Home | History | Annotate | Download | only in CodeGen
      1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes an abstract interface used to get information about a
     11 // target machines register file.  This information is used for a variety of
     12 // purposed, especially register allocation.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
     17 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringRef.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/CodeGen/MachineBasicBlock.h"
     24 #include "llvm/IR/CallingConv.h"
     25 #include "llvm/MC/LaneBitmask.h"
     26 #include "llvm/MC/MCRegisterInfo.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/MachineValueType.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/Printable.h"
     31 #include <cassert>
     32 #include <cstdint>
     33 #include <functional>
     34 
     35 namespace llvm {
     36 
     37 class BitVector;
     38 class LiveRegMatrix;
     39 class MachineFunction;
     40 class MachineInstr;
     41 class RegScavenger;
     42 class VirtRegMap;
     43 class LiveIntervals;
     44 
     45 class TargetRegisterClass {
     46 public:
     47   using iterator = const MCPhysReg *;
     48   using const_iterator = const MCPhysReg *;
     49   using sc_iterator = const TargetRegisterClass* const *;
     50 
     51   // Instance variables filled by tablegen, do not use!
     52   const MCRegisterClass *MC;
     53   const uint32_t *SubClassMask;
     54   const uint16_t *SuperRegIndices;
     55   const LaneBitmask LaneMask;
     56   /// Classes with a higher priority value are assigned first by register
     57   /// allocators using a greedy heuristic. The value is in the range [0,63].
     58   const uint8_t AllocationPriority;
     59   /// Whether the class supports two (or more) disjunct subregister indices.
     60   const bool HasDisjunctSubRegs;
     61   /// Whether a combination of subregisters can cover every register in the
     62   /// class. See also the CoveredBySubRegs description in Target.td.
     63   const bool CoveredBySubRegs;
     64   const sc_iterator SuperClasses;
     65   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
     66 
     67   /// Return the register class ID number.
     68   unsigned getID() const { return MC->getID(); }
     69 
     70   /// begin/end - Return all of the registers in this class.
     71   ///
     72   iterator       begin() const { return MC->begin(); }
     73   iterator         end() const { return MC->end(); }
     74 
     75   /// Return the number of registers in this class.
     76   unsigned getNumRegs() const { return MC->getNumRegs(); }
     77 
     78   iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
     79   getRegisters() const {
     80     return make_range(MC->begin(), MC->end());
     81   }
     82 
     83   /// Return the specified register in the class.
     84   unsigned getRegister(unsigned i) const {
     85     return MC->getRegister(i);
     86   }
     87 
     88   /// Return true if the specified register is included in this register class.
     89   /// This does not include virtual registers.
     90   bool contains(unsigned Reg) const {
     91     return MC->contains(Reg);
     92   }
     93 
     94   /// Return true if both registers are in this class.
     95   bool contains(unsigned Reg1, unsigned Reg2) const {
     96     return MC->contains(Reg1, Reg2);
     97   }
     98 
     99   /// Return the cost of copying a value between two registers in this class.
    100   /// A negative number means the register class is very expensive
    101   /// to copy e.g. status flag register classes.
    102   int getCopyCost() const { return MC->getCopyCost(); }
    103 
    104   /// Return true if this register class may be used to create virtual
    105   /// registers.
    106   bool isAllocatable() const { return MC->isAllocatable(); }
    107 
    108   /// Return true if the specified TargetRegisterClass
    109   /// is a proper sub-class of this TargetRegisterClass.
    110   bool hasSubClass(const TargetRegisterClass *RC) const {
    111     return RC != this && hasSubClassEq(RC);
    112   }
    113 
    114   /// Returns true if RC is a sub-class of or equal to this class.
    115   bool hasSubClassEq(const TargetRegisterClass *RC) const {
    116     unsigned ID = RC->getID();
    117     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
    118   }
    119 
    120   /// Return true if the specified TargetRegisterClass is a
    121   /// proper super-class of this TargetRegisterClass.
    122   bool hasSuperClass(const TargetRegisterClass *RC) const {
    123     return RC->hasSubClass(this);
    124   }
    125 
    126   /// Returns true if RC is a super-class of or equal to this class.
    127   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
    128     return RC->hasSubClassEq(this);
    129   }
    130 
    131   /// Returns a bit vector of subclasses, including this one.
    132   /// The vector is indexed by class IDs.
    133   ///
    134   /// To use it, consider the returned array as a chunk of memory that
    135   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
    136   /// contains a bitset of the ID of the subclasses in big-endian style.
    137 
    138   /// I.e., the representation of the memory from left to right at the
    139   /// bit level looks like:
    140   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
    141   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
    142   /// Where the number represents the class ID and XXX bits that
    143   /// should be ignored.
    144   ///
    145   /// See the implementation of hasSubClassEq for an example of how it
    146   /// can be used.
    147   const uint32_t *getSubClassMask() const {
    148     return SubClassMask;
    149   }
    150 
    151   /// Returns a 0-terminated list of sub-register indices that project some
    152   /// super-register class into this register class. The list has an entry for
    153   /// each Idx such that:
    154   ///
    155   ///   There exists SuperRC where:
    156   ///     For all Reg in SuperRC:
    157   ///       this->contains(Reg:Idx)
    158   const uint16_t *getSuperRegIndices() const {
    159     return SuperRegIndices;
    160   }
    161 
    162   /// Returns a NULL-terminated list of super-classes.  The
    163   /// classes are ordered by ID which is also a topological ordering from large
    164   /// to small classes.  The list does NOT include the current class.
