Home | History | Annotate | Download | only in Lanai
      1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LanaiTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LanaiISelLowering.h"
     15 
     16 #include "Lanai.h"
     17 #include "LanaiMachineFunctionInfo.h"
     18 #include "LanaiSubtarget.h"
     19 #include "LanaiTargetMachine.h"
     20 #include "LanaiTargetObjectFile.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/CodeGen/MachineFrameInfo.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/SelectionDAGISel.h"
     27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     28 #include "llvm/CodeGen/ValueTypes.h"
     29 #include "llvm/IR/CallingConv.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/GlobalAlias.h"
     33 #include "llvm/IR/GlobalVariable.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 
     40 #define DEBUG_TYPE "lanai-lower"
     41 
     42 using namespace llvm;
     43 
     44 // Limit on number of instructions the lowered multiplication may have before a
     45 // call to the library function should be generated instead. The threshold is
     46 // currently set to 14 as this was the smallest threshold that resulted in all
     47 // constant multiplications being lowered. A threshold of 5 covered all cases
     48 // except for one multiplication which required 14. mulsi3 requires 16
     49 // instructions (including the prologue and epilogue but excluding instructions
     50 // at call site). Until we can inline mulsi3, generating at most 14 instructions
     51 // will be faster than invoking mulsi3.
     52 static cl::opt<int> LanaiLowerConstantMulThreshold(
     53     "lanai-constant-mul-threshold", cl::Hidden,
     54     cl::desc("Maximum number of instruction to generate when lowering constant "
     55              "multiplication instead of calling library function [default=14]"),
     56     cl::init(14));
     57 
     58 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
     59                                          const LanaiSubtarget &STI)
     60     : TargetLowering(TM) {
     61   // Set up the register classes.
     62   addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
     63 
     64   // Compute derived properties from the register classes
     65   TRI = STI.getRegisterInfo();
     66   computeRegisterProperties(TRI);
     67 
     68   setStackPointerRegisterToSaveRestore(Lanai::SP);
     69 
     70   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
     71   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
     72   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
     73   setOperationAction(ISD::SETCC, MVT::i32, Custom);
     74   setOperationAction(ISD::SETCCE, MVT::i32, Custom);
     75   setOperationAction(ISD::SELECT, MVT::i32, Expand);
     76   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
     77 
     78   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
     79   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
     80   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
     81   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
     82 
     83   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
     84   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
     85   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
     86 
     87   setOperationAction(ISD::VASTART, MVT::Other, Custom);
     88   setOperationAction(ISD::VAARG, MVT::Other, Expand);
     89   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
     90   setOperationAction(ISD::VAEND, MVT::Other, Expand);
     91 
     92   setOperationAction(ISD::SDIV, MVT::i32, Expand);
     93   setOperationAction(ISD::UDIV, MVT::i32, Expand);
     94   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
     95   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
     96   setOperationAction(ISD::SREM, MVT::i32, Expand);
     97   setOperationAction(ISD::UREM, MVT::i32, Expand);
     98 
     99   setOperationAction(ISD::MUL, MVT::i32, Custom);
    100   setOperationAction(ISD::MULHU, MVT::i32, Expand);
    101   setOperationAction(ISD::MULHS, MVT::i32, Expand);
    102   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    103   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    104 
    105   setOperationAction(ISD::ROTR, MVT::i32, Expand);
    106   setOperationAction(ISD::ROTL, MVT::i32, Expand);
    107   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
    108   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    109   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
    110 
    111   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    112   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
    113   setOperationAction(ISD::CTLZ, MVT::i32, Legal);
    114   setOperationAction(ISD::CTTZ, MVT::i32, Legal);
    115 
    116   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    117   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
    118   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    119 
    120   // Extended load operations for i1 types must be promoted
    121   for (MVT VT : MVT::integer_valuetypes()) {
    122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    123     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    124     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    125   }
    126 
    127   setTargetDAGCombine(ISD::ADD);
    128   setTargetDAGCombine(ISD::SUB);
    129   setTargetDAGCombine(ISD::AND);
    130   setTargetDAGCombine(ISD::OR);
    131   setTargetDAGCombine(ISD::XOR);
    132 
    133   // Function alignments (log2)
    134   setMinFunctionAlignment(2);
    135   setPrefFunctionAlignment(2);
    136 
    137   setJumpIsExpensive(true);
    138 
    139   // TODO: Setting the minimum jump table entries needed before a
    140   // switch is transformed to a jump table to 100 to avoid creating jump tables
    141   // as this was causing bad performance compared to a large group of if
    142   // statements. Re-evaluate this on new benchmarks.
    143   setMinimumJumpTableEntries(100);
    144 
    145   // Use fast calling convention for library functions.
    146   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
    147     setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
    148   }
    149 
    150   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
    151   MaxStoresPerMemsetOptSize = 8;
    152   MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
    153   MaxStoresPerMemcpyOptSize = 8;
    154   MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
    155   MaxStoresPerMemmoveOptSize = 8;
    156 
    157   // Booleans always contain 0 or 1.
    158   setBooleanContents(ZeroOrOneBooleanContent);
    159 }
    160 
    161 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
    162                                             SelectionDAG &DAG) const {
    163   switch (Op.getOpcode()) {
    164   case ISD::MUL:
    165     return LowerMUL(Op, DAG);
    166   case ISD::BR_CC:
    167     return LowerBR_CC(Op, DAG);
    168   case ISD::ConstantPool:
    169     return LowerConstantPool(Op, DAG);
    170   case ISD::GlobalAddress:
    171     return LowerGlobalAddress(Op, DAG);
    172   case ISD::BlockAddress:
    173     return LowerBlockAddress(Op, DAG);
    174   case ISD::JumpTable:
    175     return LowerJumpTable(Op, DAG);
    176   case ISD::SELECT_CC:
    177     return LowerSELECT_CC(Op, DAG);
    178   case ISD::SETCC:
    179     return LowerSETCC(Op, DAG);
    180   case ISD::SETCCE:
    181     return LowerSETCCE(Op, DAG);
    182   case ISD::SRL_PARTS:
    183     return LowerSRL_PARTS(Op, DAG);
    184   case ISD::VASTART:
    185     return LowerVASTART(Op, DAG);
    186   case ISD::DYNAMIC_STACKALLOC:
    187     return LowerDYNAMIC_STACKALLOC(Op, DAG);
    188   case ISD::RETURNADDR:
    189     return LowerRETURNADDR(Op, DAG);
    190   case ISD::FRAMEADDR:
    191     return LowerFRAMEADDR(Op, DAG);
    192   default:
    193     llvm_unreachable("unimplemented operand");
    194   }
    195 }
    196 //===----------------------------------------------------------------------===//
    197 //                       Lanai Inline Assembly Support
    198 //===----------------------------------------------------------------------===//
    199 
    200 unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT VT,
    201                                                 SelectionDAG &DAG) const {
    202   // Only unallocatable registers should be matched here.
