
   5364 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
   5365 // them in a MMX register.  This is better than doing a stack convert.
   5366 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   5367   DebugLoc dl = Op.getDebugLoc();
   5368   EVT ResVT = Op.getValueType();
   5369 
   5370   assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
   5371          ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
   5372   int Mask[2];
   5373   SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
   5374   SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
   5375   InVec = Op.getOperand(1);
   5376   if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   5377     unsigned NumElts = ResVT.getVectorNumElements();
   5378     VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
   5379     VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
   5380                        InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
   5381   } else {
   5382     InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
   5383     SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
   5384     Mask[0] = 0; Mask[1] = 2;
   5385     VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
   5386   }
   5387   return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
   5388 }
   5389 
   5390 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
   5391 // to create 256-bit vectors from two other 128-bit ones.
   5392 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   5393   DebugLoc dl = Op.getDebugLoc();
   5394   EVT ResVT = Op.getValueType();
   5395 
   5396   assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
   5397 
   5398   SDValue V1 = Op.getOperand(0);
   5399   SDValue V2 = Op.getOperand(1);
   5400   unsigned NumElems = ResVT.getVectorNumElements();
   5401 
   5402   SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
   5403                                  DAG.getConstant(0, MVT::i32), DAG, dl);
   5404   return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
   5405                             DAG, dl);
   5406 }
   5407 
   5408 SDValue
   5409 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
   5410   EVT ResVT = Op.getValueType();
   5411 
   5412   assert(Op.getNumOperands() == 2);
   5413   assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
   5414          "Unsupported CONCAT_VECTORS for value type");
   5415 
   5416   // We support concatenate two MMX registers and place them in a MMX register.
   5417   // This is better than doing a stack convert.
   5418   if (ResVT.is128BitVector())
   5419     return LowerMMXCONCAT_VECTORS(Op, DAG);
   5420 
   5421   // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
   5422   // from two other 128-bit ones.
   5423   return LowerAVXCONCAT_VECTORS(Op, DAG);
   5424 }
   5425 
   5426 // v8i16 shuffles - Prefer shuffles in the following order:
   5427 // 1. [all]   pshuflw, pshufhw, optional move
   5428 // 2. [ssse3] 1 x pshufb
   5429 // 3. [ssse3] 2 x pshufb + 1 x por
   5430 // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
   5431 SDValue
   5432 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
   5433                                             SelectionDAG &DAG) const {
   5434   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5435   SDValue V1 = SVOp->getOperand(0);
   5436   SDValue V2 = SVOp->getOperand(1);
   5437   DebugLoc dl = SVOp->getDebugLoc();
   5438   SmallVector<int, 8> MaskVals;
   5439 
   5440   // Determine if more than 1 of the words in each of the low and high quadwords
   5441   // of the result come from the same quadword of one of the two inputs.  Undef
   5442   // mask values count as coming from any quadword, for better codegen.
   5443   SmallVector<unsigned, 4> LoQuad(4);
   5444   SmallVector<unsigned, 4> HiQuad(4);
   5445   BitVector InputQuads(4);
   5446   for (unsigned i = 0; i < 8; ++i) {
   5447     SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
   5448     int EltIdx = SVOp->getMaskElt(i);
   5449     MaskVals.push_back(EltIdx);
   5450     if (EltIdx < 0) {
   5451       ++Quad[0];
   5452       ++Quad[1];
   5453       ++Quad[2];
   5454       ++Quad[3];
   5455       continue;
   5456     }
   5457     ++Quad[EltIdx / 4];
   5458     InputQuads.set(EltIdx / 4);
   5459   }
   5460 
   5461   int BestLoQuad = -1;
   5462   unsigned MaxQuad = 1;
   5463   for (unsigned i = 0; i < 4; ++i) {
   5464     if (LoQuad[i] > MaxQuad) {
   5465       BestLoQuad = i;
   5466       MaxQuad = LoQuad[i];
   5467     }
   5468   }
   5469 
   5470   int BestHiQuad = -1;
   5471   MaxQuad = 1;
   5472   for (unsigned i = 0; i < 4; ++i) {
   5473     if (HiQuad[i] > MaxQuad) {
   5474       BestHiQuad = i;
   5475       MaxQuad = HiQuad[i];
   5476     }
   5477   }
   5478 
   5479   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
   5480   // of the two input vectors, shuffle them into one input vector so only a
   5481   // single pshufb instruction is necessary. If There are more than 2 input
   5482   // quads, disable the next transformation since it does not help SSSE3.
   5483   bool V1Used = InputQuads[0] || InputQuads[1];
   5484   bool V2Used = InputQuads[2] || InputQuads[3];
   5485   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
   5486     if (InputQuads.count() == 2 && V1Used && V2Used) {
   5487       BestLoQuad = InputQuads.find_first();
   5488       BestHiQuad = InputQuads.find_next(BestLoQuad);
   5489     }
   5490     if (InputQuads.count() > 2) {
   5491       BestLoQuad = -1;
   5492       BestHiQuad = -1;
   5493     }
   5494   }
   5495 
   5496   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
   5497   // the shuffle mask.  If a quad is scored as -1, that means that it contains
   5498   // words from all 4 input quadwords.
   5499   SDValue NewV;
   5500   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
   5501     SmallVector<int, 8> MaskV;
   5502     MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
   5503     MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
   5504     NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
   5505                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
   5506                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
   5507     NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
   5508 
   5509     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
   5510     // source words for the shuffle, to aid later transformations.
   5511     bool AllWordsInNewV = true;
   5512     bool InOrder[2] = { true, true };
   5513     for (unsigned i = 0; i != 8; ++i) {
   5514       int idx = MaskVals[i];
   5515       if (idx != (int)i)
   5516         InOrder[i/4] = false;
   5517       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
   5518         continue;
   5519       AllWordsInNewV = false;
   5520       break;
   5521     }
   5522 
   5523     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
   5524     if (AllWordsInNewV) {
   5525       for (int i = 0; i != 8; ++i) {
   5526         int idx = MaskVals[i];
   5527         if (idx < 0)
   5528           continue;
   5529         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
   5530         if ((idx != i) && idx < 4)
   5531           pshufhw = false;
   5532         if ((idx != i) && idx > 3)
   5533           pshuflw = false;
   5534       }
   5535       V1 = NewV;
   5536       V2Used = false;
   5537       BestLoQuad = 0;
   5538       BestHiQuad = 1;
   5539     }
   5540 
   5541     // If we've eliminated the use of V2, and the new mask is a pshuflw or
   5542     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
   5543     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
   5544       unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
   5545       unsigned TargetMask = 0;
   5546       NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
   5547                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
   5548       TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
   5549                              X86::getShufflePSHUFLWImmediate(NewV.getNode());
   5550       V1 = NewV.getOperand(0);
   5551       return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
   5552     }
   5553   }
   5554 
   5555   // If we have SSSE3, and all words of the result are from 1 input vector,
   5556   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
   5557   // is present, fall back to case 4.
   5558   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
   5559     SmallVector<SDValue,16> pshufbMask;
   5560 
   5561     // If we have elements from both input vectors, set the high bit of the
   5562     // shuffle mask element to zero out elements that come from V2 in the V1
   5563     // mask, and elements that come from V1 in the V2 mask, so that the two
   5564     // results can be OR'd together.
   5565     bool TwoInputs = V1Used && V2Used;
   5566     for (unsigned i = 0; i != 8; ++i) {
   5567       int EltIdx = MaskVals[i] * 2;
   5568       if (TwoInputs && (EltIdx >= 16)) {
   5569         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5570         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5571         continue;
   5572       }
   5573       pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
   5574       pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
   5575     }
   5576     V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
   5577     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   5578                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5579                                  MVT::v16i8, &pshufbMask[0], 16));
   5580     if (!TwoInputs)
   5581       return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5582 
   5583     // Calculate the shuffle mask for the second input, shuffle it, and
   5584     // OR it with the first shuffled input.
   5585     pshufbMask.clear();
   5586     for (unsigned i = 0; i != 8; ++i) {
   5587       int EltIdx = MaskVals[i] * 2;
   5588       if (EltIdx < 16) {
   5589         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5590         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5591         continue;
   5592       }
   5593       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
   5594       pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
   5595     }
   5596     V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
   5597     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   5598                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5599                                  MVT::v16i8, &pshufbMask[0], 16));
   5600     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   5601     return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5602   }
   5603 
   5604   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
   5605   // and update MaskVals with new element order.
   5606   BitVector InOrder(8);
   5607   if (BestLoQuad >= 0) {
   5608     SmallVector<int, 8> MaskV;
   5609     for (int i = 0; i != 4; ++i) {
   5610       int idx = MaskVals[i];
   5611       if (idx < 0) {
   5612         MaskV.push_back(-1);
   5613         InOrder.set(i);
   5614       } else if ((idx / 4) == BestLoQuad) {
   5615         MaskV.push_back(idx & 3);
   5616         InOrder.set(i);
   5617       } else {
   5618         MaskV.push_back(-1);
   5619       }
   5620     }
   5621     for (unsigned i = 4; i != 8; ++i)
   5622       MaskV.push_back(i);
   5623     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   5624                                 &MaskV[0]);
   5625 
   5626     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
   5627         (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
   5628       NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
   5629                                NewV.getOperand(0),
   5630                                X86::getShufflePSHUFLWImmediate(NewV.getNode()),
   5631                                DAG);
   5632   }
   5633 
   5634   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
   5635   // and update MaskVals with the new element order.
   5636   if (BestHiQuad >= 0) {
   5637     SmallVector<int, 8> MaskV;
   5638     for (unsigned i = 0; i != 4; ++i)
   5639       MaskV.push_back(i);
   5640     for (unsigned i = 4; i != 8; ++i) {
   5641       int idx = MaskVals[i];
   5642       if (idx < 0) {
   5643         MaskV.push_back(-1);
   5644         InOrder.set(i);
   5645       } else if ((idx / 4) == BestHiQuad) {
   5646         MaskV.push_back((idx & 3) + 4);
   5647         InOrder.set(i);
   5648       } else {
   5649         MaskV.push_back(-1);
   5650       }
   5651     }
   5652     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   5653                                 &MaskV[0]);
   5654 
   5655     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
   5656         (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
   5657       NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
   5658                               NewV.getOperand(0),
   5659                               X86::getShufflePSHUFHWImmediate(NewV.getNode()),
   5660                               DAG);
   5661   }
   5662 
   5663   // In case BestHi & BestLo were both -1, which means each quadword has a word
   5664   // from each of the four input quadwords, calculate the InOrder bitvector now
   5665   // before falling through to the insert/extract cleanup.
   5666   if (BestLoQuad == -1 && BestHiQuad == -1) {
   5667     NewV = V1;
   5668     for (int i = 0; i != 8; ++i)
   5669       if (MaskVals[i] < 0 || MaskVals[i] == i)
   5670         InOrder.set(i);
   5671   }
   5672 
   5673   // The other elements are put in the right place using pextrw and pinsrw.
   5674   for (unsigned i = 0; i != 8; ++i) {
   5675     if (InOrder[i])
   5676       continue;
   5677     int EltIdx = MaskVals[i];
   5678     if (EltIdx < 0)
   5679       continue;
   5680     SDValue ExtOp = (EltIdx < 8)
   5681     ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
   5682                   DAG.getIntPtrConstant(EltIdx))
   5683     : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
   5684                   DAG.getIntPtrConstant(EltIdx - 8));
   5685     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
   5686                        DAG.getIntPtrConstant(i));
   5687   }
   5688   return NewV;
   5689 }
   5690 
   5691 // v16i8 shuffles - Prefer shuffles in the following order:
   5692 // 1. [ssse3] 1 x pshufb
   5693 // 2. [ssse3] 2 x pshufb + 1 x por
   5694 // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
   5695 static
   5696 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
   5697                                  SelectionDAG &DAG,
   5698                                  const X86TargetLowering &TLI) {
   5699   SDValue V1 = SVOp->getOperand(0);
   5700   SDValue V2 = SVOp->getOperand(1);
   5701   DebugLoc dl = SVOp->getDebugLoc();
   5702   SmallVector<int, 16> MaskVals;
   5703   SVOp->getMask(MaskVals);
   5704 
   5705   // If we have SSSE3, case 1 is generated when all result bytes come from
   5706   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
   5707   // present, fall back to case 3.
   5708   // FIXME: kill V2Only once shuffles are canonizalized by getNode.
   5709   bool V1Only = true;
   5710   bool V2Only = true;
   5711   for (unsigned i = 0; i < 16; ++i) {
   5712     int EltIdx = MaskVals[i];
   5713     if (EltIdx < 0)
   5714       continue;
   5715     if (EltIdx < 16)
   5716       V2Only = false;
   5717     else
   5718       V1Only = false;
   5719   }
   5720 
   5721   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
   5722   if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
   5723     SmallVector<SDValue,16> pshufbMask;
   5724 
   5725     // If all result elements are from one input vector, then only translate
   5726     // undef mask values to 0x80 (zero out result) in the pshufb mask.
   5727     //
   5728     // Otherwise, we have elements from both input vectors, and must zero out
   5729     // elements that come from V2 in the first mask, and V1 in the second mask
   5730     // so that we can OR them together.
   5731     bool TwoInputs = !(V1Only || V2Only);
   5732     for (unsigned i = 0; i != 16; ++i) {
   5733       int EltIdx = MaskVals[i];
   5734       if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
   5735         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5736         continue;
   5737       }
   5738       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   5739     }
   5740     // If all the elements are from V2, assign it to V1 and return after
   5741     // building the first pshufb.
   5742     if (V2Only)
   5743       V1 = V2;
   5744     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   5745                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5746                                  MVT::v16i8, &pshufbMask[0], 16));
   5747     if (!TwoInputs)
   5748       return V1;
   5749 
   5750     // Calculate the shuffle mask for the second input, shuffle it, and
   5751     // OR it with the first shuffled input.
   5752     pshufbMask.clear();
   5753     for (unsigned i = 0; i != 16; ++i) {
   5754       int EltIdx = MaskVals[i];
   5755       if (EltIdx < 16) {
   5756         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5757         continue;
   5758       }
   5759       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
   5760     }
   5761     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   5762                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5763                                  MVT::v16i8, &pshufbMask[0], 16));
   5764     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   5765   }
   5766 
   5767   // No SSSE3 - Calculate in place words and then fix all out of place words
   5768   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
   5769   // the 16 different words that comprise the two doublequadword input vectors.
   5770   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5771   V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
   5772   SDValue NewV = V2Only ? V2 : V1;
   5773   for (int i = 0; i != 8; ++i) {
   5774     int Elt0 = MaskVals[i*2];
   5775     int Elt1 = MaskVals[i*2+1];
   5776 
   5777     // This word of the result is all undef, skip it.
   5778     if (Elt0 < 0 && Elt1 < 0)
   5779       continue;
   5780 
   5781     // This word of the result is already in the correct place, skip it.
   5782     if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
   5783       continue;
   5784     if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
   5785       continue;
   5786 
   5787     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
   5788     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
   5789     SDValue InsElt;
   5790 
   5791     // If Elt0 and Elt1 are defined, are consecutive, and can be load
   5792     // using a single extract together, load it and store it.
   5793     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
   5794       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5795                            DAG.getIntPtrConstant(Elt1 / 2));
   5796       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   5797                         DAG.getIntPtrConstant(i));
   5798       continue;
   5799     }
   5800 
   5801     // If Elt1 is defined, extract it from the appropriate source.  If the
   5802     // source byte is not also odd, shift the extracted word left 8 bits
   5803     // otherwise clear the bottom 8 bits if we need to do an or.
   5804     if (Elt1 >= 0) {
   5805       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5806                            DAG.getIntPtrConstant(Elt1 / 2));
   5807       if ((Elt1 & 1) == 0)
   5808         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
   5809                              DAG.getConstant(8,
   5810                                   TLI.getShiftAmountTy(InsElt.getValueType())));
   5811       else if (Elt0 >= 0)
   5812         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
   5813                              DAG.getConstant(0xFF00, MVT::i16));
   5814     }
   5815     // If Elt0 is defined, extract it from the appropriate source.  If the
   5816     // source byte is not also even, shift the extracted word right 8 bits. If
   5817     // Elt1 was also defined, OR the extracted values together before
   5818     // inserting them in the result.
   5819     if (Elt0 >= 0) {
   5820       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
   5821                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
   5822       if ((Elt0 & 1) != 0)
   5823         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
   5824                               DAG.getConstant(8,
   5825                                  TLI.getShiftAmountTy(InsElt0.getValueType())));
   5826       else if (Elt1 >= 0)
   5827         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
   5828                              DAG.getConstant(0x00FF, MVT::i16));
   5829       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
   5830                          : InsElt0;
   5831     }
   5832     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   5833                        DAG.getIntPtrConstant(i));
   5834   }
   5835   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
   5836 }
   5837 
   5838 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
   5839 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
   5840 /// done when every pair / quad of shuffle mask elements point to elements in
   5841 /// the right sequence. e.g.
   5842 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
   5843 static
   5844 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
   5845                                  SelectionDAG &DAG, DebugLoc dl) {
   5846   EVT VT = SVOp->getValueType(0);
   5847   SDValue V1 = SVOp->getOperand(0);
   5848   SDValue V2 = SVOp->getOperand(1);
   5849   unsigned NumElems = VT.getVectorNumElements();
   5850   unsigned NewWidth = (NumElems == 4) ? 2 : 4;
   5851   EVT NewVT;
   5852   switch (VT.getSimpleVT().SimpleTy) {
   5853   default: assert(false && "Unexpected!");
   5854   case MVT::v4f32: NewVT = MVT::v2f64; break;
   5855   case MVT::v4i32: NewVT = MVT::v2i64; break;
   5856   case MVT::v8i16: NewVT = MVT::v4i32; break;
   5857   case MVT::v16i8: NewVT = MVT::v4i32; break;
   5858   }
   5859 
   5860   int Scale = NumElems / NewWidth;
   5861   SmallVector<int, 8> MaskVec;
   5862   for (unsigned i = 0; i < NumElems; i += Scale) {
   5863     int StartIdx = -1;
   5864     for (int j = 0; j < Scale; ++j) {
   5865       int EltIdx = SVOp->getMaskElt(i+j);
   5866       if (EltIdx < 0)
   5867         continue;
   5868       if (StartIdx == -1)
   5869         StartIdx = EltIdx - (EltIdx % Scale);
   5870       if (EltIdx != StartIdx + j)
   5871         return SDValue();
   5872     }
   5873     if (StartIdx == -1)
   5874       MaskVec.push_back(-1);
   5875     else
   5876       MaskVec.push_back(StartIdx / Scale);
   5877   }
   5878 
   5879   V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
   5880   V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
   5881   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
   5882 }
   5883 
   5884 /// getVZextMovL - Return a zero-extending vector move low node.
   5885 ///
   5886 static SDValue getVZextMovL(EVT VT, EVT OpVT,
   5887                             SDValue SrcOp, SelectionDAG &DAG,
   5888                             const X86Subtarget *Subtarget, DebugLoc dl) {
   5889   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
   5890     LoadSDNode *LD = NULL;
   5891     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
   5892       LD = dyn_cast<LoadSDNode>(SrcOp);
   5893     if (!LD) {
   5894       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
   5895       // instead.
   5896       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
   5897       if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
   5898           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   5899           SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
   5900           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
   5901         // PR2108
   5902         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
   5903         return DAG.getNode(ISD::BITCAST, dl, VT,
   5904                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   5905                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   5906                                                    OpVT,
   5907                                                    SrcOp.getOperand(0)
   5908                                                           .getOperand(0))));
   5909       }
   5910     }
   5911   }
   5912 
   5913   return DAG.getNode(ISD::BITCAST, dl, VT,
   5914                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   5915                                  DAG.getNode(ISD::BITCAST, dl,
   5916                                              OpVT, SrcOp)));
   5917 }
   5918 
   5919 /// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
   5920 /// shuffle node referes to only one lane in the sources.
   5921 static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
   5922   EVT VT = SVOp->getValueType(0);
   5923   int NumElems = VT.getVectorNumElements();
   5924   int HalfSize = NumElems/2;
   5925   SmallVector<int, 16> M;
   5926   SVOp->getMask(M);
   5927   bool MatchA = false, MatchB = false;
   5928 
   5929   for (int l = 0; l < NumElems*2; l += HalfSize) {
   5930     if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
   5931       MatchA = true;
   5932       break;
   5933     }
   5934   }
   5935 
   5936   for (int l = 0; l < NumElems*2; l += HalfSize) {
   5937     if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
   5938       MatchB = true;
   5939       break;
   5940     }
   5941   }
   5942 
   5943   return MatchA && MatchB;
   5944 }
   5945 
   5946 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
   5947 /// which could not be matched by any known target speficic shuffle
   5948 static SDValue
   5949 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   5950   if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
   5951     // If each half of a vector shuffle node referes to only one lane in the
   5952     // source vectors, extract each used 128-bit lane and shuffle them using
   5953     // 128-bit shuffles. Then, concatenate the results. Otherwise leave
   5954     // the work to the legalizer.
   5955     DebugLoc dl = SVOp->getDebugLoc();
   5956     EVT VT = SVOp->getValueType(0);
   5957     int NumElems = VT.getVectorNumElements();
   5958     int HalfSize = NumElems/2;
   5959 
   5960     // Extract the reference for each half
   5961     int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
   5962     int FstVecOpNum = 0, SndVecOpNum = 0;
   5963     for (int i = 0; i < HalfSize; ++i) {
   5964       int Elt = SVOp->getMaskElt(i);
   5965       if (SVOp->getMaskElt(i) < 0)
   5966         continue;
   5967       FstVecOpNum = Elt/NumElems;
   5968       FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
   5969       break;
   5970     }
   5971     for (int i = HalfSize; i < NumElems; ++i) {
   5972       int Elt = SVOp->getMaskElt(i);
   5973       if (SVOp->getMaskElt(i) < 0)
   5974         continue;
   5975       SndVecOpNum = Elt/NumElems;
   5976       SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
   5977       break;
   5978     }
   5979 
   5980     // Extract the subvectors
   5981     SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
   5982                       DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
   5983     SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
   5984                       DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
   5985 
   5986     // Generate 128-bit shuffles
   5987     SmallVector<int, 16> MaskV1, MaskV2;
   5988     for (int i = 0; i < HalfSize; ++i) {
   5989       int Elt = SVOp->getMaskElt(i);
   5990       MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
   5991     }
   5992     for (int i = HalfSize; i < NumElems; ++i) {
   5993       int Elt = SVOp->getMaskElt(i);
   5994       MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
   5995     }
   5996 
   5997     EVT NVT = V1.getValueType();
   5998     V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
   5999     V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
   6000 
   6001     // Concatenate the result back
   6002     SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
   6003                                    DAG.getConstant(0, MVT::i32), DAG, dl);
   6004     return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
   6005                               DAG, dl);
   6006   }
   6007 
   6008   return SDValue();
   6009 }
   6010 
   6011 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
   6012 /// 4 elements, and match them with several different shuffle types.
   6013 static SDValue
   6014 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   6015   SDValue V1 = SVOp->getOperand(0);
   6016   SDValue V2 = SVOp->getOperand(1);
   6017   DebugLoc dl = SVOp->getDebugLoc();
   6018   EVT VT = SVOp->getValueType(0);
   6019 
   6020   assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
   6021 
   6022   SmallVector<std::pair<int, int>, 8> Locs;
   6023   Locs.resize(4);
   6024   SmallVector<int, 8> Mask1(4U, -1);
   6025   SmallVector<int, 8> PermMask;
   6026   SVOp->getMask(PermMask);
   6027 
   6028   unsigned NumHi = 0;
   6029   unsigned NumLo = 0;
   6030   for (unsigned i = 0; i != 4; ++i) {
   6031     int Idx = PermMask[i];
   6032     if (Idx < 0) {
   6033       Locs[i] = std::make_pair(-1, -1);
   6034     } else {
   6035       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
   6036       if (Idx < 4) {
   6037         Locs[i] = std::make_pair(0, NumLo);
   6038         Mask1[NumLo] = Idx;
   6039         NumLo++;
   6040       } else {
   6041         Locs[i] = std::make_pair(1, NumHi);
   6042         if (2+NumHi < 4)
   6043           Mask1[2+NumHi] = Idx;
   6044         NumHi++;
   6045       }
   6046     }
   6047   }
   6048 
   6049   if (NumLo <= 2 && NumHi <= 2) {
   6050     // If no more than two elements come from either vector. This can be
   6051     // implemented with two shuffles. First shuffle gather the elements.
   6052     // The second shuffle, which takes the first shuffle as both of its
   6053     // vector operands, put the elements into the right order.
   6054     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6055 
   6056     SmallVector<int, 8> Mask2(4U, -1);
   6057 
   6058     for (unsigned i = 0; i != 4; ++i) {
   6059       if (Locs[i].first == -1)
   6060         continue;
   6061       else {
   6062         unsigned Idx = (i < 2) ? 0 : 4;
   6063         Idx += Locs[i].first * 2 + Locs[i].second;
   6064         Mask2[i] = Idx;
   6065       }
   6066     }
   6067 
   6068     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
   6069   } else if (NumLo == 3 || NumHi == 3) {
   6070     // Otherwise, we must have three elements from one vector, call it X, and
   6071     // one element from the other, call it Y.  First, use a shufps to build an
   6072     // intermediate vector with the one element from Y and the element from X
   6073     // that will be in the same half in the final destination (the indexes don't
   6074     // matter). Then, use a shufps to build the final vector, taking the half
   6075     // containing the element from Y from the intermediate, and the other half
   6076     // from X.
   6077     if (NumHi == 3) {
   6078       // Normalize it so the 3 elements come from V1.
   6079       CommuteVectorShuffleMask(PermMask, VT);
   6080       std::swap(V1, V2);
   6081     }
   6082 
   6083     // Find the element from V2.
   6084     unsigned HiIndex;
   6085     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
   6086       int Val = PermMask[HiIndex];
   6087       if (Val < 0)
   6088         continue;
   6089       if (Val >= 4)
   6090         break;
   6091     }
   6092 
   6093     Mask1[0] = PermMask[HiIndex];
   6094     Mask1[1] = -1;
   6095     Mask1[2] = PermMask[HiIndex^1];
   6096     Mask1[3] = -1;
   6097     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6098 
   6099     if (HiIndex >= 2) {
   6100       Mask1[0] = PermMask[0];
   6101       Mask1[1] = PermMask[1];
   6102       Mask1[2] = HiIndex & 1 ? 6 : 4;
   6103       Mask1[3] = HiIndex & 1 ? 4 : 6;
   6104       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6105     } else {
   6106       Mask1[0] = HiIndex & 1 ? 2 : 0;
   6107       Mask1[1] = HiIndex & 1 ? 0 : 2;
   6108       Mask1[2] = PermMask[2];
   6109       Mask1[3] = PermMask[3];
   6110       if (Mask1[2] >= 0)
   6111         Mask1[2] += 4;
   6112       if (Mask1[3] >= 0)
   6113         Mask1[3] += 4;
   6114       return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
   6115     }
   6116   }
   6117 
   6118   // Break it into (shuffle shuffle_hi, shuffle_lo).
   6119   Locs.clear();
   6120   Locs.resize(4);
   6121   SmallVector<int,8> LoMask(4U, -1);
   6122   SmallVector<int,8> HiMask(4U, -1);
   6123 
   6124   SmallVector<int,8> *MaskPtr = &LoMask;
   6125   unsigned MaskIdx = 0;
   6126   unsigned LoIdx = 0;
   6127   unsigned HiIdx = 2;
   6128   for (unsigned i = 0; i != 4; ++i) {
   6129     if (i == 2) {
   6130       MaskPtr = &HiMask;
   6131       MaskIdx = 1;
   6132       LoIdx = 0;
   6133       HiIdx = 2;
   6134     }
   6135     int Idx = PermMask[i];
   6136     if (Idx < 0) {
   6137       Locs[i] = std::make_pair(-1, -1);
   6138     } else if (Idx < 4) {
   6139       Locs[i] = std::make_pair(MaskIdx, LoIdx);
   6140       (*MaskPtr)[LoIdx] = Idx;
   6141       LoIdx++;
   6142     } else {
   6143       Locs[i] = std::make_pair(MaskIdx, HiIdx);
   6144       (*MaskPtr)[HiIdx] = Idx;
   6145       HiIdx++;
   6146     }
   6147   }
   6148 
   6149   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
   6150   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
   6151   SmallVector<int, 8> MaskOps;
   6152   for (unsigned i = 0; i != 4; ++i) {
   6153     if (Locs[i].first == -1) {
   6154       MaskOps.push_back(-1);
   6155     } else {
   6156       unsigned Idx = Locs[i].first * 4 + Locs[i].second;
   6157       MaskOps.push_back(Idx);
   6158     }
   6159   }
   6160   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
   6161 }
   6162 
   6163 static bool MayFoldVectorLoad(SDValue V) {
   6164   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6165     V = V.getOperand(0);
   6166   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6167     V = V.getOperand(0);
   6168   if (MayFoldLoad(V))
   6169     return true;
   6170   return false;
   6171 }
   6172 
   6173 // FIXME: the version above should always be used. Since there's
   6174 // a bug where several vector shuffles can't be folded because the
   6175 // DAG is not updated during lowering and a node claims to have two
   6176 // uses while it only has one, use this version, and let isel match
   6177 // another instruction if the load really happens to have more than
   6178 // one use. Remove this version after this bug get fixed.
   6179 // rdar://8434668, PR8156
   6180 static bool RelaxedMayFoldVectorLoad(SDValue V) {
   6181   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6182     V = V.getOperand(0);
   6183   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6184     V = V.getOperand(0);
   6185   if (ISD::isNormalLoad(V.getNode()))
   6186     return true;
   6187   return false;
   6188 }
   6189 
   6190 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
   6191 /// a vector extract, and if both can be later optimized into a single load.
   6192 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
   6193 /// here because otherwise a target specific shuffle node is going to be
   6194 /// emitted for this shuffle, and the optimization not done.
   6195 /// FIXME: This is probably not the best approach, but fix the problem
   6196 /// until the right path is decided.
   6197 static
   6198 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
   6199                                          const TargetLowering &TLI) {
   6200   EVT VT = V.getValueType();
   6201   ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
   6202 
   6203   // Be sure that the vector shuffle is present in a pattern like this:
   6204   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
   6205   if (!V.hasOneUse())
   6206     return false;
   6207 
   6208   SDNode *N = *V.getNode()->use_begin();
   6209   if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   6210     return false;
   6211 
   6212   SDValue EltNo = N->getOperand(1);
   6213   if (!isa<ConstantSDNode>(EltNo))
   6214     return false;
   6215 
   6216   // If the bit convert changed the number of elements, it is unsafe
   6217   // to examine the mask.
   6218   bool HasShuffleIntoBitcast = false;
   6219   if (V.getOpcode() == ISD::BITCAST) {
   6220     EVT SrcVT = V.getOperand(0).getValueType();
   6221     if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
   6222       return false;
   6223     V = V.getOperand(0);
   6224     HasShuffleIntoBitcast = true;
   6225   }
   6226 
   6227   // Select the input vector, guarding against out of range extract vector.
   6228   unsigned NumElems = VT.getVectorNumElements();
   6229   unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
   6230   int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
   6231   V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
   6232 
   6233   // Skip one more bit_convert if necessary
   6234   if (V.getOpcode() == ISD::BITCAST)
   6235     V = V.getOperand(0);
   6236 
   6237   if (ISD::isNormalLoad(V.getNode())) {
   6238     // Is the original load suitable?
   6239     LoadSDNode *LN0 = cast<LoadSDNode>(V);
   6240 
   6241     // FIXME: avoid the multi-use bug that is preventing lots of
   6242     // of foldings to be detected, this is still wrong of course, but
   6243     // give the temporary desired behavior, and if it happens that
   6244     // the load has real more uses, during isel it will not fold, and
   6245     // will generate poor code.
   6246     if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
   6247       return false;
   6248 
   6249     if (!HasShuffleIntoBitcast)
   6250       return true;
   6251 
   6252     // If there's a bitcast before the shuffle, check if the load type and
   6253     // alignment is valid.
   6254     unsigned Align = LN0->getAlignment();
   6255     unsigned NewAlign =
   6256       TLI.getTargetData()->getABITypeAlignment(
   6257                                     VT.getTypeForEVT(*DAG.getContext()));
   6258 
   6259     if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
   6260       return false;
   6261   }
   6262 
   6263   return true;
   6264 }
   6265 
   6266 static
   6267 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
   6268   EVT VT = Op.getValueType();
   6269 
   6270   // Canonizalize to v2f64.
   6271   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
   6272   return DAG.getNode(ISD::BITCAST, dl, VT,
   6273                      getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
   6274                                           V1, DAG));
   6275 }
   6276 
   6277 static
   6278 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
   6279                         bool HasXMMInt) {
   6280   SDValue V1 = Op.getOperand(0);
   6281   SDValue V2 = Op.getOperand(1);
   6282   EVT VT = Op.getValueType();
   6283 
   6284   assert(VT != MVT::v2i64 && "unsupported shuffle type");
   6285 
   6286   if (HasXMMInt && VT == MVT::v2f64)
   6287     return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
   6288 
   6289   // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
   6290   return DAG.getNode(ISD::BITCAST, dl, VT,
   6291                      getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
   6292                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
   6293                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
   6294 }
   6295 
   6296 static
   6297 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
   6298   SDValue V1 = Op.getOperand(0);
   6299   SDValue V2 = Op.getOperand(1);
   6300   EVT VT = Op.getValueType();
   6301 
   6302   assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
   6303          "unsupported shuffle type");
   6304 
   6305   if (V2.getOpcode() == ISD::UNDEF)
   6306     V2 = V1;
   6307 
   6308   // v4i32 or v4f32
   6309   return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
   6310 }
   6311 
   6312 static inline unsigned getSHUFPOpcode(EVT VT) {
   6313   switch(VT.getSimpleVT().SimpleTy) {
   6314   case MVT::v8i32: // Use fp unit for int unpack.
   6315   case MVT::v8f32:
   6316   case MVT::v4i32: // Use fp unit for int unpack.
   6317   case MVT::v4f32: return X86ISD::SHUFPS;
   6318   case MVT::v4i64: // Use fp unit for int unpack.
   6319   case MVT::v4f64:
   6320   case MVT::v2i64: // Use fp unit for int unpack.
   6321   case MVT::v2f64: return X86ISD::SHUFPD;
   6322   default:
   6323     llvm_unreachable("Unknown type for shufp*");
   6324   }
   6325   return 0;
   6326 }
   6327 
   6328 static
   6329 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
   6330   SDValue V1 = Op.getOperand(0);
   6331   SDValue V2 = Op.getOperand(1);
   6332   EVT VT = Op.getValueType();
   6333   unsigned NumElems = VT.getVectorNumElements();
   6334 
   6335   // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
   6336   // operand of these instructions is only memory, so check if there's a
   6337   // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
   6338   // same masks.
   6339   bool CanFoldLoad = false;
   6340 
   6341   // Trivial case, when V2 comes from a load.
   6342   if (MayFoldVectorLoad(V2))
   6343     CanFoldLoad = true;
   6344 
   6345   // When V1 is a load, it can be folded later into a store in isel, example:
   6346   //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
   6347   //    turns into:
   6348   //  (MOVLPSmr addr:$src1, VR128:$src2)
   6349   // So, recognize this potential and also use MOVLPS or MOVLPD
   6350   if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
   6351     CanFoldLoad = true;
   6352 
   6353   // Both of them can't be memory operations though.
   6354   if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
   6355     CanFoldLoad = false;
   6356 
   6357   if (CanFoldLoad) {
   6358     if (HasXMMInt && NumElems == 2)
   6359       return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
   6360 
   6361     if (NumElems == 4)
   6362       return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
   6363   }
   6364 
   6365   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6366   // movl and movlp will both match v2i64, but v2i64 is never matched by
   6367   // movl earlier because we make it strict to avoid messing with the movlp load
   6368   // folding logic (see the code above getMOVLP call). Match it here then,
   6369   // this is horrible, but will stay like this until we move all shuffle
   6370   // matching to x86 specific nodes. Note that for the 1st condition all
   6371   // types are matched with movsd.
   6372   if (HasXMMInt) {
   6373     // FIXME: isMOVLMask should be checked and matched before getMOVLP,
   6374     // as to remove this logic from here, as much as possible
   6375     if (NumElems == 2 || !X86::isMOVLMask(SVOp))
   6376       return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   6377     return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   6378   }
   6379 
   6380   assert(VT != MVT::v4i32 && "unsupported shuffle type");
   6381 
   6382   // Invert the operand order and use SHUFPS to match it.
   6383   return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
   6384                               X86::getShuffleSHUFImmediate(SVOp), DAG);
   6385 }
   6386 
   6387 static inline unsigned getUNPCKLOpcode(EVT VT) {
   6388   switch(VT.getSimpleVT().SimpleTy) {
   6389   case MVT::v4i32: return X86ISD::PUNPCKLDQ;
   6390   case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
   6391   case MVT::v4f32: return X86ISD::UNPCKLPS;
   6392   case MVT::v2f64: return X86ISD::UNPCKLPD;
   6393   case MVT::v8i32: // Use fp unit for int unpack.
   6394   case MVT::v8f32: return X86ISD::VUNPCKLPSY;
   6395   case MVT::v4i64: // Use fp unit for int unpack.
   6396   case MVT::v4f64: return X86ISD::VUNPCKLPDY;
   6397   case MVT::v16i8: return X86ISD::PUNPCKLBW;
   6398   case MVT::v8i16: return X86ISD::PUNPCKLWD;
   6399   default:
   6400     llvm_unreachable("Unknown type for unpckl");
   6401   }
   6402   return 0;
   6403 }
   6404 
   6405 static inline unsigned getUNPCKHOpcode(EVT VT) {
   6406   switch(VT.getSimpleVT().SimpleTy) {
   6407   case MVT::v4i32: return X86ISD::PUNPCKHDQ;
   6408   case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
   6409   case MVT::v4f32: return X86ISD::UNPCKHPS;
   6410   case MVT::v2f64: return X86ISD::UNPCKHPD;
   6411   case MVT::v8i32: // Use fp unit for int unpack.
   6412   case MVT::v8f32: return X86ISD::VUNPCKHPSY;
   6413   case MVT::v4i64: // Use fp unit for int unpack.
   6414   case MVT::v4f64: return X86ISD::VUNPCKHPDY;
   6415   case MVT::v16i8: return X86ISD::PUNPCKHBW;
   6416   case MVT::v8i16: return X86ISD::PUNPCKHWD;
   6417   default:
   6418     llvm_unreachable("Unknown type for unpckh");
   6419   }
   6420   return 0;
   6421 }
   6422 
   6423 static inline unsigned getVPERMILOpcode(EVT VT) {
   6424   switch(VT.getSimpleVT().SimpleTy) {
   6425   case MVT::v4i32:
   6426   case MVT::v4f32: return X86ISD::VPERMILPS;
   6427   case MVT::v2i64:
   6428   case MVT::v2f64: return X86ISD::VPERMILPD;
   6429   case MVT::v8i32:
   6430   case MVT::v8f32: return X86ISD::VPERMILPSY;
   6431   case MVT::v4i64:
   6432   case MVT::v4f64: return X86ISD::VPERMILPDY;
   6433   default:
   6434     llvm_unreachable("Unknown type for vpermil");
   6435   }
   6436   return 0;
   6437 }
   6438 
   6439 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
   6440 /// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
   6441 /// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
   6442 static bool isVectorBroadcast(SDValue &Op) {
   6443   EVT VT = Op.getValueType();
   6444   bool Is256 = VT.getSizeInBits() == 256;
   6445 
   6446   assert((VT.getSizeInBits() == 128 || Is256) &&
   6447          "Unsupported type for vbroadcast node");
   6448 
   6449   SDValue V = Op;
   6450   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6451     V = V.getOperand(0);
   6452 
   6453   if (Is256 && !(V.hasOneUse() &&
   6454                  V.getOpcode() == ISD::INSERT_SUBVECTOR &&
   6455                  V.getOperand(0).getOpcode() == ISD::UNDEF))
   6456     return false;
   6457 
   6458   if (Is256)
   6459     V = V.getOperand(1);
   6460 
   6461   if (!V.hasOneUse())
   6462     return false;
   6463 
   6464   // Check the source scalar_to_vector type. 256-bit broadcasts are
   6465   // supported for 32/64-bit sizes, while 128-bit ones are only supported
   6466   // for 32-bit scalars.
   6467   if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
   6468     return false;
   6469 
   6470   unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
   6471   if (ScalarSize != 32 && ScalarSize != 64)
   6472     return false;
   6473   if (!Is256 && ScalarSize == 64)
   6474     return false;
   6475 
   6476   V = V.getOperand(0);
   6477   if (!MayFoldLoad(V))
   6478     return false;
   6479 
   6480   // Return the load node
   6481   Op = V;
   6482   return true;
   6483 }
   6484 
   6485 static
   6486 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
   6487                                const TargetLowering &TLI,
   6488                                const X86Subtarget *Subtarget) {
   6489   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6490   EVT VT = Op.getValueType();
   6491   DebugLoc dl = Op.getDebugLoc();
   6492   SDValue V1 = Op.getOperand(0);
   6493   SDValue V2 = Op.getOperand(1);
   6494 
   6495   if (isZeroShuffle(SVOp))
   6496     return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
   6497 
   6498   // Handle splat operations
   6499   if (SVOp->isSplat()) {
   6500     unsigned NumElem = VT.getVectorNumElements();
   6501     int Size = VT.getSizeInBits();
   6502     // Special case, this is the only place now where it's allowed to return
   6503     // a vector_shuffle operation without using a target specific node, because
   6504     // *hopefully* it will be optimized away by the dag combiner. FIXME: should
   6505     // this be moved to DAGCombine instead?
   6506     if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
   6507       return Op;
   6508 
   6509     // Use vbroadcast whenever the splat comes from a foldable load
   6510     if (Subtarget->hasAVX() && isVectorBroadcast(V1))
   6511       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
   6512 
   6513     // Handle splats by matching through known shuffle masks
   6514     if ((Size == 128 && NumElem <= 4) ||
   6515         (Size == 256 && NumElem < 8))
   6516       return SDValue();
   6517 
   6518     // All remaning splats are promoted to target supported vector shuffles.
   6519     return PromoteSplat(SVOp, DAG);
   6520   }
   6521 
   6522   // If the shuffle can be profitably rewritten as a narrower shuffle, then
   6523   // do it!
