1 //===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief SI Implementation of TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SIInstrInfo.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "GCNHazardRecognizer.h" 18 #include "SIDefines.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/ScheduleDAG.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/CodeGen/RegisterScavenging.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/Debug.h" 28 29 using namespace llvm; 30 31 SIInstrInfo::SIInstrInfo(const SISubtarget &ST) 32 : AMDGPUInstrInfo(ST), RI(), ST(ST) {} 33 34 //===----------------------------------------------------------------------===// 35 // TargetInstrInfo callbacks 36 //===----------------------------------------------------------------------===// 37 38 static unsigned getNumOperandsNoGlue(SDNode *Node) { 39 unsigned N = Node->getNumOperands(); 40 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 41 --N; 42 return N; 43 } 44 45 static SDValue findChainOperand(SDNode *Load) { 46 SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1); 47 assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node"); 48 return LastOp; 49 } 50 51 /// \brief Returns true if both nodes have the same value for the given 52 /// operand \p Op, or if both nodes do not have this operand. 53 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { 54 unsigned Opc0 = N0->getMachineOpcode(); 55 unsigned Opc1 = N1->getMachineOpcode(); 56 57 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); 58 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); 59 60 if (Op0Idx == -1 && Op1Idx == -1) 61 return true; 62 63 64 if ((Op0Idx == -1 && Op1Idx != -1) || 65 (Op1Idx == -1 && Op0Idx != -1)) 66 return false; 67 68 // getNamedOperandIdx returns the index for the MachineInstr's operands, 69 // which includes the result as the first operand. We are indexing into the 70 // MachineSDNode's operands, so we need to skip the result operand to get 71 // the real index. 72 --Op0Idx; 73 --Op1Idx; 74 75 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); 76 } 77 78 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 79 AliasAnalysis *AA) const { 80 // TODO: The generic check fails for VALU instructions that should be 81 // rematerializable due to implicit reads of exec. We really want all of the 82 // generic logic for this except for this. 83 switch (MI.getOpcode()) { 84 case AMDGPU::V_MOV_B32_e32: 85 case AMDGPU::V_MOV_B32_e64: 86 case AMDGPU::V_MOV_B64_PSEUDO: 87 return true; 88 default: 89 return false; 90 } 91 } 92 93 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, 94 int64_t &Offset0, 95 int64_t &Offset1) const { 96 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) 97 return false; 98 99 unsigned Opc0 = Load0->getMachineOpcode(); 100 unsigned Opc1 = Load1->getMachineOpcode(); 101 102 // Make sure both are actually loads. 103 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) 104 return false; 105 106 if (isDS(Opc0) && isDS(Opc1)) { 107 108 // FIXME: Handle this case: 109 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) 110 return false; 111 112 // Check base reg. 113 if (Load0->getOperand(1) != Load1->getOperand(1)) 114 return false; 115 116 // Check chain. 117 if (findChainOperand(Load0) != findChainOperand(Load1)) 118 return false; 119 120 // Skip read2 / write2 variants for simplicity. 121 // TODO: We should report true if the used offsets are adjacent (excluded 122 // st64 versions). 123 if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 || 124 AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1) 125 return false; 126 127 Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue(); 128 Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue(); 129 return true; 130 } 131 132 if (isSMRD(Opc0) && isSMRD(Opc1)) { 133 assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1)); 134 135 // Check base reg. 136 if (Load0->getOperand(0) != Load1->getOperand(0)) 137 return false; 138 139 const ConstantSDNode *Load0Offset = 140 dyn_cast<ConstantSDNode>(Load0->getOperand(1)); 141 const ConstantSDNode *Load1Offset = 142 dyn_cast<ConstantSDNode>(Load1->getOperand(1)); 143 144 if (!Load0Offset || !Load1Offset) 145 return false; 146 147 // Check chain. 148 if (findChainOperand(Load0) != findChainOperand(Load1)) 149 return false; 150 151 Offset0 = Load0Offset->getZExtValue(); 152 Offset1 = Load1Offset->getZExtValue(); 153 return true; 154 } 155 156 // MUBUF and MTBUF can access the same addresses. 157 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { 158 159 // MUBUF and MTBUF have vaddr at different indices. 160 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || 161 findChainOperand(Load0) != findChainOperand(Load1) || 162 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || 163 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) 164 return false; 165 166 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 167 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 168 169 if (OffIdx0 == -1 || OffIdx1 == -1) 170 return false; 171 172 // getNamedOperandIdx returns the index for MachineInstrs. Since they 173 // inlcude the output in the operand list, but SDNodes don't, we need to 174 // subtract the index by one. 175 --OffIdx0; 176 --OffIdx1; 177 178 SDValue Off0 = Load0->getOperand(OffIdx0); 179 SDValue Off1 = Load1->getOperand(OffIdx1); 180 181 // The offset might be a FrameIndexSDNode. 182 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) 183 return false; 184 185 Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue(); 186 Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue(); 187 return true; 188 } 189 190 return false; 191 } 192 193 static bool isStride64(unsigned Opc) { 194 switch (Opc) { 195 case AMDGPU::DS_READ2ST64_B32: 196 case AMDGPU::DS_READ2ST64_B64: 197 case AMDGPU::DS_WRITE2ST64_B32: 198 case AMDGPU::DS_WRITE2ST64_B64: 199 return true; 200 default: 201 return false; 202 } 203 } 204 205 bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg, 206 int64_t &Offset, 207 const TargetRegisterInfo *TRI) const { 208 unsigned Opc = LdSt.getOpcode(); 209 210 if (isDS(LdSt)) { 211 const MachineOperand *OffsetImm = 212 getNamedOperand(LdSt, AMDGPU::OpName::offset); 213 if (OffsetImm) { 214 // Normal, single offset LDS instruction. 215 const MachineOperand *AddrReg = 216 getNamedOperand(LdSt, AMDGPU::OpName::addr); 217 218 BaseReg = AddrReg->getReg(); 219 Offset = OffsetImm->getImm(); 220 return true; 221 } 222 223 // The 2 offset instructions use offset0 and offset1 instead. We can treat 224 // these as a load with a single offset if the 2 offsets are consecutive. We 225 // will use this for some partially aligned loads. 226 const MachineOperand *Offset0Imm = 227 getNamedOperand(LdSt, AMDGPU::OpName::offset0); 228 const MachineOperand *Offset1Imm = 229 getNamedOperand(LdSt, AMDGPU::OpName::offset1); 230 231 uint8_t Offset0 = Offset0Imm->getImm(); 232 uint8_t Offset1 = Offset1Imm->getImm(); 233 234 if (Offset1 > Offset0 && Offset1 - Offset0 == 1) { 235 // Each of these offsets is in element sized units, so we need to convert 236 // to bytes of the individual reads. 237 238 unsigned EltSize; 239 if (LdSt.mayLoad()) 240 EltSize = getOpRegClass(LdSt, 0)->getSize() / 2; 241 else { 242 assert(LdSt.mayStore()); 243 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 244 EltSize = getOpRegClass(LdSt, Data0Idx)->getSize(); 245 } 246 247 if (isStride64(Opc)) 248 EltSize *= 64; 249 250 const MachineOperand *AddrReg = 251 getNamedOperand(LdSt, AMDGPU::OpName::addr); 252 BaseReg = AddrReg->getReg(); 253 Offset = EltSize * Offset0; 254 return true; 255 } 256 257 return false; 258 } 259 260 if (isMUBUF(LdSt) || isMTBUF(LdSt)) { 261 if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1) 262 return false; 263 264 const MachineOperand *AddrReg = 265 getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 266 if (!AddrReg) 267 return false; 268 269 const MachineOperand *OffsetImm = 270 getNamedOperand(LdSt, AMDGPU::OpName::offset); 271 BaseReg = AddrReg->getReg(); 272 Offset = OffsetImm->getImm(); 273 return true; 274 } 275 276 if (isSMRD(LdSt)) { 277 const MachineOperand *OffsetImm = 278 getNamedOperand(LdSt, AMDGPU::OpName::offset); 279 if (!OffsetImm) 280 return false; 281 282 const MachineOperand *SBaseReg = 283 getNamedOperand(LdSt, AMDGPU::OpName::sbase); 284 BaseReg = SBaseReg->getReg(); 285 Offset = OffsetImm->getImm(); 286 return true; 287 } 288 289 if (isFLAT(LdSt)) { 290 const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr); 291 BaseReg = AddrReg->getReg(); 292 Offset = 0; 293 return true; 294 } 295 296 return false; 297 } 298 299 bool SIInstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt, 300 MachineInstr &SecondLdSt, 301 unsigned NumLoads) const { 302 const MachineOperand *FirstDst = nullptr; 303 const MachineOperand *SecondDst = nullptr; 304 305 if (isDS(FirstLdSt) && isDS(SecondLdSt)) { 306 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdst); 307 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdst); 308 } 309 310 if (isSMRD(FirstLdSt) && isSMRD(SecondLdSt)) { 311 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::sdst); 312 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::sdst); 313 } 314 315 if ((isMUBUF(FirstLdSt) && isMUBUF(SecondLdSt)) || 316 (isMTBUF(FirstLdSt) && isMTBUF(SecondLdSt))) { 317 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdata); 318 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdata); 319 } 320 321 if (!FirstDst || !SecondDst) 322 return false; 323 324 // Try to limit clustering based on the total number of bytes loaded 325 // rather than the number of instructions. This is done to help reduce 326 // register pressure. The method used is somewhat inexact, though, 327 // because it assumes that all loads in the cluster will load the 328 // same number of bytes as FirstLdSt. 329 330 // The unit of this value is bytes. 331 // FIXME: This needs finer tuning. 332 unsigned LoadClusterThreshold = 16; 333 334 const MachineRegisterInfo &MRI = 335 FirstLdSt.getParent()->getParent()->getRegInfo(); 336 const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg()); 337 338 return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold; 339 } 340 341 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 342 MachineBasicBlock::iterator MI, 343 const DebugLoc &DL, unsigned DestReg, 344 unsigned SrcReg, bool KillSrc) const { 345 346 // If we are trying to copy to or from SCC, there is a bug somewhere else in 347 // the backend. While it may be theoretically possible to do this, it should 348 // never be necessary. 349 assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC); 350 351 static const int16_t Sub0_15[] = { 352 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 353 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 354 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, 355 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 356 }; 357 358 static const int16_t Sub0_15_64[] = { 359 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 360 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 361 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, 362 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, 363 }; 364 365 static const int16_t Sub0_7[] = { 366 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 367 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 368 }; 369 370 static const int16_t Sub0_7_64[] = { 371 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 372 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 373 }; 374 375 static const int16_t Sub0_3[] = { 376 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 377 }; 378 379 static const int16_t Sub0_3_64[] = { 380 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 381 }; 382 383 static const int16_t Sub0_2[] = { 384 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 385 }; 386 387 static const int16_t Sub0_1[] = { 388 AMDGPU::sub0, AMDGPU::sub1, 389 }; 390 391 unsigned Opcode; 392 ArrayRef<int16_t> SubIndices; 393 bool Forward; 394 395 if (AMDGPU::SReg_32RegClass.contains(DestReg)) { 396 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 397 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 398 .addReg(SrcReg, getKillRegState(KillSrc)); 399 return; 400 401 } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) { 402 if (DestReg == AMDGPU::VCC) { 403 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 404 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) 405 .addReg(SrcReg, getKillRegState(KillSrc)); 406 } else { 407 // FIXME: Hack until VReg_1 removed. 