Home | History | Annotate | Download | only in ARM
      1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARMBaseInstrInfo.h"
     15 #include "ARMBaseRegisterInfo.h"
     16 #include "ARMConstantPoolValue.h"
     17 #include "ARMFeatures.h"
     18 #include "ARMHazardRecognizer.h"
     19 #include "ARMMachineFunctionInfo.h"
     20 #include "ARMSubtarget.h"
     21 #include "MCTargetDesc/ARMAddressingModes.h"
     22 #include "MCTargetDesc/ARMBaseInfo.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallSet.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/ADT/Triple.h"
     28 #include "llvm/CodeGen/LiveVariables.h"
     29 #include "llvm/CodeGen/MachineBasicBlock.h"
     30 #include "llvm/CodeGen/MachineConstantPool.h"
     31 #include "llvm/CodeGen/MachineFrameInfo.h"
     32 #include "llvm/CodeGen/MachineFunction.h"
     33 #include "llvm/CodeGen/MachineInstr.h"
     34 #include "llvm/CodeGen/MachineInstrBuilder.h"
     35 #include "llvm/CodeGen/MachineMemOperand.h"
     36 #include "llvm/CodeGen/MachineOperand.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
     39 #include "llvm/CodeGen/SelectionDAGNodes.h"
     40 #include "llvm/CodeGen/TargetInstrInfo.h"
     41 #include "llvm/CodeGen/TargetRegisterInfo.h"
     42 #include "llvm/CodeGen/TargetSchedule.h"
     43 #include "llvm/IR/Attributes.h"
     44 #include "llvm/IR/Constants.h"
     45 #include "llvm/IR/DebugLoc.h"
     46 #include "llvm/IR/Function.h"
     47 #include "llvm/IR/GlobalValue.h"
     48 #include "llvm/MC/MCAsmInfo.h"
     49 #include "llvm/MC/MCInstrDesc.h"
     50 #include "llvm/MC/MCInstrItineraries.h"
     51 #include "llvm/Support/BranchProbability.h"
     52 #include "llvm/Support/Casting.h"
     53 #include "llvm/Support/CommandLine.h"
     54 #include "llvm/Support/Compiler.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/ErrorHandling.h"
     57 #include "llvm/Support/raw_ostream.h"
     58 #include "llvm/Target/TargetMachine.h"
     59 #include <algorithm>
     60 #include <cassert>
     61 #include <cstdint>
     62 #include <iterator>
     63 #include <new>
     64 #include <utility>
     65 #include <vector>
     66 
     67 using namespace llvm;
     68 
     69 #define DEBUG_TYPE "arm-instrinfo"
     70 
     71 #define GET_INSTRINFO_CTOR_DTOR
     72 #include "ARMGenInstrInfo.inc"
     73 
     74 static cl::opt<bool>
     75 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
     76                cl::desc("Enable ARM 2-addr to 3-addr conv"));
     77 
     78 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
     79 struct ARM_MLxEntry {
     80   uint16_t MLxOpc;     // MLA / MLS opcode
     81   uint16_t MulOpc;     // Expanded multiplication opcode
     82   uint16_t AddSubOpc;  // Expanded add / sub opcode
     83   bool NegAcc;         // True if the acc is negated before the add / sub.
     84   bool HasLane;        // True if instruction has an extra "lane" operand.
     85 };
     86 
     87 static const ARM_MLxEntry ARM_MLxTable[] = {
     88   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
     89   // fp scalar ops
     90   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
     91   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
     92   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
     93   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
     94   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
     95   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
     96   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
     97   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
     98 
     99   // fp SIMD ops
    100   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
    101   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
    102   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
    103   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
    104   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
    105   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
    106   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
    107   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
    108 };
    109 
    110 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
    111   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
    112     Subtarget(STI) {
    113   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
    114     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
    115       llvm_unreachable("Duplicated entries?");
    116     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
    117     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
    118   }
    119 }
    120 
    121 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
    122 // currently defaults to no prepass hazard recognizer.
    123 ScheduleHazardRecognizer *
    124 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
    125                                                const ScheduleDAG *DAG) const {
    126   if (usePreRAHazardRecognizer()) {
    127     const InstrItineraryData *II =
    128         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
    129     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
    130   }
    131   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
    132 }
    133 
    134 ScheduleHazardRecognizer *ARMBaseInstrInfo::
    135 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    136                                    const ScheduleDAG *DAG) const {
    137   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
    138     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
    139   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
    140 }
    141 
    142 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
    143     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
    144   // FIXME: Thumb2 support.
    145 
    146   if (!EnableARM3Addr)
    147     return nullptr;
    148 
    149   MachineFunction &MF = *MI.getParent()->getParent();
    150   uint64_t TSFlags = MI.getDesc().TSFlags;
    151   bool isPre = false;
    152   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
    153   default: return nullptr;
    154   case ARMII::IndexModePre:
    155     isPre = true;
    156     break;
    157   case ARMII::IndexModePost:
    158     break;
    159   }
    160 
    161   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
    162   // operation.
    163   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
    164   if (MemOpc == 0)
    165     return nullptr;
    166 
    167   MachineInstr *UpdateMI = nullptr;
    168   MachineInstr *MemMI = nullptr;
    169   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
    170   const MCInstrDesc &MCID = MI.getDesc();
    171   unsigned NumOps = MCID.getNumOperands();
    172   bool isLoad = !MI.mayStore();
    173   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
    174   const MachineOperand &Base = MI.getOperand(2);
    175   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
    176   unsigned WBReg = WB.getReg();
    177   unsigned BaseReg = Base.getReg();
    178   unsigned OffReg = Offset.getReg();
    179   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
    180   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
    181   switch (AddrMode) {
    182   default: llvm_unreachable("Unknown indexed op!");
    183   case ARMII::AddrMode2: {
    184     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    185     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    186     if (OffReg == 0) {
    187       if (ARM_AM::getSOImmVal(Amt) == -1)
    188         // Can't encode it in a so_imm operand. This transformation will
    189         // add more than 1 instruction. Abandon!
    190         return nullptr;
    191       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    192                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    193                      .addReg(BaseReg)
    194                      .addImm(Amt)
    195                      .add(predOps(Pred))
    196                      .add(condCodeOp());
    197     } else if (Amt != 0) {
    198       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
    199       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
    200       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    201                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
    202                      .addReg(BaseReg)
    203                      .addReg(OffReg)
    204                      .addReg(0)
    205                      .addImm(SOOpc)
    206                      .add(predOps(Pred))
    207                      .add(condCodeOp());
    208     } else
    209       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    210                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    211                      .addReg(BaseReg)
    212                      .addReg(OffReg)
    213                      .add(predOps(Pred))
    214                      .add(condCodeOp());
    215     break;
    216   }
    217   case ARMII::AddrMode3 : {
    218     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    219     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    220     if (OffReg == 0)
    221       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
    222       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    223                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    224                      .addReg(BaseReg)
    225                      .addImm(Amt)
    226                      .add(predOps(Pred))
    227                      .add(condCodeOp());
    228     else
    229       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
    230                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    231                      .addReg(BaseReg)
    232                      .addReg(OffReg)
    233                      .add(predOps(Pred))
    234                      .add(condCodeOp());
    235     break;
    236   }
    237   }
    238 
    239   std::vector<MachineInstr*> NewMIs;
    240   if (isPre) {
    241     if (isLoad)
    242       MemMI =
    243           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
    244               .addReg(WBReg)
    245               .addImm(0)
    246               .addImm(Pred);
    247     else
    248       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
    249                   .addReg(MI.getOperand(1).getReg())
    250                   .addReg(WBReg)
    251                   .addReg(0)
    252                   .addImm(0)
    253                   .addImm(Pred);
    254     NewMIs.push_back(MemMI);
    255     NewMIs.push_back(UpdateMI);
    256   } else {
    257     if (isLoad)
    258       MemMI =
    259           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
    260               .addReg(BaseReg)
    261               .addImm(0)
    262               .addImm(Pred);
    263     else
    264       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
    265                   .addReg(MI.getOperand(1).getReg())
    266                   .addReg(BaseReg)
    267                   .addReg(0)
    268                   .addImm(0)
    269                   .addImm(Pred);
    270     if (WB.isDead())
    271       UpdateMI->getOperand(0).setIsDead();
    272     NewMIs.push_back(UpdateMI);
    273     NewMIs.push_back(MemMI);
    274   }
    275 
    276   // Transfer LiveVariables states, kill / dead info.
    277   if (LV) {
    278     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    279       MachineOperand &MO = MI.getOperand(i);
    280       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    281         unsigned Reg = MO.getReg();
    282 
    283         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
    284         if (MO.isDef()) {
    285           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
    286           if (MO.isDead())
    287             LV->addVirtualRegisterDead(Reg, *NewMI);
    288         }
    289         if (MO.isUse() && MO.isKill()) {
    290           for (unsigned j = 0; j < 2; ++j) {
    291             // Look at the two new MI's in reverse order.
    292             MachineInstr *NewMI = NewMIs[j];
    293             if (!NewMI->readsRegister(Reg))
    294               continue;
    295             LV->addVirtualRegisterKilled(Reg, *NewMI);
    296             if (VI.removeKill(MI))
    297               VI.Kills.push_back(NewMI);
    298             break;
    299           }
    300         }
    301       }
    302     }
    303   }
    304 
    305   MachineBasicBlock::iterator MBBI = MI.getIterator();
    306   MFI->insert(MBBI, NewMIs[1]);
    307   MFI->insert(MBBI, NewMIs[0]);
    308   return NewMIs[0];
    309 }
    310 
    311 // Branch analysis.
    312 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
    313                                      MachineBasicBlock *&TBB,
    314                                      MachineBasicBlock *&FBB,
    315                                      SmallVectorImpl<MachineOperand> &Cond,
    316                                      bool AllowModify) const {
    317   TBB = nullptr;
    318   FBB = nullptr;
    319 
    320   MachineBasicBlock::iterator I = MBB.end();
    321   if (I == MBB.begin())
    322     return false; // Empty blocks are easy.
    323   --I;
    324 
    325   // Walk backwards from the end of the basic block until the branch is
    326   // analyzed or we give up.
    327   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
    328     // Flag to be raised on unanalyzeable instructions. This is useful in cases
    329     // where we want to clean up on the end of the basic block before we bail
    330     // out.
    331     bool CantAnalyze = false;
    332 
    333     // Skip over DEBUG values and predicated nonterminators.
    334     while (I->isDebugInstr() || !I->isTerminator()) {
    335       if (I == MBB.begin())
    336         return false;
    337       --I;
    338     }
    339 
    340     if (isIndirectBranchOpcode(I->getOpcode()) ||
    341         isJumpTableBranchOpcode(I->getOpcode())) {
    342       // Indirect branches and jump tables can't be analyzed, but we still want
    343       // to clean up any instructions at the tail of the basic block.
    344       CantAnalyze = true;
    345     } else if (isUncondBranchOpcode(I->getOpcode())) {
    346       TBB = I->getOperand(0).getMBB();
    347     } else if (isCondBranchOpcode(I->getOpcode())) {
    348       // Bail out if we encounter multiple conditional branches.
    349       if (!Cond.empty())
    350         return true;
    351 
    352       assert(!FBB && "FBB should have been null.");
    353       FBB = TBB;
    354       TBB = I->getOperand(0).getMBB();
    355       Cond.push_back(I->getOperand(1));
    356       Cond.push_back(I->getOperand(2));
    357     } else if (I->isReturn()) {
    358       // Returns can't be analyzed, but we should run cleanup.
    359       CantAnalyze = !isPredicated(*I);
    360     } else {
    361       // We encountered other unrecognized terminator. Bail out immediately.
    362       return true;
    363     }
    364 
    365     // Cleanup code - to be run for unpredicated unconditional branches and
    366     //                returns.
    367     if (!isPredicated(*I) &&
    368           (isUncondBranchOpcode(I->getOpcode()) ||
    369            isIndirectBranchOpcode(I->getOpcode()) ||
    370            isJumpTableBranchOpcode(I->getOpcode()) ||
    371            I->isReturn())) {
    372       // Forget any previous condition branch information - it no longer applies.
    373       Cond.clear();
    374       FBB = nullptr;
    375 
    376       // If we can modify the function, delete everything below this
    377       // unconditional branch.
    378       if (AllowModify) {
    379         MachineBasicBlock::iterator DI = std::next(I);
    380         while (DI != MBB.end()) {
    381           MachineInstr &InstToDelete = *DI;
    382           ++DI;
    383           InstToDelete.eraseFromParent();
    384         }
    385       }
    386     }
    387 
    388     if (CantAnalyze)
    389       return true;
    390 
    391     if (I == MBB.begin())
    392       return false;
    393 
    394     --I;
    395   }
    396 
    397   // We made it past the terminators without bailing out - we must have
    398   // analyzed this branch successfully.
    399   return false;
    400 }
    401 
    402 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
    403                                         int *BytesRemoved) const {
    404   assert(!BytesRemoved && "code size not handled");
    405 
    406   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
    407   if (I == MBB.end())
    408     return 0;
    409 
    410   if (!isUncondBranchOpcode(I->getOpcode()) &&
    411       !isCondBranchOpcode(I->getOpcode()))
    412     return 0;
    413 
    414   // Remove the branch.
    415   I->eraseFromParent();
    416 
    417   I = MBB.end();
    418 
    419   if (I == MBB.begin()) return 1;
    420   --I;
    421   if (!isCondBranchOpcode(I->getOpcode()))
    422     return 1;
    423 
    424   // Remove the branch.
    425   I->eraseFromParent();
    426   return 2;
    427 }
    428 
    429 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
    430                                         MachineBasicBlock *TBB,
    431                                         MachineBasicBlock *FBB,
    432                                         ArrayRef<MachineOperand> Cond,
    433                                         const DebugLoc &DL,
    434                                         int *BytesAdded) const {
    435   assert(!BytesAdded && "code size not handled");
    436   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
    437   int BOpc   = !AFI->isThumbFunction()
    438     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
    439   int BccOpc = !AFI->isThumbFunction()
    440     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
    441   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
    442 
    443   // Shouldn't be a fall through.
    444   assert(TBB && "insertBranch must not be told to insert a fallthrough");
    445   assert((Cond.size() == 2 || Cond.size() == 0) &&
    446          "ARM branch conditions have two components!");
    447 
    448   // For conditional branches, we use addOperand to preserve CPSR flags.
    449 
    450   if (!FBB) {
    451     if (Cond.empty()) { // Unconditional branch?
    452       if (isThumb)
    453         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
    454       else
    455         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    456     } else
    457       BuildMI(&MBB, DL, get(BccOpc))
    458           .addMBB(TBB)
    459           .addImm(Cond[0].getImm())
    460           .add(Cond[1]);
    461     return 1;
    462   }
    463 
    464   // Two-way conditional branch.
    465   BuildMI(&MBB, DL, get(BccOpc))
    466       .addMBB(TBB)
    467       .addImm(Cond[0].getImm())
    468       .add(Cond[1]);
    469   if (isThumb)
    470     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
    471   else
    472     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    473   return 2;
    474 }
    475 
    476 bool ARMBaseInstrInfo::
    477 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    478   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
    479   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
    480   return false;
    481 }
    482 
    483 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
    484   if (MI.isBundle()) {
    485     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
    486     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
    487     while (++I != E && I->isInsideBundle()) {
    488       int PIdx = I->findFirstPredOperandIdx();
    489       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
    490         return true;
    491     }
    492     return false;
    493   }
    494 
    495   int PIdx = MI.findFirstPredOperandIdx();
    496   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
    497 }
    498 
    499 bool ARMBaseInstrInfo::PredicateInstruction(
    500     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
    501   unsigned Opc = MI.getOpcode();
    502   if (isUncondBranchOpcode(Opc)) {
    503     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
    504     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
    505       .addImm(Pred[0].getImm())
    506       .addReg(Pred[1].getReg());
    507     return true;
    508   }
    509 
    510   int PIdx = MI.findFirstPredOperandIdx();
    511   if (PIdx != -1) {
    512     MachineOperand &PMO = MI.getOperand(PIdx);
    513     PMO.setImm(Pred[0].getImm());
    514     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
    515     return true;
    516   }
    517   return false;
    518 }
    519 
    520 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
    521                                          ArrayRef<MachineOperand> Pred2) const {
    522   if (Pred1.size() > 2 || Pred2.size() > 2)
    523     return false;
    524 
    525   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
    526   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
    527   if (CC1 == CC2)
    528     return true;
    529 
    530   switch (CC1) {
    531   default:
    532     return false;
    533   case ARMCC::AL:
    534     return true;
    535   case ARMCC::HS:
    536     return CC2 == ARMCC::HI;
    537   case ARMCC::LS:
    538     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
    539   case ARMCC::GE:
    540     return CC2 == ARMCC::GT;
    541   case ARMCC::LE:
    542     return CC2 == ARMCC::LT;
    543   }
    544 }
    545 
    546 bool ARMBaseInstrInfo::DefinesPredicate(
    547     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
    548   bool Found = false;
    549   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    550     const MachineOperand &MO = MI.getOperand(i);
    551     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
    552         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
    553       Pred.push_back(MO);
    554       Found = true;
    555     }
    556   }
    557 
    558   return Found;
    559 }
    560 
    561 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
    562   for (const auto &MO : MI.operands())
    563     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
    564       return true;
    565   return false;
    566 }
    567 
    568 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
    569                                         unsigned Op) const {
    570   const MachineOperand &Offset = MI.getOperand(Op + 1);
    571   return Offset.getReg() != 0;
    572 }
    573 
    574 // Load with negative register offset requires additional 1cyc and +I unit
    575 // for Cortex A57
    576 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
    577                                              unsigned Op) const {
    578   const MachineOperand &Offset = MI.getOperand(Op + 1);
    579   const MachineOperand &Opc = MI.getOperand(Op + 2);
    580   assert(Opc.isImm());
    581   assert(Offset.isReg());
    582   int64_t OpcImm = Opc.getImm();
    583 
    584   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
    585   return (isSub && Offset.getReg() != 0);
    586 }
    587 
    588 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
    589                                        unsigned Op) const {
    590   const MachineOperand &Opc = MI.getOperand(Op + 2);
    591   unsigned OffImm = Opc.getImm();
    592   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
    593 }
    594 
    595 // Load, scaled register offset, not plus LSL2
    596 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
    597                                                   unsigned Op) const {
    598   const MachineOperand &Opc = MI.getOperand(Op + 2);
    599   unsigned OffImm = Opc.getImm();
    600 
    601   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
    602   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    603   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
    604   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
    605   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
    606   return !SimpleScaled;
    607 }
    608 
    609 // Minus reg for ldstso addr mode
    610 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
    611                                         unsigned Op) const {
    612   unsigned OffImm = MI.getOperand(Op + 2).getImm();
    613   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    614 }
    615 
    616 // Load, scaled register offset
    617 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
    618                                       unsigned Op) const {
    619   unsigned OffImm = MI.getOperand(Op + 2).getImm();
    620   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
    621 }
    622 
    623 static bool isEligibleForITBlock(const MachineInstr *MI) {
    624   switch (MI->getOpcode()) {
    625   default: return true;
    626   case ARM::tADC:   // ADC (register) T1
    627   case ARM::tADDi3: // ADD (immediate) T1
    628   case ARM::tADDi8: // ADD (immediate) T2
    629   case ARM::tADDrr: // ADD (register) T1
    630   case ARM::tAND:   // AND (register) T1
    631   case ARM::tASRri: // ASR (immediate) T1
    632   case ARM::tASRrr: // ASR (register) T1
    633   case ARM::tBIC:   // BIC (register) T1
    634   case ARM::tEOR:   // EOR (register) T1
    635   case ARM::tLSLri: // LSL (immediate) T1
    636   case ARM::tLSLrr: // LSL (register) T1
    637   case ARM::tLSRri: // LSR (immediate) T1
    638   case ARM::tLSRrr: // LSR (register) T1
    639   case ARM::tMUL:   // MUL T1
    640   case ARM::tMVN:   // MVN (register) T1
    641   case ARM::tORR:   // ORR (register) T1
    642   case ARM::tROR:   // ROR (register) T1
    643   case ARM::tRSB:   // RSB (immediate) T1
    644   case ARM::tSBC:   // SBC (register) T1
    645   case ARM::tSUBi3: // SUB (immediate) T1
    646   case ARM::tSUBi8: // SUB (immediate) T2
    647   case ARM::tSUBrr: // SUB (register) T1
    648     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
    649   }
    650 }
    651 
    652 /// isPredicable - Return true if the specified instruction can be predicated.
    653 /// By default, this returns true for every instruction with a
    654 /// PredicateOperand.
    655 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
    656   if (!MI.isPredicable())
    657     return false;
    658 
    659   if (MI.isBundle())
    660     return false;
    661 
    662   if (!isEligibleForITBlock(&MI))
    663     return false;
    664 
    665   const ARMFunctionInfo *AFI =
    666       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
    667 
    668   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
    669   // In their ARM encoding, they can't be encoded in a conditional form.
    670   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
    671     return false;
    672 
    673   if (AFI->isThumb2Function()) {
    674     if (getSubtarget().restrictIT())
    675       return isV8EligibleForIT(&MI);
    676   }
    677 
    678   return true;
    679 }
    680 
    681 namespace llvm {
    682 
    683 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
    684   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    685     const MachineOperand &MO = MI->getOperand(i);
    686     if (!MO.isReg() || MO.isUndef() || MO.isUse())
    687       continue;
    688     if (MO.getReg() != ARM::CPSR)
    689       continue;
    690     if (!MO.isDead())
    691       return false;
    692   }
    693   // all definitions of CPSR are dead
    694   return true;
    695 }
    696 
    697 } // end namespace llvm
    698 
    699 /// GetInstSize - Return the size of the specified MachineInstr.
    700 ///
    701 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
    702   const MachineBasicBlock &MBB = *MI.getParent();
    703   const MachineFunction *MF = MBB.getParent();
    704   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
    705 
    706   const MCInstrDesc &MCID = MI.getDesc();
    707   if (MCID.getSize())
    708     return MCID.getSize();
    709 
    710   // If this machine instr is an inline asm, measure it.
    711   if (MI.getOpcode() == ARM::INLINEASM)
    712     return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
    713   unsigned Opc = MI.getOpcode();
    714   switch (Opc) {
    715   default:
    716     // pseudo-instruction sizes are zero.
    717     return 0;
    718   case TargetOpcode::BUNDLE:
    719     return getInstBundleLength(MI);
    720   case ARM::MOVi16_ga_pcrel:
    721   case ARM::MOVTi16_ga_pcrel:
    722   case ARM::t2MOVi16_ga_pcrel:
    723   case ARM::t2MOVTi16_ga_pcrel:
    724     return 4;
    725   case ARM::MOVi32imm:
    726   case ARM::t2MOVi32imm:
    727     return 8;
    728   case ARM::CONSTPOOL_ENTRY:
    729   case ARM::JUMPTABLE_INSTS:
    730   case ARM::JUMPTABLE_ADDRS:
    731   case ARM::JUMPTABLE_TBB:
    732   case ARM::JUMPTABLE_TBH:
    733     // If this machine instr is a constant pool entry, its size is recorded as
    734     // operand #2.