   6524   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
   6525     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6526     if (NewOp.getNode())
   6527       return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
   6528   } else if ((VT == MVT::v4i32 ||
   6529              (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
   6530     // FIXME: Figure out a cleaner way to do this.
   6531     // Try to make use of movq to zero out the top part.
   6532     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
   6533       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6534       if (NewOp.getNode()) {
   6535         if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
   6536           return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
   6537                               DAG, Subtarget, dl);
   6538       }
   6539     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
   6540       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6541       if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
   6542         return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
   6543                             DAG, Subtarget, dl);
   6544     }
   6545   }
   6546   return SDValue();
   6547 }
   6548 
   6549 SDValue
   6550 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
   6551   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6552   SDValue V1 = Op.getOperand(0);
   6553   SDValue V2 = Op.getOperand(1);
   6554   EVT VT = Op.getValueType();
   6555   DebugLoc dl = Op.getDebugLoc();
   6556   unsigned NumElems = VT.getVectorNumElements();
   6557   bool isMMX = VT.getSizeInBits() == 64;
   6558   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
   6559   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
   6560   bool V1IsSplat = false;
   6561   bool V2IsSplat = false;
   6562   bool HasXMMInt = Subtarget->hasXMMInt();
   6563   MachineFunction &MF = DAG.getMachineFunction();
   6564   bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
   6565 
   6566   // Shuffle operations on MMX not supported.
   6567   if (isMMX)
   6568     return Op;
   6569 
   6570   // Vector shuffle lowering takes 3 steps:
   6571   //
   6572   // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
   6573   //    narrowing and commutation of operands should be handled.
   6574   // 2) Matching of shuffles with known shuffle masks to x86 target specific
   6575   //    shuffle nodes.
   6576   // 3) Rewriting of unmatched masks into new generic shuffle operations,
   6577   //    so the shuffle can be broken into other shuffles and the legalizer can
   6578   //    try the lowering again.
   6579   //
   6580   // The general ideia is that no vector_shuffle operation should be left to
   6581   // be matched during isel, all of them must be converted to a target specific
   6582   // node here.
   6583 
   6584   // Normalize the input vectors. Here splats, zeroed vectors, profitable
   6585   // narrowing and commutation of operands should be handled. The actual code
   6586   // doesn't include all of those, work in progress...
   6587   SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
   6588   if (NewOp.getNode())
   6589     return NewOp;
   6590 
   6591   // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
   6592   // unpckh_undef). Only use pshufd if speed is more important than size.
   6593   if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
   6594     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
   6595   if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
   6596     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   6597 
   6598   if (X86::isMOVDDUPMask(SVOp) &&
   6599       (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
   6600       V2IsUndef && RelaxedMayFoldVectorLoad(V1))
   6601     return getMOVDDup(Op, dl, V1, DAG);
   6602 
   6603   if (X86::isMOVHLPS_v_undef_Mask(SVOp))
   6604     return getMOVHighToLow(Op, dl, DAG);
   6605 
   6606   // Use to match splats
   6607   if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
   6608       (VT == MVT::v2f64 || VT == MVT::v2i64))
   6609     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   6610 
   6611   if (X86::isPSHUFDMask(SVOp)) {
   6612     // The actual implementation will match the mask in the if above and then
   6613     // during isel it can match several different instructions, not only pshufd
   6614     // as its name says, sad but true, emulate the behavior for now...
   6615     if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
   6616         return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
   6617 
   6618     unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
   6619 
   6620     if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
   6621       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
   6622 
   6623     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
   6624                                 TargetMask, DAG);
   6625   }
   6626 
   6627   // Check if this can be converted into a logical shift.
   6628   bool isLeft = false;
   6629   unsigned ShAmt = 0;
   6630   SDValue ShVal;
   6631   bool isShift = getSubtarget()->hasXMMInt() &&
   6632                  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
   6633   if (isShift && ShVal.hasOneUse()) {
   6634     // If the shifted value has multiple uses, it may be cheaper to use
   6635     // v_set0 + movlhps or movhlps, etc.
   6636     EVT EltVT = VT.getVectorElementType();
   6637     ShAmt *= EltVT.getSizeInBits();
   6638     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   6639   }
   6640 
   6641   if (X86::isMOVLMask(SVOp)) {
   6642     if (V1IsUndef)
   6643       return V2;
   6644     if (ISD::isBuildVectorAllZeros(V1.getNode()))
   6645       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
   6646     if (!X86::isMOVLPMask(SVOp)) {
   6647       if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
   6648         return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   6649 
   6650       if (VT == MVT::v4i32 || VT == MVT::v4f32)
   6651         return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   6652     }
   6653   }
   6654 
   6655   // FIXME: fold these into legal mask.
   6656   if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
   6657     return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
   6658 
   6659   if (X86::isMOVHLPSMask(SVOp))
   6660     return getMOVHighToLow(Op, dl, DAG);
   6661 
   6662   if (X86::isMOVSHDUPMask(SVOp, Subtarget))
   6663     return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
   6664 
   6665   if (X86::isMOVSLDUPMask(SVOp, Subtarget))
   6666     return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
   6667 
   6668   if (X86::isMOVLPMask(SVOp))
   6669     return getMOVLP(Op, dl, DAG, HasXMMInt);
   6670 
   6671   if (ShouldXformToMOVHLPS(SVOp) ||
   6672       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
   6673     return CommuteVectorShuffle(SVOp, DAG);
   6674 
   6675   if (isShift) {
   6676     // No better options. Use a vshl / vsrl.
   6677     EVT EltVT = VT.getVectorElementType();
   6678     ShAmt *= EltVT.getSizeInBits();
   6679     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   6680   }
   6681 
   6682   bool Commuted = false;
   6683   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
   6684   // 1,1,1,1 -> v8i16 though.
   6685   V1IsSplat = isSplatVector(V1.getNode());
   6686   V2IsSplat = isSplatVector(V2.getNode());
   6687 
   6688   // Canonicalize the splat or undef, if present, to be on the RHS.
   6689   if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
   6690     Op = CommuteVectorShuffle(SVOp, DAG);
   6691     SVOp = cast<ShuffleVectorSDNode>(Op);
   6692     V1 = SVOp->getOperand(0);
   6693     V2 = SVOp->getOperand(1);
   6694     std::swap(V1IsSplat, V2IsSplat);
   6695     std::swap(V1IsUndef, V2IsUndef);
   6696     Commuted = true;
   6697   }
   6698 
   6699   if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
   6700     // Shuffling low element of v1 into undef, just return v1.
   6701     if (V2IsUndef)
   6702       return V1;
   6703     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
   6704     // the instruction selector will not match, so get a canonical MOVL with
   6705     // swapped operands to undo the commute.
   6706     return getMOVL(DAG, dl, VT, V2, V1);
   6707   }
   6708 
   6709   if (X86::isUNPCKLMask(SVOp))
   6710     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
   6711 
   6712   if (X86::isUNPCKHMask(SVOp))
   6713     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
   6714 
   6715   if (V2IsSplat) {
   6716     // Normalize mask so all entries that point to V2 points to its first
   6717     // element then try to match unpck{h|l} again. If match, return a
   6718     // new vector_shuffle with the corrected mask.
   6719     SDValue NewMask = NormalizeMask(SVOp, DAG);
   6720     ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
   6721     if (NSVOp != SVOp) {
   6722       if (X86::isUNPCKLMask(NSVOp, true)) {
   6723         return NewMask;
   6724       } else if (X86::isUNPCKHMask(NSVOp, true)) {
   6725         return NewMask;
   6726       }
   6727     }
   6728   }
   6729 
   6730   if (Commuted) {
   6731     // Commute is back and try unpck* again.
   6732     // FIXME: this seems wrong.
   6733     SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
   6734     ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
   6735 
   6736     if (X86::isUNPCKLMask(NewSVOp))
   6737       return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
   6738 
   6739     if (X86::isUNPCKHMask(NewSVOp))
   6740       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
   6741   }
   6742 
   6743   // Normalize the node to match x86 shuffle ops if needed
   6744   if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
   6745     return CommuteVectorShuffle(SVOp, DAG);
   6746 
   6747   // The checks below are all present in isShuffleMaskLegal, but they are
   6748   // inlined here right now to enable us to directly emit target specific
   6749   // nodes, and remove one by one until they don't return Op anymore.
   6750   SmallVector<int, 16> M;
   6751   SVOp->getMask(M);
   6752 
   6753   if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
   6754     return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
   6755                                 X86::getShufflePALIGNRImmediate(SVOp),
   6756                                 DAG);
   6757 
   6758   if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
   6759       SVOp->getSplatIndex() == 0 && V2IsUndef) {
   6760     if (VT == MVT::v2f64)
   6761       return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
   6762     if (VT == MVT::v2i64)
   6763       return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
   6764   }
   6765 
   6766   if (isPSHUFHWMask(M, VT))
   6767     return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
   6768                                 X86::getShufflePSHUFHWImmediate(SVOp),
   6769                                 DAG);
   6770 
   6771   if (isPSHUFLWMask(M, VT))
   6772     return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
   6773                                 X86::getShufflePSHUFLWImmediate(SVOp),
   6774                                 DAG);
   6775 
   6776   if (isSHUFPMask(M, VT))
   6777     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
   6778                                 X86::getShuffleSHUFImmediate(SVOp), DAG);
   6779 
   6780   if (X86::isUNPCKL_v_undef_Mask(SVOp))
   6781     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
   6782   if (X86::isUNPCKH_v_undef_Mask(SVOp))
   6783     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   6784 
   6785   //===--------------------------------------------------------------------===//
   6786   // Generate target specific nodes for 128 or 256-bit shuffles only
   6787   // supported in the AVX instruction set.
   6788   //
   6789 
   6790   // Handle VMOVDDUPY permutations
   6791   if (isMOVDDUPYMask(SVOp, Subtarget))
   6792     return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
   6793 
   6794   // Handle VPERMILPS* permutations
   6795   if (isVPERMILPSMask(M, VT, Subtarget))
   6796     return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
   6797                                 getShuffleVPERMILPSImmediate(SVOp), DAG);
   6798 
   6799   // Handle VPERMILPD* permutations
   6800   if (isVPERMILPDMask(M, VT, Subtarget))
   6801     return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
   6802                                 getShuffleVPERMILPDImmediate(SVOp), DAG);
   6803 
   6804   // Handle VPERM2F128 permutations
   6805   if (isVPERM2F128Mask(M, VT, Subtarget))
   6806     return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
   6807                                 getShuffleVPERM2F128Immediate(SVOp), DAG);
   6808 
   6809   // Handle VSHUFPSY permutations
   6810   if (isVSHUFPSYMask(M, VT, Subtarget))
   6811     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
   6812                                 getShuffleVSHUFPSYImmediate(SVOp), DAG);
   6813 
   6814   // Handle VSHUFPDY permutations
   6815   if (isVSHUFPDYMask(M, VT, Subtarget))
   6816     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
   6817                                 getShuffleVSHUFPDYImmediate(SVOp), DAG);
   6818 
   6819   //===--------------------------------------------------------------------===//
   6820   // Since no target specific shuffle was selected for this generic one,
   6821   // lower it into other known shuffles. FIXME: this isn't true yet, but
   6822   // this is the plan.
   6823   //
   6824 
   6825   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
   6826   if (VT == MVT::v8i16) {
   6827     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
   6828     if (NewOp.getNode())
   6829       return NewOp;
   6830   }
   6831 
   6832   if (VT == MVT::v16i8) {
   6833     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
   6834     if (NewOp.getNode())
   6835       return NewOp;
   6836   }
   6837 
   6838   // Handle all 128-bit wide vectors with 4 elements, and match them with
   6839   // several different shuffle types.
   6840   if (NumElems == 4 && VT.getSizeInBits() == 128)
   6841     return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
   6842 
   6843   // Handle general 256-bit shuffles
   6844   if (VT.is256BitVector())
   6845     return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
   6846 
   6847   return SDValue();
   6848 }
   6849 
   6850 SDValue
   6851 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
   6852                                                 SelectionDAG &DAG) const {
   6853   EVT VT = Op.getValueType();
   6854   DebugLoc dl = Op.getDebugLoc();
   6855 
   6856   if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
   6857     return SDValue();
   6858 
   6859   if (VT.getSizeInBits() == 8) {
   6860     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
   6861                                     Op.getOperand(0), Op.getOperand(1));
   6862     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6863                                     DAG.getValueType(VT));
   6864     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6865   } else if (VT.getSizeInBits() == 16) {
   6866     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6867     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
   6868     if (Idx == 0)
   6869       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   6870                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6871                                      DAG.getNode(ISD::BITCAST, dl,
   6872                                                  MVT::v4i32,
   6873                                                  Op.getOperand(0)),
   6874                                      Op.getOperand(1)));
   6875     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
   6876                                     Op.getOperand(0), Op.getOperand(1));
   6877     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6878                                     DAG.getValueType(VT));
   6879     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6880   } else if (VT == MVT::f32) {
   6881     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
   6882     // the result back to FR32 register. It's only worth matching if the
   6883     // result has a single use which is a store or a bitcast to i32.  And in
   6884     // the case of a store, it's not worth it if the index is a constant 0,
   6885     // because a MOVSSmr can be used instead, which is smaller and faster.
   6886     if (!Op.hasOneUse())
   6887       return SDValue();
   6888     SDNode *User = *Op.getNode()->use_begin();
   6889     if ((User->getOpcode() != ISD::STORE ||
   6890          (isa<ConstantSDNode>(Op.getOperand(1)) &&
   6891           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
   6892         (User->getOpcode() != ISD::BITCAST ||
   6893          User->getValueType(0) != MVT::i32))
   6894       return SDValue();
   6895     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6896                                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
   6897                                               Op.getOperand(0)),
   6898                                               Op.getOperand(1));
   6899     return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
   6900   } else if (VT == MVT::i32) {
   6901     // ExtractPS works with constant index.
   6902     if (isa<ConstantSDNode>(Op.getOperand(1)))
   6903       return Op;
   6904   }
   6905   return SDValue();
   6906 }
   6907 
   6908 
   6909 SDValue
   6910 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   6911                                            SelectionDAG &DAG) const {
   6912   if (!isa<ConstantSDNode>(Op.getOperand(1)))
   6913     return SDValue();
   6914 
   6915   SDValue Vec = Op.getOperand(0);
   6916   EVT VecVT = Vec.getValueType();
   6917 
   6918   // If this is a 256-bit vector result, first extract the 128-bit vector and
   6919   // then extract the element from the 128-bit vector.
   6920   if (VecVT.getSizeInBits() == 256) {
   6921     DebugLoc dl = Op.getNode()->getDebugLoc();
   6922     unsigned NumElems = VecVT.getVectorNumElements();
   6923     SDValue Idx = Op.getOperand(1);
   6924     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   6925 
   6926     // Get the 128-bit vector.
   6927     bool Upper = IdxVal >= NumElems/2;
   6928     Vec = Extract128BitVector(Vec,
   6929                     DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
   6930 
   6931     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
   6932                     Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
   6933   }
   6934 
   6935   assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
   6936 
   6937   if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
   6938     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
   6939     if (Res.getNode())
   6940       return Res;
   6941   }
   6942 
   6943   EVT VT = Op.getValueType();
   6944   DebugLoc dl = Op.getDebugLoc();
   6945   // TODO: handle v16i8.
   6946   if (VT.getSizeInBits() == 16) {
   6947     SDValue Vec = Op.getOperand(0);
   6948     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6949     if (Idx == 0)
   6950       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   6951                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6952                                      DAG.getNode(ISD::BITCAST, dl,
   6953                                                  MVT::v4i32, Vec),
   6954                                      Op.getOperand(1)));
   6955     // Transform it so it match pextrw which produces a 32-bit result.
   6956     EVT EltVT = MVT::i32;
   6957     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
   6958                                     Op.getOperand(0), Op.getOperand(1));
   6959     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
   6960                                     DAG.getValueType(VT));
   6961     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6962   } else if (VT.getSizeInBits() == 32) {
   6963     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6964     if (Idx == 0)
   6965       return Op;
   6966 
   6967     // SHUFPS the element to the lowest double word, then movss.
   6968     int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
   6969     EVT VVT = Op.getOperand(0).getValueType();
   6970     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   6971                                        DAG.getUNDEF(VVT), Mask);
   6972     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   6973                        DAG.getIntPtrConstant(0));
   6974   } else if (VT.getSizeInBits() == 64) {
   6975     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
   6976     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
   6977     //        to match extract_elt for f64.
   6978     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6979     if (Idx == 0)
   6980       return Op;
   6981 
   6982     // UNPCKHPD the element to the lowest double word, then movsd.
   6983     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
   6984     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
   6985     int Mask[2] = { 1, -1 };
   6986     EVT VVT = Op.getOperand(0).getValueType();
   6987     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   6988                                        DAG.getUNDEF(VVT), Mask);
   6989     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   6990                        DAG.getIntPtrConstant(0));
   6991   }
   6992 
   6993   return SDValue();
   6994 }
   6995 
   6996 SDValue
   6997 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
   6998                                                SelectionDAG &DAG) const {
   6999   EVT VT = Op.getValueType();
   7000   EVT EltVT = VT.getVectorElementType();
   7001   DebugLoc dl = Op.getDebugLoc();
   7002 
   7003   SDValue N0 = Op.getOperand(0);
   7004   SDValue N1 = Op.getOperand(1);
   7005   SDValue N2 = Op.getOperand(2);
   7006 
   7007   if (VT.getSizeInBits() == 256)
   7008     return SDValue();
   7009 
   7010   if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
   7011       isa<ConstantSDNode>(N2)) {
   7012     unsigned Opc;
   7013     if (VT == MVT::v8i16)
   7014       Opc = X86ISD::PINSRW;
   7015     else if (VT == MVT::v16i8)
   7016       Opc = X86ISD::PINSRB;
   7017     else
   7018       Opc = X86ISD::PINSRB;
   7019 
   7020     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
   7021     // argument.
   7022     if (N1.getValueType() != MVT::i32)
   7023       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7024     if (N2.getValueType() != MVT::i32)
   7025       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7026     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
   7027   } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
   7028     // Bits [7:6] of the constant are the source select.  This will always be
   7029     //  zero here.  The DAG Combiner may combine an extract_elt index into these
   7030     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
   7031     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
   7032     // Bits [5:4] of the constant are the destination select.  This is the
   7033     //  value of the incoming immediate.
   7034     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
   7035     //   combine either bitwise AND or insert of float 0.0 to set these bits.
   7036     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
   7037     // Create this as a scalar to vector..
   7038     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
   7039     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
   7040   } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
   7041     // PINSR* works with constant index.
   7042     return Op;
   7043   }
   7044   return SDValue();
   7045 }
   7046 
   7047 SDValue
   7048 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   7049   EVT VT = Op.getValueType();
   7050   EVT EltVT = VT.getVectorElementType();
   7051 
   7052   DebugLoc dl = Op.getDebugLoc();
   7053   SDValue N0 = Op.getOperand(0);
   7054   SDValue N1 = Op.getOperand(1);
   7055   SDValue N2 = Op.getOperand(2);
   7056 
   7057   // If this is a 256-bit vector result, first extract the 128-bit vector,
   7058   // insert the element into the extracted half and then place it back.
   7059   if (VT.getSizeInBits() == 256) {
   7060     if (!isa<ConstantSDNode>(N2))
   7061       return SDValue();
   7062 
   7063     // Get the desired 128-bit vector half.
   7064     unsigned NumElems = VT.getVectorNumElements();
   7065     unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
   7066     bool Upper = IdxVal >= NumElems/2;
   7067     SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
   7068     SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
   7069 
   7070     // Insert the element into the desired half.
   7071     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
   7072                  N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
   7073 
   7074     // Insert the changed part back to the 256-bit vector
   7075     return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
   7076   }
   7077 
   7078   if (Subtarget->hasSSE41() || Subtarget->hasAVX())
   7079     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
   7080 
   7081   if (EltVT == MVT::i8)
   7082     return SDValue();
   7083 
   7084   if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
   7085     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
   7086     // as its second argument.
   7087     if (N1.getValueType() != MVT::i32)
   7088       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7089     if (N2.getValueType() != MVT::i32)
   7090       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7091     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
   7092   }
   7093   return SDValue();
   7094 }
   7095 
   7096 SDValue
   7097 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   7098   LLVMContext *Context = DAG.getContext();
   7099   DebugLoc dl = Op.getDebugLoc();
   7100   EVT OpVT = Op.getValueType();
   7101 
   7102   // If this is a 256-bit vector result, first insert into a 128-bit
   7103   // vector and then insert into the 256-bit vector.
   7104   if (OpVT.getSizeInBits() > 128) {
   7105     // Insert into a 128-bit vector.
   7106     EVT VT128 = EVT::getVectorVT(*Context,
   7107                                  OpVT.getVectorElementType(),
   7108                                  OpVT.getVectorNumElements() / 2);
   7109 
   7110     Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
   7111 
   7112     // Insert the 128-bit vector.
   7113     return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
   7114                               DAG.getConstant(0, MVT::i32),
   7115                               DAG, dl);
   7116   }
   7117 
   7118   if (Op.getValueType() == MVT::v1i64 &&
   7119       Op.getOperand(0).getValueType() == MVT::i64)
   7120     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
   7121 
   7122   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
   7123   assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
   7124          "Expected an SSE type!");
   7125   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
   7126                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
   7127 }
   7128 
   7129 // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
   7130 // a simple subregister reference or explicit instructions to grab
   7131 // upper bits of a vector.
   7132 SDValue
   7133 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   7134   if (Subtarget->hasAVX()) {
   7135     DebugLoc dl = Op.getNode()->getDebugLoc();
   7136     SDValue Vec = Op.getNode()->getOperand(0);
   7137     SDValue Idx = Op.getNode()->getOperand(1);
   7138 
   7139     if (Op.getNode()->getValueType(0).getSizeInBits() == 128
   7140         && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
   7141         return Extract128BitVector(Vec, Idx, DAG, dl);
   7142     }
   7143   }
   7144   return SDValue();
   7145 }
   7146 
   7147 // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
   7148 // simple superregister reference or explicit instructions to insert
   7149 // the upper bits of a vector.
   7150 SDValue
   7151 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   7152   if (Subtarget->hasAVX()) {
   7153     DebugLoc dl = Op.getNode()->getDebugLoc();
   7154     SDValue Vec = Op.getNode()->getOperand(0);
   7155     SDValue SubVec = Op.getNode()->getOperand(1);
   7156     SDValue Idx = Op.getNode()->getOperand(2);
   7157 
   7158     if (Op.getNode()->getValueType(0).getSizeInBits() == 256
   7159         && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
   7160       return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
   7161     }
   7162   }
   7163   return SDValue();
   7164 }
   7165 
   7166 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   7167 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
   7168 // one of the above mentioned nodes. It has to be wrapped because otherwise
   7169 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   7170 // be used to form addressing mode. These wrapped nodes will be selected
   7171 // into MOV32ri.
   7172 SDValue
   7173 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
   7174   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   7175 
   7176   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7177   // global base reg.
   7178   unsigned char OpFlag = 0;
   7179   unsigned WrapperKind = X86ISD::Wrapper;
   7180   CodeModel::Model M = getTargetMachine().getCodeModel();
   7181 
   7182   if (Subtarget->isPICStyleRIPRel() &&
   7183       (M == CodeModel::Small || M == CodeModel::Kernel))
   7184     WrapperKind = X86ISD::WrapperRIP;
   7185   else if (Subtarget->isPICStyleGOT())
   7186     OpFlag = X86II::MO_GOTOFF;
   7187   else if (Subtarget->isPICStyleStubPIC())
   7188     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7189 
   7190   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
   7191                                              CP->getAlignment(),
   7192                                              CP->getOffset(), OpFlag);
   7193   DebugLoc DL = CP->getDebugLoc();
   7194   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7195   // With PIC, the address is actually $g + Offset.
   7196   if (OpFlag) {
   7197     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7198                          DAG.getNode(X86ISD::GlobalBaseReg,
   7199                                      DebugLoc(), getPointerTy()),
   7200                          Result);
   7201   }
   7202 
   7203   return Result;
   7204 }
   7205 
   7206 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   7207   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   7208 
   7209   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7210   // global base reg.
   7211   unsigned char OpFlag = 0;
   7212   unsigned WrapperKind = X86ISD::Wrapper;
   7213   CodeModel::Model M = getTargetMachine().getCodeModel();
   7214 
   7215   if (Subtarget->isPICStyleRIPRel() &&
   7216       (M == CodeModel::Small || M == CodeModel::Kernel))
   7217     WrapperKind = X86ISD::WrapperRIP;
   7218   else if (Subtarget->isPICStyleGOT())
   7219     OpFlag = X86II::MO_GOTOFF;
   7220   else if (Subtarget->isPICStyleStubPIC())
   7221     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7222 
   7223   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
   7224                                           OpFlag);
   7225   DebugLoc DL = JT->getDebugLoc();
   7226   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7227 
   7228   // With PIC, the address is actually $g + Offset.
   7229   if (OpFlag)
   7230     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7231                          DAG.getNode(X86ISD::GlobalBaseReg,
   7232                                      DebugLoc(), getPointerTy()),
   7233                          Result);
   7234 
   7235   return Result;
   7236 }
   7237 
   7238 SDValue
   7239 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
   7240   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
   7241 
   7242   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7243   // global base reg.
   7244   unsigned char OpFlag = 0;
   7245   unsigned WrapperKind = X86ISD::Wrapper;
   7246   CodeModel::Model M = getTargetMachine().getCodeModel();
   7247 
   7248   if (Subtarget->isPICStyleRIPRel() &&
   7249       (M == CodeModel::Small || M == CodeModel::Kernel)) {
   7250     if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
   7251       OpFlag = X86II::MO_GOTPCREL;
   7252     WrapperKind = X86ISD::WrapperRIP;
   7253   } else if (Subtarget->isPICStyleGOT()) {
   7254     OpFlag = X86II::MO_GOT;
   7255   } else if (Subtarget->isPICStyleStubPIC()) {
   7256     OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
   7257   } else if (Subtarget->isPICStyleStubNoDynamic()) {
   7258     OpFlag = X86II::MO_DARWIN_NONLAZY;
   7259   }
   7260 
   7261   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
   7262 
   7263   DebugLoc DL = Op.getDebugLoc();
   7264   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7265 
   7266 
   7267   // With PIC, the address is actually $g + Offset.
   7268   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   7269       !Subtarget->is64Bit()) {
   7270     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7271                          DAG.getNode(X86ISD::GlobalBaseReg,
   7272                                      DebugLoc(), getPointerTy()),
   7273                          Result);
   7274   }
   7275 
   7276   // For symbols that require a load from a stub to get the address, emit the
   7277   // load.
   7278   if (isGlobalStubReference(OpFlag))
   7279     Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
   7280                          MachinePointerInfo::getGOT(), false, false, 0);
   7281 
   7282   return Result;
   7283 }
   7284 
   7285 SDValue
   7286 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
   7287   // Create the TargetBlockAddressAddress node.
   7288   unsigned char OpFlags =
   7289     Subtarget->ClassifyBlockAddressReference();
   7290   CodeModel::Model M = getTargetMachine().getCodeModel();
   7291   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   7292   DebugLoc dl = Op.getDebugLoc();
   7293   SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
   7294                                        /*isTarget=*/true, OpFlags);
   7295 
   7296   if (Subtarget->isPICStyleRIPRel() &&
   7297       (M == CodeModel::Small || M == CodeModel::Kernel))
   7298     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7299   else
   7300     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7301 
   7302   // With PIC, the address is actually $g + Offset.
   7303   if (isGlobalRelativeToPICBase(OpFlags)) {
   7304     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7305                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7306                          Result);
   7307   }
   7308 
   7309   return Result;
   7310 }
   7311 
   7312 SDValue
   7313 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
   7314                                       int64_t Offset,
   7315                                       SelectionDAG &DAG) const {
   7316   // Create the TargetGlobalAddress node, folding in the constant
   7317   // offset if it is legal.
   7318   unsigned char OpFlags =
   7319     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
   7320   CodeModel::Model M = getTargetMachine().getCodeModel();
   7321   SDValue Result;
   7322   if (OpFlags == X86II::MO_NO_FLAG &&
   7323       X86::isOffsetSuitableForCodeModel(Offset, M)) {
   7324     // A direct static reference to a global.
   7325     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
   7326     Offset = 0;
   7327   } else {
   7328     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   7329   }
   7330 
   7331   if (Subtarget->isPICStyleRIPRel() &&
   7332       (M == CodeModel::Small || M == CodeModel::Kernel))
   7333     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7334   else
   7335     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7336 
   7337   // With PIC, the address is actually $g + Offset.
   7338   if (isGlobalRelativeToPICBase(OpFlags)) {
   7339     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7340                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7341                          Result);
   7342   }
   7343 
   7344   // For globals that require a load from a stub to get the address, emit the
   7345   // load.
   7346   if (isGlobalStubReference(OpFlags))
   7347     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
   7348                          MachinePointerInfo::getGOT(), false, false, 0);
   7349 
   7350   // If there was a non-zero offset that we didn't fold, create an explicit
   7351   // addition for it.
   7352   if (Offset != 0)
   7353     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
   7354                          DAG.getConstant(Offset, getPointerTy()));
   7355 
   7356   return Result;
   7357 }
   7358 
   7359 SDValue
   7360 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
   7361   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   7362   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
   7363   return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
   7364 }
   7365 
   7366 static SDValue
   7367 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
   7368            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
   7369            unsigned char OperandFlags) {
   7370   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   7371   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   7372   DebugLoc dl = GA->getDebugLoc();
   7373   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7374                                            GA->getValueType(0),
   7375                                            GA->getOffset(),
   7376                                            OperandFlags);
   7377   if (InFlag) {
   7378     SDValue Ops[] = { Chain,  TGA, *InFlag };
   7379     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
   7380   } else {
   7381     SDValue Ops[]  = { Chain, TGA };
   7382     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
   7383   }
   7384 
   7385   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   7386   MFI->setAdjustsStack(true);
   7387 
   7388   SDValue Flag = Chain.getValue(1);
   7389   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
   7390 }
   7391 
   7392 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
   7393 static SDValue
   7394 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7395                                 const EVT PtrVT) {
   7396   SDValue InFlag;
   7397   DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
   7398   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
   7399                                      DAG.getNode(X86ISD::GlobalBaseReg,
   7400                                                  DebugLoc(), PtrVT), InFlag);
   7401   InFlag = Chain.getValue(1);
   7402 
   7403   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
   7404 }
   7405 
   7406 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
   7407 static SDValue
   7408 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7409                                 const EVT PtrVT) {
   7410   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
   7411                     X86::RAX, X86II::MO_TLSGD);
   7412 }
   7413 
   7414 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
   7415 // "local exec" model.
   7416 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7417                                    const EVT PtrVT, TLSModel::Model model,
   7418                                    bool is64Bit) {
   7419   DebugLoc dl = GA->getDebugLoc();
   7420 
   7421   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
   7422   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
   7423                                                          is64Bit ? 257 : 256));
   7424 
   7425   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   7426                                       DAG.getIntPtrConstant(0),
   7427                                       MachinePointerInfo(Ptr), false, false, 0);
   7428 
   7429   unsigned char OperandFlags = 0;
   7430   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
   7431   // initialexec.
   7432   unsigned WrapperKind = X86ISD::Wrapper;
   7433   if (model == TLSModel::LocalExec) {
   7434     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
   7435   } else if (is64Bit) {
   7436     assert(model == TLSModel::InitialExec);
   7437     OperandFlags = X86II::MO_GOTTPOFF;
   7438     WrapperKind = X86ISD::WrapperRIP;
   7439   } else {
   7440     assert(model == TLSModel::InitialExec);
   7441     OperandFlags = X86II::MO_INDNTPOFF;
   7442   }
   7443 
   7444   // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
   7445   // exec)
   7446   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7447                                            GA->getValueType(0),
   7448                                            GA->getOffset(), OperandFlags);
   7449   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
   7450 
   7451   if (model == TLSModel::InitialExec)
   7452     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
   7453                          MachinePointerInfo::getGOT(), false, false, 0);
   7454 
   7455   // The address of the thread local variable is the add of the thread
   7456   // pointer with the offset of the variable.
   7457   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   7458 }
   7459 
   7460 SDValue
   7461 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   7462 
   7463   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   7464   const GlobalValue *GV = GA->getGlobal();
   7465 
   7466   if (Subtarget->isTargetELF()) {
   7467     // TODO: implement the "local dynamic" model
   7468     // TODO: implement the "initial exec"model for pic executables
   7469 
   7470     // If GV is an alias then use the aliasee for determining
   7471     // thread-localness.
   7472     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
   7473       GV = GA->resolveAliasedGlobal(false);
   7474 
   7475     TLSModel::Model model
   7476       = getTLSModel(GV, getTargetMachine().getRelocationModel());
   7477 
   7478     switch (model) {
   7479       case TLSModel::GeneralDynamic:
   7480       case TLSModel::LocalDynamic: // not implemented
   7481         if (Subtarget->is64Bit())
   7482           return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
   7483         return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
   7484 
   7485       case TLSModel::InitialExec:
   7486       case TLSModel::LocalExec:
   7487         return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
   7488                                    Subtarget->is64Bit());
   7489     }
   7490   } else if (Subtarget->isTargetDarwin()) {
   7491     // Darwin only has one model of TLS.  Lower to that.
   7492     unsigned char OpFlag = 0;
   7493     unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
   7494                            X86ISD::WrapperRIP : X86ISD::Wrapper;
   7495 
   7496     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7497     // global base reg.
   7498     bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
   7499                   !Subtarget->is64Bit();
   7500     if (PIC32)
   7501       OpFlag = X86II::MO_TLVP_PIC_BASE;
   7502     else
   7503       OpFlag = X86II::MO_TLVP;
   7504     DebugLoc DL = Op.getDebugLoc();
   7505     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
   7506                                                 GA->getValueType(0),
   7507                                                 GA->getOffset(), OpFlag);
   7508     SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7509 
   7510     // With PIC32, the address is actually $g + Offset.
   7511     if (PIC32)
   7512       Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7513                            DAG.getNode(X86ISD::GlobalBaseReg,
   7514                                        DebugLoc(), getPointerTy()),
   7515                            Offset);
   7516 
   7517     // Lowering the machine isd will make sure everything is in the right
   7518     // location.
   7519     SDValue Chain = DAG.getEntryNode();
   7520     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   7521     SDValue Args[] = { Chain, Offset };
   7522     Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
   7523 
   7524     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
   7525     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   7526     MFI->setAdjustsStack(true);
   7527 
   7528     // And our return value (tls address) is in the standard call return value
   7529     // location.
   7530     unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   7531     return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
   7532                               Chain.getValue(1));
   7533   }
   7534 
   7535   assert(false &&
   7536          "TLS not implemented for this target.");
   7537 
   7538   llvm_unreachable("Unreachable");
   7539   return SDValue();
   7540 }
   7541 
   7542 
   7543 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
   7544 /// take a 2 x i32 value to shift plus a shift amount.
   7545 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
   7546   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   7547   EVT VT = Op.getValueType();
   7548   unsigned VTBits = VT.getSizeInBits();
   7549   DebugLoc dl = Op.getDebugLoc();
   7550   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
   7551   SDValue ShOpLo = Op.getOperand(0);
   7552   SDValue ShOpHi = Op.getOperand(1);
   7553   SDValue ShAmt  = Op.getOperand(2);
   7554   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
   7555                                      DAG.getConstant(VTBits - 1, MVT::i8))
   7556                        : DAG.getConstant(0, VT);
   7557 
   7558   SDValue Tmp2, Tmp3;
   7559   if (Op.getOpcode() == ISD::SHL_PARTS) {
   7560     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
   7561     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   7562   } else {
   7563     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
   7564     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
   7565   }
   7566 
   7567   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
   7568                                 DAG.getConstant(VTBits, MVT::i8));
   7569   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   7570                              AndNode, DAG.getConstant(0, MVT::i8));
   7571 
   7572   SDValue Hi, Lo;
   7573   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   7574   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
   7575   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
   7576 
   7577   if (Op.getOpcode() == ISD::SHL_PARTS) {
   7578     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   7579     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   7580   } else {
   7581     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   7582     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   7583   }
   7584 
   7585   SDValue Ops[2] = { Lo, Hi };
   7586   return DAG.getMergeValues(Ops, 2, dl);
   7587 }
   7588 
   7589 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
   7590                                            SelectionDAG &DAG) const {
   7591   EVT SrcVT = Op.getOperand(0).getValueType();
   7592 
   7593   if (SrcVT.isVector())
   7594     return SDValue();
   7595 
   7596   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
   7597          "Unknown SINT_TO_FP to lower!");
   7598 
   7599   // These are really Legal; return the operand so the caller accepts it as
   7600   // Legal.
   7601   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
   7602     return Op;
   7603   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
   7604       Subtarget->is64Bit()) {
   7605     return Op;
   7606   }
   7607 
   7608   DebugLoc dl = Op.getDebugLoc();
   7609   unsigned Size = SrcVT.getSizeInBits()/8;
   7610   MachineFunction &MF = DAG.getMachineFunction();
   7611   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
   7612   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7613   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   7614                                StackSlot,
   7615                                MachinePointerInfo::getFixedStack(SSFI),
   7616                                false, false, 0);
   7617   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
   7618 }
   7619 
   7620 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
   7621                                      SDValue StackSlot,
   7622                                      SelectionDAG &DAG) const {
   7623   // Build the FILD
   7624   DebugLoc DL = Op.getDebugLoc();
   7625   SDVTList Tys;
   7626   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
   7627   if (useSSE)
   7628     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
   7629   else
   7630     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
   7631 
   7632   unsigned ByteSize = SrcVT.getSizeInBits()/8;
   7633 
   7634   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
   7635   MachineMemOperand *MMO;
   7636   if (FI) {
   7637     int SSFI = FI->getIndex();
   7638     MMO =
   7639       DAG.getMachineFunction()
   7640       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7641                             MachineMemOperand::MOLoad, ByteSize, ByteSize);
   7642   } else {
   7643     MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
   7644     StackSlot = StackSlot.getOperand(1);
   7645   }
   7646   SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
   7647   SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
   7648                                            X86ISD::FILD, DL,
   7649                                            Tys, Ops, array_lengthof(Ops),
   7650                                            SrcVT, MMO);
   7651 
   7652   if (useSSE) {
   7653     Chain = Result.getValue(1);
   7654     SDValue InFlag = Result.getValue(2);
   7655 
   7656     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
   7657     // shouldn't be necessary except that RFP cannot be live across
   7658     // multiple blocks. When stackifier is fixed, they can be uncoupled.
   7659     MachineFunction &MF = DAG.getMachineFunction();
   7660     unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
   7661     int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
   7662     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7663     Tys = DAG.getVTList(MVT::Other);
   7664     SDValue Ops[] = {
   7665       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
   7666     };
   7667     MachineMemOperand *MMO =
   7668       DAG.getMachineFunction()
   7669       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7670                             MachineMemOperand::MOStore, SSFISize, SSFISize);
   7671 
   7672     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
   7673                                     Ops, array_lengthof(Ops),
   7674                                     Op.getValueType(), MMO);
   7675     Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
   7676                          MachinePointerInfo::getFixedStack(SSFI),
   7677                          false, false, 0);
   7678   }
   7679 
   7680   return Result;
   7681 }
   7682 
   7683 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
   7684 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
   7685                                                SelectionDAG &DAG) const {
   7686   // This algorithm is not obvious. Here it is in C code, more or less:
   7687   /*
   7688     double uint64_to_double( uint32_t hi, uint32_t lo ) {
   7689       static const __m128i exp = { 0x4330000045300000ULL, 0 };
   7690       static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
   7691 
   7692       // Copy ints to xmm registers.
   7693       __m128i xh = _mm_cvtsi32_si128( hi );
   7694       __m128i xl = _mm_cvtsi32_si128( lo );
   7695 
   7696       // Combine into low half of a single xmm register.
   7697       __m128i x = _mm_unpacklo_epi32( xh, xl );
   7698       __m128d d;
   7699       double sd;
   7700 
   7701       // Merge in appropriate exponents to give the integer bits the right
   7702       // magnitude.
   7703       x = _mm_unpacklo_epi32( x, exp );
   7704 
   7705       // Subtract away the biases to deal with the IEEE-754 double precision
   7706       // implicit 1.
   7707       d = _mm_sub_pd( (__m128d) x, bias );
   7708 
   7709       // All conversions up to here are exact. The correctly rounded result is
   7710       // calculated using the current rounding mode using the following
   7711       // horizontal add.
   7712       d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
   7713       _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
   7714                                 // store doesn't really need to be here (except
   7715                                 // maybe to zero the other double)
   7716       return sd;
   7717     }
   7718   */
   7719 
   7720   DebugLoc dl = Op.getDebugLoc();
   7721   LLVMContext *Context = DAG.getContext();
   7722 
   7723   // Build some magic constants.
   7724   std::vector<Constant*> CV0;
   7725   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
   7726   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
   7727   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
   7728   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
   7729   Constant *C0 = ConstantVector::get(CV0);
   7730   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
   7731 
   7732   std::vector<Constant*> CV1;
   7733   CV1.push_back(
   7734     ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
   7735   CV1.push_back(
   7736     ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
   7737   Constant *C1 = ConstantVector::get(CV1);
   7738   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
   7739 
   7740   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   7741                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   7742                                         Op.getOperand(0),
   7743                                         DAG.getIntPtrConstant(1)));
   7744   SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   7745                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   7746                                         Op.getOperand(0),
   7747                                         DAG.getIntPtrConstant(0)));
   7748   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
   7749   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
   7750                               MachinePointerInfo::getConstantPool(),
   7751                               false, false, 16);
   7752   SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
   7753   SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
   7754   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
   7755                               MachinePointerInfo::getConstantPool(),
   7756                               false, false, 16);
   7757   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
   7758 
   7759   // Add the halves; easiest way is to swap them into another reg first.
   7760   int ShufMask[2] = { 1, -1 };
   7761   SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
   7762                                       DAG.getUNDEF(MVT::v2f64), ShufMask);
   7763   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
   7764   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
   7765                      DAG.getIntPtrConstant(0));
   7766 }
   7767 
   7768 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
   7769 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
   7770                                                SelectionDAG &DAG) const {
   7771   DebugLoc dl = Op.getDebugLoc();
   7772   // FP constant to bias correct the final result.
   7773   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
   7774                                    MVT::f64);
   7775 
   7776   // Load the 32-bit value into an XMM register.
   7777   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   7778                              Op.getOperand(0));
   7779 
   7780   // Zero out the upper parts of the register.