    165   sc_iterator getSuperClasses() const {
    166     return SuperClasses;
    167   }
    168 
    169   /// Return true if this TargetRegisterClass is a subset
    170   /// class of at least one other TargetRegisterClass.
    171   bool isASubClass() const {
    172     return SuperClasses[0] != nullptr;
    173   }
    174 
    175   /// Returns the preferred order for allocating registers from this register
    176   /// class in MF. The raw order comes directly from the .td file and may
    177   /// include reserved registers that are not allocatable.
    178   /// Register allocators should also make sure to allocate
    179   /// callee-saved registers only after all the volatiles are used. The
    180   /// RegisterClassInfo class provides filtered allocation orders with
    181   /// callee-saved registers moved to the end.
    182   ///
    183   /// The MachineFunction argument can be used to tune the allocatable
    184   /// registers based on the characteristics of the function, subtarget, or
    185   /// other criteria.
    186   ///
    187   /// By default, this method returns all registers in the class.
    188   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
    189     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
    190   }
    191 
    192   /// Returns the combination of all lane masks of register in this class.
    193   /// The lane masks of the registers are the combination of all lane masks
    194   /// of their subregisters. Returns 1 if there are no subregisters.
    195   LaneBitmask getLaneMask() const {
    196     return LaneMask;
    197   }
    198 };
    199 
    200 /// Extra information, not in MCRegisterDesc, about registers.
    201 /// These are used by codegen, not by MC.
    202 struct TargetRegisterInfoDesc {
    203   unsigned CostPerUse;          // Extra cost of instructions using register.
    204   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
    205 };
    206 
    207 /// Each TargetRegisterClass has a per register weight, and weight
    208 /// limit which must be less than the limits of its pressure sets.
    209 struct RegClassWeight {
    210   unsigned RegWeight;
    211   unsigned WeightLimit;
    212 };
    213 
    214 /// TargetRegisterInfo base class - We assume that the target defines a static
    215 /// array of TargetRegisterDesc objects that represent all of the machine
    216 /// registers that the target has.  As such, we simply have to track a pointer
    217 /// to this array so that we can turn register number into a register
    218 /// descriptor.
    219 ///
    220 class TargetRegisterInfo : public MCRegisterInfo {
    221 public:
    222   using regclass_iterator = const TargetRegisterClass * const *;
    223   using vt_iterator = const MVT::SimpleValueType *;
    224   struct RegClassInfo {
    225     unsigned RegSize, SpillSize, SpillAlignment;
    226     vt_iterator VTList;
    227   };
    228 private:
    229   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
    230   const char *const *SubRegIndexNames;        // Names of subreg indexes.
    231   // Pointer to array of lane masks, one per sub-reg index.
    232   const LaneBitmask *SubRegIndexLaneMasks;
    233 
    234   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
    235   LaneBitmask CoveringLanes;
    236   const RegClassInfo *const RCInfos;
    237   unsigned HwMode;
    238 
    239 protected:
    240   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
    241                      regclass_iterator RCB,
    242                      regclass_iterator RCE,
    243                      const char *const *SRINames,
    244                      const LaneBitmask *SRILaneMasks,
    245                      LaneBitmask CoveringLanes,
    246                      const RegClassInfo *const RCIs,
    247                      unsigned Mode = 0);
    248   virtual ~TargetRegisterInfo();
    249 
    250 public:
    251   // Register numbers can represent physical registers, virtual registers, and
    252   // sometimes stack slots. The unsigned values are divided into these ranges:
    253   //
    254   //   0           Not a register, can be used as a sentinel.
    255   //   [1;2^30)    Physical registers assigned by TableGen.
    256   //   [2^30;2^31) Stack slots. (Rarely used.)
    257   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
    258   //
    259   // Further sentinels can be allocated from the small negative integers.
    260   // DenseMapInfo<unsigned> uses -1u and -2u.
    261 
    262   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
    263   /// frame index in a variable that normally holds a register. isStackSlot()
    264   /// returns true if Reg is in the range used for stack slots.
    265   ///
    266   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
    267   /// slots, so if a variable may contains a stack slot, always check
    268   /// isStackSlot() first.
    269   ///
    270   static bool isStackSlot(unsigned Reg) {
    271     return int(Reg) >= (1 << 30);
    272   }
    273 
    274   /// Compute the frame index from a register value representing a stack slot.
    275   static int stackSlot2Index(unsigned Reg) {
    276     assert(isStackSlot(Reg) && "Not a stack slot");
    277     return int(Reg - (1u << 30));
    278   }
    279 
    280   /// Convert a non-negative frame index to a stack slot register value.
    281   static unsigned index2StackSlot(int FI) {
    282     assert(FI >= 0 && "Cannot hold a negative frame index.");
    283     return FI + (1u << 30);
    284   }
    285 
    286   /// Return true if the specified register number is in
    287   /// the physical register namespace.
    288   static bool isPhysicalRegister(unsigned Reg) {
    289     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    290     return int(Reg) > 0;
    291   }
    292 
    293   /// Return true if the specified register number is in
    294   /// the virtual register namespace.
    295   static bool isVirtualRegister(unsigned Reg) {
    296     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    297     return int(Reg) < 0;
    298   }
    299 
    300   /// Convert a virtual register number to a 0-based index.
    301   /// The first virtual register in a function will get the index 0.
    302   static unsigned virtReg2Index(unsigned Reg) {
    303     assert(isVirtualRegister(Reg) && "Not a virtual register");
    304     return Reg & ~(1u << 31);
    305   }
    306 
    307   /// Convert a 0-based index to a virtual register number.
    308   /// This is the inverse operation of VirtReg2IndexFunctor below.