    735     return MI.getOperand(2).getImm();
    736   case ARM::Int_eh_sjlj_longjmp:
    737     return 16;
    738   case ARM::tInt_eh_sjlj_longjmp:
    739     return 10;
    740   case ARM::tInt_WIN_eh_sjlj_longjmp:
    741     return 12;
    742   case ARM::Int_eh_sjlj_setjmp:
    743   case ARM::Int_eh_sjlj_setjmp_nofp:
    744     return 20;
    745   case ARM::tInt_eh_sjlj_setjmp:
    746   case ARM::t2Int_eh_sjlj_setjmp:
    747   case ARM::t2Int_eh_sjlj_setjmp_nofp:
    748     return 12;
    749   case ARM::SPACE:
    750     return MI.getOperand(1).getImm();
    751   }
    752 }
    753 
    754 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
    755   unsigned Size = 0;
    756   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
    757   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
    758   while (++I != E && I->isInsideBundle()) {
    759     assert(!I->isBundle() && "No nested bundle!");
    760     Size += getInstSizeInBytes(*I);
    761   }
    762   return Size;
    763 }
    764 
    765 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
    766                                     MachineBasicBlock::iterator I,
    767                                     unsigned DestReg, bool KillSrc,
    768                                     const ARMSubtarget &Subtarget) const {
    769   unsigned Opc = Subtarget.isThumb()
    770                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
    771                      : ARM::MRS;
    772 
    773   MachineInstrBuilder MIB =
    774       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
    775 
    776   // There is only 1 A/R class MRS instruction, and it always refers to
    777   // APSR. However, there are lots of other possibilities on M-class cores.
    778   if (Subtarget.isMClass())
    779     MIB.addImm(0x800);
    780 
    781   MIB.add(predOps(ARMCC::AL))
    782      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
    783 }
    784 
    785 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
    786                                   MachineBasicBlock::iterator I,
    787                                   unsigned SrcReg, bool KillSrc,
    788                                   const ARMSubtarget &Subtarget) const {
    789   unsigned Opc = Subtarget.isThumb()
    790                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
    791                      : ARM::MSR;
    792 
    793   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
    794 
    795   if (Subtarget.isMClass())
    796     MIB.addImm(0x800);
    797   else
    798     MIB.addImm(8);
    799 
    800   MIB.addReg(SrcReg, getKillRegState(KillSrc))
    801      .add(predOps(ARMCC::AL))
    802      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
    803 }
    804 
    805 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    806                                    MachineBasicBlock::iterator I,
    807                                    const DebugLoc &DL, unsigned DestReg,
    808                                    unsigned SrcReg, bool KillSrc) const {
    809   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
    810   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
    811 
    812   if (GPRDest && GPRSrc) {
    813     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
    814         .addReg(SrcReg, getKillRegState(KillSrc))
    815         .add(predOps(ARMCC::AL))
    816         .add(condCodeOp());
    817     return;
    818   }
    819 
    820   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
    821   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
    822 
    823   unsigned Opc = 0;
    824   if (SPRDest && SPRSrc)
    825     Opc = ARM::VMOVS;
    826   else if (GPRDest && SPRSrc)
    827     Opc = ARM::VMOVRS;
    828   else if (SPRDest && GPRSrc)
    829     Opc = ARM::VMOVSR;
    830   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
    831     Opc = ARM::VMOVD;
    832   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
    833     Opc = ARM::VORRq;
    834 
    835   if (Opc) {
    836     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
    837     MIB.addReg(SrcReg, getKillRegState(KillSrc));
    838     if (Opc == ARM::VORRq)
    839       MIB.addReg(SrcReg, getKillRegState(KillSrc));
    840     MIB.add(predOps(ARMCC::AL));
    841     return;
    842   }
    843 
    844   // Handle register classes that require multiple instructions.
    845   unsigned BeginIdx = 0;
    846   unsigned SubRegs = 0;
    847   int Spacing = 1;
    848 
    849   // Use VORRq when possible.
    850   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
    851     Opc = ARM::VORRq;
    852     BeginIdx = ARM::qsub_0;
    853     SubRegs = 2;
    854   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
    855     Opc = ARM::VORRq;
    856     BeginIdx = ARM::qsub_0;
    857     SubRegs = 4;
    858   // Fall back to VMOVD.
    859   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
    860     Opc = ARM::VMOVD;
    861     BeginIdx = ARM::dsub_0;
    862     SubRegs = 2;
    863   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
    864     Opc = ARM::VMOVD;
    865     BeginIdx = ARM::dsub_0;
    866     SubRegs = 3;
    867   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
    868     Opc = ARM::VMOVD;
    869     BeginIdx = ARM::dsub_0;
    870     SubRegs = 4;
    871   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
    872     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
    873     BeginIdx = ARM::gsub_0;
    874     SubRegs = 2;
    875   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
    876     Opc = ARM::VMOVD;
    877     BeginIdx = ARM::dsub_0;
    878     SubRegs = 2;
    879     Spacing = 2;
    880   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
    881     Opc = ARM::VMOVD;
    882     BeginIdx = ARM::dsub_0;
    883     SubRegs = 3;
    884     Spacing = 2;
    885   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
    886     Opc = ARM::VMOVD;
    887     BeginIdx = ARM::dsub_0;
    888     SubRegs = 4;
    889     Spacing = 2;
    890   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
    891     Opc = ARM::VMOVS;
    892     BeginIdx = ARM::ssub_0;
    893     SubRegs = 2;
    894   } else if (SrcReg == ARM::CPSR) {
    895     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
    896     return;
    897   } else if (DestReg == ARM::CPSR) {
    898     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
    899     return;
    900   }
    901 
    902   assert(Opc && "Impossible reg-to-reg copy");
    903 
    904   const TargetRegisterInfo *TRI = &getRegisterInfo();
    905   MachineInstrBuilder Mov;
    906 
    907   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
    908   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
    909     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
    910     Spacing = -Spacing;
    911   }
    912 #ifndef NDEBUG
    913   SmallSet<unsigned, 4> DstRegs;
    914 #endif
    915   for (unsigned i = 0; i != SubRegs; ++i) {
    916     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
    917     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
    918     assert(Dst && Src && "Bad sub-register");
    919 #ifndef NDEBUG
    920     assert(!DstRegs.count(Src) && "destructive vector copy");
    921     DstRegs.insert(Dst);
    922 #endif
    923     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
    924     // VORR takes two source operands.
    925     if (Opc == ARM::VORRq)
    926       Mov.addReg(Src);
    927     Mov = Mov.add(predOps(ARMCC::AL));
    928     // MOVr can set CC.
    929     if (Opc == ARM::MOVr)
    930       Mov = Mov.add(condCodeOp());
    931   }
    932   // Add implicit super-register defs and kills to the last instruction.
    933   Mov->addRegisterDefined(DestReg, TRI);
    934   if (KillSrc)
    935     Mov->addRegisterKilled(SrcReg, TRI);
    936 }
    937 
    938 bool ARMBaseInstrInfo::isCopyInstr(const MachineInstr &MI,
    939                                    const MachineOperand *&Src,
    940                                    const MachineOperand *&Dest) const {
    941   // VMOVRRD is also a copy instruction but it requires
    942   // special way of handling. It is more complex copy version
    943   // and since that we are not considering it. For recognition
    944   // of such instruction isExtractSubregLike MI interface fuction
    945   // could be used.
    946   // VORRq is considered as a move only if two inputs are
    947   // the same register.
    948   if (!MI.isMoveReg() ||
    949       (MI.getOpcode() == ARM::VORRq &&
    950        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
    951     return false;
    952   Dest = &MI.getOperand(0);
    953   Src = &MI.getOperand(1);
    954   return true;
    955 }
    956 
    957 const MachineInstrBuilder &
    958 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
    959                           unsigned SubIdx, unsigned State,
    960                           const TargetRegisterInfo *TRI) const {
    961   if (!SubIdx)
    962     return MIB.addReg(Reg, State);
    963 
    964   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    965     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
    966   return MIB.addReg(Reg, State, SubIdx);
    967 }
    968 
    969 void ARMBaseInstrInfo::
    970 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    971                     unsigned SrcReg, bool isKill, int FI,
    972                     const TargetRegisterClass *RC,
    973                     const TargetRegisterInfo *TRI) const {
    974   DebugLoc DL;
    975   if (I != MBB.end()) DL = I->getDebugLoc();
    976   MachineFunction &MF = *MBB.getParent();
    977   MachineFrameInfo &MFI = MF.getFrameInfo();
    978   unsigned Align = MFI.getObjectAlignment(FI);
    979 
    980   MachineMemOperand *MMO = MF.getMachineMemOperand(
    981       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
    982       MFI.getObjectSize(FI), Align);
    983 
    984   switch (TRI->getSpillSize(*RC)) {
    985     case 2:
    986       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
    987         BuildMI(MBB, I, DL, get(ARM::VSTRH))
    988             .addReg(SrcReg, getKillRegState(isKill))
    989             .addFrameIndex(FI)
    990             .addImm(0)
    991             .addMemOperand(MMO)
    992             .add(predOps(ARMCC::AL));
    993       } else
    994         llvm_unreachable("Unknown reg class!");
    995       break;
    996     case 4:
    997       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
    998         BuildMI(MBB, I, DL, get(ARM::STRi12))
    999             .addReg(SrcReg, getKillRegState(isKill))
   1000             .addFrameIndex(FI)
   1001             .addImm(0)
   1002             .addMemOperand(MMO)
   1003             .add(predOps(ARMCC::AL));
   1004       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
   1005         BuildMI(MBB, I, DL, get(ARM::VSTRS))
   1006             .addReg(SrcReg, getKillRegState(isKill))
   1007             .addFrameIndex(FI)
   1008             .addImm(0)
   1009             .addMemOperand(MMO)
   1010             .add(predOps(ARMCC::AL));
   1011       } else
   1012         llvm_unreachable("Unknown reg class!");
   1013       break;
   1014     case 8:
   1015       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
   1016         BuildMI(MBB, I, DL, get(ARM::VSTRD))
   1017             .addReg(SrcReg, getKillRegState(isKill))
   1018             .addFrameIndex(FI)
   1019             .addImm(0)
   1020             .addMemOperand(MMO)
   1021             .add(predOps(ARMCC::AL));
   1022       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
   1023         if (Subtarget.hasV5TEOps()) {
   1024           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
   1025           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
   1026           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
   1027           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
   1028              .add(predOps(ARMCC::AL));
   1029         } else {
   1030           // Fallback to STM instruction, which has existed since the dawn of
   1031           // time.
   1032           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STMIA))
   1033                                         .addFrameIndex(FI)
   1034                                         .addMemOperand(MMO)
   1035                                         .add(predOps(ARMCC::AL));
   1036           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
   1037           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
   1038         }
   1039       } else
   1040         llvm_unreachable("Unknown reg class!");
   1041       break;
   1042     case 16:
   1043       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
   1044         // Use aligned spills if the stack can be realigned.
   1045         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1046           BuildMI(MBB, I, DL, get(ARM::VST1q64))
   1047               .addFrameIndex(FI)
   1048               .addImm(16)
   1049               .addReg(SrcReg, getKillRegState(isKill))
   1050               .addMemOperand(MMO)
   1051               .add(predOps(ARMCC::AL));
   1052         } else {
   1053           BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
   1054               .addReg(SrcReg, getKillRegState(isKill))
   1055               .addFrameIndex(FI)
   1056               .addMemOperand(MMO)
   1057               .add(predOps(ARMCC::AL));
   1058         }
   1059       } else
   1060         llvm_unreachable("Unknown reg class!");
   1061       break;
   1062     case 24:
   1063       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
   1064         // Use aligned spills if the stack can be realigned.
   1065         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1066           BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
   1067               .addFrameIndex(FI)
   1068               .addImm(16)
   1069               .addReg(SrcReg, getKillRegState(isKill))
   1070               .addMemOperand(MMO)
   1071               .add(predOps(ARMCC::AL));
   1072         } else {
   1073           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
   1074                                         .addFrameIndex(FI)
   1075                                         .add(predOps(ARMCC::AL))
   1076                                         .addMemOperand(MMO);
   1077           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
   1078           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
   1079           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
   1080         }
   1081       } else
   1082         llvm_unreachable("Unknown reg class!");
   1083       break;
   1084     case 32:
   1085       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
   1086         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1087           // FIXME: It's possible to only store part of the QQ register if the
   1088           // spilled def has a sub-register index.
   1089           BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
   1090               .addFrameIndex(FI)
   1091               .addImm(16)
   1092               .addReg(SrcReg, getKillRegState(isKill))
   1093               .addMemOperand(MMO)
   1094               .add(predOps(ARMCC::AL));
   1095         } else {
   1096           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
   1097                                         .addFrameIndex(FI)
   1098                                         .add(predOps(ARMCC::AL))
   1099                                         .addMemOperand(MMO);
   1100           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
   1101           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
   1102           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
   1103                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
   1104         }
   1105       } else
   1106         llvm_unreachable("Unknown reg class!");
   1107       break;
   1108     case 64:
   1109       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
   1110         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
   1111                                       .addFrameIndex(FI)
   1112                                       .add(predOps(ARMCC::AL))
   1113                                       .addMemOperand(MMO);
   1114         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
   1115         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
   1116         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
   1117         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
   1118         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
   1119         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
   1120         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
   1121               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
   1122       } else
   1123         llvm_unreachable("Unknown reg class!");
   1124       break;
   1125     default:
   1126       llvm_unreachable("Unknown reg class!");
   1127   }
   1128 }
   1129 
   1130 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
   1131                                               int &FrameIndex) const {
   1132   switch (MI.getOpcode()) {
   1133   default: break;
   1134   case ARM::STRrs:
   1135   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
   1136     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
   1137         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
   1138         MI.getOperand(3).getImm() == 0) {
   1139       FrameIndex = MI.getOperand(1).getIndex();
   1140       return MI.getOperand(0).getReg();
   1141     }
   1142     break;
   1143   case ARM::STRi12:
   1144   case ARM::t2STRi12:
   1145   case ARM::tSTRspi:
   1146   case ARM::VSTRD:
   1147   case ARM::VSTRS:
   1148     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
   1149         MI.getOperand(2).getImm() == 0) {
   1150       FrameIndex = MI.getOperand(1).getIndex();
   1151       return MI.getOperand(0).getReg();
   1152     }
   1153     break;
   1154   case ARM::VST1q64:
   1155   case ARM::VST1d64TPseudo:
   1156   case ARM::VST1d64QPseudo:
   1157     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
   1158       FrameIndex = MI.getOperand(0).getIndex();
   1159       return MI.getOperand(2).getReg();
   1160     }
   1161     break;
   1162   case ARM::VSTMQIA:
   1163     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
   1164       FrameIndex = MI.getOperand(1).getIndex();
   1165       return MI.getOperand(0).getReg();
   1166     }
   1167     break;
   1168   }
   1169 
   1170   return 0;
   1171 }
   1172 
   1173 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
   1174                                                     int &FrameIndex) const {
   1175   const MachineMemOperand *Dummy;
   1176   return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
   1177 }
   1178 
   1179 void ARMBaseInstrInfo::
   1180 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
   1181                      unsigned DestReg, int FI,
   1182                      const TargetRegisterClass *RC,
   1183                      const TargetRegisterInfo *TRI) const {
   1184   DebugLoc DL;
   1185   if (I != MBB.end()) DL = I->getDebugLoc();
   1186   MachineFunction &MF = *MBB.getParent();
   1187   MachineFrameInfo &MFI = MF.getFrameInfo();
   1188   unsigned Align = MFI.getObjectAlignment(FI);
   1189   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1190       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
   1191       MFI.getObjectSize(FI), Align);
   1192 
   1193   switch (TRI->getSpillSize(*RC)) {
   1194   case 2:
   1195     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
   1196       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
   1197           .addFrameIndex(FI)
   1198           .addImm(0)
   1199           .addMemOperand(MMO)
   1200           .add(predOps(ARMCC::AL));
   1201     } else
   1202       llvm_unreachable("Unknown reg class!");
   1203     break;
   1204   case 4:
   1205     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
   1206       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
   1207           .addFrameIndex(FI)
   1208           .addImm(0)
   1209           .addMemOperand(MMO)
   1210           .add(predOps(ARMCC::AL));
   1211     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
   1212       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
   1213           .addFrameIndex(FI)
   1214           .addImm(0)
   1215           .addMemOperand(MMO)
   1216           .add(predOps(ARMCC::AL));
   1217     } else
   1218       llvm_unreachable("Unknown reg class!");
   1219     break;
   1220   case 8:
   1221     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
   1222       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
   1223           .addFrameIndex(FI)
   1224           .addImm(0)
   1225           .addMemOperand(MMO)
   1226           .add(predOps(ARMCC::AL));
   1227     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
   1228       MachineInstrBuilder MIB;
   1229 
   1230       if (Subtarget.hasV5TEOps()) {
   1231         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
   1232         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
   1233         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
   1234         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
   1235            .add(predOps(ARMCC::AL));
   1236       } else {
   1237         // Fallback to LDM instruction, which has existed since the dawn of
   1238         // time.
   1239         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
   1240                   .addFrameIndex(FI)
   1241                   .addMemOperand(MMO)
   1242                   .add(predOps(ARMCC::AL));
   1243         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
   1244         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
   1245       }
   1246 
   1247       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1248         MIB.addReg(DestReg, RegState::ImplicitDefine);
   1249     } else
   1250       llvm_unreachable("Unknown reg class!");
   1251     break;
   1252   case 16:
   1253     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
   1254       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1255         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
   1256             .addFrameIndex(FI)
   1257             .addImm(16)
   1258             .addMemOperand(MMO)
   1259             .add(predOps(ARMCC::AL));
   1260       } else {
   1261         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
   1262             .addFrameIndex(FI)
   1263             .addMemOperand(MMO)
   1264             .add(predOps(ARMCC::AL));
   1265       }
   1266     } else
   1267       llvm_unreachable("Unknown reg class!");
   1268     break;
   1269   case 24:
   1270     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
   1271       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1272         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
   1273             .addFrameIndex(FI)
   1274             .addImm(16)
   1275             .addMemOperand(MMO)
   1276             .add(predOps(ARMCC::AL));
   1277       } else {
   1278         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1279                                       .addFrameIndex(FI)
   1280                                       .addMemOperand(MMO)
   1281                                       .add(predOps(ARMCC::AL));
   1282         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1283         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1284         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1285         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1286           MIB.addReg(DestReg, RegState::ImplicitDefine);
   1287       }
   1288     } else
   1289       llvm_unreachable("Unknown reg class!");
   1290     break;
   1291    case 32:
   1292     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
   1293       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1294         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
   1295             .addFrameIndex(FI)
   1296             .addImm(16)
   1297             .addMemOperand(MMO)
   1298             .add(predOps(ARMCC::AL));
   1299       } else {
   1300         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1301                                       .addFrameIndex(FI)
   1302                                       .add(predOps(ARMCC::AL))
   1303                                       .addMemOperand(MMO);
   1304         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1305         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1306         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1307         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1308         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1309           MIB.addReg(DestReg, RegState::ImplicitDefine);
   1310       }
   1311     } else
   1312       llvm_unreachable("Unknown reg class!");
   1313     break;
   1314   case 64:
   1315     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
   1316       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1317                                     .addFrameIndex(FI)
   1318                                     .add(predOps(ARMCC::AL))
   1319                                     .addMemOperand(MMO);
   1320       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1321       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1322       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1323       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1324       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
   1325       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
   1326       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
   1327       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
   1328       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1329         MIB.addReg(DestReg, RegState::ImplicitDefine);
   1330     } else
   1331       llvm_unreachable("Unknown reg class!");
   1332     break;
   1333   default:
   1334     llvm_unreachable("Unknown regclass!");
   1335   }
   1336 }
   1337 
   1338 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
   1339                                                int &FrameIndex) const {
   1340   switch (MI.getOpcode()) {
   1341   default: break;
   1342   case ARM::LDRrs:
   1343   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
   1344     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
   1345         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
   1346         MI.getOperand(3).getImm() == 0) {
   1347       FrameIndex = MI.getOperand(1).getIndex();
   1348       return MI.getOperand(0).getReg();
   1349     }
   1350     break;
   1351   case ARM::LDRi12:
   1352   case ARM::t2LDRi12:
   1353   case ARM::tLDRspi:
   1354   case ARM::VLDRD:
   1355   case ARM::VLDRS:
   1356     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
   1357         MI.getOperand(2).getImm() == 0) {
   1358       FrameIndex = MI.getOperand(1).getIndex();
   1359       return MI.getOperand(0).getReg();
   1360     }
   1361     break;
   1362   case ARM::VLD1q64:
   1363   case ARM::VLD1d8TPseudo:
   1364   case ARM::VLD1d16TPseudo:
   1365   case ARM::VLD1d32TPseudo:
   1366   case ARM::VLD1d64TPseudo:
   1367   case ARM::VLD1d8QPseudo:
   1368   case ARM::VLD1d16QPseudo:
   1369   case ARM::VLD1d32QPseudo:
   1370   case ARM::VLD1d64QPseudo:
   1371     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
   1372       FrameIndex = MI.getOperand(1).getIndex();
   1373       return MI.getOperand(0).getReg();
   1374     }
   1375     break;
   1376   case ARM::VLDMQIA:
   1377     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
   1378       FrameIndex = MI.getOperand(1).getIndex();
   1379       return MI.getOperand(0).getReg();
   1380     }
   1381     break;
   1382   }
   1383 
   1384   return 0;
   1385 }
   1386 
   1387 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
   1388                                                      int &FrameIndex) const {
   1389   const MachineMemOperand *Dummy;
   1390   return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1391 }
   1392 
   1393 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
   1394 /// depending on whether the result is used.
