1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interfaces that Sparc uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SparcISelLowering.h" 16 #include "MCTargetDesc/SparcMCExpr.h" 17 #include "SparcMachineFunctionInfo.h" 18 #include "SparcRegisterInfo.h" 19 #include "SparcTargetMachine.h" 20 #include "SparcTargetObjectFile.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/ErrorHandling.h" 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Calling Convention Implementation 37 //===----------------------------------------------------------------------===// 38 39 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 40 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 41 ISD::ArgFlagsTy &ArgFlags, CCState &State) 42 { 43 assert (ArgFlags.isSRet()); 44 45 // Assign SRet argument. 46 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 47 0, 48 LocVT, LocInfo)); 49 return true; 50 } 51 52 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 53 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 54 ISD::ArgFlagsTy &ArgFlags, CCState &State) 55 { 56 static const MCPhysReg RegList[] = { 57 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 58 }; 59 // Try to get first reg. 60 if (unsigned Reg = State.AllocateReg(RegList)) { 61 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 62 } else { 63 // Assign whole thing in stack. 64 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 65 State.AllocateStack(8,4), 66 LocVT, LocInfo)); 67 return true; 68 } 69 70 // Try to get second reg. 71 if (unsigned Reg = State.AllocateReg(RegList)) 72 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 73 else 74 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 75 State.AllocateStack(4,4), 76 LocVT, LocInfo)); 77 return true; 78 } 79 80 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 81 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 82 ISD::ArgFlagsTy &ArgFlags, CCState &State) 83 { 84 static const MCPhysReg RegList[] = { 85 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 86 }; 87 88 // Try to get first reg. 89 if (unsigned Reg = State.AllocateReg(RegList)) 90 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 91 else 92 return false; 93 94 // Try to get second reg. 95 if (unsigned Reg = State.AllocateReg(RegList)) 96 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 97 else 98 return false; 99 100 return true; 101 } 102 103 // Allocate a full-sized argument for the 64-bit ABI. 104 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, 105 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 106 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 107 assert((LocVT == MVT::f32 || LocVT == MVT::f128 108 || LocVT.getSizeInBits() == 64) && 109 "Can't handle non-64 bits locations"); 110 111 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 112 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 113 unsigned alignment = (LocVT == MVT::f128) ? 16 : 8; 114 unsigned Offset = State.AllocateStack(size, alignment); 115 unsigned Reg = 0; 116 117 if (LocVT == MVT::i64 && Offset < 6*8) 118 // Promote integers to %i0-%i5. 119 Reg = SP::I0 + Offset/8; 120 else if (LocVT == MVT::f64 && Offset < 16*8) 121 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 122 Reg = SP::D0 + Offset/8; 123 else if (LocVT == MVT::f32 && Offset < 16*8) 124 // Promote floats to %f1, %f3, ... 125 Reg = SP::F1 + Offset/4; 126 else if (LocVT == MVT::f128 && Offset < 16*8) 127 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 128 Reg = SP::Q0 + Offset/16; 129 130 // Promote to register when possible, otherwise use the stack slot. 131 if (Reg) { 132 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 133 return true; 134 } 135 136 // This argument goes on the stack in an 8-byte slot. 137 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 138 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 139 if (LocVT == MVT::f32) 140 Offset += 4; 141 142 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 143 return true; 144 } 145 146 // Allocate a half-sized argument for the 64-bit ABI. 147 // 148 // This is used when passing { float, int } structs by value in registers. 149 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, 150 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 151 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 152 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 153 unsigned Offset = State.AllocateStack(4, 4); 154 155 if (LocVT == MVT::f32 && Offset < 16*8) { 156 // Promote floats to %f0-%f31. 157 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 158 LocVT, LocInfo)); 159 return true; 160 } 161 162 if (LocVT == MVT::i32 && Offset < 6*8) { 163 // Promote integers to %i0-%i5, using half the register. 164 unsigned Reg = SP::I0 + Offset/8; 165 LocVT = MVT::i64; 166 LocInfo = CCValAssign::AExt; 167 168 // Set the Custom bit if this i32 goes in the high bits of a register. 169 if (Offset % 8 == 0) 170 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 171 LocVT, LocInfo)); 172 else 173 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 174 return true; 175 } 176 177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 178 return true; 179 } 180 181 #include "SparcGenCallingConv.inc" 182 183 // The calling conventions in SparcCallingConv.td are described in terms of the 184 // callee's register window. This function translates registers to the 185 // corresponding caller window %o register. 186 static unsigned toCallerWindow(unsigned Reg) { 187 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 188 "Unexpected enum"); 189 if (Reg >= SP::I0 && Reg <= SP::I7) 190 return Reg - SP::I0 + SP::O0; 191 return Reg; 192 } 193 194 SDValue 195 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 196 bool IsVarArg, 197 const SmallVectorImpl<ISD::OutputArg> &Outs, 198 const SmallVectorImpl<SDValue> &OutVals, 199 const SDLoc &DL, SelectionDAG &DAG) const { 200 if (Subtarget->is64Bit()) 201 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 202 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 203 } 204 205 SDValue 206 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 207 bool IsVarArg, 208 const SmallVectorImpl<ISD::OutputArg> &Outs, 209 const SmallVectorImpl<SDValue> &OutVals, 210 const SDLoc &DL, SelectionDAG &DAG) const { 211 MachineFunction &MF = DAG.getMachineFunction(); 212 213 // CCValAssign - represent the assignment of the return value to locations. 214 SmallVector<CCValAssign, 16> RVLocs; 215 216 // CCState - Info about the registers and stack slot. 217 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 218 *DAG.getContext()); 219 220 // Analyze return values. 221 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 222 223 SDValue Flag; 224 SmallVector<SDValue, 4> RetOps(1, Chain); 225 // Make room for the return address offset. 226 RetOps.push_back(SDValue()); 227 228 // Copy the result values into the output registers. 229 for (unsigned i = 0, realRVLocIdx = 0; 230 i != RVLocs.size(); 231 ++i, ++realRVLocIdx) { 232 CCValAssign &VA = RVLocs[i]; 233 assert(VA.isRegLoc() && "Can only return in registers!"); 234 235 SDValue Arg = OutVals[realRVLocIdx]; 236 237 if (VA.needsCustom()) { 238 assert(VA.getLocVT() == MVT::v2i32); 239 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 240 // happen by default if this wasn't a legal type) 241 242 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 243 Arg, 244 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 245 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 246 Arg, 247 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 248 249 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); 250 Flag = Chain.getValue(1); 251 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 252 VA = RVLocs[++i]; // skip ahead to next loc 253 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 254 Flag); 255 } else 256 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 257 258 // Guarantee that all emitted copies are stuck together with flags. 259 Flag = Chain.getValue(1); 260 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 261 } 262 263 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 264 // If the function returns a struct, copy the SRetReturnReg to I0 265 if (MF.getFunction()->hasStructRetAttr()) { 266 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 267 unsigned Reg = SFI->getSRetReturnReg(); 268 if (!Reg) 269 llvm_unreachable("sret virtual register not created in the entry block"); 270 auto PtrVT = getPointerTy(DAG.getDataLayout()); 271 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 272 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); 273 Flag = Chain.getValue(1); 274 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 275 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 276 } 277 278 RetOps[0] = Chain; // Update chain. 279 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 280 281 // Add the flag if we have it. 282 if (Flag.getNode()) 283 RetOps.push_back(Flag); 284 285 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 286 } 287 288 // Lower return values for the 64-bit ABI. 289 // Return values are passed the exactly the same way as function arguments. 290 SDValue 291 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 292 bool IsVarArg, 293 const SmallVectorImpl<ISD::OutputArg> &Outs, 294 const SmallVectorImpl<SDValue> &OutVals, 295 const SDLoc &DL, SelectionDAG &DAG) const { 296 // CCValAssign - represent the assignment of the return value to locations. 297 SmallVector<CCValAssign, 16> RVLocs; 298 299 // CCState - Info about the registers and stack slot. 300 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 301 *DAG.getContext()); 302 303 // Analyze return values. 304 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 305 306 SDValue Flag; 307 SmallVector<SDValue, 4> RetOps(1, Chain); 308 309 // The second operand on the return instruction is the return address offset. 310 // The return address is always %i7+8 with the 64-bit ABI. 311 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 312 313 // Copy the result values into the output registers. 314 for (unsigned i = 0; i != RVLocs.size(); ++i) { 315 CCValAssign &VA = RVLocs[i]; 316 assert(VA.isRegLoc() && "Can only return in registers!"); 317 SDValue OutVal = OutVals[i]; 318 319 // Integer return values must be sign or zero extended by the callee. 320 switch (VA.getLocInfo()) { 321 case CCValAssign::Full: break; 322 case CCValAssign::SExt: 323 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 324 break; 325 case CCValAssign::ZExt: 326 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 327 break; 328 case CCValAssign::AExt: 329 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 330 break; 331 default: 332 llvm_unreachable("Unknown loc info!"); 333 } 334 335 // The custom bit on an i32 return value indicates that it should be passed 336 // in the high bits of the register. 337 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 338 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 339 DAG.getConstant(32, DL, MVT::i32)); 340 341 // The next value may go in the low bits of the same register. 342 // Handle both at once. 343 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 344 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 345 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 346 // Skip the next value, it's already done. 347 ++i; 348 } 349 } 350 351 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 352 353 // Guarantee that all emitted copies are stuck together with flags. 354 Flag = Chain.getValue(1); 355 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 356 } 357 358 RetOps[0] = Chain; // Update chain. 359 360 // Add the flag if we have it. 361 if (Flag.getNode()) 362 RetOps.push_back(Flag); 363 364 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 365 } 366 367 SDValue SparcTargetLowering::LowerFormalArguments( 368 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 369 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 370 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 371 if (Subtarget->is64Bit()) 372 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 373 DL, DAG, InVals); 374 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 375 DL, DAG, InVals); 376 } 377 378 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 379 /// passed in either one or two GPRs, including FP values. TODO: we should 380 /// pass FP values in FP registers for fastcc functions. 381 SDValue SparcTargetLowering::LowerFormalArguments_32( 382 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 383 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 384 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 385 MachineFunction &MF = DAG.getMachineFunction(); 386 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 387 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 388 389 // Assign locations to all of the incoming arguments. 390 SmallVector<CCValAssign, 16> ArgLocs; 391 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 392 *DAG.getContext()); 393 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 394 395 const unsigned StackOffset = 92; 396 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 397 398 unsigned InIdx = 0; 399 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 400 CCValAssign &VA = ArgLocs[i]; 401 402 if (Ins[InIdx].Flags.isSRet()) { 403 if (InIdx != 0) 404 report_fatal_error("sparc only supports sret on the first parameter"); 405 // Get SRet from [%fp+64]. 406 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, 64, true); 407 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 408 SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, 409 MachinePointerInfo(), 410 false, false, false, 0); 411 InVals.push_back(Arg); 412 continue; 413 } 414 415 if (VA.isRegLoc()) { 416 if (VA.needsCustom()) { 417 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 418 419 unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 420 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 421 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 422 423 assert(i+1 < e); 424 CCValAssign &NextVA = ArgLocs[++i]; 425 426 SDValue LoVal; 427 if (NextVA.isMemLoc()) { 428 int FrameIdx = MF.getFrameInfo()-> 429 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 430 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 431 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, 432 MachinePointerInfo(), 433 false, false, false, 0); 434 } else { 435 unsigned loReg = MF.addLiveIn(NextVA.getLocReg(), 436 &SP::IntRegsRegClass); 437 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 438 } 439 440 if (IsLittleEndian) 441 std::swap(LoVal, HiVal); 442 443 SDValue WholeValue = 444 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 445 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 446 InVals.push_back(WholeValue); 447 continue; 448 } 449 unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 450 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 451 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 452 if (VA.getLocVT() == MVT::f32) 453 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 454 else if (VA.getLocVT() != MVT::i32) { 455 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 456 DAG.getValueType(VA.getLocVT())); 457 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 458 } 459 InVals.push_back(Arg); 460 continue; 461 } 462 463 assert(VA.isMemLoc()); 464 465 unsigned Offset = VA.getLocMemOffset()+StackOffset; 466 auto PtrVT = getPointerTy(DAG.getDataLayout()); 467 468 if (VA.needsCustom()) { 469 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 470 // If it is double-word aligned, just load. 471 if (Offset % 8 == 0) { 472 int FI = MF.getFrameInfo()->CreateFixedObject(8, 473 Offset, 474 true); 475 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 476 SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, 477 MachinePointerInfo(), 478 false,false, false, 0); 479 InVals.push_back(Load); 480 continue; 481 } 482 483 int FI = MF.getFrameInfo()->CreateFixedObject(4, 484 Offset, 485 true); 486 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 487 SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, 488 MachinePointerInfo(), 489 false, false, false, 0); 490 int FI2 = MF.getFrameInfo()->CreateFixedObject(4, 491 Offset+4, 492 true); 493 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 494 495 SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, 496 MachinePointerInfo(), 497 false, false, false, 0); 498 499 if (IsLittleEndian) 500 std::swap(LoVal, HiVal); 501 502 SDValue WholeValue = 503 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 504 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 505 InVals.push_back(WholeValue); 506 continue; 507 } 508 509 int FI = MF.getFrameInfo()->CreateFixedObject(4, 510 Offset, 511 true); 512 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 513 SDValue Load ; 514 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 515 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, 516 MachinePointerInfo(), 517 false, false, false, 0); 518 } else if (VA.getValVT() == MVT::f128) { 519 report_fatal_error("SPARCv8 does not handle f128 in calls; " 520 "pass indirectly"); 521 } else { 522 // We shouldn't see any other value types here. 523 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 524 } 525 InVals.push_back(Load); 526 } 527 528 if (MF.getFunction()->hasStructRetAttr()) { 529 // Copy the SRet Argument to SRetReturnReg. 