    203   unsigned Reg = StringSwitch<unsigned>(RegName)
    204                      .Case("pc", Lanai::PC)
    205                      .Case("sp", Lanai::SP)
    206                      .Case("fp", Lanai::FP)
    207                      .Case("rr1", Lanai::RR1)
    208                      .Case("r10", Lanai::R10)
    209                      .Case("rr2", Lanai::RR2)
    210                      .Case("r11", Lanai::R11)
    211                      .Case("rca", Lanai::RCA)
    212                      .Default(0);
    213 
    214   if (Reg)
    215     return Reg;
    216   report_fatal_error("Invalid register name global variable");
    217 }
    218 
    219 std::pair<unsigned, const TargetRegisterClass *>
    220 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
    221                                                   StringRef Constraint,
    222                                                   MVT VT) const {
    223   if (Constraint.size() == 1)
    224     // GCC Constraint Letters
    225     switch (Constraint[0]) {
    226     case 'r': // GENERAL_REGS
    227       return std::make_pair(0U, &Lanai::GPRRegClass);
    228     default:
    229       break;
    230     }
    231 
    232   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    233 }
    234 
    235 // Examine constraint type and operand type and determine a weight value.
    236 // This object must already have been set up with the operand type
    237 // and the current alternative constraint selected.
    238 TargetLowering::ConstraintWeight
    239 LanaiTargetLowering::getSingleConstraintMatchWeight(
    240     AsmOperandInfo &Info, const char *Constraint) const {
    241   ConstraintWeight Weight = CW_Invalid;
    242   Value *CallOperandVal = Info.CallOperandVal;
    243   // If we don't have a value, we can't do a match,
    244   // but allow it at the lowest weight.
    245   if (CallOperandVal == NULL)
    246     return CW_Default;
    247   // Look at the constraint type.
    248   switch (*Constraint) {
    249   case 'I': // signed 16 bit immediate
    250   case 'J': // integer zero
    251   case 'K': // unsigned 16 bit immediate
    252   case 'L': // immediate in the range 0 to 31
    253   case 'M': // signed 32 bit immediate where lower 16 bits are 0
    254   case 'N': // signed 26 bit immediate
    255   case 'O': // integer zero
    256     if (isa<ConstantInt>(CallOperandVal))
    257       Weight = CW_Constant;
    258     break;
    259   default:
    260     Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
    261     break;
    262   }
    263   return Weight;
    264 }
    265 
    266 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    267 // vector.  If it is invalid, don't add anything to Ops.
    268 void LanaiTargetLowering::LowerAsmOperandForConstraint(
    269     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
    270     SelectionDAG &DAG) const {
    271   SDValue Result(0, 0);
    272 
    273   // Only support length 1 constraints for now.
    274   if (Constraint.length() > 1)
    275     return;
    276 
    277   char ConstraintLetter = Constraint[0];
    278   switch (ConstraintLetter) {
    279   case 'I': // Signed 16 bit constant
    280     // If this fails, the parent routine will give an error
    281     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    282       if (isInt<16>(C->getSExtValue())) {
    283         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
    284                                        Op.getValueType());
    285         break;
    286       }
    287     }
    288     return;
    289   case 'J': // integer zero
    290   case 'O':
    291     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    292       if (C->getZExtValue() == 0) {
    293         Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
    294         break;
    295       }
    296     }
    297     return;
    298   case 'K': // unsigned 16 bit immediate
    299     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    300       if (isUInt<16>(C->getZExtValue())) {
    301         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
    302                                        Op.getValueType());
    303         break;
    304       }
    305     }
    306     return;
    307   case 'L': // immediate in the range 0 to 31
    308     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    309       if (C->getZExtValue() <= 31) {
    310         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
    311                                        Op.getValueType());
    312         break;
    313       }
    314     }
    315     return;
    316   case 'M': // signed 32 bit immediate where lower 16 bits are 0
    317     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    318       int64_t Val = C->getSExtValue();
    319       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
    320         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
    321         break;
    322       }
    323     }
    324     return;
    325   case 'N': // signed 26 bit immediate
    326     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    327       int64_t Val = C->getSExtValue();
    328       if ((Val >= -33554432) && (Val <= 33554431)) {
    329         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
    330         break;
    331       }
    332     }
    333     return;
    334   default:
    335     break; // This will fall through to the generic implementation
    336   }
    337 
    338   if (Result.getNode()) {
    339     Ops.push_back(Result);
    340     return;
    341   }
    342 
    343   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
    344 }
    345 
    346 //===----------------------------------------------------------------------===//
    347 //                      Calling Convention Implementation
    348 //===----------------------------------------------------------------------===//
    349 
    350 #include "LanaiGenCallingConv.inc"
    351 
    352 static unsigned NumFixedArgs;
    353 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
    354                               CCValAssign::LocInfo LocInfo,
    355                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
    356   // Handle fixed arguments with default CC.
    357   // Note: Both the default and fast CC handle VarArg the same and hence the
    358   // calling convention of the function is not considered here.