   7781   Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
   7782                                      DAG);
   7783 
   7784   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7785                      DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
   7786                      DAG.getIntPtrConstant(0));
   7787 
   7788   // Or the load with the bias.
   7789   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
   7790                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   7791                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   7792                                                    MVT::v2f64, Load)),
   7793                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   7794                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   7795                                                    MVT::v2f64, Bias)));
   7796   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7797                    DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
   7798                    DAG.getIntPtrConstant(0));
   7799 
   7800   // Subtract the bias.
   7801   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
   7802 
   7803   // Handle final rounding.
   7804   EVT DestVT = Op.getValueType();
   7805 
   7806   if (DestVT.bitsLT(MVT::f64)) {
   7807     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
   7808                        DAG.getIntPtrConstant(0));
   7809   } else if (DestVT.bitsGT(MVT::f64)) {
   7810     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
   7811   }
   7812 
   7813   // Handle final rounding.
   7814   return Sub;
   7815 }
   7816 
   7817 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   7818                                            SelectionDAG &DAG) const {
   7819   SDValue N0 = Op.getOperand(0);
   7820   DebugLoc dl = Op.getDebugLoc();
   7821 
   7822   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
   7823   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
   7824   // the optimization here.
   7825   if (DAG.SignBitIsZero(N0))
   7826     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
   7827 
   7828   EVT SrcVT = N0.getValueType();
   7829   EVT DstVT = Op.getValueType();
   7830   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
   7831     return LowerUINT_TO_FP_i64(Op, DAG);
   7832   else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
   7833     return LowerUINT_TO_FP_i32(Op, DAG);
   7834 
   7835   // Make a 64-bit buffer, and use it to build an FILD.
   7836   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
   7837   if (SrcVT == MVT::i32) {
   7838     SDValue WordOff = DAG.getConstant(4, getPointerTy());
   7839     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
   7840                                      getPointerTy(), StackSlot, WordOff);
   7841     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   7842                                   StackSlot, MachinePointerInfo(),
   7843                                   false, false, 0);
   7844     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
   7845                                   OffsetSlot, MachinePointerInfo(),
   7846                                   false, false, 0);
   7847     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
   7848     return Fild;
   7849   }
   7850 
   7851   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
   7852   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   7853                                 StackSlot, MachinePointerInfo(),
   7854                                false, false, 0);
   7855   // For i64 source, we need to add the appropriate power of 2 if the input
   7856   // was negative.  This is the same as the optimization in
   7857   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
   7858   // we must be careful to do the computation in x87 extended precision, not
   7859   // in SSE. (The generic code can't know it's OK to do this, or how to.)
   7860   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
   7861   MachineMemOperand *MMO =
   7862     DAG.getMachineFunction()
   7863     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7864                           MachineMemOperand::MOLoad, 8, 8);
   7865 
   7866   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
   7867   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
   7868   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
   7869                                          MVT::i64, MMO);
   7870 
   7871   APInt FF(32, 0x5F800000ULL);
   7872 
   7873   // Check whether the sign bit is set.
   7874   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
   7875                                  Op.getOperand(0), DAG.getConstant(0, MVT::i64),
   7876                                  ISD::SETLT);
   7877 
   7878   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
   7879   SDValue FudgePtr = DAG.getConstantPool(
   7880                              ConstantInt::get(*DAG.getContext(), FF.zext(64)),
   7881                                          getPointerTy());
   7882 
   7883   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
   7884   SDValue Zero = DAG.getIntPtrConstant(0);
   7885   SDValue Four = DAG.getIntPtrConstant(4);
   7886   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
   7887                                Zero, Four);
   7888   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
   7889 
   7890   // Load the value out, extending it from f32 to f80.
   7891   // FIXME: Avoid the extend by constructing the right constant pool?
   7892   SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
   7893                                  FudgePtr, MachinePointerInfo::getConstantPool(),
   7894                                  MVT::f32, false, false, 4);
   7895   // Extend everything to 80 bits to force it to be done on x87.
   7896   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
   7897   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
   7898 }
   7899 
   7900 std::pair<SDValue,SDValue> X86TargetLowering::
   7901 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
   7902   DebugLoc DL = Op.getDebugLoc();
   7903 
   7904   EVT DstTy = Op.getValueType();
   7905 
   7906   if (!IsSigned) {
   7907     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
   7908     DstTy = MVT::i64;
   7909   }
   7910 
   7911   assert(DstTy.getSimpleVT() <= MVT::i64 &&
   7912          DstTy.getSimpleVT() >= MVT::i16 &&
   7913          "Unknown FP_TO_SINT to lower!");
   7914 
   7915   // These are really Legal.
   7916   if (DstTy == MVT::i32 &&
   7917       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   7918     return std::make_pair(SDValue(), SDValue());
   7919   if (Subtarget->is64Bit() &&
   7920       DstTy == MVT::i64 &&
   7921       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   7922     return std::make_pair(SDValue(), SDValue());
   7923 
   7924   // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
   7925   // stack slot.
   7926   MachineFunction &MF = DAG.getMachineFunction();
   7927   unsigned MemSize = DstTy.getSizeInBits()/8;
   7928   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   7929   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7930 
   7931 
   7932 
   7933   unsigned Opc;
   7934   switch (DstTy.getSimpleVT().SimpleTy) {
   7935   default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
   7936   case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
   7937   case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
   7938   case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
   7939   }
   7940 
   7941   SDValue Chain = DAG.getEntryNode();
   7942   SDValue Value = Op.getOperand(0);
   7943   EVT TheVT = Op.getOperand(0).getValueType();
   7944   if (isScalarFPTypeInSSEReg(TheVT)) {
   7945     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
   7946     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
   7947                          MachinePointerInfo::getFixedStack(SSFI),
   7948                          false, false, 0);
   7949     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
   7950     SDValue Ops[] = {
   7951       Chain, StackSlot, DAG.getValueType(TheVT)
   7952     };
   7953 
   7954     MachineMemOperand *MMO =
   7955       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7956                               MachineMemOperand::MOLoad, MemSize, MemSize);
   7957     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
   7958                                     DstTy, MMO);
   7959     Chain = Value.getValue(1);
   7960     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   7961     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7962   }
   7963 
   7964   MachineMemOperand *MMO =
   7965     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7966                             MachineMemOperand::MOStore, MemSize, MemSize);
   7967 
   7968   // Build the FP_TO_INT*_IN_MEM
   7969   SDValue Ops[] = { Chain, Value, StackSlot };
   7970   SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
   7971                                          Ops, 3, DstTy, MMO);
   7972 
   7973   return std::make_pair(FIST, StackSlot);
   7974 }
   7975 
   7976 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
   7977                                            SelectionDAG &DAG) const {
   7978   if (Op.getValueType().isVector())
   7979     return SDValue();
   7980 
   7981   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
   7982   SDValue FIST = Vals.first, StackSlot = Vals.second;
   7983   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
   7984   if (FIST.getNode() == 0) return Op;
   7985 
   7986   // Load the result.
   7987   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   7988                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
   7989 }
   7990 
   7991 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
   7992                                            SelectionDAG &DAG) const {
   7993   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
   7994   SDValue FIST = Vals.first, StackSlot = Vals.second;
   7995   assert(FIST.getNode() && "Unexpected failure");
   7996 
   7997   // Load the result.
   7998   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   7999                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
   8000 }
   8001 
   8002 SDValue X86TargetLowering::LowerFABS(SDValue Op,
   8003                                      SelectionDAG &DAG) const {
   8004   LLVMContext *Context = DAG.getContext();
   8005   DebugLoc dl = Op.getDebugLoc();
   8006   EVT VT = Op.getValueType();
   8007   EVT EltVT = VT;
   8008   if (VT.isVector())
   8009     EltVT = VT.getVectorElementType();
   8010   std::vector<Constant*> CV;
   8011   if (EltVT == MVT::f64) {
   8012     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
   8013     CV.push_back(C);
   8014     CV.push_back(C);
   8015   } else {
   8016     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
   8017     CV.push_back(C);
   8018     CV.push_back(C);
   8019     CV.push_back(C);
   8020     CV.push_back(C);
   8021   }
   8022   Constant *C = ConstantVector::get(CV);
   8023   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8024   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8025                              MachinePointerInfo::getConstantPool(),
   8026                              false, false, 16);
   8027   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
   8028 }
   8029 
   8030 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
   8031   LLVMContext *Context = DAG.getContext();
   8032   DebugLoc dl = Op.getDebugLoc();
   8033   EVT VT = Op.getValueType();
   8034   EVT EltVT = VT;
   8035   if (VT.isVector())
   8036     EltVT = VT.getVectorElementType();
   8037   std::vector<Constant*> CV;
   8038   if (EltVT == MVT::f64) {
   8039     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
   8040     CV.push_back(C);
   8041     CV.push_back(C);
   8042   } else {
   8043     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
   8044     CV.push_back(C);
   8045     CV.push_back(C);
   8046     CV.push_back(C);
   8047     CV.push_back(C);
   8048   }
   8049   Constant *C = ConstantVector::get(CV);
   8050   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8051   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8052                              MachinePointerInfo::getConstantPool(),
   8053                              false, false, 16);
   8054   if (VT.isVector()) {
   8055     return DAG.getNode(ISD::BITCAST, dl, VT,
   8056                        DAG.getNode(ISD::XOR, dl, MVT::v2i64,
   8057                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   8058                                 Op.getOperand(0)),
   8059                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
   8060   } else {
   8061     return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
   8062   }
   8063 }
   8064 
   8065 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   8066   LLVMContext *Context = DAG.getContext();
   8067   SDValue Op0 = Op.getOperand(0);
   8068   SDValue Op1 = Op.getOperand(1);
   8069   DebugLoc dl = Op.getDebugLoc();
   8070   EVT VT = Op.getValueType();
   8071   EVT SrcVT = Op1.getValueType();
   8072 
   8073   // If second operand is smaller, extend it first.
   8074   if (SrcVT.bitsLT(VT)) {
   8075     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
   8076     SrcVT = VT;
   8077   }
   8078   // And if it is bigger, shrink it first.
   8079   if (SrcVT.bitsGT(VT)) {
   8080     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
   8081     SrcVT = VT;
   8082   }
   8083 
   8084   // At this point the operands and the result should have the same
   8085   // type, and that won't be f80 since that is not custom lowered.
   8086 
   8087   // First get the sign bit of second operand.
   8088   std::vector<Constant*> CV;
   8089   if (SrcVT == MVT::f64) {
   8090     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
   8091     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   8092   } else {
   8093     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
   8094     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8095     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8096     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8097   }
   8098   Constant *C = ConstantVector::get(CV);
   8099   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8100   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
   8101                               MachinePointerInfo::getConstantPool(),
   8102                               false, false, 16);
   8103   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
   8104 
   8105   // Shift sign bit right or left if the two operands have different types.
   8106   if (SrcVT.bitsGT(VT)) {
   8107     // Op0 is MVT::f32, Op1 is MVT::f64.
   8108     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
   8109     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
   8110                           DAG.getConstant(32, MVT::i32));
   8111     SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
   8112     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
   8113                           DAG.getIntPtrConstant(0));
   8114   }
   8115 
   8116   // Clear first operand sign bit.
   8117   CV.clear();
   8118   if (VT == MVT::f64) {
   8119     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
   8120     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   8121   } else {
   8122     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
   8123     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8124     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8125     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8126   }
   8127   C = ConstantVector::get(CV);
   8128   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8129   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8130                               MachinePointerInfo::getConstantPool(),
   8131                               false, false, 16);
   8132   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
   8133 
   8134   // Or the value with the sign bit.
   8135   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
   8136 }
   8137 
   8138 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
   8139   SDValue N0 = Op.getOperand(0);
   8140   DebugLoc dl = Op.getDebugLoc();
   8141   EVT VT = Op.getValueType();
   8142 
   8143   // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
   8144   SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
   8145                                   DAG.getConstant(1, VT));
   8146   return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
   8147 }
   8148 
   8149 /// Emit nodes that will be selected as "test Op0,Op0", or something
   8150 /// equivalent.
   8151 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
   8152                                     SelectionDAG &DAG) const {
   8153   DebugLoc dl = Op.getDebugLoc();
   8154 
   8155   // CF and OF aren't always set the way we want. Determine which
   8156   // of these we need.
   8157   bool NeedCF = false;
   8158   bool NeedOF = false;
   8159   switch (X86CC) {
   8160   default: break;
   8161   case X86::COND_A: case X86::COND_AE:
   8162   case X86::COND_B: case X86::COND_BE:
   8163     NeedCF = true;
   8164     break;
   8165   case X86::COND_G: case X86::COND_GE:
   8166   case X86::COND_L: case X86::COND_LE:
   8167   case X86::COND_O: case X86::COND_NO:
   8168     NeedOF = true;
   8169     break;
   8170   }
   8171 
   8172   // See if we can use the EFLAGS value from the operand instead of
   8173   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
   8174   // we prove that the arithmetic won't overflow, we can't use OF or CF.
   8175   if (Op.getResNo() != 0 || NeedOF || NeedCF)
   8176     // Emit a CMP with 0, which is the TEST pattern.
   8177     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   8178                        DAG.getConstant(0, Op.getValueType()));
   8179 
   8180   unsigned Opcode = 0;
   8181   unsigned NumOperands = 0;
   8182   switch (Op.getNode()->getOpcode()) {
   8183   case ISD::ADD:
   8184     // Due to an isel shortcoming, be conservative if this add is likely to be
   8185     // selected as part of a load-modify-store instruction. When the root node
   8186     // in a match is a store, isel doesn't know how to remap non-chain non-flag
   8187     // uses of other nodes in the match, such as the ADD in this case. This
   8188     // leads to the ADD being left around and reselected, with the result being
   8189     // two adds in the output.  Alas, even if none our users are stores, that
   8190     // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
   8191     // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
   8192     // climbing the DAG back to the root, and it doesn't seem to be worth the
   8193     // effort.
   8194     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8195            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   8196       if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
   8197         goto default_case;
   8198 
   8199     if (ConstantSDNode *C =
   8200         dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
   8201       // An add of one will be selected as an INC.
   8202       if (C->getAPIntValue() == 1) {
   8203         Opcode = X86ISD::INC;
   8204         NumOperands = 1;
   8205         break;
   8206       }
   8207 
   8208       // An add of negative one (subtract of one) will be selected as a DEC.
   8209       if (C->getAPIntValue().isAllOnesValue()) {
   8210         Opcode = X86ISD::DEC;
   8211         NumOperands = 1;
   8212         break;
   8213       }
   8214     }
   8215 
   8216     // Otherwise use a regular EFLAGS-setting add.
   8217     Opcode = X86ISD::ADD;
   8218     NumOperands = 2;
   8219     break;
   8220   case ISD::AND: {
   8221     // If the primary and result isn't used, don't bother using X86ISD::AND,
   8222     // because a TEST instruction will be better.
   8223     bool NonFlagUse = false;
   8224     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8225            UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   8226       SDNode *User = *UI;
   8227       unsigned UOpNo = UI.getOperandNo();
   8228       if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
   8229         // Look pass truncate.
   8230         UOpNo = User->use_begin().getOperandNo();
   8231         User = *User->use_begin();
   8232       }
   8233 
   8234       if (User->getOpcode() != ISD::BRCOND &&
   8235           User->getOpcode() != ISD::SETCC &&
   8236           (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
   8237         NonFlagUse = true;
   8238         break;
   8239       }
   8240     }
   8241 
   8242     if (!NonFlagUse)
   8243       break;
   8244   }
   8245     // FALL THROUGH
   8246   case ISD::SUB:
   8247   case ISD::OR:
   8248   case ISD::XOR:
   8249     // Due to the ISEL shortcoming noted above, be conservative if this op is
   8250     // likely to be selected as part of a load-modify-store instruction.
   8251     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8252            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   8253       if (UI->getOpcode() == ISD::STORE)
   8254         goto default_case;
   8255 
   8256     // Otherwise use a regular EFLAGS-setting instruction.
   8257     switch (Op.getNode()->getOpcode()) {
   8258     default: llvm_unreachable("unexpected operator!");
   8259     case ISD::SUB: Opcode = X86ISD::SUB; break;
   8260     case ISD::OR:  Opcode = X86ISD::OR;  break;
   8261     case ISD::XOR: Opcode = X86ISD::XOR; break;
   8262     case ISD::AND: Opcode = X86ISD::AND; break;
   8263     }
   8264 
   8265     NumOperands = 2;
   8266     break;
   8267   case X86ISD::ADD:
   8268   case X86ISD::SUB:
   8269   case X86ISD::INC:
   8270   case X86ISD::DEC:
   8271   case X86ISD::OR:
   8272   case X86ISD::XOR:
   8273   case X86ISD::AND:
   8274     return SDValue(Op.getNode(), 1);
   8275   default:
   8276   default_case:
   8277     break;
   8278   }
   8279 
   8280   if (Opcode == 0)
   8281     // Emit a CMP with 0, which is the TEST pattern.
   8282     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   8283                        DAG.getConstant(0, Op.getValueType()));
   8284 
   8285   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   8286   SmallVector<SDValue, 4> Ops;
   8287   for (unsigned i = 0; i != NumOperands; ++i)
   8288     Ops.push_back(Op.getOperand(i));
   8289 
   8290   SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
   8291   DAG.ReplaceAllUsesWith(Op, New);
   8292   return SDValue(New.getNode(), 1);
   8293 }
   8294 
   8295 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
   8296 /// equivalent.
   8297 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
   8298                                    SelectionDAG &DAG) const {
   8299   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
   8300     if (C->getAPIntValue() == 0)
   8301       return EmitTest(Op0, X86CC, DAG);
   8302 
   8303   DebugLoc dl = Op0.getDebugLoc();
   8304   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
   8305 }
   8306 
   8307 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
   8308 /// if it's possible.
   8309 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
   8310                                      DebugLoc dl, SelectionDAG &DAG) const {
   8311   SDValue Op0 = And.getOperand(0);
   8312   SDValue Op1 = And.getOperand(1);
   8313   if (Op0.getOpcode() == ISD::TRUNCATE)
   8314     Op0 = Op0.getOperand(0);
   8315   if (Op1.getOpcode() == ISD::TRUNCATE)
   8316     Op1 = Op1.getOperand(0);
   8317 
   8318   SDValue LHS, RHS;
   8319   if (Op1.getOpcode() == ISD::SHL)
   8320     std::swap(Op0, Op1);
   8321   if (Op0.getOpcode() == ISD::SHL) {
   8322     if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
   8323       if (And00C->getZExtValue() == 1) {
   8324         // If we looked past a truncate, check that it's only truncating away
   8325         // known zeros.
   8326         unsigned BitWidth = Op0.getValueSizeInBits();
   8327         unsigned AndBitWidth = And.getValueSizeInBits();
   8328         if (BitWidth > AndBitWidth) {
   8329           APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
   8330           DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
   8331           if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
   8332             return SDValue();
   8333         }
   8334         LHS = Op1;
   8335         RHS = Op0.getOperand(1);
   8336       }
   8337   } else if (Op1.getOpcode() == ISD::Constant) {
   8338     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
   8339     SDValue AndLHS = Op0;
   8340     if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
   8341       LHS = AndLHS.getOperand(0);
   8342       RHS = AndLHS.getOperand(1);
   8343     }
   8344   }
   8345 
   8346   if (LHS.getNode()) {
   8347     // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
   8348     // instruction.  Since the shift amount is in-range-or-undefined, we know
   8349     // that doing a bittest on the i32 value is ok.  We extend to i32 because
   8350     // the encoding for the i16 version is larger than the i32 version.
   8351     // Also promote i16 to i32 for performance / code size reason.
   8352     if (LHS.getValueType() == MVT::i8 ||
   8353         LHS.getValueType() == MVT::i16)
   8354       LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
   8355 
   8356     // If the operand types disagree, extend the shift amount to match.  Since
   8357     // BT ignores high bits (like shifts) we can use anyextend.
   8358     if (LHS.getValueType() != RHS.getValueType())
   8359       RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
   8360 
   8361     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
   8362     unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
   8363     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8364                        DAG.getConstant(Cond, MVT::i8), BT);
   8365   }
   8366 
   8367   return SDValue();
   8368 }
   8369 
   8370 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   8371 
   8372   if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
   8373 
   8374   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
   8375   SDValue Op0 = Op.getOperand(0);
   8376   SDValue Op1 = Op.getOperand(1);
   8377   DebugLoc dl = Op.getDebugLoc();
   8378   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   8379 
   8380   // Optimize to BT if possible.
   8381   // Lower (X & (1 << N)) == 0 to BT(X, N).
   8382   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
   8383   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
   8384   if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
   8385       Op1.getOpcode() == ISD::Constant &&
   8386       cast<ConstantSDNode>(Op1)->isNullValue() &&
   8387       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   8388     SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
   8389     if (NewSetCC.getNode())
   8390       return NewSetCC;
   8391   }
   8392 
   8393   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
   8394   // these.
   8395   if (Op1.getOpcode() == ISD::Constant &&
   8396       (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
   8397        cast<ConstantSDNode>(Op1)->isNullValue()) &&
   8398       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   8399 
   8400     // If the input is a setcc, then reuse the input setcc or use a new one with
   8401     // the inverted condition.
   8402     if (Op0.getOpcode() == X86ISD::SETCC) {
   8403       X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
   8404       bool Invert = (CC == ISD::SETNE) ^
   8405         cast<ConstantSDNode>(Op1)->isNullValue();
   8406       if (!Invert) return Op0;
   8407 
   8408       CCode = X86::GetOppositeBranchCondition(CCode);
   8409       return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8410                          DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
   8411     }
   8412   }
   8413 
   8414   bool isFP = Op1.getValueType().isFloatingPoint();
   8415   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
   8416   if (X86CC == X86::COND_INVALID)
   8417     return SDValue();
   8418 
   8419   SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
   8420   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8421                      DAG.getConstant(X86CC, MVT::i8), EFLAGS);
   8422 }
   8423 
   8424 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
   8425 // ones, and then concatenate the result back.
   8426 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
   8427   EVT VT = Op.getValueType();
   8428 
   8429   assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
   8430          "Unsupported value type for operation");
   8431 
   8432   int NumElems = VT.getVectorNumElements();
   8433   DebugLoc dl = Op.getDebugLoc();
   8434   SDValue CC = Op.getOperand(2);
   8435   SDValue Idx0 = DAG.getConstant(0, MVT::i32);
   8436   SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
   8437 
   8438   // Extract the LHS vectors
   8439   SDValue LHS = Op.getOperand(0);
   8440   SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
   8441   SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
   8442 
   8443   // Extract the RHS vectors
   8444   SDValue RHS = Op.getOperand(1);
   8445   SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
   8446   SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
   8447 
   8448   // Issue the operation on the smaller types and concatenate the result back
   8449   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   8450   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   8451   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   8452                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
   8453                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
   8454 }
   8455 
   8456 
   8457 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
   8458   SDValue Cond;
   8459   SDValue Op0 = Op.getOperand(0);
   8460   SDValue Op1 = Op.getOperand(1);
   8461   SDValue CC = Op.getOperand(2);
   8462   EVT VT = Op.getValueType();
   8463   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   8464   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
   8465   DebugLoc dl = Op.getDebugLoc();
   8466 
   8467   if (isFP) {
   8468     unsigned SSECC = 8;
   8469     EVT EltVT = Op0.getValueType().getVectorElementType();
   8470     assert(EltVT == MVT::f32 || EltVT == MVT::f64);
   8471 
   8472     unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
   8473     bool Swap = false;
   8474 
   8475     // SSE Condition code mapping:
   8476     //  0 - EQ
   8477     //  1 - LT
   8478     //  2 - LE
   8479     //  3 - UNORD
   8480     //  4 - NEQ
   8481     //  5 - NLT
   8482     //  6 - NLE
   8483     //  7 - ORD
   8484     switch (SetCCOpcode) {
   8485     default: break;
   8486     case ISD::SETOEQ:
   8487     case ISD::SETEQ:  SSECC = 0; break;
   8488     case ISD::SETOGT:
   8489     case ISD::SETGT: Swap = true; // Fallthrough
   8490     case ISD::SETLT:
   8491     case ISD::SETOLT: SSECC = 1; break;
   8492     case ISD::SETOGE:
   8493     case ISD::SETGE: Swap = true; // Fallthrough
   8494     case ISD::SETLE:
   8495     case ISD::SETOLE: SSECC = 2; break;
   8496     case ISD::SETUO:  SSECC = 3; break;
   8497     case ISD::SETUNE:
   8498     case ISD::SETNE:  SSECC = 4; break;
   8499     case ISD::SETULE: Swap = true;
   8500     case ISD::SETUGE: SSECC = 5; break;
   8501     case ISD::SETULT: Swap = true;
   8502     case ISD::SETUGT: SSECC = 6; break;
   8503     case ISD::SETO:   SSECC = 7; break;
   8504     }
   8505     if (Swap)
   8506       std::swap(Op0, Op1);
   8507 
   8508     // In the two special cases we can't handle, emit two comparisons.
   8509     if (SSECC == 8) {
   8510       if (SetCCOpcode == ISD::SETUEQ) {
   8511         SDValue UNORD, EQ;
   8512         UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
   8513         EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
   8514         return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
   8515       }
   8516       else if (SetCCOpcode == ISD::SETONE) {
   8517         SDValue ORD, NEQ;
   8518         ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
   8519         NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
   8520         return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
   8521       }
   8522       llvm_unreachable("Illegal FP comparison");
   8523     }
   8524     // Handle all other FP comparisons here.
   8525     return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
   8526   }
   8527 
   8528   // Break 256-bit integer vector compare into smaller ones.
   8529   if (!isFP && VT.getSizeInBits() == 256)
   8530     return Lower256IntVSETCC(Op, DAG);
   8531 
   8532   // We are handling one of the integer comparisons here.  Since SSE only has
   8533   // GT and EQ comparisons for integer, swapping operands and multiple
   8534   // operations may be required for some comparisons.
   8535   unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
   8536   bool Swap = false, Invert = false, FlipSigns = false;
   8537 
   8538   switch (VT.getSimpleVT().SimpleTy) {
   8539   default: break;
   8540   case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
   8541   case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
   8542   case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
   8543   case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
   8544   }
   8545 
   8546   switch (SetCCOpcode) {
   8547   default: break;
   8548   case ISD::SETNE:  Invert = true;
   8549   case ISD::SETEQ:  Opc = EQOpc; break;
   8550   case ISD::SETLT:  Swap = true;
   8551   case ISD::SETGT:  Opc = GTOpc; break;
   8552   case ISD::SETGE:  Swap = true;
   8553   case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
   8554   case ISD::SETULT: Swap = true;
   8555   case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
   8556   case ISD::SETUGE: Swap = true;
   8557   case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
   8558   }
   8559   if (Swap)
   8560     std::swap(Op0, Op1);
   8561 
   8562   // Check that the operation in question is available (most are plain SSE2,
   8563   // but PCMPGTQ and PCMPEQQ have different requirements).
   8564   if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
   8565     return SDValue();
   8566   if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
   8567     return SDValue();
   8568 
   8569   // Since SSE has no unsigned integer comparisons, we need to flip  the sign
   8570   // bits of the inputs before performing those operations.
   8571   if (FlipSigns) {
   8572     EVT EltVT = VT.getVectorElementType();
   8573     SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
   8574                                       EltVT);
   8575     std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
   8576     SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
   8577                                     SignBits.size());
   8578     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
   8579     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
   8580   }
   8581 
   8582   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   8583 
   8584   // If the logical-not of the result is required, perform that now.
   8585   if (Invert)
   8586     Result = DAG.getNOT(dl, Result, VT);
   8587 
   8588   return Result;
   8589 }
   8590 
   8591 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
   8592 static bool isX86LogicalCmp(SDValue Op) {
   8593   unsigned Opc = Op.getNode()->getOpcode();
   8594   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
   8595     return true;
   8596   if (Op.getResNo() == 1 &&
   8597       (Opc == X86ISD::ADD ||
   8598        Opc == X86ISD::SUB ||
   8599        Opc == X86ISD::ADC ||
   8600        Opc == X86ISD::SBB ||
   8601        Opc == X86ISD::SMUL ||
   8602        Opc == X86ISD::UMUL ||
   8603        Opc == X86ISD::INC ||
   8604        Opc == X86ISD::DEC ||
   8605        Opc == X86ISD::OR ||
   8606        Opc == X86ISD::XOR ||
   8607        Opc == X86ISD::AND))
   8608     return true;
   8609 
   8610   if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
   8611     return true;
   8612 
   8613   return false;
   8614 }
   8615 
   8616 static bool isZero(SDValue V) {
   8617   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   8618   return C && C->isNullValue();
   8619 }
   8620 
   8621 static bool isAllOnes(SDValue V) {
   8622   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   8623   return C && C->isAllOnesValue();
   8624 }
   8625 
   8626 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   8627   bool addTest = true;
   8628   SDValue Cond  = Op.getOperand(0);
   8629   SDValue Op1 = Op.getOperand(1);
   8630   SDValue Op2 = Op.getOperand(2);
   8631   DebugLoc DL = Op.getDebugLoc();
   8632   SDValue CC;
   8633 
   8634   if (Cond.getOpcode() == ISD::SETCC) {
   8635     SDValue NewCond = LowerSETCC(Cond, DAG);
   8636     if (NewCond.getNode())
   8637       Cond = NewCond;
   8638   }
   8639 
   8640   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
   8641   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
   8642   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
   8643   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
   8644   if (Cond.getOpcode() == X86ISD::SETCC &&
   8645       Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
   8646       isZero(Cond.getOperand(1).getOperand(1))) {
   8647     SDValue Cmp = Cond.getOperand(1);
   8648 
   8649     unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
   8650 
   8651     if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
   8652         (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
   8653       SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
   8654 
   8655       SDValue CmpOp0 = Cmp.getOperand(0);
   8656       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
   8657                         CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
   8658 
   8659       SDValue Res =   // Res = 0 or -1.
   8660         DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   8661                     DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
   8662 
   8663       if (isAllOnes(Op1) != (CondCode == X86::COND_E))
   8664         Res = DAG.getNOT(DL, Res, Res.getValueType());
   8665 
   8666       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
   8667       if (N2C == 0 || !N2C->isNullValue())
   8668         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
   8669       return Res;
   8670     }
   8671   }
   8672 
   8673   // Look past (and (setcc_carry (cmp ...)), 1).
   8674   if (Cond.getOpcode() == ISD::AND &&
   8675       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   8676     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   8677     if (C && C->getAPIntValue() == 1)
   8678       Cond = Cond.getOperand(0);
   8679   }
   8680 
   8681   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   8682   // setting operand in place of the X86ISD::SETCC.
   8683   if (Cond.getOpcode() == X86ISD::SETCC ||
   8684       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
   8685     CC = Cond.getOperand(0);
   8686 
   8687     SDValue Cmp = Cond.getOperand(1);
   8688     unsigned Opc = Cmp.getOpcode();
   8689     EVT VT = Op.getValueType();
   8690 
   8691     bool IllegalFPCMov = false;
   8692     if (VT.isFloatingPoint() && !VT.isVector() &&
   8693         !isScalarFPTypeInSSEReg(VT))  // FPStack?
   8694       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
   8695 
   8696     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
   8697         Opc == X86ISD::BT) { // FIXME
   8698       Cond = Cmp;
   8699       addTest = false;
   8700     }
   8701   }
   8702 
   8703   if (addTest) {
   8704     // Look pass the truncate.
   8705     if (Cond.getOpcode() == ISD::TRUNCATE)
   8706       Cond = Cond.getOperand(0);
   8707 
   8708     // We know the result of AND is compared against zero. Try to match
   8709     // it to BT.
   8710     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   8711       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
   8712       if (NewSetCC.getNode()) {
   8713         CC = NewSetCC.getOperand(0);
   8714         Cond = NewSetCC.getOperand(1);
   8715         addTest = false;
   8716       }
   8717     }
   8718   }
   8719 
   8720   if (addTest) {
   8721     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   8722     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   8723   }
   8724 
   8725   // a <  b ? -1 :  0 -> RES = ~setcc_carry
   8726   // a <  b ?  0 : -1 -> RES = setcc_carry
   8727   // a >= b ? -1 :  0 -> RES = setcc_carry
   8728   // a >= b ?  0 : -1 -> RES = ~setcc_carry
   8729   if (Cond.getOpcode() == X86ISD::CMP) {
   8730     unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
   8731 
   8732     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
   8733         (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
   8734       SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   8735                                 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
   8736       if (isAllOnes(Op1) != (CondCode == X86::COND_B))
   8737         return DAG.getNOT(DL, Res, Res.getValueType());
   8738       return Res;
   8739     }
   8740   }
   8741 
   8742   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
   8743   // condition is true.
   8744   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   8745   SDValue Ops[] = { Op2, Op1, CC, Cond };
   8746   return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
   8747 }
   8748 
   8749 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
   8750 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
   8751 // from the AND / OR.
   8752 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
   8753   Opc = Op.getOpcode();
   8754   if (Opc != ISD::OR && Opc != ISD::AND)
   8755     return false;
   8756   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   8757           Op.getOperand(0).hasOneUse() &&
   8758           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
   8759           Op.getOperand(1).hasOneUse());
   8760 }
   8761 
   8762 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
   8763 // 1 and that the SETCC node has a single use.
   8764 static bool isXor1OfSetCC(SDValue Op) {
   8765   if (Op.getOpcode() != ISD::XOR)
   8766     return false;
   8767   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   8768   if (N1C && N1C->getAPIntValue() == 1) {
   8769     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   8770       Op.getOperand(0).hasOneUse();
   8771   }
   8772   return false;
   8773 }
   8774 
   8775 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   8776   bool addTest = true;
   8777   SDValue Chain = Op.getOperand(0);
   8778   SDValue Cond  = Op.getOperand(1);
   8779   SDValue Dest  = Op.getOperand(2);
   8780   DebugLoc dl = Op.getDebugLoc();
   8781   SDValue CC;
   8782 
   8783   if (Cond.getOpcode() == ISD::SETCC) {
   8784     SDValue NewCond = LowerSETCC(Cond, DAG);
   8785     if (NewCond.getNode())
   8786       Cond = NewCond;
   8787   }
   8788 #if 0
   8789   // FIXME: LowerXALUO doesn't handle these!!
   8790   else if (Cond.getOpcode() == X86ISD::ADD  ||
   8791            Cond.getOpcode() == X86ISD::SUB  ||
   8792            Cond.getOpcode() == X86ISD::SMUL ||
   8793            Cond.getOpcode() == X86ISD::UMUL)
   8794     Cond = LowerXALUO(Cond, DAG);
   8795 #endif
   8796 
   8797   // Look pass (and (setcc_carry (cmp ...)), 1).
   8798   if (Cond.getOpcode() == ISD::AND &&
   8799       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   8800     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   8801     if (C && C->getAPIntValue() == 1)
   8802       Cond = Cond.getOperand(0);
   8803   }
   8804 
   8805   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   8806   // setting operand in place of the X86ISD::SETCC.
   8807   if (Cond.getOpcode() == X86ISD::SETCC ||
   8808       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
   8809     CC = Cond.getOperand(0);
   8810 
   8811     SDValue Cmp = Cond.getOperand(1);
   8812     unsigned Opc = Cmp.getOpcode();
   8813     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
   8814     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
   8815       Cond = Cmp;
   8816       addTest = false;
   8817     } else {
   8818       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
   8819       default: break;
   8820       case X86::COND_O:
   8821       case X86::COND_B:
   8822         // These can only come from an arithmetic instruction with overflow,
   8823         // e.g. SADDO, UADDO.
   8824         Cond = Cond.getNode()->getOperand(1);
   8825         addTest = false;
   8826         break;
   8827       }
   8828     }
   8829   } else {
   8830     unsigned CondOpc;
   8831     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
   8832       SDValue Cmp = Cond.getOperand(0).getOperand(1);
   8833       if (CondOpc == ISD::OR) {
   8834         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
   8835         // two branches instead of an explicit OR instruction with a
   8836         // separate test.
   8837         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   8838             isX86LogicalCmp(Cmp)) {
   8839           CC = Cond.getOperand(0).getOperand(0);
   8840           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   8841                               Chain, Dest, CC, Cmp);
   8842           CC = Cond.getOperand(1).getOperand(0);
   8843           Cond = Cmp;
   8844           addTest = false;
   8845         }
   8846       } else { // ISD::AND
   8847         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
   8848         // two branches instead of an explicit AND instruction with a
   8849         // separate test. However, we only do this if this block doesn't
   8850         // have a fall-through edge, because this requires an explicit
   8851         // jmp when the condition is false.
   8852         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   8853             isX86LogicalCmp(Cmp) &&
   8854             Op.getNode()->hasOneUse()) {
   8855           X86::CondCode CCode =
   8856             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   8857           CCode = X86::GetOppositeBranchCondition(CCode);
   8858           CC = DAG.getConstant(CCode, MVT::i8);
   8859           SDNode *User = *Op.getNode()->use_begin();
   8860           // Look for an unconditional branch following this conditional branch.
   8861           // We need this because we need to reverse the successors in order
   8862           // to implement FCMP_OEQ.
   8863           if (User->getOpcode() == ISD::BR) {
   8864             SDValue FalseBB = User->getOperand(1);
   8865             SDNode *NewBR =
   8866               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   8867             assert(NewBR == User);
   8868             (void)NewBR;
   8869             Dest = FalseBB;
   8870 
   8871             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   8872                                 Chain, Dest, CC, Cmp);
   8873             X86::CondCode CCode =
   8874               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
   8875             CCode = X86::GetOppositeBranchCondition(CCode);
   8876             CC = DAG.getConstant(CCode, MVT::i8);
   8877             Cond = Cmp;
   8878             addTest = false;
   8879           }
   8880         }
   8881       }
   8882     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
   8883       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
   8884       // It should be transformed during dag combiner except when the condition
   8885       // is set by a arithmetics with overflow node.
   8886       X86::CondCode CCode =
   8887         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   8888       CCode = X86::GetOppositeBranchCondition(CCode);
   8889       CC = DAG.getConstant(CCode, MVT::i8);
   8890       Cond = Cond.getOperand(0).getOperand(1);
   8891       addTest = false;
   8892     }
   8893   }
   8894 
   8895   if (addTest) {
   8896     // Look pass the truncate.
   8897     if (Cond.getOpcode() == ISD::TRUNCATE)
   8898       Cond = Cond.getOperand(0);
   8899 
   8900     // We know the result of AND is compared against zero. Try to match
   8901     // it to BT.
   8902     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   8903       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
   8904       if (NewSetCC.getNode()) {
   8905         CC = NewSetCC.getOperand(0);
   8906         Cond = NewSetCC.getOperand(1);
   8907         addTest = false;
   8908       }
   8909     }
   8910   }
   8911 
   8912   if (addTest) {
   8913     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   8914     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   8915   }
   8916   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   8917                      Chain, Dest, CC, Cond);
   8918 }
   8919 
   8920 
   8921 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
   8922 // Calls to _alloca is needed to probe the stack when allocating more than 4k
   8923 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
   8924 // that the guard pages used by the OS virtual memory manager are allocated in
   8925 // correct sequence.
   8926 SDValue
   8927 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   8928                                            SelectionDAG &DAG) const {
   8929   assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
   8930           EnableSegmentedStacks) &&
   8931          "This should be used only on Windows targets or when segmented stacks "
   8932          "are being used");
   8933   assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
   8934   DebugLoc dl = Op.getDebugLoc();
   8935 
   8936   // Get the inputs.
   8937   SDValue Chain = Op.getOperand(0);
   8938   SDValue Size  = Op.getOperand(1);
   8939   // FIXME: Ensure alignment here
   8940 
   8941   bool Is64Bit = Subtarget->is64Bit();
   8942   EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
   8943 
   8944   if (EnableSegmentedStacks) {
   8945     MachineFunction &MF = DAG.getMachineFunction();
   8946     MachineRegisterInfo &MRI = MF.getRegInfo();
   8947 
   8948     if (Is64Bit) {
   8949       // The 64 bit implementation of segmented stacks needs to clobber both r10
   8950       // r11. This makes it impossible to use it along with nested parameters.
   8951       const Function *F = MF.getFunction();
   8952 
   8953       for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   8954            I != E; I++)
   8955         if (I->hasNestAttr())
   8956           report_fatal_error("Cannot use segmented stacks with functions that "
   8957                              "have nested arguments.");
   8958     }
   8959 
   8960     const TargetRegisterClass *AddrRegClass =
   8961       getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
   8962     unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
   8963     Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
   8964     SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
   8965                                 DAG.getRegister(Vreg, SPTy));
   8966     SDValue Ops1[2] = { Value, Chain };
   8967     return DAG.getMergeValues(Ops1, 2, dl);
   8968   } else {
   8969     SDValue Flag;
   8970     unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
   8971 
   8972     Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
   8973     Flag = Chain.getValue(1);
   8974     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   8975 
   8976     Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
   8977     Flag = Chain.getValue(1);
   8978 
   8979     Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
   8980 
   8981     SDValue Ops1[2] = { Chain.getValue(0), Chain };
   8982     return DAG.getMergeValues(Ops1, 2, dl);
   8983   }
   8984 }
   8985 
   8986 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   8987   MachineFunction &MF = DAG.getMachineFunction();
   8988   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   8989 
   8990   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   8991   DebugLoc DL = Op.getDebugLoc();
   8992 
   8993   if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
   8994     // vastart just stores the address of the VarArgsFrameIndex slot into the
   8995     // memory location argument.
   8996     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   8997                                    getPointerTy());
   8998     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
   8999                         MachinePointerInfo(SV), false, false, 0);
   9000   }
   9001 
   9002   // __va_list_tag:
   9003   //   gp_offset         (0 - 6 * 8)
   9004   //   fp_offset         (48 - 48 + 8 * 16)
   9005   //   overflow_arg_area (point to parameters coming in memory).
   9006   //   reg_save_area
   9007   SmallVector<SDValue, 8> MemOps;
   9008   SDValue FIN = Op.getOperand(1);
   9009   // Store gp_offset
   9010   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
   9011                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
   9012                                                MVT::i32),
   9013                                FIN, MachinePointerInfo(SV), false, false, 0);
   9014   MemOps.push_back(Store);
   9015 
   9016   // Store fp_offset
   9017   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9018                     FIN, DAG.getIntPtrConstant(4));
   9019   Store = DAG.getStore(Op.getOperand(0), DL,
   9020                        DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
   9021                                        MVT::i32),
   9022                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
   9023   MemOps.push_back(Store);
   9024 
   9025   // Store ptr to overflow_arg_area
   9026   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9027                     FIN, DAG.getIntPtrConstant(4));
   9028   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   9029                                     getPointerTy());
   9030   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
   9031                        MachinePointerInfo(SV, 8),
   9032                        false, false, 0);
   9033   MemOps.push_back(Store);
   9034 
   9035   // Store ptr to reg_save_area.