530 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 531 unsigned Reg = SFI->getSRetReturnReg(); 532 if (!Reg) { 533 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 534 SFI->setSRetReturnReg(Reg); 535 } 536 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 537 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 538 } 539 540 // Store remaining ArgRegs to the stack if this is a varargs function. 541 if (isVarArg) { 542 static const MCPhysReg ArgRegs[] = { 543 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 544 }; 545 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 546 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 547 unsigned ArgOffset = CCInfo.getNextStackOffset(); 548 if (NumAllocated == 6) 549 ArgOffset += StackOffset; 550 else { 551 assert(!ArgOffset); 552 ArgOffset = 68+4*NumAllocated; 553 } 554 555 // Remember the vararg offset for the va_start implementation. 556 FuncInfo->setVarArgsFrameOffset(ArgOffset); 557 558 std::vector<SDValue> OutChains; 559 560 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 561 unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 562 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 563 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 564 565 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, 566 true); 567 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 568 569 OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, 570 MachinePointerInfo(), 571 false, false, 0)); 572 ArgOffset += 4; 573 } 574 575 if (!OutChains.empty()) { 576 OutChains.push_back(Chain); 577 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 578 } 579 } 580 581 return Chain; 582 } 583 584 // Lower formal arguments for the 64 bit ABI. 585 SDValue SparcTargetLowering::LowerFormalArguments_64( 586 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 587 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 588 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 589 MachineFunction &MF = DAG.getMachineFunction(); 590 591 // Analyze arguments according to CC_Sparc64. 592 SmallVector<CCValAssign, 16> ArgLocs; 593 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 594 *DAG.getContext()); 595 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 596 597 // The argument array begins at %fp+BIAS+128, after the register save area. 598 const unsigned ArgArea = 128; 599 600 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 601 CCValAssign &VA = ArgLocs[i]; 602 if (VA.isRegLoc()) { 603 // This argument is passed in a register. 604 // All integer register arguments are promoted by the caller to i64. 605 606 // Create a virtual register for the promoted live-in value. 607 unsigned VReg = MF.addLiveIn(VA.getLocReg(), 608 getRegClassFor(VA.getLocVT())); 609 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 610 611 // Get the high bits for i32 struct elements. 612 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 613 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 614 DAG.getConstant(32, DL, MVT::i32)); 615 616 // The caller promoted the argument, so insert an Assert?ext SDNode so we 617 // won't promote the value again in this function. 618 switch (VA.getLocInfo()) { 619 case CCValAssign::SExt: 620 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 621 DAG.getValueType(VA.getValVT())); 622 break; 623 case CCValAssign::ZExt: 624 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 625 DAG.getValueType(VA.getValVT())); 626 break; 627 default: 628 break; 629 } 630 631 // Truncate the register down to the argument type. 632 if (VA.isExtInLoc()) 633 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 634 635 InVals.push_back(Arg); 636 continue; 637 } 638 639 // The registers are exhausted. This argument was passed on the stack. 640 assert(VA.isMemLoc()); 641 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 642 // beginning of the arguments area at %fp+BIAS+128. 643 unsigned Offset = VA.getLocMemOffset() + ArgArea; 644 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 645 // Adjust offset for extended arguments, SPARC is big-endian. 646 // The caller will have written the full slot with extended bytes, but we 647 // prefer our own extending loads. 648 if (VA.isExtInLoc()) 649 Offset += 8 - ValSize; 650 int FI = MF.getFrameInfo()->CreateFixedObject(ValSize, Offset, true); 651 InVals.push_back(DAG.getLoad( 652 VA.getValVT(), DL, Chain, 653 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 654 MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0)); 655 } 656 657 if (!IsVarArg) 658 return Chain; 659 660 // This function takes variable arguments, some of which may have been passed 661 // in registers %i0-%i5. Variable floating point arguments are never passed 662 // in floating point registers. They go on %i0-%i5 or on the stack like 663 // integer arguments. 664 // 665 // The va_start intrinsic needs to know the offset to the first variable 666 // argument. 667 unsigned ArgOffset = CCInfo.getNextStackOffset(); 668 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 669 // Skip the 128 bytes of register save area. 670 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 671 Subtarget->getStackPointerBias()); 672 673 // Save the variable arguments that were passed in registers. 674 // The caller is required to reserve stack space for 6 arguments regardless 675 // of how many arguments were actually passed. 676 SmallVector<SDValue, 8> OutChains; 677 for (; ArgOffset < 6*8; ArgOffset += 8) { 678 unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 679 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 680 int FI = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset + ArgArea, true); 681 auto PtrVT = getPointerTy(MF.getDataLayout()); 682 OutChains.push_back(DAG.getStore( 683 Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 684 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 685 } 686 687 if (!OutChains.empty()) 688 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 689 690 return Chain; 691 } 692 693 SDValue 694 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 695 SmallVectorImpl<SDValue> &InVals) const { 696 if (Subtarget->is64Bit()) 697 return LowerCall_64(CLI, InVals); 698 return LowerCall_32(CLI, InVals); 699 } 700 701 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 702 ImmutableCallSite *CS) { 703 if (CS) 704 return CS->hasFnAttr(Attribute::ReturnsTwice); 705 706 const Function *CalleeFn = nullptr; 707 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 708 CalleeFn = dyn_cast<Function>(G->getGlobal()); 709 } else if (ExternalSymbolSDNode *E = 710 dyn_cast<ExternalSymbolSDNode>(Callee)) { 711 const Function *Fn = DAG.getMachineFunction().getFunction(); 712 const Module *M = Fn->getParent(); 713 const char *CalleeName = E->getSymbol(); 714 CalleeFn = M->getFunction(CalleeName); 715 } 716 717 if (!CalleeFn) 718 return false; 719 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 720 } 721 722 // Lower a call for the 32-bit ABI. 723 SDValue 724 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 725 SmallVectorImpl<SDValue> &InVals) const { 726 SelectionDAG &DAG = CLI.DAG; 727 SDLoc &dl = CLI.DL; 728 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 729 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 730 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 731 SDValue Chain = CLI.Chain; 732 SDValue Callee = CLI.Callee; 733 bool &isTailCall = CLI.IsTailCall; 734 CallingConv::ID CallConv = CLI.CallConv; 735 bool isVarArg = CLI.IsVarArg; 736 737 // Sparc target does not yet support tail call optimization. 738 isTailCall = false; 739 740 // Analyze operands of the call, assigning locations to each operand. 741 SmallVector<CCValAssign, 16> ArgLocs; 742 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 743 *DAG.getContext()); 744 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 745 746 // Get the size of the outgoing arguments stack space requirement. 747 unsigned ArgsSize = CCInfo.getNextStackOffset(); 748 749 // Keep stack frames 8-byte aligned. 750 ArgsSize = (ArgsSize+7) & ~7; 751 752 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 753 754 // Create local copies for byval args. 755 SmallVector<SDValue, 8> ByValArgs; 756 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 757 ISD::ArgFlagsTy Flags = Outs[i].Flags; 758 if (!Flags.isByVal()) 759 continue; 760 761 SDValue Arg = OutVals[i]; 762 unsigned Size = Flags.getByValSize(); 763 unsigned Align = Flags.getByValAlign(); 764 765 if (Size > 0U) { 766 int FI = MFI->CreateStackObject(Size, Align, false); 767 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 768 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 769 770 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align, 771 false, // isVolatile, 772 (Size <= 32), // AlwaysInline if size <= 32, 773 false, // isTailCall 774 MachinePointerInfo(), MachinePointerInfo()); 775 ByValArgs.push_back(FIPtr); 776 } 777 else { 778 SDValue nullVal; 779 ByValArgs.push_back(nullVal); 780 } 781 } 782 783 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), 784 dl); 785 786 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 787 SmallVector<SDValue, 8> MemOpChains; 788 789 const unsigned StackOffset = 92; 790 bool hasStructRetAttr = false; 791 // Walk the register/memloc assignments, inserting copies/loads. 792 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 793 i != e; 794 ++i, ++realArgIdx) { 795 CCValAssign &VA = ArgLocs[i]; 796 SDValue Arg = OutVals[realArgIdx]; 797 798 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 799 800 // Use local copy if it is a byval arg. 801 if (Flags.isByVal()) { 802 Arg = ByValArgs[byvalArgIdx++]; 803 if (!Arg) { 804 continue; 805 } 806 } 807 808 // Promote the value if needed. 809 switch (VA.getLocInfo()) { 810 default: llvm_unreachable("Unknown loc info!"); 811 case CCValAssign::Full: break; 812 case CCValAssign::SExt: 813 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 814 break; 815 case CCValAssign::ZExt: 816 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 817 break; 818 case CCValAssign::AExt: 819 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 820 break; 821 case CCValAssign::BCvt: 822 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 823 break; 824 } 825 826 if (Flags.isSRet()) { 827 assert(VA.needsCustom()); 828 // store SRet argument in %sp+64 829 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 830 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 831 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 832 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 833 MachinePointerInfo(), 834 false, false, 0)); 835 hasStructRetAttr = true; 836 continue; 837 } 838 839 if (VA.needsCustom()) { 840 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 841 842 if (VA.isMemLoc()) { 843 unsigned Offset = VA.getLocMemOffset() + StackOffset; 844 // if it is double-word aligned, just store. 845 if (Offset % 8 == 0) { 846 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 847 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 848 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 849 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 850 MachinePointerInfo(), 851 false, false, 0)); 852 continue; 853 } 854 } 855 856 if (VA.getLocVT() == MVT::f64) { 857 // Move from the float value from float registers into the 858 // integer registers. 859 860 // TODO: The f64 -> v2i32 conversion is super-inefficient for 861 // constants: it sticks them in the constant pool, then loads 862 // to a fp register, then stores to temp memory, then loads to 863 // integer registers. 864 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 865 } 866 867 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 868 Arg, 869 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 870 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 871 Arg, 872 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 873 874 if (VA.isRegLoc()) { 875 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 876 assert(i+1 != e); 877 CCValAssign &NextVA = ArgLocs[++i]; 878 if (NextVA.isRegLoc()) { 879 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 880 } else { 881 // Store the second part in stack. 882 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 883 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 884 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 885 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 886 MemOpChains.push_back(DAG.getStore(Chain, dl, Part1, PtrOff, 887 MachinePointerInfo(), 888 false, false, 0)); 889 } 890 } else { 891 unsigned Offset = VA.getLocMemOffset() + StackOffset; 892 // Store the first part. 893 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 894 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 895 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 896 MemOpChains.push_back(DAG.getStore(Chain, dl, Part0, PtrOff, 897 MachinePointerInfo(), 898 false, false, 0)); 899 // Store the second part. 900 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 901 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 902 MemOpChains.push_back(DAG.getStore(Chain, dl, Part1, PtrOff, 903 MachinePointerInfo(), 904 false, false, 0)); 905 } 906 continue; 907 } 908 909 // Arguments that can be passed on register must be kept at 910 // RegsToPass vector 911 if (VA.isRegLoc()) { 912 if (VA.getLocVT() != MVT::f32) { 913 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 914 continue; 915 } 916 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 917 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 918 continue; 919 } 920 921 assert(VA.isMemLoc()); 922 923 // Create a store off the stack pointer for this argument. 924 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 925 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 926 dl); 927 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 928 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 929 MachinePointerInfo(), 930 false, false, 0)); 931 } 932 933 934 // Emit all stores, make sure the occur before any copies into physregs. 935 if (!MemOpChains.empty()) 936 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 937 938 // Build a sequence of copy-to-reg nodes chained together with token 939 // chain and flag operands which copy the outgoing args into registers. 940 // The InFlag in necessary since all emitted instructions must be 941 // stuck together. 942 SDValue InFlag; 943 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 944 unsigned Reg = toCallerWindow(RegsToPass[i].first); 945 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); 946 InFlag = Chain.getValue(1); 947 } 948 949 unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0; 950 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS); 951 952 // If the callee is a GlobalAddress node (quite common, every direct call is) 953 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 954 // Likewise ExternalSymbol -> TargetExternalSymbol. 