    359   if (ValNo < NumFixedArgs) {
    360     return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
    361   }
    362 
    363   // Promote i8/i16 args to i32
    364   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
    365     LocVT = MVT::i32;
    366     if (ArgFlags.isSExt())
    367       LocInfo = CCValAssign::SExt;
    368     else if (ArgFlags.isZExt())
    369       LocInfo = CCValAssign::ZExt;
    370     else
    371       LocInfo = CCValAssign::AExt;
    372   }
    373 
    374   // VarArgs get passed on stack
    375   unsigned Offset = State.AllocateStack(4, 4);
    376   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
    377   return false;
    378 }
    379 
    380 SDValue LanaiTargetLowering::LowerFormalArguments(
    381     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    382     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    383     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    384   switch (CallConv) {
    385   case CallingConv::C:
    386   case CallingConv::Fast:
    387     return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
    388   default:
    389     llvm_unreachable("Unsupported calling convention");
    390   }
    391 }
    392 
    393 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
    394                                        SmallVectorImpl<SDValue> &InVals) const {
    395   SelectionDAG &DAG = CLI.DAG;
    396   SDLoc &DL = CLI.DL;
    397   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
    398   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
    399   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
    400   SDValue Chain = CLI.Chain;
    401   SDValue Callee = CLI.Callee;
    402   bool &IsTailCall = CLI.IsTailCall;
    403   CallingConv::ID CallConv = CLI.CallConv;
    404   bool IsVarArg = CLI.IsVarArg;
    405 
    406   // Lanai target does not yet support tail call optimization.
    407   IsTailCall = false;
    408 
    409   switch (CallConv) {
    410   case CallingConv::Fast:
    411   case CallingConv::C:
    412     return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
    413                           OutVals, Ins, DL, DAG, InVals);
    414   default:
    415     llvm_unreachable("Unsupported calling convention");
    416   }
    417 }
    418 
    419 // LowerCCCArguments - transform physical registers into virtual registers and
    420 // generate load operations for arguments places on the stack.
    421 SDValue LanaiTargetLowering::LowerCCCArguments(
    422     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    423     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    424     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    425   MachineFunction &MF = DAG.getMachineFunction();
    426   MachineFrameInfo *MFI = MF.getFrameInfo();
    427   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    428   LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
    429 
    430   // Assign locations to all of the incoming arguments.
    431   SmallVector<CCValAssign, 16> ArgLocs;
    432   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
    433                  *DAG.getContext());
    434   if (CallConv == CallingConv::Fast) {
    435     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
    436   } else {
    437     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
    438   }
    439 
    440   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    441     CCValAssign &VA = ArgLocs[i];
    442     if (VA.isRegLoc()) {
    443       // Arguments passed in registers
    444       EVT RegVT = VA.getLocVT();
    445       switch (RegVT.getSimpleVT().SimpleTy) {
    446       case MVT::i32: {
    447         unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
    448         RegInfo.addLiveIn(VA.getLocReg(), VReg);
    449         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
    450 
    451         // If this is an 8/16-bit value, it is really passed promoted to 32
    452         // bits. Insert an assert[sz]ext to capture this, then truncate to the
    453         // right size.
    454         if (VA.getLocInfo() == CCValAssign::SExt)
    455           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
    456                                  DAG.getValueType(VA.getValVT()));
    457         else if (VA.getLocInfo() == CCValAssign::ZExt)
    458           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
    459                                  DAG.getValueType(VA.getValVT()));
    460 
    461         if (VA.getLocInfo() != CCValAssign::Full)
    462           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
    463 
    464         InVals.push_back(ArgValue);
    465         break;
    466       }
    467       default:
    468         DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
    469                      << RegVT.getEVTString() << "\n");
    470         llvm_unreachable("unhandled argument type");
    471       }
    472     } else {
    473       // Sanity check
    474       assert(VA.isMemLoc());
    475       // Load the argument to a virtual register
    476       unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
    477       // Check that the argument fits in stack slot
    478       if (ObjSize > 4) {
    479         errs() << "LowerFormalArguments Unhandled argument type: "
    480                << EVT(VA.getLocVT()).getEVTString() << "\n";
    481       }
    482       // Create the frame index object for this incoming parameter...
    483       int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
    484 
    485       // Create the SelectionDAG nodes corresponding to a load
    486       // from this parameter
    487       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
    488       InVals.push_back(DAG.getLoad(
    489           VA.getLocVT(), DL, Chain, FIN,
    490           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
    491           false, false, false, 0));
    492     }
    493   }
    494 
    495   // The Lanai ABI for returning structs by value requires that we copy
    496   // the sret argument into rv for the return. Save the argument into
    497   // a virtual register so that we can access it from the return points.
    498   if (MF.getFunction()->hasStructRetAttr()) {
    499     unsigned Reg = LanaiMFI->getSRetReturnReg();
    500     if (!Reg) {
    501       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
    502       LanaiMFI->setSRetReturnReg(Reg);
    503     }
    504     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
    505     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
    506   }
    507 
    508   if (IsVarArg) {
    509     // Record the frame index of the first variable argument
    510     // which is a value necessary to VASTART.
    511     int FI = MFI->CreateFixedObject(4, CCInfo.getNextStackOffset(), true);
    512     LanaiMFI->setVarArgsFrameIndex(FI);
    513   }
    514 
    515   return Chain;
    516 }
    517 
    518 SDValue
    519 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
    520                                  bool IsVarArg,
    521                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
    522                                  const SmallVectorImpl<SDValue> &OutVals,
    523                                  const SDLoc &DL, SelectionDAG &DAG) const {
    524   // CCValAssign - represent the assignment of the return value to a location
    525   SmallVector<CCValAssign, 16> RVLocs;
    526 
    527   // CCState - Info about the registers and stack slot.
    528   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
    529                  *DAG.getContext());
    530 
    531   // Analize return values.
    532   CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
    533 
    534   SDValue Flag;
    535   SmallVector<SDValue, 4> RetOps(1, Chain);
    536 
    537   // Copy the result values into the output registers.
    538   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    539     CCValAssign &VA = RVLocs[i];
    540     assert(VA.isRegLoc() && "Can only return in registers!");
    541 
    542     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
    543 
    544     // Guarantee that all emitted copies are stuck together with flags.
