Home | History | Annotate | Download | only in CodeGen
      1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Methods common to all machine instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/MachineInstr.h"
     15 #include "llvm/Constants.h"
     16 #include "llvm/DebugInfo.h"
     17 #include "llvm/Function.h"
     18 #include "llvm/InlineAsm.h"
     19 #include "llvm/LLVMContext.h"
     20 #include "llvm/Metadata.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/Type.h"
     23 #include "llvm/Value.h"
     24 #include "llvm/Assembly/Writer.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineMemOperand.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/PseudoSourceValue.h"
     31 #include "llvm/MC/MCInstrDesc.h"
     32 #include "llvm/MC/MCSymbol.h"
     33 #include "llvm/Target/TargetMachine.h"
     34 #include "llvm/Target/TargetInstrInfo.h"
     35 #include "llvm/Target/TargetRegisterInfo.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/LeakDetector.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/ADT/FoldingSet.h"
     43 #include "llvm/ADT/Hashing.h"
     44 using namespace llvm;
     45 
     46 //===----------------------------------------------------------------------===//
     47 // MachineOperand Implementation
     48 //===----------------------------------------------------------------------===//
     49 
     50 void MachineOperand::setReg(unsigned Reg) {
     51   if (getReg() == Reg) return; // No change.
     52 
     53   // Otherwise, we have to change the register.  If this operand is embedded
     54   // into a machine function, we need to update the old and new register's
     55   // use/def lists.
     56   if (MachineInstr *MI = getParent())
     57     if (MachineBasicBlock *MBB = MI->getParent())
     58       if (MachineFunction *MF = MBB->getParent()) {
     59         MachineRegisterInfo &MRI = MF->getRegInfo();
     60         MRI.removeRegOperandFromUseList(this);
     61         SmallContents.RegNo = Reg;
     62         MRI.addRegOperandToUseList(this);
     63         return;
     64       }
     65 
     66   // Otherwise, just change the register, no problem.  :)
     67   SmallContents.RegNo = Reg;
     68 }
     69 
     70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
     71                                   const TargetRegisterInfo &TRI) {
     72   assert(TargetRegisterInfo::isVirtualRegister(Reg));
     73   if (SubIdx && getSubReg())
     74     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
     75   setReg(Reg);
     76   if (SubIdx)
     77     setSubReg(SubIdx);
     78 }
     79 
     80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
     81   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
     82   if (getSubReg()) {
     83     Reg = TRI.getSubReg(Reg, getSubReg());
     84     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
     85     // That won't happen in legal code.
     86     setSubReg(0);
     87   }
     88   setReg(Reg);
     89 }
     90 
     91 /// Change a def to a use, or a use to a def.
     92 void MachineOperand::setIsDef(bool Val) {
     93   assert(isReg() && "Wrong MachineOperand accessor");
     94   assert((!Val || !isDebug()) && "Marking a debug operation as def");
     95   if (IsDef == Val)
     96     return;
     97   // MRI may keep uses and defs in different list positions.
     98   if (MachineInstr *MI = getParent())
     99     if (MachineBasicBlock *MBB = MI->getParent())
    100       if (MachineFunction *MF = MBB->getParent()) {
    101         MachineRegisterInfo &MRI = MF->getRegInfo();
    102         MRI.removeRegOperandFromUseList(this);
    103         IsDef = Val;
    104         MRI.addRegOperandToUseList(this);
    105         return;
    106       }
    107   IsDef = Val;
    108 }
    109 
    110 /// ChangeToImmediate - Replace this operand with a new immediate operand of
    111 /// the specified value.  If an operand is known to be an immediate already,
    112 /// the setImm method should be used.
    113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
    114   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
    115   // If this operand is currently a register operand, and if this is in a
    116   // function, deregister the operand from the register's use/def list.
    117   if (isReg() && isOnRegUseList())
    118     if (MachineInstr *MI = getParent())
    119       if (MachineBasicBlock *MBB = MI->getParent())
    120         if (MachineFunction *MF = MBB->getParent())
    121           MF->getRegInfo().removeRegOperandFromUseList(this);
    122 
    123   OpKind = MO_Immediate;
    124   Contents.ImmVal = ImmVal;
    125 }
    126 
    127 /// ChangeToRegister - Replace this operand with a new register operand of
    128 /// the specified value.  If an operand is known to be an register already,
    129 /// the setReg method should be used.