955 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; 956 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 957 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 958 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 959 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 960 961 // Returns a chain & a flag for retval copy to use 962 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 963 SmallVector<SDValue, 8> Ops; 964 Ops.push_back(Chain); 965 Ops.push_back(Callee); 966 if (hasStructRetAttr) 967 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 968 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 969 Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first), 970 RegsToPass[i].second.getValueType())); 971 972 // Add a register mask operand representing the call-preserved registers. 973 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 974 const uint32_t *Mask = 975 ((hasReturnsTwice) 976 ? TRI->getRTCallPreservedMask(CallConv) 977 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 978 assert(Mask && "Missing call preserved mask for calling convention"); 979 Ops.push_back(DAG.getRegisterMask(Mask)); 980 981 if (InFlag.getNode()) 982 Ops.push_back(InFlag); 983 984 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 985 InFlag = Chain.getValue(1); 986 987 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), 988 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 989 InFlag = Chain.getValue(1); 990 991 // Assign locations to each value returned by this call. 992 SmallVector<CCValAssign, 16> RVLocs; 993 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 994 *DAG.getContext()); 995 996 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 997 998 // Copy all of the result registers out of their specified physreg. 999 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1000 if (RVLocs[i].getLocVT() == MVT::v2i32) { 1001 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 1002 SDValue Lo = DAG.getCopyFromReg( 1003 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); 1004 Chain = Lo.getValue(1); 1005 InFlag = Lo.getValue(2); 1006 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 1007 DAG.getConstant(0, dl, MVT::i32)); 1008 SDValue Hi = DAG.getCopyFromReg( 1009 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); 1010 Chain = Hi.getValue(1); 1011 InFlag = Hi.getValue(2); 1012 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1013 DAG.getConstant(1, dl, MVT::i32)); 1014 InVals.push_back(Vec); 1015 } else { 1016 Chain = 1017 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1018 RVLocs[i].getValVT(), InFlag) 1019 .getValue(1); 1020 InFlag = Chain.getValue(2); 1021 InVals.push_back(Chain.getValue(0)); 1022 } 1023 } 1024 1025 return Chain; 1026 } 1027 1028 // FIXME? Maybe this could be a TableGen attribute on some registers and 1029 // this table could be generated automatically from RegInfo. 1030 unsigned SparcTargetLowering::getRegisterByName(const char* RegName, EVT VT, 1031 SelectionDAG &DAG) const { 1032 unsigned Reg = StringSwitch<unsigned>(RegName) 1033 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1034 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1035 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1036 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1037 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1038 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1039 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1040 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1041 .Default(0); 1042 1043 if (Reg) 1044 return Reg; 1045 1046 report_fatal_error("Invalid register name global variable"); 1047 } 1048 1049 // This functions returns true if CalleeName is a ABI function that returns 1050 // a long double (fp128). 1051 static bool isFP128ABICall(const char *CalleeName) 1052 { 1053 static const char *const ABICalls[] = 1054 { "_Q_add", "_Q_sub", "_Q_mul", "_Q_div", 1055 "_Q_sqrt", "_Q_neg", 1056 "_Q_itoq", "_Q_stoq", "_Q_dtoq", "_Q_utoq", 1057 "_Q_lltoq", "_Q_ulltoq", 1058 nullptr 1059 }; 1060 for (const char * const *I = ABICalls; *I != nullptr; ++I) 1061 if (strcmp(CalleeName, *I) == 0) 1062 return true; 1063 return false; 1064 } 1065 1066 unsigned 1067 SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const 1068 { 1069 const Function *CalleeFn = nullptr; 1070 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1071 CalleeFn = dyn_cast<Function>(G->getGlobal()); 1072 } else if (ExternalSymbolSDNode *E = 1073 dyn_cast<ExternalSymbolSDNode>(Callee)) { 1074 const Function *Fn = DAG.getMachineFunction().getFunction(); 1075 const Module *M = Fn->getParent(); 1076 const char *CalleeName = E->getSymbol(); 1077 CalleeFn = M->getFunction(CalleeName); 1078 if (!CalleeFn && isFP128ABICall(CalleeName)) 1079 return 16; // Return sizeof(fp128) 1080 } 1081 1082 if (!CalleeFn) 1083 return 0; 1084 1085 // It would be nice to check for the sret attribute on CalleeFn here, 1086 // but since it is not part of the function type, any check will misfire. 1087 1088 PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType()); 1089 Type *ElementTy = Ty->getElementType(); 1090 return DAG.getDataLayout().getTypeAllocSize(ElementTy); 1091 } 1092 1093 1094 // Fixup floating point arguments in the ... part of a varargs call. 1095 // 1096 // The SPARC v9 ABI requires that floating point arguments are treated the same 1097 // as integers when calling a varargs function. This does not apply to the 1098 // fixed arguments that are part of the function's prototype. 1099 // 1100 // This function post-processes a CCValAssign array created by 1101 // AnalyzeCallOperands(). 1102 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1103 ArrayRef<ISD::OutputArg> Outs) { 1104 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1105 const CCValAssign &VA = ArgLocs[i]; 1106 MVT ValTy = VA.getLocVT(); 1107 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1108 // varargs functions. 1109 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1110 continue; 1111 // The fixed arguments to a varargs function still go in FP registers. 1112 if (Outs[VA.getValNo()].IsFixed) 1113 continue; 1114 1115 // This floating point argument should be reassigned. 1116 CCValAssign NewVA; 1117 1118 // Determine the offset into the argument array. 1119 unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1120 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1121 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1122 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1123 1124 if (Offset < 6*8) { 1125 // This argument should go in %i0-%i5. 1126 unsigned IReg = SP::I0 + Offset/8; 1127 if (ValTy == MVT::f64) 1128 // Full register, just bitconvert into i64. 1129 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), 1130 IReg, MVT::i64, CCValAssign::BCvt); 1131 else { 1132 assert(ValTy == MVT::f128 && "Unexpected type!"); 1133 // Full register, just bitconvert into i128 -- We will lower this into 1134 // two i64s in LowerCall_64. 1135 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), 1136 IReg, MVT::i128, CCValAssign::BCvt); 1137 } 1138 } else { 1139 // This needs to go to memory, we're out of integer registers. 1140 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), 1141 Offset, VA.getLocVT(), VA.getLocInfo()); 1142 } 1143 ArgLocs[i] = NewVA; 1144 } 1145 } 1146 1147 // Lower a call for the 64-bit ABI. 1148 SDValue 1149 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1150 SmallVectorImpl<SDValue> &InVals) const { 1151 SelectionDAG &DAG = CLI.DAG; 1152 SDLoc DL = CLI.DL; 1153 SDValue Chain = CLI.Chain; 1154 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1155 1156 // Sparc target does not yet support tail call optimization. 1157 CLI.IsTailCall = false; 1158 1159 // Analyze operands of the call, assigning locations to each operand. 1160 SmallVector<CCValAssign, 16> ArgLocs; 1161 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1162 *DAG.getContext()); 1163 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1164 1165 // Get the size of the outgoing arguments stack space requirement. 1166 // The stack offset computed by CC_Sparc64 includes all arguments. 1167 // Called functions expect 6 argument words to exist in the stack frame, used 1168 // or not. 1169 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); 1170 1171 // Keep stack frames 16-byte aligned. 1172 ArgsSize = alignTo(ArgsSize, 16); 1173 1174 // Varargs calls require special treatment. 1175 if (CLI.IsVarArg) 1176 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1177 1178 // Adjust the stack pointer to make room for the arguments. 1179 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1180 // with more than 6 arguments. 1181 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 1182 DL); 1183 1184 // Collect the set of registers to pass to the function and their values. 1185 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1186 // instruction. 1187 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1188 1189 // Collect chains from all the memory opeations that copy arguments to the 1190 // stack. They must follow the stack pointer adjustment above and precede the 1191 // call instruction itself. 1192 SmallVector<SDValue, 8> MemOpChains; 1193 1194 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1195 const CCValAssign &VA = ArgLocs[i]; 1196 SDValue Arg = CLI.OutVals[i]; 1197 1198 // Promote the value if needed. 1199 switch (VA.getLocInfo()) { 1200 default: 1201 llvm_unreachable("Unknown location info!"); 1202 case CCValAssign::Full: 1203 break; 1204 case CCValAssign::SExt: 1205 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1206 break; 1207 case CCValAssign::ZExt: 1208 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1209 break; 1210 case CCValAssign::AExt: 1211 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1212 break; 1213 case CCValAssign::BCvt: 1214 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1215 // SPARC does not support i128 natively. Lower it into two i64, see below. 1216 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1217 || VA.getLocVT() != MVT::i128) 1218 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1219 break; 1220 } 1221 1222 if (VA.isRegLoc()) { 1223 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1224 && VA.getLocVT() == MVT::i128) { 1225 // Store and reload into the interger register reg and reg+1. 1226 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1227 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1228 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1229 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1230 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1231 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1232 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1233 1234 // Store to %sp+BIAS+128+Offset 1235 SDValue Store = DAG.getStore(Chain, DL, Arg, HiPtrOff, 1236 MachinePointerInfo(), 1237 false, false, 0); 1238 // Load into Reg and Reg+1 1239 SDValue Hi64 = DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, 1240 MachinePointerInfo(), 1241 false, false, false, 0); 1242 SDValue Lo64 = DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, 1243 MachinePointerInfo(), 1244 false, false, false, 0); 1245 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), 1246 Hi64)); 1247 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1), 1248 Lo64)); 1249 continue; 1250 } 1251 1252 // The custom bit on an i32 return value indicates that it should be 1253 // passed in the high bits of the register. 1254 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1255 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1256 DAG.getConstant(32, DL, MVT::i32)); 1257 1258 // The next value may go in the low bits of the same register. 1259 // Handle both at once. 1260 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1261 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1262 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1263 CLI.OutVals[i+1]); 1264 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1265 // Skip the next value, it's already done. 1266 ++i; 1267 } 1268 } 1269 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); 1270 continue; 1271 } 1272 1273 assert(VA.isMemLoc()); 1274 1275 // Create a store off the stack pointer for this argument. 1276 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1277 // The argument area starts at %fp+BIAS+128 in the callee frame, 1278 // %sp+BIAS+128 in ours. 1279 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1280 Subtarget->getStackPointerBias() + 1281 128, DL); 1282 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1283 MemOpChains.push_back(DAG.getStore(Chain, DL, Arg, PtrOff, 1284 MachinePointerInfo(), 1285 false, false, 0)); 1286 } 1287 1288 // Emit all stores, make sure they occur before the call. 1289 if (!MemOpChains.empty()) 1290 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1291 1292 // Build a sequence of CopyToReg nodes glued together with token chain and 1293 // glue operands which copy the outgoing args into registers. The InGlue is 1294 // necessary since all emitted instructions must be stuck together in order 1295 // to pass the live physical registers. 1296 SDValue InGlue; 1297 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1298 Chain = DAG.getCopyToReg(Chain, DL, 1299 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1300 InGlue = Chain.getValue(1); 1301 } 1302 1303 // If the callee is a GlobalAddress node (quite common, every direct call is) 1304 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1305 // Likewise ExternalSymbol -> TargetExternalSymbol. 1306 SDValue Callee = CLI.Callee; 1307 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS); 1308 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; 1309 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1310 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1311 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1312 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1313 1314 // Build the operands for the call instruction itself. 1315 SmallVector<SDValue, 8> Ops; 1316 Ops.push_back(Chain); 1317 Ops.push_back(Callee); 1318 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1319 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1320 RegsToPass[i].second.getValueType())); 1321 1322 // Add a register mask operand representing the call-preserved registers. 1323 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1324 const uint32_t *Mask = 1325 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1326 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1327 CLI.CallConv)); 1328 assert(Mask && "Missing call preserved mask for calling convention"); 1329 Ops.push_back(DAG.getRegisterMask(Mask)); 1330 1331 // Make sure the CopyToReg nodes are glued to the call instruction which 1332 // consumes the registers. 1333 if (InGlue.getNode()) 1334 Ops.push_back(InGlue); 1335 1336 // Now the call itself. 1337 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1338 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1339 InGlue = Chain.getValue(1); 1340 1341 // Revert the stack pointer immediately after the call. 1342 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 1343 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 1344 InGlue = Chain.getValue(1); 1345 1346 // Now extract the return values. This is more or less the same as 1347 // LowerFormalArguments_64. 1348 1349 // Assign locations to each value returned by this call. 1350 SmallVector<CCValAssign, 16> RVLocs; 1351 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1352 *DAG.getContext()); 1353 1354 // Set inreg flag manually for codegen generated library calls that 1355 // return float. 1356 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && CLI.CS == nullptr) 1357 CLI.Ins[0].Flags.setInReg(); 1358 1359 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1360 1361 // Copy all of the result registers out of their specified physreg. 