   1395 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
   1396   bool isThumb1 = Subtarget.isThumb1Only();
   1397   bool isThumb2 = Subtarget.isThumb2();
   1398   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
   1399 
   1400   DebugLoc dl = MI->getDebugLoc();
   1401   MachineBasicBlock *BB = MI->getParent();
   1402 
   1403   MachineInstrBuilder LDM, STM;
   1404   if (isThumb1 || !MI->getOperand(1).isDead()) {
   1405     MachineOperand LDWb(MI->getOperand(1));
   1406     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
   1407                                                  : isThumb1 ? ARM::tLDMIA_UPD
   1408                                                             : ARM::LDMIA_UPD))
   1409               .add(LDWb);
   1410   } else {
   1411     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
   1412   }
   1413 
   1414   if (isThumb1 || !MI->getOperand(0).isDead()) {
   1415     MachineOperand STWb(MI->getOperand(0));
   1416     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
   1417                                                  : isThumb1 ? ARM::tSTMIA_UPD
   1418                                                             : ARM::STMIA_UPD))
   1419               .add(STWb);
   1420   } else {
   1421     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
   1422   }
   1423 
   1424   MachineOperand LDBase(MI->getOperand(3));
   1425   LDM.add(LDBase).add(predOps(ARMCC::AL));
   1426 
   1427   MachineOperand STBase(MI->getOperand(2));
   1428   STM.add(STBase).add(predOps(ARMCC::AL));
   1429 
   1430   // Sort the scratch registers into ascending order.
   1431   const TargetRegisterInfo &TRI = getRegisterInfo();
   1432   SmallVector<unsigned, 6> ScratchRegs;
   1433   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
   1434     ScratchRegs.push_back(MI->getOperand(I).getReg());
   1435   llvm::sort(ScratchRegs.begin(), ScratchRegs.end(),
   1436              [&TRI](const unsigned &Reg1,
   1437                     const unsigned &Reg2) -> bool {
   1438                return TRI.getEncodingValue(Reg1) <
   1439                       TRI.getEncodingValue(Reg2);
   1440              });
   1441 
   1442   for (const auto &Reg : ScratchRegs) {
   1443     LDM.addReg(Reg, RegState::Define);
   1444     STM.addReg(Reg, RegState::Kill);
   1445   }
   1446 
   1447   BB->erase(MI);
   1448 }
   1449 
   1450 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
   1451   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
   1452     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
   1453            "LOAD_STACK_GUARD currently supported only for MachO.");
   1454     expandLoadStackGuard(MI);
   1455     MI.getParent()->erase(MI);
   1456     return true;
   1457   }
   1458 
   1459   if (MI.getOpcode() == ARM::MEMCPY) {
   1460     expandMEMCPY(MI);
   1461     return true;
   1462   }
   1463 
   1464   // This hook gets to expand COPY instructions before they become
   1465   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
   1466   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
   1467   // changed into a VORR that can go down the NEON pipeline.
   1468   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
   1469     return false;
   1470 
   1471   // Look for a copy between even S-registers.  That is where we keep floats
   1472   // when using NEON v2f32 instructions for f32 arithmetic.
   1473   unsigned DstRegS = MI.getOperand(0).getReg();
   1474   unsigned SrcRegS = MI.getOperand(1).getReg();
   1475   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
   1476     return false;
   1477 
   1478   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1479   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
   1480                                               &ARM::DPRRegClass);
   1481   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
   1482                                               &ARM::DPRRegClass);
   1483   if (!DstRegD || !SrcRegD)
   1484     return false;
   1485 
   1486   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
   1487   // legal if the COPY already defines the full DstRegD, and it isn't a
   1488   // sub-register insertion.
   1489   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
   1490     return false;
   1491 
   1492   // A dead copy shouldn't show up here, but reject it just in case.
   1493   if (MI.getOperand(0).isDead())
   1494     return false;
   1495 
   1496   // All clear, widen the COPY.
   1497   LLVM_DEBUG(dbgs() << "widening:    " << MI);
   1498   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
   1499 
   1500   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
   1501   // or some other super-register.
   1502   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
   1503   if (ImpDefIdx != -1)
   1504     MI.RemoveOperand(ImpDefIdx);
   1505 
   1506   // Change the opcode and operands.
   1507   MI.setDesc(get(ARM::VMOVD));
   1508   MI.getOperand(0).setReg(DstRegD);
   1509   MI.getOperand(1).setReg(SrcRegD);
   1510   MIB.add(predOps(ARMCC::AL));
   1511 
   1512   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
   1513   // register scavenger and machine verifier, so we need to indicate that we
   1514   // are reading an undefined value from SrcRegD, but a proper value from
   1515   // SrcRegS.
   1516   MI.getOperand(1).setIsUndef();
   1517   MIB.addReg(SrcRegS, RegState::Implicit);
   1518 
   1519   // SrcRegD may actually contain an unrelated value in the ssub_1
   1520   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
   1521   if (MI.getOperand(1).isKill()) {
   1522     MI.getOperand(1).setIsKill(false);
   1523     MI.addRegisterKilled(SrcRegS, TRI, true);
   1524   }
   1525 
   1526   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
   1527   return true;
   1528 }
   1529 
   1530 /// Create a copy of a const pool value. Update CPI to the new index and return
   1531 /// the label UID.
   1532 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
   1533   MachineConstantPool *MCP = MF.getConstantPool();
   1534   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1535 
   1536   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
   1537   assert(MCPE.isMachineConstantPoolEntry() &&
   1538          "Expecting a machine constantpool entry!");
   1539   ARMConstantPoolValue *ACPV =
   1540     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
   1541 
   1542   unsigned PCLabelId = AFI->createPICLabelUId();
   1543   ARMConstantPoolValue *NewCPV = nullptr;
   1544 
   1545   // FIXME: The below assumes PIC relocation model and that the function
   1546   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
   1547   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
   1548   // instructions, so that's probably OK, but is PIC always correct when
   1549   // we get here?
   1550   if (ACPV->isGlobalValue())
   1551     NewCPV = ARMConstantPoolConstant::Create(
   1552         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
   1553         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
   1554   else if (ACPV->isExtSymbol())
   1555     NewCPV = ARMConstantPoolSymbol::
   1556       Create(MF.getFunction().getContext(),
   1557              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
   1558   else if (ACPV->isBlockAddress())
   1559     NewCPV = ARMConstantPoolConstant::
   1560       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
   1561              ARMCP::CPBlockAddress, 4);
   1562   else if (ACPV->isLSDA())
   1563     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
   1564                                              ARMCP::CPLSDA, 4);
   1565   else if (ACPV->isMachineBasicBlock())
   1566     NewCPV = ARMConstantPoolMBB::
   1567       Create(MF.getFunction().getContext(),
   1568              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
   1569   else
   1570     llvm_unreachable("Unexpected ARM constantpool value type!!");
   1571   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
   1572   return PCLabelId;
   1573 }
   1574 
   1575 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
   1576                                      MachineBasicBlock::iterator I,
   1577                                      unsigned DestReg, unsigned SubIdx,
   1578                                      const MachineInstr &Orig,
   1579                                      const TargetRegisterInfo &TRI) const {
   1580   unsigned Opcode = Orig.getOpcode();
   1581   switch (Opcode) {
   1582   default: {
   1583     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
   1584     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1585     MBB.insert(I, MI);
   1586     break;
   1587   }
   1588   case ARM::tLDRpci_pic:
   1589   case ARM::t2LDRpci_pic: {
   1590     MachineFunction &MF = *MBB.getParent();
   1591     unsigned CPI = Orig.getOperand(1).getIndex();
   1592     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1593     MachineInstrBuilder MIB =
   1594         BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
   1595             .addConstantPoolIndex(CPI)
   1596             .addImm(PCLabelId);
   1597     MIB->setMemRefs(Orig.memoperands_begin(), Orig.memoperands_end());
   1598     break;
   1599   }
   1600   }
   1601 }
   1602 
   1603 MachineInstr &
   1604 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
   1605     MachineBasicBlock::iterator InsertBefore,
   1606     const MachineInstr &Orig) const {
   1607   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
   1608   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
   1609   for (;;) {
   1610     switch (I->getOpcode()) {
   1611     case ARM::tLDRpci_pic:
   1612     case ARM::t2LDRpci_pic: {
   1613       MachineFunction &MF = *MBB.getParent();
   1614       unsigned CPI = I->getOperand(1).getIndex();
   1615       unsigned PCLabelId = duplicateCPV(MF, CPI);
   1616       I->getOperand(1).setIndex(CPI);
   1617       I->getOperand(2).setImm(PCLabelId);
   1618       break;
   1619     }
   1620     }
   1621     if (!I->isBundledWithSucc())
   1622       break;
   1623     ++I;
   1624   }
   1625   return Cloned;
   1626 }
   1627 
   1628 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
   1629                                         const MachineInstr &MI1,
   1630                                         const MachineRegisterInfo *MRI) const {
   1631   unsigned Opcode = MI0.getOpcode();
   1632   if (Opcode == ARM::t2LDRpci ||
   1633       Opcode == ARM::t2LDRpci_pic ||
   1634       Opcode == ARM::tLDRpci ||
   1635       Opcode == ARM::tLDRpci_pic ||
   1636       Opcode == ARM::LDRLIT_ga_pcrel ||
   1637       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
   1638       Opcode == ARM::tLDRLIT_ga_pcrel ||
   1639       Opcode == ARM::MOV_ga_pcrel ||
   1640       Opcode == ARM::MOV_ga_pcrel_ldr ||
   1641       Opcode == ARM::t2MOV_ga_pcrel) {
   1642     if (MI1.getOpcode() != Opcode)
   1643       return false;
   1644     if (MI0.getNumOperands() != MI1.getNumOperands())
   1645       return false;
   1646 
   1647     const MachineOperand &MO0 = MI0.getOperand(1);
   1648     const MachineOperand &MO1 = MI1.getOperand(1);
   1649     if (MO0.getOffset() != MO1.getOffset())
   1650       return false;
   1651 
   1652     if (Opcode == ARM::LDRLIT_ga_pcrel ||
   1653         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
   1654         Opcode == ARM::tLDRLIT_ga_pcrel ||
   1655         Opcode == ARM::MOV_ga_pcrel ||
   1656         Opcode == ARM::MOV_ga_pcrel_ldr ||
   1657         Opcode == ARM::t2MOV_ga_pcrel)
   1658       // Ignore the PC labels.
   1659       return MO0.getGlobal() == MO1.getGlobal();
   1660 
   1661     const MachineFunction *MF = MI0.getParent()->getParent();
   1662     const MachineConstantPool *MCP = MF->getConstantPool();
   1663     int CPI0 = MO0.getIndex();
   1664     int CPI1 = MO1.getIndex();
   1665     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
   1666     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
   1667     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
   1668     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
   1669     if (isARMCP0 && isARMCP1) {
   1670       ARMConstantPoolValue *ACPV0 =
   1671         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
   1672       ARMConstantPoolValue *ACPV1 =
   1673         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
   1674       return ACPV0->hasSameValue(ACPV1);
   1675     } else if (!isARMCP0 && !isARMCP1) {
   1676       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
   1677     }
   1678     return false;
   1679   } else if (Opcode == ARM::PICLDR) {
   1680     if (MI1.getOpcode() != Opcode)
   1681       return false;
   1682     if (MI0.getNumOperands() != MI1.getNumOperands())
   1683       return false;
   1684 
   1685     unsigned Addr0 = MI0.getOperand(1).getReg();
   1686     unsigned Addr1 = MI1.getOperand(1).getReg();
   1687     if (Addr0 != Addr1) {
   1688       if (!MRI ||
   1689           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
   1690           !TargetRegisterInfo::isVirtualRegister(Addr1))
   1691         return false;
   1692 
   1693       // This assumes SSA form.
   1694       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
   1695       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
   1696       // Check if the loaded value, e.g. a constantpool of a global address, are
   1697       // the same.
   1698       if (!produceSameValue(*Def0, *Def1, MRI))
   1699         return false;
   1700     }
   1701 
   1702     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
   1703       // %12 = PICLDR %11, 0, 14, %noreg
   1704       const MachineOperand &MO0 = MI0.getOperand(i);
   1705       const MachineOperand &MO1 = MI1.getOperand(i);
   1706       if (!MO0.isIdenticalTo(MO1))
   1707         return false;
   1708     }
   1709     return true;
   1710   }
   1711 
   1712   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
   1713 }
   1714 
   1715 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
   1716 /// determine if two loads are loading from the same base address. It should
   1717 /// only return true if the base pointers are the same and the only differences
   1718 /// between the two addresses is the offset. It also returns the offsets by
   1719 /// reference.
   1720 ///
   1721 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
   1722 /// is permanently disabled.
   1723 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   1724                                                int64_t &Offset1,
   1725                                                int64_t &Offset2) const {
   1726   // Don't worry about Thumb: just ARM and Thumb2.
   1727   if (Subtarget.isThumb1Only()) return false;
   1728 
   1729   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   1730     return false;
   1731 
   1732   switch (Load1->getMachineOpcode()) {
   1733   default:
   1734     return false;
   1735   case ARM::LDRi12:
   1736   case ARM::LDRBi12:
   1737   case ARM::LDRD:
   1738   case ARM::LDRH:
   1739   case ARM::LDRSB:
   1740   case ARM::LDRSH:
   1741   case ARM::VLDRD:
   1742   case ARM::VLDRS:
   1743   case ARM::t2LDRi8:
   1744   case ARM::t2LDRBi8:
   1745   case ARM::t2LDRDi8:
   1746   case ARM::t2LDRSHi8:
   1747   case ARM::t2LDRi12:
   1748   case ARM::t2LDRBi12:
   1749   case ARM::t2LDRSHi12:
   1750     break;
   1751   }
   1752 
   1753   switch (Load2->getMachineOpcode()) {
   1754   default:
   1755     return false;
   1756   case ARM::LDRi12:
   1757   case ARM::LDRBi12:
   1758   case ARM::LDRD:
   1759   case ARM::LDRH:
   1760   case ARM::LDRSB:
   1761   case ARM::LDRSH:
   1762   case ARM::VLDRD:
   1763   case ARM::VLDRS:
   1764   case ARM::t2LDRi8:
   1765   case ARM::t2LDRBi8:
   1766   case ARM::t2LDRSHi8:
   1767   case ARM::t2LDRi12:
   1768   case ARM::t2LDRBi12:
   1769   case ARM::t2LDRSHi12:
   1770     break;
   1771   }
   1772 
   1773   // Check if base addresses and chain operands match.
   1774   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   1775       Load1->getOperand(4) != Load2->getOperand(4))
   1776     return false;
   1777 
   1778   // Index should be Reg0.
   1779   if (Load1->getOperand(3) != Load2->getOperand(3))
   1780     return false;
   1781 
   1782   // Determine the offsets.
   1783   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
   1784       isa<ConstantSDNode>(Load2->getOperand(1))) {
   1785     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
   1786     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
   1787     return true;
   1788   }
   1789 
   1790   return false;
   1791 }
   1792 
   1793 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
   1794 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
   1795 /// be scheduled togther. On some targets if two loads are loading from
   1796 /// addresses in the same cache line, it's better if they are scheduled
   1797 /// together. This function takes two integers that represent the load offsets
   1798 /// from the common base address. It returns true if it decides it's desirable
   1799 /// to schedule the two loads together. "NumLoads" is the number of loads that
   1800 /// have already been scheduled after Load1.
   1801 ///
   1802 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
   1803 /// is permanently disabled.
   1804 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   1805                                                int64_t Offset1, int64_t Offset2,
   1806                                                unsigned NumLoads) const {
   1807   // Don't worry about Thumb: just ARM and Thumb2.
   1808   if (Subtarget.isThumb1Only()) return false;
   1809 
   1810   assert(Offset2 > Offset1);
   1811 
   1812   if ((Offset2 - Offset1) / 8 > 64)
   1813     return false;
   1814 
   1815   // Check if the machine opcodes are different. If they are different
   1816   // then we consider them to not be of the same base address,
   1817   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
   1818   // In this case, they are considered to be the same because they are different
   1819   // encoding forms of the same basic instruction.
   1820   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
   1821       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
   1822          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
   1823         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
   1824          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
   1825     return false;  // FIXME: overly conservative?
   1826 
   1827   // Four loads in a row should be sufficient.
   1828   if (NumLoads >= 3)
   1829     return false;
   1830 
   1831   return true;
   1832 }
   1833 
   1834 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
   1835                                             const MachineBasicBlock *MBB,
   1836                                             const MachineFunction &MF) const {
   1837   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1838   // due to the special treatment of IT instructions below, otherwise a
   1839   // dbg_value followed by an IT will result in the IT instruction being
   1840   // considered a scheduling hazard, which is wrong. It should be the actual
   1841   // instruction preceding the dbg_value instruction(s), just like it is
   1842   // when debug info is not present.
   1843   if (MI.isDebugInstr())
   1844     return false;
   1845 
   1846   // Terminators and labels can't be scheduled around.
   1847   if (MI.isTerminator() || MI.isPosition())
   1848     return true;
   1849 
   1850   // Treat the start of the IT block as a scheduling boundary, but schedule
   1851   // t2IT along with all instructions following it.
   1852   // FIXME: This is a big hammer. But the alternative is to add all potential
   1853   // true and anti dependencies to IT block instructions as implicit operands
   1854   // to the t2IT instruction. The added compile time and complexity does not
   1855   // seem worth it.
   1856   MachineBasicBlock::const_iterator I = MI;
   1857   // Make sure to skip any debug instructions
   1858   while (++I != MBB->end() && I->isDebugInstr())
   1859     ;
   1860   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
   1861     return true;
   1862 
   1863   // Don't attempt to schedule around any instruction that defines
   1864   // a stack-oriented pointer, as it's unlikely to be profitable. This
   1865   // saves compile time, because it doesn't require every single
   1866   // stack slot reference to depend on the instruction that does the
   1867   // modification.
   1868   // Calls don't actually change the stack pointer, even if they have imp-defs.
   1869   // No ARM calling conventions change the stack pointer. (X86 calling
   1870   // conventions sometimes do).
   1871   if (!MI.isCall() && MI.definesRegister(ARM::SP))
   1872     return true;
   1873 
   1874   return false;
   1875 }
   1876 
   1877 bool ARMBaseInstrInfo::
   1878 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1879                     unsigned NumCycles, unsigned ExtraPredCycles,
   1880                     BranchProbability Probability) const {
   1881   if (!NumCycles)
   1882     return false;
   1883 
   1884   // If we are optimizing for size, see if the branch in the predecessor can be
   1885   // lowered to cbn?z by the constant island lowering pass, and return false if
   1886   // so. This results in a shorter instruction sequence.
   1887   if (MBB.getParent()->getFunction().optForSize()) {
   1888     MachineBasicBlock *Pred = *MBB.pred_begin();
   1889     if (!Pred->empty()) {
   1890       MachineInstr *LastMI = &*Pred->rbegin();
   1891       if (LastMI->getOpcode() == ARM::t2Bcc) {
   1892         MachineBasicBlock::iterator CmpMI = LastMI;
   1893         if (CmpMI != Pred->begin()) {
   1894           --CmpMI;
   1895           if (CmpMI->getOpcode() == ARM::tCMPi8 ||
   1896               CmpMI->getOpcode() == ARM::t2CMPri) {
   1897             unsigned Reg = CmpMI->getOperand(0).getReg();
   1898             unsigned PredReg = 0;
   1899             ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
   1900             if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
   1901                 isARMLowRegister(Reg))
   1902               return false;
   1903           }
   1904         }
   1905       }
   1906     }
   1907   }
   1908   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
   1909                              MBB, 0, 0, Probability);
   1910 }
   1911 
   1912 bool ARMBaseInstrInfo::
   1913 isProfitableToIfCvt(MachineBasicBlock &TBB,
   1914                     unsigned TCycles, unsigned TExtra,
   1915                     MachineBasicBlock &FBB,
   1916                     unsigned FCycles, unsigned FExtra,
   1917                     BranchProbability Probability) const {
   1918   if (!TCycles)
   1919     return false;
   1920 
   1921   // Attempt to estimate the relative costs of predication versus branching.
   1922   // Here we scale up each component of UnpredCost to avoid precision issue when
   1923   // scaling TCycles/FCycles by Probability.
   1924   const unsigned ScalingUpFactor = 1024;
   1925 
   1926   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
   1927   unsigned UnpredCost;
   1928   if (!Subtarget.hasBranchPredictor()) {
   1929     // When we don't have a branch predictor it's always cheaper to not take a
   1930     // branch than take it, so we have to take that into account.
   1931     unsigned NotTakenBranchCost = 1;
   1932     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
   1933     unsigned TUnpredCycles, FUnpredCycles;
   1934     if (!FCycles) {
   1935       // Triangle: TBB is the fallthrough
   1936       TUnpredCycles = TCycles + NotTakenBranchCost;
   1937       FUnpredCycles = TakenBranchCost;
   1938     } else {
   1939       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
   1940       TUnpredCycles = TCycles + TakenBranchCost;
   1941       FUnpredCycles = FCycles + NotTakenBranchCost;
   1942       // The branch at the end of FBB will disappear when it's predicated, so
   1943       // discount it from PredCost.
   1944       PredCost -= 1 * ScalingUpFactor;
   1945     }
   1946     // The total cost is the cost of each path scaled by their probabilites
   1947     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
   1948     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
   1949     UnpredCost = TUnpredCost + FUnpredCost;
   1950     // When predicating assume that the first IT can be folded away but later
   1951     // ones cost one cycle each
   1952     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
   1953       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
   1954     }
   1955   } else {
   1956     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
   1957     unsigned FUnpredCost =
   1958       Probability.getCompl().scale(FCycles * ScalingUpFactor);
   1959     UnpredCost = TUnpredCost + FUnpredCost;
   1960     UnpredCost += 1 * ScalingUpFactor; // The branch itself
   1961     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
   1962   }
   1963 
   1964   return PredCost <= UnpredCost;
   1965 }
   1966 
   1967 bool
   1968 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
   1969                                             MachineBasicBlock &FMBB) const {
   1970   // Reduce false anti-dependencies to let the target's out-of-order execution
   1971   // engine do its thing.
   1972   return Subtarget.isProfitableToUnpredicate();
   1973 }
   1974 
   1975 /// getInstrPredicate - If instruction is predicated, returns its predicate
   1976 /// condition, otherwise returns AL. It also returns the condition code
   1977 /// register by reference.
   1978 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
   1979                                          unsigned &PredReg) {
   1980   int PIdx = MI.findFirstPredOperandIdx();
   1981   if (PIdx == -1) {
   1982     PredReg = 0;
   1983     return ARMCC::AL;
   1984   }
   1985 
   1986   PredReg = MI.getOperand(PIdx+1).getReg();
   1987   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
   1988 }
   1989 
   1990 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
   1991   if (Opc == ARM::B)
   1992     return ARM::Bcc;
   1993   if (Opc == ARM::tB)
   1994     return ARM::tBcc;
   1995   if (Opc == ARM::t2B)
   1996     return ARM::t2Bcc;
   1997 
   1998   llvm_unreachable("Unknown unconditional branch opcode!");
   1999 }
   2000 
   2001 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
   2002                                                        bool NewMI,
   2003                                                        unsigned OpIdx1,
   2004                                                        unsigned OpIdx2) const {
   2005   switch (MI.getOpcode()) {
   2006   case ARM::MOVCCr:
   2007   case ARM::t2MOVCCr: {
   2008     // MOVCC can be commuted by inverting the condition.