    130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
    131                                       bool isKill, bool isDead, bool isUndef,
    132                                       bool isDebug) {
    133   MachineRegisterInfo *RegInfo = 0;
    134   if (MachineInstr *MI = getParent())
    135     if (MachineBasicBlock *MBB = MI->getParent())
    136       if (MachineFunction *MF = MBB->getParent())
    137         RegInfo = &MF->getRegInfo();
    138   // If this operand is already a register operand, remove it from the
    139   // register's use/def lists.
    140   bool WasReg = isReg();
    141   if (RegInfo && WasReg)
    142     RegInfo->removeRegOperandFromUseList(this);
    143 
    144   // Change this to a register and set the reg#.
    145   OpKind = MO_Register;
    146   SmallContents.RegNo = Reg;
    147   SubReg = 0;
    148   IsDef = isDef;
    149   IsImp = isImp;
    150   IsKill = isKill;
    151   IsDead = isDead;
    152   IsUndef = isUndef;
    153   IsInternalRead = false;
    154   IsEarlyClobber = false;
    155   IsDebug = isDebug;
    156   // Ensure isOnRegUseList() returns false.
    157   Contents.Reg.Prev = 0;
    158   // Preserve the tie when the operand was already a register.
    159   if (!WasReg)
    160     TiedTo = 0;
    161 
    162   // If this operand is embedded in a function, add the operand to the
    163   // register's use/def list.
    164   if (RegInfo)
    165     RegInfo->addRegOperandToUseList(this);
    166 }
    167 
    168 /// isIdenticalTo - Return true if this operand is identical to the specified
    169 /// operand. Note that this should stay in sync with the hash_value overload
    170 /// below.
    171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
    172   if (getType() != Other.getType() ||
    173       getTargetFlags() != Other.getTargetFlags())
    174     return false;
    175 
    176   switch (getType()) {
    177   case MachineOperand::MO_Register:
    178     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
    179            getSubReg() == Other.getSubReg();
    180   case MachineOperand::MO_Immediate:
    181     return getImm() == Other.getImm();
    182   case MachineOperand::MO_CImmediate:
    183     return getCImm() == Other.getCImm();
    184   case MachineOperand::MO_FPImmediate:
    185     return getFPImm() == Other.getFPImm();
    186   case MachineOperand::MO_MachineBasicBlock:
    187     return getMBB() == Other.getMBB();
    188   case MachineOperand::MO_FrameIndex:
    189     return getIndex() == Other.getIndex();
    190   case MachineOperand::MO_ConstantPoolIndex:
    191   case MachineOperand::MO_TargetIndex:
    192     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
    193   case MachineOperand::MO_JumpTableIndex:
    194     return getIndex() == Other.getIndex();
    195   case MachineOperand::MO_GlobalAddress:
    196     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
    197   case MachineOperand::MO_ExternalSymbol:
    198     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
    199            getOffset() == Other.getOffset();
    200   case MachineOperand::MO_BlockAddress:
    201     return getBlockAddress() == Other.getBlockAddress();
    202   case MO_RegisterMask:
    203     return getRegMask() == Other.getRegMask();
    204   case MachineOperand::MO_MCSymbol:
    205     return getMCSymbol() == Other.getMCSymbol();
    206   case MachineOperand::MO_Metadata:
    207     return getMetadata() == Other.getMetadata();
    208   }
    209   llvm_unreachable("Invalid machine operand type");
    210 }
    211 
    212 // Note: this must stay exactly in sync with isIdenticalTo above.
    213 hash_code llvm::hash_value(const MachineOperand &MO) {
    214   switch (MO.getType()) {
    215   case MachineOperand::MO_Register:
    216     // Register operands don't have target flags.
    217     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
    218   case MachineOperand::MO_Immediate:
    219     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
    220   case MachineOperand::MO_CImmediate:
    221     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
    222   case MachineOperand::MO_FPImmediate:
    223     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
    224   case MachineOperand::MO_MachineBasicBlock:
    225     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
    226   case MachineOperand::MO_FrameIndex:
    227     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
    228   case MachineOperand::MO_ConstantPoolIndex:
    229   case MachineOperand::MO_TargetIndex:
    230     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
    231                         MO.getOffset());
    232   case MachineOperand::MO_JumpTableIndex:
    233     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
    234   case MachineOperand::MO_ExternalSymbol:
    235     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
    236                         MO.getSymbolName());
    237   case MachineOperand::MO_GlobalAddress:
    238     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
    239                         MO.getOffset());
    240   case MachineOperand::MO_BlockAddress:
    241     return hash_combine(MO.getType(), MO.getTargetFlags(),
    242                         MO.getBlockAddress());
    243   case MachineOperand::MO_RegisterMask:
    244     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
    245   case MachineOperand::MO_Metadata:
    246     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
    247   case MachineOperand::MO_MCSymbol:
    248     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
    249   }
    250   llvm_unreachable("Invalid machine operand type");
    251 }
    252 
    253 /// print - Print the specified machine operand.