1362 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1363 CCValAssign &VA = RVLocs[i]; 1364 unsigned Reg = toCallerWindow(VA.getLocReg()); 1365 1366 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1367 // reside in the same register in the high and low bits. Reuse the 1368 // CopyFromReg previous node to avoid duplicate copies. 1369 SDValue RV; 1370 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1371 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1372 RV = Chain.getValue(0); 1373 1374 // But usually we'll create a new CopyFromReg for a different register. 1375 if (!RV.getNode()) { 1376 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1377 Chain = RV.getValue(1); 1378 InGlue = Chain.getValue(2); 1379 } 1380 1381 // Get the high bits for i32 struct elements. 1382 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1383 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1384 DAG.getConstant(32, DL, MVT::i32)); 1385 1386 // The callee promoted the return value, so insert an Assert?ext SDNode so 1387 // we won't promote the value again in this function. 1388 switch (VA.getLocInfo()) { 1389 case CCValAssign::SExt: 1390 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1391 DAG.getValueType(VA.getValVT())); 1392 break; 1393 case CCValAssign::ZExt: 1394 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1395 DAG.getValueType(VA.getValVT())); 1396 break; 1397 default: 1398 break; 1399 } 1400 1401 // Truncate the register down to the return value type. 1402 if (VA.isExtInLoc()) 1403 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1404 1405 InVals.push_back(RV); 1406 } 1407 1408 return Chain; 1409 } 1410 1411 //===----------------------------------------------------------------------===// 1412 // TargetLowering Implementation 1413 //===----------------------------------------------------------------------===// 1414 1415 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1416 if (AI->getOperation() == AtomicRMWInst::Xchg && 1417 AI->getType()->getPrimitiveSizeInBits() == 32) 1418 return AtomicExpansionKind::None; // Uses xchg instruction 1419 1420 return AtomicExpansionKind::CmpXChg; 1421 } 1422 1423 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1424 /// condition. 1425 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1426 switch (CC) { 1427 default: llvm_unreachable("Unknown integer condition code!"); 1428 case ISD::SETEQ: return SPCC::ICC_E; 1429 case ISD::SETNE: return SPCC::ICC_NE; 1430 case ISD::SETLT: return SPCC::ICC_L; 1431 case ISD::SETGT: return SPCC::ICC_G; 1432 case ISD::SETLE: return SPCC::ICC_LE; 1433 case ISD::SETGE: return SPCC::ICC_GE; 1434 case ISD::SETULT: return SPCC::ICC_CS; 1435 case ISD::SETULE: return SPCC::ICC_LEU; 1436 case ISD::SETUGT: return SPCC::ICC_GU; 1437 case ISD::SETUGE: return SPCC::ICC_CC; 1438 } 1439 } 1440 1441 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1442 /// FCC condition. 1443 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1444 switch (CC) { 1445 default: llvm_unreachable("Unknown fp condition code!"); 1446 case ISD::SETEQ: 1447 case ISD::SETOEQ: return SPCC::FCC_E; 1448 case ISD::SETNE: 1449 case ISD::SETUNE: return SPCC::FCC_NE; 1450 case ISD::SETLT: 1451 case ISD::SETOLT: return SPCC::FCC_L; 1452 case ISD::SETGT: 1453 case ISD::SETOGT: return SPCC::FCC_G; 1454 case ISD::SETLE: 1455 case ISD::SETOLE: return SPCC::FCC_LE; 1456 case ISD::SETGE: 1457 case ISD::SETOGE: return SPCC::FCC_GE; 1458 case ISD::SETULT: return SPCC::FCC_UL; 1459 case ISD::SETULE: return SPCC::FCC_ULE; 1460 case ISD::SETUGT: return SPCC::FCC_UG; 1461 case ISD::SETUGE: return SPCC::FCC_UGE; 1462 case ISD::SETUO: return SPCC::FCC_U; 1463 case ISD::SETO: return SPCC::FCC_O; 1464 case ISD::SETONE: return SPCC::FCC_LG; 1465 case ISD::SETUEQ: return SPCC::FCC_UE; 1466 } 1467 } 1468 1469 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1470 const SparcSubtarget &STI) 1471 : TargetLowering(TM), Subtarget(&STI) { 1472 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 1473 1474 // Instructions which use registers as conditionals examine all the 1475 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1476 // matters much whether it's ZeroOrOneBooleanContent, or 1477 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1478 // former. 1479 setBooleanContents(ZeroOrOneBooleanContent); 1480 setBooleanVectorContents(ZeroOrOneBooleanContent); 1481 1482 // Set up the register classes. 1483 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1484 if (!Subtarget->useSoftFloat()) { 1485 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1486 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1487 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1488 } 1489 if (Subtarget->is64Bit()) { 1490 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1491 } else { 1492 // On 32bit sparc, we define a double-register 32bit register 1493 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1494 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1495 1496 // ...but almost all operations must be expanded, so set that as 1497 // the default. 1498 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1499 setOperationAction(Op, MVT::v2i32, Expand); 1500 } 1501 // Truncating/extending stores/loads are also not supported. 1502 for (MVT VT : MVT::integer_vector_valuetypes()) { 1503 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1504 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1505 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1506 1507 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1508 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1509 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1510 1511 setTruncStoreAction(VT, MVT::v2i32, Expand); 1512 setTruncStoreAction(MVT::v2i32, VT, Expand); 1513 } 1514 // However, load and store *are* legal. 1515 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1516 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1517 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1518 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1519 1520 // And we need to promote i64 loads/stores into vector load/store 1521 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1522 setOperationAction(ISD::STORE, MVT::i64, Custom); 1523 1524 // Sadly, this doesn't work: 1525 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1526 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1527 } 1528 1529 // Turn FP extload into load/fextend 1530 for (MVT VT : MVT::fp_valuetypes()) { 1531 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1532 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1533 } 1534 1535 // Sparc doesn't have i1 sign extending load 1536 for (MVT VT : MVT::integer_valuetypes()) 1537 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1538 1539 // Turn FP truncstore into trunc + store. 1540 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1541 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1542 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1543 1544 // Custom legalize GlobalAddress nodes into LO/HI parts. 1545 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1546 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1547 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1548 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1549 1550 // Sparc doesn't have sext_inreg, replace them with shl/sra 1551 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1552 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1553 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1554 1555 // Sparc has no REM or DIVREM operations. 1556 setOperationAction(ISD::UREM, MVT::i32, Expand); 1557 setOperationAction(ISD::SREM, MVT::i32, Expand); 1558 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1559 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1560 1561 // ... nor does SparcV9. 1562 if (Subtarget->is64Bit()) { 1563 setOperationAction(ISD::UREM, MVT::i64, Expand); 1564 setOperationAction(ISD::SREM, MVT::i64, Expand); 1565 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1566 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1567 } 1568 1569 // Custom expand fp<->sint 1570 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1571 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1572 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1573 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1574 1575 // Custom Expand fp<->uint 1576 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1577 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1578 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1579 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1580 1581 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1582 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1583 1584 // Sparc has no select or setcc: expand to SELECT_CC. 1585 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1586 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1587 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1588 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1589 1590 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1591 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1592 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1593 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1594 1595 // Sparc doesn't have BRCOND either, it has BR_CC. 1596 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1597 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1598 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1599 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1600 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1601 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1602 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1603 1604 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1605 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1606 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1607 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1608 1609 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 1610 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 1611 1612 if (Subtarget->is64Bit()) { 1613 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1614 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1615 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1616 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1617 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1618 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1619 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1620 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1621 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1622 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1623 1624 setOperationAction(ISD::CTPOP, MVT::i64, 1625 Subtarget->usePopc() ? Legal : Expand); 1626 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1627 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1628 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1629 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1630 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1631 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1632 } 1633 1634 // ATOMICs. 1635 // Atomics are supported on SparcV9. 32-bit atomics are also 1636 // supported by some Leon SparcV8 variants. Otherwise, atomics 1637 // are unsupported. 1638 if (Subtarget->isV9() || Subtarget->hasLeonCasa()) 1639 setMaxAtomicSizeInBitsSupported(64); 1640 else 1641 setMaxAtomicSizeInBitsSupported(0); 1642 1643 setMinCmpXchgSizeInBits(32); 1644 1645 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1646 1647 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1648 1649 // Custom Lower Atomic LOAD/STORE 1650 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1651 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1652 1653 if (Subtarget->is64Bit()) { 1654 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1655 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1656 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1657 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1658 } 1659 1660 if (!Subtarget->isV9()) { 1661 // SparcV8 does not have FNEGD and FABSD. 1662 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1663 setOperationAction(ISD::FABS, MVT::f64, Custom); 1664 } 1665 1666 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1667 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1668 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1669 setOperationAction(ISD::FREM , MVT::f128, Expand); 1670 setOperationAction(ISD::FMA , MVT::f128, Expand); 1671 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1672 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1673 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1674 setOperationAction(ISD::FREM , MVT::f64, Expand); 1675 setOperationAction(ISD::FMA , MVT::f64, Expand); 1676 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1677 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1678 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1679 setOperationAction(ISD::FREM , MVT::f32, Expand); 1680 setOperationAction(ISD::FMA , MVT::f32, Expand); 1681 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1682 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1683 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1684 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1685 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1686 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1687 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1688 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1689 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1690 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1691 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1692 1693 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1694 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1695 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1696 1697 // FIXME: Sparc provides these multiplies, but we don't have them yet. 1698 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1699 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1700 1701 if (Subtarget->is64Bit()) { 1702 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1703 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1704 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1705 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1706 1707 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1708 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1709 1710 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1711 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1712 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1713 } 1714 1715 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1716 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1717 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1718 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1719 1720 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1721 1722 // Use the default implementation. 1723 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1724 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1725 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1726 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1727 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1728 1729 setStackPointerRegisterToSaveRestore(SP::O6); 1730 1731 setOperationAction(ISD::CTPOP, MVT::i32, 1732 Subtarget->usePopc() ? Legal : Expand); 1733 1734 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1735 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1736 setOperationAction(ISD::STORE, MVT::f128, Legal); 1737 } else { 1738 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1739 setOperationAction(ISD::STORE, MVT::f128, Custom); 1740 } 1741 1742 if (Subtarget->hasHardQuad()) { 1743 setOperationAction(ISD::FADD, MVT::f128, Legal); 1744 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1745 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1746 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1747 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1748 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1749 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1750 if (Subtarget->isV9()) { 1751 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1752 setOperationAction(ISD::FABS, MVT::f128, Legal); 1753 } else { 1754 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1755 setOperationAction(ISD::FABS, MVT::f128, Custom); 1756 } 1757 1758 if (!Subtarget->is64Bit()) { 1759 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1760 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1761 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1762 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1763 } 1764 1765 } else { 1766 // Custom legalize f128 operations. 