    545     Flag = Chain.getValue(1);
    546     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
    547   }
    548 
    549   // The Lanai ABI for returning structs by value requires that we copy
    550   // the sret argument into rv for the return. We saved the argument into
    551   // a virtual register in the entry block, so now we copy the value out
    552   // and into rv.
    553   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
    554     MachineFunction &MF = DAG.getMachineFunction();
    555     LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
    556     unsigned Reg = LanaiMFI->getSRetReturnReg();
    557     assert(Reg &&
    558            "SRetReturnReg should have been set in LowerFormalArguments().");
    559     SDValue Val =
    560         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
    561 
    562     Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag);
    563     Flag = Chain.getValue(1);
    564     RetOps.push_back(
    565         DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
    566   }
    567 
    568   RetOps[0] = Chain; // Update chain
    569 
    570   unsigned Opc = LanaiISD::RET_FLAG;
    571   if (Flag.getNode())
    572     RetOps.push_back(Flag);
    573 
    574   // Return Void
    575   return DAG.getNode(Opc, DL, MVT::Other,
    576                      ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
    577 }
    578 
    579 // LowerCCCCallTo - functions arguments are copied from virtual regs to
    580 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
    581 SDValue LanaiTargetLowering::LowerCCCCallTo(
    582     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
    583     bool IsTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
    584     const SmallVectorImpl<SDValue> &OutVals,
    585     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    586     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    587   // Analyze operands of the call, assigning locations to each operand.
    588   SmallVector<CCValAssign, 16> ArgLocs;
    589   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
    590                  *DAG.getContext());
    591   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
    592   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
    593 
    594   NumFixedArgs = 0;
    595   if (IsVarArg && G) {
    596     const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
    597     if (CalleeFn)
    598       NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
    599   }
    600   if (NumFixedArgs)
    601     CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
    602   else {
    603     if (CallConv == CallingConv::Fast)
    604       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
    605     else
    606       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
    607   }
    608 
    609   // Get a count of how many bytes are to be pushed on the stack.
    610   unsigned NumBytes = CCInfo.getNextStackOffset();
    611 
    612   // Create local copies for byval args.
    613   SmallVector<SDValue, 8> ByValArgs;
    614   for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
    615     ISD::ArgFlagsTy Flags = Outs[I].Flags;
    616     if (!Flags.isByVal())
    617       continue;
    618 
    619     SDValue Arg = OutVals[I];
    620     unsigned Size = Flags.getByValSize();
    621     unsigned Align = Flags.getByValAlign();
    622 
    623     int FI = MFI->CreateStackObject(Size, Align, false);
    624     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    625     SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
    626 
    627     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
    628                           /*IsVolatile=*/false,
    629                           /*AlwaysInline=*/false,
    630                           /*IsTailCall=*/false, MachinePointerInfo(),
    631                           MachinePointerInfo());
    632     ByValArgs.push_back(FIPtr);
    633   }
    634 
    635   Chain = DAG.getCALLSEQ_START(
    636       Chain,
    637       DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
    638       DL);
    639 
    640   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
    641   SmallVector<SDValue, 12> MemOpChains;
    642   SDValue StackPtr;
    643 
    644   // Walk the register/memloc assignments, inserting copies/loads.
    645   for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
    646     CCValAssign &VA = ArgLocs[I];
    647     SDValue Arg = OutVals[I];
    648     ISD::ArgFlagsTy Flags = Outs[I].Flags;
    649 
    650     // Promote the value if needed.
    651     switch (VA.getLocInfo()) {
    652     case CCValAssign::Full:
    653       break;
    654     case CCValAssign::SExt:
    655       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
    656       break;
    657     case CCValAssign::ZExt:
    658       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
    659       break;
    660     case CCValAssign::AExt:
    661       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
    662       break;
    663     default:
    664       llvm_unreachable("Unknown loc info!");
    665     }
    666 
    667     // Use local copy if it is a byval arg.
    668     if (Flags.isByVal())
    669       Arg = ByValArgs[J++];
    670 
    671     // Arguments that can be passed on register must be kept at RegsToPass
    672     // vector
    673     if (VA.isRegLoc()) {
    674       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    675     } else {
    676       assert(VA.isMemLoc());
    677 
    678       if (StackPtr.getNode() == 0)
    679         StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
    680                                       getPointerTy(DAG.getDataLayout()));
    681 
    682       SDValue PtrOff =
    683           DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
    684                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
    685 
    686       MemOpChains.push_back(DAG.getStore(
    687           Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, false, 0));
    688     }
    689   }
    690 
    691   // Transform all store nodes into one single node because all store nodes are
    692   // independent of each other.
    693   if (!MemOpChains.empty())
    694     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
    695                         ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
    696 
    697   SDValue InFlag;
    698 
    699   // Build a sequence of copy-to-reg nodes chained together with token chain and
    700   // flag operands which copy the outgoing args into registers.  The InFlag in
    701   // necessary since all emitted instructions must be stuck together.
    702   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
    703     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
    704                              RegsToPass[I].second, InFlag);
    705     InFlag = Chain.getValue(1);
    706   }
    707 
    708   // If the callee is a GlobalAddress node (quite common, every direct call is)
    709   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
    710   // Likewise ExternalSymbol -> TargetExternalSymbol.
    711   uint8_t OpFlag = LanaiII::MO_NO_FLAG;
    712   if (G) {
    713     Callee = DAG.getTargetGlobalAddress(
    714         G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
    715   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    716     Callee = DAG.getTargetExternalSymbol(
    717         E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
    718   }
    719 
    720   // Returns a chain & a flag for retval copy to use.
    721   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    722   SmallVector<SDValue, 8> Ops;
    723   Ops.push_back(Chain);
    724   Ops.push_back(Callee);
    725 
    726   // Add a register mask operand representing the call-preserved registers.
    727   // TODO: Should return-twice functions be handled?
    728   const uint32_t *Mask =
    729       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
    730   assert(Mask && "Missing call preserved mask for calling convention");
    731   Ops.push_back(DAG.getRegisterMask(Mask));
    732 
    733   // Add argument registers to the end of the list so that they are
    734   // known live into the call.