408 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 409 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32)) 410 .addImm(0) 411 .addReg(SrcReg, getKillRegState(KillSrc)); 412 } 413 414 return; 415 } 416 417 assert(AMDGPU::SReg_64RegClass.contains(SrcReg)); 418 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 419 .addReg(SrcReg, getKillRegState(KillSrc)); 420 return; 421 422 } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) { 423 assert(AMDGPU::SReg_128RegClass.contains(SrcReg)); 424 Opcode = AMDGPU::S_MOV_B64; 425 SubIndices = Sub0_3_64; 426 427 } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) { 428 assert(AMDGPU::SReg_256RegClass.contains(SrcReg)); 429 Opcode = AMDGPU::S_MOV_B64; 430 SubIndices = Sub0_7_64; 431 432 } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) { 433 assert(AMDGPU::SReg_512RegClass.contains(SrcReg)); 434 Opcode = AMDGPU::S_MOV_B64; 435 SubIndices = Sub0_15_64; 436 437 } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) { 438 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || 439 AMDGPU::SReg_32RegClass.contains(SrcReg)); 440 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) 441 .addReg(SrcReg, getKillRegState(KillSrc)); 442 return; 443 444 } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) { 445 assert(AMDGPU::VReg_64RegClass.contains(SrcReg) || 446 AMDGPU::SReg_64RegClass.contains(SrcReg)); 447 Opcode = AMDGPU::V_MOV_B32_e32; 448 SubIndices = Sub0_1; 449 450 } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) { 451 assert(AMDGPU::VReg_96RegClass.contains(SrcReg)); 452 Opcode = AMDGPU::V_MOV_B32_e32; 453 SubIndices = Sub0_2; 454 455 } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) { 456 assert(AMDGPU::VReg_128RegClass.contains(SrcReg) || 457 AMDGPU::SReg_128RegClass.contains(SrcReg)); 458 Opcode = AMDGPU::V_MOV_B32_e32; 459 SubIndices = Sub0_3; 460 461 } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) { 462 assert(AMDGPU::VReg_256RegClass.contains(SrcReg) || 463 AMDGPU::SReg_256RegClass.contains(SrcReg)); 464 Opcode = AMDGPU::V_MOV_B32_e32; 465 SubIndices = Sub0_7; 466 467 } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) { 468 assert(AMDGPU::VReg_512RegClass.contains(SrcReg) || 469 AMDGPU::SReg_512RegClass.contains(SrcReg)); 470 Opcode = AMDGPU::V_MOV_B32_e32; 471 SubIndices = Sub0_15; 472 473 } else { 474 llvm_unreachable("Can't copy register!"); 475 } 476 477 if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg)) 478 Forward = true; 479 else 480 Forward = false; 481 482 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 483 unsigned SubIdx; 484 if (Forward) 485 SubIdx = SubIndices[Idx]; 486 else 487 SubIdx = SubIndices[SubIndices.size() - Idx - 1]; 488 489 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, 490 get(Opcode), RI.getSubReg(DestReg, SubIdx)); 491 492 Builder.addReg(RI.getSubReg(SrcReg, SubIdx)); 493 494 if (Idx == SubIndices.size() - 1) 495 Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); 496 497 if (Idx == 0) 498 Builder.addReg(DestReg, RegState::Define | RegState::Implicit); 499 } 500 } 501 502 int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const { 503 const unsigned Opcode = MI.getOpcode(); 504 505 int NewOpc; 506 507 // Try to map original to commuted opcode 508 NewOpc = AMDGPU::getCommuteRev(Opcode); 509 if (NewOpc != -1) 510 // Check if the commuted (REV) opcode exists on the target. 511 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 512 513 // Try to map commuted to original opcode 514 NewOpc = AMDGPU::getCommuteOrig(Opcode); 515 if (NewOpc != -1) 516 // Check if the original (non-REV) opcode exists on the target. 517 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 518 519 return Opcode; 520 } 521 522 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { 523 524 if (DstRC->getSize() == 4) { 525 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 526 } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) { 527 return AMDGPU::S_MOV_B64; 528 } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) { 529 return AMDGPU::V_MOV_B64_PSEUDO; 530 } 531 return AMDGPU::COPY; 532 } 533 534 static unsigned getSGPRSpillSaveOpcode(unsigned Size) { 535 switch (Size) { 536 case 4: 537 return AMDGPU::SI_SPILL_S32_SAVE; 538 case 8: 539 return AMDGPU::SI_SPILL_S64_SAVE; 540 case 16: 541 return AMDGPU::SI_SPILL_S128_SAVE; 542 case 32: 543 return AMDGPU::SI_SPILL_S256_SAVE; 544 case 64: 545 return AMDGPU::SI_SPILL_S512_SAVE; 546 default: 547 llvm_unreachable("unknown register size"); 548 } 549 } 550 551 static unsigned getVGPRSpillSaveOpcode(unsigned Size) { 552 switch (Size) { 553 case 4: 554 return AMDGPU::SI_SPILL_V32_SAVE; 555 case 8: 556 return AMDGPU::SI_SPILL_V64_SAVE; 557 case 12: 558 return AMDGPU::SI_SPILL_V96_SAVE; 559 case 16: 560 return AMDGPU::SI_SPILL_V128_SAVE; 561 case 32: 562 return AMDGPU::SI_SPILL_V256_SAVE; 563 case 64: 564 return AMDGPU::SI_SPILL_V512_SAVE; 565 default: 566 llvm_unreachable("unknown register size"); 567 } 568 } 569 570 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 571 MachineBasicBlock::iterator MI, 572 unsigned SrcReg, bool isKill, 573 int FrameIndex, 574 const TargetRegisterClass *RC, 575 const TargetRegisterInfo *TRI) const { 576 MachineFunction *MF = MBB.getParent(); 577 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 578 MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 579 DebugLoc DL = MBB.findDebugLoc(MI); 580 581 unsigned Size = FrameInfo->getObjectSize(FrameIndex); 582 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); 583 MachinePointerInfo PtrInfo 584 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 585 MachineMemOperand *MMO 586 = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 587 Size, Align); 588 589 if (RI.isSGPRClass(RC)) { 590 MFI->setHasSpilledSGPRs(); 591 592 if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) { 593 // m0 may not be allowed for readlane. 594 MachineRegisterInfo &MRI = MF->getRegInfo(); 595 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass); 596 } 597 598 // We are only allowed to create one new instruction when spilling 599 // registers, so we need to use pseudo instruction for spilling 600 // SGPRs. 601 unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize()); 602 BuildMI(MBB, MI, DL, get(Opcode)) 603 .addReg(SrcReg, getKillRegState(isKill)) // src 604 .addFrameIndex(FrameIndex) // frame_idx 605 .addMemOperand(MMO); 606 607 return; 608 } 609 610 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { 611 LLVMContext &Ctx = MF->getFunction()->getContext(); 612 Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to" 613 " spill register"); 614 BuildMI(MBB, MI, DL, get(AMDGPU::KILL)) 615 .addReg(SrcReg); 616 617 return; 618 } 619 620 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); 621 622 unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize()); 623 MFI->setHasSpilledVGPRs(); 624 BuildMI(MBB, MI, DL, get(Opcode)) 625 .addReg(SrcReg, getKillRegState(isKill)) // src 626 .addFrameIndex(FrameIndex) // frame_idx 627 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc 628 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset 629 .addImm(0) // offset 630 .addMemOperand(MMO); 631 } 632 633 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { 634 switch (Size) { 635 case 4: 636 return AMDGPU::SI_SPILL_S32_RESTORE; 637 case 8: 638 return AMDGPU::SI_SPILL_S64_RESTORE; 639 case 16: 640 return AMDGPU::SI_SPILL_S128_RESTORE; 641 case 32: 642 return AMDGPU::SI_SPILL_S256_RESTORE; 643 case 64: 644 return AMDGPU::SI_SPILL_S512_RESTORE; 645 default: 646 llvm_unreachable("unknown register size"); 647 } 648 } 649 650 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { 651 switch (Size) { 652 case 4: 653 return AMDGPU::SI_SPILL_V32_RESTORE; 654 case 8: 655 return AMDGPU::SI_SPILL_V64_RESTORE; 656 case 12: 657 return AMDGPU::SI_SPILL_V96_RESTORE; 658 case 16: 659 return AMDGPU::SI_SPILL_V128_RESTORE; 660 case 32: 661 return AMDGPU::SI_SPILL_V256_RESTORE; 662 case 64: 663 return AMDGPU::SI_SPILL_V512_RESTORE; 664 default: 665 llvm_unreachable("unknown register size"); 666 } 667 } 668 669 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 670 MachineBasicBlock::iterator MI, 671 unsigned DestReg, int FrameIndex, 672 const TargetRegisterClass *RC, 673 const TargetRegisterInfo *TRI) const { 674 MachineFunction *MF = MBB.getParent(); 675 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 676 MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 677 DebugLoc DL = MBB.findDebugLoc(MI); 678 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); 679 unsigned Size = FrameInfo->getObjectSize(FrameIndex); 680 681 MachinePointerInfo PtrInfo 682 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 683 684 MachineMemOperand *MMO = MF->getMachineMemOperand( 685 PtrInfo, MachineMemOperand::MOLoad, Size, Align); 686 687 if (RI.isSGPRClass(RC)) { 688 // FIXME: Maybe this should not include a memoperand because it will be 689 // lowered to non-memory instructions. 690 unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize()); 691 692 if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) { 693 // m0 may not be allowed for readlane. 694 MachineRegisterInfo &MRI = MF->getRegInfo(); 695 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass); 696 } 697 698 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 699 .addFrameIndex(FrameIndex) // frame_idx 700 .addMemOperand(MMO); 701 702 return; 703 } 704 705 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { 706 LLVMContext &Ctx = MF->getFunction()->getContext(); 707 Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to" 708 " restore register"); 709 BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg); 710 711 return; 712 } 713 714 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); 715 716 unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize()); 717 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 718 .addFrameIndex(FrameIndex) // frame_idx 719 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc 720 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset 721 .addImm(0) // offset 722 .addMemOperand(MMO); 723 } 724 725 /// \param @Offset Offset in bytes of the FrameIndex being spilled 726 unsigned SIInstrInfo::calculateLDSSpillAddress( 727 MachineBasicBlock &MBB, MachineInstr &MI, RegScavenger *RS, unsigned TmpReg, 728 unsigned FrameOffset, unsigned Size) const { 729 MachineFunction *MF = MBB.getParent(); 730 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 731 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 732 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 733 DebugLoc DL = MBB.findDebugLoc(MI); 734 unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF); 735 unsigned WavefrontSize = ST.getWavefrontSize(); 736 737 unsigned TIDReg = MFI->getTIDReg(); 738 if (!MFI->hasCalculatedTID()) { 739 MachineBasicBlock &Entry = MBB.getParent()->front(); 740 MachineBasicBlock::iterator Insert = Entry.front(); 741 DebugLoc DL = Insert->getDebugLoc(); 742 743 TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass); 744 if (TIDReg == AMDGPU::NoRegister) 745 return TIDReg; 746 747 if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) && 748 WorkGroupSize > WavefrontSize) { 749 750 unsigned TIDIGXReg 751 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X); 752 unsigned TIDIGYReg 753 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y); 754 unsigned TIDIGZReg 755 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z); 756 unsigned InputPtrReg = 757 TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); 758 for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) { 759 if (!Entry.isLiveIn(Reg)) 760 Entry.addLiveIn(Reg); 761 } 762 763 RS->enterBasicBlock(Entry); 764 // FIXME: Can we scavenge an SReg_64 and access the subregs? 765 unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); 766 unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); 767 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0) 768 .addReg(InputPtrReg) 769 .addImm(SI::KernelInputOffsets::NGROUPS_Z); 770 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1) 771 .addReg(InputPtrReg) 772 .addImm(SI::KernelInputOffsets::NGROUPS_Y); 773 774 // NGROUPS.X * NGROUPS.Y 775 BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1) 776 .addReg(STmp1) 777 .addReg(STmp0); 778 // (NGROUPS.X * NGROUPS.Y) * TIDIG.X 779 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg) 780 .addReg(STmp1) 781 .addReg(TIDIGXReg); 782 // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X) 783 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg) 784 .addReg(STmp0) 785 .addReg(TIDIGYReg) 786 .addReg(TIDReg); 787 // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z 788 BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg) 789 .addReg(TIDReg) 790 .addReg(TIDIGZReg); 791 } else { 792 // Get the wave id 793 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64), 794 TIDReg) 795 .addImm(-1) 796 .addImm(0); 797 798 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64), 799 TIDReg) 800 .addImm(-1) 801 .addReg(TIDReg); 802 } 803 804 BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32), 805 TIDReg) 806 .addImm(2) 807 .addReg(TIDReg); 808 MFI->setTIDReg(TIDReg); 809 } 810 811 // Add FrameIndex to LDS offset 812 unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize); 813 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg) 814 .addImm(LDSOffset) 815 .addReg(TIDReg); 816 817 return TmpReg; 818 } 819 820 void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB, 821 MachineBasicBlock::iterator MI, 822 int Count) const { 823 DebugLoc DL = MBB.findDebugLoc(MI); 824 while (Count > 0) { 825 int Arg; 826 if (Count >= 8) 827 Arg = 7; 828 else 829 Arg = Count - 1; 830 Count -= 8; 831 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)) 832 .addImm(Arg); 833 } 834 } 835 836 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, 837 MachineBasicBlock::iterator MI) const { 838 insertWaitStates(MBB, MI, 1); 839 } 840 841 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const { 842 switch (MI.getOpcode()) { 843 default: return 1; // FIXME: Do wait states equal cycles? 