1767 1768 setOperationAction(ISD::FADD, MVT::f128, Custom); 1769 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1770 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1771 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1772 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1773 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1774 setOperationAction(ISD::FABS, MVT::f128, Custom); 1775 1776 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1777 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1778 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1779 1780 // Setup Runtime library names. 1781 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1782 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1783 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1784 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1785 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1786 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1787 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1788 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1789 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1790 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1791 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1792 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1793 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1794 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1795 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1796 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1797 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1798 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1799 } else if (!Subtarget->useSoftFloat()) { 1800 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1801 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1802 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1803 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1804 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1805 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1806 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1807 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1808 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1809 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1810 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1811 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1812 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1813 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1814 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1815 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1816 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1817 } 1818 } 1819 1820 if (Subtarget->fixAllFDIVSQRT()) { 1821 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1822 // the former instructions generate errata on LEON processors. 1823 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1824 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1825 } 1826 1827 if (Subtarget->replaceFMULS()) { 1828 // Promote FMULS to FMULD instructions instead as 1829 // the former instructions generate errata on LEON processors. 1830 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1831 } 1832 1833 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1834 1835 setMinFunctionAlignment(2); 1836 1837 computeRegisterProperties(Subtarget->getRegisterInfo()); 1838 } 1839 1840 bool SparcTargetLowering::useSoftFloat() const { 1841 return Subtarget->useSoftFloat(); 1842 } 1843 1844 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 1845 switch ((SPISD::NodeType)Opcode) { 1846 case SPISD::FIRST_NUMBER: break; 1847 case SPISD::CMPICC: return "SPISD::CMPICC"; 1848 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 1849 case SPISD::BRICC: return "SPISD::BRICC"; 1850 case SPISD::BRXCC: return "SPISD::BRXCC"; 1851 case SPISD::BRFCC: return "SPISD::BRFCC"; 1852 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 1853 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 1854 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 1855 case SPISD::EH_SJLJ_SETJMP: return "SPISD::EH_SJLJ_SETJMP"; 1856 case SPISD::EH_SJLJ_LONGJMP: return "SPISD::EH_SJLJ_LONGJMP"; 1857 case SPISD::Hi: return "SPISD::Hi"; 1858 case SPISD::Lo: return "SPISD::Lo"; 1859 case SPISD::FTOI: return "SPISD::FTOI"; 1860 case SPISD::ITOF: return "SPISD::ITOF"; 1861 case SPISD::FTOX: return "SPISD::FTOX"; 1862 case SPISD::XTOF: return "SPISD::XTOF"; 1863 case SPISD::CALL: return "SPISD::CALL"; 1864 case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; 1865 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 1866 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 1867 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 1868 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 1869 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 1870 } 1871 return nullptr; 1872 } 1873 1874 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 1875 EVT VT) const { 1876 if (!VT.isVector()) 1877 return MVT::i32; 1878 return VT.changeVectorElementTypeToInteger(); 1879 } 1880 1881 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 1882 /// be zero. Op is expected to be a target specific node. Used by DAG 1883 /// combiner. 1884 void SparcTargetLowering::computeKnownBitsForTargetNode 1885 (const SDValue Op, 1886 APInt &KnownZero, 1887 APInt &KnownOne, 1888 const SelectionDAG &DAG, 1889 unsigned Depth) const { 1890 APInt KnownZero2, KnownOne2; 1891 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1892 1893 switch (Op.getOpcode()) { 1894 default: break; 1895 case SPISD::SELECT_ICC: 1896 case SPISD::SELECT_XCC: 1897 case SPISD::SELECT_FCC: 1898 DAG.computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 1899 DAG.computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 1900 1901 // Only known if known in both the LHS and RHS. 1902 KnownOne &= KnownOne2; 1903 KnownZero &= KnownZero2; 1904 break; 1905 } 1906 } 1907 1908 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 1909 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 1910 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 1911 ISD::CondCode CC, unsigned &SPCC) { 1912 if (isNullConstant(RHS) && 1913 CC == ISD::SETNE && 1914 (((LHS.getOpcode() == SPISD::SELECT_ICC || 1915 LHS.getOpcode() == SPISD::SELECT_XCC) && 1916 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 1917 (LHS.getOpcode() == SPISD::SELECT_FCC && 1918 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && 1919 isOneConstant(LHS.getOperand(0)) && 1920 isNullConstant(LHS.getOperand(1))) { 1921 SDValue CMPCC = LHS.getOperand(3); 1922 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); 1923 LHS = CMPCC.getOperand(0); 1924 RHS = CMPCC.getOperand(1); 1925 } 1926 } 1927 1928 // Convert to a target node and set target flags. 1929 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 1930 SelectionDAG &DAG) const { 1931 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1932 return DAG.getTargetGlobalAddress(GA->getGlobal(), 1933 SDLoc(GA), 1934 GA->getValueType(0), 1935 GA->getOffset(), TF); 1936 1937 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 1938 return DAG.getTargetConstantPool(CP->getConstVal(), 1939 CP->getValueType(0), 1940 CP->getAlignment(), 1941 CP->getOffset(), TF); 1942 1943 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 1944 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 1945 Op.getValueType(), 1946 0, 1947 TF); 1948 1949 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 1950 return DAG.getTargetExternalSymbol(ES->getSymbol(), 1951 ES->getValueType(0), TF); 1952 1953 llvm_unreachable("Unhandled address SDNode"); 1954 } 1955 1956 // Split Op into high and low parts according to HiTF and LoTF. 1957 // Return an ADD node combining the parts. 1958 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 1959 unsigned HiTF, unsigned LoTF, 1960 SelectionDAG &DAG) const { 1961 SDLoc DL(Op); 1962 EVT VT = Op.getValueType(); 1963 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1964 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1965 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1966 } 1967 1968 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1969 // or ExternalSymbol SDNode. 1970 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1971 SDLoc DL(Op); 1972 EVT VT = getPointerTy(DAG.getDataLayout()); 1973 1974 // Handle PIC mode first. SPARC needs a got load for every variable! 1975 if (isPositionIndependent()) { 1976 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 1977 SDValue HiLo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 1978 SparcMCExpr::VK_Sparc_GOT10, DAG); 1979 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 1980 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, HiLo); 1981 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 1982 // function has calls. 1983 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1984 MFI->setHasCalls(true); 1985 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 1986 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 1987 false, false, false, 0); 1988 } 1989 1990 // This is one of the absolute code models. 1991 switch(getTargetMachine().getCodeModel()) { 1992 default: 1993 llvm_unreachable("Unsupported absolute code model"); 1994 case CodeModel::Small: 1995 // abs32. 1996 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 1997 SparcMCExpr::VK_Sparc_LO, DAG); 1998 case CodeModel::Medium: { 1999 // abs44. 2000 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 2001 SparcMCExpr::VK_Sparc_M44, DAG); 2002 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 2003 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 2004 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 2005 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 2006 } 2007 case CodeModel::Large: { 2008 // abs64. 2009 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 2010 SparcMCExpr::VK_Sparc_HM, DAG); 2011 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 2012 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2013 SparcMCExpr::VK_Sparc_LO, DAG); 2014 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2015 } 2016 } 2017 } 2018 2019 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2020 SelectionDAG &DAG) const { 2021 return makeAddress(Op, DAG); 2022 } 2023 2024 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2025 SelectionDAG &DAG) const { 2026 return makeAddress(Op, DAG); 2027 } 2028 2029 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2030 SelectionDAG &DAG) const { 2031 return makeAddress(Op, DAG); 2032 } 2033 2034 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2035 SelectionDAG &DAG) const { 2036 2037 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2038 if (DAG.getTarget().Options.EmulatedTLS) 2039 return LowerToTLSEmulatedModel(GA, DAG); 2040 2041 SDLoc DL(GA); 2042 const GlobalValue *GV = GA->getGlobal(); 2043 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2044 2045 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2046 2047 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2048 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2049 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2050 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2051 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2052 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2053 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2054 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2055 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2056 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2057 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2058 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2059 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2060 2061 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2062 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2063 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2064 withTargetFlags(Op, addTF, DAG)); 2065 2066 SDValue Chain = DAG.getEntryNode(); 2067 SDValue InFlag; 2068 2069 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(1, DL, true), DL); 2070 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); 2071 InFlag = Chain.getValue(1); 2072 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2073 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2074 2075 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2076 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2077 DAG.getMachineFunction(), CallingConv::C); 2078 assert(Mask && "Missing call preserved mask for calling convention"); 2079 SDValue Ops[] = {Chain, 2080 Callee, 2081 Symbol, 2082 DAG.getRegister(SP::O0, PtrVT), 2083 DAG.getRegisterMask(Mask), 2084 InFlag}; 2085 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2086 InFlag = Chain.getValue(1); 2087 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true), 2088 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2089 InFlag = Chain.getValue(1); 2090 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); 2091 2092 if (model != TLSModel::LocalDynamic) 2093 return Ret; 2094 2095 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2096 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2097 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2098 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2099 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2100 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2101 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2102 } 2103 2104 if (model == TLSModel::InitialExec) { 2105 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2106 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2107 2108 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2109 2110 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2111 // function has calls. 2112 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2113 MFI->setHasCalls(true); 2114 2115 SDValue TGA = makeHiLoPair(Op, 2116 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2117 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2118 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2119 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2120 DL, PtrVT, Ptr, 2121 withTargetFlags(Op, ldTF, DAG)); 2122 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2123 DAG.getRegister(SP::G7, PtrVT), Offset, 2124 withTargetFlags(Op, 2125 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2126 } 2127 2128 assert(model == TLSModel::LocalExec); 2129 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2130 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2131 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2132 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2133 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2134 2135 return DAG.getNode(ISD::ADD, DL, PtrVT, 2136 DAG.getRegister(SP::G7, PtrVT), Offset); 2137 } 2138 2139 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2140 ArgListTy &Args, SDValue Arg, 2141 const SDLoc &DL, 2142 SelectionDAG &DAG) const { 2143 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2144 EVT ArgVT = Arg.getValueType(); 2145 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2146 2147 ArgListEntry Entry; 2148 Entry.Node = Arg; 2149 Entry.Ty = ArgTy; 2150 2151 if (ArgTy->isFP128Ty()) { 2152 // Create a stack object and pass the pointer to the library function. 