   9036   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9037                     FIN, DAG.getIntPtrConstant(8));
   9038   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   9039                                     getPointerTy());
   9040   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
   9041                        MachinePointerInfo(SV, 16), false, false, 0);
   9042   MemOps.push_back(Store);
   9043   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   9044                      &MemOps[0], MemOps.size());
   9045 }
   9046 
   9047 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   9048   assert(Subtarget->is64Bit() &&
   9049          "LowerVAARG only handles 64-bit va_arg!");
   9050   assert((Subtarget->isTargetLinux() ||
   9051           Subtarget->isTargetDarwin()) &&
   9052           "Unhandled target in LowerVAARG");
   9053   assert(Op.getNode()->getNumOperands() == 4);
   9054   SDValue Chain = Op.getOperand(0);
   9055   SDValue SrcPtr = Op.getOperand(1);
   9056   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   9057   unsigned Align = Op.getConstantOperandVal(3);
   9058   DebugLoc dl = Op.getDebugLoc();
   9059 
   9060   EVT ArgVT = Op.getNode()->getValueType(0);
   9061   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   9062   uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
   9063   uint8_t ArgMode;
   9064 
   9065   // Decide which area this value should be read from.
   9066   // TODO: Implement the AMD64 ABI in its entirety. This simple
   9067   // selection mechanism works only for the basic types.
   9068   if (ArgVT == MVT::f80) {
   9069     llvm_unreachable("va_arg for f80 not yet implemented");
   9070   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
   9071     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
   9072   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
   9073     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
   9074   } else {
   9075     llvm_unreachable("Unhandled argument type in LowerVAARG");
   9076   }
   9077 
   9078   if (ArgMode == 2) {
   9079     // Sanity Check: Make sure using fp_offset makes sense.
   9080     assert(!UseSoftFloat &&
   9081            !(DAG.getMachineFunction()
   9082                 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
   9083            Subtarget->hasXMM());
   9084   }
   9085 
   9086   // Insert VAARG_64 node into the DAG
   9087   // VAARG_64 returns two values: Variable Argument Address, Chain
   9088   SmallVector<SDValue, 11> InstOps;
   9089   InstOps.push_back(Chain);
   9090   InstOps.push_back(SrcPtr);
   9091   InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
   9092   InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
   9093   InstOps.push_back(DAG.getConstant(Align, MVT::i32));
   9094   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
   9095   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
   9096                                           VTs, &InstOps[0], InstOps.size(),
   9097                                           MVT::i64,
   9098                                           MachinePointerInfo(SV),
   9099                                           /*Align=*/0,
   9100                                           /*Volatile=*/false,
   9101                                           /*ReadMem=*/true,
   9102                                           /*WriteMem=*/true);
   9103   Chain = VAARG.getValue(1);
   9104 
   9105   // Load the next argument and return it
   9106   return DAG.getLoad(ArgVT, dl,
   9107                      Chain,
   9108                      VAARG,
   9109                      MachinePointerInfo(),
   9110                      false, false, 0);
   9111 }
   9112 
   9113 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
   9114   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
   9115   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
   9116   SDValue Chain = Op.getOperand(0);
   9117   SDValue DstPtr = Op.getOperand(1);
   9118   SDValue SrcPtr = Op.getOperand(2);
   9119   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   9120   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   9121   DebugLoc DL = Op.getDebugLoc();
   9122 
   9123   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
   9124                        DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
   9125                        false,
   9126                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   9127 }
   9128 
   9129 SDValue
   9130 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
   9131   DebugLoc dl = Op.getDebugLoc();
   9132   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9133   switch (IntNo) {
   9134   default: return SDValue();    // Don't custom lower most intrinsics.
   9135   // Comparison intrinsics.
   9136   case Intrinsic::x86_sse_comieq_ss:
   9137   case Intrinsic::x86_sse_comilt_ss:
   9138   case Intrinsic::x86_sse_comile_ss:
   9139   case Intrinsic::x86_sse_comigt_ss:
   9140   case Intrinsic::x86_sse_comige_ss:
   9141   case Intrinsic::x86_sse_comineq_ss:
   9142   case Intrinsic::x86_sse_ucomieq_ss:
   9143   case Intrinsic::x86_sse_ucomilt_ss:
   9144   case Intrinsic::x86_sse_ucomile_ss:
   9145   case Intrinsic::x86_sse_ucomigt_ss:
   9146   case Intrinsic::x86_sse_ucomige_ss:
   9147   case Intrinsic::x86_sse_ucomineq_ss:
   9148   case Intrinsic::x86_sse2_comieq_sd:
   9149   case Intrinsic::x86_sse2_comilt_sd:
   9150   case Intrinsic::x86_sse2_comile_sd:
   9151   case Intrinsic::x86_sse2_comigt_sd:
   9152   case Intrinsic::x86_sse2_comige_sd:
   9153   case Intrinsic::x86_sse2_comineq_sd:
   9154   case Intrinsic::x86_sse2_ucomieq_sd:
   9155   case Intrinsic::x86_sse2_ucomilt_sd:
   9156   case Intrinsic::x86_sse2_ucomile_sd:
   9157   case Intrinsic::x86_sse2_ucomigt_sd:
   9158   case Intrinsic::x86_sse2_ucomige_sd:
   9159   case Intrinsic::x86_sse2_ucomineq_sd: {
   9160     unsigned Opc = 0;
   9161     ISD::CondCode CC = ISD::SETCC_INVALID;
   9162     switch (IntNo) {
   9163     default: break;
   9164     case Intrinsic::x86_sse_comieq_ss:
   9165     case Intrinsic::x86_sse2_comieq_sd:
   9166       Opc = X86ISD::COMI;
   9167       CC = ISD::SETEQ;
   9168       break;
   9169     case Intrinsic::x86_sse_comilt_ss:
   9170     case Intrinsic::x86_sse2_comilt_sd:
   9171       Opc = X86ISD::COMI;
   9172       CC = ISD::SETLT;
   9173       break;
   9174     case Intrinsic::x86_sse_comile_ss:
   9175     case Intrinsic::x86_sse2_comile_sd:
   9176       Opc = X86ISD::COMI;
   9177       CC = ISD::SETLE;
   9178       break;
   9179     case Intrinsic::x86_sse_comigt_ss:
   9180     case Intrinsic::x86_sse2_comigt_sd:
   9181       Opc = X86ISD::COMI;
   9182       CC = ISD::SETGT;
   9183       break;
   9184     case Intrinsic::x86_sse_comige_ss:
   9185     case Intrinsic::x86_sse2_comige_sd:
   9186       Opc = X86ISD::COMI;
   9187       CC = ISD::SETGE;
   9188       break;
   9189     case Intrinsic::x86_sse_comineq_ss:
   9190     case Intrinsic::x86_sse2_comineq_sd:
   9191       Opc = X86ISD::COMI;
   9192       CC = ISD::SETNE;
   9193       break;
   9194     case Intrinsic::x86_sse_ucomieq_ss:
   9195     case Intrinsic::x86_sse2_ucomieq_sd:
   9196       Opc = X86ISD::UCOMI;
   9197       CC = ISD::SETEQ;
   9198       break;
   9199     case Intrinsic::x86_sse_ucomilt_ss:
   9200     case Intrinsic::x86_sse2_ucomilt_sd:
   9201       Opc = X86ISD::UCOMI;
   9202       CC = ISD::SETLT;
   9203       break;
   9204     case Intrinsic::x86_sse_ucomile_ss:
   9205     case Intrinsic::x86_sse2_ucomile_sd:
   9206       Opc = X86ISD::UCOMI;
   9207       CC = ISD::SETLE;
   9208       break;
   9209     case Intrinsic::x86_sse_ucomigt_ss:
   9210     case Intrinsic::x86_sse2_ucomigt_sd:
   9211       Opc = X86ISD::UCOMI;
   9212       CC = ISD::SETGT;
   9213       break;
   9214     case Intrinsic::x86_sse_ucomige_ss:
   9215     case Intrinsic::x86_sse2_ucomige_sd:
   9216       Opc = X86ISD::UCOMI;
   9217       CC = ISD::SETGE;
   9218       break;
   9219     case Intrinsic::x86_sse_ucomineq_ss:
   9220     case Intrinsic::x86_sse2_ucomineq_sd:
   9221       Opc = X86ISD::UCOMI;
   9222       CC = ISD::SETNE;
   9223       break;
   9224     }
   9225 
   9226     SDValue LHS = Op.getOperand(1);
   9227     SDValue RHS = Op.getOperand(2);
   9228     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
   9229     assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
   9230     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
   9231     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   9232                                 DAG.getConstant(X86CC, MVT::i8), Cond);
   9233     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   9234   }
   9235   // Arithmetic intrinsics.
   9236   case Intrinsic::x86_sse3_hadd_ps:
   9237   case Intrinsic::x86_sse3_hadd_pd:
   9238   case Intrinsic::x86_avx_hadd_ps_256:
   9239   case Intrinsic::x86_avx_hadd_pd_256:
   9240     return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
   9241                        Op.getOperand(1), Op.getOperand(2));
   9242   case Intrinsic::x86_sse3_hsub_ps:
   9243   case Intrinsic::x86_sse3_hsub_pd:
   9244   case Intrinsic::x86_avx_hsub_ps_256:
   9245   case Intrinsic::x86_avx_hsub_pd_256:
   9246     return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
   9247                        Op.getOperand(1), Op.getOperand(2));
   9248   // ptest and testp intrinsics. The intrinsic these come from are designed to
   9249   // return an integer value, not just an instruction so lower it to the ptest
   9250   // or testp pattern and a setcc for the result.
   9251   case Intrinsic::x86_sse41_ptestz:
   9252   case Intrinsic::x86_sse41_ptestc:
   9253   case Intrinsic::x86_sse41_ptestnzc:
   9254   case Intrinsic::x86_avx_ptestz_256:
   9255   case Intrinsic::x86_avx_ptestc_256:
   9256   case Intrinsic::x86_avx_ptestnzc_256:
   9257   case Intrinsic::x86_avx_vtestz_ps:
   9258   case Intrinsic::x86_avx_vtestc_ps:
   9259   case Intrinsic::x86_avx_vtestnzc_ps:
   9260   case Intrinsic::x86_avx_vtestz_pd:
   9261   case Intrinsic::x86_avx_vtestc_pd:
   9262   case Intrinsic::x86_avx_vtestnzc_pd:
   9263   case Intrinsic::x86_avx_vtestz_ps_256:
   9264   case Intrinsic::x86_avx_vtestc_ps_256:
   9265   case Intrinsic::x86_avx_vtestnzc_ps_256:
   9266   case Intrinsic::x86_avx_vtestz_pd_256:
   9267   case Intrinsic::x86_avx_vtestc_pd_256:
   9268   case Intrinsic::x86_avx_vtestnzc_pd_256: {
   9269     bool IsTestPacked = false;
   9270     unsigned X86CC = 0;
   9271     switch (IntNo) {
   9272     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
   9273     case Intrinsic::x86_avx_vtestz_ps:
   9274     case Intrinsic::x86_avx_vtestz_pd:
   9275     case Intrinsic::x86_avx_vtestz_ps_256:
   9276     case Intrinsic::x86_avx_vtestz_pd_256:
   9277       IsTestPacked = true; // Fallthrough
   9278     case Intrinsic::x86_sse41_ptestz:
   9279     case Intrinsic::x86_avx_ptestz_256:
   9280       // ZF = 1
   9281       X86CC = X86::COND_E;
   9282       break;
   9283     case Intrinsic::x86_avx_vtestc_ps:
   9284     case Intrinsic::x86_avx_vtestc_pd:
   9285     case Intrinsic::x86_avx_vtestc_ps_256:
   9286     case Intrinsic::x86_avx_vtestc_pd_256:
   9287       IsTestPacked = true; // Fallthrough
   9288     case Intrinsic::x86_sse41_ptestc:
   9289     case Intrinsic::x86_avx_ptestc_256:
   9290       // CF = 1
   9291       X86CC = X86::COND_B;
   9292       break;
   9293     case Intrinsic::x86_avx_vtestnzc_ps:
   9294     case Intrinsic::x86_avx_vtestnzc_pd:
   9295     case Intrinsic::x86_avx_vtestnzc_ps_256:
   9296     case Intrinsic::x86_avx_vtestnzc_pd_256:
   9297       IsTestPacked = true; // Fallthrough
   9298     case Intrinsic::x86_sse41_ptestnzc:
   9299     case Intrinsic::x86_avx_ptestnzc_256:
   9300       // ZF and CF = 0
   9301       X86CC = X86::COND_A;
   9302       break;
   9303     }
   9304 
   9305     SDValue LHS = Op.getOperand(1);
   9306     SDValue RHS = Op.getOperand(2);
   9307     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
   9308     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
   9309     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
   9310     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
   9311     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   9312   }
   9313 
   9314   // Fix vector shift instructions where the last operand is a non-immediate
   9315   // i32 value.
   9316   case Intrinsic::x86_sse2_pslli_w:
   9317   case Intrinsic::x86_sse2_pslli_d:
   9318   case Intrinsic::x86_sse2_pslli_q:
   9319   case Intrinsic::x86_sse2_psrli_w:
   9320   case Intrinsic::x86_sse2_psrli_d:
   9321   case Intrinsic::x86_sse2_psrli_q:
   9322   case Intrinsic::x86_sse2_psrai_w:
   9323   case Intrinsic::x86_sse2_psrai_d:
   9324   case Intrinsic::x86_mmx_pslli_w:
   9325   case Intrinsic::x86_mmx_pslli_d:
   9326   case Intrinsic::x86_mmx_pslli_q:
   9327   case Intrinsic::x86_mmx_psrli_w:
   9328   case Intrinsic::x86_mmx_psrli_d:
   9329   case Intrinsic::x86_mmx_psrli_q:
   9330   case Intrinsic::x86_mmx_psrai_w:
   9331   case Intrinsic::x86_mmx_psrai_d: {
   9332     SDValue ShAmt = Op.getOperand(2);
   9333     if (isa<ConstantSDNode>(ShAmt))
   9334       return SDValue();
   9335 
   9336     unsigned NewIntNo = 0;
   9337     EVT ShAmtVT = MVT::v4i32;
   9338     switch (IntNo) {
   9339     case Intrinsic::x86_sse2_pslli_w:
   9340       NewIntNo = Intrinsic::x86_sse2_psll_w;
   9341       break;
   9342     case Intrinsic::x86_sse2_pslli_d:
   9343       NewIntNo = Intrinsic::x86_sse2_psll_d;
   9344       break;
   9345     case Intrinsic::x86_sse2_pslli_q:
   9346       NewIntNo = Intrinsic::x86_sse2_psll_q;
   9347       break;
   9348     case Intrinsic::x86_sse2_psrli_w:
   9349       NewIntNo = Intrinsic::x86_sse2_psrl_w;
   9350       break;
   9351     case Intrinsic::x86_sse2_psrli_d:
   9352       NewIntNo = Intrinsic::x86_sse2_psrl_d;
   9353       break;
   9354     case Intrinsic::x86_sse2_psrli_q:
   9355       NewIntNo = Intrinsic::x86_sse2_psrl_q;
   9356       break;
   9357     case Intrinsic::x86_sse2_psrai_w:
   9358       NewIntNo = Intrinsic::x86_sse2_psra_w;
   9359       break;
   9360     case Intrinsic::x86_sse2_psrai_d:
   9361       NewIntNo = Intrinsic::x86_sse2_psra_d;
   9362       break;
   9363     default: {
   9364       ShAmtVT = MVT::v2i32;
   9365       switch (IntNo) {
   9366       case Intrinsic::x86_mmx_pslli_w:
   9367         NewIntNo = Intrinsic::x86_mmx_psll_w;
   9368         break;
   9369       case Intrinsic::x86_mmx_pslli_d:
   9370         NewIntNo = Intrinsic::x86_mmx_psll_d;
   9371         break;
   9372       case Intrinsic::x86_mmx_pslli_q:
   9373         NewIntNo = Intrinsic::x86_mmx_psll_q;
   9374         break;
   9375       case Intrinsic::x86_mmx_psrli_w:
   9376         NewIntNo = Intrinsic::x86_mmx_psrl_w;
   9377         break;
   9378       case Intrinsic::x86_mmx_psrli_d:
   9379         NewIntNo = Intrinsic::x86_mmx_psrl_d;
   9380         break;
   9381       case Intrinsic::x86_mmx_psrli_q:
   9382         NewIntNo = Intrinsic::x86_mmx_psrl_q;
   9383         break;
   9384       case Intrinsic::x86_mmx_psrai_w:
   9385         NewIntNo = Intrinsic::x86_mmx_psra_w;
   9386         break;
   9387       case Intrinsic::x86_mmx_psrai_d:
   9388         NewIntNo = Intrinsic::x86_mmx_psra_d;
   9389         break;
   9390       default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   9391       }
   9392       break;
   9393     }
   9394     }
   9395 
   9396     // The vector shift intrinsics with scalars uses 32b shift amounts but
   9397     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   9398     // to be zero.
   9399     SDValue ShOps[4];
   9400     ShOps[0] = ShAmt;
   9401     ShOps[1] = DAG.getConstant(0, MVT::i32);
   9402     if (ShAmtVT == MVT::v4i32) {
   9403       ShOps[2] = DAG.getUNDEF(MVT::i32);
   9404       ShOps[3] = DAG.getUNDEF(MVT::i32);
   9405       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
   9406     } else {
   9407       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
   9408 // FIXME this must be lowered to get rid of the invalid type.
   9409     }
   9410 
   9411     EVT VT = Op.getValueType();
   9412     ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
   9413     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9414                        DAG.getConstant(NewIntNo, MVT::i32),
   9415                        Op.getOperand(1), ShAmt);
   9416   }
   9417   }
   9418 }
   9419 
   9420 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
   9421                                            SelectionDAG &DAG) const {
   9422   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   9423   MFI->setReturnAddressIsTaken(true);
   9424 
   9425   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9426   DebugLoc dl = Op.getDebugLoc();
   9427 
   9428   if (Depth > 0) {
   9429     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   9430     SDValue Offset =
   9431       DAG.getConstant(TD->getPointerSize(),
   9432                       Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
   9433     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   9434                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   9435                                    FrameAddr, Offset),
   9436                        MachinePointerInfo(), false, false, 0);
   9437   }
   9438 
   9439   // Just load the return address.
   9440   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   9441   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   9442                      RetAddrFI, MachinePointerInfo(), false, false, 0);
   9443 }
   9444 
   9445 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   9446   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   9447   MFI->setFrameAddressIsTaken(true);
   9448 
   9449   EVT VT = Op.getValueType();
   9450   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
   9451   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9452   unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
   9453   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   9454   while (Depth--)
   9455     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   9456                             MachinePointerInfo(),
   9457                             false, false, 0);
   9458   return FrameAddr;
   9459 }
   9460 
   9461 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
   9462                                                      SelectionDAG &DAG) const {
   9463   return DAG.getIntPtrConstant(2*TD->getPointerSize());
   9464 }
   9465 
   9466 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
   9467   MachineFunction &MF = DAG.getMachineFunction();
   9468   SDValue Chain     = Op.getOperand(0);
   9469   SDValue Offset    = Op.getOperand(1);
   9470   SDValue Handler   = Op.getOperand(2);
   9471   DebugLoc dl       = Op.getDebugLoc();
   9472 
   9473   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   9474                                      Subtarget->is64Bit() ? X86::RBP : X86::EBP,
   9475                                      getPointerTy());
   9476   unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
   9477 
   9478   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
   9479                                   DAG.getIntPtrConstant(TD->getPointerSize()));
   9480   StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
   9481   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
   9482                        false, false, 0);
   9483   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
   9484   MF.getRegInfo().addLiveOut(StoreAddrReg);
   9485 
   9486   return DAG.getNode(X86ISD::EH_RETURN, dl,
   9487                      MVT::Other,
   9488                      Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
   9489 }
   9490 
   9491 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   9492                                                   SelectionDAG &DAG) const {
   9493   return Op.getOperand(0);
   9494 }
   9495 
   9496 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   9497                                                 SelectionDAG &DAG) const {
   9498   SDValue Root = Op.getOperand(0);
   9499   SDValue Trmp = Op.getOperand(1); // trampoline
   9500   SDValue FPtr = Op.getOperand(2); // nested function
   9501   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   9502   DebugLoc dl  = Op.getDebugLoc();
   9503 
   9504   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   9505 
   9506   if (Subtarget->is64Bit()) {
   9507     SDValue OutChains[6];
   9508 
   9509     // Large code-model.
   9510     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
   9511     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
   9512 
   9513     const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
   9514     const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
   9515 
   9516     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
   9517 
   9518     // Load the pointer to the nested function into R11.
   9519     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
   9520     SDValue Addr = Trmp;
   9521     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   9522                                 Addr, MachinePointerInfo(TrmpAddr),
   9523                                 false, false, 0);
   9524 
   9525     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9526                        DAG.getConstant(2, MVT::i64));
   9527     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
   9528                                 MachinePointerInfo(TrmpAddr, 2),
   9529                                 false, false, 2);
   9530 
   9531     // Load the 'nest' parameter value into R10.
   9532     // R10 is specified in X86CallingConv.td
   9533     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
   9534     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9535                        DAG.getConstant(10, MVT::i64));
   9536     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   9537                                 Addr, MachinePointerInfo(TrmpAddr, 10),
   9538                                 false, false, 0);
   9539 
   9540     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9541                        DAG.getConstant(12, MVT::i64));
   9542     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
   9543                                 MachinePointerInfo(TrmpAddr, 12),
   9544                                 false, false, 2);
   9545 
   9546     // Jump to the nested function.
   9547     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
   9548     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9549                        DAG.getConstant(20, MVT::i64));
   9550     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   9551                                 Addr, MachinePointerInfo(TrmpAddr, 20),
   9552                                 false, false, 0);
   9553 
   9554     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
   9555     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9556                        DAG.getConstant(22, MVT::i64));
   9557     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
   9558                                 MachinePointerInfo(TrmpAddr, 22),
   9559                                 false, false, 0);
   9560 
   9561     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
   9562   } else {
   9563     const Function *Func =
   9564       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
   9565     CallingConv::ID CC = Func->getCallingConv();
   9566     unsigned NestReg;
   9567 
   9568     switch (CC) {
   9569     default:
   9570       llvm_unreachable("Unsupported calling convention");
   9571     case CallingConv::C:
   9572     case CallingConv::X86_StdCall: {
   9573       // Pass 'nest' parameter in ECX.
   9574       // Must be kept in sync with X86CallingConv.td
   9575       NestReg = X86::ECX;
   9576 
   9577       // Check that ECX wasn't needed by an 'inreg' parameter.
   9578       FunctionType *FTy = Func->getFunctionType();
   9579       const AttrListPtr &Attrs = Func->getAttributes();
   9580 
   9581       if (!Attrs.isEmpty() && !Func->isVarArg()) {
   9582         unsigned InRegCount = 0;
   9583         unsigned Idx = 1;
   9584 
   9585         for (FunctionType::param_iterator I = FTy->param_begin(),
   9586              E = FTy->param_end(); I != E; ++I, ++Idx)
   9587           if (Attrs.paramHasAttr(Idx, Attribute::InReg))
   9588             // FIXME: should only count parameters that are lowered to integers.
   9589             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
   9590 
   9591         if (InRegCount > 2) {
   9592           report_fatal_error("Nest register in use - reduce number of inreg"
   9593                              " parameters!");
   9594         }
   9595       }
   9596       break;
   9597     }
   9598     case CallingConv::X86_FastCall:
   9599     case CallingConv::X86_ThisCall:
   9600     case CallingConv::Fast:
   9601       // Pass 'nest' parameter in EAX.
   9602       // Must be kept in sync with X86CallingConv.td
   9603       NestReg = X86::EAX;
   9604       break;
   9605     }
   9606 
   9607     SDValue OutChains[4];
   9608     SDValue Addr, Disp;
   9609 
   9610     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9611                        DAG.getConstant(10, MVT::i32));
   9612     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
   9613 
   9614     // This is storing the opcode for MOV32ri.
   9615     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
   9616     const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
   9617     OutChains[0] = DAG.getStore(Root, dl,
   9618                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
   9619                                 Trmp, MachinePointerInfo(TrmpAddr),
   9620                                 false, false, 0);
   9621 
   9622     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9623                        DAG.getConstant(1, MVT::i32));
   9624     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
   9625                                 MachinePointerInfo(TrmpAddr, 1),
   9626                                 false, false, 1);
   9627 
   9628     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
   9629     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9630                        DAG.getConstant(5, MVT::i32));
   9631     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
   9632                                 MachinePointerInfo(TrmpAddr, 5),
   9633                                 false, false, 1);
   9634 
   9635     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9636                        DAG.getConstant(6, MVT::i32));
   9637     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
   9638                                 MachinePointerInfo(TrmpAddr, 6),
   9639                                 false, false, 1);
   9640 
   9641     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
   9642   }
   9643 }
   9644 
   9645 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   9646                                             SelectionDAG &DAG) const {
   9647   /*
   9648    The rounding mode is in bits 11:10 of FPSR, and has the following
   9649    settings:
   9650      00 Round to nearest
   9651      01 Round to -inf
   9652      10 Round to +inf
   9653      11 Round to 0
   9654 
   9655   FLT_ROUNDS, on the other hand, expects the following:
   9656     -1 Undefined
   9657      0 Round to 0
   9658      1 Round to nearest
   9659      2 Round to +inf
   9660      3 Round to -inf
   9661 
   9662   To perform the conversion, we do:
   9663     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
   9664   */
   9665 
   9666   MachineFunction &MF = DAG.getMachineFunction();
   9667   const TargetMachine &TM = MF.getTarget();
   9668   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   9669   unsigned StackAlignment = TFI.getStackAlignment();
   9670   EVT VT = Op.getValueType();
   9671   DebugLoc DL = Op.getDebugLoc();
   9672 
   9673   // Save FP Control Word to stack slot
   9674   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
   9675   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   9676 
   9677 
   9678   MachineMemOperand *MMO =
   9679    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   9680                            MachineMemOperand::MOStore, 2, 2);
   9681 
   9682   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
   9683   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
   9684                                           DAG.getVTList(MVT::Other),
   9685                                           Ops, 2, MVT::i16, MMO);
   9686 
   9687   // Load FP Control Word from stack slot
   9688   SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
   9689                             MachinePointerInfo(), false, false, 0);
   9690 
   9691   // Transform as necessary
   9692   SDValue CWD1 =
   9693     DAG.getNode(ISD::SRL, DL, MVT::i16,
   9694                 DAG.getNode(ISD::AND, DL, MVT::i16,
   9695                             CWD, DAG.getConstant(0x800, MVT::i16)),
   9696                 DAG.getConstant(11, MVT::i8));
   9697   SDValue CWD2 =
   9698     DAG.getNode(ISD::SRL, DL, MVT::i16,
   9699                 DAG.getNode(ISD::AND, DL, MVT::i16,
   9700                             CWD, DAG.getConstant(0x400, MVT::i16)),
   9701                 DAG.getConstant(9, MVT::i8));
   9702 
   9703   SDValue RetVal =
   9704     DAG.getNode(ISD::AND, DL, MVT::i16,
   9705                 DAG.getNode(ISD::ADD, DL, MVT::i16,
   9706                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
   9707                             DAG.getConstant(1, MVT::i16)),
   9708                 DAG.getConstant(3, MVT::i16));
   9709 
   9710 
   9711   return DAG.getNode((VT.getSizeInBits() < 16 ?
   9712                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
   9713 }
   9714 
   9715 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
   9716   EVT VT = Op.getValueType();
   9717   EVT OpVT = VT;
   9718   unsigned NumBits = VT.getSizeInBits();
   9719   DebugLoc dl = Op.getDebugLoc();
   9720 
   9721   Op = Op.getOperand(0);
   9722   if (VT == MVT::i8) {
   9723     // Zero extend to i32 since there is not an i8 bsr.
   9724     OpVT = MVT::i32;
   9725     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   9726   }
   9727 
   9728   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
   9729   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   9730   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
   9731 
   9732   // If src is zero (i.e. bsr sets ZF), returns NumBits.
   9733   SDValue Ops[] = {
   9734     Op,
   9735     DAG.getConstant(NumBits+NumBits-1, OpVT),
   9736     DAG.getConstant(X86::COND_E, MVT::i8),
   9737     Op.getValue(1)
   9738   };
   9739   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   9740 
   9741   // Finally xor with NumBits-1.
   9742   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
   9743 
   9744   if (VT == MVT::i8)
   9745     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   9746   return Op;
   9747 }
   9748 
   9749 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
   9750   EVT VT = Op.getValueType();
   9751   EVT OpVT = VT;
   9752   unsigned NumBits = VT.getSizeInBits();
   9753   DebugLoc dl = Op.getDebugLoc();
   9754 
   9755   Op = Op.getOperand(0);
   9756   if (VT == MVT::i8) {
   9757     OpVT = MVT::i32;
   9758     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   9759   }
   9760 
   9761   // Issue a bsf (scan bits forward) which also sets EFLAGS.
   9762   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   9763   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
   9764 
   9765   // If src is zero (i.e. bsf sets ZF), returns NumBits.
   9766   SDValue Ops[] = {
   9767     Op,
   9768     DAG.getConstant(NumBits, OpVT),
   9769     DAG.getConstant(X86::COND_E, MVT::i8),
   9770     Op.getValue(1)
   9771   };
   9772   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   9773 
   9774   if (VT == MVT::i8)
   9775     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   9776   return Op;
   9777 }
   9778 
   9779 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
   9780 // ones, and then concatenate the result back.
   9781 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
   9782   EVT VT = Op.getValueType();
   9783 
   9784   assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
   9785          "Unsupported value type for operation");
   9786 
   9787   int NumElems = VT.getVectorNumElements();
   9788   DebugLoc dl = Op.getDebugLoc();
   9789   SDValue Idx0 = DAG.getConstant(0, MVT::i32);
   9790   SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
   9791 
   9792   // Extract the LHS vectors
   9793   SDValue LHS = Op.getOperand(0);
   9794   SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
   9795   SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
   9796 
   9797   // Extract the RHS vectors
   9798   SDValue RHS = Op.getOperand(1);
   9799   SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
   9800   SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
   9801 
   9802   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   9803   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   9804 
   9805   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   9806                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
   9807                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
   9808 }
   9809 
   9810 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
   9811   assert(Op.getValueType().getSizeInBits() == 256 &&
   9812          Op.getValueType().isInteger() &&
   9813          "Only handle AVX 256-bit vector integer operation");
   9814   return Lower256IntArith(Op, DAG);
   9815 }
   9816 
   9817 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
   9818   assert(Op.getValueType().getSizeInBits() == 256 &&
   9819          Op.getValueType().isInteger() &&
   9820          "Only handle AVX 256-bit vector integer operation");
   9821   return Lower256IntArith(Op, DAG);
   9822 }
   9823 
   9824 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   9825   EVT VT = Op.getValueType();
   9826 
   9827   // Decompose 256-bit ops into smaller 128-bit ops.
   9828   if (VT.getSizeInBits() == 256)
   9829     return Lower256IntArith(Op, DAG);
   9830 
   9831   assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
   9832   DebugLoc dl = Op.getDebugLoc();
   9833 
   9834   //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
   9835   //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
   9836   //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
   9837   //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
   9838   //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
   9839   //
   9840   //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
   9841   //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
   9842   //  return AloBlo + AloBhi + AhiBlo;
   9843 
   9844   SDValue A = Op.getOperand(0);
   9845   SDValue B = Op.getOperand(1);
   9846 
   9847   SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9848                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   9849                        A, DAG.getConstant(32, MVT::i32));
   9850   SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9851                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   9852                        B, DAG.getConstant(32, MVT::i32));
   9853   SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9854                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   9855                        A, B);
   9856   SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9857                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   9858                        A, Bhi);
   9859   SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9860                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   9861                        Ahi, B);
   9862   AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9863                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   9864                        AloBhi, DAG.getConstant(32, MVT::i32));
   9865   AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9866                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   9867                        AhiBlo, DAG.getConstant(32, MVT::i32));
   9868   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
   9869   Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
   9870   return Res;
   9871 }
   9872 
   9873 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
   9874 
   9875   EVT VT = Op.getValueType();
   9876   DebugLoc dl = Op.getDebugLoc();
   9877   SDValue R = Op.getOperand(0);
   9878   SDValue Amt = Op.getOperand(1);
   9879   LLVMContext *Context = DAG.getContext();
   9880 
   9881   if (!Subtarget->hasXMMInt())
   9882     return SDValue();
   9883 
   9884   // Decompose 256-bit shifts into smaller 128-bit shifts.
   9885   if (VT.getSizeInBits() == 256) {
   9886     int NumElems = VT.getVectorNumElements();
   9887     MVT EltVT = VT.getVectorElementType().getSimpleVT();
   9888     EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   9889 
   9890     // Extract the two vectors
   9891     SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
   9892     SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
   9893                                      DAG, dl);
   9894 
   9895     // Recreate the shift amount vectors
   9896     SDValue Amt1, Amt2;
   9897     if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
   9898       // Constant shift amount
   9899       SmallVector<SDValue, 4> Amt1Csts;
   9900       SmallVector<SDValue, 4> Amt2Csts;
   9901       for (int i = 0; i < NumElems/2; ++i)
   9902         Amt1Csts.push_back(Amt->getOperand(i));
   9903       for (int i = NumElems/2; i < NumElems; ++i)
   9904         Amt2Csts.push_back(Amt->getOperand(i));
   9905 
   9906       Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   9907                                  &Amt1Csts[0], NumElems/2);
   9908       Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   9909                                  &Amt2Csts[0], NumElems/2);
   9910     } else {
   9911       // Variable shift amount
   9912       Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
   9913       Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
   9914                                  DAG, dl);
   9915     }
   9916 
   9917     // Issue new vector shifts for the smaller types
   9918     V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
   9919     V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
   9920 
   9921     // Concatenate the result back
   9922     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
   9923   }
   9924 
   9925   // Optimize shl/srl/sra with constant shift amount.
   9926   if (isSplatVector(Amt.getNode())) {
   9927     SDValue SclrAmt = Amt->getOperand(0);
   9928     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
   9929       uint64_t ShiftAmt = C->getZExtValue();
   9930 
   9931       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
   9932        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9933                      DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   9934                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9935 
   9936       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
   9937        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9938                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   9939                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9940 
   9941       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
   9942        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9943                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   9944                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9945 
   9946       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
   9947        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9948                      DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   9949                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9950 
   9951       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
   9952        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9953                      DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
   9954                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9955 
   9956       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
   9957        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9958                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
   9959                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9960 
   9961       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
   9962        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9963                      DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
   9964                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9965 
   9966       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
   9967        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9968                      DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
   9969                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9970     }
   9971   }
   9972 
   9973   // Lower SHL with variable shift amount.
   9974   if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
   9975     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9976                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   9977                      Op.getOperand(1), DAG.getConstant(23, MVT::i32));
   9978 
   9979     ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
   9980 
   9981     std::vector<Constant*> CV(4, CI);
   9982     Constant *C = ConstantVector::get(CV);
   9983     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   9984     SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   9985                                  MachinePointerInfo::getConstantPool(),
   9986                                  false, false, 16);
   9987 
   9988     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
   9989     Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
   9990     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
   9991     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
   9992   }
   9993   if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
   9994     // a = a << 5;
   9995     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9996                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   9997                      Op.getOperand(1), DAG.getConstant(5, MVT::i32));
   9998 
   9999     ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
   10000     ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
   10001 
   10002     std::vector<Constant*> CVM1(16, CM1);
   10003     std::vector<Constant*> CVM2(16, CM2);
   10004     Constant *C = ConstantVector::get(CVM1);
   10005     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   10006     SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   10007                             MachinePointerInfo::getConstantPool(),
   10008                             false, false, 16);
   10009 
   10010     // r = pblendv(r, psllw(r & (char16)15, 4), a);
   10011     M = DAG.getNode(ISD::AND, dl, VT, R, M);
   10012     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10013                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
   10014                     DAG.getConstant(4, MVT::i32));
   10015     R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
   10016     // a += a
   10017     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   10018 
   10019     C = ConstantVector::get(CVM2);
   10020     CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   10021     M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   10022                     MachinePointerInfo::getConstantPool(),
   10023                     false, false, 16);
   10024 
   10025     // r = pblendv(r, psllw(r & (char16)63, 2), a);
   10026     M = DAG.getNode(ISD::AND, dl, VT, R, M);
   10027     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10028                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
   10029                     DAG.getConstant(2, MVT::i32));
   10030     R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
   10031     // a += a
   10032     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   10033 
   10034     // return pblendv(r, r+r, a);
   10035     R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
   10036                     R, DAG.getNode(ISD::ADD, dl, VT, R, R));
   10037     return R;
   10038   }
   10039   return SDValue();
   10040 }
   10041 
   10042 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   10043   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
   10044   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
   10045   // looks for this combo and may remove the "setcc" instruction if the "setcc"
   10046   // has only one use.
   10047   SDNode *N = Op.getNode();
   10048   SDValue LHS = N->getOperand(0);
   10049   SDValue RHS = N->getOperand(1);
   10050   unsigned BaseOp = 0;
   10051   unsigned Cond = 0;
   10052   DebugLoc DL = Op.getDebugLoc();
   10053   switch (Op.getOpcode()) {
   10054   default: llvm_unreachable("Unknown ovf instruction!");
   10055   case ISD::SADDO:
   10056     // A subtract of one will be selected as a INC. Note that INC doesn't
   10057     // set CF, so we can't do this for UADDO.
   10058     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   10059       if (C->isOne()) {
   10060         BaseOp = X86ISD::INC;
   10061         Cond = X86::COND_O;
   10062         break;
   10063       }
   10064     BaseOp = X86ISD::ADD;
   10065     Cond = X86::COND_O;
   10066     break;
   10067   case ISD::UADDO:
   10068     BaseOp = X86ISD::ADD;
   10069     Cond = X86::COND_B;
   10070     break;
   10071   case ISD::SSUBO:
   10072     // A subtract of one will be selected as a DEC. Note that DEC doesn't
   10073     // set CF, so we can't do this for USUBO.
   10074     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   10075       if (C->isOne()) {
   10076         BaseOp = X86ISD::DEC;
   10077         Cond = X86::COND_O;
   10078         break;
   10079       }
   10080     BaseOp = X86ISD::SUB;
   10081     Cond = X86::COND_O;
   10082     break;
   10083   case ISD::USUBO:
   10084     BaseOp = X86ISD::SUB;
   10085     Cond = X86::COND_B;
   10086     break;
   10087   case ISD::SMULO:
   10088     BaseOp = X86ISD::SMUL;
   10089     Cond = X86::COND_O;
   10090     break;
   10091   case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
   10092     SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
   10093                                  MVT::i32);
   10094     SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
   10095 
   10096     SDValue SetCC =
   10097       DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   10098                   DAG.getConstant(X86::COND_O, MVT::i32),
   10099                   SDValue(Sum.getNode(), 2));
   10100 
   10101     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   10102   }
   10103   }
   10104 
   10105   // Also sets EFLAGS.
   10106   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
   10107   SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
   10108 
   10109   SDValue SetCC =
   10110     DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
   10111                 DAG.getConstant(Cond, MVT::i32),
   10112                 SDValue(Sum.getNode(), 1));
   10113 
   10114   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   10115 }
   10116 
   10117 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
   10118   DebugLoc dl = Op.getDebugLoc();
   10119   SDNode* Node = Op.getNode();
   10120   EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
   10121   EVT VT = Node->getValueType(0);
   10122   if (Subtarget->hasXMMInt() && VT.isVector()) {
   10123     unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
   10124                         ExtraVT.getScalarType().getSizeInBits();
   10125     SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
   10126 
   10127     unsigned SHLIntrinsicsID = 0;
   10128     unsigned SRAIntrinsicsID = 0;
   10129     switch (VT.getSimpleVT().SimpleTy) {
   10130       default:
   10131         return SDValue();
   10132       case MVT::v4i32: {
   10133         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
   10134         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
   10135         break;
   10136       }
   10137       case MVT::v8i16: {
   10138         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
   10139         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
   10140         break;
   10141       }
   10142     }
   10143 
   10144     SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10145                          DAG.getConstant(SHLIntrinsicsID, MVT::i32),
   10146                          Node->getOperand(0), ShAmt);
   10147 
   10148     // In case of 1 bit sext, no need to shr
   10149     if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
   10150 
   10151     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10152                        DAG.getConstant(SRAIntrinsicsID, MVT::i32),
   10153                        Tmp1, ShAmt);
   10154   }
   10155 
   10156   return SDValue();
   10157 }
   10158 
   10159 
   10160 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
   10161   DebugLoc dl = Op.getDebugLoc();
   10162 
   10163   // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
   10164   // There isn't any reason to disable it if the target processor supports it.
   10165   if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
   10166     SDValue Chain = Op.getOperand(0);
   10167     SDValue Zero = DAG.getConstant(0, MVT::i32);
   10168     SDValue Ops[] = {
   10169       DAG.getRegister(X86::ESP, MVT::i32), // Base
   10170       DAG.getTargetConstant(1, MVT::i8),   // Scale
   10171       DAG.getRegister(0, MVT::i32),        // Index
   10172       DAG.getTargetConstant(0, MVT::i32),  // Disp
   10173       DAG.getRegister(0, MVT::i32),        // Segment.
   10174       Zero,
   10175       Chain
   10176     };
   10177     SDNode *Res =
   10178       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
   10179                           array_lengthof(Ops));
   10180     return SDValue(Res, 0);
   10181   }
   10182 
   10183   unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
   10184   if (!isDev)
   10185     return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   10186 
   10187   unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   10188   unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   10189   unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
   10190   unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   10191 
   10192   // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
   10193   if (!Op1 && !Op2 && !Op3 && Op4)
   10194     return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
   10195 
   10196   // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
   10197   if (Op1 && !Op2 && !Op3 && !Op4)
   10198     return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
   10199 
   10200   // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
   10201   //           (MFENCE)>;
   10202   return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   10203 }
   10204 
   10205 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
   10206                                              SelectionDAG &DAG) const {
   10207   DebugLoc dl = Op.getDebugLoc();
   10208   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
   10209     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
   10210   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
   10211     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
   10212 
   10213   // The only fence that needs an instruction is a sequentially-consistent
   10214   // cross-thread fence.