844 845 case AMDGPU::S_NOP: 846 return MI.getOperand(0).getImm() + 1; 847 } 848 } 849 850 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 851 MachineBasicBlock &MBB = *MI.getParent(); 852 DebugLoc DL = MBB.findDebugLoc(MI); 853 switch (MI.getOpcode()) { 854 default: return AMDGPUInstrInfo::expandPostRAPseudo(MI); 855 856 case AMDGPU::V_MOV_B64_PSEUDO: { 857 unsigned Dst = MI.getOperand(0).getReg(); 858 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 859 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 860 861 const MachineOperand &SrcOp = MI.getOperand(1); 862 // FIXME: Will this work for 64-bit floating point immediates? 863 assert(!SrcOp.isFPImm()); 864 if (SrcOp.isImm()) { 865 APInt Imm(64, SrcOp.getImm()); 866 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 867 .addImm(Imm.getLoBits(32).getZExtValue()) 868 .addReg(Dst, RegState::Implicit | RegState::Define); 869 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 870 .addImm(Imm.getHiBits(32).getZExtValue()) 871 .addReg(Dst, RegState::Implicit | RegState::Define); 872 } else { 873 assert(SrcOp.isReg()); 874 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 875 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) 876 .addReg(Dst, RegState::Implicit | RegState::Define); 877 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 878 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) 879 .addReg(Dst, RegState::Implicit | RegState::Define); 880 } 881 MI.eraseFromParent(); 882 break; 883 } 884 885 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 886 unsigned Dst = MI.getOperand(0).getReg(); 887 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 888 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 889 unsigned Src0 = MI.getOperand(1).getReg(); 890 unsigned Src1 = MI.getOperand(2).getReg(); 891 const MachineOperand &SrcCond = MI.getOperand(3); 892 893 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 894 .addReg(RI.getSubReg(Src0, AMDGPU::sub0)) 895 .addReg(RI.getSubReg(Src1, AMDGPU::sub0)) 896 .addReg(SrcCond.getReg()) 897 .addReg(Dst, RegState::Implicit | RegState::Define); 898 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 899 .addReg(RI.getSubReg(Src0, AMDGPU::sub1)) 900 .addReg(RI.getSubReg(Src1, AMDGPU::sub1)) 901 .addReg(SrcCond.getReg(), getKillRegState(SrcCond.isKill())) 902 .addReg(Dst, RegState::Implicit | RegState::Define); 903 MI.eraseFromParent(); 904 break; 905 } 906 907 case AMDGPU::SI_PC_ADD_REL_OFFSET: { 908 const SIRegisterInfo *TRI 909 = static_cast<const SIRegisterInfo *>(ST.getRegisterInfo()); 910 MachineFunction &MF = *MBB.getParent(); 911 unsigned Reg = MI.getOperand(0).getReg(); 912 unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0); 913 unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1); 914 915 // Create a bundle so these instructions won't be re-ordered by the 916 // post-RA scheduler. 917 MIBundleBuilder Bundler(MBB, MI); 918 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); 919 920 // Add 32-bit offset from this instruction to the start of the 921 // constant data. 922 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo) 923 .addReg(RegLo) 924 .addOperand(MI.getOperand(1))); 925 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) 926 .addReg(RegHi) 927 .addImm(0)); 928 929 llvm::finalizeBundle(MBB, Bundler.begin()); 930 931 MI.eraseFromParent(); 932 break; 933 } 934 } 935 return true; 936 } 937 938 /// Commutes the operands in the given instruction. 939 /// The commutable operands are specified by their indices OpIdx0 and OpIdx1. 940 /// 941 /// Do not call this method for a non-commutable instruction or for 942 /// non-commutable pair of operand indices OpIdx0 and OpIdx1. 943 /// Even though the instruction is commutable, the method may still 944 /// fail to commute the operands, null pointer is returned in such cases. 945 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 946 unsigned OpIdx0, 947 unsigned OpIdx1) const { 948 int CommutedOpcode = commuteOpcode(MI); 949 if (CommutedOpcode == -1) 950 return nullptr; 951 952 int Src0Idx = 953 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 954 MachineOperand &Src0 = MI.getOperand(Src0Idx); 955 if (!Src0.isReg()) 956 return nullptr; 957 958 int Src1Idx = 959 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1); 960 961 if ((OpIdx0 != static_cast<unsigned>(Src0Idx) || 962 OpIdx1 != static_cast<unsigned>(Src1Idx)) && 963 (OpIdx0 != static_cast<unsigned>(Src1Idx) || 964 OpIdx1 != static_cast<unsigned>(Src0Idx))) 965 return nullptr; 966 967 MachineOperand &Src1 = MI.getOperand(Src1Idx); 968 969 if (isVOP2(MI) || isVOPC(MI)) { 970 const MCInstrDesc &InstrDesc = MI.getDesc(); 971 // For VOP2 and VOPC instructions, any operand type is valid to use for 972 // src0. Make sure we can use the src0 as src1. 973 // 974 // We could be stricter here and only allow commuting if there is a reason 975 // to do so. i.e. if both operands are VGPRs there is no real benefit, 976 // although MachineCSE attempts to find matches by commuting. 977 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 978 if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) 979 return nullptr; 980 } 981 982 MachineInstr *CommutedMI = &MI; 983 if (!Src1.isReg()) { 984 // Allow commuting instructions with Imm operands. 985 if (NewMI || !Src1.isImm() || (!isVOP2(MI) && !isVOP3(MI))) { 986 return nullptr; 987 } 988 // Be sure to copy the source modifiers to the right place. 989 if (MachineOperand *Src0Mods = 990 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)) { 991 MachineOperand *Src1Mods = 992 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); 993 994 int Src0ModsVal = Src0Mods->getImm(); 995 if (!Src1Mods && Src0ModsVal != 0) 996 return nullptr; 997 998 // XXX - This assert might be a lie. It might be useful to have a neg 999 // modifier with 0.0. 1000 int Src1ModsVal = Src1Mods->getImm(); 1001 assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates"); 1002 1003 Src1Mods->setImm(Src0ModsVal); 1004 Src0Mods->setImm(Src1ModsVal); 1005 } 1006 1007 unsigned Reg = Src0.getReg(); 1008 unsigned SubReg = Src0.getSubReg(); 1009 if (Src1.isImm()) 1010 Src0.ChangeToImmediate(Src1.getImm()); 1011 else 1012 llvm_unreachable("Should only have immediates"); 1013 1014 Src1.ChangeToRegister(Reg, false); 1015 Src1.setSubReg(SubReg); 1016 } else { 1017 CommutedMI = 1018 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1); 1019 } 1020 1021 if (CommutedMI) 1022 CommutedMI->setDesc(get(CommutedOpcode)); 1023 1024 return CommutedMI; 1025 } 1026 1027 // This needs to be implemented because the source modifiers may be inserted 1028 // between the true commutable operands, and the base 1029 // TargetInstrInfo::commuteInstruction uses it. 1030 bool SIInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx0, 1031 unsigned &SrcOpIdx1) const { 1032 const MCInstrDesc &MCID = MI.getDesc(); 1033 if (!MCID.isCommutable()) 1034 return false; 1035 1036 unsigned Opc = MI.getOpcode(); 1037 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1038 if (Src0Idx == -1) 1039 return false; 1040 1041 // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on 1042 // immediate. Also, immediate src0 operand is not handled in 1043 // SIInstrInfo::commuteInstruction(); 1044 if (!MI.getOperand(Src0Idx).isReg()) 1045 return false; 1046 1047 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1048 if (Src1Idx == -1) 1049 return false; 1050 1051 MachineOperand &Src1 = MI.getOperand(Src1Idx); 1052 if (Src1.isImm()) { 1053 // SIInstrInfo::commuteInstruction() does support commuting the immediate 1054 // operand src1 in 2 and 3 operand instructions. 1055 if (!isVOP2(MI.getOpcode()) && !isVOP3(MI.getOpcode())) 1056 return false; 1057 } else if (Src1.isReg()) { 1058 // If any source modifiers are set, the generic instruction commuting won't 1059 // understand how to copy the source modifiers. 1060 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1061 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)) 1062 return false; 1063 } else 1064 return false; 1065 1066 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); 1067 } 1068 1069 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { 1070 switch (Cond) { 1071 case SIInstrInfo::SCC_TRUE: 1072 return AMDGPU::S_CBRANCH_SCC1; 1073 case SIInstrInfo::SCC_FALSE: 1074 return AMDGPU::S_CBRANCH_SCC0; 1075 case SIInstrInfo::VCCNZ: 1076 return AMDGPU::S_CBRANCH_VCCNZ; 1077 case SIInstrInfo::VCCZ: 1078 return AMDGPU::S_CBRANCH_VCCZ; 1079 case SIInstrInfo::EXECNZ: 1080 return AMDGPU::S_CBRANCH_EXECNZ; 1081 case SIInstrInfo::EXECZ: 1082 return AMDGPU::S_CBRANCH_EXECZ; 1083 default: 1084 llvm_unreachable("invalid branch predicate"); 1085 } 1086 } 1087 1088 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { 1089 switch (Opcode) { 1090 case AMDGPU::S_CBRANCH_SCC0: 1091 return SCC_FALSE; 1092 case AMDGPU::S_CBRANCH_SCC1: 1093 return SCC_TRUE; 1094 case AMDGPU::S_CBRANCH_VCCNZ: 1095 return VCCNZ; 1096 case AMDGPU::S_CBRANCH_VCCZ: 1097 return VCCZ; 1098 case AMDGPU::S_CBRANCH_EXECNZ: 1099 return EXECNZ; 1100 case AMDGPU::S_CBRANCH_EXECZ: 1101 return EXECZ; 1102 default: 1103 return INVALID_BR; 1104 } 1105 } 1106 1107 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 1108 MachineBasicBlock *&FBB, 1109 SmallVectorImpl<MachineOperand> &Cond, 1110 bool AllowModify) const { 1111 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 1112 1113 if (I == MBB.end()) 1114 return false; 1115 1116 if (I->getOpcode() == AMDGPU::S_BRANCH) { 1117 // Unconditional Branch 1118 TBB = I->getOperand(0).getMBB(); 1119 return false; 1120 } 1121 1122 BranchPredicate Pred = getBranchPredicate(I->getOpcode()); 1123 if (Pred == INVALID_BR) 1124 return true; 1125 1126 MachineBasicBlock *CondBB = I->getOperand(0).getMBB(); 1127 Cond.push_back(MachineOperand::CreateImm(Pred)); 1128 1129 ++I; 1130 1131 if (I == MBB.end()) { 1132 // Conditional branch followed by fall-through. 1133 TBB = CondBB; 1134 return false; 1135 } 1136 1137 if (I->getOpcode() == AMDGPU::S_BRANCH) { 1138 TBB = CondBB; 1139 FBB = I->getOperand(0).getMBB(); 1140 return false; 1141 } 1142 1143 return true; 1144 } 1145 1146 unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 1147 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 1148 1149 unsigned Count = 0; 1150 while (I != MBB.end()) { 1151 MachineBasicBlock::iterator Next = std::next(I); 1152 I->eraseFromParent(); 1153 ++Count; 1154 I = Next; 1155 } 1156 1157 return Count; 1158 } 1159 1160 unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB, 1161 MachineBasicBlock *TBB, 1162 MachineBasicBlock *FBB, 1163 ArrayRef<MachineOperand> Cond, 1164 const DebugLoc &DL) const { 1165 1166 if (!FBB && Cond.empty()) { 1167 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 1168 .addMBB(TBB); 1169 return 1; 1170 } 1171 1172 assert(TBB && Cond[0].isImm()); 1173 1174 unsigned Opcode 1175 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); 1176 1177 if (!FBB) { 1178 BuildMI(&MBB, DL, get(Opcode)) 1179 .addMBB(TBB); 1180 return 1; 1181 } 1182 1183 assert(TBB && FBB); 1184 1185 BuildMI(&MBB, DL, get(Opcode)) 1186 .addMBB(TBB); 1187 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 1188 .addMBB(FBB); 1189 1190 return 2; 1191 } 1192 1193 bool SIInstrInfo::ReverseBranchCondition( 1194 SmallVectorImpl<MachineOperand> &Cond) const { 1195 assert(Cond.size() == 1); 1196 Cond[0].setImm(-Cond[0].getImm()); 1197 return false; 1198 } 1199 1200 static void removeModOperands(MachineInstr &MI) { 1201 unsigned Opc = MI.getOpcode(); 1202 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1203 AMDGPU::OpName::src0_modifiers); 1204 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1205 AMDGPU::OpName::src1_modifiers); 1206 int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1207 AMDGPU::OpName::src2_modifiers); 1208 1209 MI.RemoveOperand(Src2ModIdx); 1210 MI.RemoveOperand(Src1ModIdx); 1211 MI.RemoveOperand(Src0ModIdx); 1212 } 1213 1214 // TODO: Maybe this should be removed this and custom fold everything in 1215 // SIFoldOperands? 1216 bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1217 unsigned Reg, MachineRegisterInfo *MRI) const { 1218 if (!MRI->hasOneNonDBGUse(Reg)) 1219 return false; 1220 1221 unsigned Opc = UseMI.getOpcode(); 1222 if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) { 1223 // Don't fold if we are using source modifiers. The new VOP2 instructions 1224 // don't have them. 1225 if (hasModifiersSet(UseMI, AMDGPU::OpName::src0_modifiers) || 1226 hasModifiersSet(UseMI, AMDGPU::OpName::src1_modifiers) || 1227 hasModifiersSet(UseMI, AMDGPU::OpName::src2_modifiers)) { 1228 return false; 1229 } 1230 1231 const MachineOperand &ImmOp = DefMI.getOperand(1); 1232 1233 // If this is a free constant, there's no reason to do this. 1234 // TODO: We could fold this here instead of letting SIFoldOperands do it 1235 // later. 