    309   static unsigned index2VirtReg(unsigned Index) {
    310     return Index | (1u << 31);
    311   }
    312 
    313   /// Return the size in bits of a register from class RC.
    314   unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
    315     return getRegClassInfo(RC).RegSize;
    316   }
    317 
    318   /// Return the size in bytes of the stack slot allocated to hold a spilled
    319   /// copy of a register from class RC.
    320   unsigned getSpillSize(const TargetRegisterClass &RC) const {
    321     return getRegClassInfo(RC).SpillSize / 8;
    322   }
    323 
    324   /// Return the minimum required alignment in bytes for a spill slot for
    325   /// a register of this class.
    326   unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
    327     return getRegClassInfo(RC).SpillAlignment / 8;
    328   }
    329 
    330   /// Return true if the given TargetRegisterClass has the ValueType T.
    331   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
    332     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
    333       if (MVT(*I) == T)
    334         return true;
    335     return false;
    336   }
    337 
    338   /// Loop over all of the value types that can be represented by values
    339   /// in the given register class.
    340   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
    341     return getRegClassInfo(RC).VTList;
    342   }
    343 
    344   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
    345     vt_iterator I = legalclasstypes_begin(RC);
    346     while (*I != MVT::Other)
    347       ++I;
    348     return I;
    349   }
    350 
    351   /// Returns the Register Class of a physical register of the given type,
    352   /// picking the most sub register class of the right type that contains this
    353   /// physreg.
    354   const TargetRegisterClass *
    355     getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
    356 
    357   /// Return the maximal subclass of the given register class that is
    358   /// allocatable or NULL.
    359   const TargetRegisterClass *
    360     getAllocatableClass(const TargetRegisterClass *RC) const;
    361 
    362   /// Returns a bitset indexed by register number indicating if a register is
    363   /// allocatable or not. If a register class is specified, returns the subset
    364   /// for the class.
    365   BitVector getAllocatableSet(const MachineFunction &MF,
    366                               const TargetRegisterClass *RC = nullptr) const;
    367 
    368   /// Return the additional cost of using this register instead
    369   /// of other registers in its class.
    370   unsigned getCostPerUse(unsigned RegNo) const {
    371     return InfoDesc[RegNo].CostPerUse;
    372   }
    373 
    374   /// Return true if the register is in the allocation of any register class.
    375   bool isInAllocatableClass(unsigned RegNo) const {
    376     return InfoDesc[RegNo].inAllocatableClass;
    377   }
    378 
    379   /// Return the human-readable symbolic target-specific
    380   /// name for the specified SubRegIndex.
    381   const char *getSubRegIndexName(unsigned SubIdx) const {
    382     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
    383            "This is not a subregister index");
    384     return SubRegIndexNames[SubIdx-1];
    385   }
    386 
    387   /// Return a bitmask representing the parts of a register that are covered by
    388   /// SubIdx \see LaneBitmask.
    389   ///
    390   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
    391   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
    392     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
    393     return SubRegIndexLaneMasks[SubIdx];
    394   }
    395 
    396   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
    397   /// used to determine if sub-registers overlap - they can't be used to
    398   /// determine if a set of sub-registers completely cover another
    399   /// sub-register.
    400   ///
    401   /// The X86 general purpose registers have two lanes corresponding to the
    402   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
    403   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
    404   /// sub_32bit sub-register.
    405   ///
    406   /// On the other hand, the ARM NEON lanes fully cover their registers: The
    407   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
    408   /// This is related to the CoveredBySubRegs property on register definitions.
    409   ///
    410   /// This function returns a bit mask of lanes that completely cover their
    411   /// sub-registers. More precisely, given:
    412   ///
    413   ///   Covering = getCoveringLanes();
    414   ///   MaskA = getSubRegIndexLaneMask(SubA);
    415   ///   MaskB = getSubRegIndexLaneMask(SubB);
    416   ///
    417   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
    418   /// SubB.
    419   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
    420 
    421   /// Returns true if the two registers are equal or alias each other.
    422   /// The registers may be virtual registers.
    423   bool regsOverlap(unsigned regA, unsigned regB) const {
    424     if (regA == regB) return true;
    425     if (isVirtualRegister(regA) || isVirtualRegister(regB))
    426       return false;
    427 
    428     // Regunits are numerically ordered. Find a common unit.
    429     MCRegUnitIterator RUA(regA, this);
    430     MCRegUnitIterator RUB(regB, this);
    431     do {
    432       if (*RUA == *RUB) return true;
    433       if (*RUA < *RUB) ++RUA;
    434       else             ++RUB;
    435     } while (RUA.isValid() && RUB.isValid());
    436     return false;
    437   }
    438 
    439   /// Returns true if Reg contains RegUnit.
    440   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
    441     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
    442       if (*Units == RegUnit)
    443         return true;
    444     return false;
    445   }
    446 
    447   /// Returns the original SrcReg unless it is the target of a copy-like
    448   /// operation, in which case we chain backwards through all such operations
    449   /// to the ultimate source register.  If a physical register is encountered,
    450   /// we stop the search.
    451   virtual unsigned lookThruCopyLike(unsigned SrcReg,
    452                                     const MachineRegisterInfo *MRI) const;
    453 
    454   /// Return a null-terminated list of all of the callee-saved registers on
    455   /// this target. The register should be in the order of desired callee-save
    456   /// stack frame offset. The first register is closest to the incoming stack
    457   /// pointer if stack grows down, and vice versa.
    458   /// Notice: This function does not take into account disabled CSRs.