   2009     unsigned PredReg = 0;
   2010     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
   2011     // MOVCC AL can't be inverted. Shouldn't happen.
   2012     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
   2013       return nullptr;
   2014     MachineInstr *CommutedMI =
   2015         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
   2016     if (!CommutedMI)
   2017       return nullptr;
   2018     // After swapping the MOVCC operands, also invert the condition.
   2019     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
   2020         .setImm(ARMCC::getOppositeCondition(CC));
   2021     return CommutedMI;
   2022   }
   2023   }
   2024   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
   2025 }
   2026 
   2027 /// Identify instructions that can be folded into a MOVCC instruction, and
   2028 /// return the defining instruction.
   2029 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
   2030                                       const MachineRegisterInfo &MRI,
   2031                                       const TargetInstrInfo *TII) {
   2032   if (!TargetRegisterInfo::isVirtualRegister(Reg))
   2033     return nullptr;
   2034   if (!MRI.hasOneNonDBGUse(Reg))
   2035     return nullptr;
   2036   MachineInstr *MI = MRI.getVRegDef(Reg);
   2037   if (!MI)
   2038     return nullptr;
   2039   // MI is folded into the MOVCC by predicating it.
   2040   if (!MI->isPredicable())
   2041     return nullptr;
   2042   // Check if MI has any non-dead defs or physreg uses. This also detects
   2043   // predicated instructions which will be reading CPSR.
   2044   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
   2045     const MachineOperand &MO = MI->getOperand(i);
   2046     // Reject frame index operands, PEI can't handle the predicated pseudos.
   2047     if (MO.isFI() || MO.isCPI() || MO.isJTI())
   2048       return nullptr;
   2049     if (!MO.isReg())
   2050       continue;
   2051     // MI can't have any tied operands, that would conflict with predication.
   2052     if (MO.isTied())
   2053       return nullptr;
   2054     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
   2055       return nullptr;
   2056     if (MO.isDef() && !MO.isDead())
   2057       return nullptr;
   2058   }
   2059   bool DontMoveAcrossStores = true;
   2060   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
   2061     return nullptr;
   2062   return MI;
   2063 }
   2064 
   2065 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
   2066                                      SmallVectorImpl<MachineOperand> &Cond,
   2067                                      unsigned &TrueOp, unsigned &FalseOp,
   2068                                      bool &Optimizable) const {
   2069   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
   2070          "Unknown select instruction");
   2071   // MOVCC operands:
   2072   // 0: Def.
   2073   // 1: True use.
   2074   // 2: False use.
   2075   // 3: Condition code.
   2076   // 4: CPSR use.
   2077   TrueOp = 1;
   2078   FalseOp = 2;
   2079   Cond.push_back(MI.getOperand(3));
   2080   Cond.push_back(MI.getOperand(4));
   2081   // We can always fold a def.
   2082   Optimizable = true;
   2083   return false;
   2084 }
   2085 
   2086 MachineInstr *
   2087 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
   2088                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
   2089                                  bool PreferFalse) const {
   2090   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
   2091          "Unknown select instruction");
   2092   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
   2093   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
   2094   bool Invert = !DefMI;
   2095   if (!DefMI)
   2096     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
   2097   if (!DefMI)
   2098     return nullptr;
   2099 
   2100   // Find new register class to use.
   2101   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
   2102   unsigned DestReg = MI.getOperand(0).getReg();
   2103   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
   2104   if (!MRI.constrainRegClass(DestReg, PreviousClass))
   2105     return nullptr;
   2106 
   2107   // Create a new predicated version of DefMI.
   2108   // Rfalse is the first use.
   2109   MachineInstrBuilder NewMI =
   2110       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
   2111 
   2112   // Copy all the DefMI operands, excluding its (null) predicate.
   2113   const MCInstrDesc &DefDesc = DefMI->getDesc();
   2114   for (unsigned i = 1, e = DefDesc.getNumOperands();
   2115        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
   2116     NewMI.add(DefMI->getOperand(i));
   2117 
   2118   unsigned CondCode = MI.getOperand(3).getImm();
   2119   if (Invert)
   2120     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
   2121   else
   2122     NewMI.addImm(CondCode);
   2123   NewMI.add(MI.getOperand(4));
   2124 
   2125   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
   2126   if (NewMI->hasOptionalDef())
   2127     NewMI.add(condCodeOp());
   2128 
   2129   // The output register value when the predicate is false is an implicit
   2130   // register operand tied to the first def.
   2131   // The tie makes the register allocator ensure the FalseReg is allocated the
   2132   // same register as operand 0.
   2133   FalseReg.setImplicit();
   2134   NewMI.add(FalseReg);
   2135   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
   2136 
   2137   // Update SeenMIs set: register newly created MI and erase removed DefMI.
   2138   SeenMIs.insert(NewMI);
   2139   SeenMIs.erase(DefMI);
   2140 
   2141   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
   2142   // DefMI would be invalid when tranferred inside the loop.  Checking for a
   2143   // loop is expensive, but at least remove kill flags if they are in different
   2144   // BBs.
   2145   if (DefMI->getParent() != MI.getParent())
   2146     NewMI->clearKillInfo();
   2147 
   2148   // The caller will erase MI, but not DefMI.
   2149   DefMI->eraseFromParent();
   2150   return NewMI;
   2151 }
   2152 
   2153 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
   2154 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
   2155 /// def operand.
   2156 ///
   2157 /// This will go away once we can teach tblgen how to set the optional CPSR def
   2158 /// operand itself.
   2159 struct AddSubFlagsOpcodePair {
   2160   uint16_t PseudoOpc;
   2161   uint16_t MachineOpc;
   2162 };
   2163 
   2164 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
   2165   {ARM::ADDSri, ARM::ADDri},
   2166   {ARM::ADDSrr, ARM::ADDrr},
   2167   {ARM::ADDSrsi, ARM::ADDrsi},
   2168   {ARM::ADDSrsr, ARM::ADDrsr},
   2169 
   2170   {ARM::SUBSri, ARM::SUBri},
   2171   {ARM::SUBSrr, ARM::SUBrr},
   2172   {ARM::SUBSrsi, ARM::SUBrsi},
   2173   {ARM::SUBSrsr, ARM::SUBrsr},
   2174 
   2175   {ARM::RSBSri, ARM::RSBri},
   2176   {ARM::RSBSrsi, ARM::RSBrsi},
   2177   {ARM::RSBSrsr, ARM::RSBrsr},
   2178 
   2179   {ARM::tADDSi3, ARM::tADDi3},
   2180   {ARM::tADDSi8, ARM::tADDi8},
   2181   {ARM::tADDSrr, ARM::tADDrr},
   2182   {ARM::tADCS, ARM::tADC},
   2183 
   2184   {ARM::tSUBSi3, ARM::tSUBi3},
   2185   {ARM::tSUBSi8, ARM::tSUBi8},
   2186   {ARM::tSUBSrr, ARM::tSUBrr},
   2187   {ARM::tSBCS, ARM::tSBC},
   2188 
   2189   {ARM::t2ADDSri, ARM::t2ADDri},
   2190   {ARM::t2ADDSrr, ARM::t2ADDrr},
   2191   {ARM::t2ADDSrs, ARM::t2ADDrs},
   2192 
   2193   {ARM::t2SUBSri, ARM::t2SUBri},
   2194   {ARM::t2SUBSrr, ARM::t2SUBrr},
   2195   {ARM::t2SUBSrs, ARM::t2SUBrs},
   2196 
   2197   {ARM::t2RSBSri, ARM::t2RSBri},
   2198   {ARM::t2RSBSrs, ARM::t2RSBrs},
   2199 };
   2200 
   2201 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
   2202   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
   2203     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
   2204       return AddSubFlagsOpcodeMap[i].MachineOpc;
   2205   return 0;
   2206 }
   2207 
   2208 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
   2209                                    MachineBasicBlock::iterator &MBBI,
   2210                                    const DebugLoc &dl, unsigned DestReg,
   2211                                    unsigned BaseReg, int NumBytes,
   2212                                    ARMCC::CondCodes Pred, unsigned PredReg,
   2213                                    const ARMBaseInstrInfo &TII,
   2214                                    unsigned MIFlags) {
   2215   if (NumBytes == 0 && DestReg != BaseReg) {
   2216     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
   2217         .addReg(BaseReg, RegState::Kill)
   2218         .add(predOps(Pred, PredReg))
   2219         .add(condCodeOp())
   2220         .setMIFlags(MIFlags);
   2221     return;
   2222   }
   2223 
   2224   bool isSub = NumBytes < 0;
   2225   if (isSub) NumBytes = -NumBytes;
   2226 
   2227   while (NumBytes) {
   2228     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
   2229     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
   2230     assert(ThisVal && "Didn't extract field correctly");
   2231 
   2232     // We will handle these bits from offset, clear them.
   2233     NumBytes &= ~ThisVal;
   2234 
   2235     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
   2236 
   2237     // Build the new ADD / SUB.
   2238     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
   2239     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
   2240         .addReg(BaseReg, RegState::Kill)
   2241         .addImm(ThisVal)
   2242         .add(predOps(Pred, PredReg))
   2243         .add(condCodeOp())
   2244         .setMIFlags(MIFlags);
   2245     BaseReg = DestReg;
   2246   }
   2247 }
   2248 
   2249 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
   2250                                       MachineFunction &MF, MachineInstr *MI,
   2251                                       unsigned NumBytes) {
   2252   // This optimisation potentially adds lots of load and store
   2253   // micro-operations, it's only really a great benefit to code-size.
   2254   if (!MF.getFunction().optForMinSize())
   2255     return false;
   2256 
   2257   // If only one register is pushed/popped, LLVM can use an LDR/STR
   2258   // instead. We can't modify those so make sure we're dealing with an
   2259   // instruction we understand.
   2260   bool IsPop = isPopOpcode(MI->getOpcode());
   2261   bool IsPush = isPushOpcode(MI->getOpcode());
   2262   if (!IsPush && !IsPop)
   2263     return false;
   2264 
   2265   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
   2266                       MI->getOpcode() == ARM::VLDMDIA_UPD;
   2267   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
   2268                      MI->getOpcode() == ARM::tPOP ||
   2269                      MI->getOpcode() == ARM::tPOP_RET;
   2270 
   2271   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
   2272                           MI->getOperand(1).getReg() == ARM::SP)) &&
   2273          "trying to fold sp update into non-sp-updating push/pop");
   2274 
   2275   // The VFP push & pop act on D-registers, so we can only fold an adjustment
   2276   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
   2277   // if this is violated.
   2278   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
   2279     return false;
   2280 
   2281   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
   2282   // pred) so the list starts at 4. Thumb1 starts after the predicate.
   2283   int RegListIdx = IsT1PushPop ? 2 : 4;
   2284 
   2285   // Calculate the space we'll need in terms of registers.
   2286   unsigned RegsNeeded;
   2287   const TargetRegisterClass *RegClass;
   2288   if (IsVFPPushPop) {
   2289     RegsNeeded = NumBytes / 8;
   2290     RegClass = &ARM::DPRRegClass;
   2291   } else {
   2292     RegsNeeded = NumBytes / 4;
   2293     RegClass = &ARM::GPRRegClass;
   2294   }
   2295 
   2296   // We're going to have to strip all list operands off before
   2297   // re-adding them since the order matters, so save the existing ones
   2298   // for later.
   2299   SmallVector<MachineOperand, 4> RegList;
   2300 
   2301   // We're also going to need the first register transferred by this
   2302   // instruction, which won't necessarily be the first register in the list.
   2303   unsigned FirstRegEnc = -1;
   2304 
   2305   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
   2306   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
   2307     MachineOperand &MO = MI->getOperand(i);
   2308     RegList.push_back(MO);
   2309 
   2310     if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
   2311       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
   2312   }
   2313 
   2314   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
   2315 
   2316   // Now try to find enough space in the reglist to allocate NumBytes.
   2317   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
   2318        --CurRegEnc) {
   2319     unsigned CurReg = RegClass->getRegister(CurRegEnc);
   2320     if (!IsPop) {
   2321       // Pushing any register is completely harmless, mark the register involved
   2322       // as undef since we don't care about its value and must not restore it
   2323       // during stack unwinding.
   2324       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
   2325                                                   false, false, true));
   2326       --RegsNeeded;
   2327       continue;
   2328     }
   2329 
   2330     // However, we can only pop an extra register if it's not live. For
   2331     // registers live within the function we might clobber a return value
   2332     // register; the other way a register can be live here is if it's
   2333     // callee-saved.
   2334     if (isCalleeSavedRegister(CurReg, CSRegs) ||
   2335         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
   2336         MachineBasicBlock::LQR_Dead) {
   2337       // VFP pops don't allow holes in the register list, so any skip is fatal
   2338       // for our transformation. GPR pops do, so we should just keep looking.
   2339       if (IsVFPPushPop)
   2340         return false;
   2341       else
   2342         continue;
   2343     }
   2344 
   2345     // Mark the unimportant registers as <def,dead> in the POP.
   2346     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
   2347                                                 true));
   2348     --RegsNeeded;
   2349   }
   2350 
   2351   if (RegsNeeded > 0)
   2352     return false;
   2353 
   2354   // Finally we know we can profitably perform the optimisation so go
   2355   // ahead: strip all existing registers off and add them back again
   2356   // in the right order.
   2357   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
   2358     MI->RemoveOperand(i);
   2359 
   2360   // Add the complete list back in.
   2361   MachineInstrBuilder MIB(MF, &*MI);
   2362   for (int i = RegList.size() - 1; i >= 0; --i)
   2363     MIB.add(RegList[i]);
   2364 
   2365   return true;
   2366 }
   2367 
   2368 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
   2369                                 unsigned FrameReg, int &Offset,
   2370                                 const ARMBaseInstrInfo &TII) {
   2371   unsigned Opcode = MI.getOpcode();
   2372   const MCInstrDesc &Desc = MI.getDesc();
   2373   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
   2374   bool isSub = false;
   2375 
   2376   // Memory operands in inline assembly always use AddrMode2.
   2377   if (Opcode == ARM::INLINEASM)
   2378     AddrMode = ARMII::AddrMode2;
   2379 
   2380   if (Opcode == ARM::ADDri) {
   2381     Offset += MI.getOperand(FrameRegIdx+1).getImm();
   2382     if (Offset == 0) {
   2383       // Turn it into a move.
   2384       MI.setDesc(TII.get(ARM::MOVr));
   2385       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2386       MI.RemoveOperand(FrameRegIdx+1);
   2387       Offset = 0;
   2388       return true;
   2389     } else if (Offset < 0) {
   2390       Offset = -Offset;
   2391       isSub = true;
   2392       MI.setDesc(TII.get(ARM::SUBri));
   2393     }
   2394 
   2395     // Common case: small offset, fits into instruction.
   2396     if (ARM_AM::getSOImmVal(Offset) != -1) {
   2397       // Replace the FrameIndex with sp / fp
   2398       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2399       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
   2400       Offset = 0;
   2401       return true;
   2402     }
   2403 
   2404     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
   2405     // as possible.
   2406     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
   2407     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
   2408 
   2409     // We will handle these bits from offset, clear them.
   2410     Offset &= ~ThisImmVal;
   2411 
   2412     // Get the properly encoded SOImmVal field.
   2413     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
   2414            "Bit extraction didn't work?");
   2415     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
   2416  } else {
   2417     unsigned ImmIdx = 0;
   2418     int InstrOffs = 0;
   2419     unsigned NumBits = 0;
   2420     unsigned Scale = 1;
   2421     switch (AddrMode) {
   2422     case ARMII::AddrMode_i12:
   2423       ImmIdx = FrameRegIdx + 1;
   2424       InstrOffs = MI.getOperand(ImmIdx).getImm();
   2425       NumBits = 12;
   2426       break;
   2427     case ARMII::AddrMode2:
   2428       ImmIdx = FrameRegIdx+2;
   2429       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
   2430       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2431         InstrOffs *= -1;
   2432       NumBits = 12;
   2433       break;
   2434     case ARMII::AddrMode3:
   2435       ImmIdx = FrameRegIdx+2;
   2436       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
   2437       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2438         InstrOffs *= -1;
   2439       NumBits = 8;
   2440       break;
   2441     case ARMII::AddrMode4:
   2442     case ARMII::AddrMode6:
   2443       // Can't fold any offset even if it's zero.
   2444       return false;
   2445     case ARMII::AddrMode5:
   2446       ImmIdx = FrameRegIdx+1;
   2447       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
   2448       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2449         InstrOffs *= -1;
   2450       NumBits = 8;
   2451       Scale = 4;
   2452       break;
   2453     case ARMII::AddrMode5FP16:
   2454       ImmIdx = FrameRegIdx+1;
   2455       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
   2456       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2457         InstrOffs *= -1;
   2458       NumBits = 8;
   2459       Scale = 2;
   2460       break;
   2461     default:
   2462       llvm_unreachable("Unsupported addressing mode!");
   2463     }
   2464 
   2465     Offset += InstrOffs * Scale;
   2466     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
   2467     if (Offset < 0) {
   2468       Offset = -Offset;
   2469       isSub = true;
   2470     }
   2471 
   2472     // Attempt to fold address comp. if opcode has offset bits
   2473     if (NumBits > 0) {
   2474       // Common case: small offset, fits into instruction.
   2475       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
   2476       int ImmedOffset = Offset / Scale;
   2477       unsigned Mask = (1 << NumBits) - 1;
   2478       if ((unsigned)Offset <= Mask * Scale) {
   2479         // Replace the FrameIndex with sp
   2480         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2481         // FIXME: When addrmode2 goes away, this will simplify (like the
   2482         // T2 version), as the LDR.i12 versions don't need the encoding
   2483         // tricks for the offset value.
   2484         if (isSub) {
   2485           if (AddrMode == ARMII::AddrMode_i12)
   2486             ImmedOffset = -ImmedOffset;
   2487           else
   2488             ImmedOffset |= 1 << NumBits;
   2489         }
   2490         ImmOp.ChangeToImmediate(ImmedOffset);
   2491         Offset = 0;
   2492         return true;
   2493       }
   2494 
   2495       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
   2496       ImmedOffset = ImmedOffset & Mask;
   2497       if (isSub) {
   2498         if (AddrMode == ARMII::AddrMode_i12)
   2499           ImmedOffset = -ImmedOffset;
   2500         else
   2501           ImmedOffset |= 1 << NumBits;
   2502       }
   2503       ImmOp.ChangeToImmediate(ImmedOffset);
   2504       Offset &= ~(Mask*Scale);
   2505     }
   2506   }
   2507 
   2508   Offset = (isSub) ? -Offset : Offset;
   2509   return Offset == 0;
   2510 }
   2511 
   2512 /// analyzeCompare - For a comparison instruction, return the source registers
   2513 /// in SrcReg and SrcReg2 if having two register operands, and the value it
   2514 /// compares against in CmpValue. Return true if the comparison instruction
   2515 /// can be analyzed.
   2516 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
   2517                                       unsigned &SrcReg2, int &CmpMask,
   2518                                       int &CmpValue) const {
   2519   switch (MI.getOpcode()) {
   2520   default: break;
   2521   case ARM::CMPri:
   2522   case ARM::t2CMPri:
   2523   case ARM::tCMPi8:
   2524     SrcReg = MI.getOperand(0).getReg();
   2525     SrcReg2 = 0;
   2526     CmpMask = ~0;
   2527     CmpValue = MI.getOperand(1).getImm();
   2528     return true;
   2529   case ARM::CMPrr:
   2530   case ARM::t2CMPrr:
   2531     SrcReg = MI.getOperand(0).getReg();
   2532     SrcReg2 = MI.getOperand(1).getReg();
   2533     CmpMask = ~0;
   2534     CmpValue = 0;
   2535     return true;
   2536   case ARM::TSTri:
   2537   case ARM::t2TSTri:
   2538     SrcReg = MI.getOperand(0).getReg();
   2539     SrcReg2 = 0;
   2540     CmpMask = MI.getOperand(1).getImm();
   2541     CmpValue = 0;
   2542     return true;
   2543   }
   2544 
   2545   return false;
   2546 }
   2547 
   2548 /// isSuitableForMask - Identify a suitable 'and' instruction that
   2549 /// operates on the given source register and applies the same mask
   2550 /// as a 'tst' instruction. Provide a limited look-through for copies.
   2551 /// When successful, MI will hold the found instruction.
   2552 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
   2553                               int CmpMask, bool CommonUse) {
   2554   switch (MI->getOpcode()) {
   2555     case ARM::ANDri:
   2556     case ARM::t2ANDri:
   2557       if (CmpMask != MI->getOperand(2).getImm())
   2558         return false;
   2559       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
   2560         return true;
   2561       break;
   2562   }
   2563 
   2564   return false;
   2565 }
   2566 
   2567 /// getSwappedCondition - assume the flags are set by MI(a,b), return
   2568 /// the condition code if we modify the instructions such that flags are
   2569 /// set by MI(b,a).
   2570 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
   2571   switch (CC) {
   2572   default: return ARMCC::AL;
   2573   case ARMCC::EQ: return ARMCC::EQ;
   2574   case ARMCC::NE: return ARMCC::NE;
   2575   case ARMCC::HS: return ARMCC::LS;
   2576   case ARMCC::LO: return ARMCC::HI;
   2577   case ARMCC::HI: return ARMCC::LO;
   2578   case ARMCC::LS: return ARMCC::HS;
   2579   case ARMCC::GE: return ARMCC::LE;
   2580   case ARMCC::LT: return ARMCC::GT;
   2581   case ARMCC::GT: return ARMCC::LT;
   2582   case ARMCC::LE: return ARMCC::GE;
   2583   }
   2584 }
   2585 
   2586 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
   2587 /// the condition code if we modify the instructions such that flags are
   2588 /// set by ADD(a,b,X).
   2589 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
   2590   switch (CC) {
   2591   default: return ARMCC::AL;
   2592   case ARMCC::HS: return ARMCC::LO;
   2593   case ARMCC::LO: return ARMCC::HS;
   2594   case ARMCC::VS: return ARMCC::VS;
   2595   case ARMCC::VC: return ARMCC::VC;
   2596   }
   2597 }
   2598 
   2599 /// isRedundantFlagInstr - check whether the first instruction, whose only
   2600 /// purpose is to update flags, can be made redundant.
   2601 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   2602 /// CMPri can be made redundant by SUBri if the operands are the same.
   2603 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
   2604 /// This function can be extended later on.