1236 if (isInlineConstant(ImmOp, 4)) 1237 return false; 1238 1239 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); 1240 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); 1241 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); 1242 1243 // Multiplied part is the constant: Use v_madmk_f32 1244 // We should only expect these to be on src0 due to canonicalizations. 1245 if (Src0->isReg() && Src0->getReg() == Reg) { 1246 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 1247 return false; 1248 1249 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) 1250 return false; 1251 1252 // We need to swap operands 0 and 1 since madmk constant is at operand 1. 1253 1254 const int64_t Imm = DefMI.getOperand(1).getImm(); 1255 1256 // FIXME: This would be a lot easier if we could return a new instruction 1257 // instead of having to modify in place. 1258 1259 // Remove these first since they are at the end. 1260 UseMI.RemoveOperand( 1261 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 1262 UseMI.RemoveOperand( 1263 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 1264 1265 unsigned Src1Reg = Src1->getReg(); 1266 unsigned Src1SubReg = Src1->getSubReg(); 1267 Src0->setReg(Src1Reg); 1268 Src0->setSubReg(Src1SubReg); 1269 Src0->setIsKill(Src1->isKill()); 1270 1271 if (Opc == AMDGPU::V_MAC_F32_e64) { 1272 UseMI.untieRegOperand( 1273 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 1274 } 1275 1276 Src1->ChangeToImmediate(Imm); 1277 1278 removeModOperands(UseMI); 1279 UseMI.setDesc(get(AMDGPU::V_MADMK_F32)); 1280 1281 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1282 if (DeleteDef) 1283 DefMI.eraseFromParent(); 1284 1285 return true; 1286 } 1287 1288 // Added part is the constant: Use v_madak_f32 1289 if (Src2->isReg() && Src2->getReg() == Reg) { 1290 // Not allowed to use constant bus for another operand. 1291 // We can however allow an inline immediate as src0. 1292 if (!Src0->isImm() && 1293 (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg())))) 1294 return false; 1295 1296 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 1297 return false; 1298 1299 const int64_t Imm = DefMI.getOperand(1).getImm(); 1300 1301 // FIXME: This would be a lot easier if we could return a new instruction 1302 // instead of having to modify in place. 1303 1304 // Remove these first since they are at the end. 1305 UseMI.RemoveOperand( 1306 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 1307 UseMI.RemoveOperand( 1308 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 1309 1310 if (Opc == AMDGPU::V_MAC_F32_e64) { 1311 UseMI.untieRegOperand( 1312 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 1313 } 1314 1315 // ChangingToImmediate adds Src2 back to the instruction. 1316 Src2->ChangeToImmediate(Imm); 1317 1318 // These come before src2. 1319 removeModOperands(UseMI); 1320 UseMI.setDesc(get(AMDGPU::V_MADAK_F32)); 1321 1322 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1323 if (DeleteDef) 1324 DefMI.eraseFromParent(); 1325 1326 return true; 1327 } 1328 } 1329 1330 return false; 1331 } 1332 1333 static bool offsetsDoNotOverlap(int WidthA, int OffsetA, 1334 int WidthB, int OffsetB) { 1335 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1336 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1337 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1338 return LowOffset + LowWidth <= HighOffset; 1339 } 1340 1341 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr &MIa, 1342 MachineInstr &MIb) const { 1343 unsigned BaseReg0, BaseReg1; 1344 int64_t Offset0, Offset1; 1345 1346 if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) && 1347 getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) { 1348 1349 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { 1350 // FIXME: Handle ds_read2 / ds_write2. 1351 return false; 1352 } 1353 unsigned Width0 = (*MIa.memoperands_begin())->getSize(); 1354 unsigned Width1 = (*MIb.memoperands_begin())->getSize(); 1355 if (BaseReg0 == BaseReg1 && 1356 offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) { 1357 return true; 1358 } 1359 } 1360 1361 return false; 1362 } 1363 1364 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr &MIa, 1365 MachineInstr &MIb, 1366 AliasAnalysis *AA) const { 1367 assert((MIa.mayLoad() || MIa.mayStore()) && 1368 "MIa must load from or modify a memory location"); 1369 assert((MIb.mayLoad() || MIb.mayStore()) && 1370 "MIb must load from or modify a memory location"); 1371 1372 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) 1373 return false; 1374 1375 // XXX - Can we relax this between address spaces? 1376 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 1377 return false; 1378 1379 // TODO: Should we check the address space from the MachineMemOperand? That 1380 // would allow us to distinguish objects we know don't alias based on the 1381 // underlying address space, even if it was lowered to a different one, 1382 // e.g. private accesses lowered to use MUBUF instructions on a scratch 1383 // buffer. 1384 if (isDS(MIa)) { 1385 if (isDS(MIb)) 1386 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1387 1388 return !isFLAT(MIb); 1389 } 1390 1391 if (isMUBUF(MIa) || isMTBUF(MIa)) { 1392 if (isMUBUF(MIb) || isMTBUF(MIb)) 1393 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1394 1395 return !isFLAT(MIb) && !isSMRD(MIb); 1396 } 1397 1398 if (isSMRD(MIa)) { 1399 if (isSMRD(MIb)) 1400 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1401 1402 return !isFLAT(MIb) && !isMUBUF(MIa) && !isMTBUF(MIa); 1403 } 1404 1405 if (isFLAT(MIa)) { 1406 if (isFLAT(MIb)) 1407 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1408 1409 return false; 1410 } 1411 1412 return false; 1413 } 1414 1415 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB, 1416 MachineInstr &MI, 1417 LiveVariables *LV) const { 1418 1419 switch (MI.getOpcode()) { 1420 default: 1421 return nullptr; 1422 case AMDGPU::V_MAC_F32_e64: 1423 break; 1424 case AMDGPU::V_MAC_F32_e32: { 1425 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 1426 if (Src0->isImm() && !isInlineConstant(*Src0, 4)) 1427 return nullptr; 1428 break; 1429 } 1430 } 1431 1432 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 1433 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 1434 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 1435 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 1436 1437 return BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::V_MAD_F32)) 1438 .addOperand(*Dst) 1439 .addImm(0) // Src0 mods 1440 .addOperand(*Src0) 1441 .addImm(0) // Src1 mods 1442 .addOperand(*Src1) 1443 .addImm(0) // Src mods 1444 .addOperand(*Src2) 1445 .addImm(0) // clamp 1446 .addImm(0); // omod 1447 } 1448 1449 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1450 const MachineBasicBlock *MBB, 1451 const MachineFunction &MF) const { 1452 // XXX - Do we want the SP check in the base implementation? 1453 1454 // Target-independent instructions do not have an implicit-use of EXEC, even 1455 // when they operate on VGPRs. Treating EXEC modifications as scheduling 1456 // boundaries prevents incorrect movements of such instructions. 1457 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF) || 1458 MI.modifiesRegister(AMDGPU::EXEC, &RI); 1459 } 1460 1461 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { 1462 int64_t SVal = Imm.getSExtValue(); 1463 if (SVal >= -16 && SVal <= 64) 1464 return true; 1465 1466 if (Imm.getBitWidth() == 64) { 1467 uint64_t Val = Imm.getZExtValue(); 1468 return (DoubleToBits(0.0) == Val) || 1469 (DoubleToBits(1.0) == Val) || 1470 (DoubleToBits(-1.0) == Val) || 1471 (DoubleToBits(0.5) == Val) || 1472 (DoubleToBits(-0.5) == Val) || 1473 (DoubleToBits(2.0) == Val) || 1474 (DoubleToBits(-2.0) == Val) || 1475 (DoubleToBits(4.0) == Val) || 1476 (DoubleToBits(-4.0) == Val); 1477 } 1478 1479 // The actual type of the operand does not seem to matter as long 1480 // as the bits match one of the inline immediate values. For example: 1481 // 1482 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1483 // so it is a legal inline immediate. 1484 // 1485 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1486 // floating-point, so it is a legal inline immediate. 1487 uint32_t Val = Imm.getZExtValue(); 1488 1489 return (FloatToBits(0.0f) == Val) || 1490 (FloatToBits(1.0f) == Val) || 1491 (FloatToBits(-1.0f) == Val) || 1492 (FloatToBits(0.5f) == Val) || 1493 (FloatToBits(-0.5f) == Val) || 1494 (FloatToBits(2.0f) == Val) || 1495 (FloatToBits(-2.0f) == Val) || 1496 (FloatToBits(4.0f) == Val) || 1497 (FloatToBits(-4.0f) == Val); 1498 } 1499 1500 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, 1501 unsigned OpSize) const { 1502 if (MO.isImm()) { 1503 // MachineOperand provides no way to tell the true operand size, since it 1504 // only records a 64-bit value. We need to know the size to determine if a 1505 // 32-bit floating point immediate bit pattern is legal for an integer 1506 // immediate. It would be for any 32-bit integer operand, but would not be 1507 // for a 64-bit one. 1508 1509 unsigned BitSize = 8 * OpSize; 1510 return isInlineConstant(APInt(BitSize, MO.getImm(), true)); 1511 } 1512 1513 return false; 1514 } 1515 1516 bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO, 1517 unsigned OpSize) const { 1518 return MO.isImm() && !isInlineConstant(MO, OpSize); 1519 } 1520 1521 static bool compareMachineOp(const MachineOperand &Op0, 1522 const MachineOperand &Op1) { 1523 if (Op0.getType() != Op1.getType()) 1524 return false; 1525 1526 switch (Op0.getType()) { 1527 case MachineOperand::MO_Register: 1528 return Op0.getReg() == Op1.getReg(); 1529 case MachineOperand::MO_Immediate: 1530 return Op0.getImm() == Op1.getImm(); 1531 default: 1532 llvm_unreachable("Didn't expect to be comparing these operand types"); 1533 } 1534 } 1535 1536 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, 1537 const MachineOperand &MO) const { 1538 const MCOperandInfo &OpInfo = get(MI.getOpcode()).OpInfo[OpNo]; 1539 1540 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); 1541 1542 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) 1543 return true; 1544 1545 if (OpInfo.RegClass < 0) 1546 return false; 1547 1548 unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize(); 1549 if (isLiteralConstant(MO, OpSize)) 1550 return RI.opCanUseLiteralConstant(OpInfo.OperandType); 1551 1552 return RI.opCanUseInlineConstant(OpInfo.OperandType); 1553 } 1554 1555 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { 1556 int Op32 = AMDGPU::getVOPe32(Opcode); 1557 if (Op32 == -1) 1558 return false; 1559 1560 return pseudoToMCOpcode(Op32) != -1; 1561 } 1562 1563 bool SIInstrInfo::hasModifiers(unsigned Opcode) const { 1564 // The src0_modifier operand is present on all instructions 1565 // that have modifiers. 1566 1567 return AMDGPU::getNamedOperandIdx(Opcode, 1568 AMDGPU::OpName::src0_modifiers) != -1; 1569 } 1570 1571 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, 1572 unsigned OpName) const { 1573 const MachineOperand *Mods = getNamedOperand(MI, OpName); 1574 return Mods && Mods->getImm(); 1575 } 1576 1577 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, 1578 const MachineOperand &MO, 1579 unsigned OpSize) const { 1580 // Literal constants use the constant bus. 1581 if (isLiteralConstant(MO, OpSize)) 1582 return true; 1583 1584 if (!MO.isReg() || !MO.isUse()) 1585 return false; 1586 1587 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1588 return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); 1589 1590 // FLAT_SCR is just an SGPR pair. 1591 if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR)) 1592 return true; 1593 1594 // EXEC register uses the constant bus. 1595 if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC) 1596 return true; 1597 1598 // SGPRs use the constant bus 1599 return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 || 1600 (!MO.isImplicit() && 1601 (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) || 1602 AMDGPU::SGPR_64RegClass.contains(MO.getReg())))); 1603 } 1604 1605 static unsigned findImplicitSGPRRead(const MachineInstr &MI) { 1606 for (const MachineOperand &MO : MI.implicit_operands()) { 1607 // We only care about reads. 1608 if (MO.isDef()) 1609 continue; 1610 1611 switch (MO.getReg()) { 1612 case AMDGPU::VCC: 1613 case AMDGPU::M0: 1614 case AMDGPU::FLAT_SCR: 1615 return MO.getReg(); 1616 1617 default: 1618 break; 1619 } 1620 } 1621 1622 return AMDGPU::NoRegister; 1623 } 1624 1625 static bool shouldReadExec(const MachineInstr &MI) { 1626 if (SIInstrInfo::isVALU(MI)) { 1627 switch (MI.getOpcode()) { 1628 case AMDGPU::V_READLANE_B32: 1629 case AMDGPU::V_READLANE_B32_si: 1630 case AMDGPU::V_READLANE_B32_vi: 1631 case AMDGPU::V_WRITELANE_B32: 1632 case AMDGPU::V_WRITELANE_B32_si: 1633 case AMDGPU::V_WRITELANE_B32_vi: 1634 return false; 1635 } 1636 1637 return true; 1638 } 1639 1640 if (SIInstrInfo::isGenericOpcode(MI.getOpcode()) || 1641 SIInstrInfo::isSALU(MI) || 1642 SIInstrInfo::isSMRD(MI)) 1643 return false; 1644 1645 return true; 1646 } 1647 1648 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, 1649 StringRef &ErrInfo) const { 1650 uint16_t Opcode = MI.getOpcode(); 1651 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 1652 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 1653 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); 1654 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); 1655 1656 // Make sure the number of operands is correct. 