    459   ///         In most cases you will want to use instead the function
    460   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
    461   virtual const MCPhysReg*
    462   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
    463 
    464   /// Return a mask of call-preserved registers for the given calling convention
    465   /// on the current function. The mask should include all call-preserved
    466   /// aliases. This is used by the register allocator to determine which
    467   /// registers can be live across a call.
    468   ///
    469   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
    470   /// A set bit indicates that all bits of the corresponding register are
    471   /// preserved across the function call.  The bit mask is expected to be
    472   /// sub-register complete, i.e. if A is preserved, so are all its
    473   /// sub-registers.
    474   ///
    475   /// Bits are numbered from the LSB, so the bit for physical register Reg can
    476   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
    477   ///
    478   /// A NULL pointer means that no register mask will be used, and call
    479   /// instructions should use implicit-def operands to indicate call clobbered
    480   /// registers.
    481   ///
    482   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
    483                                                CallingConv::ID) const {
    484     // The default mask clobbers everything.  All targets should override.
    485     return nullptr;
    486   }
    487 
    488   /// Return a register mask that clobbers everything.
    489   virtual const uint32_t *getNoPreservedMask() const {
    490     llvm_unreachable("target does not provide no preserved mask");
    491   }
    492 
    493   /// Return true if all bits that are set in mask \p mask0 are also set in
    494   /// \p mask1.
    495   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
    496 
    497   /// Return all the call-preserved register masks defined for this target.
    498   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
    499   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
    500 
    501   /// Returns a bitset indexed by physical register number indicating if a
    502   /// register is a special register that has particular uses and should be
    503   /// considered unavailable at all times, e.g. stack pointer, return address.
    504   /// A reserved register:
    505   /// - is not allocatable
    506   /// - is considered always live
    507   /// - is ignored by liveness tracking
    508   /// It is often necessary to reserve the super registers of a reserved
    509   /// register as well, to avoid them getting allocated indirectly. You may use
    510   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
    511   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
    512 
    513   /// Returns true if PhysReg is unallocatable and constant throughout the
    514   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
    515   virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; }
    516 
    517   /// Physical registers that may be modified within a function but are
    518   /// guaranteed to be restored before any uses. This is useful for targets that
    519   /// have call sequences where a GOT register may be updated by the caller
    520   /// prior to a call and is guaranteed to be restored (also by the caller)
    521   /// after the call.
    522   virtual bool isCallerPreservedPhysReg(unsigned PhysReg,
    523                                         const MachineFunction &MF) const {
    524     return false;
    525   }
    526 
    527   /// Prior to adding the live-out mask to a stackmap or patchpoint
    528   /// instruction, provide the target the opportunity to adjust it (mainly to
    529   /// remove pseudo-registers that should be ignored).
    530   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
    531 
    532   /// Return a super-register of the specified register
    533   /// Reg so its sub-register of index SubIdx is Reg.
    534   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
    535                                const TargetRegisterClass *RC) const {
    536     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
    537   }
    538 
    539   /// Return a subclass of the specified register
    540   /// class A so that each register in it has a sub-register of the
    541   /// specified sub-register index which is in the specified register class B.
    542   ///
    543   /// TableGen will synthesize missing A sub-classes.
    544   virtual const TargetRegisterClass *
    545   getMatchingSuperRegClass(const TargetRegisterClass *A,
    546                            const TargetRegisterClass *B, unsigned Idx) const;
    547 
    548   // For a copy-like instruction that defines a register of class DefRC with
    549   // subreg index DefSubReg, reading from another source with class SrcRC and
    550   // subregister SrcSubReg return true if this is a preferable copy
    551   // instruction or an earlier use should be used.
    552   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
    553                                     unsigned DefSubReg,
    554                                     const TargetRegisterClass *SrcRC,
    555                                     unsigned SrcSubReg) const;
    556 
    557   /// Returns the largest legal sub-class of RC that
    558   /// supports the sub-register index Idx.
    559   /// If no such sub-class exists, return NULL.
    560   /// If all registers in RC already have an Idx sub-register, return RC.
    561   ///
    562   /// TableGen generates a version of this function that is good enough in most
    563   /// cases.  Targets can override if they have constraints that TableGen
    564   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
    565   /// supported by the full GR32 register class in 64-bit mode, but only by the
    566   /// GR32_ABCD regiister class in 32-bit mode.
    567   ///
    568   /// TableGen will synthesize missing RC sub-classes.
    569   virtual const TargetRegisterClass *
    570   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
    571     assert(Idx == 0 && "Target has no sub-registers");
    572     return RC;
    573   }
    574 
    575   /// Return the subregister index you get from composing
    576   /// two subregister indices.
    577   ///
    578   /// The special null sub-register index composes as the identity.
    579   ///
    580   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
    581   /// returns c. Note that composeSubRegIndices does not tell you about illegal
    582   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
    583   /// b, composeSubRegIndices doesn't tell you.
    584   ///
    585   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
    586   /// ssub_0:S0 - ssub_3:S3 subregs.
    587   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
    588   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    589     if (!a) return b;
    590     if (!b) return a;
    591     return composeSubRegIndicesImpl(a, b);
    592   }
    593 
    594   /// Transforms a LaneMask computed for one subregister to the lanemask that
    595   /// would have been computed when composing the subsubregisters with IdxA
    596   /// first. @sa composeSubRegIndices()
    597   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
    598                                          LaneBitmask Mask) const {
    599     if (!IdxA)
    600       return Mask;
    601     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
    602   }
    603 
    604   /// Transform a lanemask given for a virtual register to the corresponding
    605   /// lanemask before using subregister with index \p IdxA.