   2605 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
   2606                                         unsigned SrcReg, unsigned SrcReg2,
   2607                                         int ImmValue, const MachineInstr *OI) {
   2608   if ((CmpI->getOpcode() == ARM::CMPrr ||
   2609        CmpI->getOpcode() == ARM::t2CMPrr) &&
   2610       (OI->getOpcode() == ARM::SUBrr ||
   2611        OI->getOpcode() == ARM::t2SUBrr) &&
   2612       ((OI->getOperand(1).getReg() == SrcReg &&
   2613         OI->getOperand(2).getReg() == SrcReg2) ||
   2614        (OI->getOperand(1).getReg() == SrcReg2 &&
   2615         OI->getOperand(2).getReg() == SrcReg)))
   2616     return true;
   2617 
   2618   if ((CmpI->getOpcode() == ARM::CMPri ||
   2619        CmpI->getOpcode() == ARM::t2CMPri) &&
   2620       (OI->getOpcode() == ARM::SUBri ||
   2621        OI->getOpcode() == ARM::t2SUBri) &&
   2622       OI->getOperand(1).getReg() == SrcReg &&
   2623       OI->getOperand(2).getImm() == ImmValue)
   2624     return true;
   2625 
   2626   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
   2627       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
   2628        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
   2629       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
   2630       OI->getOperand(0).getReg() == SrcReg &&
   2631       OI->getOperand(1).getReg() == SrcReg2)
   2632     return true;
   2633   return false;
   2634 }
   2635 
   2636 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
   2637   switch (MI->getOpcode()) {
   2638   default: return false;
   2639   case ARM::tLSLri:
   2640   case ARM::tLSRri:
   2641   case ARM::tLSLrr:
   2642   case ARM::tLSRrr:
   2643   case ARM::tSUBrr:
   2644   case ARM::tADDrr:
   2645   case ARM::tADDi3:
   2646   case ARM::tADDi8:
   2647   case ARM::tSUBi3:
   2648   case ARM::tSUBi8:
   2649   case ARM::tMUL:
   2650     IsThumb1 = true;
   2651     LLVM_FALLTHROUGH;
   2652   case ARM::RSBrr:
   2653   case ARM::RSBri:
   2654   case ARM::RSCrr:
   2655   case ARM::RSCri:
   2656   case ARM::ADDrr:
   2657   case ARM::ADDri:
   2658   case ARM::ADCrr:
   2659   case ARM::ADCri:
   2660   case ARM::SUBrr:
   2661   case ARM::SUBri:
   2662   case ARM::SBCrr:
   2663   case ARM::SBCri:
   2664   case ARM::t2RSBri:
   2665   case ARM::t2ADDrr:
   2666   case ARM::t2ADDri:
   2667   case ARM::t2ADCrr:
   2668   case ARM::t2ADCri:
   2669   case ARM::t2SUBrr:
   2670   case ARM::t2SUBri:
   2671   case ARM::t2SBCrr:
   2672   case ARM::t2SBCri:
   2673   case ARM::ANDrr:
   2674   case ARM::ANDri:
   2675   case ARM::t2ANDrr:
   2676   case ARM::t2ANDri:
   2677   case ARM::ORRrr:
   2678   case ARM::ORRri:
   2679   case ARM::t2ORRrr:
   2680   case ARM::t2ORRri:
   2681   case ARM::EORrr:
   2682   case ARM::EORri:
   2683   case ARM::t2EORrr:
   2684   case ARM::t2EORri:
   2685   case ARM::t2LSRri:
   2686   case ARM::t2LSRrr:
   2687   case ARM::t2LSLri:
   2688   case ARM::t2LSLrr:
   2689     return true;
   2690   }
   2691 }
   2692 
   2693 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
   2694 /// comparison into one that sets the zero bit in the flags register;
   2695 /// Remove a redundant Compare instruction if an earlier instruction can set the
   2696 /// flags in the same way as Compare.
   2697 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
   2698 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
   2699 /// condition code of instructions which use the flags.
   2700 bool ARMBaseInstrInfo::optimizeCompareInstr(
   2701     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
   2702     int CmpValue, const MachineRegisterInfo *MRI) const {
   2703   // Get the unique definition of SrcReg.
   2704   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   2705   if (!MI) return false;
   2706 
   2707   // Masked compares sometimes use the same register as the corresponding 'and'.
   2708   if (CmpMask != ~0) {
   2709     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
   2710       MI = nullptr;
   2711       for (MachineRegisterInfo::use_instr_iterator
   2712            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
   2713            UI != UE; ++UI) {
   2714         if (UI->getParent() != CmpInstr.getParent())
   2715           continue;
   2716         MachineInstr *PotentialAND = &*UI;
   2717         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
   2718             isPredicated(*PotentialAND))
   2719           continue;
   2720         MI = PotentialAND;
   2721         break;
   2722       }
   2723       if (!MI) return false;
   2724     }
   2725   }
   2726 
   2727   // Get ready to iterate backward from CmpInstr.
   2728   MachineBasicBlock::iterator I = CmpInstr, E = MI,
   2729                               B = CmpInstr.getParent()->begin();
   2730 
   2731   // Early exit if CmpInstr is at the beginning of the BB.
   2732   if (I == B) return false;
   2733 
   2734   // There are two possible candidates which can be changed to set CPSR:
   2735   // One is MI, the other is a SUB or ADD instruction.
   2736   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
   2737   // ADDr[ri](r1, r2, X).
   2738   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
   2739   MachineInstr *SubAdd = nullptr;
   2740   if (SrcReg2 != 0)
   2741     // MI is not a candidate for CMPrr.
   2742     MI = nullptr;
   2743   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
   2744     // Conservatively refuse to convert an instruction which isn't in the same
   2745     // BB as the comparison.
   2746     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
   2747     // Thus we cannot return here.
   2748     if (CmpInstr.getOpcode() == ARM::CMPri ||
   2749         CmpInstr.getOpcode() == ARM::t2CMPri)
   2750       MI = nullptr;
   2751     else
   2752       return false;
   2753   }
   2754 
   2755   bool IsThumb1 = false;
   2756   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
   2757     return false;
   2758 
   2759   // We also want to do this peephole for cases like this: if (a*b == 0),
   2760   // and optimise away the CMP instruction from the generated code sequence:
   2761   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
   2762   // resulting from the select instruction, but these MOVS instructions for
   2763   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
   2764   // However, if we only have MOVS instructions in between the CMP and the
   2765   // other instruction (the MULS in this example), then the CPSR is dead so we
   2766   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
   2767   // reordering and then continue the analysis hoping we can eliminate the
   2768   // CMP. This peephole works on the vregs, so is still in SSA form. As a
   2769   // consequence, the movs won't redefine/kill the MUL operands which would
   2770   // make this reordering illegal.
   2771   if (MI && IsThumb1) {
   2772     --I;
   2773     bool CanReorder = true;
   2774     const bool HasStmts = I != E;
   2775     for (; I != E; --I) {
   2776       if (I->getOpcode() != ARM::tMOVi8) {
   2777         CanReorder = false;
   2778         break;
   2779       }
   2780     }
   2781     if (HasStmts && CanReorder) {
   2782       MI = MI->removeFromParent();
   2783       E = CmpInstr;
   2784       CmpInstr.getParent()->insert(E, MI);
   2785     }
   2786     I = CmpInstr;
   2787     E = MI;
   2788   }
   2789 
   2790   // Check that CPSR isn't set between the comparison instruction and the one we
   2791   // want to change. At the same time, search for SubAdd.
   2792   const TargetRegisterInfo *TRI = &getRegisterInfo();
   2793   do {
   2794     const MachineInstr &Instr = *--I;
   2795 
   2796     // Check whether CmpInstr can be made redundant by the current instruction.
   2797     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr)) {
   2798       SubAdd = &*I;
   2799       break;
   2800     }
   2801 
   2802     // Allow E (which was initially MI) to be SubAdd but do not search before E.
   2803     if (I == E)
   2804       break;
   2805 
   2806     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
   2807         Instr.readsRegister(ARM::CPSR, TRI))
   2808       // This instruction modifies or uses CPSR after the one we want to
   2809       // change. We can't do this transformation.
   2810       return false;
   2811 
   2812   } while (I != B);
   2813 
   2814   // Return false if no candidates exist.
   2815   if (!MI && !SubAdd)
   2816     return false;
   2817 
   2818   // The single candidate is called MI.
   2819   if (!MI) MI = SubAdd;
   2820 
   2821   // We can't use a predicated instruction - it doesn't always write the flags.
   2822   if (isPredicated(*MI))
   2823     return false;
   2824 
   2825   // Scan forward for the use of CPSR
   2826   // When checking against MI: if it's a conditional code that requires
   2827   // checking of the V bit or C bit, then this is not safe to do.
   2828   // It is safe to remove CmpInstr if CPSR is redefined or killed.
   2829   // If we are done with the basic block, we need to check whether CPSR is
   2830   // live-out.
   2831   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
   2832       OperandsToUpdate;
   2833   bool isSafe = false;
   2834   I = CmpInstr;
   2835   E = CmpInstr.getParent()->end();
   2836   while (!isSafe && ++I != E) {
   2837     const MachineInstr &Instr = *I;
   2838     for (unsigned IO = 0, EO = Instr.getNumOperands();
   2839          !isSafe && IO != EO; ++IO) {
   2840       const MachineOperand &MO = Instr.getOperand(IO);
   2841       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
   2842         isSafe = true;
   2843         break;
   2844       }
   2845       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
   2846         continue;
   2847       if (MO.isDef()) {
   2848         isSafe = true;
   2849         break;
   2850       }
   2851       // Condition code is after the operand before CPSR except for VSELs.
   2852       ARMCC::CondCodes CC;
   2853       bool IsInstrVSel = true;
   2854       switch (Instr.getOpcode()) {
   2855       default:
   2856         IsInstrVSel = false;
   2857         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
   2858         break;
   2859       case ARM::VSELEQD:
   2860       case ARM::VSELEQS:
   2861         CC = ARMCC::EQ;
   2862         break;
   2863       case ARM::VSELGTD:
   2864       case ARM::VSELGTS:
   2865         CC = ARMCC::GT;
   2866         break;
   2867       case ARM::VSELGED:
   2868       case ARM::VSELGES:
   2869         CC = ARMCC::GE;
   2870         break;
   2871       case ARM::VSELVSS:
   2872       case ARM::VSELVSD:
   2873         CC = ARMCC::VS;
   2874         break;
   2875       }
   2876 
   2877       if (SubAdd) {
   2878         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
   2879         // on CMP needs to be updated to be based on SUB.
   2880         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
   2881         // needs to be modified.
   2882         // Push the condition code operands to OperandsToUpdate.
   2883         // If it is safe to remove CmpInstr, the condition code of these
   2884         // operands will be modified.
   2885         unsigned Opc = SubAdd->getOpcode();
   2886         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
   2887                      Opc == ARM::SUBri || Opc == ARM::t2SUBri;
   2888         if (!IsSub || (SrcReg2 != 0 && SubAdd->getOperand(1).getReg() == SrcReg2 &&
   2889                        SubAdd->getOperand(2).getReg() == SrcReg)) {
   2890           // VSel doesn't support condition code update.
   2891           if (IsInstrVSel)
   2892             return false;
   2893           // Ensure we can swap the condition.
   2894           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
   2895           if (NewCC == ARMCC::AL)
   2896             return false;
   2897           OperandsToUpdate.push_back(
   2898               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
   2899         }
   2900       } else {
   2901         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
   2902         switch (CC) {
   2903         case ARMCC::EQ: // Z
   2904         case ARMCC::NE: // Z
   2905         case ARMCC::MI: // N
   2906         case ARMCC::PL: // N
   2907         case ARMCC::AL: // none
   2908           // CPSR can be used multiple times, we should continue.
   2909           break;
   2910         case ARMCC::HS: // C
   2911         case ARMCC::LO: // C
   2912         case ARMCC::VS: // V
   2913         case ARMCC::VC: // V
   2914         case ARMCC::HI: // C Z
   2915         case ARMCC::LS: // C Z
   2916         case ARMCC::GE: // N V
   2917         case ARMCC::LT: // N V
   2918         case ARMCC::GT: // Z N V
   2919         case ARMCC::LE: // Z N V
   2920           // The instruction uses the V bit or C bit which is not safe.
   2921           return false;
   2922         }
   2923       }
   2924     }
   2925   }
   2926 
   2927   // If CPSR is not killed nor re-defined, we should check whether it is
   2928   // live-out. If it is live-out, do not optimize.
   2929   if (!isSafe) {
   2930     MachineBasicBlock *MBB = CmpInstr.getParent();
   2931     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   2932              SE = MBB->succ_end(); SI != SE; ++SI)
   2933       if ((*SI)->isLiveIn(ARM::CPSR))
   2934         return false;
   2935   }
   2936 
   2937   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
   2938   // set CPSR so this is represented as an explicit output)
   2939   if (!IsThumb1) {
   2940     MI->getOperand(5).setReg(ARM::CPSR);
   2941     MI->getOperand(5).setIsDef(true);
   2942   }
   2943   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
   2944   CmpInstr.eraseFromParent();
   2945 
   2946   // Modify the condition code of operands in OperandsToUpdate.
   2947   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   2948   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   2949   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
   2950     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
   2951 
   2952   return true;
   2953 }
   2954 
   2955 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
   2956   // Do not sink MI if it might be used to optimize a redundant compare.
   2957   // We heuristically only look at the instruction immediately following MI to
   2958   // avoid potentially searching the entire basic block.
   2959   if (isPredicated(MI))
   2960     return true;
   2961   MachineBasicBlock::const_iterator Next = &MI;
   2962   ++Next;
   2963   unsigned SrcReg, SrcReg2;
   2964   int CmpMask, CmpValue;
   2965   if (Next != MI.getParent()->end() &&
   2966       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
   2967       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI))
   2968     return false;
   2969   return true;
   2970 }
   2971 
   2972 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
   2973                                      unsigned Reg,
   2974                                      MachineRegisterInfo *MRI) const {
   2975   // Fold large immediates into add, sub, or, xor.
   2976   unsigned DefOpc = DefMI.getOpcode();
   2977   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
   2978     return false;
   2979   if (!DefMI.getOperand(1).isImm())
   2980     // Could be t2MOVi32imm @xx
   2981     return false;
   2982 
   2983   if (!MRI->hasOneNonDBGUse(Reg))
   2984     return false;
   2985 
   2986   const MCInstrDesc &DefMCID = DefMI.getDesc();
   2987   if (DefMCID.hasOptionalDef()) {
   2988     unsigned NumOps = DefMCID.getNumOperands();
   2989     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
   2990     if (MO.getReg() == ARM::CPSR && !MO.isDead())
   2991       // If DefMI defines CPSR and it is not dead, it's obviously not safe
   2992       // to delete DefMI.
   2993       return false;
   2994   }
   2995 
   2996   const MCInstrDesc &UseMCID = UseMI.getDesc();
   2997   if (UseMCID.hasOptionalDef()) {
   2998     unsigned NumOps = UseMCID.getNumOperands();
   2999     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
   3000       // If the instruction sets the flag, do not attempt this optimization
   3001       // since it may change the semantics of the code.
   3002       return false;
   3003   }
   3004 
   3005   unsigned UseOpc = UseMI.getOpcode();
   3006   unsigned NewUseOpc = 0;
   3007   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
   3008   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
   3009   bool Commute = false;
   3010   switch (UseOpc) {
   3011   default: return false;
   3012   case ARM::SUBrr:
   3013   case ARM::ADDrr:
   3014   case ARM::ORRrr:
   3015   case ARM::EORrr:
   3016   case ARM::t2SUBrr:
   3017   case ARM::t2ADDrr:
   3018   case ARM::t2ORRrr:
   3019   case ARM::t2EORrr: {
   3020     Commute = UseMI.getOperand(2).getReg() != Reg;
   3021     switch (UseOpc) {
   3022     default: break;
   3023     case ARM::ADDrr:
   3024     case ARM::SUBrr:
   3025       if (UseOpc == ARM::SUBrr && Commute)
   3026         return false;
   3027 
   3028       // ADD/SUB are special because they're essentially the same operation, so
   3029       // we can handle a larger range of immediates.
   3030       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
   3031         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
   3032       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
   3033         ImmVal = -ImmVal;
   3034         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
   3035       } else
   3036         return false;
   3037       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   3038       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   3039       break;
   3040     case ARM::ORRrr:
   3041     case ARM::EORrr:
   3042       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
   3043         return false;
   3044       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   3045       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   3046       switch (UseOpc) {
   3047       default: break;
   3048       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
   3049       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
   3050       }
   3051       break;
   3052     case ARM::t2ADDrr:
   3053     case ARM::t2SUBrr:
   3054       if (UseOpc == ARM::t2SUBrr && Commute)
   3055         return false;
   3056 
   3057       // ADD/SUB are special because they're essentially the same operation, so
   3058       // we can handle a larger range of immediates.
   3059       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   3060         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
   3061       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
   3062         ImmVal = -ImmVal;
   3063         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
   3064       } else
   3065         return false;
   3066       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   3067       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   3068       break;
   3069     case ARM::t2ORRrr:
   3070     case ARM::t2EORrr:
   3071       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   3072         return false;
   3073       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   3074       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   3075       switch (UseOpc) {
   3076       default: break;
   3077       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
   3078       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
   3079       }
   3080       break;
   3081     }
   3082   }
   3083   }
   3084 
   3085   unsigned OpIdx = Commute ? 2 : 1;
   3086   unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
   3087   bool isKill = UseMI.getOperand(OpIdx).isKill();
   3088   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
   3089   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
   3090           NewReg)
   3091       .addReg(Reg1, getKillRegState(isKill))
   3092       .addImm(SOImmValV1)
   3093       .add(predOps(ARMCC::AL))
   3094       .add(condCodeOp());
   3095   UseMI.setDesc(get(NewUseOpc));
   3096   UseMI.getOperand(1).setReg(NewReg);
   3097   UseMI.getOperand(1).setIsKill();
   3098   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
   3099   DefMI.eraseFromParent();
   3100   return true;
   3101 }
   3102 
   3103 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
   3104                                         const MachineInstr &MI) {
   3105   switch (MI.getOpcode()) {
   3106   default: {
   3107     const MCInstrDesc &Desc = MI.getDesc();
   3108     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
   3109     assert(UOps >= 0 && "bad # UOps");
   3110     return UOps;
   3111   }
   3112 
   3113   case ARM::LDRrs:
   3114   case ARM::LDRBrs:
   3115   case ARM::STRrs:
   3116   case ARM::STRBrs: {
   3117     unsigned ShOpVal = MI.getOperand(3).getImm();
   3118     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3119     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3120     if (!isSub &&
   3121         (ShImm == 0 ||
   3122          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3123           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3124       return 1;
   3125     return 2;
   3126   }
   3127 
   3128   case ARM::LDRH:
   3129   case ARM::STRH: {
   3130     if (!MI.getOperand(2).getReg())
   3131       return 1;
   3132 
   3133     unsigned ShOpVal = MI.getOperand(3).getImm();
   3134     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3135     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3136     if (!isSub &&
   3137         (ShImm == 0 ||
   3138          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3139           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3140       return 1;
   3141     return 2;
   3142   }
   3143 
   3144   case ARM::LDRSB:
   3145   case ARM::LDRSH:
   3146     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
   3147 
   3148   case ARM::LDRSB_POST:
   3149   case ARM::LDRSH_POST: {
   3150     unsigned Rt = MI.getOperand(0).getReg();
   3151     unsigned Rm = MI.getOperand(3).getReg();
   3152     return (Rt == Rm) ? 4 : 3;
   3153   }
   3154 
   3155   case ARM::LDR_PRE_REG:
   3156   case ARM::LDRB_PRE_REG: {
   3157     unsigned Rt = MI.getOperand(0).getReg();
   3158     unsigned Rm = MI.getOperand(3).getReg();
   3159     if (Rt == Rm)
   3160       return 3;
   3161     unsigned ShOpVal = MI.getOperand(4).getImm();
   3162     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3163     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3164     if (!isSub &&
   3165         (ShImm == 0 ||
   3166          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3167           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3168       return 2;
   3169     return 3;
   3170   }
   3171 
   3172   case ARM::STR_PRE_REG:
   3173   case ARM::STRB_PRE_REG: {
   3174     unsigned ShOpVal = MI.getOperand(4).getImm();
   3175     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3176     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3177     if (!isSub &&
   3178         (ShImm == 0 ||
   3179          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3180           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3181       return 2;
   3182     return 3;
   3183   }
   3184 
   3185   case ARM::LDRH_PRE:
   3186   case ARM::STRH_PRE: {
   3187     unsigned Rt = MI.getOperand(0).getReg();
   3188     unsigned Rm = MI.getOperand(3).getReg();
   3189     if (!Rm)
   3190       return 2;
   3191     if (Rt == Rm)
   3192       return 3;
   3193     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
   3194   }
   3195 
   3196   case ARM::LDR_POST_REG:
   3197   case ARM::LDRB_POST_REG:
   3198   case ARM::LDRH_POST: {
   3199     unsigned Rt = MI.getOperand(0).getReg();
   3200     unsigned Rm = MI.getOperand(3).getReg();
   3201     return (Rt == Rm) ? 3 : 2;
   3202   }
   3203 
   3204   case ARM::LDR_PRE_IMM:
   3205   case ARM::LDRB_PRE_IMM:
   3206   case ARM::LDR_POST_IMM:
   3207   case ARM::LDRB_POST_IMM:
   3208   case ARM::STRB_POST_IMM:
   3209   case ARM::STRB_POST_REG:
   3210   case ARM::STRB_PRE_IMM:
   3211   case ARM::STRH_POST:
   3212   case ARM::STR_POST_IMM:
   3213   case ARM::STR_POST_REG:
   3214   case ARM::STR_PRE_IMM:
   3215     return 2;
   3216 
   3217   case ARM::LDRSB_PRE:
   3218   case ARM::LDRSH_PRE: {
   3219     unsigned Rm = MI.getOperand(3).getReg();
   3220     if (Rm == 0)
   3221       return 3;
   3222     unsigned Rt = MI.getOperand(0).getReg();
   3223     if (Rt == Rm)
   3224       return 4;
   3225     unsigned ShOpVal = MI.getOperand(4).getImm();
   3226     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3227     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3228     if (!isSub &&
   3229         (ShImm == 0 ||
   3230          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3231           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3232       return 3;
   3233     return 4;
   3234   }
   3235 
   3236   case ARM::LDRD: {
   3237     unsigned Rt = MI.getOperand(0).getReg();
   3238     unsigned Rn = MI.getOperand(2).getReg();
   3239     unsigned Rm = MI.getOperand(3).getReg();
   3240     if (Rm)
   3241       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
   3242                                                                           : 3;
   3243     return (Rt == Rn) ? 3 : 2;
   3244   }
   3245 
   3246   case ARM::STRD: {
   3247     unsigned Rm = MI.getOperand(3).getReg();
   3248     if (Rm)
   3249       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
   3250                                                                           : 3;
   3251     return 2;
   3252   }
   3253 
   3254   case ARM::LDRD_POST:
   3255   case ARM::t2LDRD_POST:
   3256     return 3;
   3257 
   3258   case ARM::STRD_POST:
   3259   case ARM::t2STRD_POST:
   3260     return 4;
   3261 
   3262   case ARM::LDRD_PRE: {
   3263     unsigned Rt = MI.getOperand(0).getReg();
   3264     unsigned Rn = MI.getOperand(3).getReg();
   3265     unsigned Rm = MI.getOperand(4).getReg();
   3266     if (Rm)
   3267       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
   3268                                                                           : 4;
   3269     return (Rt == Rn) ? 4 : 3;
   3270   }
   3271 
   3272   case ARM::t2LDRD_PRE: {
   3273     unsigned Rt = MI.getOperand(0).getReg();
   3274     unsigned Rn = MI.getOperand(3).getReg();
   3275     return (Rt == Rn) ? 4 : 3;
   3276   }
   3277 
   3278   case ARM::STRD_PRE: {
   3279     unsigned Rm = MI.getOperand(4).getReg();
   3280     if (Rm)
   3281       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
   3282                                                                           : 4;
   3283     return 3;
   3284   }
   3285 
   3286   case ARM::t2STRD_PRE:
   3287     return 3;
   3288 
   3289   case ARM::t2LDR_POST:
   3290   case ARM::t2LDRB_POST:
   3291   case ARM::t2LDRB_PRE:
   3292   case ARM::t2LDRSBi12:
   3293   case ARM::t2LDRSBi8:
   3294   case ARM::t2LDRSBpci:
   3295   case ARM::t2LDRSBs:
   3296   case ARM::t2LDRH_POST:
   3297   case ARM::t2LDRH_PRE:
   3298   case ARM::t2LDRSBT:
   3299   case ARM::t2LDRSB_POST:
   3300   case ARM::t2LDRSB_PRE:
   3301   case ARM::t2LDRSH_POST:
   3302   case ARM::t2LDRSH_PRE:
   3303   case ARM::t2LDRSHi12:
   3304   case ARM::t2LDRSHi8:
   3305   case ARM::t2LDRSHpci:
   3306   case ARM::t2LDRSHs:
   3307     return 2;
   3308 
   3309   case ARM::t2LDRDi8: {
   3310     unsigned Rt = MI.getOperand(0).getReg();
   3311     unsigned Rn = MI.getOperand(2).getReg();
   3312     return (Rt == Rn) ? 3 : 2;
   3313   }
   3314 
   3315   case ARM::t2STRB_POST:
   3316   case ARM::t2STRB_PRE:
   3317   case ARM::t2STRBs:
   3318   case ARM::t2STRDi8:
   3319   case ARM::t2STRH_POST:
   3320   case ARM::t2STRH_PRE:
   3321   case ARM::t2STRHs:
   3322   case ARM::t2STR_POST:
   3323   case ARM::t2STR_PRE:
   3324   case ARM::t2STRs:
   3325     return 2;
   3326   }
   3327 }
   3328 
   3329 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
   3330 // can't be easily determined return 0 (missing MachineMemOperand).