1657 const MCInstrDesc &Desc = get(Opcode); 1658 if (!Desc.isVariadic() && 1659 Desc.getNumOperands() != MI.getNumExplicitOperands()) { 1660 ErrInfo = "Instruction has wrong number of operands."; 1661 return false; 1662 } 1663 1664 // Make sure the register classes are correct. 1665 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { 1666 if (MI.getOperand(i).isFPImm()) { 1667 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " 1668 "all fp values to integers."; 1669 return false; 1670 } 1671 1672 int RegClass = Desc.OpInfo[i].RegClass; 1673 1674 switch (Desc.OpInfo[i].OperandType) { 1675 case MCOI::OPERAND_REGISTER: 1676 if (MI.getOperand(i).isImm()) { 1677 ErrInfo = "Illegal immediate value for operand."; 1678 return false; 1679 } 1680 break; 1681 case AMDGPU::OPERAND_REG_IMM32: 1682 break; 1683 case AMDGPU::OPERAND_REG_INLINE_C: 1684 if (isLiteralConstant(MI.getOperand(i), 1685 RI.getRegClass(RegClass)->getSize())) { 1686 ErrInfo = "Illegal immediate value for operand."; 1687 return false; 1688 } 1689 break; 1690 case MCOI::OPERAND_IMMEDIATE: 1691 case AMDGPU::OPERAND_KIMM32: 1692 // Check if this operand is an immediate. 1693 // FrameIndex operands will be replaced by immediates, so they are 1694 // allowed. 1695 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { 1696 ErrInfo = "Expected immediate, but got non-immediate"; 1697 return false; 1698 } 1699 // Fall-through 1700 default: 1701 continue; 1702 } 1703 1704 if (!MI.getOperand(i).isReg()) 1705 continue; 1706 1707 if (RegClass != -1) { 1708 unsigned Reg = MI.getOperand(i).getReg(); 1709 if (Reg == AMDGPU::NoRegister || 1710 TargetRegisterInfo::isVirtualRegister(Reg)) 1711 continue; 1712 1713 const TargetRegisterClass *RC = RI.getRegClass(RegClass); 1714 if (!RC->contains(Reg)) { 1715 ErrInfo = "Operand has incorrect register class."; 1716 return false; 1717 } 1718 } 1719 } 1720 1721 // Verify VOP* 1722 if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI)) { 1723 // Only look at the true operands. Only a real operand can use the constant 1724 // bus, and we don't want to check pseudo-operands like the source modifier 1725 // flags. 1726 const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx }; 1727 1728 unsigned ConstantBusCount = 0; 1729 1730 if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1) 1731 ++ConstantBusCount; 1732 1733 unsigned SGPRUsed = findImplicitSGPRRead(MI); 1734 if (SGPRUsed != AMDGPU::NoRegister) 1735 ++ConstantBusCount; 1736 1737 for (int OpIdx : OpIndices) { 1738 if (OpIdx == -1) 1739 break; 1740 const MachineOperand &MO = MI.getOperand(OpIdx); 1741 if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) { 1742 if (MO.isReg()) { 1743 if (MO.getReg() != SGPRUsed) 1744 ++ConstantBusCount; 1745 SGPRUsed = MO.getReg(); 1746 } else { 1747 ++ConstantBusCount; 1748 } 1749 } 1750 } 1751 if (ConstantBusCount > 1) { 1752 ErrInfo = "VOP* instruction uses the constant bus more than once"; 1753 return false; 1754 } 1755 } 1756 1757 // Verify misc. restrictions on specific instructions. 1758 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 || 1759 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) { 1760 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 1761 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 1762 const MachineOperand &Src2 = MI.getOperand(Src2Idx); 1763 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { 1764 if (!compareMachineOp(Src0, Src1) && 1765 !compareMachineOp(Src0, Src2)) { 1766 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; 1767 return false; 1768 } 1769 } 1770 } 1771 1772 // Make sure we aren't losing exec uses in the td files. This mostly requires 1773 // being careful when using let Uses to try to add other use registers. 1774 if (shouldReadExec(MI)) { 1775 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { 1776 ErrInfo = "VALU instruction does not implicitly read exec mask"; 1777 return false; 1778 } 1779 } 1780 1781 return true; 1782 } 1783 1784 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) { 1785 switch (MI.getOpcode()) { 1786 default: return AMDGPU::INSTRUCTION_LIST_END; 1787 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; 1788 case AMDGPU::COPY: return AMDGPU::COPY; 1789 case AMDGPU::PHI: return AMDGPU::PHI; 1790 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; 1791 case AMDGPU::S_MOV_B32: 1792 return MI.getOperand(1).isReg() ? 1793 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; 1794 case AMDGPU::S_ADD_I32: 1795 case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32; 1796 case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32; 1797 case AMDGPU::S_SUB_I32: 1798 case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32; 1799 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; 1800 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32; 1801 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32; 1802 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32; 1803 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32; 1804 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32; 1805 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32; 1806 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32; 1807 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32; 1808 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; 1809 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64; 1810 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; 1811 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64; 1812 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; 1813 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64; 1814 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32; 1815 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32; 1816 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32; 1817 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32; 1818 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; 1819 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; 1820 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; 1821 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; 1822 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32; 1823 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32; 1824 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32; 1825 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32; 1826 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32; 1827 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32; 1828 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32; 1829 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32; 1830 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32; 1831 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32; 1832 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32; 1833 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32; 1834 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; 1835 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; 1836 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; 1837 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; 1838 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; 1839 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; 1840 } 1841 } 1842 1843 bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const { 1844 return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END; 1845 } 1846 1847 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, 1848 unsigned OpNo) const { 1849 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 1850 const MCInstrDesc &Desc = get(MI.getOpcode()); 1851 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || 1852 Desc.OpInfo[OpNo].RegClass == -1) { 1853 unsigned Reg = MI.getOperand(OpNo).getReg(); 1854 1855 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1856 return MRI.getRegClass(Reg); 1857 return RI.getPhysRegClass(Reg); 1858 } 1859 1860 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1861 return RI.getRegClass(RCID); 1862 } 1863 1864 bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const { 1865 switch (MI.getOpcode()) { 1866 case AMDGPU::COPY: 1867 case AMDGPU::REG_SEQUENCE: 1868 case AMDGPU::PHI: 1869 case AMDGPU::INSERT_SUBREG: 1870 return RI.hasVGPRs(getOpRegClass(MI, 0)); 1871 default: 1872 return RI.hasVGPRs(getOpRegClass(MI, OpNo)); 1873 } 1874 } 1875 1876 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { 1877 MachineBasicBlock::iterator I = MI; 1878 MachineBasicBlock *MBB = MI.getParent(); 1879 MachineOperand &MO = MI.getOperand(OpIdx); 1880 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1881 unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass; 1882 const TargetRegisterClass *RC = RI.getRegClass(RCID); 1883 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1884 if (MO.isReg()) 1885 Opcode = AMDGPU::COPY; 1886 else if (RI.isSGPRClass(RC)) 1887 Opcode = AMDGPU::S_MOV_B32; 1888 1889 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); 1890 if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC)) 1891 VRC = &AMDGPU::VReg_64RegClass; 1892 else 1893 VRC = &AMDGPU::VGPR_32RegClass; 1894 1895 unsigned Reg = MRI.createVirtualRegister(VRC); 1896 DebugLoc DL = MBB->findDebugLoc(I); 1897 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).addOperand(MO); 1898 MO.ChangeToRegister(Reg, false); 1899 } 1900 1901 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI, 1902 MachineRegisterInfo &MRI, 1903 MachineOperand &SuperReg, 1904 const TargetRegisterClass *SuperRC, 1905 unsigned SubIdx, 1906 const TargetRegisterClass *SubRC) 1907 const { 1908 MachineBasicBlock *MBB = MI->getParent(); 1909 DebugLoc DL = MI->getDebugLoc(); 1910 unsigned SubReg = MRI.createVirtualRegister(SubRC); 1911 1912 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { 1913 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 1914 .addReg(SuperReg.getReg(), 0, SubIdx); 1915 return SubReg; 1916 } 1917 1918 // Just in case the super register is itself a sub-register, copy it to a new 1919 // value so we don't need to worry about merging its subreg index with the 1920 // SubIdx passed to this function. The register coalescer should be able to 1921 // eliminate this extra copy. 1922 unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC); 1923 1924 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) 1925 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); 1926 1927 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 1928 .addReg(NewSuperReg, 0, SubIdx); 1929 1930 return SubReg; 1931 } 1932 1933 MachineOperand SIInstrInfo::buildExtractSubRegOrImm( 1934 MachineBasicBlock::iterator MII, 1935 MachineRegisterInfo &MRI, 1936 MachineOperand &Op, 1937 const TargetRegisterClass *SuperRC, 1938 unsigned SubIdx, 1939 const TargetRegisterClass *SubRC) const { 1940 if (Op.isImm()) { 1941 // XXX - Is there a better way to do this? 1942 if (SubIdx == AMDGPU::sub0) 1943 return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF); 1944 if (SubIdx == AMDGPU::sub1) 1945 return MachineOperand::CreateImm(Op.getImm() >> 32); 1946 1947 llvm_unreachable("Unhandled register index for immediate"); 1948 } 1949 1950 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, 1951 SubIdx, SubRC); 1952 return MachineOperand::CreateReg(SubReg, false); 1953 } 1954 1955 // Change the order of operands from (0, 1, 2) to (0, 2, 1) 1956 void SIInstrInfo::swapOperands(MachineInstr &Inst) const { 1957 assert(Inst.getNumExplicitOperands() == 3); 1958 MachineOperand Op1 = Inst.getOperand(1); 1959 Inst.RemoveOperand(1); 1960 Inst.addOperand(Op1); 1961 } 1962 1963 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, 1964 const MCOperandInfo &OpInfo, 1965 const MachineOperand &MO) const { 1966 if (!MO.isReg()) 1967 return false; 1968 1969 unsigned Reg = MO.getReg(); 1970 const TargetRegisterClass *RC = 1971 TargetRegisterInfo::isVirtualRegister(Reg) ? 1972 MRI.getRegClass(Reg) : 1973 RI.getPhysRegClass(Reg); 1974 1975 const SIRegisterInfo *TRI = 1976 static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo()); 1977 RC = TRI->getSubRegClass(RC, MO.getSubReg()); 1978 1979 // In order to be legal, the common sub-class must be equal to the 1980 // class of the current operand. For example: 1981 // 1982 // v_mov_b32 s0 ; Operand defined as vsrc_32 1983 // ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL 1984 // 1985 // s_sendmsg 0, s0 ; Operand defined as m0reg 1986 // ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL 1987 1988 return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC; 1989 } 1990 1991 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, 1992 const MCOperandInfo &OpInfo, 1993 const MachineOperand &MO) const { 1994 if (MO.isReg()) 1995 return isLegalRegOperand(MRI, OpInfo, MO); 1996 1997 // Handle non-register types that are treated like immediates. 