    735   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
    736     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
    737                                   RegsToPass[I].second.getValueType()));
    738 
    739   if (InFlag.getNode())
    740     Ops.push_back(InFlag);
    741 
    742   Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
    743                       ArrayRef<SDValue>(&Ops[0], Ops.size()));
    744   InFlag = Chain.getValue(1);
    745 
    746   // Create the CALLSEQ_END node.
    747   Chain = DAG.getCALLSEQ_END(
    748       Chain,
    749       DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
    750       DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag,
    751       DL);
    752   InFlag = Chain.getValue(1);
    753 
    754   // Handle result values, copying them out of physregs into vregs that we
    755   // return.
    756   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
    757                          InVals);
    758 }
    759 
    760 // LowerCallResult - Lower the result values of a call into the
    761 // appropriate copies out of appropriate physical registers.
    762 SDValue LanaiTargetLowering::LowerCallResult(
    763     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
    764     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    765     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    766   // Assign locations to each value returned by this call.
    767   SmallVector<CCValAssign, 16> RVLocs;
    768   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
    769                  *DAG.getContext());
    770 
    771   CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
    772 
    773   // Copy all of the result registers out of their specified physreg.
    774   for (unsigned I = 0; I != RVLocs.size(); ++I) {
    775     Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
    776                                RVLocs[I].getValVT(), InFlag)
    777                 .getValue(1);
    778     InFlag = Chain.getValue(2);
    779     InVals.push_back(Chain.getValue(0));
    780   }
    781 
    782   return Chain;
    783 }
    784 
    785 //===----------------------------------------------------------------------===//
    786 //                      Custom Lowerings
    787 //===----------------------------------------------------------------------===//
    788 
    789 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
    790                                         SDValue &LHS, SDValue &RHS,
    791                                         SelectionDAG &DAG) {
    792   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
    793 
    794   // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
    795   // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
    796   // and Lanai only supports integer comparisons, so only provide definitions
    797   // for them.
    798   switch (SetCCOpcode) {
    799   case ISD::SETEQ:
    800     return LPCC::ICC_EQ;
    801   case ISD::SETGT:
    802     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
    803       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
    804         // X > -1 -> X >= 0 -> is_plus(X)
    805         RHS = DAG.getConstant(0, DL, RHS.getValueType());
    806         return LPCC::ICC_PL;
    807       }
    808     return LPCC::ICC_GT;
    809   case ISD::SETUGT:
    810     return LPCC::ICC_UGT;
    811   case ISD::SETLT:
    812     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
    813       if (RHSC->getZExtValue() == 0)
    814         // X < 0 -> is_minus(X)
    815         return LPCC::ICC_MI;
    816     return LPCC::ICC_LT;
    817   case ISD::SETULT:
    818     return LPCC::ICC_ULT;
    819   case ISD::SETLE:
    820     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
    821       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
    822         // X <= -1 -> X < 0 -> is_minus(X)
    823         RHS = DAG.getConstant(0, DL, RHS.getValueType());
    824         return LPCC::ICC_MI;
    825       }
    826     return LPCC::ICC_LE;
    827   case ISD::SETULE:
    828     return LPCC::ICC_ULE;
    829   case ISD::SETGE:
    830     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
    831       if (RHSC->getZExtValue() == 0)
    832         // X >= 0 -> is_plus(X)
    833         return LPCC::ICC_PL;
    834     return LPCC::ICC_GE;
    835   case ISD::SETUGE:
    836     return LPCC::ICC_UGE;
    837   case ISD::SETNE:
    838     return LPCC::ICC_NE;
    839   case ISD::SETONE:
    840   case ISD::SETUNE:
    841   case ISD::SETOGE:
    842   case ISD::SETOLE:
    843   case ISD::SETOLT:
    844   case ISD::SETOGT:
    845   case ISD::SETOEQ:
    846   case ISD::SETUEQ:
    847   case ISD::SETO:
    848   case ISD::SETUO:
    849     llvm_unreachable("Unsupported comparison.");
    850   default:
    851     llvm_unreachable("Unknown integer condition code!");
    852   }
    853 }
    854 
    855 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
    856   SDValue Chain = Op.getOperand(0);
    857   SDValue Cond = Op.getOperand(1);
    858   SDValue LHS = Op.getOperand(2);
    859   SDValue RHS = Op.getOperand(3);
    860   SDValue Dest = Op.getOperand(4);
    861   SDLoc DL(Op);
    862 
    863   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
    864   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
    865   SDValue Flag =
    866       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
    867 
    868   return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
    869                      TargetCC, Flag);
    870 }
    871 
    872 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
    873   EVT VT = Op->getValueType(0);
    874   if (VT != MVT::i32)
    875     return SDValue();
    876 
    877   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
    878   if (!C)
    879     return SDValue();
    880 
    881   int64_t MulAmt = C->getSExtValue();
    882   int32_t HighestOne = -1;
    883   uint32_t NonzeroEntries = 0;
    884   int SignedDigit[32] = {0};
    885 
    886   // Convert to non-adjacent form (NAF) signed-digit representation.
    887   // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
    888   // minimal Hamming weight representation of a number (on average 1/3 of the
    889   // digits will be non-zero vs 1/2 for regular binary representation). And as
    890   // the non-zero digits will be the only digits contributing to the instruction
    891   // count, this is desirable. The next loop converts it to NAF (following the
    892   // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
    893   // choosing the non-zero coefficients such that the resulting quotient is
    894   // divisible by 2 which will cause the next coefficient to be zero.
    895   int64_t E = std::abs(MulAmt);
    896   int S = (MulAmt < 0 ? -1 : 1);
    897   int I = 0;
    898   while (E > 0) {
    899     int ZI = 0;
    900     if (E % 2 == 1) {
    901       ZI = 2 - (E % 4);
    902       if (ZI != 0)
    903         ++NonzeroEntries;
    904     }
    905     SignedDigit[I] = S * ZI;
    906     if (SignedDigit[I] == 1)
    907       HighestOne = I;
    908     E = (E - ZI) / 2;
    909     ++I;
    910   }
    911 
    912   // Compute number of instructions required. Due to differences in lowering
    913   // between the different processors this count is not exact.