    254 ///
    255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
    256   // If the instruction is embedded into a basic block, we can find the
    257   // target info for the instruction.
    258   if (!TM)
    259     if (const MachineInstr *MI = getParent())
    260       if (const MachineBasicBlock *MBB = MI->getParent())
    261         if (const MachineFunction *MF = MBB->getParent())
    262           TM = &MF->getTarget();
    263   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
    264 
    265   switch (getType()) {
    266   case MachineOperand::MO_Register:
    267     OS << PrintReg(getReg(), TRI, getSubReg());
    268 
    269     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
    270         isInternalRead() || isEarlyClobber() || isTied()) {
    271       OS << '<';
    272       bool NeedComma = false;
    273       if (isDef()) {
    274         if (NeedComma) OS << ',';
    275         if (isEarlyClobber())
    276           OS << "earlyclobber,";
    277         if (isImplicit())
    278           OS << "imp-";
    279         OS << "def";
    280         NeedComma = true;
    281         // <def,read-undef> only makes sense when getSubReg() is set.
    282         // Don't clutter the output otherwise.
    283         if (isUndef() && getSubReg())
    284           OS << ",read-undef";
    285       } else if (isImplicit()) {
    286           OS << "imp-use";
    287           NeedComma = true;
    288       }
    289 
    290       if (isKill()) {
    291         if (NeedComma) OS << ',';
    292         OS << "kill";
    293         NeedComma = true;
    294       }
    295       if (isDead()) {
    296         if (NeedComma) OS << ',';
    297         OS << "dead";
    298         NeedComma = true;
    299       }
    300       if (isUndef() && isUse()) {
    301         if (NeedComma) OS << ',';
    302         OS << "undef";
    303         NeedComma = true;
    304       }
    305       if (isInternalRead()) {
    306         if (NeedComma) OS << ',';
    307         OS << "internal";
    308         NeedComma = true;
    309       }
    310       if (isTied()) {
    311         if (NeedComma) OS << ',';
    312         OS << "tied";
    313         if (TiedTo != 15)
    314           OS << unsigned(TiedTo - 1);
    315         NeedComma = true;
    316       }
    317       OS << '>';
    318     }
    319     break;
    320   case MachineOperand::MO_Immediate:
    321     OS << getImm();
    322     break;
    323   case MachineOperand::MO_CImmediate:
    324     getCImm()->getValue().print(OS, false);
    325     break;
    326   case MachineOperand::MO_FPImmediate:
    327     if (getFPImm()->getType()->isFloatTy())
    328       OS << getFPImm()->getValueAPF().convertToFloat();
    329     else
    330       OS << getFPImm()->getValueAPF().convertToDouble();
    331     break;
    332   case MachineOperand::MO_MachineBasicBlock:
    333     OS << "<BB#" << getMBB()->getNumber() << ">";
    334     break;
    335   case MachineOperand::MO_FrameIndex:
    336     OS << "<fi#" << getIndex() << '>';
    337     break;
    338   case MachineOperand::MO_ConstantPoolIndex:
    339     OS << "<cp#" << getIndex();
    340     if (getOffset()) OS << "+" << getOffset();
    341     OS << '>';
    342     break;
    343   case MachineOperand::MO_TargetIndex:
    344     OS << "<ti#" << getIndex();
    345     if (getOffset()) OS << "+" << getOffset();
    346     OS << '>';
    347     break;
    348   case MachineOperand::MO_JumpTableIndex:
    349     OS << "<jt#" << getIndex() << '>';
    350     break;
    351   case MachineOperand::MO_GlobalAddress:
    352     OS << "<ga:";
    353     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
    354     if (getOffset()) OS << "+" << getOffset();
    355     OS << '>';
    356     break;
    357   case MachineOperand::MO_ExternalSymbol:
    358     OS << "<es:" << getSymbolName();
    359     if (getOffset()) OS << "+" << getOffset();
    360     OS << '>';
    361     break;
    362   case MachineOperand::MO_BlockAddress:
    363     OS << '<';
    364     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
    365     OS << '>';
    366     break;
    367   case MachineOperand::MO_RegisterMask:
    368     OS << "<regmask>";
    369     break;
    370   case MachineOperand::MO_Metadata:
    371     OS << '<';
    372     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
    373     OS << '>';
    374     break;
    375   case MachineOperand::MO_MCSymbol:
    376     OS << "<MCSym=" << *getMCSymbol() << '>';
    377     break;
    378   }
    379 
    380   if (unsigned TF = getTargetFlags())
    381     OS << "[TF=" << TF << ']';
    382 }
    383 
    384 //===----------------------------------------------------------------------===//
    385 // MachineMemOperand Implementation
    386 //===----------------------------------------------------------------------===//
    387 
    388 /// getAddrSpace - Return the LLVM IR address space number that this pointer
    389 /// points into.