    606   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
    607   /// valie lane mask (no invalid bits set) the following holds:
    608   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
    609   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
    610   /// => X1 == Mask
    611   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
    612                                                 LaneBitmask LaneMask) const {
    613     if (!IdxA)
    614       return LaneMask;
    615     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
    616   }
    617 
    618   /// Debugging helper: dump register in human readable form to dbgs() stream.
    619   static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
    620                       const TargetRegisterInfo* TRI = nullptr);
    621 
    622 protected:
    623   /// Overridden by TableGen in targets that have sub-registers.
    624   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
    625     llvm_unreachable("Target has no sub-registers");
    626   }
    627 
    628   /// Overridden by TableGen in targets that have sub-registers.
    629   virtual LaneBitmask
    630   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
    631     llvm_unreachable("Target has no sub-registers");
    632   }
    633 
    634   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
    635                                                             LaneBitmask) const {
    636     llvm_unreachable("Target has no sub-registers");
    637   }
    638 
    639 public:
    640   /// Find a common super-register class if it exists.
    641   ///
    642   /// Find a register class, SuperRC and two sub-register indices, PreA and
    643   /// PreB, such that:
    644   ///
    645   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
    646   ///
    647   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
    648   ///
    649   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
    650   ///
    651   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
    652   /// requirements, and there is no register class with a smaller spill size
    653   /// that satisfies the requirements.
    654   ///
    655   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
    656   ///
    657   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
    658   /// that case, the returned register class will be a sub-class of the
    659   /// corresponding argument register class.
    660   ///
    661   /// The function returns NULL if no register class can be found.
    662   const TargetRegisterClass*
    663   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    664                          const TargetRegisterClass *RCB, unsigned SubB,
    665                          unsigned &PreA, unsigned &PreB) const;
    666 
    667   //===--------------------------------------------------------------------===//
    668   // Register Class Information
    669   //
    670 protected:
    671   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
    672     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
    673   }
    674 
    675 public:
    676   /// Register class iterators
    677   regclass_iterator regclass_begin() const { return RegClassBegin; }
    678   regclass_iterator regclass_end() const { return RegClassEnd; }
    679   iterator_range<regclass_iterator> regclasses() const {
    680     return make_range(regclass_begin(), regclass_end());
    681   }
    682 
    683   unsigned getNumRegClasses() const {
    684     return (unsigned)(regclass_end()-regclass_begin());
    685   }
    686 
    687   /// Returns the register class associated with the enumeration value.
    688   /// See class MCOperandInfo.
    689   const TargetRegisterClass *getRegClass(unsigned i) const {
    690     assert(i < getNumRegClasses() && "Register Class ID out of range");
    691     return RegClassBegin[i];
    692   }
    693 
    694   /// Returns the name of the register class.
    695   const char *getRegClassName(const TargetRegisterClass *Class) const {
    696     return MCRegisterInfo::getRegClassName(Class->MC);
    697   }
    698 
    699   /// Find the largest common subclass of A and B.
    700   /// Return NULL if there is no common subclass.
    701   /// The common subclass should contain
    702   /// simple value type SVT if it is not the Any type.
    703   const TargetRegisterClass *
    704   getCommonSubClass(const TargetRegisterClass *A,
    705                     const TargetRegisterClass *B,
    706                     const MVT::SimpleValueType SVT =
    707                     MVT::SimpleValueType::Any) const;
    708 
    709   /// Returns a TargetRegisterClass used for pointer values.
    710   /// If a target supports multiple different pointer register classes,
    711   /// kind specifies which one is indicated.
    712   virtual const TargetRegisterClass *
    713   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
    714     llvm_unreachable("Target didn't implement getPointerRegClass!");
    715   }
    716 
    717   /// Returns a legal register class to copy a register in the specified class
    718   /// to or from. If it is possible to copy the register directly without using
    719   /// a cross register class copy, return the specified RC. Returns NULL if it
    720   /// is not possible to copy between two registers of the specified class.
    721   virtual const TargetRegisterClass *
    722   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    723     return RC;
    724   }
    725 
    726   /// Returns the largest super class of RC that is legal to use in the current
    727   /// sub-target and has the same spill size.
    728   /// The returned register class can be used to create virtual registers which
    729   /// means that all its registers can be copied and spilled.
    730   virtual const TargetRegisterClass *
    731   getLargestLegalSuperClass(const TargetRegisterClass *RC,
    732                             const MachineFunction &) const {
    733     /// The default implementation is very conservative and doesn't allow the
    734     /// register allocator to inflate register classes.
    735     return RC;
    736   }
    737 
    738   /// Return the register pressure "high water mark" for the specific register
    739   /// class. The scheduler is in high register pressure mode (for the specific
    740   /// register class) if it goes over the limit.
    741   ///
    742   /// Note: this is the old register pressure model that relies on a manually
    743   /// specified representative register class per value type.
    744   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
    745                                        MachineFunction &MF) const {
    746     return 0;
    747   }
    748 
    749   /// Return a heuristic for the machine scheduler to compare the profitability
    750   /// of increasing one register pressure set versus another.  The scheduler
    751   /// will prefer increasing the register pressure of the set which returns
    752   /// the largest value for this function.
    753   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
    754                                           unsigned PSetID) const {
    755     return PSetID;
    756   }
    757 
    758   /// Get the weight in units of pressure for this register class.
    759   virtual const RegClassWeight &getRegClassWeight(
    760     const TargetRegisterClass *RC) const = 0;
    761 
    762   /// Returns size in bits of a phys/virtual/generic register.