   3331 //
   3332 // FIXME: The current MachineInstr design does not support relying on machine
   3333 // mem operands to determine the width of a memory access. Instead, we expect
   3334 // the target to provide this information based on the instruction opcode and
   3335 // operands. However, using MachineMemOperand is the best solution now for
   3336 // two reasons:
   3337 //
   3338 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
   3339 // operands. This is much more dangerous than using the MachineMemOperand
   3340 // sizes because CodeGen passes can insert/remove optional machine operands. In
   3341 // fact, it's totally incorrect for preRA passes and appears to be wrong for
   3342 // postRA passes as well.
   3343 //
   3344 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
   3345 // machine model that calls this should handle the unknown (zero size) case.
   3346 //
   3347 // Long term, we should require a target hook that verifies MachineMemOperand
   3348 // sizes during MC lowering. That target hook should be local to MC lowering
   3349 // because we can't ensure that it is aware of other MI forms. Doing this will
   3350 // ensure that MachineMemOperands are correctly propagated through all passes.
   3351 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
   3352   unsigned Size = 0;
   3353   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
   3354                                   E = MI.memoperands_end();
   3355        I != E; ++I) {
   3356     Size += (*I)->getSize();
   3357   }
   3358   return Size / 4;
   3359 }
   3360 
   3361 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
   3362                                                     unsigned NumRegs) {
   3363   unsigned UOps = 1 + NumRegs; // 1 for address computation.
   3364   switch (Opc) {
   3365   default:
   3366     break;
   3367   case ARM::VLDMDIA_UPD:
   3368   case ARM::VLDMDDB_UPD:
   3369   case ARM::VLDMSIA_UPD:
   3370   case ARM::VLDMSDB_UPD:
   3371   case ARM::VSTMDIA_UPD:
   3372   case ARM::VSTMDDB_UPD:
   3373   case ARM::VSTMSIA_UPD:
   3374   case ARM::VSTMSDB_UPD:
   3375   case ARM::LDMIA_UPD:
   3376   case ARM::LDMDA_UPD:
   3377   case ARM::LDMDB_UPD:
   3378   case ARM::LDMIB_UPD:
   3379   case ARM::STMIA_UPD:
   3380   case ARM::STMDA_UPD:
   3381   case ARM::STMDB_UPD:
   3382   case ARM::STMIB_UPD:
   3383   case ARM::tLDMIA_UPD:
   3384   case ARM::tSTMIA_UPD:
   3385   case ARM::t2LDMIA_UPD:
   3386   case ARM::t2LDMDB_UPD:
   3387   case ARM::t2STMIA_UPD:
   3388   case ARM::t2STMDB_UPD:
   3389     ++UOps; // One for base register writeback.
   3390     break;
   3391   case ARM::LDMIA_RET:
   3392   case ARM::tPOP_RET:
   3393   case ARM::t2LDMIA_RET:
   3394     UOps += 2; // One for base reg wb, one for write to pc.
   3395     break;
   3396   }
   3397   return UOps;
   3398 }
   3399 
   3400 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
   3401                                           const MachineInstr &MI) const {
   3402   if (!ItinData || ItinData->isEmpty())
   3403     return 1;
   3404 
   3405   const MCInstrDesc &Desc = MI.getDesc();
   3406   unsigned Class = Desc.getSchedClass();
   3407   int ItinUOps = ItinData->getNumMicroOps(Class);
   3408   if (ItinUOps >= 0) {
   3409     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
   3410       return getNumMicroOpsSwiftLdSt(ItinData, MI);
   3411 
   3412     return ItinUOps;
   3413   }
   3414 
   3415   unsigned Opc = MI.getOpcode();
   3416   switch (Opc) {
   3417   default:
   3418     llvm_unreachable("Unexpected multi-uops instruction!");
   3419   case ARM::VLDMQIA:
   3420   case ARM::VSTMQIA:
   3421     return 2;
   3422 
   3423   // The number of uOps for load / store multiple are determined by the number
   3424   // registers.
   3425   //
   3426   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
   3427   // same cycle. The scheduling for the first load / store must be done
   3428   // separately by assuming the address is not 64-bit aligned.
   3429   //
   3430   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
   3431   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
   3432   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
   3433   case ARM::VLDMDIA:
   3434   case ARM::VLDMDIA_UPD:
   3435   case ARM::VLDMDDB_UPD:
   3436   case ARM::VLDMSIA:
   3437   case ARM::VLDMSIA_UPD:
   3438   case ARM::VLDMSDB_UPD:
   3439   case ARM::VSTMDIA:
   3440   case ARM::VSTMDIA_UPD:
   3441   case ARM::VSTMDDB_UPD:
   3442   case ARM::VSTMSIA:
   3443   case ARM::VSTMSIA_UPD:
   3444   case ARM::VSTMSDB_UPD: {
   3445     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
   3446     return (NumRegs / 2) + (NumRegs % 2) + 1;
   3447   }
   3448 
   3449   case ARM::LDMIA_RET:
   3450   case ARM::LDMIA:
   3451   case ARM::LDMDA:
   3452   case ARM::LDMDB:
   3453   case ARM::LDMIB:
   3454   case ARM::LDMIA_UPD:
   3455   case ARM::LDMDA_UPD:
   3456   case ARM::LDMDB_UPD:
   3457   case ARM::LDMIB_UPD:
   3458   case ARM::STMIA:
   3459   case ARM::STMDA:
   3460   case ARM::STMDB:
   3461   case ARM::STMIB:
   3462   case ARM::STMIA_UPD:
   3463   case ARM::STMDA_UPD:
   3464   case ARM::STMDB_UPD:
   3465   case ARM::STMIB_UPD:
   3466   case ARM::tLDMIA:
   3467   case ARM::tLDMIA_UPD:
   3468   case ARM::tSTMIA_UPD:
   3469   case ARM::tPOP_RET:
   3470   case ARM::tPOP:
   3471   case ARM::tPUSH:
   3472   case ARM::t2LDMIA_RET:
   3473   case ARM::t2LDMIA:
   3474   case ARM::t2LDMDB:
   3475   case ARM::t2LDMIA_UPD:
   3476   case ARM::t2LDMDB_UPD:
   3477   case ARM::t2STMIA:
   3478   case ARM::t2STMDB:
   3479   case ARM::t2STMIA_UPD:
   3480   case ARM::t2STMDB_UPD: {
   3481     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
   3482     switch (Subtarget.getLdStMultipleTiming()) {
   3483     case ARMSubtarget::SingleIssuePlusExtras:
   3484       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
   3485     case ARMSubtarget::SingleIssue:
   3486       // Assume the worst.
   3487       return NumRegs;
   3488     case ARMSubtarget::DoubleIssue: {
   3489       if (NumRegs < 4)
   3490         return 2;
   3491       // 4 registers would be issued: 2, 2.
   3492       // 5 registers would be issued: 2, 2, 1.
   3493       unsigned UOps = (NumRegs / 2);
   3494       if (NumRegs % 2)
   3495         ++UOps;
   3496       return UOps;
   3497     }
   3498     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
   3499       unsigned UOps = (NumRegs / 2);
   3500       // If there are odd number of registers or if it's not 64-bit aligned,
   3501       // then it takes an extra AGU (Address Generation Unit) cycle.
   3502       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
   3503           (*MI.memoperands_begin())->getAlignment() < 8)
   3504         ++UOps;
   3505       return UOps;
   3506       }
   3507     }
   3508   }
   3509   }
   3510   llvm_unreachable("Didn't find the number of microops");
   3511 }
   3512 
   3513 int
   3514 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
   3515                                   const MCInstrDesc &DefMCID,
   3516                                   unsigned DefClass,
   3517                                   unsigned DefIdx, unsigned DefAlign) const {
   3518   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   3519   if (RegNo <= 0)
   3520     // Def is the address writeback.
   3521     return ItinData->getOperandCycle(DefClass, DefIdx);
   3522 
   3523   int DefCycle;
   3524   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3525     // (regno / 2) + (regno % 2) + 1
   3526     DefCycle = RegNo / 2 + 1;
   3527     if (RegNo % 2)
   3528       ++DefCycle;
   3529   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3530     DefCycle = RegNo;
   3531     bool isSLoad = false;
   3532 
   3533     switch (DefMCID.getOpcode()) {
   3534     default: break;
   3535     case ARM::VLDMSIA:
   3536     case ARM::VLDMSIA_UPD:
   3537     case ARM::VLDMSDB_UPD:
   3538       isSLoad = true;
   3539       break;
   3540     }
   3541 
   3542     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   3543     // then it takes an extra cycle.
   3544     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
   3545       ++DefCycle;
   3546   } else {
   3547     // Assume the worst.
   3548     DefCycle = RegNo + 2;
   3549   }
   3550 
   3551   return DefCycle;
   3552 }
   3553 
   3554 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
   3555   unsigned BaseReg = MI.getOperand(0).getReg();
   3556   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
   3557     const auto &Op = MI.getOperand(i);
   3558     if (Op.isReg() && Op.getReg() == BaseReg)
   3559       return true;
   3560   }
   3561   return false;
   3562 }
   3563 unsigned
   3564 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
   3565   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
   3566   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
   3567   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
   3568 }
   3569 
   3570 int
   3571 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
   3572                                  const MCInstrDesc &DefMCID,
   3573                                  unsigned DefClass,
   3574                                  unsigned DefIdx, unsigned DefAlign) const {
   3575   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   3576   if (RegNo <= 0)
   3577     // Def is the address writeback.
   3578     return ItinData->getOperandCycle(DefClass, DefIdx);
   3579 
   3580   int DefCycle;
   3581   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3582     // 4 registers would be issued: 1, 2, 1.
   3583     // 5 registers would be issued: 1, 2, 2.
   3584     DefCycle = RegNo / 2;
   3585     if (DefCycle < 1)
   3586       DefCycle = 1;
   3587     // Result latency is issue cycle + 2: E2.
   3588     DefCycle += 2;
   3589   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3590     DefCycle = (RegNo / 2);
   3591     // If there are odd number of registers or if it's not 64-bit aligned,
   3592     // then it takes an extra AGU (Address Generation Unit) cycle.
   3593     if ((RegNo % 2) || DefAlign < 8)
   3594       ++DefCycle;
   3595     // Result latency is AGU cycles + 2.
   3596     DefCycle += 2;
   3597   } else {
   3598     // Assume the worst.
   3599     DefCycle = RegNo + 2;
   3600   }
   3601 
   3602   return DefCycle;
   3603 }
   3604 
   3605 int
   3606 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
   3607                                   const MCInstrDesc &UseMCID,
   3608                                   unsigned UseClass,
   3609                                   unsigned UseIdx, unsigned UseAlign) const {
   3610   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   3611   if (RegNo <= 0)
   3612     return ItinData->getOperandCycle(UseClass, UseIdx);
   3613 
   3614   int UseCycle;
   3615   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3616     // (regno / 2) + (regno % 2) + 1
   3617     UseCycle = RegNo / 2 + 1;
   3618     if (RegNo % 2)
   3619       ++UseCycle;
   3620   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3621     UseCycle = RegNo;
   3622     bool isSStore = false;
   3623 
   3624     switch (UseMCID.getOpcode()) {
   3625     default: break;
   3626     case ARM::VSTMSIA:
   3627     case ARM::VSTMSIA_UPD:
   3628     case ARM::VSTMSDB_UPD:
   3629       isSStore = true;
   3630       break;
   3631     }
   3632 
   3633     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   3634     // then it takes an extra cycle.
   3635     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
   3636       ++UseCycle;
   3637   } else {
   3638     // Assume the worst.
   3639     UseCycle = RegNo + 2;
   3640   }
   3641 
   3642   return UseCycle;
   3643 }
   3644 
   3645 int
   3646 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
   3647                                  const MCInstrDesc &UseMCID,
   3648                                  unsigned UseClass,
   3649                                  unsigned UseIdx, unsigned UseAlign) const {
   3650   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   3651   if (RegNo <= 0)
   3652     return ItinData->getOperandCycle(UseClass, UseIdx);
   3653 
   3654   int UseCycle;
   3655   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3656     UseCycle = RegNo / 2;
   3657     if (UseCycle < 2)
   3658       UseCycle = 2;
   3659     // Read in E3.
   3660     UseCycle += 2;
   3661   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3662     UseCycle = (RegNo / 2);
   3663     // If there are odd number of registers or if it's not 64-bit aligned,
   3664     // then it takes an extra AGU (Address Generation Unit) cycle.
   3665     if ((RegNo % 2) || UseAlign < 8)
   3666       ++UseCycle;
   3667   } else {
   3668     // Assume the worst.
   3669     UseCycle = 1;
   3670   }
   3671   return UseCycle;
   3672 }
   3673 
   3674 int
   3675 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3676                                     const MCInstrDesc &DefMCID,
   3677                                     unsigned DefIdx, unsigned DefAlign,
   3678                                     const MCInstrDesc &UseMCID,
   3679                                     unsigned UseIdx, unsigned UseAlign) const {
   3680   unsigned DefClass = DefMCID.getSchedClass();
   3681   unsigned UseClass = UseMCID.getSchedClass();
   3682 
   3683   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
   3684     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   3685 
   3686   // This may be a def / use of a variable_ops instruction, the operand
   3687   // latency might be determinable dynamically. Let the target try to
   3688   // figure it out.
   3689   int DefCycle = -1;
   3690   bool LdmBypass = false;
   3691   switch (DefMCID.getOpcode()) {
   3692   default:
   3693     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   3694     break;
   3695 
   3696   case ARM::VLDMDIA:
   3697   case ARM::VLDMDIA_UPD:
   3698   case ARM::VLDMDDB_UPD:
   3699   case ARM::VLDMSIA:
   3700   case ARM::VLDMSIA_UPD:
   3701   case ARM::VLDMSDB_UPD:
   3702     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   3703     break;
   3704 
   3705   case ARM::LDMIA_RET:
   3706   case ARM::LDMIA:
   3707   case ARM::LDMDA:
   3708   case ARM::LDMDB:
   3709   case ARM::LDMIB:
   3710   case ARM::LDMIA_UPD:
   3711   case ARM::LDMDA_UPD:
   3712   case ARM::LDMDB_UPD:
   3713   case ARM::LDMIB_UPD:
   3714   case ARM::tLDMIA:
   3715   case ARM::tLDMIA_UPD:
   3716   case ARM::tPUSH:
   3717   case ARM::t2LDMIA_RET:
   3718   case ARM::t2LDMIA:
   3719   case ARM::t2LDMDB:
   3720   case ARM::t2LDMIA_UPD:
   3721   case ARM::t2LDMDB_UPD:
   3722     LdmBypass = true;
   3723     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   3724     break;
   3725   }
   3726 
   3727   if (DefCycle == -1)
   3728     // We can't seem to determine the result latency of the def, assume it's 2.
   3729     DefCycle = 2;
   3730 
   3731   int UseCycle = -1;
   3732   switch (UseMCID.getOpcode()) {
   3733   default:
   3734     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
   3735     break;
   3736 
   3737   case ARM::VSTMDIA:
   3738   case ARM::VSTMDIA_UPD:
   3739   case ARM::VSTMDDB_UPD:
   3740   case ARM::VSTMSIA:
   3741   case ARM::VSTMSIA_UPD:
   3742   case ARM::VSTMSDB_UPD:
   3743     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   3744     break;
   3745 
   3746   case ARM::STMIA:
   3747   case ARM::STMDA:
   3748   case ARM::STMDB:
   3749   case ARM::STMIB:
   3750   case ARM::STMIA_UPD:
   3751   case ARM::STMDA_UPD:
   3752   case ARM::STMDB_UPD:
   3753   case ARM::STMIB_UPD:
   3754   case ARM::tSTMIA_UPD:
   3755   case ARM::tPOP_RET:
   3756   case ARM::tPOP:
   3757   case ARM::t2STMIA:
   3758   case ARM::t2STMDB:
   3759   case ARM::t2STMIA_UPD:
   3760   case ARM::t2STMDB_UPD:
   3761     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   3762     break;
   3763   }
   3764 
   3765   if (UseCycle == -1)
   3766     // Assume it's read in the first stage.
   3767     UseCycle = 1;
   3768 
   3769   UseCycle = DefCycle - UseCycle + 1;
   3770   if (UseCycle > 0) {
   3771     if (LdmBypass) {
   3772       // It's a variable_ops instruction so we can't use DefIdx here. Just use
   3773       // first def operand.
   3774       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
   3775                                           UseClass, UseIdx))
   3776         --UseCycle;
   3777     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
   3778                                                UseClass, UseIdx)) {
   3779       --UseCycle;
   3780     }
   3781   }
   3782 
   3783   return UseCycle;
   3784 }
   3785 
   3786 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
   3787                                            const MachineInstr *MI, unsigned Reg,
   3788                                            unsigned &DefIdx, unsigned &Dist) {
   3789   Dist = 0;
   3790 
   3791   MachineBasicBlock::const_iterator I = MI; ++I;
   3792   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
   3793   assert(II->isInsideBundle() && "Empty bundle?");
   3794 
   3795   int Idx = -1;
   3796   while (II->isInsideBundle()) {
   3797     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
   3798     if (Idx != -1)
   3799       break;
   3800     --II;
   3801     ++Dist;
   3802   }
   3803 
   3804   assert(Idx != -1 && "Cannot find bundled definition!");
   3805   DefIdx = Idx;
   3806   return &*II;
   3807 }
   3808 
   3809 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
   3810                                            const MachineInstr &MI, unsigned Reg,
   3811                                            unsigned &UseIdx, unsigned &Dist) {
   3812   Dist = 0;
   3813 
   3814   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
   3815   assert(II->isInsideBundle() && "Empty bundle?");
   3816   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
   3817 
   3818   // FIXME: This doesn't properly handle multiple uses.
   3819   int Idx = -1;
   3820   while (II != E && II->isInsideBundle()) {
   3821     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
   3822     if (Idx != -1)
   3823       break;
   3824     if (II->getOpcode() != ARM::t2IT)
   3825       ++Dist;
   3826     ++II;
   3827   }
   3828 
   3829   if (Idx == -1) {
   3830     Dist = 0;
   3831     return nullptr;
   3832   }
   3833 
   3834   UseIdx = Idx;
   3835   return &*II;
   3836 }
   3837 
   3838 /// Return the number of cycles to add to (or subtract from) the static
   3839 /// itinerary based on the def opcode and alignment. The caller will ensure that
   3840 /// adjusted latency is at least one cycle.
   3841 static int adjustDefLatency(const ARMSubtarget &Subtarget,
   3842                             const MachineInstr &DefMI,
   3843                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
   3844   int Adjust = 0;
   3845   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
   3846     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   3847     // variants are one cycle cheaper.
   3848     switch (DefMCID.getOpcode()) {
   3849     default: break;
   3850     case ARM::LDRrs:
   3851     case ARM::LDRBrs: {
   3852       unsigned ShOpVal = DefMI.getOperand(3).getImm();
   3853       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3854       if (ShImm == 0 ||
   3855           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3856         --Adjust;
   3857       break;
   3858     }
   3859     case ARM::t2LDRs:
   3860     case ARM::t2LDRBs:
   3861     case ARM::t2LDRHs:
   3862     case ARM::t2LDRSHs: {
   3863       // Thumb2 mode: lsl only.
   3864       unsigned ShAmt = DefMI.getOperand(3).getImm();
   3865       if (ShAmt == 0 || ShAmt == 2)
   3866         --Adjust;
   3867       break;
   3868     }
   3869     }
   3870   } else if (Subtarget.isSwift()) {
   3871     // FIXME: Properly handle all of the latency adjustments for address
   3872     // writeback.