    390 unsigned MachinePointerInfo::getAddrSpace() const {
    391   if (V == 0) return 0;
    392   return cast<PointerType>(V->getType())->getAddressSpace();
    393 }
    394 
    395 /// getConstantPool - Return a MachinePointerInfo record that refers to the
    396 /// constant pool.
    397 MachinePointerInfo MachinePointerInfo::getConstantPool() {
    398   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
    399 }
    400 
    401 /// getFixedStack - Return a MachinePointerInfo record that refers to the
    402 /// the specified FrameIndex.
    403 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
    404   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
    405 }
    406 
    407 MachinePointerInfo MachinePointerInfo::getJumpTable() {
    408   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
    409 }
    410 
    411 MachinePointerInfo MachinePointerInfo::getGOT() {
    412   return MachinePointerInfo(PseudoSourceValue::getGOT());
    413 }
    414 
    415 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
    416   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
    417 }
    418 
    419 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
    420                                      uint64_t s, unsigned int a,
    421                                      const MDNode *TBAAInfo,
    422                                      const MDNode *Ranges)
    423   : PtrInfo(ptrinfo), Size(s),
    424     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
    425     TBAAInfo(TBAAInfo), Ranges(Ranges) {
    426   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
    427          "invalid pointer value");
    428   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
    429   assert((isLoad() || isStore()) && "Not a load/store!");
    430 }
    431 
    432 /// Profile - Gather unique data for the object.
    433 ///
    434 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
    435   ID.AddInteger(getOffset());
    436   ID.AddInteger(Size);
    437   ID.AddPointer(getValue());
    438   ID.AddInteger(Flags);
    439 }
    440 
    441 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
    442   // The Value and Offset may differ due to CSE. But the flags and size
    443   // should be the same.
    444   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
    445   assert(MMO->getSize() == getSize() && "Size mismatch!");
    446 
    447   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
    448     // Update the alignment value.
    449     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
    450       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
    451     // Also update the base and offset, because the new alignment may
    452     // not be applicable with the old ones.
    453     PtrInfo = MMO->PtrInfo;
    454   }
    455 }
    456 
    457 /// getAlignment - Return the minimum known alignment in bytes of the
    458 /// actual memory reference.
    459 uint64_t MachineMemOperand::getAlignment() const {
    460   return MinAlign(getBaseAlignment(), getOffset());
    461 }
    462 
    463 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
    464   assert((MMO.isLoad() || MMO.isStore()) &&
    465          "SV has to be a load, store or both.");
    466 
    467   if (MMO.isVolatile())
    468     OS << "Volatile ";
    469 
    470   if (MMO.isLoad())
    471     OS << "LD";
    472   if (MMO.isStore())
    473     OS << "ST";
    474   OS << MMO.getSize();
    475 
    476   // Print the address information.
    477   OS << "[";
    478   if (!MMO.getValue())
    479     OS << "<unknown>";
    480   else
    481     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
    482 
    483   // If the alignment of the memory reference itself differs from the alignment
    484   // of the base pointer, print the base alignment explicitly, next to the base
    485   // pointer.
    486   if (MMO.getBaseAlignment() != MMO.getAlignment())
    487     OS << "(align=" << MMO.getBaseAlignment() << ")";
    488 
    489   if (MMO.getOffset() != 0)
    490     OS << "+" << MMO.getOffset();
    491   OS << "]";
    492 
    493   // Print the alignment of the reference.