   10215   if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
   10216     // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
   10217     // no-sse2). There isn't any reason to disable it if the target processor
   10218     // supports it.
   10219     if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
   10220       return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   10221 
   10222     SDValue Chain = Op.getOperand(0);
   10223     SDValue Zero = DAG.getConstant(0, MVT::i32);
   10224     SDValue Ops[] = {
   10225       DAG.getRegister(X86::ESP, MVT::i32), // Base
   10226       DAG.getTargetConstant(1, MVT::i8),   // Scale
   10227       DAG.getRegister(0, MVT::i32),        // Index
   10228       DAG.getTargetConstant(0, MVT::i32),  // Disp
   10229       DAG.getRegister(0, MVT::i32),        // Segment.
   10230       Zero,
   10231       Chain
   10232     };
   10233     SDNode *Res =
   10234       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
   10235                          array_lengthof(Ops));
   10236     return SDValue(Res, 0);
   10237   }
   10238 
   10239   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
   10240   return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   10241 }
   10242 
   10243 
   10244 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
   10245   EVT T = Op.getValueType();
   10246   DebugLoc DL = Op.getDebugLoc();
   10247   unsigned Reg = 0;
   10248   unsigned size = 0;
   10249   switch(T.getSimpleVT().SimpleTy) {
   10250   default:
   10251     assert(false && "Invalid value type!");
   10252   case MVT::i8:  Reg = X86::AL;  size = 1; break;
   10253   case MVT::i16: Reg = X86::AX;  size = 2; break;
   10254   case MVT::i32: Reg = X86::EAX; size = 4; break;
   10255   case MVT::i64:
   10256     assert(Subtarget->is64Bit() && "Node not type legal!");
   10257     Reg = X86::RAX; size = 8;
   10258     break;
   10259   }
   10260   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
   10261                                     Op.getOperand(2), SDValue());
   10262   SDValue Ops[] = { cpIn.getValue(0),
   10263                     Op.getOperand(1),
   10264                     Op.getOperand(3),
   10265                     DAG.getTargetConstant(size, MVT::i8),
   10266                     cpIn.getValue(1) };
   10267   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10268   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
   10269   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
   10270                                            Ops, 5, T, MMO);
   10271   SDValue cpOut =
   10272     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
   10273   return cpOut;
   10274 }
   10275 
   10276 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
   10277                                                  SelectionDAG &DAG) const {
   10278   assert(Subtarget->is64Bit() && "Result not type legalized?");
   10279   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10280   SDValue TheChain = Op.getOperand(0);
   10281   DebugLoc dl = Op.getDebugLoc();
   10282   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   10283   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
   10284   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
   10285                                    rax.getValue(2));
   10286   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
   10287                             DAG.getConstant(32, MVT::i8));
   10288   SDValue Ops[] = {
   10289     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
   10290     rdx.getValue(1)
   10291   };
   10292   return DAG.getMergeValues(Ops, 2, dl);
   10293 }
   10294 
   10295 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
   10296                                             SelectionDAG &DAG) const {
   10297   EVT SrcVT = Op.getOperand(0).getValueType();
   10298   EVT DstVT = Op.getValueType();
   10299   assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
   10300          Subtarget->hasMMX() && "Unexpected custom BITCAST");
   10301   assert((DstVT == MVT::i64 ||
   10302           (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
   10303          "Unexpected custom BITCAST");
   10304   // i64 <=> MMX conversions are Legal.
   10305   if (SrcVT==MVT::i64 && DstVT.isVector())
   10306     return Op;
   10307   if (DstVT==MVT::i64 && SrcVT.isVector())
   10308     return Op;
   10309   // MMX <=> MMX conversions are Legal.
   10310   if (SrcVT.isVector() && DstVT.isVector())
   10311     return Op;
   10312   // All other conversions need to be expanded.
   10313   return SDValue();
   10314 }
   10315 
   10316 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
   10317   SDNode *Node = Op.getNode();
   10318   DebugLoc dl = Node->getDebugLoc();
   10319   EVT T = Node->getValueType(0);
   10320   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
   10321                               DAG.getConstant(0, T), Node->getOperand(2));
   10322   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
   10323                        cast<AtomicSDNode>(Node)->getMemoryVT(),
   10324                        Node->getOperand(0),
   10325                        Node->getOperand(1), negOp,
   10326                        cast<AtomicSDNode>(Node)->getSrcValue(),
   10327                        cast<AtomicSDNode>(Node)->getAlignment(),
   10328                        cast<AtomicSDNode>(Node)->getOrdering(),
   10329                        cast<AtomicSDNode>(Node)->getSynchScope());
   10330 }
   10331 
   10332 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
   10333   SDNode *Node = Op.getNode();
   10334   DebugLoc dl = Node->getDebugLoc();
   10335   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   10336 
   10337   // Convert seq_cst store -> xchg
   10338   // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
   10339   // FIXME: On 32-bit, store -> fist or movq would be more efficient
   10340   //        (The only way to get a 16-byte store is cmpxchg16b)
   10341   // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
   10342   if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
   10343       !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   10344     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
   10345                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   10346                                  Node->getOperand(0),
   10347                                  Node->getOperand(1), Node->getOperand(2),
   10348                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   10349                                  cast<AtomicSDNode>(Node)->getOrdering(),
   10350                                  cast<AtomicSDNode>(Node)->getSynchScope());
   10351     return Swap.getValue(1);
   10352   }
   10353   // Other atomic stores have a simple pattern.
   10354   return Op;
   10355 }
   10356 
   10357 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   10358   EVT VT = Op.getNode()->getValueType(0);
   10359 
   10360   // Let legalize expand this if it isn't a legal type yet.
   10361   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   10362     return SDValue();
   10363 
   10364   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   10365 
   10366   unsigned Opc;
   10367   bool ExtraOp = false;
   10368   switch (Op.getOpcode()) {
   10369   default: assert(0 && "Invalid code");
   10370   case ISD::ADDC: Opc = X86ISD::ADD; break;
   10371   case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
   10372   case ISD::SUBC: Opc = X86ISD::SUB; break;
   10373   case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
   10374   }
   10375 
   10376   if (!ExtraOp)
   10377     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   10378                        Op.getOperand(1));
   10379   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   10380                      Op.getOperand(1), Op.getOperand(2));
   10381 }
   10382 
   10383 /// LowerOperation - Provide custom lowering hooks for some operations.
   10384 ///
   10385 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   10386   switch (Op.getOpcode()) {
   10387   default: llvm_unreachable("Should not custom lower this!");
   10388   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
   10389   case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
   10390   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
   10391   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
   10392   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
   10393   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
   10394   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   10395   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
   10396   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   10397   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   10398   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
   10399   case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
   10400   case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
   10401   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   10402   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   10403   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   10404   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   10405   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
   10406   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   10407   case ISD::SHL_PARTS:
   10408   case ISD::SRA_PARTS:
   10409   case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
   10410   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   10411   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
   10412   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
   10413   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
   10414   case ISD::FABS:               return LowerFABS(Op, DAG);
   10415   case ISD::FNEG:               return LowerFNEG(Op, DAG);
   10416   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
   10417   case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
   10418   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   10419   case ISD::SELECT:             return LowerSELECT(Op, DAG);
   10420   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
   10421   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   10422   case ISD::VASTART:            return LowerVASTART(Op, DAG);
   10423   case ISD::VAARG:              return LowerVAARG(Op, DAG);
   10424   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
   10425   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   10426   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   10427   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   10428   case ISD::FRAME_TO_ARGS_OFFSET:
   10429                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
   10430   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   10431   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
   10432   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   10433   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   10434   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   10435   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
   10436   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
   10437   case ISD::MUL:                return LowerMUL(Op, DAG);
   10438   case ISD::SRA:
   10439   case ISD::SRL:
   10440   case ISD::SHL:                return LowerShift(Op, DAG);
   10441   case ISD::SADDO:
   10442   case ISD::UADDO:
   10443   case ISD::SSUBO:
   10444   case ISD::USUBO:
   10445   case ISD::SMULO:
   10446   case ISD::UMULO:              return LowerXALUO(Op, DAG);
   10447   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
   10448   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
   10449   case ISD::ADDC:
   10450   case ISD::ADDE:
   10451   case ISD::SUBC:
   10452   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   10453   case ISD::ADD:                return LowerADD(Op, DAG);
   10454   case ISD::SUB:                return LowerSUB(Op, DAG);
   10455   }
   10456 }
   10457 
   10458 static void ReplaceATOMIC_LOAD(SDNode *Node,
   10459                                   SmallVectorImpl<SDValue> &Results,
   10460                                   SelectionDAG &DAG) {
   10461   DebugLoc dl = Node->getDebugLoc();
   10462   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   10463 
   10464   // Convert wide load -> cmpxchg8b/cmpxchg16b
   10465   // FIXME: On 32-bit, load -> fild or movq would be more efficient
   10466   //        (The only way to get a 16-byte load is cmpxchg16b)
   10467   // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
   10468   SDValue Zero = DAG.getConstant(0, VT);
   10469   SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
   10470                                Node->getOperand(0),
   10471                                Node->getOperand(1), Zero, Zero,
   10472                                cast<AtomicSDNode>(Node)->getMemOperand(),
   10473                                cast<AtomicSDNode>(Node)->getOrdering(),
   10474                                cast<AtomicSDNode>(Node)->getSynchScope());
   10475   Results.push_back(Swap.getValue(0));
   10476   Results.push_back(Swap.getValue(1));
   10477 }
   10478 
   10479 void X86TargetLowering::
   10480 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
   10481                         SelectionDAG &DAG, unsigned NewOp) const {
   10482   DebugLoc dl = Node->getDebugLoc();
   10483   assert (Node->getValueType(0) == MVT::i64 &&
   10484           "Only know how to expand i64 atomics");
   10485 
   10486   SDValue Chain = Node->getOperand(0);
   10487   SDValue In1 = Node->getOperand(1);
   10488   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   10489                              Node->getOperand(2), DAG.getIntPtrConstant(0));
   10490   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   10491                              Node->getOperand(2), DAG.getIntPtrConstant(1));
   10492   SDValue Ops[] = { Chain, In1, In2L, In2H };
   10493   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   10494   SDValue Result =
   10495     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
   10496                             cast<MemSDNode>(Node)->getMemOperand());
   10497   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
   10498   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   10499   Results.push_back(Result.getValue(2));
   10500 }
   10501 
   10502 /// ReplaceNodeResults - Replace a node with an illegal result type
   10503 /// with a new node built out of custom code.
   10504 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
   10505                                            SmallVectorImpl<SDValue>&Results,
   10506                                            SelectionDAG &DAG) const {
   10507   DebugLoc dl = N->getDebugLoc();
   10508   switch (N->getOpcode()) {
   10509   default:
   10510     assert(false && "Do not know how to custom type legalize this operation!");
   10511     return;
   10512   case ISD::SIGN_EXTEND_INREG:
   10513   case ISD::ADDC:
   10514   case ISD::ADDE:
   10515   case ISD::SUBC:
   10516   case ISD::SUBE:
   10517     // We don't want to expand or promote these.
   10518     return;
   10519   case ISD::FP_TO_SINT: {
   10520     std::pair<SDValue,SDValue> Vals =
   10521         FP_TO_INTHelper(SDValue(N, 0), DAG, true);
   10522     SDValue FIST = Vals.first, StackSlot = Vals.second;
   10523     if (FIST.getNode() != 0) {
   10524       EVT VT = N->getValueType(0);
   10525       // Return a load from the stack slot.
   10526       Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
   10527                                     MachinePointerInfo(), false, false, 0));
   10528     }
   10529     return;
   10530   }
   10531   case ISD::READCYCLECOUNTER: {
   10532     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10533     SDValue TheChain = N->getOperand(0);
   10534     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   10535     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
   10536                                      rd.getValue(1));
   10537     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
   10538                                      eax.getValue(2));
   10539     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
   10540     SDValue Ops[] = { eax, edx };
   10541     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
   10542     Results.push_back(edx.getValue(1));
   10543     return;
   10544   }
   10545   case ISD::ATOMIC_CMP_SWAP: {
   10546     EVT T = N->getValueType(0);
   10547     assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
   10548     bool Regs64bit = T == MVT::i128;
   10549     EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
   10550     SDValue cpInL, cpInH;
   10551     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   10552                         DAG.getConstant(0, HalfT));
   10553     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   10554                         DAG.getConstant(1, HalfT));
   10555     cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
   10556                              Regs64bit ? X86::RAX : X86::EAX,
   10557                              cpInL, SDValue());
   10558     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
   10559                              Regs64bit ? X86::RDX : X86::EDX,
   10560                              cpInH, cpInL.getValue(1));
   10561     SDValue swapInL, swapInH;
   10562     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   10563                           DAG.getConstant(0, HalfT));
   10564     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   10565                           DAG.getConstant(1, HalfT));
   10566     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
   10567                                Regs64bit ? X86::RBX : X86::EBX,
   10568                                swapInL, cpInH.getValue(1));
   10569     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
   10570                                Regs64bit ? X86::RCX : X86::ECX,
   10571                                swapInH, swapInL.getValue(1));
   10572     SDValue Ops[] = { swapInH.getValue(0),
   10573                       N->getOperand(1),
   10574                       swapInH.getValue(1) };
   10575     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10576     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
   10577     unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
   10578                                   X86ISD::LCMPXCHG8_DAG;
   10579     SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
   10580                                              Ops, 3, T, MMO);
   10581     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
   10582                                         Regs64bit ? X86::RAX : X86::EAX,
   10583                                         HalfT, Result.getValue(1));
   10584     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
   10585                                         Regs64bit ? X86::RDX : X86::EDX,
   10586                                         HalfT, cpOutL.getValue(2));
   10587     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
   10588     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
   10589     Results.push_back(cpOutH.getValue(1));
   10590     return;
   10591   }
   10592   case ISD::ATOMIC_LOAD_ADD:
   10593     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
   10594     return;
   10595   case ISD::ATOMIC_LOAD_AND:
   10596     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
   10597     return;
   10598   case ISD::ATOMIC_LOAD_NAND:
   10599     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
   10600     return;
   10601   case ISD::ATOMIC_LOAD_OR:
   10602     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
   10603     return;
   10604   case ISD::ATOMIC_LOAD_SUB:
   10605     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
   10606     return;
   10607   case ISD::ATOMIC_LOAD_XOR:
   10608     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
   10609     return;
   10610   case ISD::ATOMIC_SWAP:
   10611     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
   10612     return;
   10613   case ISD::ATOMIC_LOAD:
   10614     ReplaceATOMIC_LOAD(N, Results, DAG);
   10615   }
   10616 }
   10617 
   10618 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   10619   switch (Opcode) {
   10620   default: return NULL;
   10621   case X86ISD::BSF:                return "X86ISD::BSF";
   10622   case X86ISD::BSR:                return "X86ISD::BSR";
   10623   case X86ISD::SHLD:               return "X86ISD::SHLD";
   10624   case X86ISD::SHRD:               return "X86ISD::SHRD";
   10625   case X86ISD::FAND:               return "X86ISD::FAND";
   10626   case X86ISD::FOR:                return "X86ISD::FOR";
   10627   case X86ISD::FXOR:               return "X86ISD::FXOR";
   10628   case X86ISD::FSRL:               return "X86ISD::FSRL";
   10629   case X86ISD::FILD:               return "X86ISD::FILD";
   10630   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
   10631   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
   10632   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
   10633   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
   10634   case X86ISD::FLD:                return "X86ISD::FLD";
   10635   case X86ISD::FST:                return "X86ISD::FST";
   10636   case X86ISD::CALL:               return "X86ISD::CALL";
   10637   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
   10638   case X86ISD::BT:                 return "X86ISD::BT";
   10639   case X86ISD::CMP:                return "X86ISD::CMP";
   10640   case X86ISD::COMI:               return "X86ISD::COMI";
   10641   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
   10642   case X86ISD::SETCC:              return "X86ISD::SETCC";
   10643   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
   10644   case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
   10645   case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
   10646   case X86ISD::CMOV:               return "X86ISD::CMOV";
   10647   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
   10648   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
   10649   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
   10650   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
   10651   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
   10652   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
   10653   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
   10654   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
   10655   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
   10656   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
   10657   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
   10658   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
   10659   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
   10660   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
   10661   case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
   10662   case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
   10663   case X86ISD::PSIGND:             return "X86ISD::PSIGND";
   10664   case X86ISD::FMAX:               return "X86ISD::FMAX";
   10665   case X86ISD::FMIN:               return "X86ISD::FMIN";
   10666   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
   10667   case X86ISD::FRCP:               return "X86ISD::FRCP";
   10668   case X86ISD::FHADD:              return "X86ISD::FHADD";
   10669   case X86ISD::FHSUB:              return "X86ISD::FHSUB";
   10670   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
   10671   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
   10672   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
   10673   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
   10674   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
   10675   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
   10676   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
   10677   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
   10678   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
   10679   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
   10680   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
   10681   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
   10682   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
   10683   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
   10684   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
   10685   case X86ISD::VSHL:               return "X86ISD::VSHL";
   10686   case X86ISD::VSRL:               return "X86ISD::VSRL";
   10687   case X86ISD::CMPPD:              return "X86ISD::CMPPD";
   10688   case X86ISD::CMPPS:              return "X86ISD::CMPPS";
   10689   case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
   10690   case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
   10691   case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
   10692   case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
   10693   case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
   10694   case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
   10695   case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
   10696   case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
   10697   case X86ISD::ADD:                return "X86ISD::ADD";
   10698   case X86ISD::SUB:                return "X86ISD::SUB";
   10699   case X86ISD::ADC:                return "X86ISD::ADC";
   10700   case X86ISD::SBB:                return "X86ISD::SBB";
   10701   case X86ISD::SMUL:               return "X86ISD::SMUL";
   10702   case X86ISD::UMUL:               return "X86ISD::UMUL";
   10703   case X86ISD::INC:                return "X86ISD::INC";
   10704   case X86ISD::DEC:                return "X86ISD::DEC";
   10705   case X86ISD::OR:                 return "X86ISD::OR";
   10706   case X86ISD::XOR:                return "X86ISD::XOR";
   10707   case X86ISD::AND:                return "X86ISD::AND";
   10708   case X86ISD::ANDN:               return "X86ISD::ANDN";
   10709   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
   10710   case X86ISD::PTEST:              return "X86ISD::PTEST";
   10711   case X86ISD::TESTP:              return "X86ISD::TESTP";
   10712   case X86ISD::PALIGN:             return "X86ISD::PALIGN";
   10713   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
   10714   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
   10715   case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
   10716   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
   10717   case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
   10718   case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
   10719   case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
   10720   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
   10721   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
   10722   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
   10723   case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
   10724   case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
   10725   case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
   10726   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
   10727   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
   10728   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
   10729   case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
   10730   case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
   10731   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
   10732   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
   10733   case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
   10734   case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
   10735   case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
   10736   case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
   10737   case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
   10738   case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
   10739   case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
   10740   case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
   10741   case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
   10742   case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
   10743   case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
   10744   case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
   10745   case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
   10746   case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
   10747   case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
   10748   case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
   10749   case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
   10750   case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
   10751   case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
   10752   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
   10753   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
   10754   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
   10755   case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
   10756   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
   10757   }
   10758 }
   10759 
   10760 // isLegalAddressingMode - Return true if the addressing mode represented
   10761 // by AM is legal for this target, for a load/store of the specified type.
   10762 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   10763                                               Type *Ty) const {
   10764   // X86 supports extremely general addressing modes.
   10765   CodeModel::Model M = getTargetMachine().getCodeModel();
   10766   Reloc::Model R = getTargetMachine().getRelocationModel();
   10767 
   10768   // X86 allows a sign-extended 32-bit immediate field as a displacement.
   10769   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
   10770     return false;
   10771 
   10772   if (AM.BaseGV) {
   10773     unsigned GVFlags =
   10774       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
   10775 
   10776     // If a reference to this global requires an extra load, we can't fold it.
   10777     if (isGlobalStubReference(GVFlags))
   10778       return false;
   10779 
   10780     // If BaseGV requires a register for the PIC base, we cannot also have a
   10781     // BaseReg specified.
   10782     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
   10783       return false;
   10784 
   10785     // If lower 4G is not available, then we must use rip-relative addressing.
   10786     if ((M != CodeModel::Small || R != Reloc::Static) &&
   10787         Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
   10788       return false;
   10789   }
   10790 
   10791   switch (AM.Scale) {
   10792   case 0:
   10793   case 1:
   10794   case 2:
   10795   case 4:
   10796   case 8:
   10797     // These scales always work.
   10798     break;
   10799   case 3:
   10800   case 5:
   10801   case 9:
   10802     // These scales are formed with basereg+scalereg.  Only accept if there is
   10803     // no basereg yet.
   10804     if (AM.HasBaseReg)
   10805       return false;
   10806     break;
   10807   default:  // Other stuff never works.
   10808     return false;
   10809   }
   10810 
   10811   return true;
   10812 }
   10813 
   10814 
   10815 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   10816   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   10817     return false;
   10818   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   10819   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   10820   if (NumBits1 <= NumBits2)
   10821     return false;
   10822   return true;
   10823 }
   10824 
   10825 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   10826   if (!VT1.isInteger() || !VT2.isInteger())
   10827     return false;
   10828   unsigned NumBits1 = VT1.getSizeInBits();
   10829   unsigned NumBits2 = VT2.getSizeInBits();
   10830   if (NumBits1 <= NumBits2)
   10831     return false;
   10832   return true;
   10833 }
   10834 
   10835 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   10836   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   10837   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
   10838 }
   10839 
   10840 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   10841   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   10842   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
   10843 }
   10844 
   10845 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
   10846   // i16 instructions are longer (0x66 prefix) and potentially slower.
   10847   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
   10848 }
   10849 
   10850 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   10851 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   10852 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   10853 /// are assumed to be legal.
   10854 bool
   10855 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   10856                                       EVT VT) const {
   10857   // Very little shuffling can be done for 64-bit vectors right now.
   10858   if (VT.getSizeInBits() == 64)
   10859     return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
   10860 
   10861   // FIXME: pshufb, blends, shifts.
   10862   return (VT.getVectorNumElements() == 2 ||
   10863           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   10864           isMOVLMask(M, VT) ||
   10865           isSHUFPMask(M, VT) ||
   10866           isPSHUFDMask(M, VT) ||
   10867           isPSHUFHWMask(M, VT) ||
   10868           isPSHUFLWMask(M, VT) ||
   10869           isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
   10870           isUNPCKLMask(M, VT) ||
   10871           isUNPCKHMask(M, VT) ||
   10872           isUNPCKL_v_undef_Mask(M, VT) ||
   10873           isUNPCKH_v_undef_Mask(M, VT));
   10874 }
   10875 
   10876 bool
   10877 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
   10878                                           EVT VT) const {
   10879   unsigned NumElts = VT.getVectorNumElements();
   10880   // FIXME: This collection of masks seems suspect.
   10881   if (NumElts == 2)
   10882     return true;
   10883   if (NumElts == 4 && VT.getSizeInBits() == 128) {
   10884     return (isMOVLMask(Mask, VT)  ||
   10885             isCommutedMOVLMask(Mask, VT, true) ||
   10886             isSHUFPMask(Mask, VT) ||
   10887             isCommutedSHUFPMask(Mask, VT));
   10888   }
   10889   return false;
   10890 }
   10891 
   10892 //===----------------------------------------------------------------------===//
   10893 //                           X86 Scheduler Hooks
   10894 //===----------------------------------------------------------------------===//
   10895 
   10896 // private utility function
   10897 MachineBasicBlock *
   10898 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
   10899                                                        MachineBasicBlock *MBB,
   10900                                                        unsigned regOpc,
   10901                                                        unsigned immOpc,
   10902                                                        unsigned LoadOpc,
   10903                                                        unsigned CXchgOpc,
   10904                                                        unsigned notOpc,
   10905                                                        unsigned EAXreg,
   10906                                                        TargetRegisterClass *RC,
   10907                                                        bool invSrc) const {
   10908   // For the atomic bitwise operator, we generate
   10909   //   thisMBB:
   10910   //   newMBB:
   10911   //     ld  t1 = [bitinstr.addr]
   10912   //     op  t2 = t1, [bitinstr.val]
   10913   //     mov EAX = t1
   10914   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
   10915   //     bz  newMBB
   10916   //     fallthrough -->nextMBB
   10917   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10918   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   10919   MachineFunction::iterator MBBIter = MBB;
   10920   ++MBBIter;
   10921 
   10922   /// First build the CFG
   10923   MachineFunction *F = MBB->getParent();
   10924   MachineBasicBlock *thisMBB = MBB;
   10925   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10926   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10927   F->insert(MBBIter, newMBB);
   10928   F->insert(MBBIter, nextMBB);
   10929 
   10930   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   10931   nextMBB->splice(nextMBB->begin(), thisMBB,
   10932                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   10933                   thisMBB->end());
   10934   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   10935 
   10936   // Update thisMBB to fall through to newMBB
   10937   thisMBB->addSuccessor(newMBB);
   10938 
   10939   // newMBB jumps to itself and fall through to nextMBB
   10940   newMBB->addSuccessor(nextMBB);
   10941   newMBB->addSuccessor(newMBB);
   10942 
   10943   // Insert instructions into newMBB based on incoming instruction
   10944   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   10945          "unexpected number of operands");
   10946   DebugLoc dl = bInstr->getDebugLoc();
   10947   MachineOperand& destOper = bInstr->getOperand(0);
   10948   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   10949   int numArgs = bInstr->getNumOperands() - 1;
   10950   for (int i=0; i < numArgs; ++i)
   10951     argOpers[i] = &bInstr->getOperand(i+1);
   10952 
   10953   // x86 address has 4 operands: base, index, scale, and displacement
   10954   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   10955   int valArgIndx = lastAddrIndx + 1;
   10956 
   10957   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   10958   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
   10959   for (int i=0; i <= lastAddrIndx; ++i)
   10960     (*MIB).addOperand(*argOpers[i]);
   10961 
   10962   unsigned tt = F->getRegInfo().createVirtualRegister(RC);
   10963   if (invSrc) {
   10964     MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
   10965   }
   10966   else
   10967     tt = t1;
   10968 
   10969   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   10970   assert((argOpers[valArgIndx]->isReg() ||
   10971           argOpers[valArgIndx]->isImm()) &&
   10972          "invalid operand");
   10973   if (argOpers[valArgIndx]->isReg())
   10974     MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
   10975   else
   10976     MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
   10977   MIB.addReg(tt);
   10978   (*MIB).addOperand(*argOpers[valArgIndx]);
   10979 
   10980   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
   10981   MIB.addReg(t1);
   10982 
   10983   MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
   10984   for (int i=0; i <= lastAddrIndx; ++i)
   10985     (*MIB).addOperand(*argOpers[i]);
   10986   MIB.addReg(t2);
   10987   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   10988   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   10989                     bInstr->memoperands_end());
   10990 
   10991   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   10992   MIB.addReg(EAXreg);
   10993 
   10994   // insert branch
   10995   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   10996 
   10997   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   10998   return nextMBB;
   10999 }
   11000 
   11001 // private utility function:  64 bit atomics on 32 bit host.
   11002 MachineBasicBlock *
   11003 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
   11004                                                        MachineBasicBlock *MBB,
   11005                                                        unsigned regOpcL,
   11006                                                        unsigned regOpcH,
   11007                                                        unsigned immOpcL,
   11008                                                        unsigned immOpcH,
   11009                                                        bool invSrc) const {
   11010   // For the atomic bitwise operator, we generate
   11011   //   thisMBB (instructions are in pairs, except cmpxchg8b)
   11012   //     ld t1,t2 = [bitinstr.addr]
   11013   //   newMBB:
   11014   //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
   11015   //     op  t5, t6 <- out1, out2, [bitinstr.val]
   11016   //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
   11017   //     mov ECX, EBX <- t5, t6
   11018   //     mov EAX, EDX <- t1, t2
   11019   //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
   11020   //     mov t3, t4 <- EAX, EDX
   11021   //     bz  newMBB
   11022   //     result in out1, out2
   11023   //     fallthrough -->nextMBB
   11024 
   11025   const TargetRegisterClass *RC = X86::GR32RegisterClass;
   11026   const unsigned LoadOpc = X86::MOV32rm;
   11027   const unsigned NotOpc = X86::NOT32r;
   11028   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11029   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11030   MachineFunction::iterator MBBIter = MBB;
   11031   ++MBBIter;
   11032 
   11033   /// First build the CFG
   11034   MachineFunction *F = MBB->getParent();
   11035   MachineBasicBlock *thisMBB = MBB;
   11036   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11037   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11038   F->insert(MBBIter, newMBB);
   11039   F->insert(MBBIter, nextMBB);
   11040 
   11041   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   11042   nextMBB->splice(nextMBB->begin(), thisMBB,
   11043                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   11044                   thisMBB->end());
   11045   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11046 
   11047   // Update thisMBB to fall through to newMBB
   11048   thisMBB->addSuccessor(newMBB);
   11049 
   11050   // newMBB jumps to itself and fall through to nextMBB
   11051   newMBB->addSuccessor(nextMBB);
   11052   newMBB->addSuccessor(newMBB);
   11053 
   11054   DebugLoc dl = bInstr->getDebugLoc();
   11055   // Insert instructions into newMBB based on incoming instruction
   11056   // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
   11057   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
   11058          "unexpected number of operands");
   11059   MachineOperand& dest1Oper = bInstr->getOperand(0);
   11060   MachineOperand& dest2Oper = bInstr->getOperand(1);
   11061   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   11062   for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
   11063     argOpers[i] = &bInstr->getOperand(i+2);
   11064 
   11065     // We use some of the operands multiple times, so conservatively just
   11066     // clear any kill flags that might be present.
   11067     if (argOpers[i]->isReg() && argOpers[i]->isUse())
   11068       argOpers[i]->setIsKill(false);
   11069   }
   11070 
   11071   // x86 address has 5 operands: base, index, scale, displacement, and segment.
   11072   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   11073 
   11074   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   11075   MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
   11076   for (int i=0; i <= lastAddrIndx; ++i)
   11077     (*MIB).addOperand(*argOpers[i]);
   11078   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   11079   MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
   11080   // add 4 to displacement.
   11081   for (int i=0; i <= lastAddrIndx-2; ++i)
   11082     (*MIB).addOperand(*argOpers[i]);
   11083   MachineOperand newOp3 = *(argOpers[3]);
   11084   if (newOp3.isImm())
   11085     newOp3.setImm(newOp3.getImm()+4);
   11086   else
   11087     newOp3.setOffset(newOp3.getOffset()+4);
   11088   (*MIB).addOperand(newOp3);
   11089   (*MIB).addOperand(*argOpers[lastAddrIndx]);
   11090 
   11091   // t3/4 are defined later, at the bottom of the loop
   11092   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
   11093   unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
   11094   BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
   11095     .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
   11096   BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
   11097     .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
   11098 
   11099   // The subsequent operations should be using the destination registers of
   11100   //the PHI instructions.
   11101   if (invSrc) {
   11102     t1 = F->getRegInfo().createVirtualRegister(RC);
   11103     t2 = F->getRegInfo().createVirtualRegister(RC);
   11104     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
   11105     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
   11106   } else {
   11107     t1 = dest1Oper.getReg();
   11108     t2 = dest2Oper.getReg();
   11109   }
   11110 
   11111   int valArgIndx = lastAddrIndx + 1;
   11112   assert((argOpers[valArgIndx]->isReg() ||
   11113           argOpers[valArgIndx]->isImm()) &&
   11114          "invalid operand");
   11115   unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
   11116   unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
   11117   if (argOpers[valArgIndx]->isReg())
   11118     MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
   11119   else
   11120     MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
   11121   if (regOpcL != X86::MOV32rr)
   11122     MIB.addReg(t1);
   11123   (*MIB).addOperand(*argOpers[valArgIndx]);
   11124   assert(argOpers[valArgIndx + 1]->isReg() ==
   11125          argOpers[valArgIndx]->isReg());
   11126   assert(argOpers[valArgIndx + 1]->isImm() ==
   11127          argOpers[valArgIndx]->isImm());
   11128   if (argOpers[valArgIndx + 1]->isReg())
   11129     MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
   11130   else
   11131     MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
   11132   if (regOpcH != X86::MOV32rr)
   11133     MIB.addReg(t2);
   11134   (*MIB).addOperand(*argOpers[valArgIndx + 1]);
   11135 
   11136   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   11137   MIB.addReg(t1);
   11138   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
   11139   MIB.addReg(t2);
   11140 
   11141   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
   11142   MIB.addReg(t5);
   11143   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
   11144   MIB.addReg(t6);
   11145 
   11146   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
   11147   for (int i=0; i <= lastAddrIndx; ++i)
   11148     (*MIB).addOperand(*argOpers[i]);
   11149 
   11150   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   11151   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   11152                     bInstr->memoperands_end());
   11153 
   11154   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
   11155   MIB.addReg(X86::EAX);
   11156   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
   11157   MIB.addReg(X86::EDX);
   11158 
   11159   // insert branch
   11160   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   11161 
   11162   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   11163   return nextMBB;
   11164 }
   11165 
   11166 // private utility function
   11167 MachineBasicBlock *
   11168 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
   11169                                                       MachineBasicBlock *MBB,
   11170                                                       unsigned cmovOpc) const {
   11171   // For the atomic min/max operator, we generate
   11172   //   thisMBB:
   11173   //   newMBB:
   11174   //     ld t1 = [min/max.addr]
   11175   //     mov t2 = [min/max.val]
   11176   //     cmp  t1, t2
   11177   //     cmov[cond] t2 = t1
   11178   //     mov EAX = t1
   11179   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
   11180   //     bz   newMBB
   11181   //     fallthrough -->nextMBB
   11182   //
   11183   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11184   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11185   MachineFunction::iterator MBBIter = MBB;
   11186   ++MBBIter;
   11187 
   11188   /// First build the CFG
   11189   MachineFunction *F = MBB->getParent();
   11190   MachineBasicBlock *thisMBB = MBB;
   11191   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11192   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11193   F->insert(MBBIter, newMBB);
   11194   F->insert(MBBIter, nextMBB);
   11195 
   11196   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   11197   nextMBB->splice(nextMBB->begin(), thisMBB,
   11198                   llvm::next(MachineBasicBlock::iterator(mInstr)),
   11199                   thisMBB->end());
   11200   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11201 
   11202   // Update thisMBB to fall through to newMBB
   11203   thisMBB->addSuccessor(newMBB);
   11204 
   11205   // newMBB jumps to newMBB and fall through to nextMBB
   11206   newMBB->addSuccessor(nextMBB);
   11207   newMBB->addSuccessor(newMBB);
   11208 
   11209   DebugLoc dl = mInstr->getDebugLoc();
   11210   // Insert instructions into newMBB based on incoming instruction
   11211   assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   11212          "unexpected number of operands");
   11213   MachineOperand& destOper = mInstr->getOperand(0);
   11214   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   11215   int numArgs = mInstr->getNumOperands() - 1;
   11216   for (int i=0; i < numArgs; ++i)
   11217     argOpers[i] = &mInstr->getOperand(i+1);
   11218 
   11219   // x86 address has 4 operands: base, index, scale, and displacement
   11220   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   11221   int valArgIndx = lastAddrIndx + 1;
   11222 
   11223   unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   11224   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
   11225   for (int i=0; i <= lastAddrIndx; ++i)
   11226     (*MIB).addOperand(*argOpers[i]);
   11227 
   11228   // We only support register and immediate values
   11229   assert((argOpers[valArgIndx]->isReg() ||
   11230           argOpers[valArgIndx]->isImm()) &&
   11231          "invalid operand");
   11232 
   11233   unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   11234   if (argOpers[valArgIndx]->isReg())
   11235     MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
   11236   else
   11237     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
   11238   (*MIB).addOperand(*argOpers[valArgIndx]);
   11239 
   11240   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   11241   MIB.addReg(t1);
   11242 
   11243   MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
   11244   MIB.addReg(t1);
   11245   MIB.addReg(t2);
   11246 
   11247   // Generate movc
   11248   unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   11249   MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
   11250   MIB.addReg(t2);
   11251   MIB.addReg(t1);
   11252 
   11253   // Cmp and exchange if none has modified the memory location
   11254   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
   11255   for (int i=0; i <= lastAddrIndx; ++i)
   11256     (*MIB).addOperand(*argOpers[i]);
   11257   MIB.addReg(t3);
   11258   assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   11259   (*MIB).setMemRefs(mInstr->memoperands_begin(),
   11260                     mInstr->memoperands_end());
   11261 
   11262   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   11263   MIB.addReg(X86::EAX);
   11264 
   11265   // insert branch
   11266   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   11267 
   11268   mInstr->eraseFromParent();   // The pseudo instruction is gone now.
   11269   return nextMBB;
   11270 }
   11271 
   11272 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
   11273 // or XMM0_V32I8 in AVX all of this code can be replaced with that
   11274 // in the .td file.
   11275 MachineBasicBlock *
   11276 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
   11277                             unsigned numArgs, bool memArg) const {
   11278   assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
   11279          "Target must have SSE4.2 or AVX features enabled");
   11280 
   11281   DebugLoc dl = MI->getDebugLoc();
   11282   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11283   unsigned Opc;
   11284   if (!Subtarget->hasAVX()) {
   11285     if (memArg)
   11286       Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
   11287     else
   11288       Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
   11289   } else {
   11290     if (memArg)
   11291       Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
   11292     else
   11293       Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
   11294   }
   11295 
   11296   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
   11297   for (unsigned i = 0; i < numArgs; ++i) {
   11298     MachineOperand &Op = MI->getOperand(i+1);
   11299     if (!(Op.isReg() && Op.isImplicit()))
   11300       MIB.addOperand(Op);
   11301   }
   11302   BuildMI(*BB, MI, dl,
   11303     TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
   11304              MI->getOperand(0).getReg())
   11305     .addReg(X86::XMM0);
   11306 
   11307   MI->eraseFromParent();
   11308   return BB;
   11309 }
   11310 
   11311 MachineBasicBlock *
   11312 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
   11313   DebugLoc dl = MI->getDebugLoc();
   11314   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11315 
   11316   // Address into RAX/EAX, other two args into ECX, EDX.
   11317   unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   11318   unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   11319   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
   11320   for (int i = 0; i < X86::AddrNumOperands; ++i)
   11321     MIB.addOperand(MI->getOperand(i));
   11322 
   11323   unsigned ValOps = X86::AddrNumOperands;
   11324   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   11325     .addReg(MI->getOperand(ValOps).getReg());
   11326   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
   11327     .addReg(MI->getOperand(ValOps+1).getReg());
   11328 
   11329   // The instruction doesn't actually take any operands though.
   11330   BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
   11331 
   11332   MI->eraseFromParent(); // The pseudo is gone now.
   11333   return BB;
   11334 }
   11335 
   11336 MachineBasicBlock *
   11337 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
   11338   DebugLoc dl = MI->getDebugLoc();
   11339   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11340 
   11341   // First arg in ECX, the second in EAX.
   11342   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   11343     .addReg(MI->getOperand(0).getReg());
   11344   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
   11345     .addReg(MI->getOperand(1).getReg());
   11346 
   11347   // The instruction doesn't actually take any operands though.
   11348   BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
   11349 
   11350   MI->eraseFromParent(); // The pseudo is gone now.
   11351   return BB;
   11352 }
   11353 
   11354 MachineBasicBlock *
   11355 X86TargetLowering::EmitVAARG64WithCustomInserter(
   11356                    MachineInstr *MI,
   11357                    MachineBasicBlock *MBB) const {
   11358   // Emit va_arg instruction on X86-64.
   11359 
   11360   // Operands to this pseudo-instruction:
   11361   // 0  ) Output        : destination address (reg)
   11362   // 1-5) Input         : va_list address (addr, i64mem)
   11363   // 6  ) ArgSize       : Size (in bytes) of vararg type
   11364   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
   11365   // 8  ) Align         : Alignment of type
   11366   // 9  ) EFLAGS (implicit-def)
   11367 
   11368   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
   11369   assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
   11370 
   11371   unsigned DestReg = MI->getOperand(0).getReg();
   11372   MachineOperand &Base = MI->getOperand(1);
   11373   MachineOperand &Scale = MI->getOperand(2);
   11374   MachineOperand &Index = MI->getOperand(3);
   11375   MachineOperand &Disp = MI->getOperand(4);
   11376   MachineOperand &Segment = MI->getOperand(5);
   11377   unsigned ArgSize = MI->getOperand(6).getImm();
   11378   unsigned ArgMode = MI->getOperand(7).getImm();
   11379   unsigned Align = MI->getOperand(8).getImm();
   11380 
   11381   // Memory Reference
   11382   assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
   11383   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   11384   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   11385 
   11386   // Machine Information
   11387   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11388   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   11389   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
   11390   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
   11391   DebugLoc DL = MI->getDebugLoc();
   11392 
   11393   // struct va_list {
   11394   //   i32   gp_offset
   11395   //   i32   fp_offset
   11396   //   i64   overflow_area (address)
   11397   //   i64   reg_save_area (address)
   11398   // }
   11399   // sizeof(va_list) = 24
   11400   // alignment(va_list) = 8
   11401 
   11402   unsigned TotalNumIntRegs = 6;
   11403   unsigned TotalNumXMMRegs = 8;
   11404   bool UseGPOffset = (ArgMode == 1);
   11405   bool UseFPOffset = (ArgMode == 2);
   11406   unsigned MaxOffset = TotalNumIntRegs * 8 +
   11407                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
   11408 
   11409   /* Align ArgSize to a multiple of 8 */
   11410   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
   11411   bool NeedsAlign = (Align > 8);
   11412 
   11413   MachineBasicBlock *thisMBB = MBB;
   11414   MachineBasicBlock *overflowMBB;
   11415   MachineBasicBlock *offsetMBB;
   11416   MachineBasicBlock *endMBB;
   11417 
   11418   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
   11419   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
   11420   unsigned OffsetReg = 0;
   11421 
   11422   if (!UseGPOffset && !UseFPOffset) {
   11423     // If we only pull from the overflow region, we don't create a branch.
   11424     // We don't need to alter control flow.
   11425     OffsetDestReg = 0; // unused
   11426     OverflowDestReg = DestReg;
   11427 
   11428     offsetMBB = NULL;
   11429     overflowMBB = thisMBB;
   11430     endMBB = thisMBB;
   11431   } else {
   11432     // First emit code to check if gp_offset (or fp_offset) is below the bound.
   11433     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
   11434     // If not, pull from overflow_area. (branch to overflowMBB)
   11435     //
   11436     //       thisMBB
   11437     //         |     .
   11438     //         |        .