    914   // Start by assuming a shift and a add/sub for every non-zero entry (hence
    915   // every non-zero entry requires 1 shift and 1 add/sub except for the first
    916   // entry).
    917   int32_t InstrRequired = 2 * NonzeroEntries - 1;
    918   // Correct possible over-adding due to shift by 0 (which is not emitted).
    919   if (std::abs(MulAmt) % 2 == 1)
    920     --InstrRequired;
    921   // Return if the form generated would exceed the instruction threshold.
    922   if (InstrRequired > LanaiLowerConstantMulThreshold)
    923     return SDValue();
    924 
    925   SDValue Res;
    926   SDLoc DL(Op);
    927   SDValue V = Op->getOperand(0);
    928 
    929   // Initialize the running sum. Set the running sum to the maximal shifted
    930   // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
    931   // term NAF).
    932   if (HighestOne == -1)
    933     Res = DAG.getConstant(0, DL, MVT::i32);
    934   else {
    935     Res = DAG.getNode(ISD::SHL, DL, VT, V,
    936                       DAG.getConstant(HighestOne, DL, MVT::i32));
    937     SignedDigit[HighestOne] = 0;
    938   }
    939 
    940   // Assemble multiplication from shift, add, sub using NAF form and running
    941   // sum.
    942   for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]);
    943        ++I) {
    944     if (SignedDigit[I] == 0)
    945       continue;
    946 
    947     // Shifted multiplicand (v<<i).
    948     SDValue Op =
    949         DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
    950     if (SignedDigit[I] == 1)
    951       Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
    952     else if (SignedDigit[I] == -1)
    953       Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
    954   }
    955   return Res;
    956 }
    957 
    958 SDValue LanaiTargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const {
    959   SDValue LHS = Op.getOperand(0);
    960   SDValue RHS = Op.getOperand(1);
    961   SDValue Carry = Op.getOperand(2);
    962   SDValue Cond = Op.getOperand(3);
    963   SDLoc DL(Op);
    964 
    965   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
    966   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
    967   SDValue Flag = DAG.getNode(LanaiISD::SUBBF, DL, MVT::Glue, LHS, RHS, Carry);
    968   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
    969 }
    970 
    971 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
    972   SDValue LHS = Op.getOperand(0);
    973   SDValue RHS = Op.getOperand(1);
    974   SDValue Cond = Op.getOperand(2);
    975   SDLoc DL(Op);
    976 
    977   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
    978   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
    979   SDValue Flag =
    980       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
    981 
    982   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
    983 }
    984 
    985 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
    986                                             SelectionDAG &DAG) const {
    987   SDValue LHS = Op.getOperand(0);
    988   SDValue RHS = Op.getOperand(1);
    989   SDValue TrueV = Op.getOperand(2);
    990   SDValue FalseV = Op.getOperand(3);
    991   SDValue Cond = Op.getOperand(4);
    992   SDLoc DL(Op);
    993 
    994   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, LHS, RHS, DAG);
    995   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
    996   SDValue Flag =
    997       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
    998 
    999   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   1000   return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
   1001                      Flag);
   1002 }
   1003 
   1004 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   1005   MachineFunction &MF = DAG.getMachineFunction();
   1006   LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
   1007 
   1008   SDLoc DL(Op);
   1009   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1010                                  getPointerTy(DAG.getDataLayout()));
   1011 
   1012   // vastart just stores the address of the VarArgsFrameIndex slot into the
   1013   // memory location argument.
   1014   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1015   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
   1016                       MachinePointerInfo(SV), false, false, 0);
   1017 }
   1018 
   1019 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   1020                                                      SelectionDAG &DAG) const {
   1021   SDValue Chain = Op.getOperand(0);
   1022   SDValue Size = Op.getOperand(1);
   1023   SDLoc DL(Op);
   1024 
   1025   unsigned SPReg = getStackPointerRegisterToSaveRestore();
   1026 
   1027   // Get a reference to the stack pointer.
   1028   SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
   1029 
   1030   // Subtract the dynamic size from the actual stack size to
   1031   // obtain the new stack size.
   1032   SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
   1033 
   1034   // For Lanai, the outgoing memory arguments area should be on top of the
   1035   // alloca area on the stack i.e., the outgoing memory arguments should be
   1036   // at a lower address than the alloca area. Move the alloca area down the
   1037   // stack by adding back the space reserved for outgoing arguments to SP
   1038   // here.
   1039   //
   1040   // We do not know what the size of the outgoing args is at this point.
   1041   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
   1042   // stack pointer. We replace this instruction with on that has the correct,
   1043   // known offset in emitPrologue().
   1044   SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
   1045 
   1046   // The Sub result contains the new stack start address, so it
   1047   // must be placed in the stack pointer register.
   1048   SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
   1049 
   1050   SDValue Ops[2] = {ArgAdjust, CopyChain};
   1051   return DAG.getMergeValues(Ops, DL);
   1052 }
   1053 
   1054 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
   1055                                              SelectionDAG &DAG) const {
   1056   MachineFunction &MF = DAG.getMachineFunction();
   1057   MachineFrameInfo *MFI = MF.getFrameInfo();
   1058   MFI->setReturnAddressIsTaken(true);
   1059 
   1060   EVT VT = Op.getValueType();
   1061   SDLoc DL(Op);
   1062   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1063   if (Depth) {
   1064     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   1065     const unsigned Offset = -4;
   1066     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
   1067                               DAG.getIntPtrConstant(Offset, DL));
   1068     return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   1069                        false, false, false, 0);
   1070   }
   1071 
   1072   // Return the link register, which contains the return address.
   1073   // Mark it an implicit live-in.