2153 int FI = MFI->CreateStackObject(16, 8, false); 2154 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2155 Chain = DAG.getStore(Chain, 2156 DL, 2157 Entry.Node, 2158 FIPtr, 2159 MachinePointerInfo(), 2160 false, 2161 false, 2162 8); 2163 2164 Entry.Node = FIPtr; 2165 Entry.Ty = PointerType::getUnqual(ArgTy); 2166 } 2167 Args.push_back(Entry); 2168 return Chain; 2169 } 2170 2171 SDValue 2172 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2173 const char *LibFuncName, 2174 unsigned numArgs) const { 2175 2176 ArgListTy Args; 2177 2178 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2179 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2180 2181 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2182 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2183 Type *RetTyABI = RetTy; 2184 SDValue Chain = DAG.getEntryNode(); 2185 SDValue RetPtr; 2186 2187 if (RetTy->isFP128Ty()) { 2188 // Create a Stack Object to receive the return value of type f128. 2189 ArgListEntry Entry; 2190 int RetFI = MFI->CreateStackObject(16, 8, false); 2191 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2192 Entry.Node = RetPtr; 2193 Entry.Ty = PointerType::getUnqual(RetTy); 2194 if (!Subtarget->is64Bit()) 2195 Entry.isSRet = true; 2196 Entry.isReturned = false; 2197 Args.push_back(Entry); 2198 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2199 } 2200 2201 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2202 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2203 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2204 } 2205 TargetLowering::CallLoweringInfo CLI(DAG); 2206 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2207 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2208 2209 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2210 2211 // chain is in second result. 2212 if (RetTyABI == RetTy) 2213 return CallInfo.first; 2214 2215 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2216 2217 Chain = CallInfo.second; 2218 2219 // Load RetPtr to get the return value. 2220 return DAG.getLoad(Op.getValueType(), 2221 SDLoc(Op), 2222 Chain, 2223 RetPtr, 2224 MachinePointerInfo(), 2225 false, false, false, 8); 2226 } 2227 2228 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2229 unsigned &SPCC, const SDLoc &DL, 2230 SelectionDAG &DAG) const { 2231 2232 const char *LibCall = nullptr; 2233 bool is64Bit = Subtarget->is64Bit(); 2234 switch(SPCC) { 2235 default: llvm_unreachable("Unhandled conditional code!"); 2236 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2237 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2238 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2239 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2240 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2241 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2242 case SPCC::FCC_UL : 2243 case SPCC::FCC_ULE: 2244 case SPCC::FCC_UG : 2245 case SPCC::FCC_UGE: 2246 case SPCC::FCC_U : 2247 case SPCC::FCC_O : 2248 case SPCC::FCC_LG : 2249 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2250 } 2251 2252 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2253 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2254 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2255 ArgListTy Args; 2256 SDValue Chain = DAG.getEntryNode(); 2257 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2258 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2259 2260 TargetLowering::CallLoweringInfo CLI(DAG); 2261 CLI.setDebugLoc(DL).setChain(Chain) 2262 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2263 2264 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2265 2266 // result is in first, and chain is in second result. 2267 SDValue Result = CallInfo.first; 2268 2269 switch(SPCC) { 2270 default: { 2271 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2272 SPCC = SPCC::ICC_NE; 2273 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2274 } 2275 case SPCC::FCC_UL : { 2276 SDValue Mask = DAG.getTargetConstant(1, DL, Result.getValueType()); 2277 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2278 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2279 SPCC = SPCC::ICC_NE; 2280 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2281 } 2282 case SPCC::FCC_ULE: { 2283 SDValue RHS = DAG.getTargetConstant(2, DL, Result.getValueType()); 2284 SPCC = SPCC::ICC_NE; 2285 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2286 } 2287 case SPCC::FCC_UG : { 2288 SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType()); 2289 SPCC = SPCC::ICC_G; 2290 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2291 } 2292 case SPCC::FCC_UGE: { 2293 SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType()); 2294 SPCC = SPCC::ICC_NE; 2295 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2296 } 2297 2298 case SPCC::FCC_U : { 2299 SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType()); 2300 SPCC = SPCC::ICC_E; 2301 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2302 } 2303 case SPCC::FCC_O : { 2304 SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType()); 2305 SPCC = SPCC::ICC_NE; 2306 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2307 } 2308 case SPCC::FCC_LG : { 2309 SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType()); 2310 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2311 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2312 SPCC = SPCC::ICC_NE; 2313 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2314 } 2315 case SPCC::FCC_UE : { 2316 SDValue Mask = DAG.getTargetConstant(3, DL, Result.getValueType()); 2317 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2318 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2319 SPCC = SPCC::ICC_E; 2320 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2321 } 2322 } 2323 } 2324 2325 static SDValue 2326 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2327 const SparcTargetLowering &TLI) { 2328 2329 if (Op.getOperand(0).getValueType() == MVT::f64) 2330 return TLI.LowerF128Op(Op, DAG, 2331 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2332 2333 if (Op.getOperand(0).getValueType() == MVT::f32) 2334 return TLI.LowerF128Op(Op, DAG, 2335 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2336 2337 llvm_unreachable("fpextend with non-float operand!"); 2338 return SDValue(); 2339 } 2340 2341 static SDValue 2342 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2343 const SparcTargetLowering &TLI) { 2344 // FP_ROUND on f64 and f32 are legal. 2345 if (Op.getOperand(0).getValueType() != MVT::f128) 2346 return Op; 2347 2348 if (Op.getValueType() == MVT::f64) 2349 return TLI.LowerF128Op(Op, DAG, 2350 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2351 if (Op.getValueType() == MVT::f32) 2352 return TLI.LowerF128Op(Op, DAG, 2353 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2354 2355 llvm_unreachable("fpround to non-float!"); 2356 return SDValue(); 2357 } 2358 2359 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2360 const SparcTargetLowering &TLI, 2361 bool hasHardQuad) { 2362 SDLoc dl(Op); 2363 EVT VT = Op.getValueType(); 2364 assert(VT == MVT::i32 || VT == MVT::i64); 2365 2366 // Expand f128 operations to fp128 abi calls. 2367 if (Op.getOperand(0).getValueType() == MVT::f128 2368 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2369 const char *libName = TLI.getLibcallName(VT == MVT::i32 2370 ? RTLIB::FPTOSINT_F128_I32 2371 : RTLIB::FPTOSINT_F128_I64); 2372 return TLI.LowerF128Op(Op, DAG, libName, 1); 2373 } 2374 2375 // Expand if the resulting type is illegal. 2376 if (!TLI.isTypeLegal(VT)) 2377 return SDValue(); 2378 2379 // Otherwise, Convert the fp value to integer in an FP register. 2380 if (VT == MVT::i32) 2381 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2382 else 2383 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2384 2385 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2386 } 2387 2388 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2389 const SparcTargetLowering &TLI, 2390 bool hasHardQuad) { 2391 SDLoc dl(Op); 2392 EVT OpVT = Op.getOperand(0).getValueType(); 2393 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2394 2395 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2396 2397 // Expand f128 operations to fp128 ABI calls. 2398 if (Op.getValueType() == MVT::f128 2399 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2400 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2401 ? RTLIB::SINTTOFP_I32_F128 2402 : RTLIB::SINTTOFP_I64_F128); 2403 return TLI.LowerF128Op(Op, DAG, libName, 1); 2404 } 2405 2406 // Expand if the operand type is illegal. 2407 if (!TLI.isTypeLegal(OpVT)) 2408 return SDValue(); 2409 2410 // Otherwise, Convert the int value to FP in an FP register. 2411 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2412 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2413 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2414 } 2415 2416 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2417 const SparcTargetLowering &TLI, 2418 bool hasHardQuad) { 2419 SDLoc dl(Op); 2420 EVT VT = Op.getValueType(); 2421 2422 // Expand if it does not involve f128 or the target has support for 2423 // quad floating point instructions and the resulting type is legal. 2424 if (Op.getOperand(0).getValueType() != MVT::f128 || 2425 (hasHardQuad && TLI.isTypeLegal(VT))) 2426 return SDValue(); 2427 2428 assert(VT == MVT::i32 || VT == MVT::i64); 2429 2430 return TLI.LowerF128Op(Op, DAG, 2431 TLI.getLibcallName(VT == MVT::i32 2432 ? RTLIB::FPTOUINT_F128_I32 2433 : RTLIB::FPTOUINT_F128_I64), 2434 1); 2435 } 2436 2437 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2438 const SparcTargetLowering &TLI, 2439 bool hasHardQuad) { 2440 SDLoc dl(Op); 2441 EVT OpVT = Op.getOperand(0).getValueType(); 2442 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2443 2444 // Expand if it does not involve f128 or the target has support for 2445 // quad floating point instructions and the operand type is legal. 2446 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2447 return SDValue(); 2448 2449 return TLI.LowerF128Op(Op, DAG, 2450 TLI.getLibcallName(OpVT == MVT::i32 2451 ? RTLIB::UINTTOFP_I32_F128 2452 : RTLIB::UINTTOFP_I64_F128), 2453 1); 2454 } 2455 2456 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2457 const SparcTargetLowering &TLI, 2458 bool hasHardQuad) { 2459 SDValue Chain = Op.getOperand(0); 2460 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2461 SDValue LHS = Op.getOperand(2); 2462 SDValue RHS = Op.getOperand(3); 2463 SDValue Dest = Op.getOperand(4); 2464 SDLoc dl(Op); 2465 unsigned Opc, SPCC = ~0U; 2466 2467 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2468 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2469 LookThroughSetCC(LHS, RHS, CC, SPCC); 2470 2471 // Get the condition flag. 2472 SDValue CompareFlag; 2473 if (LHS.getValueType().isInteger()) { 2474 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2475 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2476 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2477 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; 2478 } else { 2479 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2480 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2481 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2482 Opc = SPISD::BRICC; 2483 } else { 2484 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2485 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2486 Opc = SPISD::BRFCC; 2487 } 2488 } 2489 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2490 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2491 } 2492 2493 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2494 const SparcTargetLowering &TLI, 2495 bool hasHardQuad) { 2496 SDValue LHS = Op.getOperand(0); 2497 SDValue RHS = Op.getOperand(1); 2498 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2499 SDValue TrueVal = Op.getOperand(2); 2500 SDValue FalseVal = Op.getOperand(3); 2501 SDLoc dl(Op); 2502 unsigned Opc, SPCC = ~0U; 2503 2504 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2505 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2506 LookThroughSetCC(LHS, RHS, CC, SPCC); 2507 2508 SDValue CompareFlag; 2509 if (LHS.getValueType().isInteger()) { 2510 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2511 Opc = LHS.getValueType() == MVT::i32 ? 2512 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2513 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2514 } else { 2515 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2516 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2517 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2518 Opc = SPISD::SELECT_ICC; 2519 } else { 2520 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2521 Opc = SPISD::SELECT_FCC; 2522 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2523 } 2524 } 2525 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2526 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2527 } 2528 2529 SDValue SparcTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG, 2530 const SparcTargetLowering &TLI) const { 2531 SDLoc DL(Op); 2532 return DAG.getNode(SPISD::EH_SJLJ_SETJMP, DL, 2533 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1)); 2534 2535 } 2536 2537 SDValue SparcTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG, 2538 const SparcTargetLowering &TLI) const { 2539 SDLoc DL(Op); 2540 return DAG.getNode(SPISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1)); 2541 } 2542 2543 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2544 const SparcTargetLowering &TLI) { 2545 MachineFunction &MF = DAG.getMachineFunction(); 2546 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2547 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2548 2549 // Need frame address to find the address of VarArgsFrameIndex. 2550 MF.getFrameInfo()->setFrameAddressIsTaken(true); 2551 2552 // vastart just stores the address of the VarArgsFrameIndex slot into the 2553 // memory location argument. 2554 SDLoc DL(Op); 2555 SDValue Offset = 2556 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2557 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2558 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2559 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2560 MachinePointerInfo(SV), false, false, 0); 2561 } 2562 2563 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2564 SDNode *Node = Op.getNode(); 2565 EVT VT = Node->getValueType(0); 2566 SDValue InChain = Node->getOperand(0); 2567 SDValue VAListPtr = Node->getOperand(1); 2568 EVT PtrVT = VAListPtr.getValueType(); 2569 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2570 SDLoc DL(Node); 2571 SDValue VAList = DAG.getLoad(PtrVT, DL, InChain, VAListPtr, 2572 MachinePointerInfo(SV), false, false, false, 0); 2573 // Increment the pointer, VAList, to the next vaarg. 2574 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2575 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2576 DL)); 2577 // Store the incremented VAList to the legalized pointer. 2578 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, 2579 VAListPtr, MachinePointerInfo(SV), false, false, 0); 2580 // Load the actual argument out of the pointer VAList. 2581 // We can't count on greater alignment than the word size. 2582 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 2583 false, false, false, 2584 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits())/8); 2585 } 2586 2587 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2588 const SparcSubtarget *Subtarget) { 2589 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2590 SDValue Size = Op.getOperand(1); // Legalize the size. 2591 EVT VT = Size->getValueType(0); 2592 SDLoc dl(Op); 2593 2594 unsigned SPReg = SP::O6; 2595 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2596 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2597 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2598 2599 // The resultant pointer is actually 16 words from the bottom of the stack, 2600 // to provide a register spill area. 2601 unsigned regSpillArea = Subtarget->is64Bit() ? 