    763   unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const;
    764 
    765   /// Get the weight in units of pressure for this register unit.
    766   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
    767 
    768   /// Get the number of dimensions of register pressure.
    769   virtual unsigned getNumRegPressureSets() const = 0;
    770 
    771   /// Get the name of this register unit pressure set.
    772   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
    773 
    774   /// Get the register unit pressure limit for this dimension.
    775   /// This limit must be adjusted dynamically for reserved registers.
    776   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
    777                                           unsigned Idx) const = 0;
    778 
    779   /// Get the dimensions of register pressure impacted by this register class.
    780   /// Returns a -1 terminated array of pressure set IDs.
    781   virtual const int *getRegClassPressureSets(
    782     const TargetRegisterClass *RC) const = 0;
    783 
    784   /// Get the dimensions of register pressure impacted by this register unit.
    785   /// Returns a -1 terminated array of pressure set IDs.
    786   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
    787 
    788   /// Get a list of 'hint' registers that the register allocator should try
    789   /// first when allocating a physical register for the virtual register
    790   /// VirtReg. These registers are effectively moved to the front of the
    791   /// allocation order. If true is returned, regalloc will try to only use
    792   /// hints to the greatest extent possible even if it means spilling.
    793   ///
    794   /// The Order argument is the allocation order for VirtReg's register class
    795   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
    796   /// come from Order, and they must not be reserved.
    797   ///
    798   /// The default implementation of this function will only add target
    799   /// independent register allocation hints. Targets that override this
    800   /// function should typically call this default implementation as well and
    801   /// expect to see generic copy hints added.
    802   virtual bool getRegAllocationHints(unsigned VirtReg,
    803                                      ArrayRef<MCPhysReg> Order,
    804                                      SmallVectorImpl<MCPhysReg> &Hints,
    805                                      const MachineFunction &MF,
    806                                      const VirtRegMap *VRM = nullptr,
    807                                      const LiveRegMatrix *Matrix = nullptr)
    808     const;
    809 
    810   /// A callback to allow target a chance to update register allocation hints
    811   /// when a register is "changed" (e.g. coalesced) to another register.
    812   /// e.g. On ARM, some virtual registers should target register pairs,
    813   /// if one of pair is coalesced to another register, the allocation hint of
    814   /// the other half of the pair should be changed to point to the new register.
    815   virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
    816                                   MachineFunction &MF) const {
    817     // Do nothing.
    818   }
    819 
    820   /// The creation of multiple copy hints have been implemented in
    821   /// weightCalcHelper(), but since this affects so many tests for many
    822   /// targets, this is temporarily disabled per default. THIS SHOULD BE
    823   /// "GENERAL GOODNESS" and hopefully all targets will update their tests
    824   /// and enable this soon. This hook should then be removed.
    825   virtual bool enableMultipleCopyHints() const { return false; }
    826 
    827   /// Allow the target to reverse allocation order of local live ranges. This
    828   /// will generally allocate shorter local live ranges first. For targets with
    829   /// many registers, this could reduce regalloc compile time by a large
    830   /// factor. It is disabled by default for three reasons:
    831   /// (1) Top-down allocation is simpler and easier to debug for targets that
    832   /// don't benefit from reversing the order.
    833   /// (2) Bottom-up allocation could result in poor evicition decisions on some
    834   /// targets affecting the performance of compiled code.
    835   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
    836   virtual bool reverseLocalAssignment() const { return false; }
    837 
    838   /// Allow the target to override the cost of using a callee-saved register for
    839   /// the first time. Default value of 0 means we will use a callee-saved
    840   /// register if it is available.
    841   virtual unsigned getCSRFirstUseCost() const { return 0; }
    842 
    843   /// Returns true if the target requires (and can make use of) the register
    844   /// scavenger.
    845   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    846     return false;
    847   }
    848 
    849   /// Returns true if the target wants to use frame pointer based accesses to
    850   /// spill to the scavenger emergency spill slot.
    851   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    852     return true;
    853   }
    854 
    855   /// Returns true if the target requires post PEI scavenging of registers for
    856   /// materializing frame index constants.
    857   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    858     return false;
    859   }
    860 
    861   /// Returns true if the target requires using the RegScavenger directly for
    862   /// frame elimination despite using requiresFrameIndexScavenging.
    863   virtual bool requiresFrameIndexReplacementScavenging(
    864       const MachineFunction &MF) const {
    865     return false;
    866   }
    867 
    868   /// Returns true if the target wants the LocalStackAllocation pass to be run
    869   /// and virtual base registers used for more efficient stack access.
    870   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    871     return false;
    872   }
    873 
    874   /// Return true if target has reserved a spill slot in the stack frame of
    875   /// the given function for the specified register. e.g. On x86, if the frame
    876   /// register is required, the first fixed stack object is reserved as its
    877   /// spill slot. This tells PEI not to create a new stack frame
    878   /// object for the given register. It should be called only after
    879   /// determineCalleeSaves().
    880   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
    881                                     int &FrameIdx) const {
    882     return false;
    883   }
    884 
    885   /// Returns true if the live-ins should be tracked after register allocation.
    886   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
    887     return false;
    888   }
    889 
    890   /// True if the stack can be realigned for the target.
    891   virtual bool canRealignStack(const MachineFunction &MF) const;
    892 
    893   /// True if storage within the function requires the stack pointer to be
    894   /// aligned more than the normal calling convention calls for.
    895   /// This cannot be overriden by the target, but canRealignStack can be
    896   /// overridden.
    897   bool needsStackRealignment(const MachineFunction &MF) const;
    898 
    899   /// Get the offset from the referenced frame index in the instruction,
    900   /// if there is one.