   1074   unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
   1075   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
   1076 }
   1077 
   1078 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
   1079                                             SelectionDAG &DAG) const {
   1080   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1081   MFI->setFrameAddressIsTaken(true);
   1082 
   1083   EVT VT = Op.getValueType();
   1084   SDLoc DL(Op);
   1085   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
   1086   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1087   while (Depth--) {
   1088     const unsigned Offset = -8;
   1089     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
   1090                               DAG.getIntPtrConstant(Offset, DL));
   1091     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr,
   1092                             MachinePointerInfo(), false, false, false, 0);
   1093   }
   1094   return FrameAddr;
   1095 }
   1096 
   1097 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1098   switch (Opcode) {
   1099   case LanaiISD::ADJDYNALLOC:
   1100     return "LanaiISD::ADJDYNALLOC";
   1101   case LanaiISD::RET_FLAG:
   1102     return "LanaiISD::RET_FLAG";
   1103   case LanaiISD::CALL:
   1104     return "LanaiISD::CALL";
   1105   case LanaiISD::SELECT_CC:
   1106     return "LanaiISD::SELECT_CC";
   1107   case LanaiISD::SETCC:
   1108     return "LanaiISD::SETCC";
   1109   case LanaiISD::SUBBF:
   1110     return "LanaiISD::SUBBF";
   1111   case LanaiISD::SET_FLAG:
   1112     return "LanaiISD::SET_FLAG";
   1113   case LanaiISD::BR_CC:
   1114     return "LanaiISD::BR_CC";
   1115   case LanaiISD::Wrapper:
   1116     return "LanaiISD::Wrapper";
   1117   case LanaiISD::HI:
   1118     return "LanaiISD::HI";
   1119   case LanaiISD::LO:
   1120     return "LanaiISD::LO";
   1121   case LanaiISD::SMALL:
   1122     return "LanaiISD::SMALL";
   1123   default:
   1124     return NULL;
   1125   }
   1126 }
   1127 
   1128 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
   1129                                                SelectionDAG &DAG) const {
   1130   SDLoc DL(Op);
   1131   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
   1132   const Constant *C = N->getConstVal();
   1133   const LanaiTargetObjectFile *TLOF =
   1134       static_cast<const LanaiTargetObjectFile *>(
   1135           getTargetMachine().getObjFileLowering());
   1136 
   1137   // If the code model is small or constant will be placed in the small section,
   1138   // then assume address will fit in 21-bits.
   1139   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
   1140       TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
   1141     SDValue Small = DAG.getTargetConstantPool(
   1142         C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG);
   1143     return DAG.getNode(ISD::OR, DL, MVT::i32,
   1144                        DAG.getRegister(Lanai::R0, MVT::i32),
   1145                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
   1146   } else {
   1147     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
   1148     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
   1149 
   1150     SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
   1151                                            N->getOffset(), OpFlagHi);
   1152     SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
   1153                                            N->getOffset(), OpFlagLo);
   1154     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
   1155     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
   1156     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
   1157     return Result;
   1158   }
   1159 }
   1160 
   1161 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
   1162                                                 SelectionDAG &DAG) const {
   1163   SDLoc DL(Op);
   1164   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   1165   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
   1166 
   1167   const LanaiTargetObjectFile *TLOF =
   1168       static_cast<const LanaiTargetObjectFile *>(
   1169           getTargetMachine().getObjFileLowering());
   1170 
   1171   // If the code model is small or global variable will be placed in the small
   1172   // section, then assume address will fit in 21-bits.
   1173   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
   1174       TLOF->isGlobalInSmallSection(GV, getTargetMachine())) {
   1175     SDValue Small = DAG.getTargetGlobalAddress(
   1176         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
   1177     return DAG.getNode(ISD::OR, DL, MVT::i32,
   1178                        DAG.getRegister(Lanai::R0, MVT::i32),
   1179                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
   1180   } else {
   1181     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
   1182     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
   1183 
   1184     // Create the TargetGlobalAddress node, folding in the constant offset.
   1185     SDValue Hi = DAG.getTargetGlobalAddress(
   1186         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
   1187     SDValue Lo = DAG.getTargetGlobalAddress(
   1188         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
   1189     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
   1190     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
   1191     return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
   1192   }
   1193 }
   1194 
   1195 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
   1196                                                SelectionDAG &DAG) const {
   1197   SDLoc DL(Op);
   1198   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1199 
   1200   uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
   1201   uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
   1202 
   1203   SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
   1204   SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
   1205   Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
   1206   Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
   1207   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
   1208   return Result;
   1209 }
   1210 
   1211 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
   1212                                             SelectionDAG &DAG) const {
   1213   SDLoc DL(Op);
   1214   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1215 
   1216   // If the code model is small assume address will fit in 21-bits.
   1217   if (getTargetMachine().getCodeModel() == CodeModel::Small) {
   1218     SDValue Small = DAG.getTargetJumpTable(
   1219         JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
   1220     return DAG.getNode(ISD::OR, DL, MVT::i32,
   1221                        DAG.getRegister(Lanai::R0, MVT::i32),
   1222                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
   1223   } else {
   1224     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
   1225     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
   1226 
   1227     SDValue Hi = DAG.getTargetJumpTable(
   1228         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
   1229     SDValue Lo = DAG.getTargetJumpTable(
   1230         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
   1231     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
   1232     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
   1233     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
   1234     return Result;
   1235   }
   1236 }
   1237 
   1238 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
   1239                                             SelectionDAG &DAG) const {
   1240   MVT VT = Op.getSimpleValueType();
   1241   unsigned VTBits = VT.getSizeInBits();
   1242   SDLoc dl(Op);
   1243   SDValue ShOpLo = Op.getOperand(0);
   1244   SDValue ShOpHi = Op.getOperand(1);
   1245   SDValue ShAmt = Op.getOperand(2);
   1246 
   1247   // Performs the following for a >> b:
   1248   //   unsigned r_high = a_high >> b;
   1249   //   r_high = (32 - b <= 0) ? 0 : r_high;
   1250   //
   1251   //   unsigned r_low = a_low >> b;
   1252   //   r_low = (32 - b <= 0) ? r_high : r_low;
   1253   //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
   1254   //   return (unsigned long long)r_high << 32 | r_low;
   1255   // Note: This takes advantage of Lanai's shift behavior to avoid needing to
   1256   // mask the shift amount.