128 : 96; 2602 regSpillArea += Subtarget->getStackPointerBias(); 2603 2604 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2605 DAG.getConstant(regSpillArea, dl, VT)); 2606 SDValue Ops[2] = { NewVal, Chain }; 2607 return DAG.getMergeValues(Ops, dl); 2608 } 2609 2610 2611 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2612 SDLoc dl(Op); 2613 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2614 dl, MVT::Other, DAG.getEntryNode()); 2615 return Chain; 2616 } 2617 2618 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2619 const SparcSubtarget *Subtarget) { 2620 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2621 MFI->setFrameAddressIsTaken(true); 2622 2623 EVT VT = Op.getValueType(); 2624 SDLoc dl(Op); 2625 unsigned FrameReg = SP::I6; 2626 unsigned stackBias = Subtarget->getStackPointerBias(); 2627 2628 SDValue FrameAddr; 2629 2630 if (depth == 0) { 2631 FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); 2632 if (Subtarget->is64Bit()) 2633 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2634 DAG.getIntPtrConstant(stackBias, dl)); 2635 return FrameAddr; 2636 } 2637 2638 // flush first to make sure the windowed registers' values are in stack 2639 SDValue Chain = getFLUSHW(Op, DAG); 2640 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2641 2642 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2643 2644 while (depth--) { 2645 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2646 DAG.getIntPtrConstant(Offset, dl)); 2647 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo(), 2648 false, false, false, 0); 2649 } 2650 if (Subtarget->is64Bit()) 2651 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2652 DAG.getIntPtrConstant(stackBias, dl)); 2653 return FrameAddr; 2654 } 2655 2656 2657 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2658 const SparcSubtarget *Subtarget) { 2659 2660 uint64_t depth = Op.getConstantOperandVal(0); 2661 2662 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2663 } 2664 2665 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2666 const SparcTargetLowering &TLI, 2667 const SparcSubtarget *Subtarget) { 2668 MachineFunction &MF = DAG.getMachineFunction(); 2669 MachineFrameInfo *MFI = MF.getFrameInfo(); 2670 MFI->setReturnAddressIsTaken(true); 2671 2672 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2673 return SDValue(); 2674 2675 EVT VT = Op.getValueType(); 2676 SDLoc dl(Op); 2677 uint64_t depth = Op.getConstantOperandVal(0); 2678 2679 SDValue RetAddr; 2680 if (depth == 0) { 2681 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2682 unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2683 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2684 return RetAddr; 2685 } 2686 2687 // Need frame address to find return address of the caller. 2688 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget); 2689 2690 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2691 SDValue Ptr = DAG.getNode(ISD::ADD, 2692 dl, VT, 2693 FrameAddr, 2694 DAG.getIntPtrConstant(Offset, dl)); 2695 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, 2696 MachinePointerInfo(), false, false, false, 0); 2697 2698 return RetAddr; 2699 } 2700 2701 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2702 unsigned opcode) { 2703 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2704 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2705 2706 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2707 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2708 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2709 2710 // Note: in little-endian, the floating-point value is stored in the 2711 // registers are in the opposite order, so the subreg with the sign 2712 // bit is the highest-numbered (odd), rather than the 2713 // lowest-numbered (even). 2714 2715 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2716 SrcReg64); 2717 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2718 SrcReg64); 2719 2720 if (DAG.getDataLayout().isLittleEndian()) 2721 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2722 else 2723 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2724 2725 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2726 dl, MVT::f64), 0); 2727 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2728 DstReg64, Hi32); 2729 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2730 DstReg64, Lo32); 2731 return DstReg64; 2732 } 2733 2734 // Lower a f128 load into two f64 loads. 2735 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2736 { 2737 SDLoc dl(Op); 2738 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 2739 assert(LdNode && LdNode->getOffset().isUndef() 2740 && "Unexpected node type"); 2741 2742 unsigned alignment = LdNode->getAlignment(); 2743 if (alignment > 8) 2744 alignment = 8; 2745 2746 SDValue Hi64 = DAG.getLoad(MVT::f64, 2747 dl, 2748 LdNode->getChain(), 2749 LdNode->getBasePtr(), 2750 LdNode->getPointerInfo(), 2751 false, false, false, alignment); 2752 EVT addrVT = LdNode->getBasePtr().getValueType(); 2753 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2754 LdNode->getBasePtr(), 2755 DAG.getConstant(8, dl, addrVT)); 2756 SDValue Lo64 = DAG.getLoad(MVT::f64, 2757 dl, 2758 LdNode->getChain(), 2759 LoPtr, 2760 LdNode->getPointerInfo(), 2761 false, false, false, alignment); 2762 2763 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2764 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2765 2766 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2767 dl, MVT::f128); 2768 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2769 MVT::f128, 2770 SDValue(InFP128, 0), 2771 Hi64, 2772 SubRegEven); 2773 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2774 MVT::f128, 2775 SDValue(InFP128, 0), 2776 Lo64, 2777 SubRegOdd); 2778 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2779 SDValue(Lo64.getNode(), 1) }; 2780 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2781 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2782 return DAG.getMergeValues(Ops, dl); 2783 } 2784 2785 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2786 { 2787 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2788 2789 EVT MemVT = LdNode->getMemoryVT(); 2790 if (MemVT == MVT::f128) 2791 return LowerF128Load(Op, DAG); 2792 2793 return Op; 2794 } 2795 2796 // Lower a f128 store into two f64 stores. 2797 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 2798 SDLoc dl(Op); 2799 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 2800 assert(StNode && StNode->getOffset().isUndef() 2801 && "Unexpected node type"); 2802 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2803 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2804 2805 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2806 dl, 2807 MVT::f64, 2808 StNode->getValue(), 2809 SubRegEven); 2810 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2811 dl, 2812 MVT::f64, 2813 StNode->getValue(), 2814 SubRegOdd); 2815 2816 unsigned alignment = StNode->getAlignment(); 2817 if (alignment > 8) 2818 alignment = 8; 2819 2820 SDValue OutChains[2]; 2821 OutChains[0] = DAG.getStore(StNode->getChain(), 2822 dl, 2823 SDValue(Hi64, 0), 2824 StNode->getBasePtr(), 2825 MachinePointerInfo(), 2826 false, false, alignment); 2827 EVT addrVT = StNode->getBasePtr().getValueType(); 2828 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2829 StNode->getBasePtr(), 2830 DAG.getConstant(8, dl, addrVT)); 2831 OutChains[1] = DAG.getStore(StNode->getChain(), 2832 dl, 2833 SDValue(Lo64, 0), 2834 LoPtr, 2835 MachinePointerInfo(), 2836 false, false, alignment); 2837 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2838 } 2839 2840 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 2841 { 2842 SDLoc dl(Op); 2843 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 2844 2845 EVT MemVT = St->getMemoryVT(); 2846 if (MemVT == MVT::f128) 2847 return LowerF128Store(Op, DAG); 2848 2849 if (MemVT == MVT::i64) { 2850 // Custom handling for i64 stores: turn it into a bitcast and a 2851 // v2i32 store. 2852 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 2853 SDValue Chain = DAG.getStore( 2854 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 2855 St->isVolatile(), St->isNonTemporal(), St->getAlignment(), 2856 St->getAAInfo()); 2857 return Chain; 2858 } 2859 2860 return SDValue(); 2861 } 2862 2863 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 2864 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 2865 && "invalid opcode"); 2866 2867 SDLoc dl(Op); 2868 2869 if (Op.getValueType() == MVT::f64) 2870 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 2871 if (Op.getValueType() != MVT::f128) 2872 return Op; 2873 2874 // Lower fabs/fneg on f128 to fabs/fneg on f64 2875 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 2876 // (As with LowerF64Op, on little-endian, we need to negate the odd 2877 // subreg) 2878 2879 SDValue SrcReg128 = Op.getOperand(0); 2880 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 2881 SrcReg128); 2882 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 2883 SrcReg128); 2884 2885 if (DAG.getDataLayout().isLittleEndian()) { 2886 if (isV9) 2887 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 2888 else 2889 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 2890 } else { 2891 if (isV9) 2892 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 2893 else 2894 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 2895 } 2896 2897 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2898 dl, MVT::f128), 0); 2899 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 2900 DstReg128, Hi64); 2901 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 2902 DstReg128, Lo64); 2903 return DstReg128; 2904 } 2905 2906 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2907 2908 if (Op.getValueType() != MVT::i64) 2909 return Op; 2910 2911 SDLoc dl(Op); 2912 SDValue Src1 = Op.getOperand(0); 2913 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 2914 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 2915 DAG.getConstant(32, dl, MVT::i64)); 2916 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 2917 2918 SDValue Src2 = Op.getOperand(1); 2919 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 2920 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 2921 DAG.getConstant(32, dl, MVT::i64)); 2922 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 2923 2924 2925 bool hasChain = false; 2926 unsigned hiOpc = Op.getOpcode(); 2927 switch (Op.getOpcode()) { 2928 default: llvm_unreachable("Invalid opcode"); 2929 case ISD::ADDC: hiOpc = ISD::ADDE; break; 2930 case ISD::ADDE: hasChain = true; break; 2931 case ISD::SUBC: hiOpc = ISD::SUBE; break; 2932 case ISD::SUBE: hasChain = true; break; 2933 } 2934 SDValue Lo; 2935 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 2936 if (hasChain) { 2937 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 2938 Op.getOperand(2)); 2939 } else { 2940 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 2941 } 2942 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 2943 SDValue Carry = Hi.getValue(1); 2944 2945 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 2946 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 2947 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 2948 DAG.getConstant(32, dl, MVT::i64)); 2949 2950 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 2951 SDValue Ops[2] = { Dst, Carry }; 2952 return DAG.getMergeValues(Ops, dl); 2953 } 2954 2955 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 2956 // in LegalizeDAG.cpp except the order of arguments to the library function. 2957 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 2958 const SparcTargetLowering &TLI) 2959 { 2960 unsigned opcode = Op.getOpcode(); 2961 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 2962 2963 bool isSigned = (opcode == ISD::SMULO); 2964 EVT VT = MVT::i64; 2965 EVT WideVT = MVT::i128; 2966 SDLoc dl(Op); 2967 SDValue LHS = Op.getOperand(0); 2968 2969 if (LHS.getValueType() != VT) 2970 return Op; 2971 2972 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 2973 2974 SDValue RHS = Op.getOperand(1); 2975 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 2976 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 2977 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 2978 2979 SDValue MulResult = TLI.makeLibCall(DAG, 2980 RTLIB::MUL_I128, WideVT, 2981 Args, isSigned, dl).first; 2982 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2983 MulResult, DAG.getIntPtrConstant(0, dl)); 2984 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2985 MulResult, DAG.getIntPtrConstant(1, dl)); 2986 if (isSigned) { 2987 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 2988 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 2989 } else { 2990 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 2991 ISD::SETNE); 2992 } 2993 // MulResult is a node with an illegal type. Because such things are not 2994 // generally permitted during this phase of legalization, ensure that 2995 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 2996 // been folded. 2997 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 2998 2999 SDValue Ops[2] = { BottomHalf, TopHalf } ; 3000 return DAG.getMergeValues(Ops, dl); 3001 } 3002 3003 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 3004 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering())) 3005 // Expand with a fence. 3006 return SDValue(); 3007 3008 // Monotonic load/stores are legal. 3009 return Op; 3010 } 3011 3012 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3013 SelectionDAG &DAG) const { 3014 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3015 SDLoc dl(Op); 3016 switch (IntNo) { 3017 default: return SDValue(); // Don't custom lower most intrinsics. 3018 case Intrinsic::thread_pointer: { 3019 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3020 return DAG.getRegister(SP::G7, PtrVT); 3021 } 3022 } 3023 } 3024 3025 SDValue SparcTargetLowering:: 3026 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3027 3028 bool hasHardQuad = Subtarget->hasHardQuad(); 3029 bool isV9 = Subtarget->isV9(); 3030 3031 switch (Op.getOpcode()) { 3032 default: llvm_unreachable("Should not custom lower this!"); 3033 3034 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3035 Subtarget); 3036 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3037 Subtarget); 3038 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3039 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3040 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3041 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3042 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3043 hasHardQuad); 3044 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3045 hasHardQuad); 3046 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3047 hasHardQuad); 3048 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3049 hasHardQuad); 3050 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, 3051 hasHardQuad); 3052 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, 3053 hasHardQuad); 3054 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG, *this); 3055 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG, *this); 3056 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3057 case ISD::VAARG: return LowerVAARG(Op, DAG); 3058 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3059 Subtarget); 3060 3061 case ISD::LOAD: return LowerLOAD(Op, DAG); 3062 case ISD::STORE: return LowerSTORE(Op, DAG); 3063 case ISD::FADD: return LowerF128Op(Op, DAG, 3064 getLibcallName(RTLIB::ADD_F128), 2); 3065 case ISD::FSUB: return LowerF128Op(Op, DAG, 3066 getLibcallName(RTLIB::SUB_F128), 2); 3067 case ISD::FMUL: return LowerF128Op(Op, DAG, 3068 getLibcallName(RTLIB::MUL_F128), 2); 3069 case ISD::FDIV: return LowerF128Op(Op, DAG, 3070 getLibcallName(RTLIB::DIV_F128), 2); 3071 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3072 getLibcallName(RTLIB::SQRT_F128),1); 3073 case ISD::FABS: 3074 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3075 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3076 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3077 case ISD::ADDC: 3078 case ISD::ADDE: 3079 case ISD::SUBC: 3080 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3081 case ISD::UMULO: 3082 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3083 case ISD::ATOMIC_LOAD: 3084 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3085 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3086 } 3087 } 3088 3089 MachineBasicBlock * 3090 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3091 MachineBasicBlock *BB) const { 3092 switch (MI.getOpcode()) { 3093 default: llvm_unreachable("Unknown Custom Instruction!"); 3094 case SP::SELECT_CC_Int_ICC: 3095 case SP::SELECT_CC_FP_ICC: 3096 case SP::SELECT_CC_DFP_ICC: 3097 case SP::SELECT_CC_QFP_ICC: 3098 return expandSelectCC(MI, BB, SP::BCOND); 3099 case SP::SELECT_CC_Int_FCC: 3100 case SP::SELECT_CC_FP_FCC: 3101 case SP::SELECT_CC_DFP_FCC: 3102 case SP::SELECT_CC_QFP_FCC: 3103 return expandSelectCC(MI, BB, SP::FBCOND); 3104 case SP::EH_SJLJ_SETJMP32ri: 3105 case SP::EH_SJLJ_SETJMP32rr: 3106 return emitEHSjLjSetJmp(MI, BB); 3107 case SP::EH_SJLJ_LONGJMP32rr: 3108 case SP::EH_SJLJ_LONGJMP32ri: 3109 return emitEHSjLjLongJmp(MI, BB); 3110 } 3111 } 3112 3113 MachineBasicBlock * 3114 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3115 unsigned BROpcode) const { 3116 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3117 DebugLoc dl = MI.getDebugLoc(); 3118 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3119 3120 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 3121 // control-flow pattern. The incoming instruction knows the destination vreg 3122 // to set, the condition code register to branch on, the true/false values to 3123 // select between, and a branch opcode to use. 3124 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3125 MachineFunction::iterator It = ++BB->getIterator(); 3126 3127 // thisMBB: 3128 // ... 