    494   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
    495       MMO.getBaseAlignment() != MMO.getSize())
    496     OS << "(align=" << MMO.getAlignment() << ")";
    497 
    498   // Print TBAA info.
    499   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
    500     OS << "(tbaa=";
    501     if (TBAAInfo->getNumOperands() > 0)
    502       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
    503     else
    504       OS << "<unknown>";
    505     OS << ")";
    506   }
    507 
    508   // Print nontemporal info.
    509   if (MMO.isNonTemporal())
    510     OS << "(nontemporal)";
    511 
    512   return OS;
    513 }
    514 
    515 //===----------------------------------------------------------------------===//
    516 // MachineInstr Implementation
    517 //===----------------------------------------------------------------------===//
    518 
    519 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
    520 /// MCID NULL and no operands.
    521 MachineInstr::MachineInstr()
    522   : MCID(0), Flags(0), AsmPrinterFlags(0),
    523     NumMemRefs(0), MemRefs(0),
    524     Parent(0) {
    525   // Make sure that we get added to a machine basicblock
    526   LeakDetector::addGarbageObject(this);
    527 }
    528 
    529 void MachineInstr::addImplicitDefUseOperands() {
    530   if (MCID->ImplicitDefs)
    531     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
    532       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
    533   if (MCID->ImplicitUses)
    534     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
    535       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
    536 }
    537 
    538 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
    539 /// implicit operands. It reserves space for the number of operands specified by
    540 /// the MCInstrDesc.
    541 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
    542   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    543     NumMemRefs(0), MemRefs(0), Parent(0) {
    544   unsigned NumImplicitOps = 0;
    545   if (!NoImp)
    546     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    547   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    548   if (!NoImp)
    549     addImplicitDefUseOperands();
    550   // Make sure that we get added to a machine basicblock
    551   LeakDetector::addGarbageObject(this);
    552 }
    553 
    554 /// MachineInstr ctor - As above, but with a DebugLoc.
    555 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
    556                            bool NoImp)
    557   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    558     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
    559   unsigned NumImplicitOps = 0;
    560   if (!NoImp)
    561     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    562   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    563   if (!NoImp)
    564     addImplicitDefUseOperands();
    565   // Make sure that we get added to a machine basicblock
    566   LeakDetector::addGarbageObject(this);
    567 }
    568 
    569 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
    570 /// that the MachineInstr is created and added to the end of the specified
    571 /// basic block.
    572 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
    573   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    574     NumMemRefs(0), MemRefs(0), Parent(0) {
    575   assert(MBB && "Cannot use inserting ctor with null basic block!");
    576   unsigned NumImplicitOps =
    577     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    578   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    579   addImplicitDefUseOperands();
    580   // Make sure that we get added to a machine basicblock
    581   LeakDetector::addGarbageObject(this);
    582   MBB->push_back(this);  // Add instruction to end of basic block!
    583 }
    584 
    585 /// MachineInstr ctor - As above, but with a DebugLoc.
    586 ///
    587 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
    588                            const MCInstrDesc &tid)
    589   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    590     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
    591   assert(MBB && "Cannot use inserting ctor with null basic block!");
    592   unsigned NumImplicitOps =
    593     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    594   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    595   addImplicitDefUseOperands();
    596   // Make sure that we get added to a machine basicblock
    597   LeakDetector::addGarbageObject(this);
    598   MBB->push_back(this);  // Add instruction to end of basic block!
    599 }
    600 
    601 /// MachineInstr ctor - Copies MachineInstr arg exactly
    602 ///
    603 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
    604   : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
    605     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
    606     Parent(0), debugLoc(MI.getDebugLoc()) {
    607   Operands.reserve(MI.getNumOperands());
    608 
    609   // Add operands
    610   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
    611     addOperand(MI.getOperand(i));
    612 
    613   // Copy all the flags.
    614   Flags = MI.Flags;
    615 
    616   // Set parent to null.
    617   Parent = 0;
    618 
    619   LeakDetector::addGarbageObject(this);
    620 }
    621 
    622 MachineInstr::~MachineInstr() {
    623   LeakDetector::removeGarbageObject(this);
    624 #ifndef NDEBUG
    625   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    626     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
    627     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
    628            "Reg operand def/use list corrupted");
    629   }
    630 #endif
    631 }
    632 
    633 /// getRegInfo - If this instruction is embedded into a MachineFunction,
    634 /// return the MachineRegisterInfo object for the current function, otherwise
    635 /// return null.