   11439     //     offsetMBB   overflowMBB
   11440     //         |        .
   11441     //         |     .
   11442     //        endMBB
   11443 
   11444     // Registers for the PHI in endMBB
   11445     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
   11446     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
   11447 
   11448     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11449     MachineFunction *MF = MBB->getParent();
   11450     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11451     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11452     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11453 
   11454     MachineFunction::iterator MBBIter = MBB;
   11455     ++MBBIter;
   11456 
   11457     // Insert the new basic blocks
   11458     MF->insert(MBBIter, offsetMBB);
   11459     MF->insert(MBBIter, overflowMBB);
   11460     MF->insert(MBBIter, endMBB);
   11461 
   11462     // Transfer the remainder of MBB and its successor edges to endMBB.
   11463     endMBB->splice(endMBB->begin(), thisMBB,
   11464                     llvm::next(MachineBasicBlock::iterator(MI)),
   11465                     thisMBB->end());
   11466     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11467 
   11468     // Make offsetMBB and overflowMBB successors of thisMBB
   11469     thisMBB->addSuccessor(offsetMBB);
   11470     thisMBB->addSuccessor(overflowMBB);
   11471 
   11472     // endMBB is a successor of both offsetMBB and overflowMBB
   11473     offsetMBB->addSuccessor(endMBB);
   11474     overflowMBB->addSuccessor(endMBB);
   11475 
   11476     // Load the offset value into a register
   11477     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   11478     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
   11479       .addOperand(Base)
   11480       .addOperand(Scale)
   11481       .addOperand(Index)
   11482       .addDisp(Disp, UseFPOffset ? 4 : 0)
   11483       .addOperand(Segment)
   11484       .setMemRefs(MMOBegin, MMOEnd);
   11485 
   11486     // Check if there is enough room left to pull this argument.
   11487     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
   11488       .addReg(OffsetReg)
   11489       .addImm(MaxOffset + 8 - ArgSizeA8);
   11490 
   11491     // Branch to "overflowMBB" if offset >= max
   11492     // Fall through to "offsetMBB" otherwise
   11493     BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
   11494       .addMBB(overflowMBB);
   11495   }
   11496 
   11497   // In offsetMBB, emit code to use the reg_save_area.
   11498   if (offsetMBB) {
   11499     assert(OffsetReg != 0);
   11500 
   11501     // Read the reg_save_area address.
   11502     unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
   11503     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
   11504       .addOperand(Base)
   11505       .addOperand(Scale)
   11506       .addOperand(Index)
   11507       .addDisp(Disp, 16)
   11508       .addOperand(Segment)
   11509       .setMemRefs(MMOBegin, MMOEnd);
   11510 
   11511     // Zero-extend the offset
   11512     unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
   11513       BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
   11514         .addImm(0)
   11515         .addReg(OffsetReg)
   11516         .addImm(X86::sub_32bit);
   11517 
   11518     // Add the offset to the reg_save_area to get the final address.
   11519     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
   11520       .addReg(OffsetReg64)
   11521       .addReg(RegSaveReg);
   11522 
   11523     // Compute the offset for the next argument
   11524     unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   11525     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
   11526       .addReg(OffsetReg)
   11527       .addImm(UseFPOffset ? 16 : 8);
   11528 
   11529     // Store it back into the va_list.
   11530     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
   11531       .addOperand(Base)
   11532       .addOperand(Scale)
   11533       .addOperand(Index)
   11534       .addDisp(Disp, UseFPOffset ? 4 : 0)
   11535       .addOperand(Segment)
   11536       .addReg(NextOffsetReg)
   11537       .setMemRefs(MMOBegin, MMOEnd);
   11538 
   11539     // Jump to endMBB
   11540     BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
   11541       .addMBB(endMBB);
   11542   }
   11543 
   11544   //
   11545   // Emit code to use overflow area
   11546   //
   11547 
   11548   // Load the overflow_area address into a register.
   11549   unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
   11550   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
   11551     .addOperand(Base)
   11552     .addOperand(Scale)
   11553     .addOperand(Index)
   11554     .addDisp(Disp, 8)
   11555     .addOperand(Segment)
   11556     .setMemRefs(MMOBegin, MMOEnd);
   11557 
   11558   // If we need to align it, do so. Otherwise, just copy the address
   11559   // to OverflowDestReg.
   11560   if (NeedsAlign) {
   11561     // Align the overflow address
   11562     assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
   11563     unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
   11564 
   11565     // aligned_addr = (addr + (align-1)) & ~(align-1)
   11566     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
   11567       .addReg(OverflowAddrReg)
   11568       .addImm(Align-1);
   11569 
   11570     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
   11571       .addReg(TmpReg)
   11572       .addImm(~(uint64_t)(Align-1));
   11573   } else {
   11574     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
   11575       .addReg(OverflowAddrReg);
   11576   }
   11577 
   11578   // Compute the next overflow address after this argument.
   11579   // (the overflow address should be kept 8-byte aligned)
   11580   unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
   11581   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
   11582     .addReg(OverflowDestReg)
   11583     .addImm(ArgSizeA8);
   11584 
   11585   // Store the new overflow address.
   11586   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
   11587     .addOperand(Base)
   11588     .addOperand(Scale)
   11589     .addOperand(Index)
   11590     .addDisp(Disp, 8)
   11591     .addOperand(Segment)
   11592     .addReg(NextAddrReg)
   11593     .setMemRefs(MMOBegin, MMOEnd);
   11594 
   11595   // If we branched, emit the PHI to the front of endMBB.
   11596   if (offsetMBB) {
   11597     BuildMI(*endMBB, endMBB->begin(), DL,
   11598             TII->get(X86::PHI), DestReg)
   11599       .addReg(OffsetDestReg).addMBB(offsetMBB)
   11600       .addReg(OverflowDestReg).addMBB(overflowMBB);
   11601   }
   11602 
   11603   // Erase the pseudo instruction
   11604   MI->eraseFromParent();
   11605 
   11606   return endMBB;
   11607 }
   11608 
   11609 MachineBasicBlock *
   11610 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
   11611                                                  MachineInstr *MI,
   11612                                                  MachineBasicBlock *MBB) const {
   11613   // Emit code to save XMM registers to the stack. The ABI says that the
   11614   // number of registers to save is given in %al, so it's theoretically
   11615   // possible to do an indirect jump trick to avoid saving all of them,
   11616   // however this code takes a simpler approach and just executes all
   11617   // of the stores if %al is non-zero. It's less code, and it's probably
   11618   // easier on the hardware branch predictor, and stores aren't all that
   11619   // expensive anyway.
   11620 
   11621   // Create the new basic blocks. One block contains all the XMM stores,
   11622   // and one block is the final destination regardless of whether any
   11623   // stores were performed.
   11624   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11625   MachineFunction *F = MBB->getParent();
   11626   MachineFunction::iterator MBBIter = MBB;
   11627   ++MBBIter;
   11628   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11629   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11630   F->insert(MBBIter, XMMSaveMBB);
   11631   F->insert(MBBIter, EndMBB);
   11632 
   11633   // Transfer the remainder of MBB and its successor edges to EndMBB.
   11634   EndMBB->splice(EndMBB->begin(), MBB,
   11635                  llvm::next(MachineBasicBlock::iterator(MI)),
   11636                  MBB->end());
   11637   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
   11638 
   11639   // The original block will now fall through to the XMM save block.
   11640   MBB->addSuccessor(XMMSaveMBB);
   11641   // The XMMSaveMBB will fall through to the end block.
   11642   XMMSaveMBB->addSuccessor(EndMBB);
   11643 
   11644   // Now add the instructions.
   11645   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11646   DebugLoc DL = MI->getDebugLoc();
   11647 
   11648   unsigned CountReg = MI->getOperand(0).getReg();
   11649   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
   11650   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
   11651 
   11652   if (!Subtarget->isTargetWin64()) {
   11653     // If %al is 0, branch around the XMM save block.
   11654     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
   11655     BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
   11656     MBB->addSuccessor(EndMBB);
   11657   }
   11658 
   11659   unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
   11660   // In the XMM save block, save all the XMM argument registers.
   11661   for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
   11662     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
   11663     MachineMemOperand *MMO =
   11664       F->getMachineMemOperand(
   11665           MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
   11666         MachineMemOperand::MOStore,
   11667         /*Size=*/16, /*Align=*/16);
   11668     BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
   11669       .addFrameIndex(RegSaveFrameIndex)
   11670       .addImm(/*Scale=*/1)
   11671       .addReg(/*IndexReg=*/0)
   11672       .addImm(/*Disp=*/Offset)
   11673       .addReg(/*Segment=*/0)
   11674       .addReg(MI->getOperand(i).getReg())
   11675       .addMemOperand(MMO);
   11676   }
   11677 
   11678   MI->eraseFromParent();   // The pseudo instruction is gone now.
   11679 
   11680   return EndMBB;
   11681 }
   11682 
   11683 MachineBasicBlock *
   11684 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   11685                                      MachineBasicBlock *BB) const {
   11686   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11687   DebugLoc DL = MI->getDebugLoc();
   11688 
   11689   // To "insert" a SELECT_CC instruction, we actually have to insert the
   11690   // diamond control-flow pattern.  The incoming instruction knows the
   11691   // destination vreg to set, the condition code register to branch on, the
   11692   // true/false values to select between, and a branch opcode to use.
   11693   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   11694   MachineFunction::iterator It = BB;
   11695   ++It;
   11696 
   11697   //  thisMBB:
   11698   //  ...
   11699   //   TrueVal = ...
   11700   //   cmpTY ccX, r1, r2
   11701   //   bCC copy1MBB
   11702   //   fallthrough --> copy0MBB
   11703   MachineBasicBlock *thisMBB = BB;
   11704   MachineFunction *F = BB->getParent();
   11705   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   11706   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11707   F->insert(It, copy0MBB);
   11708   F->insert(It, sinkMBB);
   11709 
   11710   // If the EFLAGS register isn't dead in the terminator, then claim that it's
   11711   // live into the sink and copy blocks.
   11712   if (!MI->killsRegister(X86::EFLAGS)) {
   11713     copy0MBB->addLiveIn(X86::EFLAGS);
   11714     sinkMBB->addLiveIn(X86::EFLAGS);
   11715   }
   11716 
   11717   // Transfer the remainder of BB and its successor edges to sinkMBB.
   11718   sinkMBB->splice(sinkMBB->begin(), BB,
   11719                   llvm::next(MachineBasicBlock::iterator(MI)),
   11720                   BB->end());
   11721   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   11722 
   11723   // Add the true and fallthrough blocks as its successors.
   11724   BB->addSuccessor(copy0MBB);
   11725   BB->addSuccessor(sinkMBB);
   11726 
   11727   // Create the conditional branch instruction.
   11728   unsigned Opc =
   11729     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
   11730   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
   11731 
   11732   //  copy0MBB:
   11733   //   %FalseValue = ...
   11734   //   # fallthrough to sinkMBB
   11735   copy0MBB->addSuccessor(sinkMBB);
   11736 
   11737   //  sinkMBB:
   11738   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   11739   //  ...
   11740   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   11741           TII->get(X86::PHI), MI->getOperand(0).getReg())
   11742     .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   11743     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   11744 
   11745   MI->eraseFromParent();   // The pseudo instruction is gone now.
   11746   return sinkMBB;
   11747 }
   11748 
   11749 MachineBasicBlock *
   11750 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
   11751                                         bool Is64Bit) const {
   11752   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11753   DebugLoc DL = MI->getDebugLoc();
   11754   MachineFunction *MF = BB->getParent();
   11755   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   11756 
   11757   assert(EnableSegmentedStacks);
   11758 
   11759   unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
   11760   unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
   11761 
   11762   // BB:
   11763   //  ... [Till the alloca]
   11764   // If stacklet is not large enough, jump to mallocMBB
   11765   //
   11766   // bumpMBB:
   11767   //  Allocate by subtracting from RSP
   11768   //  Jump to continueMBB
   11769   //
   11770   // mallocMBB:
   11771   //  Allocate by call to runtime
   11772   //
   11773   // continueMBB:
   11774   //  ...
   11775   //  [rest of original BB]
   11776   //
   11777 
   11778   MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11779   MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11780   MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11781 
   11782   MachineRegisterInfo &MRI = MF->getRegInfo();
   11783   const TargetRegisterClass *AddrRegClass =
   11784     getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
   11785 
   11786   unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   11787     bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   11788     tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
   11789     sizeVReg = MI->getOperand(1).getReg(),
   11790     physSPReg = Is64Bit ? X86::RSP : X86::ESP;
   11791 
   11792   MachineFunction::iterator MBBIter = BB;
   11793   ++MBBIter;
   11794 
   11795   MF->insert(MBBIter, bumpMBB);
   11796   MF->insert(MBBIter, mallocMBB);
   11797   MF->insert(MBBIter, continueMBB);
   11798 
   11799   continueMBB->splice(continueMBB->begin(), BB, llvm::next
   11800                       (MachineBasicBlock::iterator(MI)), BB->end());
   11801   continueMBB->transferSuccessorsAndUpdatePHIs(BB);
   11802 
   11803   // Add code to the main basic block to check if the stack limit has been hit,
   11804   // and if so, jump to mallocMBB otherwise to bumpMBB.
   11805   BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
   11806   BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
   11807     .addReg(tmpSPVReg).addReg(sizeVReg);
   11808   BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
   11809     .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
   11810     .addReg(tmpSPVReg);
   11811   BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
   11812 
   11813   // bumpMBB simply decreases the stack pointer, since we know the current
   11814   // stacklet has enough space.
   11815   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
   11816     .addReg(tmpSPVReg);
   11817   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
   11818     .addReg(tmpSPVReg);
   11819   BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   11820 
   11821   // Calls into a routine in libgcc to allocate more space from the heap.
   11822   if (Is64Bit) {
   11823     BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
   11824       .addReg(sizeVReg);
   11825     BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
   11826     .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
   11827   } else {
   11828     BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
   11829       .addImm(12);
   11830     BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
   11831     BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
   11832       .addExternalSymbol("__morestack_allocate_stack_space");
   11833   }
   11834 
   11835   if (!Is64Bit)
   11836     BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
   11837       .addImm(16);
   11838 
   11839   BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
   11840     .addReg(Is64Bit ? X86::RAX : X86::EAX);
   11841   BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   11842 
   11843   // Set up the CFG correctly.
   11844   BB->addSuccessor(bumpMBB);
   11845   BB->addSuccessor(mallocMBB);
   11846   mallocMBB->addSuccessor(continueMBB);
   11847   bumpMBB->addSuccessor(continueMBB);
   11848 
   11849   // Take care of the PHI nodes.
   11850   BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
   11851           MI->getOperand(0).getReg())
   11852     .addReg(mallocPtrVReg).addMBB(mallocMBB)
   11853     .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
   11854 
   11855   // Delete the original pseudo instruction.
   11856   MI->eraseFromParent();
   11857 
   11858   // And we're done.
   11859   return continueMBB;
   11860 }
   11861 
   11862 MachineBasicBlock *
   11863 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
   11864                                           MachineBasicBlock *BB) const {
   11865   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11866   DebugLoc DL = MI->getDebugLoc();
   11867 
   11868   assert(!Subtarget->isTargetEnvMacho());
   11869 
   11870   // The lowering is pretty easy: we're just emitting the call to _alloca.  The
   11871   // non-trivial part is impdef of ESP.
   11872 
   11873   if (Subtarget->isTargetWin64()) {
   11874     if (Subtarget->isTargetCygMing()) {
   11875       // ___chkstk(Mingw64):
   11876       // Clobbers R10, R11, RAX and EFLAGS.
   11877       // Updates RSP.
   11878       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   11879         .addExternalSymbol("___chkstk")
   11880         .addReg(X86::RAX, RegState::Implicit)
   11881         .addReg(X86::RSP, RegState::Implicit)
   11882         .addReg(X86::RAX, RegState::Define | RegState::Implicit)
   11883         .addReg(X86::RSP, RegState::Define | RegState::Implicit)
   11884         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   11885     } else {
   11886       // __chkstk(MSVCRT): does not update stack pointer.
   11887       // Clobbers R10, R11 and EFLAGS.
   11888       // FIXME: RAX(allocated size) might be reused and not killed.
   11889       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   11890         .addExternalSymbol("__chkstk")
   11891         .addReg(X86::RAX, RegState::Implicit)
   11892         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   11893       // RAX has the offset to subtracted from RSP.
   11894       BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
   11895         .addReg(X86::RSP)
   11896         .addReg(X86::RAX);
   11897     }
   11898   } else {
   11899     const char *StackProbeSymbol =
   11900       Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
   11901 
   11902     BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
   11903       .addExternalSymbol(StackProbeSymbol)
   11904       .addReg(X86::EAX, RegState::Implicit)
   11905       .addReg(X86::ESP, RegState::Implicit)
   11906       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   11907       .addReg(X86::ESP, RegState::Define | RegState::Implicit)
   11908       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   11909   }
   11910 
   11911   MI->eraseFromParent();   // The pseudo instruction is gone now.
   11912   return BB;
   11913 }
   11914 
   11915 MachineBasicBlock *
   11916 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
   11917                                       MachineBasicBlock *BB) const {
   11918   // This is pretty easy.  We're taking the value that we received from
   11919   // our load from the relocation, sticking it in either RDI (x86-64)
   11920   // or EAX and doing an indirect call.  The return value will then
   11921   // be in the normal return register.
   11922   const X86InstrInfo *TII
   11923     = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
   11924   DebugLoc DL = MI->getDebugLoc();
   11925   MachineFunction *F = BB->getParent();
   11926 
   11927   assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
   11928   assert(MI->getOperand(3).isGlobal() && "This should be a global");
   11929 
   11930   if (Subtarget->is64Bit()) {
   11931     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   11932                                       TII->get(X86::MOV64rm), X86::RDI)
   11933     .addReg(X86::RIP)
   11934     .addImm(0).addReg(0)
   11935     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   11936                       MI->getOperand(3).getTargetFlags())
   11937     .addReg(0);
   11938     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
   11939     addDirectMem(MIB, X86::RDI);
   11940   } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
   11941     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   11942                                       TII->get(X86::MOV32rm), X86::EAX)
   11943     .addReg(0)
   11944     .addImm(0).addReg(0)
   11945     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   11946                       MI->getOperand(3).getTargetFlags())
   11947     .addReg(0);
   11948     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   11949     addDirectMem(MIB, X86::EAX);
   11950   } else {
   11951     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   11952                                       TII->get(X86::MOV32rm), X86::EAX)
   11953     .addReg(TII->getGlobalBaseReg(F))
   11954     .addImm(0).addReg(0)
   11955     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   11956                       MI->getOperand(3).getTargetFlags())
   11957     .addReg(0);
   11958     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   11959     addDirectMem(MIB, X86::EAX);
   11960   }
   11961 
   11962   MI->eraseFromParent(); // The pseudo instruction is gone now.
   11963   return BB;
   11964 }
   11965 
   11966 MachineBasicBlock *
   11967 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   11968                                                MachineBasicBlock *BB) const {
   11969   switch (MI->getOpcode()) {
   11970   default: assert(0 && "Unexpected instr type to insert");
   11971   case X86::TAILJMPd64:
   11972   case X86::TAILJMPr64:
   11973   case X86::TAILJMPm64:
   11974     assert(0 && "TAILJMP64 would not be touched here.");
   11975   case X86::TCRETURNdi64:
   11976   case X86::TCRETURNri64:
   11977   case X86::TCRETURNmi64:
   11978     // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
   11979     // On AMD64, additional defs should be added before register allocation.
   11980     if (!Subtarget->isTargetWin64()) {
   11981       MI->addRegisterDefined(X86::RSI);
   11982       MI->addRegisterDefined(X86::RDI);
   11983       MI->addRegisterDefined(X86::XMM6);
   11984       MI->addRegisterDefined(X86::XMM7);
   11985       MI->addRegisterDefined(X86::XMM8);
   11986       MI->addRegisterDefined(X86::XMM9);
   11987       MI->addRegisterDefined(X86::XMM10);
   11988       MI->addRegisterDefined(X86::XMM11);
   11989       MI->addRegisterDefined(X86::XMM12);
   11990       MI->addRegisterDefined(X86::XMM13);
   11991       MI->addRegisterDefined(X86::XMM14);
   11992       MI->addRegisterDefined(X86::XMM15);
   11993     }
   11994     return BB;
   11995   case X86::WIN_ALLOCA:
   11996     return EmitLoweredWinAlloca(MI, BB);
   11997   case X86::SEG_ALLOCA_32:
   11998     return EmitLoweredSegAlloca(MI, BB, false);
   11999   case X86::SEG_ALLOCA_64:
   12000     return EmitLoweredSegAlloca(MI, BB, true);
   12001   case X86::TLSCall_32:
   12002   case X86::TLSCall_64:
   12003     return EmitLoweredTLSCall(MI, BB);
   12004   case X86::CMOV_GR8:
   12005   case X86::CMOV_FR32:
   12006   case X86::CMOV_FR64:
   12007   case X86::CMOV_V4F32:
   12008   case X86::CMOV_V2F64:
   12009   case X86::CMOV_V2I64:
   12010   case X86::CMOV_V8F32:
   12011   case X86::CMOV_V4F64:
   12012   case X86::CMOV_V4I64:
   12013   case X86::CMOV_GR16:
   12014   case X86::CMOV_GR32:
   12015   case X86::CMOV_RFP32:
   12016   case X86::CMOV_RFP64:
   12017   case X86::CMOV_RFP80:
   12018     return EmitLoweredSelect(MI, BB);
   12019 
   12020   case X86::FP32_TO_INT16_IN_MEM:
   12021   case X86::FP32_TO_INT32_IN_MEM:
   12022   case X86::FP32_TO_INT64_IN_MEM:
   12023   case X86::FP64_TO_INT16_IN_MEM:
   12024   case X86::FP64_TO_INT32_IN_MEM:
   12025   case X86::FP64_TO_INT64_IN_MEM:
   12026   case X86::FP80_TO_INT16_IN_MEM:
   12027   case X86::FP80_TO_INT32_IN_MEM:
   12028   case X86::FP80_TO_INT64_IN_MEM: {
   12029     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12030     DebugLoc DL = MI->getDebugLoc();
   12031 
   12032     // Change the floating point control register to use "round towards zero"
   12033     // mode when truncating to an integer value.
   12034     MachineFunction *F = BB->getParent();
   12035     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
   12036     addFrameReference(BuildMI(*BB, MI, DL,
   12037                               TII->get(X86::FNSTCW16m)), CWFrameIdx);
   12038 
   12039     // Load the old value of the high byte of the control word...
   12040     unsigned OldCW =
   12041       F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
   12042     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
   12043                       CWFrameIdx);
   12044 
   12045     // Set the high part to be round to zero...
   12046     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
   12047       .addImm(0xC7F);
   12048 
   12049     // Reload the modified control word now...
   12050     addFrameReference(BuildMI(*BB, MI, DL,
   12051                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   12052 
   12053     // Restore the memory image of control word to original value
   12054     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
   12055       .addReg(OldCW);
   12056 
   12057     // Get the X86 opcode to use.
   12058     unsigned Opc;
   12059     switch (MI->getOpcode()) {
   12060     default: llvm_unreachable("illegal opcode!");
   12061     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
   12062     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
   12063     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
   12064     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
   12065     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
   12066     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
   12067     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
   12068     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
   12069     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
   12070     }
   12071 
   12072     X86AddressMode AM;
   12073     MachineOperand &Op = MI->getOperand(0);
   12074     if (Op.isReg()) {
   12075       AM.BaseType = X86AddressMode::RegBase;
   12076       AM.Base.Reg = Op.getReg();
   12077     } else {
   12078       AM.BaseType = X86AddressMode::FrameIndexBase;
   12079       AM.Base.FrameIndex = Op.getIndex();
   12080     }
   12081     Op = MI->getOperand(1);
   12082     if (Op.isImm())
   12083       AM.Scale = Op.getImm();
   12084     Op = MI->getOperand(2);
   12085     if (Op.isImm())
   12086       AM.IndexReg = Op.getImm();
   12087     Op = MI->getOperand(3);
   12088     if (Op.isGlobal()) {
   12089       AM.GV = Op.getGlobal();
   12090     } else {
   12091       AM.Disp = Op.getImm();
   12092     }
   12093     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
   12094                       .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
   12095 
   12096     // Reload the original control word now.
   12097     addFrameReference(BuildMI(*BB, MI, DL,
   12098                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   12099 
   12100     MI->eraseFromParent();   // The pseudo instruction is gone now.
   12101     return BB;
   12102   }
   12103     // String/text processing lowering.
   12104   case X86::PCMPISTRM128REG:
   12105   case X86::VPCMPISTRM128REG:
   12106     return EmitPCMP(MI, BB, 3, false /* in-mem */);
   12107   case X86::PCMPISTRM128MEM:
   12108   case X86::VPCMPISTRM128MEM:
   12109     return EmitPCMP(MI, BB, 3, true /* in-mem */);
   12110   case X86::PCMPESTRM128REG:
   12111   case X86::VPCMPESTRM128REG:
   12112     return EmitPCMP(MI, BB, 5, false /* in mem */);
   12113   case X86::PCMPESTRM128MEM:
   12114   case X86::VPCMPESTRM128MEM:
   12115     return EmitPCMP(MI, BB, 5, true /* in mem */);
   12116 
   12117     // Thread synchronization.
   12118   case X86::MONITOR:
   12119     return EmitMonitor(MI, BB);
   12120   case X86::MWAIT:
   12121     return EmitMwait(MI, BB);
   12122 
   12123     // Atomic Lowering.
   12124   case X86::ATOMAND32:
   12125     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
   12126                                                X86::AND32ri, X86::MOV32rm,
   12127                                                X86::LCMPXCHG32,
   12128                                                X86::NOT32r, X86::EAX,
   12129                                                X86::GR32RegisterClass);
   12130   case X86::ATOMOR32:
   12131     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
   12132                                                X86::OR32ri, X86::MOV32rm,
   12133                                                X86::LCMPXCHG32,
   12134                                                X86::NOT32r, X86::EAX,
   12135                                                X86::GR32RegisterClass);
   12136   case X86::ATOMXOR32:
   12137     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
   12138                                                X86::XOR32ri, X86::MOV32rm,
   12139                                                X86::LCMPXCHG32,
   12140                                                X86::NOT32r, X86::EAX,
   12141                                                X86::GR32RegisterClass);
   12142   case X86::ATOMNAND32:
   12143     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
   12144                                                X86::AND32ri, X86::MOV32rm,
   12145                                                X86::LCMPXCHG32,
   12146                                                X86::NOT32r, X86::EAX,
   12147                                                X86::GR32RegisterClass, true);
   12148   case X86::ATOMMIN32:
   12149     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
   12150   case X86::ATOMMAX32:
   12151     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
   12152   case X86::ATOMUMIN32:
   12153     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
   12154   case X86::ATOMUMAX32:
   12155     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
   12156 
   12157   case X86::ATOMAND16:
   12158     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
   12159                                                X86::AND16ri, X86::MOV16rm,
   12160                                                X86::LCMPXCHG16,
   12161                                                X86::NOT16r, X86::AX,
   12162                                                X86::GR16RegisterClass);
   12163   case X86::ATOMOR16:
   12164     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
   12165                                                X86::OR16ri, X86::MOV16rm,
   12166                                                X86::LCMPXCHG16,
   12167                                                X86::NOT16r, X86::AX,
   12168                                                X86::GR16RegisterClass);
   12169   case X86::ATOMXOR16:
   12170     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
   12171                                                X86::XOR16ri, X86::MOV16rm,
   12172                                                X86::LCMPXCHG16,
   12173                                                X86::NOT16r, X86::AX,
   12174                                                X86::GR16RegisterClass);
   12175   case X86::ATOMNAND16:
   12176     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
   12177                                                X86::AND16ri, X86::MOV16rm,
   12178                                                X86::LCMPXCHG16,
   12179                                                X86::NOT16r, X86::AX,
   12180                                                X86::GR16RegisterClass, true);
   12181   case X86::ATOMMIN16:
   12182     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
   12183   case X86::ATOMMAX16:
   12184     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
   12185   case X86::ATOMUMIN16:
   12186     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
   12187   case X86::ATOMUMAX16:
   12188     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
   12189 
   12190   case X86::ATOMAND8:
   12191     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
   12192                                                X86::AND8ri, X86::MOV8rm,
   12193                                                X86::LCMPXCHG8,
   12194                                                X86::NOT8r, X86::AL,
   12195                                                X86::GR8RegisterClass);
   12196   case X86::ATOMOR8:
   12197     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
   12198                                                X86::OR8ri, X86::MOV8rm,
   12199                                                X86::LCMPXCHG8,
   12200                                                X86::NOT8r, X86::AL,
   12201                                                X86::GR8RegisterClass);
   12202   case X86::ATOMXOR8:
   12203     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
   12204                                                X86::XOR8ri, X86::MOV8rm,
   12205                                                X86::LCMPXCHG8,
   12206                                                X86::NOT8r, X86::AL,
   12207                                                X86::GR8RegisterClass);
   12208   case X86::ATOMNAND8:
   12209     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
   12210                                                X86::AND8ri, X86::MOV8rm,
   12211                                                X86::LCMPXCHG8,
   12212                                                X86::NOT8r, X86::AL,
   12213                                                X86::GR8RegisterClass, true);
   12214   // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
   12215   // This group is for 64-bit host.
   12216   case X86::ATOMAND64:
   12217     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
   12218                                                X86::AND64ri32, X86::MOV64rm,
   12219                                                X86::LCMPXCHG64,
   12220                                                X86::NOT64r, X86::RAX,
   12221                                                X86::GR64RegisterClass);
   12222   case X86::ATOMOR64:
   12223     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
   12224                                                X86::OR64ri32, X86::MOV64rm,
   12225                                                X86::LCMPXCHG64,
   12226                                                X86::NOT64r, X86::RAX,
   12227                                                X86::GR64RegisterClass);
   12228   case X86::ATOMXOR64:
   12229     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
   12230                                                X86::XOR64ri32, X86::MOV64rm,
   12231                                                X86::LCMPXCHG64,
   12232                                                X86::NOT64r, X86::RAX,
   12233                                                X86::GR64RegisterClass);
   12234   case X86::ATOMNAND64:
   12235     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
   12236                                                X86::AND64ri32, X86::MOV64rm,
   12237                                                X86::LCMPXCHG64,
   12238                                                X86::NOT64r, X86::RAX,
   12239                                                X86::GR64RegisterClass, true);
   12240   case X86::ATOMMIN64:
   12241     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
   12242   case X86::ATOMMAX64:
   12243     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
   12244   case X86::ATOMUMIN64:
   12245     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
   12246   case X86::ATOMUMAX64:
   12247     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
   12248 
   12249   // This group does 64-bit operations on a 32-bit host.
   12250   case X86::ATOMAND6432:
   12251     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12252                                                X86::AND32rr, X86::AND32rr,
   12253                                                X86::AND32ri, X86::AND32ri,
   12254                                                false);
   12255   case X86::ATOMOR6432:
   12256     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12257                                                X86::OR32rr, X86::OR32rr,
   12258                                                X86::OR32ri, X86::OR32ri,
   12259                                                false);
   12260   case X86::ATOMXOR6432:
   12261     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12262                                                X86::XOR32rr, X86::XOR32rr,
   12263                                                X86::XOR32ri, X86::XOR32ri,
   12264                                                false);
   12265   case X86::ATOMNAND6432:
   12266     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12267                                                X86::AND32rr, X86::AND32rr,
   12268                                                X86::AND32ri, X86::AND32ri,
   12269                                                true);
   12270   case X86::ATOMADD6432:
   12271     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12272                                                X86::ADD32rr, X86::ADC32rr,
   12273                                                X86::ADD32ri, X86::ADC32ri,
   12274                                                false);
   12275   case X86::ATOMSUB6432:
   12276     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12277                                                X86::SUB32rr, X86::SBB32rr,
   12278                                                X86::SUB32ri, X86::SBB32ri,
   12279                                                false);
   12280   case X86::ATOMSWAP6432:
   12281     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12282                                                X86::MOV32rr, X86::MOV32rr,
   12283                                                X86::MOV32ri, X86::MOV32ri,
   12284                                                false);
   12285   case X86::VASTART_SAVE_XMM_REGS:
   12286     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
   12287 
   12288   case X86::VAARG_64:
   12289     return EmitVAARG64WithCustomInserter(MI, BB);
   12290   }
   12291 }
   12292 
   12293 //===----------------------------------------------------------------------===//
   12294 //                           X86 Optimization Hooks
   12295 //===----------------------------------------------------------------------===//
   12296 
   12297 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   12298                                                        const APInt &Mask,
   12299                                                        APInt &KnownZero,
   12300                                                        APInt &KnownOne,
   12301                                                        const SelectionDAG &DAG,
   12302                                                        unsigned Depth) const {
   12303   unsigned Opc = Op.getOpcode();
   12304   assert((Opc >= ISD::BUILTIN_OP_END ||
   12305           Opc == ISD::INTRINSIC_WO_CHAIN ||
   12306           Opc == ISD::INTRINSIC_W_CHAIN ||
   12307           Opc == ISD::INTRINSIC_VOID) &&
   12308          "Should use MaskedValueIsZero if you don't know whether Op"
   12309          " is a target node!");
   12310 
   12311   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
   12312   switch (Opc) {
   12313   default: break;
   12314   case X86ISD::ADD:
   12315   case X86ISD::SUB:
   12316   case X86ISD::ADC:
   12317   case X86ISD::SBB:
   12318   case X86ISD::SMUL:
   12319   case X86ISD::UMUL:
   12320   case X86ISD::INC:
   12321   case X86ISD::DEC:
   12322   case X86ISD::OR:
   12323   case X86ISD::XOR:
   12324   case X86ISD::AND:
   12325     // These nodes' second result is a boolean.
   12326     if (Op.getResNo() == 0)
   12327       break;
   12328     // Fallthrough
   12329   case X86ISD::SETCC:
   12330     KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
   12331                                        Mask.getBitWidth() - 1);
   12332     break;
   12333   case ISD::INTRINSIC_WO_CHAIN: {
   12334     unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   12335     unsigned NumLoBits = 0;
   12336     switch (IntId) {
   12337     default: break;
   12338     case Intrinsic::x86_sse_movmsk_ps:
   12339     case Intrinsic::x86_avx_movmsk_ps_256:
   12340     case Intrinsic::x86_sse2_movmsk_pd:
   12341     case Intrinsic::x86_avx_movmsk_pd_256:
   12342     case Intrinsic::x86_mmx_pmovmskb:
   12343     case Intrinsic::x86_sse2_pmovmskb_128: {
   12344       // High bits of movmskp{s|d}, pmovmskb are known zero.
   12345       switch (IntId) {
   12346         case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
   12347         case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
   12348         case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
   12349         case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
   12350         case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
   12351         case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
   12352       }
   12353       KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
   12354                                         Mask.getBitWidth() - NumLoBits);
   12355       break;
   12356     }
   12357     }
   12358     break;
   12359   }
   12360   }
   12361 }
   12362 
   12363 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   12364                                                          unsigned Depth) const {
   12365   // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
   12366   if (Op.getOpcode() == X86ISD::SETCC_CARRY)
   12367     return Op.getValueType().getScalarType().getSizeInBits();
   12368 
   12369   // Fallback case.
   12370   return 1;
   12371 }
   12372 
   12373 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   12374 /// node is a GlobalAddress + offset.
   12375 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
   12376                                        const GlobalValue* &GA,
   12377                                        int64_t &Offset) const {
   12378   if (N->getOpcode() == X86ISD::Wrapper) {
   12379     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
   12380       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
   12381       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
   12382       return true;
   12383     }
   12384   }
   12385   return TargetLowering::isGAPlusOffset(N, GA, Offset);
   12386 }
   12387 
   12388 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
   12389 /// same as extracting the high 128-bit part of 256-bit vector and then
   12390 /// inserting the result into the low part of a new 256-bit vector
   12391 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
   12392   EVT VT = SVOp->getValueType(0);
   12393   int NumElems = VT.getVectorNumElements();
   12394 
   12395   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   12396   for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
   12397     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   12398         SVOp->getMaskElt(j) >= 0)
   12399       return false;
   12400 
   12401   return true;
   12402 }
   12403 
   12404 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
   12405 /// same as extracting the low 128-bit part of 256-bit vector and then
   12406 /// inserting the result into the high part of a new 256-bit vector
   12407 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
   12408   EVT VT = SVOp->getValueType(0);
   12409   int NumElems = VT.getVectorNumElements();
   12410 
   12411   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   12412   for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
   12413     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   12414         SVOp->getMaskElt(j) >= 0)
   12415       return false;
   12416 
   12417   return true;
   12418 }
   12419 
   12420 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
   12421 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
   12422                                         TargetLowering::DAGCombinerInfo &DCI) {
   12423   DebugLoc dl = N->getDebugLoc();
   12424   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   12425   SDValue V1 = SVOp->getOperand(0);
   12426   SDValue V2 = SVOp->getOperand(1);
   12427   EVT VT = SVOp->getValueType(0);
   12428   int NumElems = VT.getVectorNumElements();
   12429 
   12430   if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
   12431       V2.getOpcode() == ISD::CONCAT_VECTORS) {
   12432     //
   12433     //                   0,0,0,...
   12434     //                      |
   12435     //    V      UNDEF    BUILD_VECTOR    UNDEF
   12436     //     \      /           \           /
   12437     //  CONCAT_VECTOR         CONCAT_VECTOR
   12438     //         \                  /
   12439     //          \                /
   12440     //          RESULT: V + zero extended
   12441     //
   12442     if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
   12443         V2.getOperand(1).getOpcode() != ISD::UNDEF ||
   12444         V1.getOperand(1).getOpcode() != ISD::UNDEF)
   12445       return SDValue();
   12446 
   12447     if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
   12448       return SDValue();
   12449 
   12450     // To match the shuffle mask, the first half of the mask should
   12451     // be exactly the first vector, and all the rest a splat with the
   12452     // first element of the second one.
   12453     for (int i = 0; i < NumElems/2; ++i)
   12454       if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
   12455           !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
   12456         return SDValue();
   12457 
   12458     // Emit a zeroed vector and insert the desired subvector on its
   12459     // first half.
   12460     SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
   12461     SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
   12462                          DAG.getConstant(0, MVT::i32), DAG, dl);
   12463     return DCI.CombineTo(N, InsV);
   12464   }
   12465 
   12466   //===--------------------------------------------------------------------===//
   12467   // Combine some shuffles into subvector extracts and inserts:
   12468   //
   12469 
   12470   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   12471   if (isShuffleHigh128VectorInsertLow(SVOp)) {
   12472     SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
   12473                                     DAG, dl);
   12474     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
   12475                                       V, DAG.getConstant(0, MVT::i32), DAG, dl);
   12476     return DCI.CombineTo(N, InsV);
   12477   }
   12478 
   12479   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   12480   if (isShuffleLow128VectorInsertHigh(SVOp)) {
   12481     SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
   12482     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
   12483                              V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
   12484     return DCI.CombineTo(N, InsV);
   12485   }
   12486 
   12487   return SDValue();
   12488 }
   12489 
   12490 /// PerformShuffleCombine - Performs several different shuffle combines.
   12491 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
   12492                                      TargetLowering::DAGCombinerInfo &DCI,
   12493                                      const X86Subtarget *Subtarget) {
   12494   DebugLoc dl = N->getDebugLoc();
   12495   EVT VT = N->getValueType(0);
   12496 
   12497   // Don't create instructions with illegal types after legalize types has run.
   12498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   12499   if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
   12500     return SDValue();
   12501 
   12502   // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
   12503   if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
   12504       N->getOpcode() == ISD::VECTOR_SHUFFLE)
   12505     return PerformShuffleCombine256(N, DAG, DCI);
   12506 
   12507   // Only handle 128 wide vector from here on.
   12508   if (VT.getSizeInBits() != 128)
   12509     return SDValue();
   12510 
   12511   // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
   12512   // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
   12513   // consecutive, non-overlapping, and in the right order.
   12514   SmallVector<SDValue, 16> Elts;
   12515   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
   12516     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
   12517 
   12518   return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
   12519 }
   12520 
   12521 /// \brief Detect bitcasts between i32 to x86mmx low word. Since MMX types are
   12522 /// special and don't usually play with other vector types, it's better to
   12523 /// handle them early to be sure we emit efficient code by avoiding
   12524 /// store-load conversions.
   12525 static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) {
   12526   if (N->getValueType(0) != MVT::x86mmx ||
   12527       N->getOperand(0)->getOpcode() != ISD::BUILD_VECTOR ||
   12528       N->getOperand(0)->getValueType(0) != MVT::v2i32)
   12529     return SDValue();
   12530 
   12531   SDValue V = N->getOperand(0);
   12532   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
   12533   if (C && C->getZExtValue() == 0 && V.getOperand(0).getValueType() == MVT::i32)
   12534     return DAG.getNode(X86ISD::MMX_MOVW2D, V.getOperand(0).getDebugLoc(),
   12535                        N->getValueType(0), V.getOperand(0));
   12536 
   12537   return SDValue();
   12538 }
   12539 
   12540 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
   12541 /// generation and convert it from being a bunch of shuffles and extracts
   12542 /// to a simple store and scalar loads to extract the elements.
   12543 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
   12544                                                 const TargetLowering &TLI) {
   12545   SDValue InputVector = N->getOperand(0);
   12546   // Detect whether we are trying to convert from mmx to i32 and the bitcast
   12547   // from mmx to v2i32 has a single usage.
   12548   if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
   12549       InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
   12550       InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
   12551     return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
   12552                        N->getValueType(0),
   12553                        InputVector.getNode()->getOperand(0));
   12554 
   12555   // Only operate on vectors of 4 elements, where the alternative shuffling
   12556   // gets to be more expensive.
   12557   if (InputVector.getValueType() != MVT::v4i32)
   12558     return SDValue();
   12559 
   12560   // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
   12561   // single use which is a sign-extend or zero-extend, and all elements are
   12562   // used.
   12563   SmallVector<SDNode *, 4> Uses;
   12564   unsigned ExtractedElements = 0;
   12565   for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
   12566        UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
   12567     if (UI.getUse().getResNo() != InputVector.getResNo())
   12568       return SDValue();
   12569 
   12570     SDNode *Extract = *UI;
   12571     if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   12572       return SDValue();
   12573 
   12574     if (Extract->getValueType(0) != MVT::i32)
   12575       return SDValue();
   12576     if (!Extract->hasOneUse())
   12577       return SDValue();
   12578     if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
   12579         Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
   12580       return SDValue();
   12581     if (!isa<ConstantSDNode>(Extract->getOperand(1)))
   12582       return SDValue();
   12583 
   12584     // Record which element was extracted.