   3873     switch (DefMCID.getOpcode()) {
   3874     default: break;
   3875     case ARM::LDRrs:
   3876     case ARM::LDRBrs: {
   3877       unsigned ShOpVal = DefMI.getOperand(3).getImm();
   3878       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3879       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3880       if (!isSub &&
   3881           (ShImm == 0 ||
   3882            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3883             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3884         Adjust -= 2;
   3885       else if (!isSub &&
   3886                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
   3887         --Adjust;
   3888       break;
   3889     }
   3890     case ARM::t2LDRs:
   3891     case ARM::t2LDRBs:
   3892     case ARM::t2LDRHs:
   3893     case ARM::t2LDRSHs: {
   3894       // Thumb2 mode: lsl only.
   3895       unsigned ShAmt = DefMI.getOperand(3).getImm();
   3896       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
   3897         Adjust -= 2;
   3898       break;
   3899     }
   3900     }
   3901   }
   3902 
   3903   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
   3904     switch (DefMCID.getOpcode()) {
   3905     default: break;
   3906     case ARM::VLD1q8:
   3907     case ARM::VLD1q16:
   3908     case ARM::VLD1q32:
   3909     case ARM::VLD1q64:
   3910     case ARM::VLD1q8wb_fixed:
   3911     case ARM::VLD1q16wb_fixed:
   3912     case ARM::VLD1q32wb_fixed:
   3913     case ARM::VLD1q64wb_fixed:
   3914     case ARM::VLD1q8wb_register:
   3915     case ARM::VLD1q16wb_register:
   3916     case ARM::VLD1q32wb_register:
   3917     case ARM::VLD1q64wb_register:
   3918     case ARM::VLD2d8:
   3919     case ARM::VLD2d16:
   3920     case ARM::VLD2d32:
   3921     case ARM::VLD2q8:
   3922     case ARM::VLD2q16:
   3923     case ARM::VLD2q32:
   3924     case ARM::VLD2d8wb_fixed:
   3925     case ARM::VLD2d16wb_fixed:
   3926     case ARM::VLD2d32wb_fixed:
   3927     case ARM::VLD2q8wb_fixed:
   3928     case ARM::VLD2q16wb_fixed:
   3929     case ARM::VLD2q32wb_fixed:
   3930     case ARM::VLD2d8wb_register:
   3931     case ARM::VLD2d16wb_register:
   3932     case ARM::VLD2d32wb_register:
   3933     case ARM::VLD2q8wb_register:
   3934     case ARM::VLD2q16wb_register:
   3935     case ARM::VLD2q32wb_register:
   3936     case ARM::VLD3d8:
   3937     case ARM::VLD3d16:
   3938     case ARM::VLD3d32:
   3939     case ARM::VLD1d64T:
   3940     case ARM::VLD3d8_UPD:
   3941     case ARM::VLD3d16_UPD:
   3942     case ARM::VLD3d32_UPD:
   3943     case ARM::VLD1d64Twb_fixed:
   3944     case ARM::VLD1d64Twb_register:
   3945     case ARM::VLD3q8_UPD:
   3946     case ARM::VLD3q16_UPD:
   3947     case ARM::VLD3q32_UPD:
   3948     case ARM::VLD4d8:
   3949     case ARM::VLD4d16:
   3950     case ARM::VLD4d32:
   3951     case ARM::VLD1d64Q:
   3952     case ARM::VLD4d8_UPD:
   3953     case ARM::VLD4d16_UPD:
   3954     case ARM::VLD4d32_UPD:
   3955     case ARM::VLD1d64Qwb_fixed:
   3956     case ARM::VLD1d64Qwb_register:
   3957     case ARM::VLD4q8_UPD:
   3958     case ARM::VLD4q16_UPD:
   3959     case ARM::VLD4q32_UPD:
   3960     case ARM::VLD1DUPq8:
   3961     case ARM::VLD1DUPq16:
   3962     case ARM::VLD1DUPq32:
   3963     case ARM::VLD1DUPq8wb_fixed:
   3964     case ARM::VLD1DUPq16wb_fixed:
   3965     case ARM::VLD1DUPq32wb_fixed:
   3966     case ARM::VLD1DUPq8wb_register:
   3967     case ARM::VLD1DUPq16wb_register:
   3968     case ARM::VLD1DUPq32wb_register:
   3969     case ARM::VLD2DUPd8:
   3970     case ARM::VLD2DUPd16:
   3971     case ARM::VLD2DUPd32:
   3972     case ARM::VLD2DUPd8wb_fixed:
   3973     case ARM::VLD2DUPd16wb_fixed:
   3974     case ARM::VLD2DUPd32wb_fixed:
   3975     case ARM::VLD2DUPd8wb_register:
   3976     case ARM::VLD2DUPd16wb_register:
   3977     case ARM::VLD2DUPd32wb_register:
   3978     case ARM::VLD4DUPd8:
   3979     case ARM::VLD4DUPd16:
   3980     case ARM::VLD4DUPd32:
   3981     case ARM::VLD4DUPd8_UPD:
   3982     case ARM::VLD4DUPd16_UPD:
   3983     case ARM::VLD4DUPd32_UPD:
   3984     case ARM::VLD1LNd8:
   3985     case ARM::VLD1LNd16:
   3986     case ARM::VLD1LNd32:
   3987     case ARM::VLD1LNd8_UPD:
   3988     case ARM::VLD1LNd16_UPD:
   3989     case ARM::VLD1LNd32_UPD:
   3990     case ARM::VLD2LNd8:
   3991     case ARM::VLD2LNd16:
   3992     case ARM::VLD2LNd32:
   3993     case ARM::VLD2LNq16:
   3994     case ARM::VLD2LNq32:
   3995     case ARM::VLD2LNd8_UPD:
   3996     case ARM::VLD2LNd16_UPD:
   3997     case ARM::VLD2LNd32_UPD:
   3998     case ARM::VLD2LNq16_UPD:
   3999     case ARM::VLD2LNq32_UPD:
   4000     case ARM::VLD4LNd8:
   4001     case ARM::VLD4LNd16:
   4002     case ARM::VLD4LNd32:
   4003     case ARM::VLD4LNq16:
   4004     case ARM::VLD4LNq32:
   4005     case ARM::VLD4LNd8_UPD:
   4006     case ARM::VLD4LNd16_UPD:
   4007     case ARM::VLD4LNd32_UPD:
   4008     case ARM::VLD4LNq16_UPD:
   4009     case ARM::VLD4LNq32_UPD:
   4010       // If the address is not 64-bit aligned, the latencies of these
   4011       // instructions increases by one.
   4012       ++Adjust;
   4013       break;
   4014     }
   4015   }
   4016   return Adjust;
   4017 }
   4018 
   4019 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   4020                                         const MachineInstr &DefMI,
   4021                                         unsigned DefIdx,
   4022                                         const MachineInstr &UseMI,
   4023                                         unsigned UseIdx) const {
   4024   // No operand latency. The caller may fall back to getInstrLatency.
   4025   if (!ItinData || ItinData->isEmpty())
   4026     return -1;
   4027 
   4028   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
   4029   unsigned Reg = DefMO.getReg();
   4030 
   4031   const MachineInstr *ResolvedDefMI = &DefMI;
   4032   unsigned DefAdj = 0;
   4033   if (DefMI.isBundle())
   4034     ResolvedDefMI =
   4035         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
   4036   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
   4037       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
   4038     return 1;
   4039   }
   4040 
   4041   const MachineInstr *ResolvedUseMI = &UseMI;
   4042   unsigned UseAdj = 0;
   4043   if (UseMI.isBundle()) {
   4044     ResolvedUseMI =
   4045         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
   4046     if (!ResolvedUseMI)
   4047       return -1;
   4048   }
   4049 
   4050   return getOperandLatencyImpl(
   4051       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
   4052       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
   4053 }
   4054 
   4055 int ARMBaseInstrInfo::getOperandLatencyImpl(
   4056     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
   4057     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
   4058     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
   4059     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
   4060   if (Reg == ARM::CPSR) {
   4061     if (DefMI.getOpcode() == ARM::FMSTAT) {
   4062       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
   4063       return Subtarget.isLikeA9() ? 1 : 20;
   4064     }
   4065 
   4066     // CPSR set and branch can be paired in the same cycle.
   4067     if (UseMI.isBranch())
   4068       return 0;
   4069 
   4070     // Otherwise it takes the instruction latency (generally one).
   4071     unsigned Latency = getInstrLatency(ItinData, DefMI);
   4072 
   4073     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
   4074     // its uses. Instructions which are otherwise scheduled between them may
   4075     // incur a code size penalty (not able to use the CPSR setting 16-bit
   4076     // instructions).
   4077     if (Latency > 0 && Subtarget.isThumb2()) {
   4078       const MachineFunction *MF = DefMI.getParent()->getParent();
   4079       // FIXME: Use Function::optForSize().
   4080       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
   4081         --Latency;
   4082     }
   4083     return Latency;
   4084   }
   4085 
   4086   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
   4087     return -1;
   4088 
   4089   unsigned DefAlign = DefMI.hasOneMemOperand()
   4090                           ? (*DefMI.memoperands_begin())->getAlignment()
   4091                           : 0;
   4092   unsigned UseAlign = UseMI.hasOneMemOperand()
   4093                           ? (*UseMI.memoperands_begin())->getAlignment()
   4094                           : 0;
   4095 
   4096   // Get the itinerary's latency if possible, and handle variable_ops.
   4097   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
   4098                                   UseIdx, UseAlign);
   4099   // Unable to find operand latency. The caller may resort to getInstrLatency.
   4100   if (Latency < 0)
   4101     return Latency;
   4102 
   4103   // Adjust for IT block position.
   4104   int Adj = DefAdj + UseAdj;
   4105 
   4106   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   4107   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
   4108   if (Adj >= 0 || (int)Latency > -Adj) {
   4109     return Latency + Adj;
   4110   }
   4111   // Return the itinerary latency, which may be zero but not less than zero.
   4112   return Latency;
   4113 }
   4114 
   4115 int
   4116 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   4117                                     SDNode *DefNode, unsigned DefIdx,
   4118                                     SDNode *UseNode, unsigned UseIdx) const {
   4119   if (!DefNode->isMachineOpcode())
   4120     return 1;
   4121 
   4122   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
   4123 
   4124   if (isZeroCost(DefMCID.Opcode))
   4125     return 0;
   4126 
   4127   if (!ItinData || ItinData->isEmpty())
   4128     return DefMCID.mayLoad() ? 3 : 1;
   4129 
   4130   if (!UseNode->isMachineOpcode()) {
   4131     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
   4132     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
   4133     int Threshold = 1 + Adj;
   4134     return Latency <= Threshold ? 1 : Latency - Adj;
   4135   }
   4136 
   4137   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
   4138   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
   4139   unsigned DefAlign = !DefMN->memoperands_empty()
   4140     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
   4141   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
   4142   unsigned UseAlign = !UseMN->memoperands_empty()
   4143     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
   4144   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
   4145                                   UseMCID, UseIdx, UseAlign);
   4146 
   4147   if (Latency > 1 &&
   4148       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
   4149        Subtarget.isCortexA7())) {
   4150     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   4151     // variants are one cycle cheaper.
   4152     switch (DefMCID.getOpcode()) {
   4153     default: break;
   4154     case ARM::LDRrs:
   4155     case ARM::LDRBrs: {
   4156       unsigned ShOpVal =
   4157         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   4158       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   4159       if (ShImm == 0 ||
   4160           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   4161         --Latency;
   4162       break;
   4163     }
   4164     case ARM::t2LDRs:
   4165     case ARM::t2LDRBs:
   4166     case ARM::t2LDRHs:
   4167     case ARM::t2LDRSHs: {
   4168       // Thumb2 mode: lsl only.
   4169       unsigned ShAmt =
   4170         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   4171       if (ShAmt == 0 || ShAmt == 2)
   4172         --Latency;
   4173       break;
   4174     }
   4175     }
   4176   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
   4177     // FIXME: Properly handle all of the latency adjustments for address
   4178     // writeback.
   4179     switch (DefMCID.getOpcode()) {
   4180     default: break;
   4181     case ARM::LDRrs:
   4182     case ARM::LDRBrs: {
   4183       unsigned ShOpVal =
   4184         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   4185       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   4186       if (ShImm == 0 ||
   4187           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   4188            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   4189         Latency -= 2;
   4190       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
   4191         --Latency;
   4192       break;
   4193     }
   4194     case ARM::t2LDRs:
   4195     case ARM::t2LDRBs:
   4196     case ARM::t2LDRHs:
   4197     case ARM::t2LDRSHs:
   4198       // Thumb2 mode: lsl 0-3 only.
   4199       Latency -= 2;
   4200       break;
   4201     }
   4202   }
   4203 
   4204   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
   4205     switch (DefMCID.getOpcode()) {
   4206     default: break;
   4207     case ARM::VLD1q8:
   4208     case ARM::VLD1q16:
   4209     case ARM::VLD1q32:
   4210     case ARM::VLD1q64:
   4211     case ARM::VLD1q8wb_register:
   4212     case ARM::VLD1q16wb_register:
   4213     case ARM::VLD1q32wb_register:
   4214     case ARM::VLD1q64wb_register:
   4215     case ARM::VLD1q8wb_fixed:
   4216     case ARM::VLD1q16wb_fixed:
   4217     case ARM::VLD1q32wb_fixed:
   4218     case ARM::VLD1q64wb_fixed:
   4219     case ARM::VLD2d8:
   4220     case ARM::VLD2d16:
   4221     case ARM::VLD2d32:
   4222     case ARM::VLD2q8Pseudo:
   4223     case ARM::VLD2q16Pseudo:
   4224     case ARM::VLD2q32Pseudo:
   4225     case ARM::VLD2d8wb_fixed:
   4226     case ARM::VLD2d16wb_fixed:
   4227     case ARM::VLD2d32wb_fixed:
   4228     case ARM::VLD2q8PseudoWB_fixed:
   4229     case ARM::VLD2q16PseudoWB_fixed:
   4230     case ARM::VLD2q32PseudoWB_fixed:
   4231     case ARM::VLD2d8wb_register:
   4232     case ARM::VLD2d16wb_register:
   4233     case ARM::VLD2d32wb_register:
   4234     case ARM::VLD2q8PseudoWB_register:
   4235     case ARM::VLD2q16PseudoWB_register:
   4236     case ARM::VLD2q32PseudoWB_register:
   4237     case ARM::VLD3d8Pseudo:
   4238     case ARM::VLD3d16Pseudo:
   4239     case ARM::VLD3d32Pseudo:
   4240     case ARM::VLD1d8TPseudo:
   4241     case ARM::VLD1d16TPseudo:
   4242     case ARM::VLD1d32TPseudo:
   4243     case ARM::VLD1d64TPseudo:
   4244     case ARM::VLD1d64TPseudoWB_fixed:
   4245     case ARM::VLD1d64TPseudoWB_register:
   4246     case ARM::VLD3d8Pseudo_UPD:
   4247     case ARM::VLD3d16Pseudo_UPD:
   4248     case ARM::VLD3d32Pseudo_UPD:
   4249     case ARM::VLD3q8Pseudo_UPD:
   4250     case ARM::VLD3q16Pseudo_UPD:
   4251     case ARM::VLD3q32Pseudo_UPD:
   4252     case ARM::VLD3q8oddPseudo:
   4253     case ARM::VLD3q16oddPseudo:
   4254     case ARM::VLD3q32oddPseudo:
   4255     case ARM::VLD3q8oddPseudo_UPD:
   4256     case ARM::VLD3q16oddPseudo_UPD:
   4257     case ARM::VLD3q32oddPseudo_UPD:
   4258     case ARM::VLD4d8Pseudo:
   4259     case ARM::VLD4d16Pseudo:
   4260     case ARM::VLD4d32Pseudo:
   4261     case ARM::VLD1d8QPseudo:
   4262     case ARM::VLD1d16QPseudo:
   4263     case ARM::VLD1d32QPseudo:
   4264     case ARM::VLD1d64QPseudo:
   4265     case ARM::VLD1d64QPseudoWB_fixed:
   4266     case ARM::VLD1d64QPseudoWB_register:
   4267     case ARM::VLD1q8HighQPseudo:
   4268     case ARM::VLD1q8LowQPseudo_UPD:
   4269     case ARM::VLD1q8HighTPseudo:
   4270     case ARM::VLD1q8LowTPseudo_UPD:
   4271     case ARM::VLD1q16HighQPseudo:
   4272     case ARM::VLD1q16LowQPseudo_UPD:
   4273     case ARM::VLD1q16HighTPseudo:
   4274     case ARM::VLD1q16LowTPseudo_UPD:
   4275     case ARM::VLD1q32HighQPseudo:
   4276     case ARM::VLD1q32LowQPseudo_UPD:
   4277     case ARM::VLD1q32HighTPseudo:
   4278     case ARM::VLD1q32LowTPseudo_UPD:
   4279     case ARM::VLD1q64HighQPseudo:
   4280     case ARM::VLD1q64LowQPseudo_UPD:
   4281     case ARM::VLD1q64HighTPseudo:
   4282     case ARM::VLD1q64LowTPseudo_UPD:
   4283     case ARM::VLD4d8Pseudo_UPD:
   4284     case ARM::VLD4d16Pseudo_UPD:
   4285     case ARM::VLD4d32Pseudo_UPD:
   4286     case ARM::VLD4q8Pseudo_UPD:
   4287     case ARM::VLD4q16Pseudo_UPD:
   4288     case ARM::VLD4q32Pseudo_UPD:
   4289     case ARM::VLD4q8oddPseudo:
   4290     case ARM::VLD4q16oddPseudo:
   4291     case ARM::VLD4q32oddPseudo:
   4292     case ARM::VLD4q8oddPseudo_UPD:
   4293     case ARM::VLD4q16oddPseudo_UPD:
   4294     case ARM::VLD4q32oddPseudo_UPD:
   4295     case ARM::VLD1DUPq8:
   4296     case ARM::VLD1DUPq16:
   4297     case ARM::VLD1DUPq32:
   4298     case ARM::VLD1DUPq8wb_fixed:
   4299     case ARM::VLD1DUPq16wb_fixed:
   4300     case ARM::VLD1DUPq32wb_fixed:
   4301     case ARM::VLD1DUPq8wb_register:
   4302     case ARM::VLD1DUPq16wb_register:
   4303     case ARM::VLD1DUPq32wb_register:
   4304     case ARM::VLD2DUPd8:
   4305     case ARM::VLD2DUPd16:
   4306     case ARM::VLD2DUPd32:
   4307     case ARM::VLD2DUPd8wb_fixed:
   4308     case ARM::VLD2DUPd16wb_fixed:
   4309     case ARM::VLD2DUPd32wb_fixed:
   4310     case ARM::VLD2DUPd8wb_register:
   4311     case ARM::VLD2DUPd16wb_register:
   4312     case ARM::VLD2DUPd32wb_register:
   4313     case ARM::VLD2DUPq8EvenPseudo:
   4314     case ARM::VLD2DUPq8OddPseudo:
   4315     case ARM::VLD2DUPq16EvenPseudo:
   4316     case ARM::VLD2DUPq16OddPseudo:
   4317     case ARM::VLD2DUPq32EvenPseudo:
   4318     case ARM::VLD2DUPq32OddPseudo:
   4319     case ARM::VLD3DUPq8EvenPseudo:
   4320     case ARM::VLD3DUPq8OddPseudo:
   4321     case ARM::VLD3DUPq16EvenPseudo:
   4322     case ARM::VLD3DUPq16OddPseudo:
   4323     case ARM::VLD3DUPq32EvenPseudo:
   4324     case ARM::VLD3DUPq32OddPseudo:
   4325     case ARM::VLD4DUPd8Pseudo:
   4326     case ARM::VLD4DUPd16Pseudo:
   4327     case ARM::VLD4DUPd32Pseudo:
   4328     case ARM::VLD4DUPd8Pseudo_UPD:
   4329     case ARM::VLD4DUPd16Pseudo_UPD:
   4330     case ARM::VLD4DUPd32Pseudo_UPD:
   4331     case ARM::VLD4DUPq8EvenPseudo:
   4332     case ARM::VLD4DUPq8OddPseudo:
   4333     case ARM::VLD4DUPq16EvenPseudo:
   4334     case ARM::VLD4DUPq16OddPseudo:
   4335     case ARM::VLD4DUPq32EvenPseudo:
   4336     case ARM::VLD4DUPq32OddPseudo:
   4337     case ARM::VLD1LNq8Pseudo:
   4338     case ARM::VLD1LNq16Pseudo:
   4339     case ARM::VLD1LNq32Pseudo:
   4340     case ARM::VLD1LNq8Pseudo_UPD:
   4341     case ARM::VLD1LNq16Pseudo_UPD:
   4342     case ARM::VLD1LNq32Pseudo_UPD:
   4343     case ARM::VLD2LNd8Pseudo:
   4344     case ARM::VLD2LNd16Pseudo:
   4345     case ARM::VLD2LNd32Pseudo:
   4346     case ARM::VLD2LNq16Pseudo:
   4347     case ARM::VLD2LNq32Pseudo:
   4348     case ARM::VLD2LNd8Pseudo_UPD:
   4349     case ARM::VLD2LNd16Pseudo_UPD:
   4350     case ARM::VLD2LNd32Pseudo_UPD:
   4351     case ARM::VLD2LNq16Pseudo_UPD:
   4352     case ARM::VLD2LNq32Pseudo_UPD:
   4353     case ARM::VLD4LNd8Pseudo:
   4354     case ARM::VLD4LNd16Pseudo:
   4355     case ARM::VLD4LNd32Pseudo:
   4356     case ARM::VLD4LNq16Pseudo:
   4357     case ARM::VLD4LNq32Pseudo:
   4358     case ARM::VLD4LNd8Pseudo_UPD:
   4359     case ARM::VLD4LNd16Pseudo_UPD:
   4360     case ARM::VLD4LNd32Pseudo_UPD:
   4361     case ARM::VLD4LNq16Pseudo_UPD:
   4362     case ARM::VLD4LNq32Pseudo_UPD:
   4363       // If the address is not 64-bit aligned, the latencies of these
   4364       // instructions increases by one.
   4365       ++Latency;
   4366       break;
   4367     }
   4368 
   4369   return Latency;
   4370 }
   4371 
   4372 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
   4373   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
   4374       MI.isImplicitDef())
   4375     return 0;
   4376 
   4377   if (MI.isBundle())
   4378     return 0;
   4379 
   4380   const MCInstrDesc &MCID = MI.getDesc();
   4381 
   4382   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
   4383                         !Subtarget.cheapPredicableCPSRDef())) {
   4384     // When predicated, CPSR is an additional source operand for CPSR updating
   4385     // instructions, this apparently increases their latencies.
   4386     return 1;
   4387   }
   4388   return 0;
   4389 }
   4390 
   4391 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   4392                                            const MachineInstr &MI,
   4393                                            unsigned *PredCost) const {
   4394   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
   4395       MI.isImplicitDef())
   4396     return 1;
   4397 
   4398   // An instruction scheduler typically runs on unbundled instructions, however
   4399   // other passes may query the latency of a bundled instruction.