1998 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); 1999 return true; 2000 } 2001 2002 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, 2003 const MachineOperand *MO) const { 2004 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2005 const MCInstrDesc &InstDesc = MI.getDesc(); 2006 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; 2007 const TargetRegisterClass *DefinedRC = 2008 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; 2009 if (!MO) 2010 MO = &MI.getOperand(OpIdx); 2011 2012 if (isVALU(MI) && usesConstantBus(MRI, *MO, DefinedRC->getSize())) { 2013 2014 RegSubRegPair SGPRUsed; 2015 if (MO->isReg()) 2016 SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg()); 2017 2018 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2019 if (i == OpIdx) 2020 continue; 2021 const MachineOperand &Op = MI.getOperand(i); 2022 if (Op.isReg()) { 2023 if ((Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) && 2024 usesConstantBus(MRI, Op, getOpSize(MI, i))) { 2025 return false; 2026 } 2027 } else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) { 2028 return false; 2029 } 2030 } 2031 } 2032 2033 if (MO->isReg()) { 2034 assert(DefinedRC); 2035 return isLegalRegOperand(MRI, OpInfo, *MO); 2036 } 2037 2038 // Handle non-register types that are treated like immediates. 2039 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI()); 2040 2041 if (!DefinedRC) { 2042 // This operand expects an immediate. 2043 return true; 2044 } 2045 2046 return isImmOperandLegal(MI, OpIdx, *MO); 2047 } 2048 2049 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, 2050 MachineInstr &MI) const { 2051 unsigned Opc = MI.getOpcode(); 2052 const MCInstrDesc &InstrDesc = get(Opc); 2053 2054 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 2055 MachineOperand &Src1 = MI.getOperand(Src1Idx); 2056 2057 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 2058 // we need to only have one constant bus use. 2059 // 2060 // Note we do not need to worry about literal constants here. They are 2061 // disabled for the operand type for instructions because they will always 2062 // violate the one constant bus use rule. 2063 bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister; 2064 if (HasImplicitSGPR) { 2065 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2066 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2067 2068 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) 2069 legalizeOpWithMove(MI, Src0Idx); 2070 } 2071 2072 // VOP2 src0 instructions support all operand types, so we don't need to check 2073 // their legality. If src1 is already legal, we don't need to do anything. 2074 if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1)) 2075 return; 2076 2077 // We do not use commuteInstruction here because it is too aggressive and will 2078 // commute if it is possible. We only want to commute here if it improves 2079 // legality. This can be called a fairly large number of times so don't waste 2080 // compile time pointlessly swapping and checking legality again. 2081 if (HasImplicitSGPR || !MI.isCommutable()) { 2082 legalizeOpWithMove(MI, Src1Idx); 2083 return; 2084 } 2085 2086 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2087 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2088 2089 // If src0 can be used as src1, commuting will make the operands legal. 2090 // Otherwise we have to give up and insert a move. 2091 // 2092 // TODO: Other immediate-like operand kinds could be commuted if there was a 2093 // MachineOperand::ChangeTo* for them. 2094 if ((!Src1.isImm() && !Src1.isReg()) || 2095 !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) { 2096 legalizeOpWithMove(MI, Src1Idx); 2097 return; 2098 } 2099 2100 int CommutedOpc = commuteOpcode(MI); 2101 if (CommutedOpc == -1) { 2102 legalizeOpWithMove(MI, Src1Idx); 2103 return; 2104 } 2105 2106 MI.setDesc(get(CommutedOpc)); 2107 2108 unsigned Src0Reg = Src0.getReg(); 2109 unsigned Src0SubReg = Src0.getSubReg(); 2110 bool Src0Kill = Src0.isKill(); 2111 2112 if (Src1.isImm()) 2113 Src0.ChangeToImmediate(Src1.getImm()); 2114 else if (Src1.isReg()) { 2115 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); 2116 Src0.setSubReg(Src1.getSubReg()); 2117 } else 2118 llvm_unreachable("Should only have register or immediate operands"); 2119 2120 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); 2121 Src1.setSubReg(Src0SubReg); 2122 } 2123 2124 // Legalize VOP3 operands. Because all operand types are supported for any 2125 // operand, and since literal constants are not allowed and should never be 2126 // seen, we only need to worry about inserting copies if we use multiple SGPR 2127 // operands. 2128 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, 2129 MachineInstr &MI) const { 2130 unsigned Opc = MI.getOpcode(); 2131 2132 int VOP3Idx[3] = { 2133 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 2134 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), 2135 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) 2136 }; 2137 2138 // Find the one SGPR operand we are allowed to use. 2139 unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx); 2140 2141 for (unsigned i = 0; i < 3; ++i) { 2142 int Idx = VOP3Idx[i]; 2143 if (Idx == -1) 2144 break; 2145 MachineOperand &MO = MI.getOperand(Idx); 2146 2147 // We should never see a VOP3 instruction with an illegal immediate operand. 2148 if (!MO.isReg()) 2149 continue; 2150 2151 if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg()))) 2152 continue; // VGPRs are legal 2153 2154 if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) { 2155 SGPRReg = MO.getReg(); 2156 // We can use one SGPR in each VOP3 instruction. 2157 continue; 2158 } 2159 2160 // If we make it this far, then the operand is not legal and we must 2161 // legalize it. 2162 legalizeOpWithMove(MI, Idx); 2163 } 2164 } 2165 2166 unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr &UseMI, 2167 MachineRegisterInfo &MRI) const { 2168 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); 2169 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); 2170 unsigned DstReg = MRI.createVirtualRegister(SRC); 2171 unsigned SubRegs = VRC->getSize() / 4; 2172 2173 SmallVector<unsigned, 8> SRegs; 2174 for (unsigned i = 0; i < SubRegs; ++i) { 2175 unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2176 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 2177 get(AMDGPU::V_READFIRSTLANE_B32), SGPR) 2178 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); 2179 SRegs.push_back(SGPR); 2180 } 2181 2182 MachineInstrBuilder MIB = 2183 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 2184 get(AMDGPU::REG_SEQUENCE), DstReg); 2185 for (unsigned i = 0; i < SubRegs; ++i) { 2186 MIB.addReg(SRegs[i]); 2187 MIB.addImm(RI.getSubRegFromChannel(i)); 2188 } 2189 return DstReg; 2190 } 2191 2192 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, 2193 MachineInstr &MI) const { 2194 2195 // If the pointer is store in VGPRs, then we need to move them to 2196 // SGPRs using v_readfirstlane. This is safe because we only select 2197 // loads with uniform pointers to SMRD instruction so we know the 2198 // pointer value is uniform. 2199 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); 2200 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { 2201 unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); 2202 SBase->setReg(SGPR); 2203 } 2204 } 2205 2206 void SIInstrInfo::legalizeOperands(MachineInstr &MI) const { 2207 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2208 2209 // Legalize VOP2 2210 if (isVOP2(MI) || isVOPC(MI)) { 2211 legalizeOperandsVOP2(MRI, MI); 2212 return; 2213 } 2214 2215 // Legalize VOP3 2216 if (isVOP3(MI)) { 2217 legalizeOperandsVOP3(MRI, MI); 2218 return; 2219 } 2220 2221 // Legalize SMRD 2222 if (isSMRD(MI)) { 2223 legalizeOperandsSMRD(MRI, MI); 2224 return; 2225 } 2226 2227 // Legalize REG_SEQUENCE and PHI 2228 // The register class of the operands much be the same type as the register 2229 // class of the output. 2230 if (MI.getOpcode() == AMDGPU::PHI) { 2231 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; 2232 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2233 if (!MI.getOperand(i).isReg() || 2234 !TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg())) 2235 continue; 2236 const TargetRegisterClass *OpRC = 2237 MRI.getRegClass(MI.getOperand(i).getReg()); 2238 if (RI.hasVGPRs(OpRC)) { 2239 VRC = OpRC; 2240 } else { 2241 SRC = OpRC; 2242 } 2243 } 2244 2245 // If any of the operands are VGPR registers, then they all most be 2246 // otherwise we will create illegal VGPR->SGPR copies when legalizing 2247 // them. 2248 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { 2249 if (!VRC) { 2250 assert(SRC); 2251 VRC = RI.getEquivalentVGPRClass(SRC); 2252 } 2253 RC = VRC; 2254 } else { 2255 RC = SRC; 2256 } 2257 2258 // Update all the operands so they have the same type. 2259 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2260 MachineOperand &Op = MI.getOperand(I); 2261 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 2262 continue; 2263 unsigned DstReg = MRI.createVirtualRegister(RC); 2264 2265 // MI is a PHI instruction. 2266 MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); 2267 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); 2268 2269 BuildMI(*InsertBB, Insert, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg) 2270 .addOperand(Op); 2271 Op.setReg(DstReg); 2272 } 2273 } 2274 2275 // REG_SEQUENCE doesn't really require operand legalization, but if one has a 2276 // VGPR dest type and SGPR sources, insert copies so all operands are 2277 // VGPRs. This seems to help operand folding / the register coalescer. 2278 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { 2279 MachineBasicBlock *MBB = MI.getParent(); 2280 const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); 2281 if (RI.hasVGPRs(DstRC)) { 2282 // Update all the operands so they are VGPR register classes. These may 2283 // not be the same register class because REG_SEQUENCE supports mixing 2284 // subregister index types e.g. sub0_sub1 + sub2 + sub3 2285 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2286 MachineOperand &Op = MI.getOperand(I); 2287 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 2288 continue; 2289 2290 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); 2291 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); 2292 if (VRC == OpRC) 2293 continue; 2294 2295 unsigned DstReg = MRI.createVirtualRegister(VRC); 2296 2297 BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg) 2298 .addOperand(Op); 2299 2300 Op.setReg(DstReg); 2301 Op.setIsKill(); 2302 } 2303 } 2304 2305 return; 2306 } 2307 2308 // Legalize INSERT_SUBREG 2309 // src0 must have the same register class as dst 2310 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { 2311 unsigned Dst = MI.getOperand(0).getReg(); 2312 unsigned Src0 = MI.getOperand(1).getReg(); 2313 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 2314 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); 2315 if (DstRC != Src0RC) { 2316 MachineBasicBlock &MBB = *MI.getParent(); 2317 unsigned NewSrc0 = MRI.createVirtualRegister(DstRC); 2318 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), NewSrc0) 2319 .addReg(Src0); 2320 MI.getOperand(1).setReg(NewSrc0); 2321 } 2322 return; 2323 } 2324 2325 // Legalize MIMG 2326 if (isMIMG(MI)) { 2327 MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc); 2328 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) { 2329 unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI); 2330 SRsrc->setReg(SGPR); 2331 } 2332 2333 MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp); 2334 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) { 2335 unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI); 2336 SSamp->setReg(SGPR); 2337 } 2338 return; 2339 } 2340 2341 // Legalize MUBUF* instructions 2342 // FIXME: If we start using the non-addr64 instructions for compute, we 2343 // may need to legalize them here. 2344 int SRsrcIdx = 2345 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 2346 if (SRsrcIdx != -1) { 2347 // We have an MUBUF instruction 2348 MachineOperand *SRsrc = &MI.getOperand(SRsrcIdx); 2349 unsigned SRsrcRC = get(MI.getOpcode()).OpInfo[SRsrcIdx].RegClass; 2350 if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()), 2351 RI.getRegClass(SRsrcRC))) { 2352 // The operands are legal. 2353 // FIXME: We may need to legalize operands besided srsrc. 2354 return; 2355 } 2356 2357 MachineBasicBlock &MBB = *MI.getParent(); 2358 2359 // Extract the ptr from the resource descriptor. 2360 unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc, 2361 &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); 2362 2363 // Create an empty resource descriptor 2364 unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2365 unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2366 unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2367 unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass); 2368 uint64_t RsrcDataFormat = getDefaultRsrcDataFormat(); 2369 2370 // Zero64 = 0 2371 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B64), Zero64) 2372 .addImm(0); 2373 2374 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} 2375 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatLo) 2376 .addImm(RsrcDataFormat & 0xFFFFFFFF); 2377 2378 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} 2379 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatHi) 2380 .addImm(RsrcDataFormat >> 32); 2381 2382 // NewSRsrc = {Zero64, SRsrcFormat} 2383 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc) 2384 .addReg(Zero64) 2385 .addImm(AMDGPU::sub0_sub1) 2386 .addReg(SRsrcFormatLo) 2387 .addImm(AMDGPU::sub2) 2388 .addReg(SRsrcFormatHi) 2389 .addImm(AMDGPU::sub3); 2390 2391 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 2392 unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2393 if (VAddr) { 2394 // This is already an ADDR64 instruction so we need to add the pointer 2395 // extracted from the resource descriptor to the current value of VAddr. 