   12585     ExtractedElements |=
   12586       1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
   12587 
   12588     Uses.push_back(Extract);
   12589   }
   12590 
   12591   // If not all the elements were used, this may not be worthwhile.
   12592   if (ExtractedElements != 15)
   12593     return SDValue();
   12594 
   12595   // Ok, we've now decided to do the transformation.
   12596   DebugLoc dl = InputVector.getDebugLoc();
   12597 
   12598   // Store the value to a temporary stack slot.
   12599   SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
   12600   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
   12601                             MachinePointerInfo(), false, false, 0);
   12602 
   12603   // Replace each use (extract) with a load of the appropriate element.
   12604   for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
   12605        UE = Uses.end(); UI != UE; ++UI) {
   12606     SDNode *Extract = *UI;
   12607 
   12608     // cOMpute the element's address.
   12609     SDValue Idx = Extract->getOperand(1);
   12610     unsigned EltSize =
   12611         InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
   12612     uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
   12613     SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
   12614 
   12615     SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   12616                                      StackPtr, OffsetVal);
   12617 
   12618     // Load the scalar.
   12619     SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
   12620                                      ScalarAddr, MachinePointerInfo(),
   12621                                      false, false, 0);
   12622 
   12623     // Replace the exact with the load.
   12624     DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
   12625   }
   12626 
   12627   // The replacement was made in place; don't return anything.
   12628   return SDValue();
   12629 }
   12630 
   12631 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
   12632 /// nodes.
   12633 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
   12634                                     const X86Subtarget *Subtarget) {
   12635   DebugLoc DL = N->getDebugLoc();
   12636   SDValue Cond = N->getOperand(0);
   12637   // Get the LHS/RHS of the select.
   12638   SDValue LHS = N->getOperand(1);
   12639   SDValue RHS = N->getOperand(2);
   12640   EVT VT = LHS.getValueType();
   12641 
   12642   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
   12643   // instructions match the semantics of the common C idiom x<y?x:y but not
   12644   // x<=y?x:y, because of how they handle negative zero (which can be
   12645   // ignored in unsafe-math mode).
   12646   if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
   12647       VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
   12648       (Subtarget->hasXMMInt() ||
   12649        (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
   12650     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   12651 
   12652     unsigned Opcode = 0;
   12653     // Check for x CC y ? x : y.
   12654     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   12655         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   12656       switch (CC) {
   12657       default: break;
   12658       case ISD::SETULT:
   12659         // Converting this to a min would handle NaNs incorrectly, and swapping
   12660         // the operands would cause it to handle comparisons between positive
   12661         // and negative zero incorrectly.
   12662         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   12663           if (!UnsafeFPMath &&
   12664               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   12665             break;
   12666           std::swap(LHS, RHS);
   12667         }
   12668         Opcode = X86ISD::FMIN;
   12669         break;
   12670       case ISD::SETOLE:
   12671         // Converting this to a min would handle comparisons between positive
   12672         // and negative zero incorrectly.
   12673         if (!UnsafeFPMath &&
   12674             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   12675           break;
   12676         Opcode = X86ISD::FMIN;
   12677         break;
   12678       case ISD::SETULE:
   12679         // Converting this to a min would handle both negative zeros and NaNs
   12680         // incorrectly, but we can swap the operands to fix both.
   12681         std::swap(LHS, RHS);
   12682       case ISD::SETOLT:
   12683       case ISD::SETLT:
   12684       case ISD::SETLE:
   12685         Opcode = X86ISD::FMIN;
   12686         break;
   12687 
   12688       case ISD::SETOGE:
   12689         // Converting this to a max would handle comparisons between positive
   12690         // and negative zero incorrectly.
   12691         if (!UnsafeFPMath &&
   12692             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   12693           break;
   12694         Opcode = X86ISD::FMAX;
   12695         break;
   12696       case ISD::SETUGT:
   12697         // Converting this to a max would handle NaNs incorrectly, and swapping
   12698         // the operands would cause it to handle comparisons between positive
   12699         // and negative zero incorrectly.
   12700         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   12701           if (!UnsafeFPMath &&
   12702               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   12703             break;
   12704           std::swap(LHS, RHS);
   12705         }
   12706         Opcode = X86ISD::FMAX;
   12707         break;
   12708       case ISD::SETUGE:
   12709         // Converting this to a max would handle both negative zeros and NaNs
   12710         // incorrectly, but we can swap the operands to fix both.
   12711         std::swap(LHS, RHS);
   12712       case ISD::SETOGT:
   12713       case ISD::SETGT:
   12714       case ISD::SETGE:
   12715         Opcode = X86ISD::FMAX;
   12716         break;
   12717       }
   12718     // Check for x CC y ? y : x -- a min/max with reversed arms.
   12719     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
   12720                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
   12721       switch (CC) {
   12722       default: break;
   12723       case ISD::SETOGE:
   12724         // Converting this to a min would handle comparisons between positive
   12725         // and negative zero incorrectly, and swapping the operands would
   12726         // cause it to handle NaNs incorrectly.
   12727         if (!UnsafeFPMath &&
   12728             !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
   12729           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   12730             break;
   12731           std::swap(LHS, RHS);
   12732         }
   12733         Opcode = X86ISD::FMIN;
   12734         break;
   12735       case ISD::SETUGT:
   12736         // Converting this to a min would handle NaNs incorrectly.
   12737         if (!UnsafeFPMath &&
   12738             (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
   12739           break;
   12740         Opcode = X86ISD::FMIN;
   12741         break;
   12742       case ISD::SETUGE:
   12743         // Converting this to a min would handle both negative zeros and NaNs
   12744         // incorrectly, but we can swap the operands to fix both.
   12745         std::swap(LHS, RHS);
   12746       case ISD::SETOGT:
   12747       case ISD::SETGT:
   12748       case ISD::SETGE:
   12749         Opcode = X86ISD::FMIN;
   12750         break;
   12751 
   12752       case ISD::SETULT:
   12753         // Converting this to a max would handle NaNs incorrectly.
   12754         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   12755           break;
   12756         Opcode = X86ISD::FMAX;
   12757         break;
   12758       case ISD::SETOLE:
   12759         // Converting this to a max would handle comparisons between positive
   12760         // and negative zero incorrectly, and swapping the operands would
   12761         // cause it to handle NaNs incorrectly.
   12762         if (!UnsafeFPMath &&
   12763             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
   12764           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   12765             break;
   12766           std::swap(LHS, RHS);
   12767         }
   12768         Opcode = X86ISD::FMAX;
   12769         break;
   12770       case ISD::SETULE:
   12771         // Converting this to a max would handle both negative zeros and NaNs
   12772         // incorrectly, but we can swap the operands to fix both.
   12773         std::swap(LHS, RHS);
   12774       case ISD::SETOLT:
   12775       case ISD::SETLT:
   12776       case ISD::SETLE:
   12777         Opcode = X86ISD::FMAX;
   12778         break;
   12779       }
   12780     }
   12781 
   12782     if (Opcode)
   12783       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
   12784   }
   12785 
   12786   // If this is a select between two integer constants, try to do some
   12787   // optimizations.
   12788   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
   12789     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
   12790       // Don't do this for crazy integer types.
   12791       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
   12792         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
   12793         // so that TrueC (the true value) is larger than FalseC.
   12794         bool NeedsCondInvert = false;
   12795 
   12796         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
   12797             // Efficiently invertible.
   12798             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
   12799              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
   12800               isa<ConstantSDNode>(Cond.getOperand(1))))) {
   12801           NeedsCondInvert = true;
   12802           std::swap(TrueC, FalseC);
   12803         }
   12804 
   12805         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
   12806         if (FalseC->getAPIntValue() == 0 &&
   12807             TrueC->getAPIntValue().isPowerOf2()) {
   12808           if (NeedsCondInvert) // Invert the condition if needed.
   12809             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   12810                                DAG.getConstant(1, Cond.getValueType()));
   12811 
   12812           // Zero extend the condition if needed.
   12813           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
   12814 
   12815           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   12816           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
   12817                              DAG.getConstant(ShAmt, MVT::i8));
   12818         }
   12819 
   12820         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
   12821         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   12822           if (NeedsCondInvert) // Invert the condition if needed.
   12823             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   12824                                DAG.getConstant(1, Cond.getValueType()));
   12825 
   12826           // Zero extend the condition if needed.
   12827           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   12828                              FalseC->getValueType(0), Cond);
   12829           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12830                              SDValue(FalseC, 0));
   12831         }
   12832 
   12833         // Optimize cases that will turn into an LEA instruction.  This requires
   12834         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   12835         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   12836           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   12837           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   12838 
   12839           bool isFastMultiplier = false;
   12840           if (Diff < 10) {
   12841             switch ((unsigned char)Diff) {
   12842               default: break;
   12843               case 1:  // result = add base, cond
   12844               case 2:  // result = lea base(    , cond*2)
   12845               case 3:  // result = lea base(cond, cond*2)
   12846               case 4:  // result = lea base(    , cond*4)
   12847               case 5:  // result = lea base(cond, cond*4)
   12848               case 8:  // result = lea base(    , cond*8)
   12849               case 9:  // result = lea base(cond, cond*8)
   12850                 isFastMultiplier = true;
   12851                 break;
   12852             }
   12853           }
   12854 
   12855           if (isFastMultiplier) {
   12856             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   12857             if (NeedsCondInvert) // Invert the condition if needed.
   12858               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   12859                                  DAG.getConstant(1, Cond.getValueType()));
   12860 
   12861             // Zero extend the condition if needed.
   12862             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   12863                                Cond);
   12864             // Scale the condition by the difference.
   12865             if (Diff != 1)
   12866               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   12867                                  DAG.getConstant(Diff, Cond.getValueType()));
   12868 
   12869             // Add the base if non-zero.
   12870             if (FalseC->getAPIntValue() != 0)
   12871               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12872                                  SDValue(FalseC, 0));
   12873             return Cond;
   12874           }
   12875         }
   12876       }
   12877   }
   12878 
   12879   return SDValue();
   12880 }
   12881 
   12882 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
   12883 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
   12884                                   TargetLowering::DAGCombinerInfo &DCI) {
   12885   DebugLoc DL = N->getDebugLoc();
   12886 
   12887   // If the flag operand isn't dead, don't touch this CMOV.
   12888   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
   12889     return SDValue();
   12890 
   12891   SDValue FalseOp = N->getOperand(0);
   12892   SDValue TrueOp = N->getOperand(1);
   12893   X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
   12894   SDValue Cond = N->getOperand(3);
   12895   if (CC == X86::COND_E || CC == X86::COND_NE) {
   12896     switch (Cond.getOpcode()) {
   12897     default: break;
   12898     case X86ISD::BSR:
   12899     case X86ISD::BSF:
   12900       // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
   12901       if (DAG.isKnownNeverZero(Cond.getOperand(0)))
   12902         return (CC == X86::COND_E) ? FalseOp : TrueOp;
   12903     }
   12904   }
   12905 
   12906   // If this is a select between two integer constants, try to do some
   12907   // optimizations.  Note that the operands are ordered the opposite of SELECT
   12908   // operands.
   12909   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
   12910     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
   12911       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
   12912       // larger than FalseC (the false value).
   12913       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
   12914         CC = X86::GetOppositeBranchCondition(CC);
   12915         std::swap(TrueC, FalseC);
   12916       }
   12917 
   12918       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
   12919       // This is efficient for any integer data type (including i8/i16) and
   12920       // shift amount.
   12921       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
   12922         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   12923                            DAG.getConstant(CC, MVT::i8), Cond);
   12924 
   12925         // Zero extend the condition if needed.
   12926         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
   12927 
   12928         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   12929         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
   12930                            DAG.getConstant(ShAmt, MVT::i8));
   12931         if (N->getNumValues() == 2)  // Dead flag value?
   12932           return DCI.CombineTo(N, Cond, SDValue());
   12933         return Cond;
   12934       }
   12935 
   12936       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
   12937       // for any integer data type, including i8/i16.
   12938       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   12939         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   12940                            DAG.getConstant(CC, MVT::i8), Cond);
   12941 
   12942         // Zero extend the condition if needed.
   12943         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   12944                            FalseC->getValueType(0), Cond);
   12945         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12946                            SDValue(FalseC, 0));
   12947 
   12948         if (N->getNumValues() == 2)  // Dead flag value?
   12949           return DCI.CombineTo(N, Cond, SDValue());
   12950         return Cond;
   12951       }
   12952 
   12953       // Optimize cases that will turn into an LEA instruction.  This requires
   12954       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   12955       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   12956         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   12957         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   12958 
   12959         bool isFastMultiplier = false;
   12960         if (Diff < 10) {
   12961           switch ((unsigned char)Diff) {
   12962           default: break;
   12963           case 1:  // result = add base, cond
   12964           case 2:  // result = lea base(    , cond*2)
   12965           case 3:  // result = lea base(cond, cond*2)
   12966           case 4:  // result = lea base(    , cond*4)
   12967           case 5:  // result = lea base(cond, cond*4)
   12968           case 8:  // result = lea base(    , cond*8)
   12969           case 9:  // result = lea base(cond, cond*8)
   12970             isFastMultiplier = true;
   12971             break;
   12972           }
   12973         }
   12974 
   12975         if (isFastMultiplier) {
   12976           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   12977           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   12978                              DAG.getConstant(CC, MVT::i8), Cond);
   12979           // Zero extend the condition if needed.
   12980           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   12981                              Cond);
   12982           // Scale the condition by the difference.
   12983           if (Diff != 1)
   12984             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   12985                                DAG.getConstant(Diff, Cond.getValueType()));
   12986 
   12987           // Add the base if non-zero.
   12988           if (FalseC->getAPIntValue() != 0)
   12989             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12990                                SDValue(FalseC, 0));
   12991           if (N->getNumValues() == 2)  // Dead flag value?
   12992             return DCI.CombineTo(N, Cond, SDValue());
   12993           return Cond;
   12994         }
   12995       }
   12996     }
   12997   }
   12998   return SDValue();
   12999 }
   13000 
   13001 
   13002 /// PerformMulCombine - Optimize a single multiply with constant into two
   13003 /// in order to implement it with two cheaper instructions, e.g.
   13004 /// LEA + SHL, LEA + LEA.
   13005 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
   13006                                  TargetLowering::DAGCombinerInfo &DCI) {
   13007   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   13008     return SDValue();
   13009 
   13010   EVT VT = N->getValueType(0);
   13011   if (VT != MVT::i64)
   13012     return SDValue();
   13013 
   13014   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   13015   if (!C)
   13016     return SDValue();
   13017   uint64_t MulAmt = C->getZExtValue();
   13018   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
   13019     return SDValue();
   13020 
   13021   uint64_t MulAmt1 = 0;
   13022   uint64_t MulAmt2 = 0;
   13023   if ((MulAmt % 9) == 0) {
   13024     MulAmt1 = 9;
   13025     MulAmt2 = MulAmt / 9;
   13026   } else if ((MulAmt % 5) == 0) {
   13027     MulAmt1 = 5;
   13028     MulAmt2 = MulAmt / 5;
   13029   } else if ((MulAmt % 3) == 0) {
   13030     MulAmt1 = 3;
   13031     MulAmt2 = MulAmt / 3;
   13032   }
   13033   if (MulAmt2 &&
   13034       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
   13035     DebugLoc DL = N->getDebugLoc();
   13036 
   13037     if (isPowerOf2_64(MulAmt2) &&
   13038         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
   13039       // If second multiplifer is pow2, issue it first. We want the multiply by
   13040       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
   13041       // is an add.
   13042       std::swap(MulAmt1, MulAmt2);
   13043 
   13044     SDValue NewMul;
   13045     if (isPowerOf2_64(MulAmt1))
   13046       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
   13047                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
   13048     else
   13049       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
   13050                            DAG.getConstant(MulAmt1, VT));
   13051 
   13052     if (isPowerOf2_64(MulAmt2))
   13053       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
   13054                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
   13055     else
   13056       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
   13057                            DAG.getConstant(MulAmt2, VT));
   13058 
   13059     // Do not add new nodes to DAG combiner worklist.
   13060     DCI.CombineTo(N, NewMul, false);
   13061   }
   13062   return SDValue();
   13063 }
   13064 
   13065 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
   13066   SDValue N0 = N->getOperand(0);
   13067   SDValue N1 = N->getOperand(1);
   13068   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   13069   EVT VT = N0.getValueType();
   13070 
   13071   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
   13072   // since the result of setcc_c is all zero's or all ones.
   13073   if (N1C && N0.getOpcode() == ISD::AND &&
   13074       N0.getOperand(1).getOpcode() == ISD::Constant) {
   13075     SDValue N00 = N0.getOperand(0);
   13076     if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
   13077         ((N00.getOpcode() == ISD::ANY_EXTEND ||
   13078           N00.getOpcode() == ISD::ZERO_EXTEND) &&
   13079          N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
   13080       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   13081       APInt ShAmt = N1C->getAPIntValue();
   13082       Mask = Mask.shl(ShAmt);
   13083       if (Mask != 0)
   13084         return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
   13085                            N00, DAG.getConstant(Mask, VT));
   13086     }
   13087   }
   13088 
   13089   return SDValue();
   13090 }
   13091 
   13092 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
   13093 ///                       when possible.
   13094 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
   13095                                    const X86Subtarget *Subtarget) {
   13096   EVT VT = N->getValueType(0);
   13097   if (!VT.isVector() && VT.isInteger() &&
   13098       N->getOpcode() == ISD::SHL)
   13099     return PerformSHLCombine(N, DAG);
   13100 
   13101   // On X86 with SSE2 support, we can transform this to a vector shift if
   13102   // all elements are shifted by the same amount.  We can't do this in legalize
   13103   // because the a constant vector is typically transformed to a constant pool
   13104   // so we have no knowledge of the shift amount.
   13105   if (!Subtarget->hasXMMInt())
   13106     return SDValue();
   13107 
   13108   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
   13109     return SDValue();
   13110 
   13111   SDValue ShAmtOp = N->getOperand(1);
   13112   EVT EltVT = VT.getVectorElementType();
   13113   DebugLoc DL = N->getDebugLoc();
   13114   SDValue BaseShAmt = SDValue();
   13115   if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
   13116     unsigned NumElts = VT.getVectorNumElements();
   13117     unsigned i = 0;
   13118     for (; i != NumElts; ++i) {
   13119       SDValue Arg = ShAmtOp.getOperand(i);
   13120       if (Arg.getOpcode() == ISD::UNDEF) continue;
   13121       BaseShAmt = Arg;
   13122       break;
   13123     }
   13124     for (; i != NumElts; ++i) {
   13125       SDValue Arg = ShAmtOp.getOperand(i);
   13126       if (Arg.getOpcode() == ISD::UNDEF) continue;
   13127       if (Arg != BaseShAmt) {
   13128         return SDValue();
   13129       }
   13130     }
   13131   } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
   13132              cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
   13133     SDValue InVec = ShAmtOp.getOperand(0);
   13134     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
   13135       unsigned NumElts = InVec.getValueType().getVectorNumElements();
   13136       unsigned i = 0;
   13137       for (; i != NumElts; ++i) {
   13138         SDValue Arg = InVec.getOperand(i);
   13139         if (Arg.getOpcode() == ISD::UNDEF) continue;
   13140         BaseShAmt = Arg;
   13141         break;
   13142       }
   13143     } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
   13144        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
   13145          unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
   13146          if (C->getZExtValue() == SplatIdx)
   13147            BaseShAmt = InVec.getOperand(1);
   13148        }
   13149     }
   13150     if (BaseShAmt.getNode() == 0)
   13151       BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
   13152                               DAG.getIntPtrConstant(0));
   13153   } else
   13154     return SDValue();
   13155 
   13156   // The shift amount is an i32.
   13157   if (EltVT.bitsGT(MVT::i32))
   13158     BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
   13159   else if (EltVT.bitsLT(MVT::i32))
   13160     BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
   13161 
   13162   // The shift amount is identical so we can do a vector shift.
   13163   SDValue  ValOp = N->getOperand(0);
   13164   switch (N->getOpcode()) {
   13165   default:
   13166     llvm_unreachable("Unknown shift opcode!");
   13167     break;
   13168   case ISD::SHL:
   13169     if (VT == MVT::v2i64)
   13170       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13171                          DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   13172                          ValOp, BaseShAmt);
   13173     if (VT == MVT::v4i32)
   13174       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13175                          DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   13176                          ValOp, BaseShAmt);
   13177     if (VT == MVT::v8i16)
   13178       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13179                          DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   13180                          ValOp, BaseShAmt);
   13181     break;
   13182   case ISD::SRA:
   13183     if (VT == MVT::v4i32)
   13184       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13185                          DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
   13186                          ValOp, BaseShAmt);
   13187     if (VT == MVT::v8i16)
   13188       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13189                          DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
   13190                          ValOp, BaseShAmt);
   13191     break;
   13192   case ISD::SRL:
   13193     if (VT == MVT::v2i64)
   13194       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13195                          DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   13196                          ValOp, BaseShAmt);
   13197     if (VT == MVT::v4i32)
   13198       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13199                          DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
   13200                          ValOp, BaseShAmt);
   13201     if (VT ==  MVT::v8i16)
   13202       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13203                          DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
   13204                          ValOp, BaseShAmt);
   13205     break;
   13206   }
   13207   return SDValue();
   13208 }
   13209 
   13210 
   13211 // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
   13212 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
   13213 // and friends.  Likewise for OR -> CMPNEQSS.
   13214 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
   13215                             TargetLowering::DAGCombinerInfo &DCI,
   13216                             const X86Subtarget *Subtarget) {
   13217   unsigned opcode;
   13218 
   13219   // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
   13220   // we're requiring SSE2 for both.
   13221   if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
   13222     SDValue N0 = N->getOperand(0);
   13223     SDValue N1 = N->getOperand(1);
   13224     SDValue CMP0 = N0->getOperand(1);
   13225     SDValue CMP1 = N1->getOperand(1);
   13226     DebugLoc DL = N->getDebugLoc();
   13227 
   13228     // The SETCCs should both refer to the same CMP.
   13229     if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
   13230       return SDValue();
   13231 
   13232     SDValue CMP00 = CMP0->getOperand(0);
   13233     SDValue CMP01 = CMP0->getOperand(1);
   13234     EVT     VT    = CMP00.getValueType();
   13235 
   13236     if (VT == MVT::f32 || VT == MVT::f64) {
   13237       bool ExpectingFlags = false;
   13238       // Check for any users that want flags:
   13239       for (SDNode::use_iterator UI = N->use_begin(),
   13240              UE = N->use_end();
   13241            !ExpectingFlags && UI != UE; ++UI)
   13242         switch (UI->getOpcode()) {
   13243         default:
   13244         case ISD::BR_CC:
   13245         case ISD::BRCOND:
   13246         case ISD::SELECT:
   13247           ExpectingFlags = true;
   13248           break;
   13249         case ISD::CopyToReg:
   13250         case ISD::SIGN_EXTEND:
   13251         case ISD::ZERO_EXTEND:
   13252         case ISD::ANY_EXTEND:
   13253           break;
   13254         }
   13255 
   13256       if (!ExpectingFlags) {
   13257         enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
   13258         enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
   13259 
   13260         if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
   13261           X86::CondCode tmp = cc0;
   13262           cc0 = cc1;
   13263           cc1 = tmp;
   13264         }
   13265 
   13266         if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
   13267             (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
   13268           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
   13269           X86ISD::NodeType NTOperator = is64BitFP ?
   13270             X86ISD::FSETCCsd : X86ISD::FSETCCss;
   13271           // FIXME: need symbolic constants for these magic numbers.
   13272           // See X86ATTInstPrinter.cpp:printSSECC().
   13273           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
   13274           SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
   13275                                               DAG.getConstant(x86cc, MVT::i8));
   13276           SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
   13277                                               OnesOrZeroesF);
   13278           SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
   13279                                       DAG.getConstant(1, MVT::i32));
   13280           SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
   13281           return OneBitOfTruth;
   13282         }
   13283       }
   13284     }
   13285   }
   13286   return SDValue();
   13287 }
   13288 
   13289 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
   13290 /// so it can be folded inside ANDNP.
   13291 static bool CanFoldXORWithAllOnes(const SDNode *N) {
   13292   EVT VT = N->getValueType(0);
   13293 
   13294   // Match direct AllOnes for 128 and 256-bit vectors
   13295   if (ISD::isBuildVectorAllOnes(N))
   13296     return true;
   13297 
   13298   // Look through a bit convert.
   13299   if (N->getOpcode() == ISD::BITCAST)
   13300     N = N->getOperand(0).getNode();
   13301 
   13302   // Sometimes the operand may come from a insert_subvector building a 256-bit
   13303   // allones vector
   13304   if (VT.getSizeInBits() == 256 &&
   13305       N->getOpcode() == ISD::INSERT_SUBVECTOR) {
   13306     SDValue V1 = N->getOperand(0);
   13307     SDValue V2 = N->getOperand(1);
   13308 
   13309     if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
   13310         V1.getOperand(0).getOpcode() == ISD::UNDEF &&
   13311         ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
   13312         ISD::isBuildVectorAllOnes(V2.getNode()))
   13313       return true;
   13314   }
   13315 
   13316   return false;
   13317 }
   13318 
   13319 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
   13320                                  TargetLowering::DAGCombinerInfo &DCI,
   13321                                  const X86Subtarget *Subtarget) {
   13322   if (DCI.isBeforeLegalizeOps())
   13323     return SDValue();
   13324 
   13325   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   13326   if (R.getNode())
   13327     return R;
   13328 
   13329   EVT VT = N->getValueType(0);
   13330 
   13331   // Create ANDN instructions
   13332   if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
   13333     SDValue N0 = N->getOperand(0);
   13334     SDValue N1 = N->getOperand(1);
   13335     DebugLoc DL = N->getDebugLoc();
   13336 
   13337     // Check LHS for not
   13338     if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
   13339       return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
   13340     // Check RHS for not
   13341     if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
   13342       return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
   13343 
   13344     return SDValue();
   13345   }
   13346 
   13347   // Want to form ANDNP nodes:
   13348   // 1) In the hopes of then easily combining them with OR and AND nodes
   13349   //    to form PBLEND/PSIGN.
   13350   // 2) To match ANDN packed intrinsics
   13351   if (VT != MVT::v2i64 && VT != MVT::v4i64)
   13352     return SDValue();
   13353 
   13354   SDValue N0 = N->getOperand(0);
   13355   SDValue N1 = N->getOperand(1);
   13356   DebugLoc DL = N->getDebugLoc();
   13357 
   13358   // Check LHS for vnot
   13359   if (N0.getOpcode() == ISD::XOR &&
   13360       //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
   13361       CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
   13362     return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
   13363 
   13364   // Check RHS for vnot
   13365   if (N1.getOpcode() == ISD::XOR &&
   13366       //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
   13367       CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
   13368     return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
   13369 
   13370   return SDValue();
   13371 }
   13372 
   13373 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
   13374                                 TargetLowering::DAGCombinerInfo &DCI,
   13375                                 const X86Subtarget *Subtarget) {
   13376   if (DCI.isBeforeLegalizeOps())
   13377     return SDValue();
   13378 
   13379   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   13380   if (R.getNode())
   13381     return R;
   13382 
   13383   EVT VT = N->getValueType(0);
   13384   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
   13385     return SDValue();
   13386 
   13387   SDValue N0 = N->getOperand(0);
   13388   SDValue N1 = N->getOperand(1);
   13389 
   13390   // look for psign/blend
   13391   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
   13392     if (VT == MVT::v2i64) {
   13393       // Canonicalize pandn to RHS
   13394       if (N0.getOpcode() == X86ISD::ANDNP)
   13395         std::swap(N0, N1);
   13396       // or (and (m, x), (pandn m, y))
   13397       if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
   13398         SDValue Mask = N1.getOperand(0);
   13399         SDValue X    = N1.getOperand(1);
   13400         SDValue Y;
   13401         if (N0.getOperand(0) == Mask)
   13402           Y = N0.getOperand(1);
   13403         if (N0.getOperand(1) == Mask)
   13404           Y = N0.getOperand(0);
   13405 
   13406         // Check to see if the mask appeared in both the AND and ANDNP and
   13407         if (!Y.getNode())
   13408           return SDValue();
   13409 
   13410         // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
   13411         if (Mask.getOpcode() != ISD::BITCAST ||
   13412             X.getOpcode() != ISD::BITCAST ||
   13413             Y.getOpcode() != ISD::BITCAST)
   13414           return SDValue();
   13415 
   13416         // Look through mask bitcast.
   13417         Mask = Mask.getOperand(0);
   13418         EVT MaskVT = Mask.getValueType();
   13419 
   13420         // Validate that the Mask operand is a vector sra node.  The sra node
   13421         // will be an intrinsic.
   13422         if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
   13423           return SDValue();
   13424 
   13425         // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
   13426         // there is no psrai.b
   13427         switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
   13428         case Intrinsic::x86_sse2_psrai_w:
   13429         case Intrinsic::x86_sse2_psrai_d:
   13430           break;
   13431         default: return SDValue();
   13432         }
   13433 
   13434         // Check that the SRA is all signbits.
   13435         SDValue SraC = Mask.getOperand(2);
   13436         unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
   13437         unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
   13438         if ((SraAmt + 1) != EltBits)
   13439           return SDValue();
   13440 
   13441         DebugLoc DL = N->getDebugLoc();
   13442 
   13443         // Now we know we at least have a plendvb with the mask val.  See if
   13444         // we can form a psignb/w/d.
   13445         // psign = x.type == y.type == mask.type && y = sub(0, x);
   13446         X = X.getOperand(0);
   13447         Y = Y.getOperand(0);
   13448         if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
   13449             ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
   13450             X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
   13451           unsigned Opc = 0;
   13452           switch (EltBits) {
   13453           case 8: Opc = X86ISD::PSIGNB; break;
   13454           case 16: Opc = X86ISD::PSIGNW; break;
   13455           case 32: Opc = X86ISD::PSIGND; break;
   13456           default: break;
   13457           }
   13458           if (Opc) {
   13459             SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
   13460             return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
   13461           }
   13462         }
   13463         // PBLENDVB only available on SSE 4.1
   13464         if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
   13465           return SDValue();
   13466 
   13467         X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
   13468         Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
   13469         Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
   13470         Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
   13471         return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
   13472       }
   13473     }
   13474   }
   13475 
   13476   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
   13477   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
   13478     std::swap(N0, N1);
   13479   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
   13480     return SDValue();
   13481   if (!N0.hasOneUse() || !N1.hasOneUse())
   13482     return SDValue();
   13483 
   13484   SDValue ShAmt0 = N0.getOperand(1);
   13485   if (ShAmt0.getValueType() != MVT::i8)
   13486     return SDValue();
   13487   SDValue ShAmt1 = N1.getOperand(1);
   13488   if (ShAmt1.getValueType() != MVT::i8)
   13489     return SDValue();
   13490   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
   13491     ShAmt0 = ShAmt0.getOperand(0);
   13492   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
   13493     ShAmt1 = ShAmt1.getOperand(0);
   13494 
   13495   DebugLoc DL = N->getDebugLoc();
   13496   unsigned Opc = X86ISD::SHLD;
   13497   SDValue Op0 = N0.getOperand(0);
   13498   SDValue Op1 = N1.getOperand(0);
   13499   if (ShAmt0.getOpcode() == ISD::SUB) {
   13500     Opc = X86ISD::SHRD;
   13501     std::swap(Op0, Op1);
   13502     std::swap(ShAmt0, ShAmt1);
   13503   }
   13504 
   13505   unsigned Bits = VT.getSizeInBits();
   13506   if (ShAmt1.getOpcode() == ISD::SUB) {
   13507     SDValue Sum = ShAmt1.getOperand(0);
   13508     if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
   13509       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
   13510       if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
   13511         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
   13512       if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
   13513         return DAG.getNode(Opc, DL, VT,
   13514                            Op0, Op1,
   13515                            DAG.getNode(ISD::TRUNCATE, DL,
   13516                                        MVT::i8, ShAmt0));
   13517     }
   13518   } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
   13519     ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
   13520     if (ShAmt0C &&
   13521         ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
   13522       return DAG.getNode(Opc, DL, VT,
   13523                          N0.getOperand(0), N1.getOperand(0),
   13524                          DAG.getNode(ISD::TRUNCATE, DL,
   13525                                        MVT::i8, ShAmt0));
   13526   }
   13527 
   13528   return SDValue();
   13529 }
   13530 
   13531 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
   13532 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
   13533                                    const X86Subtarget *Subtarget) {
   13534   LoadSDNode *Ld = cast<LoadSDNode>(N);
   13535   EVT RegVT = Ld->getValueType(0);
   13536   EVT MemVT = Ld->getMemoryVT();
   13537   DebugLoc dl = Ld->getDebugLoc();
   13538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13539 
   13540   ISD::LoadExtType Ext = Ld->getExtensionType();
   13541 
   13542   // If this is a vector EXT Load then attempt to optimize it using a
   13543   // shuffle. We need SSE4 for the shuffles.
   13544   // TODO: It is possible to support ZExt by zeroing the undef values
   13545   // during the shuffle phase or after the shuffle.
   13546   if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
   13547     assert(MemVT != RegVT && "Cannot extend to the same type");
   13548     assert(MemVT.isVector() && "Must load a vector from memory");
   13549 
   13550     unsigned NumElems = RegVT.getVectorNumElements();
   13551     unsigned RegSz = RegVT.getSizeInBits();
   13552     unsigned MemSz = MemVT.getSizeInBits();
   13553     assert(RegSz > MemSz && "Register size must be greater than the mem size");
   13554     // All sizes must be a power of two
   13555     if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
   13556 
   13557     // Attempt to load the original value using a single load op.
   13558     // Find a scalar type which is equal to the loaded word size.
   13559     MVT SclrLoadTy = MVT::i8;
   13560     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   13561          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   13562       MVT Tp = (MVT::SimpleValueType)tp;
   13563       if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
   13564         SclrLoadTy = Tp;
   13565         break;
   13566       }
   13567     }
   13568 
   13569     // Proceed if a load word is found.
   13570     if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
   13571 
   13572     EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
   13573       RegSz/SclrLoadTy.getSizeInBits());
   13574 
   13575     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
   13576                                   RegSz/MemVT.getScalarType().getSizeInBits());
   13577     // Can't shuffle using an illegal type.
   13578     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   13579 
   13580     // Perform a single load.
   13581     SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
   13582                                   Ld->getBasePtr(),
   13583                                   Ld->getPointerInfo(), Ld->isVolatile(),
   13584                                   Ld->isNonTemporal(), Ld->getAlignment());
   13585 
   13586     // Insert the word loaded into a vector.
   13587     SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   13588       LoadUnitVecVT, ScalarLoad);
   13589 
   13590     // Bitcast the loaded value to a vector of the original element type, in
   13591     // the size of the target vector type.
   13592     SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
   13593     unsigned SizeRatio = RegSz/MemSz;
   13594 
   13595     // Redistribute the loaded elements into the different locations.
   13596     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   13597     for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
   13598 
   13599     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
   13600                                 DAG.getUNDEF(SlicedVec.getValueType()),
   13601                                 ShuffleVec.data());
   13602 
   13603     // Bitcast to the requested type.
   13604     Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
   13605     // Replace the original load with the new sequence
   13606     // and return the new chain.
   13607     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
   13608     return SDValue(ScalarLoad.getNode(), 1);
   13609   }
   13610 
   13611   return SDValue();
   13612 }
   13613 
   13614 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
   13615 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
   13616                                    const X86Subtarget *Subtarget) {
   13617   StoreSDNode *St = cast<StoreSDNode>(N);
   13618   EVT VT = St->getValue().getValueType();
   13619   EVT StVT = St->getMemoryVT();
   13620   DebugLoc dl = St->getDebugLoc();
   13621   SDValue StoredVal = St->getOperand(1);
   13622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13623 
   13624   // If we are saving a concatination of two XMM registers, perform two stores.
   13625   // This is better in Sandy Bridge cause one 256-bit mem op is done via two
   13626   // 128-bit ones. If in the future the cost becomes only one memory access the
   13627   // first version would be better.
   13628   if (VT.getSizeInBits() == 256 &&
   13629     StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
   13630     StoredVal.getNumOperands() == 2) {
   13631 
   13632     SDValue Value0 = StoredVal.getOperand(0);
   13633     SDValue Value1 = StoredVal.getOperand(1);
   13634 
   13635     SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
   13636     SDValue Ptr0 = St->getBasePtr();
   13637     SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
   13638 
   13639     SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
   13640                                 St->getPointerInfo(), St->isVolatile(),
   13641                                 St->isNonTemporal(), St->getAlignment());
   13642     SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
   13643                                 St->getPointerInfo(), St->isVolatile(),
   13644                                 St->isNonTemporal(), St->getAlignment());
   13645     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
   13646   }
   13647 
   13648   // Optimize trunc store (of multiple scalars) to shuffle and store.
   13649   // First, pack all of the elements in one place. Next, store to memory
   13650   // in fewer chunks.
   13651   if (St->isTruncatingStore() && VT.isVector()) {
   13652     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13653     unsigned NumElems = VT.getVectorNumElements();
   13654     assert(StVT != VT && "Cannot truncate to the same type");
   13655     unsigned FromSz = VT.getVectorElementType().getSizeInBits();
   13656     unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
   13657 
   13658     // From, To sizes and ElemCount must be pow of two
   13659     if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
   13660     // We are going to use the original vector elt for storing.
   13661     // Accumulated smaller vector elements must be a multiple of the store size.
   13662     if (0 != (NumElems * FromSz) % ToSz) return SDValue();
   13663 
   13664     unsigned SizeRatio  = FromSz / ToSz;
   13665 
   13666     assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
   13667 
   13668     // Create a type on which we perform the shuffle
   13669     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
   13670             StVT.getScalarType(), NumElems*SizeRatio);
   13671 
   13672     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   13673 
   13674     SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
   13675     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   13676     for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
   13677 
   13678     // Can't shuffle using an illegal type
   13679     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   13680 
   13681     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
   13682                                 DAG.getUNDEF(WideVec.getValueType()),
   13683                                 ShuffleVec.data());
   13684     // At this point all of the data is stored at the bottom of the
   13685     // register. We now need to save it to mem.
   13686 
   13687     // Find the largest store unit
   13688     MVT StoreType = MVT::i8;
   13689     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   13690          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   13691       MVT Tp = (MVT::SimpleValueType)tp;
   13692       if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
   13693         StoreType = Tp;
   13694     }
   13695 
   13696     // Bitcast the original vector into a vector of store-size units
   13697     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   13698             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   13699     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   13700     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
   13701     SmallVector<SDValue, 8> Chains;
   13702     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   13703                                         TLI.getPointerTy());
   13704     SDValue Ptr = St->getBasePtr();
   13705 
   13706     // Perform one or more big stores into memory.
   13707     for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
   13708       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   13709                                    StoreType, ShuffWide,
   13710                                    DAG.getIntPtrConstant(i));
   13711       SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
   13712                                 St->getPointerInfo(), St->isVolatile(),
   13713                                 St->isNonTemporal(), St->getAlignment());
   13714       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   13715       Chains.push_back(Ch);
   13716     }
   13717 
   13718     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
   13719                                Chains.size());
   13720   }
   13721 
   13722 
   13723   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
   13724   // the FP state in cases where an emms may be missing.
   13725   // A preferable solution to the general problem is to figure out the right
   13726   // places to insert EMMS.  This qualifies as a quick hack.
   13727 
   13728   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
   13729   if (VT.getSizeInBits() != 64)
   13730     return SDValue();
   13731 
   13732   const Function *F = DAG.getMachineFunction().getFunction();
   13733   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
   13734   bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
   13735                      && Subtarget->hasXMMInt();
   13736   if ((VT.isVector() ||
   13737        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
   13738       isa<LoadSDNode>(St->getValue()) &&
   13739       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
   13740       St->getChain().hasOneUse() && !St->isVolatile()) {
   13741     SDNode* LdVal = St->getValue().getNode();
   13742     LoadSDNode *Ld = 0;
   13743     int TokenFactorIndex = -1;
   13744     SmallVector<SDValue, 8> Ops;
   13745     SDNode* ChainVal = St->getChain().getNode();
   13746     // Must be a store of a load.  We currently handle two cases:  the load
   13747     // is a direct child, and it's under an intervening TokenFactor.  It is
   13748     // possible to dig deeper under nested TokenFactors.
   13749     if (ChainVal == LdVal)
   13750       Ld = cast<LoadSDNode>(St->getChain());
   13751     else if (St->getValue().hasOneUse() &&
   13752              ChainVal->getOpcode() == ISD::TokenFactor) {
   13753       for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
   13754         if (ChainVal->getOperand(i).getNode() == LdVal) {
   13755           TokenFactorIndex = i;
   13756           Ld = cast<LoadSDNode>(St->getValue());
   13757         } else
   13758           Ops.push_back(ChainVal->getOperand(i));
   13759       }
   13760     }
   13761 
   13762     if (!Ld || !ISD::isNormalLoad(Ld))
   13763       return SDValue();
   13764 
   13765     // If this is not the MMX case, i.e. we are just turning i64 load/store
   13766     // into f64 load/store, avoid the transformation if there are multiple
   13767     // uses of the loaded value.
   13768     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
   13769       return SDValue();
   13770 
   13771     DebugLoc LdDL = Ld->getDebugLoc();
   13772     DebugLoc StDL = N->getDebugLoc();
   13773     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
   13774     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
   13775     // pair instead.
   13776     if (Subtarget->is64Bit() || F64IsLegal) {
   13777       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
   13778       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
   13779                                   Ld->getPointerInfo(), Ld->isVolatile(),
   13780                                   Ld->isNonTemporal(), Ld->getAlignment());
   13781       SDValue NewChain = NewLd.getValue(1);
   13782       if (TokenFactorIndex != -1) {
   13783         Ops.push_back(NewChain);
   13784         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   13785                                Ops.size());
   13786       }
   13787       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
   13788                           St->getPointerInfo(),
   13789                           St->isVolatile(), St->isNonTemporal(),
   13790                           St->getAlignment());
   13791     }
   13792 
   13793     // Otherwise, lower to two pairs of 32-bit loads / stores.