   4400   if (MI.isBundle()) {
   4401     unsigned Latency = 0;
   4402     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
   4403     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
   4404     while (++I != E && I->isInsideBundle()) {
   4405       if (I->getOpcode() != ARM::t2IT)
   4406         Latency += getInstrLatency(ItinData, *I, PredCost);
   4407     }
   4408     return Latency;
   4409   }
   4410 
   4411   const MCInstrDesc &MCID = MI.getDesc();
   4412   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
   4413                                      !Subtarget.cheapPredicableCPSRDef()))) {
   4414     // When predicated, CPSR is an additional source operand for CPSR updating
   4415     // instructions, this apparently increases their latencies.
   4416     *PredCost = 1;
   4417   }
   4418   // Be sure to call getStageLatency for an empty itinerary in case it has a
   4419   // valid MinLatency property.
   4420   if (!ItinData)
   4421     return MI.mayLoad() ? 3 : 1;
   4422 
   4423   unsigned Class = MCID.getSchedClass();
   4424 
   4425   // For instructions with variable uops, use uops as latency.
   4426   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
   4427     return getNumMicroOps(ItinData, MI);
   4428 
   4429   // For the common case, fall back on the itinerary's latency.
   4430   unsigned Latency = ItinData->getStageLatency(Class);
   4431 
   4432   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   4433   unsigned DefAlign =
   4434       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
   4435   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
   4436   if (Adj >= 0 || (int)Latency > -Adj) {
   4437     return Latency + Adj;
   4438   }
   4439   return Latency;
   4440 }
   4441 
   4442 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   4443                                       SDNode *Node) const {
   4444   if (!Node->isMachineOpcode())
   4445     return 1;
   4446 
   4447   if (!ItinData || ItinData->isEmpty())
   4448     return 1;
   4449 
   4450   unsigned Opcode = Node->getMachineOpcode();
   4451   switch (Opcode) {
   4452   default:
   4453     return ItinData->getStageLatency(get(Opcode).getSchedClass());
   4454   case ARM::VLDMQIA:
   4455   case ARM::VSTMQIA:
   4456     return 2;
   4457   }
   4458 }
   4459 
   4460 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
   4461                                              const MachineRegisterInfo *MRI,
   4462                                              const MachineInstr &DefMI,
   4463                                              unsigned DefIdx,
   4464                                              const MachineInstr &UseMI,
   4465                                              unsigned UseIdx) const {
   4466   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
   4467   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
   4468   if (Subtarget.nonpipelinedVFP() &&
   4469       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
   4470     return true;
   4471 
   4472   // Hoist VFP / NEON instructions with 4 or higher latency.
   4473   unsigned Latency =
   4474       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
   4475   if (Latency <= 3)
   4476     return false;
   4477   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
   4478          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
   4479 }
   4480 
   4481 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
   4482                                         const MachineInstr &DefMI,
   4483                                         unsigned DefIdx) const {
   4484   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
   4485   if (!ItinData || ItinData->isEmpty())
   4486     return false;
   4487 
   4488   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
   4489   if (DDomain == ARMII::DomainGeneral) {
   4490     unsigned DefClass = DefMI.getDesc().getSchedClass();
   4491     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   4492     return (DefCycle != -1 && DefCycle <= 2);
   4493   }
   4494   return false;
   4495 }
   4496 
   4497 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
   4498                                          StringRef &ErrInfo) const {
   4499   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
   4500     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
   4501     return false;
   4502   }
   4503   return true;
   4504 }
   4505 
   4506 // LoadStackGuard has so far only been implemented for MachO. Different code
   4507 // sequence is needed for other targets.
   4508 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
   4509                                                 unsigned LoadImmOpc,
   4510                                                 unsigned LoadOpc) const {
   4511   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
   4512          "ROPI/RWPI not currently supported with stack guard");
   4513 
   4514   MachineBasicBlock &MBB = *MI->getParent();
   4515   DebugLoc DL = MI->getDebugLoc();
   4516   unsigned Reg = MI->getOperand(0).getReg();
   4517   const GlobalValue *GV =
   4518       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
   4519   MachineInstrBuilder MIB;
   4520 
   4521   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
   4522       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
   4523 
   4524   if (Subtarget.isGVIndirectSymbol(GV)) {
   4525     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
   4526     MIB.addReg(Reg, RegState::Kill).addImm(0);
   4527     auto Flags = MachineMemOperand::MOLoad |
   4528                  MachineMemOperand::MODereferenceable |
   4529                  MachineMemOperand::MOInvariant;
   4530     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
   4531         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
   4532     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
   4533   }
   4534 
   4535   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
   4536   MIB.addReg(Reg, RegState::Kill)
   4537      .addImm(0)
   4538      .setMemRefs(MI->memoperands_begin(), MI->memoperands_end())
   4539      .add(predOps(ARMCC::AL));
   4540 }
   4541 
   4542 bool
   4543 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
   4544                                      unsigned &AddSubOpc,
   4545                                      bool &NegAcc, bool &HasLane) const {
   4546   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
   4547   if (I == MLxEntryMap.end())
   4548     return false;
   4549 
   4550   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
   4551   MulOpc = Entry.MulOpc;
   4552   AddSubOpc = Entry.AddSubOpc;
   4553   NegAcc = Entry.NegAcc;
   4554   HasLane = Entry.HasLane;
   4555   return true;
   4556 }
   4557 
   4558 //===----------------------------------------------------------------------===//
   4559 // Execution domains.
   4560 //===----------------------------------------------------------------------===//
   4561 //
   4562 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
   4563 // and some can go down both.  The vmov instructions go down the VFP pipeline,
   4564 // but they can be changed to vorr equivalents that are executed by the NEON
   4565 // pipeline.
   4566 //
   4567 // We use the following execution domain numbering:
   4568 //
   4569 enum ARMExeDomain {
   4570   ExeGeneric = 0,
   4571   ExeVFP = 1,
   4572   ExeNEON = 2
   4573 };
   4574 
   4575 //
   4576 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
   4577 //
   4578 std::pair<uint16_t, uint16_t>
   4579 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
   4580   // If we don't have access to NEON instructions then we won't be able
   4581   // to swizzle anything to the NEON domain. Check to make sure.
   4582   if (Subtarget.hasNEON()) {
   4583     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
   4584     // if they are not predicated.
   4585     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
   4586       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
   4587 
   4588     // CortexA9 is particularly picky about mixing the two and wants these
   4589     // converted.
   4590     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
   4591         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
   4592          MI.getOpcode() == ARM::VMOVS))
   4593       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
   4594   }
   4595   // No other instructions can be swizzled, so just determine their domain.
   4596   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
   4597 
   4598   if (Domain & ARMII::DomainNEON)
   4599     return std::make_pair(ExeNEON, 0);
   4600 
   4601   // Certain instructions can go either way on Cortex-A8.
   4602   // Treat them as NEON instructions.
   4603   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
   4604     return std::make_pair(ExeNEON, 0);
   4605 
   4606   if (Domain & ARMII::DomainVFP)
   4607     return std::make_pair(ExeVFP, 0);
   4608 
   4609   return std::make_pair(ExeGeneric, 0);
   4610 }
   4611 
   4612 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
   4613                                             unsigned SReg, unsigned &Lane) {
   4614   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
   4615   Lane = 0;
   4616 
   4617   if (DReg != ARM::NoRegister)
   4618    return DReg;
   4619 
   4620   Lane = 1;
   4621   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
   4622 
   4623   assert(DReg && "S-register with no D super-register?");
   4624   return DReg;
   4625 }
   4626 
   4627 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
   4628 /// set ImplicitSReg to a register number that must be marked as implicit-use or
   4629 /// zero if no register needs to be defined as implicit-use.
   4630 ///
   4631 /// If the function cannot determine if an SPR should be marked implicit use or
   4632 /// not, it returns false.
   4633 ///
   4634 /// This function handles cases where an instruction is being modified from taking
   4635 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
   4636 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
   4637 /// lane of the DPR).
   4638 ///
   4639 /// If the other SPR is defined, an implicit-use of it should be added. Else,
   4640 /// (including the case where the DPR itself is defined), it should not.
   4641 ///
   4642 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
   4643                                        MachineInstr &MI, unsigned DReg,
   4644                                        unsigned Lane, unsigned &ImplicitSReg) {
   4645   // If the DPR is defined or used already, the other SPR lane will be chained
   4646   // correctly, so there is nothing to be done.
   4647   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
   4648     ImplicitSReg = 0;
   4649     return true;
   4650   }
   4651 
   4652   // Otherwise we need to go searching to see if the SPR is set explicitly.
   4653   ImplicitSReg = TRI->getSubReg(DReg,
   4654                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
   4655   MachineBasicBlock::LivenessQueryResult LQR =
   4656       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
   4657 
   4658   if (LQR == MachineBasicBlock::LQR_Live)
   4659     return true;
   4660   else if (LQR == MachineBasicBlock::LQR_Unknown)
   4661     return false;
   4662 
   4663   // If the register is known not to be live, there is no need to add an
   4664   // implicit-use.
   4665   ImplicitSReg = 0;
   4666   return true;
   4667 }
   4668 
   4669 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
   4670                                           unsigned Domain) const {
   4671   unsigned DstReg, SrcReg, DReg;
   4672   unsigned Lane;
   4673   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
   4674   const TargetRegisterInfo *TRI = &getRegisterInfo();
   4675   switch (MI.getOpcode()) {
   4676   default:
   4677     llvm_unreachable("cannot handle opcode!");
   4678     break;
   4679   case ARM::VMOVD:
   4680     if (Domain != ExeNEON)
   4681       break;
   4682 
   4683     // Zap the predicate operands.
   4684     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
   4685 
   4686     // Make sure we've got NEON instructions.
   4687     assert(Subtarget.hasNEON() && "VORRd requires NEON");
   4688 
   4689     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
   4690     DstReg = MI.getOperand(0).getReg();
   4691     SrcReg = MI.getOperand(1).getReg();
   4692 
   4693     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4694       MI.RemoveOperand(i - 1);
   4695 
   4696     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
   4697     MI.setDesc(get(ARM::VORRd));
   4698     MIB.addReg(DstReg, RegState::Define)
   4699         .addReg(SrcReg)
   4700         .addReg(SrcReg)
   4701         .add(predOps(ARMCC::AL));
   4702     break;
   4703   case ARM::VMOVRS:
   4704     if (Domain != ExeNEON)
   4705       break;
   4706     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
   4707 
   4708     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
   4709     DstReg = MI.getOperand(0).getReg();
   4710     SrcReg = MI.getOperand(1).getReg();
   4711 
   4712     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4713       MI.RemoveOperand(i - 1);
   4714 
   4715     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
   4716 
   4717     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
   4718     // Note that DSrc has been widened and the other lane may be undef, which
   4719     // contaminates the entire register.
   4720     MI.setDesc(get(ARM::VGETLNi32));
   4721     MIB.addReg(DstReg, RegState::Define)
   4722         .addReg(DReg, RegState::Undef)
   4723         .addImm(Lane)
   4724         .add(predOps(ARMCC::AL));
   4725 
   4726     // The old source should be an implicit use, otherwise we might think it
   4727     // was dead before here.
   4728     MIB.addReg(SrcReg, RegState::Implicit);
   4729     break;
   4730   case ARM::VMOVSR: {
   4731     if (Domain != ExeNEON)
   4732       break;
   4733     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
   4734 
   4735     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
   4736     DstReg = MI.getOperand(0).getReg();
   4737     SrcReg = MI.getOperand(1).getReg();
   4738 
   4739     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
   4740 
   4741     unsigned ImplicitSReg;
   4742     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
   4743       break;
   4744 
   4745     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4746       MI.RemoveOperand(i - 1);
   4747 
   4748     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
   4749     // Again DDst may be undefined at the beginning of this instruction.
   4750     MI.setDesc(get(ARM::VSETLNi32));
   4751     MIB.addReg(DReg, RegState::Define)
   4752         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
   4753         .addReg(SrcReg)
   4754         .addImm(Lane)
   4755         .add(predOps(ARMCC::AL));
   4756 
   4757     // The narrower destination must be marked as set to keep previous chains
   4758     // in place.
   4759     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   4760     if (ImplicitSReg != 0)
   4761       MIB.addReg(ImplicitSReg, RegState::Implicit);
   4762     break;
   4763     }
   4764     case ARM::VMOVS: {
   4765       if (Domain != ExeNEON)
   4766         break;
   4767 
   4768       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
   4769       DstReg = MI.getOperand(0).getReg();
   4770       SrcReg = MI.getOperand(1).getReg();
   4771 
   4772       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
   4773       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
   4774       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
   4775 
   4776       unsigned ImplicitSReg;
   4777       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
   4778         break;
   4779 
   4780       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
   4781         MI.RemoveOperand(i - 1);
   4782 
   4783       if (DSrc == DDst) {
   4784         // Destination can be:
   4785         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
   4786         MI.setDesc(get(ARM::VDUPLN32d));
   4787         MIB.addReg(DDst, RegState::Define)
   4788             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
   4789             .addImm(SrcLane)
   4790             .add(predOps(ARMCC::AL));
   4791 
   4792         // Neither the source or the destination are naturally represented any
   4793         // more, so add them in manually.
   4794         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
   4795         MIB.addReg(SrcReg, RegState::Implicit);
   4796         if (ImplicitSReg != 0)
   4797           MIB.addReg(ImplicitSReg, RegState::Implicit);
   4798         break;
   4799       }
   4800 
   4801       // In general there's no single instruction that can perform an S <-> S
   4802       // move in NEON space, but a pair of VEXT instructions *can* do the
   4803       // job. It turns out that the VEXTs needed will only use DSrc once, with
   4804       // the position based purely on the combination of lane-0 and lane-1
   4805       // involved. For example
   4806       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
   4807       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
   4808       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
   4809       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
   4810       //
   4811       // Pattern of the MachineInstrs is:
   4812       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
   4813       MachineInstrBuilder NewMIB;
   4814       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
   4815                        DDst);
   4816 
   4817       // On the first instruction, both DSrc and DDst may be undef if present.
   4818       // Specifically when the original instruction didn't have them as an
   4819       // <imp-use>.
   4820       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
   4821       bool CurUndef = !MI.readsRegister(CurReg, TRI);
   4822       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
   4823 
   4824       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
   4825       CurUndef = !MI.readsRegister(CurReg, TRI);
   4826       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
   4827             .addImm(1)
   4828             .add(predOps(ARMCC::AL));
   4829 
   4830       if (SrcLane == DstLane)
   4831         NewMIB.addReg(SrcReg, RegState::Implicit);
   4832 
   4833       MI.setDesc(get(ARM::VEXTd32));
   4834       MIB.addReg(DDst, RegState::Define);
   4835 
   4836       // On the second instruction, DDst has definitely been defined above, so
   4837       // it is not undef. DSrc, if present, can be undef as above.
   4838       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
   4839       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
   4840       MIB.addReg(CurReg, getUndefRegState(CurUndef));
   4841 
   4842       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
   4843       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
   4844       MIB.addReg(CurReg, getUndefRegState(CurUndef))
   4845          .addImm(1)
   4846          .add(predOps(ARMCC::AL));
   4847 
   4848       if (SrcLane != DstLane)
   4849         MIB.addReg(SrcReg, RegState::Implicit);
   4850 
   4851       // As before, the original destination is no longer represented, add it
   4852       // implicitly.
   4853       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   4854       if (ImplicitSReg != 0)
   4855         MIB.addReg(ImplicitSReg, RegState::Implicit);
   4856       break;
   4857     }
   4858   }
   4859 }
   4860 
   4861 //===----------------------------------------------------------------------===//
   4862 // Partial register updates
   4863 //===----------------------------------------------------------------------===//
   4864 //
   4865 // Swift renames NEON registers with 64-bit granularity.  That means any
   4866 // instruction writing an S-reg implicitly reads the containing D-reg.  The
   4867 // problem is mostly avoided by translating f32 operations to v2f32 operations
   4868 // on D-registers, but f32 loads are still a problem.
   4869 //
   4870 // These instructions can load an f32 into a NEON register:
   4871 //
   4872 // VLDRS - Only writes S, partial D update.
   4873 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
   4874 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
   4875 //
   4876 // FCONSTD can be used as a dependency-breaking instruction.
   4877 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
   4878     const MachineInstr &MI, unsigned OpNum,
   4879     const TargetRegisterInfo *TRI) const {
   4880   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
   4881   if (!PartialUpdateClearance)
   4882     return 0;
   4883 
   4884   assert(TRI && "Need TRI instance");
   4885 
   4886   const MachineOperand &MO = MI.getOperand(OpNum);
   4887   if (MO.readsReg())
   4888     return 0;
   4889   unsigned Reg = MO.getReg();
   4890   int UseOp = -1;
   4891 
   4892   switch (MI.getOpcode()) {
   4893   // Normal instructions writing only an S-register.
   4894   case ARM::VLDRS:
   4895   case ARM::FCONSTS:
   4896   case ARM::VMOVSR:
   4897   case ARM::VMOVv8i8:
   4898   case ARM::VMOVv4i16:
   4899   case ARM::VMOVv2i32:
   4900   case ARM::VMOVv2f32:
   4901   case ARM::VMOVv1i64:
   4902     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
   4903     break;
   4904 
   4905     // Explicitly reads the dependency.
   4906   case ARM::VLD1LNd32:
   4907     UseOp = 3;
   4908     break;
   4909   default:
   4910     return 0;
   4911   }
   4912 
   4913   // If this instruction actually reads a value from Reg, there is no unwanted
   4914   // dependency.
   4915   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
   4916     return 0;
   4917 
   4918   // We must be able to clobber the whole D-reg.
   4919   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   4920     // Virtual register must be a def undef foo:ssub_0 operand.
   4921     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
   4922       return 0;
   4923   } else if (ARM::SPRRegClass.contains(Reg)) {
   4924     // Physical register: MI must define the full D-reg.
   4925     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
   4926                                              &ARM::DPRRegClass);
   4927     if (!DReg || !MI.definesRegister(DReg, TRI))
   4928       return 0;
   4929   }
   4930 
   4931   // MI has an unwanted D-register dependency.
   4932   // Avoid defs in the previous N instructrions.
   4933   return PartialUpdateClearance;
   4934 }
   4935 
   4936 // Break a partial register dependency after getPartialRegUpdateClearance
   4937 // returned non-zero.
   4938 void ARMBaseInstrInfo::breakPartialRegDependency(
   4939     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
   4940   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
   4941   assert(TRI && "Need TRI instance");
   4942 
   4943   const MachineOperand &MO = MI.getOperand(OpNum);
   4944   unsigned Reg = MO.getReg();
   4945   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
   4946          "Can't break virtual register dependencies.");
   4947   unsigned DReg = Reg;
   4948 
   4949   // If MI defines an S-reg, find the corresponding D super-register.
   4950   if (ARM::SPRRegClass.contains(Reg)) {
   4951     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
   4952     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
   4953   }
   4954 
   4955   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
   4956   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
   4957 
   4958   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
   4959   // the full D-register by loading the same value to both lanes.  The
   4960   // instruction is micro-coded with 2 uops, so don't do this until we can
   4961   // properly schedule micro-coded instructions.  The dispatcher stalls cause
   4962   // too big regressions.
   4963 
   4964   // Insert the dependency-breaking FCONSTD before MI.
   4965   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
   4966   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
   4967       .addImm(96)
   4968       .add(predOps(ARMCC::AL));
   4969   MI.addRegisterKilled(DReg, TRI, true);
   4970 }
   4971 
   4972 bool ARMBaseInstrInfo::hasNOP() const {
   4973   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
   4974 }
   4975 
   4976 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
   4977   if (MI->getNumOperands() < 4)
   4978     return true;
   4979   unsigned ShOpVal = MI->getOperand(3).getImm();
   4980   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
   4981   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
   4982   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
   4983       ((ShImm == 1 || ShImm == 2) &&
   4984        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
   4985     return true;
   4986 
   4987   return false;
   4988 }
   4989 
   4990 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
   4991     const MachineInstr &MI, unsigned DefIdx,
   4992     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
   4993   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
   4994   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
   4995 
   4996   switch (MI.getOpcode()) {
   4997   case ARM::VMOVDRR:
   4998     // dX = VMOVDRR rY, rZ
   4999     // is the same as:
   5000     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
   5001     // Populate the InputRegs accordingly.
   5002     // rY
   5003     const MachineOperand *MOReg = &MI.getOperand(1);
   5004     if (!MOReg->isUndef())
   5005       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
   5006                                               MOReg->getSubReg(), ARM::ssub_0));
   5007     // rZ
   5008     MOReg = &MI.getOperand(2);
   5009     if (!MOReg->isUndef())
   5010       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
   5011                                               MOReg->getSubReg(), ARM::ssub_1));
   5012     return true;
   5013   }
   5014   llvm_unreachable("Target dependent opcode missing");
   5015 }
   5016 
   5017 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
   5018     const MachineInstr &MI, unsigned DefIdx,
   5019     RegSubRegPairAndIdx &InputReg) const {
   5020   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
   5021   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
   5022 
   5023   switch (MI.getOpcode()) {
   5024   case ARM::VMOVRRD:
   5025     // rX, rY = VMOVRRD dZ
   5026     // is the same as:
   5027     // rX = EXTRACT_SUBREG dZ, ssub_0
   5028     // rY = EXTRACT_SUBREG dZ, ssub_1
   5029     const MachineOperand &MOReg = MI.getOperand(2);
   5030     if (MOReg.isUndef())
   5031       return false;
   5032     InputReg.Reg = MOReg.getReg();
   5033     InputReg.SubReg = MOReg.getSubReg();
   5034     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
   5035     return true;
   5036   }
   5037   llvm_unreachable("Target dependent opcode missing");
   5038 }
   5039 
   5040 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
   5041     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
   5042     RegSubRegPairAndIdx &InsertedReg) const {
   5043   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
   5044   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
   5045 
   5046   switch (MI.getOpcode()) {
   5047   case ARM::VSETLNi32:
   5048     // dX = VSETLNi32 dY, rZ, imm
   5049     const MachineOperand &MOBaseReg = MI.getOperand(1);
   5050     const MachineOperand &MOInsertedReg = MI.getOperand(2);
   5051     if (MOInsertedReg.isUndef())
   5052       return false;
   5053     const MachineOperand &MOIndex = MI.getOperand(3);
   5054     BaseReg.Reg = MOBaseReg.getReg();
   5055     BaseReg.SubReg = MOBaseReg.getSubReg();
   5056 
   5057     InsertedReg.Reg = MOInsertedReg.getReg();
   5058     InsertedReg.SubReg = MOInsertedReg.getSubReg();
   5059     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
   5060     return true;
   5061   }
   5062   llvm_unreachable("Target dependent opcode missing");
   5063 }
   5064