    901   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
    902                                            int Idx) const {
    903     return 0;
    904   }
    905 
    906   /// Returns true if the instruction's frame index reference would be better
    907   /// served by a base register other than FP or SP.
    908   /// Used by LocalStackFrameAllocation to determine which frame index
    909   /// references it should create new base registers for.
    910   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    911     return false;
    912   }
    913 
    914   /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
    915   /// before insertion point I.
    916   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
    917                                             unsigned BaseReg, int FrameIdx,
    918                                             int64_t Offset) const {
    919     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
    920                      "target");
    921   }
    922 
    923   /// Resolve a frame index operand of an instruction
    924   /// to reference the indicated base register plus offset instead.
    925   virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
    926                                  int64_t Offset) const {
    927     llvm_unreachable("resolveFrameIndex does not exist on this target");
    928   }
    929 
    930   /// Determine whether a given base register plus offset immediate is
    931   /// encodable to resolve a frame index.
    932   virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
    933                                   int64_t Offset) const {
    934     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
    935   }
    936 
    937   /// Spill the register so it can be used by the register scavenger.
    938   /// Return true if the register was spilled, false otherwise.
    939   /// If this function does not spill the register, the scavenger
    940   /// will instead spill it to the emergency spill slot.
    941   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
    942                                      MachineBasicBlock::iterator I,
    943                                      MachineBasicBlock::iterator &UseMI,
    944                                      const TargetRegisterClass *RC,
    945                                      unsigned Reg) const {
    946     return false;
    947   }
    948 
    949   /// This method must be overriden to eliminate abstract frame indices from
    950   /// instructions which may use them. The instruction referenced by the
    951   /// iterator contains an MO_FrameIndex operand which must be eliminated by
    952   /// this method. This method may modify or replace the specified instruction,
    953   /// as long as it keeps the iterator pointing at the finished product.
    954   /// SPAdj is the SP adjustment due to call frame setup instruction.
    955   /// FIOperandNum is the FI operand number.
    956   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
    957                                    int SPAdj, unsigned FIOperandNum,
    958                                    RegScavenger *RS = nullptr) const = 0;
    959 
    960   /// Return the assembly name for \p Reg.
    961   virtual StringRef getRegAsmName(unsigned Reg) const {
    962     // FIXME: We are assuming that the assembly name is equal to the TableGen
    963     // name converted to lower case
    964     //
    965     // The TableGen name is the name of the definition for this register in the
    966     // target's tablegen files.  For example, the TableGen name of
    967     // def EAX : Register <...>; is "EAX"
    968     return StringRef(getName(Reg));
    969   }
    970 
    971   //===--------------------------------------------------------------------===//
    972   /// Subtarget Hooks
    973 
    974   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
    975   virtual bool shouldCoalesce(MachineInstr *MI,
    976                               const TargetRegisterClass *SrcRC,
    977                               unsigned SubReg,
    978                               const TargetRegisterClass *DstRC,
    979                               unsigned DstSubReg,
    980                               const TargetRegisterClass *NewRC,
    981                               LiveIntervals &LIS) const
    982   { return true; }
    983 
    984   //===--------------------------------------------------------------------===//
    985   /// Debug information queries.
    986 
    987   /// getFrameRegister - This method should return the register used as a base
    988   /// for values allocated in the current stack frame.
    989   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
    990 
    991   /// Mark a register and all its aliases as reserved in the given set.
    992   void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const;
    993 
    994   /// Returns true if for every register in the set all super registers are part
    995   /// of the set as well.
    996   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
    997       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
    998 
    999   virtual const TargetRegisterClass *
   1000   getConstrainedRegClassForOperand(const MachineOperand &MO,
   1001                                    const MachineRegisterInfo &MRI) const {
   1002     return nullptr;
   1003   }
   1004 };
   1005 
   1006 //===----------------------------------------------------------------------===//
   1007 //                           SuperRegClassIterator
   1008 //===----------------------------------------------------------------------===//
   1009 //
   1010 // Iterate over the possible super-registers for a given register class. The
   1011 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
   1012 // possible classes of super-registers.
   1013 //
   1014 // Each bit mask will have at least one set bit, and each set bit in Mask
   1015 // corresponds to a SuperRC such that:
   1016 //
   1017 //   For all Reg in SuperRC: Reg:Idx is in RC.
   1018 //
   1019 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
   1020 // also satisfies the above requirement, assuming Reg:0 == Reg.
   1021 //
   1022 class SuperRegClassIterator {
   1023   const unsigned RCMaskWords;
   1024   unsigned SubReg = 0;
   1025   const uint16_t *Idx;
   1026   const uint32_t *Mask;
   1027 
   1028 public:
   1029   /// Create a SuperRegClassIterator that visits all the super-register classes
   1030   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
   1031   SuperRegClassIterator(const TargetRegisterClass *RC,
   1032                         const TargetRegisterInfo *TRI,
   1033                         bool IncludeSelf = false)
   1034     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
   1035       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
   1036     if (!IncludeSelf)
   1037       ++*this;
   1038   }
   1039 
   1040   /// Returns true if this iterator is still pointing at a valid entry.
   1041   bool isValid() const { return Idx; }
   1042 
   1043   /// Returns the current sub-register index.
   1044   unsigned getSubReg() const { return SubReg; }
   1045 
   1046   /// Returns the bit mask of register classes that getSubReg() projects into
   1047   /// RC.
   1048   /// See TargetRegisterClass::getSubClassMask() for how to use it.