2396 unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2397 unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2398 2399 // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0 2400 DebugLoc DL = MI.getDebugLoc(); 2401 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo) 2402 .addReg(SRsrcPtr, 0, AMDGPU::sub0) 2403 .addReg(VAddr->getReg(), 0, AMDGPU::sub0); 2404 2405 // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1 2406 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi) 2407 .addReg(SRsrcPtr, 0, AMDGPU::sub1) 2408 .addReg(VAddr->getReg(), 0, AMDGPU::sub1); 2409 2410 // NewVaddr = {NewVaddrHi, NewVaddrLo} 2411 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 2412 .addReg(NewVAddrLo) 2413 .addImm(AMDGPU::sub0) 2414 .addReg(NewVAddrHi) 2415 .addImm(AMDGPU::sub1); 2416 } else { 2417 // This instructions is the _OFFSET variant, so we need to convert it to 2418 // ADDR64. 2419 assert(MBB.getParent()->getSubtarget<SISubtarget>().getGeneration() 2420 < SISubtarget::VOLCANIC_ISLANDS && 2421 "FIXME: Need to emit flat atomics here"); 2422 2423 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); 2424 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 2425 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 2426 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); 2427 2428 // Atomics rith return have have an additional tied operand and are 2429 // missing some of the special bits. 2430 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); 2431 MachineInstr *Addr64; 2432 2433 if (!VDataIn) { 2434 // Regular buffer load / store. 2435 MachineInstrBuilder MIB = 2436 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 2437 .addOperand(*VData) 2438 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. 2439 // This will be replaced later 2440 // with the new value of vaddr. 2441 .addOperand(*SRsrc) 2442 .addOperand(*SOffset) 2443 .addOperand(*Offset); 2444 2445 // Atomics do not have this operand. 2446 if (const MachineOperand *GLC = 2447 getNamedOperand(MI, AMDGPU::OpName::glc)) { 2448 MIB.addImm(GLC->getImm()); 2449 } 2450 2451 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc)); 2452 2453 if (const MachineOperand *TFE = 2454 getNamedOperand(MI, AMDGPU::OpName::tfe)) { 2455 MIB.addImm(TFE->getImm()); 2456 } 2457 2458 MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 2459 Addr64 = MIB; 2460 } else { 2461 // Atomics with return. 2462 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 2463 .addOperand(*VData) 2464 .addOperand(*VDataIn) 2465 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. 2466 // This will be replaced later 2467 // with the new value of vaddr. 2468 .addOperand(*SRsrc) 2469 .addOperand(*SOffset) 2470 .addOperand(*Offset) 2471 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc)) 2472 .setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 2473 } 2474 2475 MI.removeFromParent(); 2476 2477 // NewVaddr = {NewVaddrHi, NewVaddrLo} 2478 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), 2479 NewVAddr) 2480 .addReg(SRsrcPtr, 0, AMDGPU::sub0) 2481 .addImm(AMDGPU::sub0) 2482 .addReg(SRsrcPtr, 0, AMDGPU::sub1) 2483 .addImm(AMDGPU::sub1); 2484 2485 VAddr = getNamedOperand(*Addr64, AMDGPU::OpName::vaddr); 2486 SRsrc = getNamedOperand(*Addr64, AMDGPU::OpName::srsrc); 2487 } 2488 2489 // Update the instruction to use NewVaddr 2490 VAddr->setReg(NewVAddr); 2491 // Update the instruction to use NewSRsrc 2492 SRsrc->setReg(NewSRsrc); 2493 } 2494 } 2495 2496 void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const { 2497 SmallVector<MachineInstr *, 128> Worklist; 2498 Worklist.push_back(&TopInst); 2499 2500 while (!Worklist.empty()) { 2501 MachineInstr &Inst = *Worklist.pop_back_val(); 2502 MachineBasicBlock *MBB = Inst.getParent(); 2503 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 2504 2505 unsigned Opcode = Inst.getOpcode(); 2506 unsigned NewOpcode = getVALUOp(Inst); 2507 2508 // Handle some special cases 2509 switch (Opcode) { 2510 default: 2511 break; 2512 case AMDGPU::S_AND_B64: 2513 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64); 2514 Inst.eraseFromParent(); 2515 continue; 2516 2517 case AMDGPU::S_OR_B64: 2518 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64); 2519 Inst.eraseFromParent(); 2520 continue; 2521 2522 case AMDGPU::S_XOR_B64: 2523 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64); 2524 Inst.eraseFromParent(); 2525 continue; 2526 2527 case AMDGPU::S_NOT_B64: 2528 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32); 2529 Inst.eraseFromParent(); 2530 continue; 2531 2532 case AMDGPU::S_BCNT1_I32_B64: 2533 splitScalar64BitBCNT(Worklist, Inst); 2534 Inst.eraseFromParent(); 2535 continue; 2536 2537 case AMDGPU::S_BFE_I64: { 2538 splitScalar64BitBFE(Worklist, Inst); 2539 Inst.eraseFromParent(); 2540 continue; 2541 } 2542 2543 case AMDGPU::S_LSHL_B32: 2544 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2545 NewOpcode = AMDGPU::V_LSHLREV_B32_e64; 2546 swapOperands(Inst); 2547 } 2548 break; 2549 case AMDGPU::S_ASHR_I32: 2550 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2551 NewOpcode = AMDGPU::V_ASHRREV_I32_e64; 2552 swapOperands(Inst); 2553 } 2554 break; 2555 case AMDGPU::S_LSHR_B32: 2556 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2557 NewOpcode = AMDGPU::V_LSHRREV_B32_e64; 2558 swapOperands(Inst); 2559 } 2560 break; 2561 case AMDGPU::S_LSHL_B64: 2562 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2563 NewOpcode = AMDGPU::V_LSHLREV_B64; 2564 swapOperands(Inst); 2565 } 2566 break; 2567 case AMDGPU::S_ASHR_I64: 2568 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2569 NewOpcode = AMDGPU::V_ASHRREV_I64; 2570 swapOperands(Inst); 2571 } 2572 break; 2573 case AMDGPU::S_LSHR_B64: 2574 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2575 NewOpcode = AMDGPU::V_LSHRREV_B64; 2576 swapOperands(Inst); 2577 } 2578 break; 2579 2580 case AMDGPU::S_ABS_I32: 2581 lowerScalarAbs(Worklist, Inst); 2582 Inst.eraseFromParent(); 2583 continue; 2584 2585 case AMDGPU::S_CBRANCH_SCC0: 2586 case AMDGPU::S_CBRANCH_SCC1: 2587 // Clear unused bits of vcc 2588 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B64), 2589 AMDGPU::VCC) 2590 .addReg(AMDGPU::EXEC) 2591 .addReg(AMDGPU::VCC); 2592 break; 2593 2594 case AMDGPU::S_BFE_U64: 2595 case AMDGPU::S_BFM_B64: 2596 llvm_unreachable("Moving this op to VALU not implemented"); 2597 } 2598 2599 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { 2600 // We cannot move this instruction to the VALU, so we should try to 2601 // legalize its operands instead. 2602 legalizeOperands(Inst); 2603 continue; 2604 } 2605 2606 // Use the new VALU Opcode. 2607 const MCInstrDesc &NewDesc = get(NewOpcode); 2608 Inst.setDesc(NewDesc); 2609 2610 // Remove any references to SCC. Vector instructions can't read from it, and 2611 // We're just about to add the implicit use / defs of VCC, and we don't want 2612 // both. 2613 for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) { 2614 MachineOperand &Op = Inst.getOperand(i); 2615 if (Op.isReg() && Op.getReg() == AMDGPU::SCC) { 2616 Inst.RemoveOperand(i); 2617 addSCCDefUsersToVALUWorklist(Inst, Worklist); 2618 } 2619 } 2620 2621 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { 2622 // We are converting these to a BFE, so we need to add the missing 2623 // operands for the size and offset. 2624 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; 2625 Inst.addOperand(MachineOperand::CreateImm(0)); 2626 Inst.addOperand(MachineOperand::CreateImm(Size)); 2627 2628 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { 2629 // The VALU version adds the second operand to the result, so insert an 2630 // extra 0 operand. 2631 Inst.addOperand(MachineOperand::CreateImm(0)); 2632 } 2633 2634 Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent()); 2635 2636 if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { 2637 const MachineOperand &OffsetWidthOp = Inst.getOperand(2); 2638 // If we need to move this to VGPRs, we need to unpack the second operand 2639 // back into the 2 separate ones for bit offset and width. 2640 assert(OffsetWidthOp.isImm() && 2641 "Scalar BFE is only implemented for constant width and offset"); 2642 uint32_t Imm = OffsetWidthOp.getImm(); 2643 2644 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 2645 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 2646 Inst.RemoveOperand(2); // Remove old immediate. 2647 Inst.addOperand(MachineOperand::CreateImm(Offset)); 2648 Inst.addOperand(MachineOperand::CreateImm(BitWidth)); 2649 } 2650 2651 bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef(); 2652 unsigned NewDstReg = AMDGPU::NoRegister; 2653 if (HasDst) { 2654 // Update the destination register class. 2655 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); 2656 if (!NewDstRC) 2657 continue; 2658 2659 unsigned DstReg = Inst.getOperand(0).getReg(); 2660 NewDstReg = MRI.createVirtualRegister(NewDstRC); 2661 MRI.replaceRegWith(DstReg, NewDstReg); 2662 } 2663 2664 // Legalize the operands 2665 legalizeOperands(Inst); 2666 2667 if (HasDst) 2668 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 2669 } 2670 } 2671 2672 void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist, 2673 MachineInstr &Inst) const { 2674 MachineBasicBlock &MBB = *Inst.getParent(); 2675 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2676 MachineBasicBlock::iterator MII = Inst; 2677 DebugLoc DL = Inst.getDebugLoc(); 2678 2679 MachineOperand &Dest = Inst.getOperand(0); 2680 MachineOperand &Src = Inst.getOperand(1); 2681 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2682 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2683 2684 BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg) 2685 .addImm(0) 2686 .addReg(Src.getReg()); 2687 2688 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) 2689 .addReg(Src.getReg()) 2690 .addReg(TmpReg); 2691 2692 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2693 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2694 } 2695 2696 void SIInstrInfo::splitScalar64BitUnaryOp( 2697 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst, 2698 unsigned Opcode) const { 2699 MachineBasicBlock &MBB = *Inst.getParent(); 2700 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2701 2702 MachineOperand &Dest = Inst.getOperand(0); 2703 MachineOperand &Src0 = Inst.getOperand(1); 2704 DebugLoc DL = Inst.getDebugLoc(); 2705 2706 MachineBasicBlock::iterator MII = Inst; 2707 2708 const MCInstrDesc &InstDesc = get(Opcode); 2709 const TargetRegisterClass *Src0RC = Src0.isReg() ? 2710 MRI.getRegClass(Src0.getReg()) : 2711 &AMDGPU::SGPR_32RegClass; 2712 2713 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 2714 2715 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2716 AMDGPU::sub0, Src0SubRC); 2717 2718 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 2719 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 2720 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 2721 2722 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 2723 BuildMI(MBB, MII, DL, InstDesc, DestSub0) 2724 .addOperand(SrcReg0Sub0); 2725 2726 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2727 AMDGPU::sub1, Src0SubRC); 2728 2729 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 2730 BuildMI(MBB, MII, DL, InstDesc, DestSub1) 2731 .addOperand(SrcReg0Sub1); 2732 2733 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); 2734 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 2735 .addReg(DestSub0) 2736 .addImm(AMDGPU::sub0) 2737 .addReg(DestSub1) 2738 .addImm(AMDGPU::sub1); 2739 2740 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 2741 2742 // We don't need to legalizeOperands here because for a single operand, src0 2743 // will support any kind of input. 2744 2745 // Move all users of this moved value. 2746 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 2747 } 2748 2749 void SIInstrInfo::splitScalar64BitBinaryOp( 2750 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst, 2751 unsigned Opcode) const { 2752 MachineBasicBlock &MBB = *Inst.getParent(); 2753 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2754 2755 MachineOperand &Dest = Inst.getOperand(0); 2756 MachineOperand &Src0 = Inst.getOperand(1); 2757 MachineOperand &Src1 = Inst.getOperand(2); 2758 DebugLoc DL = Inst.getDebugLoc(); 2759 2760 MachineBasicBlock::iterator MII = Inst; 2761 2762 const MCInstrDesc &InstDesc = get(Opcode); 2763 const TargetRegisterClass *Src0RC = Src0.isReg() ? 2764 MRI.getRegClass(Src0.getReg()) : 2765 &AMDGPU::SGPR_32RegClass; 2766 2767 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 2768 const TargetRegisterClass *Src1RC = Src1.isReg() ? 