   13794     SDValue LoAddr = Ld->getBasePtr();
   13795     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
   13796                                  DAG.getConstant(4, MVT::i32));
   13797 
   13798     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
   13799                                Ld->getPointerInfo(),
   13800                                Ld->isVolatile(), Ld->isNonTemporal(),
   13801                                Ld->getAlignment());
   13802     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
   13803                                Ld->getPointerInfo().getWithOffset(4),
   13804                                Ld->isVolatile(), Ld->isNonTemporal(),
   13805                                MinAlign(Ld->getAlignment(), 4));
   13806 
   13807     SDValue NewChain = LoLd.getValue(1);
   13808     if (TokenFactorIndex != -1) {
   13809       Ops.push_back(LoLd);
   13810       Ops.push_back(HiLd);
   13811       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   13812                              Ops.size());
   13813     }
   13814 
   13815     LoAddr = St->getBasePtr();
   13816     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
   13817                          DAG.getConstant(4, MVT::i32));
   13818 
   13819     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
   13820                                 St->getPointerInfo(),
   13821                                 St->isVolatile(), St->isNonTemporal(),
   13822                                 St->getAlignment());
   13823     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
   13824                                 St->getPointerInfo().getWithOffset(4),
   13825                                 St->isVolatile(),
   13826                                 St->isNonTemporal(),
   13827                                 MinAlign(St->getAlignment(), 4));
   13828     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
   13829   }
   13830   return SDValue();
   13831 }
   13832 
   13833 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
   13834 /// and return the operands for the horizontal operation in LHS and RHS.  A
   13835 /// horizontal operation performs the binary operation on successive elements
   13836 /// of its first operand, then on successive elements of its second operand,
   13837 /// returning the resulting values in a vector.  For example, if
   13838 ///   A = < float a0, float a1, float a2, float a3 >
   13839 /// and
   13840 ///   B = < float b0, float b1, float b2, float b3 >
   13841 /// then the result of doing a horizontal operation on A and B is
   13842 ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
   13843 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
   13844 /// A horizontal-op B, for some already available A and B, and if so then LHS is
   13845 /// set to A, RHS to B, and the routine returns 'true'.
   13846 /// Note that the binary operation should have the property that if one of the
   13847 /// operands is UNDEF then the result is UNDEF.
   13848 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
   13849   // Look for the following pattern: if
   13850   //   A = < float a0, float a1, float a2, float a3 >
   13851   //   B = < float b0, float b1, float b2, float b3 >
   13852   // and
   13853   //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
   13854   //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
   13855   // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
   13856   // which is A horizontal-op B.
   13857 
   13858   // At least one of the operands should be a vector shuffle.
   13859   if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
   13860       RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
   13861     return false;
   13862 
   13863   EVT VT = LHS.getValueType();
   13864   unsigned N = VT.getVectorNumElements();
   13865 
   13866   // View LHS in the form
   13867   //   LHS = VECTOR_SHUFFLE A, B, LMask
   13868   // If LHS is not a shuffle then pretend it is the shuffle
   13869   //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
   13870   // NOTE: in what follows a default initialized SDValue represents an UNDEF of
   13871   // type VT.
   13872   SDValue A, B;
   13873   SmallVector<int, 8> LMask(N);
   13874   if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   13875     if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
   13876       A = LHS.getOperand(0);
   13877     if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
   13878       B = LHS.getOperand(1);
   13879     cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
   13880   } else {
   13881     if (LHS.getOpcode() != ISD::UNDEF)
   13882       A = LHS;
   13883     for (unsigned i = 0; i != N; ++i)
   13884       LMask[i] = i;
   13885   }
   13886 
   13887   // Likewise, view RHS in the form
   13888   //   RHS = VECTOR_SHUFFLE C, D, RMask
   13889   SDValue C, D;
   13890   SmallVector<int, 8> RMask(N);
   13891   if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   13892     if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
   13893       C = RHS.getOperand(0);
   13894     if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
   13895       D = RHS.getOperand(1);
   13896     cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
   13897   } else {
   13898     if (RHS.getOpcode() != ISD::UNDEF)
   13899       C = RHS;
   13900     for (unsigned i = 0; i != N; ++i)
   13901       RMask[i] = i;
   13902   }
   13903 
   13904   // Check that the shuffles are both shuffling the same vectors.
   13905   if (!(A == C && B == D) && !(A == D && B == C))
   13906     return false;
   13907 
   13908   // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
   13909   if (!A.getNode() && !B.getNode())
   13910     return false;
   13911 
   13912   // If A and B occur in reverse order in RHS, then "swap" them (which means
   13913   // rewriting the mask).
   13914   if (A != C)
   13915     for (unsigned i = 0; i != N; ++i) {
   13916       unsigned Idx = RMask[i];
   13917       if (Idx < N)
   13918         RMask[i] += N;
   13919       else if (Idx < 2*N)
   13920         RMask[i] -= N;
   13921     }
   13922 
   13923   // At this point LHS and RHS are equivalent to
   13924   //   LHS = VECTOR_SHUFFLE A, B, LMask
   13925   //   RHS = VECTOR_SHUFFLE A, B, RMask
   13926   // Check that the masks correspond to performing a horizontal operation.
   13927   for (unsigned i = 0; i != N; ++i) {
   13928     unsigned LIdx = LMask[i], RIdx = RMask[i];
   13929 
   13930     // Ignore any UNDEF components.
   13931     if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
   13932         || (!B.getNode() && (LIdx >= N || RIdx >= N)))
   13933       continue;
   13934 
   13935     // Check that successive elements are being operated on.  If not, this is
   13936     // not a horizontal operation.
   13937     if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
   13938         !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
   13939       return false;
   13940   }
   13941 
   13942   LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
   13943   RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
   13944   return true;
   13945 }
   13946 
   13947 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
   13948 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
   13949                                   const X86Subtarget *Subtarget) {
   13950   EVT VT = N->getValueType(0);
   13951   SDValue LHS = N->getOperand(0);
   13952   SDValue RHS = N->getOperand(1);
   13953 
   13954   // Try to synthesize horizontal adds from adds of shuffles.
   13955   if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
   13956       (VT == MVT::v4f32 || VT == MVT::v2f64) &&
   13957       isHorizontalBinOp(LHS, RHS, true))
   13958     return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
   13959   return SDValue();
   13960 }
   13961 
   13962 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
   13963 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
   13964                                   const X86Subtarget *Subtarget) {
   13965   EVT VT = N->getValueType(0);
   13966   SDValue LHS = N->getOperand(0);
   13967   SDValue RHS = N->getOperand(1);
   13968 
   13969   // Try to synthesize horizontal subs from subs of shuffles.
   13970   if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
   13971       (VT == MVT::v4f32 || VT == MVT::v2f64) &&
   13972       isHorizontalBinOp(LHS, RHS, false))
   13973     return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
   13974   return SDValue();
   13975 }
   13976 
   13977 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
   13978 /// X86ISD::FXOR nodes.
   13979 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
   13980   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
   13981   // F[X]OR(0.0, x) -> x
   13982   // F[X]OR(x, 0.0) -> x
   13983   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   13984     if (C->getValueAPF().isPosZero())
   13985       return N->getOperand(1);
   13986   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   13987     if (C->getValueAPF().isPosZero())
   13988       return N->getOperand(0);
   13989   return SDValue();
   13990 }
   13991 
   13992 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
   13993 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
   13994   // FAND(0.0, x) -> 0.0
   13995   // FAND(x, 0.0) -> 0.0
   13996   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   13997     if (C->getValueAPF().isPosZero())
   13998       return N->getOperand(0);
   13999   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   14000     if (C->getValueAPF().isPosZero())
   14001       return N->getOperand(1);
   14002   return SDValue();
   14003 }
   14004 
   14005 static SDValue PerformBTCombine(SDNode *N,
   14006                                 SelectionDAG &DAG,
   14007                                 TargetLowering::DAGCombinerInfo &DCI) {
   14008   // BT ignores high bits in the bit index operand.
   14009   SDValue Op1 = N->getOperand(1);
   14010   if (Op1.hasOneUse()) {
   14011     unsigned BitWidth = Op1.getValueSizeInBits();
   14012     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
   14013     APInt KnownZero, KnownOne;
   14014     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   14015                                           !DCI.isBeforeLegalizeOps());
   14016     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   14017     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
   14018         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
   14019       DCI.CommitTargetLoweringOpt(TLO);
   14020   }
   14021   return SDValue();
   14022 }
   14023 
   14024 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
   14025   SDValue Op = N->getOperand(0);
   14026   if (Op.getOpcode() == ISD::BITCAST)
   14027     Op = Op.getOperand(0);
   14028   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
   14029   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
   14030       VT.getVectorElementType().getSizeInBits() ==
   14031       OpVT.getVectorElementType().getSizeInBits()) {
   14032     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
   14033   }
   14034   return SDValue();
   14035 }
   14036 
   14037 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
   14038   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
   14039   //           (and (i32 x86isd::setcc_carry), 1)
   14040   // This eliminates the zext. This transformation is necessary because
   14041   // ISD::SETCC is always legalized to i8.
   14042   DebugLoc dl = N->getDebugLoc();
   14043   SDValue N0 = N->getOperand(0);
   14044   EVT VT = N->getValueType(0);
   14045   if (N0.getOpcode() == ISD::AND &&
   14046       N0.hasOneUse() &&
   14047       N0.getOperand(0).hasOneUse()) {
   14048     SDValue N00 = N0.getOperand(0);
   14049     if (N00.getOpcode() != X86ISD::SETCC_CARRY)
   14050       return SDValue();
   14051     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   14052     if (!C || C->getZExtValue() != 1)
   14053       return SDValue();
   14054     return DAG.getNode(ISD::AND, dl, VT,
   14055                        DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
   14056                                    N00.getOperand(0), N00.getOperand(1)),
   14057                        DAG.getConstant(1, VT));
   14058   }
   14059 
   14060   return SDValue();
   14061 }
   14062 
   14063 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
   14064 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
   14065   unsigned X86CC = N->getConstantOperandVal(0);
   14066   SDValue EFLAG = N->getOperand(1);
   14067   DebugLoc DL = N->getDebugLoc();
   14068 
   14069   // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
   14070   // a zext and produces an all-ones bit which is more useful than 0/1 in some
   14071   // cases.
   14072   if (X86CC == X86::COND_B)
   14073     return DAG.getNode(ISD::AND, DL, MVT::i8,
   14074                        DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
   14075                                    DAG.getConstant(X86CC, MVT::i8), EFLAG),
   14076                        DAG.getConstant(1, MVT::i8));
   14077 
   14078   return SDValue();
   14079 }
   14080 
   14081 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
   14082                                         const X86TargetLowering *XTLI) {
   14083   SDValue Op0 = N->getOperand(0);
   14084   // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
   14085   // a 32-bit target where SSE doesn't support i64->FP operations.
   14086   if (Op0.getOpcode() == ISD::LOAD) {
   14087     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
   14088     EVT VT = Ld->getValueType(0);
   14089     if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
   14090         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
   14091         !XTLI->getSubtarget()->is64Bit() &&
   14092         !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   14093       SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
   14094                                           Ld->getChain(), Op0, DAG);
   14095       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
   14096       return FILDChain;
   14097     }
   14098   }
   14099   return SDValue();
   14100 }
   14101 
   14102 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
   14103 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
   14104                                  X86TargetLowering::DAGCombinerInfo &DCI) {
   14105   // If the LHS and RHS of the ADC node are zero, then it can't overflow and
   14106   // the result is either zero or one (depending on the input carry bit).
   14107   // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
   14108   if (X86::isZeroNode(N->getOperand(0)) &&
   14109       X86::isZeroNode(N->getOperand(1)) &&
   14110       // We don't have a good way to replace an EFLAGS use, so only do this when
   14111       // dead right now.
   14112       SDValue(N, 1).use_empty()) {
   14113     DebugLoc DL = N->getDebugLoc();
   14114     EVT VT = N->getValueType(0);
   14115     SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
   14116     SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
   14117                                DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
   14118                                            DAG.getConstant(X86::COND_B,MVT::i8),
   14119                                            N->getOperand(2)),
   14120                                DAG.getConstant(1, VT));
   14121     return DCI.CombineTo(N, Res1, CarryOut);
   14122   }
   14123 
   14124   return SDValue();
   14125 }
   14126 
   14127 // fold (add Y, (sete  X, 0)) -> adc  0, Y
   14128 //      (add Y, (setne X, 0)) -> sbb -1, Y
   14129 //      (sub (sete  X, 0), Y) -> sbb  0, Y
   14130 //      (sub (setne X, 0), Y) -> adc -1, Y
   14131 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
   14132   DebugLoc DL = N->getDebugLoc();
   14133 
   14134   // Look through ZExts.
   14135   SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
   14136   if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
   14137     return SDValue();
   14138 
   14139   SDValue SetCC = Ext.getOperand(0);
   14140   if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
   14141     return SDValue();
   14142 
   14143   X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
   14144   if (CC != X86::COND_E && CC != X86::COND_NE)
   14145     return SDValue();
   14146 
   14147   SDValue Cmp = SetCC.getOperand(1);
   14148   if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
   14149       !X86::isZeroNode(Cmp.getOperand(1)) ||
   14150       !Cmp.getOperand(0).getValueType().isInteger())
   14151     return SDValue();
   14152 
   14153   SDValue CmpOp0 = Cmp.getOperand(0);
   14154   SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
   14155                                DAG.getConstant(1, CmpOp0.getValueType()));
   14156 
   14157   SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
   14158   if (CC == X86::COND_NE)
   14159     return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
   14160                        DL, OtherVal.getValueType(), OtherVal,
   14161                        DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
   14162   return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
   14163                      DL, OtherVal.getValueType(), OtherVal,
   14164                      DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
   14165 }
   14166 
   14167 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
   14168   SDValue Op0 = N->getOperand(0);
   14169   SDValue Op1 = N->getOperand(1);
   14170 
   14171   // X86 can't encode an immediate LHS of a sub. See if we can push the
   14172   // negation into a preceding instruction.
   14173   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
   14174     // If the RHS of the sub is a XOR with one use and a constant, invert the
   14175     // immediate. Then add one to the LHS of the sub so we can turn
   14176     // X-Y -> X+~Y+1, saving one register.
   14177     if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
   14178         isa<ConstantSDNode>(Op1.getOperand(1))) {
   14179       APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
   14180       EVT VT = Op0.getValueType();
   14181       SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
   14182                                    Op1.getOperand(0),
   14183                                    DAG.getConstant(~XorC, VT));
   14184       return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
   14185                          DAG.getConstant(C->getAPIntValue()+1, VT));
   14186     }
   14187   }
   14188 
   14189   return OptimizeConditionalInDecrement(N, DAG);
   14190 }
   14191 
   14192 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
   14193                                              DAGCombinerInfo &DCI) const {
   14194   SelectionDAG &DAG = DCI.DAG;
   14195   switch (N->getOpcode()) {
   14196   default: break;
   14197   case ISD::EXTRACT_VECTOR_ELT:
   14198     return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
   14199   case ISD::VSELECT:
   14200   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
   14201   case ISD::BITCAST:        return PerformBITCASTCombine(N, DAG);
   14202   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
   14203   case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
   14204   case ISD::SUB:            return PerformSubCombine(N, DAG);
   14205   case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
   14206   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
   14207   case ISD::SHL:
   14208   case ISD::SRA:
   14209   case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
   14210   case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
   14211   case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
   14212   case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
   14213   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
   14214   case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
   14215   case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
   14216   case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
   14217   case X86ISD::FXOR:
   14218   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
   14219   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
   14220   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
   14221   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
   14222   case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
   14223   case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
   14224   case X86ISD::SHUFPS:      // Handle all target specific shuffles
   14225   case X86ISD::SHUFPD:
   14226   case X86ISD::PALIGN:
   14227   case X86ISD::PUNPCKHBW:
   14228   case X86ISD::PUNPCKHWD:
   14229   case X86ISD::PUNPCKHDQ:
   14230   case X86ISD::PUNPCKHQDQ:
   14231   case X86ISD::UNPCKHPS:
   14232   case X86ISD::UNPCKHPD:
   14233   case X86ISD::VUNPCKHPSY:
   14234   case X86ISD::VUNPCKHPDY:
   14235   case X86ISD::PUNPCKLBW:
   14236   case X86ISD::PUNPCKLWD:
   14237   case X86ISD::PUNPCKLDQ:
   14238   case X86ISD::PUNPCKLQDQ:
   14239   case X86ISD::UNPCKLPS:
   14240   case X86ISD::UNPCKLPD:
   14241   case X86ISD::VUNPCKLPSY:
   14242   case X86ISD::VUNPCKLPDY:
   14243   case X86ISD::MOVHLPS:
   14244   case X86ISD::MOVLHPS:
   14245   case X86ISD::PSHUFD:
   14246   case X86ISD::PSHUFHW:
   14247   case X86ISD::PSHUFLW:
   14248   case X86ISD::MOVSS:
   14249   case X86ISD::MOVSD:
   14250   case X86ISD::VPERMILPS:
   14251   case X86ISD::VPERMILPSY:
   14252   case X86ISD::VPERMILPD:
   14253   case X86ISD::VPERMILPDY:
   14254   case X86ISD::VPERM2F128:
   14255   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
   14256   }
   14257 
   14258   return SDValue();
   14259 }
   14260 
   14261 /// isTypeDesirableForOp - Return true if the target has native support for
   14262 /// the specified value type and it is 'desirable' to use the type for the
   14263 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
   14264 /// instruction encodings are longer and some i16 instructions are slow.
   14265 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
   14266   if (!isTypeLegal(VT))
   14267     return false;
   14268   if (VT != MVT::i16)
   14269     return true;
   14270 
   14271   switch (Opc) {
   14272   default:
   14273     return true;
   14274   case ISD::LOAD:
   14275   case ISD::SIGN_EXTEND:
   14276   case ISD::ZERO_EXTEND:
   14277   case ISD::ANY_EXTEND:
   14278   case ISD::SHL:
   14279   case ISD::SRL:
   14280   case ISD::SUB:
   14281   case ISD::ADD:
   14282   case ISD::MUL:
   14283   case ISD::AND:
   14284   case ISD::OR:
   14285   case ISD::XOR:
   14286     return false;
   14287   }
   14288 }
   14289 
   14290 /// IsDesirableToPromoteOp - This method query the target whether it is
   14291 /// beneficial for dag combiner to promote the specified node. If true, it
   14292 /// should return the desired promotion type by reference.
   14293 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
   14294   EVT VT = Op.getValueType();
   14295   if (VT != MVT::i16)
   14296     return false;
   14297 
   14298   bool Promote = false;
   14299   bool Commute = false;
   14300   switch (Op.getOpcode()) {
   14301   default: break;
   14302   case ISD::LOAD: {
   14303     LoadSDNode *LD = cast<LoadSDNode>(Op);
   14304     // If the non-extending load has a single use and it's not live out, then it
   14305     // might be folded.
   14306     if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
   14307                                                      Op.hasOneUse()*/) {
   14308       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   14309              UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   14310         // The only case where we'd want to promote LOAD (rather then it being
   14311         // promoted as an operand is when it's only use is liveout.
   14312         if (UI->getOpcode() != ISD::CopyToReg)
   14313           return false;
   14314       }
   14315     }
   14316     Promote = true;
   14317     break;
   14318   }
   14319   case ISD::SIGN_EXTEND:
   14320   case ISD::ZERO_EXTEND:
   14321   case ISD::ANY_EXTEND:
   14322     Promote = true;
   14323     break;
   14324   case ISD::SHL:
   14325   case ISD::SRL: {
   14326     SDValue N0 = Op.getOperand(0);
   14327     // Look out for (store (shl (load), x)).
   14328     if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
   14329       return false;
   14330     Promote = true;
   14331     break;
   14332   }
   14333   case ISD::ADD:
   14334   case ISD::MUL:
   14335   case ISD::AND:
   14336   case ISD::OR:
   14337   case ISD::XOR:
   14338     Commute = true;
   14339     // fallthrough
   14340   case ISD::SUB: {
   14341     SDValue N0 = Op.getOperand(0);
   14342     SDValue N1 = Op.getOperand(1);
   14343     if (!Commute && MayFoldLoad(N1))
   14344       return false;
   14345     // Avoid disabling potential load folding opportunities.
   14346     if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
   14347       return false;
   14348     if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
   14349       return false;
   14350     Promote = true;
   14351   }
   14352   }
   14353 
   14354   PVT = MVT::i32;
   14355   return Promote;
   14356 }
   14357 
   14358 //===----------------------------------------------------------------------===//
   14359 //                           X86 Inline Assembly Support
   14360 //===----------------------------------------------------------------------===//
   14361 
   14362 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
   14363   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   14364 
   14365   std::string AsmStr = IA->getAsmString();
   14366 
   14367   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
   14368   SmallVector<StringRef, 4> AsmPieces;
   14369   SplitString(AsmStr, AsmPieces, ";\n");
   14370 
   14371   switch (AsmPieces.size()) {
   14372   default: return false;
   14373   case 1:
   14374     AsmStr = AsmPieces[0];
   14375     AsmPieces.clear();
   14376     SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
   14377 
   14378     // FIXME: this should verify that we are targeting a 486 or better.  If not,
   14379     // we will turn this bswap into something that will be lowered to logical ops
   14380     // instead of emitting the bswap asm.  For now, we don't support 486 or lower
   14381     // so don't worry about this.
   14382     // bswap $0
   14383     if (AsmPieces.size() == 2 &&
   14384         (AsmPieces[0] == "bswap" ||
   14385          AsmPieces[0] == "bswapq" ||
   14386          AsmPieces[0] == "bswapl") &&
   14387         (AsmPieces[1] == "$0" ||
   14388          AsmPieces[1] == "${0:q}")) {
   14389       // No need to check constraints, nothing other than the equivalent of
   14390       // "=r,0" would be valid here.
   14391       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14392       if (!Ty || Ty->getBitWidth() % 16 != 0)
   14393         return false;
   14394       return IntrinsicLowering::LowerToByteSwap(CI);
   14395     }
   14396     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
   14397     if (CI->getType()->isIntegerTy(16) &&
   14398         AsmPieces.size() == 3 &&
   14399         (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
   14400         AsmPieces[1] == "$$8," &&
   14401         AsmPieces[2] == "${0:w}" &&
   14402         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
   14403       AsmPieces.clear();
   14404       const std::string &ConstraintsStr = IA->getConstraintString();
   14405       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   14406       std::sort(AsmPieces.begin(), AsmPieces.end());
   14407       if (AsmPieces.size() == 4 &&
   14408           AsmPieces[0] == "~{cc}" &&
   14409           AsmPieces[1] == "~{dirflag}" &&
   14410           AsmPieces[2] == "~{flags}" &&
   14411           AsmPieces[3] == "~{fpsr}") {
   14412         IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14413         if (!Ty || Ty->getBitWidth() % 16 != 0)
   14414           return false;
   14415         return IntrinsicLowering::LowerToByteSwap(CI);
   14416       }
   14417     }
   14418     break;
   14419   case 3:
   14420     if (CI->getType()->isIntegerTy(32) &&
   14421         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
   14422       SmallVector<StringRef, 4> Words;
   14423       SplitString(AsmPieces[0], Words, " \t,");
   14424       if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
   14425           Words[2] == "${0:w}") {
   14426         Words.clear();
   14427         SplitString(AsmPieces[1], Words, " \t,");
   14428         if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
   14429             Words[2] == "$0") {
   14430           Words.clear();
   14431           SplitString(AsmPieces[2], Words, " \t,");
   14432           if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
   14433               Words[2] == "${0:w}") {
   14434             AsmPieces.clear();
   14435             const std::string &ConstraintsStr = IA->getConstraintString();
   14436             SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   14437             std::sort(AsmPieces.begin(), AsmPieces.end());
   14438             if (AsmPieces.size() == 4 &&
   14439                 AsmPieces[0] == "~{cc}" &&
   14440                 AsmPieces[1] == "~{dirflag}" &&
   14441                 AsmPieces[2] == "~{flags}" &&
   14442                 AsmPieces[3] == "~{fpsr}") {
   14443               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14444               if (!Ty || Ty->getBitWidth() % 16 != 0)
   14445                 return false;
   14446               return IntrinsicLowering::LowerToByteSwap(CI);
   14447             }
   14448           }
   14449         }
   14450       }
   14451     }
   14452 
   14453     if (CI->getType()->isIntegerTy(64)) {
   14454       InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
   14455       if (Constraints.size() >= 2 &&
   14456           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
   14457           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
   14458         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
   14459         SmallVector<StringRef, 4> Words;
   14460         SplitString(AsmPieces[0], Words, " \t");
   14461         if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
   14462           Words.clear();
   14463           SplitString(AsmPieces[1], Words, " \t");
   14464           if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
   14465             Words.clear();
   14466             SplitString(AsmPieces[2], Words, " \t,");
   14467             if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
   14468                 Words[2] == "%edx") {
   14469               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14470               if (!Ty || Ty->getBitWidth() % 16 != 0)
   14471                 return false;
   14472               return IntrinsicLowering::LowerToByteSwap(CI);
   14473             }
   14474           }
   14475         }
   14476       }
   14477     }
   14478     break;
   14479   }
   14480   return false;
   14481 }
   14482 
   14483 
   14484 
   14485 /// getConstraintType - Given a constraint letter, return the type of
   14486 /// constraint it is for this target.
   14487 X86TargetLowering::ConstraintType
   14488 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
   14489   if (Constraint.size() == 1) {
   14490     switch (Constraint[0]) {
   14491     case 'R':
   14492     case 'q':
   14493     case 'Q':
   14494     case 'f':
   14495     case 't':
   14496     case 'u':
   14497     case 'y':
   14498     case 'x':
   14499     case 'Y':
   14500     case 'l':
   14501       return C_RegisterClass;
   14502     case 'a':
   14503     case 'b':
   14504     case 'c':
   14505     case 'd':
   14506     case 'S':
   14507     case 'D':
   14508     case 'A':
   14509       return C_Register;
   14510     case 'I':
   14511     case 'J':
   14512     case 'K':
   14513     case 'L':
   14514     case 'M':
   14515     case 'N':
   14516     case 'G':
   14517     case 'C':
   14518     case 'e':
   14519     case 'Z':
   14520       return C_Other;
   14521     default:
   14522       break;
   14523     }
   14524   }
   14525   return TargetLowering::getConstraintType(Constraint);
   14526 }
   14527 
   14528 /// Examine constraint type and operand type and determine a weight value.
   14529 /// This object must already have been set up with the operand type
   14530 /// and the current alternative constraint selected.
   14531 TargetLowering::ConstraintWeight
   14532   X86TargetLowering::getSingleConstraintMatchWeight(
   14533     AsmOperandInfo &info, const char *constraint) const {
   14534   ConstraintWeight weight = CW_Invalid;
   14535   Value *CallOperandVal = info.CallOperandVal;
   14536     // If we don't have a value, we can't do a match,
   14537     // but allow it at the lowest weight.
   14538   if (CallOperandVal == NULL)
   14539     return CW_Default;
   14540   Type *type = CallOperandVal->getType();
   14541   // Look at the constraint type.
   14542   switch (*constraint) {
   14543   default:
   14544     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   14545   case 'R':
   14546   case 'q':
   14547   case 'Q':
   14548   case 'a':
   14549   case 'b':
   14550   case 'c':
   14551   case 'd':
   14552   case 'S':
   14553   case 'D':
   14554   case 'A':
   14555     if (CallOperandVal->getType()->isIntegerTy())
   14556       weight = CW_SpecificReg;
   14557     break;
   14558   case 'f':
   14559   case 't':
   14560   case 'u':
   14561       if (type->isFloatingPointTy())
   14562         weight = CW_SpecificReg;
   14563       break;
   14564   case 'y':
   14565       if (type->isX86_MMXTy() && Subtarget->hasMMX())
   14566         weight = CW_SpecificReg;
   14567       break;
   14568   case 'x':
   14569   case 'Y':
   14570     if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
   14571       weight = CW_Register;
   14572     break;
   14573   case 'I':
   14574     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
   14575       if (C->getZExtValue() <= 31)
   14576         weight = CW_Constant;
   14577     }
   14578     break;
   14579   case 'J':
   14580     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14581       if (C->getZExtValue() <= 63)
   14582         weight = CW_Constant;
   14583     }
   14584     break;
   14585   case 'K':
   14586     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14587       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
   14588         weight = CW_Constant;
   14589     }
   14590     break;
   14591   case 'L':
   14592     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14593       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
   14594         weight = CW_Constant;
   14595     }
   14596     break;
   14597   case 'M':
   14598     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14599       if (C->getZExtValue() <= 3)
   14600         weight = CW_Constant;
   14601     }
   14602     break;
   14603   case 'N':
   14604     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14605       if (C->getZExtValue() <= 0xff)
   14606         weight = CW_Constant;
   14607     }
   14608     break;
   14609   case 'G':
   14610   case 'C':
   14611     if (dyn_cast<ConstantFP>(CallOperandVal)) {
   14612       weight = CW_Constant;
   14613     }
   14614     break;
   14615   case 'e':
   14616     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14617       if ((C->getSExtValue() >= -0x80000000LL) &&
   14618           (C->getSExtValue() <= 0x7fffffffLL))
   14619         weight = CW_Constant;
   14620     }
   14621     break;
   14622   case 'Z':
   14623     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14624       if (C->getZExtValue() <= 0xffffffff)
   14625         weight = CW_Constant;
   14626     }
   14627     break;
   14628   }
   14629   return weight;
   14630 }
   14631 
   14632 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   14633 /// with another that has more specific requirements based on the type of the
   14634 /// corresponding operand.
   14635 const char *X86TargetLowering::
   14636 LowerXConstraint(EVT ConstraintVT) const {
   14637   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
   14638   // 'f' like normal targets.
   14639   if (ConstraintVT.isFloatingPoint()) {
   14640     if (Subtarget->hasXMMInt())
   14641       return "Y";
   14642     if (Subtarget->hasXMM())
   14643       return "x";
   14644   }
   14645 
   14646   return TargetLowering::LowerXConstraint(ConstraintVT);
   14647 }
   14648 
   14649 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   14650 /// vector.  If it is invalid, don't add anything to Ops.
   14651 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   14652                                                      std::string &Constraint,
   14653                                                      std::vector<SDValue>&Ops,
   14654                                                      SelectionDAG &DAG) const {
   14655   SDValue Result(0, 0);
   14656 
   14657   // Only support length 1 constraints for now.
   14658   if (Constraint.length() > 1) return;
   14659 
   14660   char ConstraintLetter = Constraint[0];
   14661   switch (ConstraintLetter) {
   14662   default: break;
   14663   case 'I':
   14664     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14665       if (C->getZExtValue() <= 31) {
   14666         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14667         break;
   14668       }
   14669     }
   14670     return;
   14671   case 'J':
   14672     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14673       if (C->getZExtValue() <= 63) {
   14674         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14675         break;
   14676       }
   14677     }
   14678     return;
   14679   case 'K':
   14680     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14681       if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
   14682         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14683         break;
   14684       }
   14685     }
   14686     return;
   14687   case 'N':
   14688     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14689       if (C->getZExtValue() <= 255) {
   14690         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14691         break;
   14692       }
   14693     }
   14694     return;
   14695   case 'e': {
   14696     // 32-bit signed value
   14697     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14698       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   14699                                            C->getSExtValue())) {
   14700         // Widen to 64 bits here to get it sign extended.
   14701         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
   14702         break;
   14703       }
   14704     // FIXME gcc accepts some relocatable values here too, but only in certain
   14705     // memory models; it's complicated.
   14706     }
   14707     return;
   14708   }
   14709   case 'Z': {
   14710     // 32-bit unsigned value
   14711     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14712       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   14713                                            C->getZExtValue())) {
   14714         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14715         break;
   14716       }
   14717     }
   14718     // FIXME gcc accepts some relocatable values here too, but only in certain
   14719     // memory models; it's complicated.
   14720     return;
   14721   }
   14722   case 'i': {
   14723     // Literal immediates are always ok.
   14724     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
   14725       // Widen to 64 bits here to get it sign extended.
   14726       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
   14727       break;
   14728     }
   14729 
   14730     // In any sort of PIC mode addresses need to be computed at runtime by
   14731     // adding in a register or some sort of table lookup.  These can't
   14732     // be used as immediates.
   14733     if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
   14734       return;
   14735 
   14736     // If we are in non-pic codegen mode, we allow the address of a global (with
   14737     // an optional displacement) to be used with 'i'.
   14738     GlobalAddressSDNode *GA = 0;
   14739     int64_t Offset = 0;
   14740 
   14741     // Match either (GA), (GA+C), (GA+C1+C2), etc.
   14742     while (1) {
   14743       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
   14744         Offset += GA->getOffset();
   14745         break;
   14746       } else if (Op.getOpcode() == ISD::ADD) {
   14747         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   14748           Offset += C->getZExtValue();
   14749           Op = Op.getOperand(0);
   14750           continue;
   14751         }
   14752       } else if (Op.getOpcode() == ISD::SUB) {
   14753         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   14754           Offset += -C->getZExtValue();
   14755           Op = Op.getOperand(0);
   14756           continue;
   14757         }
   14758       }
   14759 
   14760       // Otherwise, this isn't something we can handle, reject it.
   14761       return;
   14762     }
   14763 
   14764     const GlobalValue *GV = GA->getGlobal();
   14765     // If we require an extra load to get this address, as in PIC mode, we
   14766     // can't accept it.
   14767     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
   14768                                                         getTargetMachine())))
   14769       return;
   14770 
   14771     Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
   14772                                         GA->getValueType(0), Offset);
   14773     break;
   14774   }
   14775   }
   14776 
   14777   if (Result.getNode()) {
   14778     Ops.push_back(Result);
   14779     return;
   14780   }
   14781   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   14782 }
   14783 
   14784 std::pair<unsigned, const TargetRegisterClass*>
   14785 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   14786                                                 EVT VT) const {
   14787   // First, see if this is a constraint that directly corresponds to an LLVM
   14788   // register class.
   14789   if (Constraint.size() == 1) {
   14790     // GCC Constraint Letters
   14791     switch (Constraint[0]) {
   14792     default: break;
   14793       // TODO: Slight differences here in allocation order and leaving
   14794       // RIP in the class. Do they matter any more here than they do
   14795       // in the normal allocation?
   14796     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
   14797       if (Subtarget->is64Bit()) {
   14798 	if (VT == MVT::i32 || VT == MVT::f32)
   14799 	  return std::make_pair(0U, X86::GR32RegisterClass);
   14800 	else if (VT == MVT::i16)
   14801 	  return std::make_pair(0U, X86::GR16RegisterClass);
   14802 	else if (VT == MVT::i8 || VT == MVT::i1)
   14803 	  return std::make_pair(0U, X86::GR8RegisterClass);
   14804 	else if (VT == MVT::i64 || VT == MVT::f64)
   14805 	  return std::make_pair(0U, X86::GR64RegisterClass);
   14806 	break;
   14807       }
   14808       // 32-bit fallthrough
   14809     case 'Q':   // Q_REGS
   14810       if (VT == MVT::i32 || VT == MVT::f32)
   14811 	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
   14812       else if (VT == MVT::i16)
   14813 	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
   14814       else if (VT == MVT::i8 || VT == MVT::i1)
   14815 	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
   14816       else if (VT == MVT::i64)
   14817 	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
   14818       break;
   14819     case 'r':   // GENERAL_REGS
   14820     case 'l':   // INDEX_REGS
   14821       if (VT == MVT::i8 || VT == MVT::i1)
   14822         return std::make_pair(0U, X86::GR8RegisterClass);
   14823       if (VT == MVT::i16)
   14824         return std::make_pair(0U, X86::GR16RegisterClass);
   14825       if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
   14826         return std::make_pair(0U, X86::GR32RegisterClass);
   14827       return std::make_pair(0U, X86::GR64RegisterClass);
   14828     case 'R':   // LEGACY_REGS
   14829       if (VT == MVT::i8 || VT == MVT::i1)
   14830         return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
   14831       if (VT == MVT::i16)
   14832         return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
   14833       if (VT == MVT::i32 || !Subtarget->is64Bit())
   14834         return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
   14835       return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
   14836     case 'f':  // FP Stack registers.
   14837       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
   14838       // value to the correct fpstack register class.
   14839       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
   14840         return std::make_pair(0U, X86::RFP32RegisterClass);
   14841       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
   14842         return std::make_pair(0U, X86::RFP64RegisterClass);
   14843       return std::make_pair(0U, X86::RFP80RegisterClass);
   14844     case 'y':   // MMX_REGS if MMX allowed.
   14845       if (!Subtarget->hasMMX()) break;
   14846       return std::make_pair(0U, X86::VR64RegisterClass);
   14847     case 'Y':   // SSE_REGS if SSE2 allowed
   14848       if (!Subtarget->hasXMMInt()) break;
   14849       // FALL THROUGH.
   14850     case 'x':   // SSE_REGS if SSE1 allowed
   14851       if (!Subtarget->hasXMM()) break;
   14852 
   14853       switch (VT.getSimpleVT().SimpleTy) {
   14854       default: break;
   14855       // Scalar SSE types.
   14856       case MVT::f32:
   14857       case MVT::i32:
   14858         return std::make_pair(0U, X86::FR32RegisterClass);
   14859       case MVT::f64:
   14860       case MVT::i64:
   14861         return std::make_pair(0U, X86::FR64RegisterClass);
   14862       // Vector types.
   14863       case MVT::v16i8:
   14864       case MVT::v8i16:
   14865       case MVT::v4i32:
   14866       case MVT::v2i64:
   14867       case MVT::v4f32:
   14868       case MVT::v2f64:
   14869         return std::make_pair(0U, X86::VR128RegisterClass);
   14870       }
   14871       break;
   14872     }
   14873   }
   14874 
   14875   // Use the default implementation in TargetLowering to convert the register
   14876   // constraint into a member of a register class.
   14877   std::pair<unsigned, const TargetRegisterClass*> Res;
   14878   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   14879 
   14880   // Not found as a standard register?
   14881   if (Res.second == 0) {
   14882     // Map st(0) -> st(7) -> ST0
   14883     if (Constraint.size() == 7 && Constraint[0] == '{' &&
   14884         tolower(Constraint[1]) == 's' &&
   14885         tolower(Constraint[2]) == 't' &&
   14886         Constraint[3] == '(' &&
   14887         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
   14888         Constraint[5] == ')' &&
   14889         Constraint[6] == '}') {
   14890 
   14891       Res.first = X86::ST0+Constraint[4]-'0';
   14892       Res.second = X86::RFP80RegisterClass;
   14893       return Res;
   14894     }
   14895 
   14896     // GCC allows "st(0)" to be called just plain "st".
   14897     if (StringRef("{st}").equals_lower(Constraint)) {
   14898       Res.first = X86::ST0;
   14899       Res.second = X86::RFP80RegisterClass;
   14900       return Res;
   14901     }
   14902 
   14903     // flags -> EFLAGS
   14904     if (StringRef("{flags}").equals_lower(Constraint)) {
   14905       Res.first = X86::EFLAGS;
   14906       Res.second = X86::CCRRegisterClass;
   14907       return Res;
   14908     }
   14909 
   14910     // 'A' means EAX + EDX.
   14911     if (Constraint == "A") {
   14912       Res.first = X86::EAX;
   14913       Res.second = X86::GR32_ADRegisterClass;
   14914       return Res;
   14915     }
   14916     return Res;
   14917   }
   14918 
   14919   // Otherwise, check to see if this is a register class of the wrong value
   14920   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
   14921   // turn into {ax},{dx}.
   14922   if (Res.second->hasType(VT))
   14923     return Res;   // Correct type already, nothing to do.
   14924 
   14925   // All of the single-register GCC register classes map their values onto
   14926   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
   14927   // really want an 8-bit or 32-bit register, map to the appropriate register
   14928   // class and return the appropriate register.
   14929   if (Res.second == X86::GR16RegisterClass) {
   14930     if (VT == MVT::i8) {
   14931       unsigned DestReg = 0;
   14932       switch (Res.first) {
   14933       default: break;
   14934       case X86::AX: DestReg = X86::AL; break;
   14935       case X86::DX: DestReg = X86::DL; break;
   14936       case X86::CX: DestReg = X86::CL; break;
   14937       case X86::BX: DestReg = X86::BL; break;
   14938       }
   14939       if (DestReg) {
   14940         Res.first = DestReg;
   14941         Res.second = X86::GR8RegisterClass;
   14942       }
   14943     } else if (VT == MVT::i32) {
   14944       unsigned DestReg = 0;
   14945       switch (Res.first) {
   14946       default: break;
   14947       case X86::AX: DestReg = X86::EAX; break;
   14948       case X86::DX: DestReg = X86::EDX; break;
   14949       case X86::CX: DestReg = X86::ECX; break;
   14950       case X86::BX: DestReg = X86::EBX; break;
   14951       case X86::SI: DestReg = X86::ESI; break;
   14952       case X86::DI: DestReg = X86::EDI; break;
   14953       case X86::BP: DestReg = X86::EBP; break;
   14954       case X86::SP: DestReg = X86::ESP; break;
   14955       }
   14956       if (DestReg) {
   14957         Res.first = DestReg;
   14958         Res.second = X86::GR32RegisterClass;
   14959       }
   14960     } else if (VT == MVT::i64) {
   14961       unsigned DestReg = 0;
   14962       switch (Res.first) {
   14963       default: break;
   14964       case X86::AX: DestReg = X86::RAX; break;
   14965       case X86::DX: DestReg = X86::RDX; break;
   14966       case X86::CX: DestReg = X86::RCX; break;
   14967       case X86::BX: DestReg = X86::RBX; break;
   14968       case X86::SI: DestReg = X86::RSI; break;
   14969       case X86::DI: DestReg = X86::RDI; break;
   14970       case X86::BP: DestReg = X86::RBP; break;
   14971       case X86::SP: DestReg = X86::RSP; break;
   14972       }
   14973       if (DestReg) {
   14974         Res.first = DestReg;
   14975         Res.second = X86::GR64RegisterClass;
   14976       }
   14977     }
   14978   } else if (Res.second == X86::FR32RegisterClass ||
   14979              Res.second == X86::FR64RegisterClass ||
   14980              Res.second == X86::VR128RegisterClass) {
   14981     // Handle references to XMM physical registers that got mapped into the
   14982     // wrong class.  This can happen with constraints like {xmm0} where the
   14983     // target independent register mapper will just pick the first match it can
   14984     // find, ignoring the required type.
   14985     if (VT == MVT::f32)
   14986       Res.second = X86::FR32RegisterClass;
   14987     else if (VT == MVT::f64)
   14988       Res.second = X86::FR64RegisterClass;
   14989     else if (X86::VR128RegisterClass->hasType(VT))
   14990       Res.second = X86::VR128RegisterClass;
   14991   }
   14992 
   14993   return Res;
   14994 }
   14995