   1049   const uint32_t *getMask() const { return Mask; }
   1050 
   1051   /// Advance iterator to the next entry.
   1052   void operator++() {
   1053     assert(isValid() && "Cannot move iterator past end.");
   1054     Mask += RCMaskWords;
   1055     SubReg = *Idx++;
   1056     if (!SubReg)
   1057       Idx = nullptr;
   1058   }
   1059 };
   1060 
   1061 //===----------------------------------------------------------------------===//
   1062 //                           BitMaskClassIterator
   1063 //===----------------------------------------------------------------------===//
   1064 /// This class encapuslates the logic to iterate over bitmask returned by
   1065 /// the various RegClass related APIs.
   1066 /// E.g., this class can be used to iterate over the subclasses provided by
   1067 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
   1068 class BitMaskClassIterator {
   1069   /// Total number of register classes.
   1070   const unsigned NumRegClasses;
   1071   /// Base index of CurrentChunk.
   1072   /// In other words, the number of bit we read to get at the
   1073   /// beginning of that chunck.
   1074   unsigned Base = 0;
   1075   /// Adjust base index of CurrentChunk.
   1076   /// Base index + how many bit we read within CurrentChunk.
   1077   unsigned Idx = 0;
   1078   /// Current register class ID.
   1079   unsigned ID = 0;
   1080   /// Mask we are iterating over.
   1081   const uint32_t *Mask;
   1082   /// Current chunk of the Mask we are traversing.
   1083   uint32_t CurrentChunk;
   1084 
   1085   /// Move ID to the next set bit.
   1086   void moveToNextID() {
   1087     // If the current chunk of memory is empty, move to the next one,
   1088     // while making sure we do not go pass the number of register
   1089     // classes.
   1090     while (!CurrentChunk) {
   1091       // Move to the next chunk.
   1092       Base += 32;
   1093       if (Base >= NumRegClasses) {
   1094         ID = NumRegClasses;
   1095         return;
   1096       }
   1097       CurrentChunk = *++Mask;
   1098       Idx = Base;
   1099     }
   1100     // Otherwise look for the first bit set from the right
   1101     // (representation of the class ID is big endian).
   1102     // See getSubClassMask for more details on the representation.
   1103     unsigned Offset = countTrailingZeros(CurrentChunk);
   1104     // Add the Offset to the adjusted base number of this chunk: Idx.
   1105     // This is the ID of the register class.
   1106     ID = Idx + Offset;
   1107 
   1108     // Consume the zeros, if any, and the bit we just read
   1109     // so that we are at the right spot for the next call.
   1110     // Do not do Offset + 1 because Offset may be 31 and 32
   1111     // will be UB for the shift, though in that case we could
   1112     // have make the chunk being equal to 0, but that would
   1113     // have introduced a if statement.
   1114     moveNBits(Offset);
   1115     moveNBits(1);
   1116   }
   1117 
   1118   /// Move \p NumBits Bits forward in CurrentChunk.
   1119   void moveNBits(unsigned NumBits) {
   1120     assert(NumBits < 32 && "Undefined behavior spotted!");
   1121     // Consume the bit we read for the next call.
   1122     CurrentChunk >>= NumBits;
   1123     // Adjust the base for the chunk.
   1124     Idx += NumBits;
   1125   }
   1126 
   1127 public:
   1128   /// Create a BitMaskClassIterator that visits all the register classes
   1129   /// represented by \p Mask.
   1130   ///
   1131   /// \pre \p Mask != nullptr
   1132   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
   1133       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
   1134     // Move to the first ID.
   1135     moveToNextID();
   1136   }
   1137 
   1138   /// Returns true if this iterator is still pointing at a valid entry.
   1139   bool isValid() const { return getID() != NumRegClasses; }
   1140 
   1141   /// Returns the current register class ID.
   1142   unsigned getID() const { return ID; }
   1143 
   1144   /// Advance iterator to the next entry.
   1145   void operator++() {
   1146     assert(isValid() && "Cannot move iterator past end.");
   1147     moveToNextID();
   1148   }
   1149 };
   1150 
   1151 // This is useful when building IndexedMaps keyed on virtual registers
   1152 struct VirtReg2IndexFunctor {
   1153   using argument_type = unsigned;
   1154   unsigned operator()(unsigned Reg) const {
   1155     return TargetRegisterInfo::virtReg2Index(Reg);
   1156   }
   1157 };
   1158 
   1159 /// Prints virtual and physical registers with or without a TRI instance.
   1160 ///
   1161 /// The format is:
   1162 ///   %noreg          - NoRegister
   1163 ///   %5              - a virtual register.
   1164 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
   1165 ///   %eax            - a physical register
   1166 ///   %physreg17      - a physical register when no TRI instance given.
   1167 ///
   1168 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
   1169 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
   1170                    unsigned SubIdx = 0,
   1171                    const MachineRegisterInfo *MRI = nullptr);
   1172 
   1173 /// Create Printable object to print register units on a \ref raw_ostream.
   1174 ///
   1175 /// Register units are named after their root registers:
   1176 ///
   1177 ///   al      - Single root.
   1178 ///   fp0~st7 - Dual roots.
   1179 ///
   1180 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
   1181 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
   1182 
   1183 /// Create Printable object to print virtual registers and physical
   1184 /// registers on a \ref raw_ostream.
   1185 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
   1186 
   1187 /// Create Printable object to print register classes or register banks
   1188 /// on a \ref raw_ostream.
   1189 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
   1190                               const TargetRegisterInfo *TRI);
   1191 
   1192 } // end namespace llvm
   1193 
   1194 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
   1195