2769 MRI.getRegClass(Src1.getReg()) : 2770 &AMDGPU::SGPR_32RegClass; 2771 2772 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); 2773 2774 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2775 AMDGPU::sub0, Src0SubRC); 2776 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 2777 AMDGPU::sub0, Src1SubRC); 2778 2779 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 2780 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 2781 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 2782 2783 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 2784 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) 2785 .addOperand(SrcReg0Sub0) 2786 .addOperand(SrcReg1Sub0); 2787 2788 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2789 AMDGPU::sub1, Src0SubRC); 2790 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 2791 AMDGPU::sub1, Src1SubRC); 2792 2793 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 2794 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) 2795 .addOperand(SrcReg0Sub1) 2796 .addOperand(SrcReg1Sub1); 2797 2798 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); 2799 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 2800 .addReg(DestSub0) 2801 .addImm(AMDGPU::sub0) 2802 .addReg(DestSub1) 2803 .addImm(AMDGPU::sub1); 2804 2805 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 2806 2807 // Try to legalize the operands in case we need to swap the order to keep it 2808 // valid. 2809 legalizeOperands(LoHalf); 2810 legalizeOperands(HiHalf); 2811 2812 // Move all users of this moved vlaue. 2813 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 2814 } 2815 2816 void SIInstrInfo::splitScalar64BitBCNT( 2817 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const { 2818 MachineBasicBlock &MBB = *Inst.getParent(); 2819 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2820 2821 MachineBasicBlock::iterator MII = Inst; 2822 DebugLoc DL = Inst.getDebugLoc(); 2823 2824 MachineOperand &Dest = Inst.getOperand(0); 2825 MachineOperand &Src = Inst.getOperand(1); 2826 2827 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); 2828 const TargetRegisterClass *SrcRC = Src.isReg() ? 2829 MRI.getRegClass(Src.getReg()) : 2830 &AMDGPU::SGPR_32RegClass; 2831 2832 unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2833 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2834 2835 const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0); 2836 2837 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 2838 AMDGPU::sub0, SrcSubRC); 2839 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 2840 AMDGPU::sub1, SrcSubRC); 2841 2842 BuildMI(MBB, MII, DL, InstDesc, MidReg) 2843 .addOperand(SrcRegSub0) 2844 .addImm(0); 2845 2846 BuildMI(MBB, MII, DL, InstDesc, ResultReg) 2847 .addOperand(SrcRegSub1) 2848 .addReg(MidReg); 2849 2850 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2851 2852 // We don't need to legalize operands here. src0 for etiher instruction can be 2853 // an SGPR, and the second input is unused or determined here. 2854 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2855 } 2856 2857 void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist, 2858 MachineInstr &Inst) const { 2859 MachineBasicBlock &MBB = *Inst.getParent(); 2860 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2861 MachineBasicBlock::iterator MII = Inst; 2862 DebugLoc DL = Inst.getDebugLoc(); 2863 2864 MachineOperand &Dest = Inst.getOperand(0); 2865 uint32_t Imm = Inst.getOperand(2).getImm(); 2866 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 2867 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 2868 2869 (void) Offset; 2870 2871 // Only sext_inreg cases handled. 2872 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && 2873 Offset == 0 && "Not implemented"); 2874 2875 if (BitWidth < 32) { 2876 unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2877 unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2878 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2879 2880 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo) 2881 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) 2882 .addImm(0) 2883 .addImm(BitWidth); 2884 2885 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) 2886 .addImm(31) 2887 .addReg(MidRegLo); 2888 2889 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 2890 .addReg(MidRegLo) 2891 .addImm(AMDGPU::sub0) 2892 .addReg(MidRegHi) 2893 .addImm(AMDGPU::sub1); 2894 2895 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2896 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2897 return; 2898 } 2899 2900 MachineOperand &Src = Inst.getOperand(1); 2901 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2902 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2903 2904 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) 2905 .addImm(31) 2906 .addReg(Src.getReg(), 0, AMDGPU::sub0); 2907 2908 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 2909 .addReg(Src.getReg(), 0, AMDGPU::sub0) 2910 .addImm(AMDGPU::sub0) 2911 .addReg(TmpReg) 2912 .addImm(AMDGPU::sub1); 2913 2914 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2915 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2916 } 2917 2918 void SIInstrInfo::addUsersToMoveToVALUWorklist( 2919 unsigned DstReg, 2920 MachineRegisterInfo &MRI, 2921 SmallVectorImpl<MachineInstr *> &Worklist) const { 2922 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), 2923 E = MRI.use_end(); I != E; ++I) { 2924 MachineInstr &UseMI = *I->getParent(); 2925 if (!canReadVGPR(UseMI, I.getOperandNo())) { 2926 Worklist.push_back(&UseMI); 2927 } 2928 } 2929 } 2930 2931 void SIInstrInfo::addSCCDefUsersToVALUWorklist( 2932 MachineInstr &SCCDefInst, SmallVectorImpl<MachineInstr *> &Worklist) const { 2933 // This assumes that all the users of SCC are in the same block 2934 // as the SCC def. 2935 for (MachineInstr &MI : 2936 llvm::make_range(MachineBasicBlock::iterator(SCCDefInst), 2937 SCCDefInst.getParent()->end())) { 2938 // Exit if we find another SCC def. 2939 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC) != -1) 2940 return; 2941 2942 if (MI.findRegisterUseOperandIdx(AMDGPU::SCC) != -1) 2943 Worklist.push_back(&MI); 2944 } 2945 } 2946 2947 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( 2948 const MachineInstr &Inst) const { 2949 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); 2950 2951 switch (Inst.getOpcode()) { 2952 // For target instructions, getOpRegClass just returns the virtual register 2953 // class associated with the operand, so we need to find an equivalent VGPR 2954 // register class in order to move the instruction to the VALU. 2955 case AMDGPU::COPY: 2956 case AMDGPU::PHI: 2957 case AMDGPU::REG_SEQUENCE: 2958 case AMDGPU::INSERT_SUBREG: 2959 if (RI.hasVGPRs(NewDstRC)) 2960 return nullptr; 2961 2962 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 2963 if (!NewDstRC) 2964 return nullptr; 2965 return NewDstRC; 2966 default: 2967 return NewDstRC; 2968 } 2969 } 2970 2971 // Find the one SGPR operand we are allowed to use. 2972 unsigned SIInstrInfo::findUsedSGPR(const MachineInstr &MI, 2973 int OpIndices[3]) const { 2974 const MCInstrDesc &Desc = MI.getDesc(); 2975 2976 // Find the one SGPR operand we are allowed to use. 2977 // 2978 // First we need to consider the instruction's operand requirements before 2979 // legalizing. Some operands are required to be SGPRs, such as implicit uses 2980 // of VCC, but we are still bound by the constant bus requirement to only use 2981 // one. 2982 // 2983 // If the operand's class is an SGPR, we can never move it. 2984 2985 unsigned SGPRReg = findImplicitSGPRRead(MI); 2986 if (SGPRReg != AMDGPU::NoRegister) 2987 return SGPRReg; 2988 2989 unsigned UsedSGPRs[3] = { AMDGPU::NoRegister }; 2990 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2991 2992 for (unsigned i = 0; i < 3; ++i) { 2993 int Idx = OpIndices[i]; 2994 if (Idx == -1) 2995 break; 2996 2997 const MachineOperand &MO = MI.getOperand(Idx); 2998 if (!MO.isReg()) 2999 continue; 3000 3001 // Is this operand statically required to be an SGPR based on the operand 3002 // constraints? 3003 const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass); 3004 bool IsRequiredSGPR = RI.isSGPRClass(OpRC); 3005 if (IsRequiredSGPR) 3006 return MO.getReg(); 3007 3008 // If this could be a VGPR or an SGPR, Check the dynamic register class. 3009 unsigned Reg = MO.getReg(); 3010 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); 3011 if (RI.isSGPRClass(RegRC)) 3012 UsedSGPRs[i] = Reg; 3013 } 3014 3015 // We don't have a required SGPR operand, so we have a bit more freedom in 3016 // selecting operands to move. 3017 3018 // Try to select the most used SGPR. If an SGPR is equal to one of the 3019 // others, we choose that. 3020 // 3021 // e.g. 3022 // V_FMA_F32 v0, s0, s0, s0 -> No moves 3023 // V_FMA_F32 v0, s0, s1, s0 -> Move s1 3024 3025 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should 3026 // prefer those. 3027 3028 if (UsedSGPRs[0] != AMDGPU::NoRegister) { 3029 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) 3030 SGPRReg = UsedSGPRs[0]; 3031 } 3032 3033 if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) { 3034 if (UsedSGPRs[1] == UsedSGPRs[2]) 3035 SGPRReg = UsedSGPRs[1]; 3036 } 3037 3038 return SGPRReg; 3039 } 3040 3041 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, 3042 unsigned OperandName) const { 3043 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); 3044 if (Idx == -1) 3045 return nullptr; 3046 3047 return &MI.getOperand(Idx); 3048 } 3049 3050 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { 3051 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; 3052 if (ST.isAmdHsaOS()) { 3053 RsrcDataFormat |= (1ULL << 56); 3054 3055 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) 3056 // Set MTYPE = 2 3057 RsrcDataFormat |= (2ULL << 59); 3058 } 3059 3060 return RsrcDataFormat; 3061 } 3062 3063 uint64_t SIInstrInfo::getScratchRsrcWords23() const { 3064 uint64_t Rsrc23 = getDefaultRsrcDataFormat() | 3065 AMDGPU::RSRC_TID_ENABLE | 3066 0xffffffff; // Size; 3067 3068 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1; 3069 3070 Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT) | 3071 // IndexStride = 64 3072 (UINT64_C(3) << AMDGPU::RSRC_INDEX_STRIDE_SHIFT); 3073 3074 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. 3075 // Clear them unless we want a huge stride. 3076 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) 3077 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; 3078 3079 return Rsrc23; 3080 } 3081 3082 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { 3083 unsigned Opc = MI.getOpcode(); 3084 3085 return isSMRD(Opc); 3086 } 3087 3088 bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr &MI) const { 3089 unsigned Opc = MI.getOpcode(); 3090 3091 return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc); 3092 } 3093 3094 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 3095 unsigned Opc = MI.getOpcode(); 3096 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); 3097 unsigned DescSize = Desc.getSize(); 3098 3099 // If we have a definitive size, we can use it. Otherwise we need to inspect 3100 // the operands to know the size. 3101 if (DescSize == 8 || DescSize == 4) 3102 return DescSize; 3103 3104 assert(DescSize == 0); 3105 3106 // 4-byte instructions may have a 32-bit literal encoded after them. Check 3107 // operands that coud ever be literals. 3108 if (isVALU(MI) || isSALU(MI)) { 3109 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 3110 if (Src0Idx == -1) 3111 return 4; // No operands. 3112 3113 if (isLiteralConstant(MI.getOperand(Src0Idx), getOpSize(MI, Src0Idx))) 3114 return 8; 3115 3116 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 3117 if (Src1Idx == -1) 3118 return 4; 3119 3120 if (isLiteralConstant(MI.getOperand(Src1Idx), getOpSize(MI, Src1Idx))) 3121 return 8; 3122 3123 return 4; 3124 } 3125 3126 switch (Opc) { 3127 case TargetOpcode::IMPLICIT_DEF: 3128 case TargetOpcode::KILL: 3129 case TargetOpcode::DBG_VALUE: 3130 case TargetOpcode::BUNDLE: 3131 case TargetOpcode::EH_LABEL: 3132 return 0; 3133 case TargetOpcode::INLINEASM: { 3134 const MachineFunction *MF = MI.getParent()->getParent(); 3135 const char *AsmStr = MI.getOperand(0).getSymbolName(); 3136 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 3137 } 3138 default: 3139 llvm_unreachable("unable to find instruction size"); 3140 } 3141 } 3142 3143 ArrayRef<std::pair<int, const char *>> 3144 SIInstrInfo::getSerializableTargetIndices() const { 3145 static const std::pair<int, const char *> TargetIndices[] = { 3146 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, 3147 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, 3148 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, 3149 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, 3150 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; 3151 return makeArrayRef(TargetIndices); 3152 } 3153 3154 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The 3155 /// post-RA version of misched uses CreateTargetMIHazardRecognizer. 3156 ScheduleHazardRecognizer * 3157 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 3158 const ScheduleDAG *DAG) const { 3159 return new GCNHazardRecognizer(DAG->MF); 3160 } 3161 3162 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer 3163 /// pass. 3164 ScheduleHazardRecognizer * 3165 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 3166 return new GCNHazardRecognizer(MF); 3167 } 3168