   1257 
   1258   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
   1259   SDValue NegatedPlus32 = DAG.getNode(
   1260       ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
   1261   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
   1262 
   1263   SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
   1264   Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
   1265 
   1266   SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
   1267   Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
   1268   SDValue CarryBits =
   1269       DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
   1270   SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
   1271   Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
   1272                      DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
   1273 
   1274   SDValue Ops[2] = {Lo, Hi};
   1275   return DAG.getMergeValues(Ops, dl);
   1276 }
   1277 
   1278 // Helper function that checks if N is a null or all ones constant.
   1279 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
   1280   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
   1281 }
   1282 
   1283 // Return true if N is conditionally 0 or all ones.
   1284 // Detects these expressions where cc is an i1 value:
   1285 //
   1286 //   (select cc 0, y)   [AllOnes=0]
   1287 //   (select cc y, 0)   [AllOnes=0]
   1288 //   (zext cc)          [AllOnes=0]
   1289 //   (sext cc)          [AllOnes=0/1]
   1290 //   (select cc -1, y)  [AllOnes=1]
   1291 //   (select cc y, -1)  [AllOnes=1]
   1292 //
   1293 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
   1294 //   all ones operand (AllOnes true).
   1295 // * Invert is set when N is the all zero/ones constant when CC is false.
   1296 // * OtherOp is set to the alternative value of N.
   1297 //
   1298 // For example, for (select cc X, Y) and AllOnes = 0 if:
   1299 // * X = 0, Invert = False and OtherOp = Y
   1300 // * Y = 0, Invert = True and OtherOp = X
   1301 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
   1302                                        bool &Invert, SDValue &OtherOp,
   1303                                        SelectionDAG &DAG) {
   1304   switch (N->getOpcode()) {
   1305   default:
   1306     return false;
   1307   case ISD::SELECT: {
   1308     CC = N->getOperand(0);
   1309     SDValue N1 = N->getOperand(1);
   1310     SDValue N2 = N->getOperand(2);
   1311     if (isZeroOrAllOnes(N1, AllOnes)) {
   1312       Invert = false;
   1313       OtherOp = N2;
   1314       return true;
   1315     }
   1316     if (isZeroOrAllOnes(N2, AllOnes)) {
   1317       Invert = true;
   1318       OtherOp = N1;
   1319       return true;
   1320     }
   1321     return false;
   1322   }
   1323   case ISD::ZERO_EXTEND: {
   1324     // (zext cc) can never be the all ones value.
   1325     if (AllOnes)
   1326       return false;
   1327     CC = N->getOperand(0);
   1328     if (CC.getValueType() != MVT::i1)
   1329       return false;
   1330     SDLoc dl(N);
   1331     EVT VT = N->getValueType(0);
   1332     OtherOp = DAG.getConstant(1, dl, VT);
   1333     Invert = true;
   1334     return true;
   1335   }
   1336   case ISD::SIGN_EXTEND: {
   1337     CC = N->getOperand(0);
   1338     if (CC.getValueType() != MVT::i1)
   1339       return false;
   1340     SDLoc dl(N);
   1341     EVT VT = N->getValueType(0);
   1342     Invert = !AllOnes;
   1343     if (AllOnes)
   1344       // When looking for an AllOnes constant, N is an sext, and the 'other'
   1345       // value is 0.
   1346       OtherOp = DAG.getConstant(0, dl, VT);
   1347     else
   1348       OtherOp =
   1349           DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT);
   1350     return true;
   1351   }
   1352   }
   1353 }
   1354 
   1355 // Combine a constant select operand into its use:
   1356 //
   1357 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
   1358 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
   1359 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
   1360 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
   1361 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
   1362 //
   1363 // The transform is rejected if the select doesn't have a constant operand that
   1364 // is null, or all ones when AllOnes is set.
   1365 //
   1366 // Also recognize sext/zext from i1:
   1367 //
   1368 //   (add (zext cc), x) -> (select cc (add x, 1), x)
   1369 //   (add (sext cc), x) -> (select cc (add x, -1), x)
   1370 //
   1371 // These transformations eventually create predicated instructions.
   1372 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   1373                                    TargetLowering::DAGCombinerInfo &DCI,
   1374                                    bool AllOnes) {
   1375   SelectionDAG &DAG = DCI.DAG;
   1376   EVT VT = N->getValueType(0);
   1377   SDValue NonConstantVal;
   1378   SDValue CCOp;
   1379   bool SwapSelectOps;
   1380   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
   1381                                   NonConstantVal, DAG))
   1382     return SDValue();
   1383 
   1384   // Slct is now know to be the desired identity constant when CC is true.
   1385   SDValue TrueVal = OtherOp;
   1386   SDValue FalseVal =
   1387       DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
   1388   // Unless SwapSelectOps says CC should be false.
   1389   if (SwapSelectOps)
   1390     std::swap(TrueVal, FalseVal);
   1391 
   1392   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
   1393 }
   1394 
   1395 // Attempt combineSelectAndUse on each operand of a commutative operator N.
   1396 static SDValue
   1397 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
   1398                                bool AllOnes) {
   1399   SDValue N0 = N->getOperand(0);
   1400   SDValue N1 = N->getOperand(1);
   1401   if (N0.getNode()->hasOneUse())
   1402     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
   1403       return Result;
   1404   if (N1.getNode()->hasOneUse())
   1405     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
   1406       return Result;
   1407   return SDValue();
   1408 }
   1409 
   1410 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   1411 static SDValue PerformSUBCombine(SDNode *N,
   1412                                  TargetLowering::DAGCombinerInfo &DCI) {
   1413   SDValue N0 = N->getOperand(0);
   1414   SDValue N1 = N->getOperand(1);
   1415 
   1416   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   1417   if (N1.getNode()->hasOneUse())
   1418     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
   1419       return Result;
   1420 
   1421   return SDValue();
   1422 }
   1423 
   1424 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
   1425                                                DAGCombinerInfo &DCI) const {
   1426   switch (N->getOpcode()) {
   1427   default:
   1428     break;
   1429   case ISD::ADD:
   1430   case ISD::OR:
   1431   case ISD::XOR:
   1432     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
   1433   case ISD::AND:
   1434     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
   1435   case ISD::SUB:
   1436     return PerformSUBCombine(N, DCI);
   1437   }
   1438 
   1439   return SDValue();
   1440 }
   1441