3129 // TrueVal = ... 3130 // [f]bCC copy1MBB 3131 // fallthrough --> copy0MBB 3132 MachineBasicBlock *thisMBB = BB; 3133 MachineFunction *F = BB->getParent(); 3134 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 3135 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3136 F->insert(It, copy0MBB); 3137 F->insert(It, sinkMBB); 3138 3139 // Transfer the remainder of BB and its successor edges to sinkMBB. 3140 sinkMBB->splice(sinkMBB->begin(), BB, 3141 std::next(MachineBasicBlock::iterator(MI)), 3142 BB->end()); 3143 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 3144 3145 // Add the true and fallthrough blocks as its successors. 3146 BB->addSuccessor(copy0MBB); 3147 BB->addSuccessor(sinkMBB); 3148 3149 BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC); 3150 3151 // copy0MBB: 3152 // %FalseValue = ... 3153 // # fallthrough to sinkMBB 3154 BB = copy0MBB; 3155 3156 // Update machine-CFG edges 3157 BB->addSuccessor(sinkMBB); 3158 3159 // sinkMBB: 3160 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 3161 // ... 3162 BB = sinkMBB; 3163 BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI.getOperand(0).getReg()) 3164 .addReg(MI.getOperand(2).getReg()) 3165 .addMBB(copy0MBB) 3166 .addReg(MI.getOperand(1).getReg()) 3167 .addMBB(thisMBB); 3168 3169 MI.eraseFromParent(); // The pseudo instruction is gone now. 3170 return BB; 3171 } 3172 3173 MachineBasicBlock * 3174 SparcTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 3175 MachineBasicBlock *MBB) const { 3176 DebugLoc DL = MI.getDebugLoc(); 3177 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 3178 3179 MachineFunction *MF = MBB->getParent(); 3180 MachineRegisterInfo &MRI = MF->getRegInfo(); 3181 MachineInstrBuilder MIB; 3182 3183 MVT PVT = getPointerTy(MF->getDataLayout()); 3184 unsigned RegSize = PVT.getStoreSize(); 3185 assert(PVT == MVT::i32 && "Invalid Pointer Size!"); 3186 3187 unsigned Buf = MI.getOperand(0).getReg(); 3188 unsigned JmpLoc = MRI.createVirtualRegister(&SP::IntRegsRegClass); 3189 3190 // TO DO: If we do 64-bit handling, this perhaps should be FLUSHW, not TA 3 3191 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::TRAPri), SP::G0).addImm(3).addImm(SPCC::ICC_A); 3192 3193 // Instruction to restore FP 3194 const unsigned FP = SP::I6; 3195 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) 3196 .addReg(FP) 3197 .addReg(Buf) 3198 .addImm(0); 3199 3200 // Instruction to load jmp location 3201 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) 3202 .addReg(JmpLoc, RegState::Define) 3203 .addReg(Buf) 3204 .addImm(RegSize); 3205 3206 // Instruction to restore SP 3207 const unsigned SP = SP::O6; 3208 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) 3209 .addReg(SP) 3210 .addReg(Buf) 3211 .addImm(2 * RegSize); 3212 3213 // Instruction to restore I7 3214 MIB = BuildMI(*MBB, MI, DL, TII->get(SP::LDri)) 3215 .addReg(SP::I7) 3216 .addReg(Buf, RegState::Kill) 3217 .addImm(3 * RegSize); 3218 3219 // Jump to JmpLoc 3220 BuildMI(*MBB, MI, DL, TII->get(SP::JMPLrr)).addReg(SP::G0).addReg(JmpLoc, RegState::Kill).addReg(SP::G0); 3221 3222 MI.eraseFromParent(); 3223 return MBB; 3224 } 3225 3226 MachineBasicBlock * 3227 SparcTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 3228 MachineBasicBlock *MBB) const { 3229 DebugLoc DL = MI.getDebugLoc(); 3230 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 3231 3232 MachineFunction *MF = MBB->getParent(); 3233 MachineRegisterInfo &MRI = MF->getRegInfo(); 3234 MachineInstrBuilder MIB; 3235 3236 MVT PVT = getPointerTy(MF->getDataLayout()); 3237 unsigned RegSize = PVT.getStoreSize(); 3238 assert(PVT == MVT::i32 && "Invalid Pointer Size!"); 3239 3240 unsigned DstReg = MI.getOperand(0).getReg(); 3241 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 3242 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 3243 unsigned mainDstReg = MRI.createVirtualRegister(RC); 3244 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 3245 3246 // For v = setjmp(buf), we generate 3247 // 3248 // thisMBB: 3249 // buf[0] = FP 3250 // buf[RegSize] = restoreMBB <-- takes address of restoreMBB 3251 // buf[RegSize * 2] = O6 3252 // buf[RegSize * 3] = I7 3253 // Ensure restoreMBB remains in the relocations list (done using a bn instruction) 3254 // b mainMBB 3255 // 3256 // mainMBB: 3257 // v_main = 0 3258 // b sinkMBB 3259 // 3260 // restoreMBB: 3261 // v_restore = 1 3262 // --fall through-- 3263 // 3264 // sinkMBB: 3265 // v = phi(main, restore) 3266 3267 const BasicBlock *BB = MBB->getBasicBlock(); 3268 MachineFunction::iterator It = ++MBB->getIterator(); 3269 MachineBasicBlock *thisMBB = MBB; 3270 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 3271 MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); 3272 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 3273 3274 MF->insert(It, mainMBB); 3275 MF->insert(It, restoreMBB); 3276 MF->insert(It, sinkMBB); 3277 restoreMBB->setHasAddressTaken(); 3278 3279 // Transfer the remainder of BB and its successor edges to sinkMBB. 3280 sinkMBB->splice(sinkMBB->begin(), MBB, 3281 std::next(MachineBasicBlock::iterator(MI)), 3282 MBB->end()); 3283 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 3284 3285 unsigned LabelReg = MRI.createVirtualRegister(&SP::IntRegsRegClass); 3286 unsigned LabelReg2 = MRI.createVirtualRegister(&SP::IntRegsRegClass); 3287 unsigned BufReg = MI.getOperand(1).getReg(); 3288 3289 // Instruction to store FP 3290 const unsigned FP = SP::I6; 3291 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) 3292 .addReg(BufReg) 3293 .addImm(0) 3294 .addReg(FP); 3295 3296 // Instructions to store jmp location 3297 MIB = BuildMI(thisMBB, DL, TII->get(SP::SETHIi)) 3298 .addReg(LabelReg, RegState::Define) 3299 .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_HI); 3300 3301 MIB = BuildMI(thisMBB, DL, TII->get(SP::ORri)) 3302 .addReg(LabelReg2, RegState::Define) 3303 .addReg(LabelReg, RegState::Kill) 3304 .addMBB(restoreMBB, SparcMCExpr::VK_Sparc_LO); 3305 3306 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) 3307 .addReg(BufReg) 3308 .addImm(RegSize) 3309 .addReg(LabelReg2, RegState::Kill); 3310 3311 // Instruction to store SP 3312 const unsigned SP = SP::O6; 3313 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) 3314 .addReg(BufReg) 3315 .addImm(2 * RegSize) 3316 .addReg(SP); 3317 3318 // Instruction to store I7 3319 MIB = BuildMI(thisMBB, DL, TII->get(SP::STri)) 3320 .addReg(BufReg) 3321 .addImm(3 * RegSize) 3322 .addReg(SP::I7); 3323 3324 3325 // FIX ME: This next instruction ensures that the restoreMBB block address remains 3326 // valid through optimization passes and serves no other purpose. The ICC_N ensures 3327 // that the branch is never taken. This commented-out code here was an alternative 3328 // attempt to achieve this which brought myriad problems. 3329 //MIB = BuildMI(thisMBB, DL, TII->get(SP::EH_SjLj_Setup)).addMBB(restoreMBB, SparcMCExpr::VK_Sparc_None); 3330 MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND)) 3331 .addMBB(restoreMBB) 3332 .addImm(SPCC::ICC_N); 3333 3334 MIB = BuildMI(thisMBB, DL, TII->get(SP::BCOND)) 3335 .addMBB(mainMBB) 3336 .addImm(SPCC::ICC_A); 3337 3338 thisMBB->addSuccessor(mainMBB); 3339 thisMBB->addSuccessor(restoreMBB); 3340 3341 3342 // mainMBB: 3343 MIB = BuildMI(mainMBB, DL, TII->get(SP::ORrr)) 3344 .addReg(mainDstReg, RegState::Define) 3345 .addReg(SP::G0) 3346 .addReg(SP::G0); 3347 MIB = BuildMI(mainMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A); 3348 3349 mainMBB->addSuccessor(sinkMBB); 3350 3351 3352 // restoreMBB: 3353 MIB = BuildMI(restoreMBB, DL, TII->get(SP::ORri)) 3354 .addReg(restoreDstReg, RegState::Define) 3355 .addReg(SP::G0) 3356 .addImm(1); 3357 //MIB = BuildMI(restoreMBB, DL, TII->get(SP::BCOND)).addMBB(sinkMBB).addImm(SPCC::ICC_A); 3358 restoreMBB->addSuccessor(sinkMBB); 3359 3360 // sinkMBB: 3361 MIB = BuildMI(*sinkMBB, sinkMBB->begin(), DL, 3362 TII->get(SP::PHI), DstReg) 3363 .addReg(mainDstReg).addMBB(mainMBB) 3364 .addReg(restoreDstReg).addMBB(restoreMBB); 3365 3366 MI.eraseFromParent(); 3367 return sinkMBB; 3368 } 3369 3370 //===----------------------------------------------------------------------===// 3371 // Sparc Inline Assembly Support 3372 //===----------------------------------------------------------------------===// 3373 3374 /// getConstraintType - Given a constraint letter, return the type of 3375 /// constraint it is for this target. 3376 SparcTargetLowering::ConstraintType 3377 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3378 if (Constraint.size() == 1) { 3379 switch (Constraint[0]) { 3380 default: 3381 break; 3382 case 'f': 3383 case 'r': 3384 return C_RegisterClass; 3385 case 'I': // SIMM13 3386 return C_Other; 3387 } 3388 } 3389 3390 return TargetLowering::getConstraintType(Constraint); 3391 } 3392 3393 TargetLowering::ConstraintWeight SparcTargetLowering:: 3394 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3395 const char *constraint) const { 3396 ConstraintWeight weight = CW_Invalid; 3397 Value *CallOperandVal = info.CallOperandVal; 3398 // If we don't have a value, we can't do a match, 3399 // but allow it at the lowest weight. 3400 if (!CallOperandVal) 3401 return CW_Default; 3402 3403 // Look at the constraint type. 3404 switch (*constraint) { 3405 default: 3406 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3407 break; 3408 case 'I': // SIMM13 3409 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3410 if (isInt<13>(C->getSExtValue())) 3411 weight = CW_Constant; 3412 } 3413 break; 3414 } 3415 return weight; 3416 } 3417 3418 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3419 /// vector. If it is invalid, don't add anything to Ops. 3420 void SparcTargetLowering:: 3421 LowerAsmOperandForConstraint(SDValue Op, 3422 std::string &Constraint, 3423 std::vector<SDValue> &Ops, 3424 SelectionDAG &DAG) const { 3425 SDValue Result(nullptr, 0); 3426 3427 // Only support length 1 constraints for now. 3428 if (Constraint.length() > 1) 3429 return; 3430 3431 char ConstraintLetter = Constraint[0]; 3432 switch (ConstraintLetter) { 3433 default: break; 3434 case 'I': 3435 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3436 if (isInt<13>(C->getSExtValue())) { 3437 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3438 Op.getValueType()); 3439 break; 3440 } 3441 return; 3442 } 3443 } 3444 3445 if (Result.getNode()) { 3446 Ops.push_back(Result); 3447 return; 3448 } 3449 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3450 } 3451 3452 std::pair<unsigned, const TargetRegisterClass *> 3453 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3454 StringRef Constraint, 3455 MVT VT) const { 3456 if (Constraint.size() == 1) { 3457 switch (Constraint[0]) { 3458 case 'f': 3459 return std::make_pair(0U, &SP::FPRegsRegClass); 3460 3461 case 'r': 3462 if (VT == MVT::v2i32) 3463 return std::make_pair(0U, &SP::IntPairRegClass); 3464 else 3465 return std::make_pair(0U, &SP::IntRegsRegClass); 3466 } 3467 } else if (!Constraint.empty() && Constraint.size() <= 5 3468 && Constraint[0] == '{' && *(Constraint.end()-1) == '}') { 3469 // constraint = '{r<d>}' 3470 // Remove the braces from around the name. 3471 StringRef name(Constraint.data()+1, Constraint.size()-2); 3472 // Handle register aliases: 3473 // r0-r7 -> g0-g7 3474 // r8-r15 -> o0-o7 3475 // r16-r23 -> l0-l7 3476 // r24-r31 -> i0-i7 3477 uint64_t intVal = 0; 3478 if (name.substr(0, 1).equals("r") 3479 && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) { 3480 const char regTypes[] = { 'g', 'o', 'l', 'i' }; 3481 char regType = regTypes[intVal/8]; 3482 char regIdx = '0' + (intVal % 8); 3483 char tmp[] = { '{', regType, regIdx, '}', 0 }; 3484 std::string newConstraint = std::string(tmp); 3485 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3486 VT); 3487 } 3488 } 3489 3490 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3491 } 3492 3493 bool 3494 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3495 // The Sparc target isn't yet aware of offsets. 3496 return false; 3497 } 3498 3499 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3500 SmallVectorImpl<SDValue>& Results, 3501 SelectionDAG &DAG) const { 3502 3503 SDLoc dl(N); 3504 3505 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3506 3507 switch (N->getOpcode()) { 3508 default: 3509 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3510 3511 case ISD::FP_TO_SINT: 3512 case ISD::FP_TO_UINT: 3513 // Custom lower only if it involves f128 or i64. 3514 if (N->getOperand(0).getValueType() != MVT::f128 3515 || N->getValueType(0) != MVT::i64) 3516 return; 3517 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3518 ? RTLIB::FPTOSINT_F128_I64 3519 : RTLIB::FPTOUINT_F128_I64); 3520 3521 Results.push_back(LowerF128Op(SDValue(N, 0), 3522 DAG, 3523 getLibcallName(libCall), 3524 1)); 3525 return; 3526 3527 case ISD::SINT_TO_FP: 3528 case ISD::UINT_TO_FP: 3529 // Custom lower only if it involves f128 or i64. 3530 if (N->getValueType(0) != MVT::f128 3531 || N->getOperand(0).getValueType() != MVT::i64) 3532 return; 3533 3534 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3535 ? RTLIB::SINTTOFP_I64_F128 3536 : RTLIB::UINTTOFP_I64_F128); 3537 3538 Results.push_back(LowerF128Op(SDValue(N, 0), 3539 DAG, 3540 getLibcallName(libCall), 3541 1)); 3542 return; 3543 case ISD::LOAD: { 3544 LoadSDNode *Ld = cast<LoadSDNode>(N); 3545 // Custom handling only for i64: turn i64 load into a v2i32 load, 3546 // and a bitcast. 3547 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3548 return; 3549 3550 SDLoc dl(N); 3551 SDValue LoadRes = DAG.getExtLoad( 3552 Ld->getExtensionType(), dl, MVT::v2i32, 3553 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), 3554 MVT::v2i32, Ld->isVolatile(), Ld->isNonTemporal(), 3555 Ld->isInvariant(), Ld->getAlignment(), Ld->getAAInfo()); 3556 3557 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3558 Results.push_back(Res); 3559 Results.push_back(LoadRes.getValue(1)); 3560 return; 3561 } 3562 } 3563 } 3564 3565 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3566 bool SparcTargetLowering::useLoadStackGuardNode() const { 3567 if (!Subtarget->isTargetLinux()) 3568 return TargetLowering::useLoadStackGuardNode(); 3569 return true; 3570 } 3571 3572 // Override to disable global variable loading on Linux. 3573 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3574 if (!Subtarget->isTargetLinux()) 3575 return TargetLowering::insertSSPDeclarations(M); 3576 } 3577