    636 MachineRegisterInfo *MachineInstr::getRegInfo() {
    637   if (MachineBasicBlock *MBB = getParent())
    638     return &MBB->getParent()->getRegInfo();
    639   return 0;
    640 }
    641 
    642 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
    643 /// this instruction from their respective use lists.  This requires that the
    644 /// operands already be on their use lists.
    645 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
    646   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    647     if (Operands[i].isReg())
    648       MRI.removeRegOperandFromUseList(&Operands[i]);
    649 }
    650 
    651 /// AddRegOperandsToUseLists - Add all of the register operands in
    652 /// this instruction from their respective use lists.  This requires that the
    653 /// operands not be on their use lists yet.
    654 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
    655   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    656     if (Operands[i].isReg())
    657       MRI.addRegOperandToUseList(&Operands[i]);
    658 }
    659 
    660 /// addOperand - Add the specified operand to the instruction.  If it is an
    661 /// implicit operand, it is added to the end of the operand list.  If it is
    662 /// an explicit operand it is added at the end of the explicit operand list
    663 /// (before the first implicit operand).
    664 void MachineInstr::addOperand(const MachineOperand &Op) {
    665   assert(MCID && "Cannot add operands before providing an instr descriptor");
    666   bool isImpReg = Op.isReg() && Op.isImplicit();
    667   MachineRegisterInfo *RegInfo = getRegInfo();
    668 
    669   // If the Operands backing store is reallocated, all register operands must
    670   // be removed and re-added to RegInfo.  It is storing pointers to operands.
    671   bool Reallocate = RegInfo &&
    672     !Operands.empty() && Operands.size() == Operands.capacity();
    673 
    674   // Find the insert location for the new operand.  Implicit registers go at
    675   // the end, everything goes before the implicit regs.
    676   unsigned OpNo = Operands.size();
    677 
    678   // Remove all the implicit operands from RegInfo if they need to be shifted.
    679   // FIXME: Allow mixed explicit and implicit operands on inline asm.
    680   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
    681   // implicit-defs, but they must not be moved around.  See the FIXME in
    682   // InstrEmitter.cpp.
    683   if (!isImpReg && !isInlineAsm()) {
    684     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
    685       --OpNo;
    686       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
    687       if (RegInfo)
    688         RegInfo->removeRegOperandFromUseList(&Operands[OpNo]);
    689     }
    690   }
    691 
    692   // OpNo now points as the desired insertion point.  Unless this is a variadic
    693   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
    694   // RegMask operands go between the explicit and implicit operands.
    695   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
    696           OpNo < MCID->getNumOperands()) &&
    697          "Trying to add an operand to a machine instr that is already done!");
    698 
    699   // All operands from OpNo have been removed from RegInfo.  If the Operands
    700   // backing store needs to be reallocated, we also need to remove any other
    701   // register operands.
    702   if (Reallocate)
    703     for (unsigned i = 0; i != OpNo; ++i)
    704       if (Operands[i].isReg())
    705         RegInfo->removeRegOperandFromUseList(&Operands[i]);
    706 
    707   // Insert the new operand at OpNo.
    708   Operands.insert(Operands.begin() + OpNo, Op);
    709   Operands[OpNo].ParentMI = this;
    710 
    711   // The Operands backing store has now been reallocated, so we can re-add the
    712   // operands before OpNo.
    713   if (Reallocate)
    714     for (unsigned i = 0; i != OpNo; ++i)
    715       if (Operands[i].isReg())
    716         RegInfo->addRegOperandToUseList(&Operands[i]);
    717 
    718   // When adding a register operand, tell RegInfo about it.
    719   if (Operands[OpNo].isReg()) {
    720     // Ensure isOnRegUseList() returns false, regardless of Op's status.
    721     Operands[OpNo].Contents.Reg.Prev = 0;
    722     // Ignore existing ties. This is not a property that can be copied.
    723     Operands[OpNo].TiedTo = 0;
    724     // Add the new operand to RegInfo.
    725     if (RegInfo)
    726       RegInfo->addRegOperandToUseList(&Operands[OpNo]);
    727     // The MCID operand information isn't accurate until we start adding
    728     // explicit operands. The implicit operands are added first, then the
    729     // explicits are inserted before them.
    730     if (!isImpReg) {
    731       // Tie uses to defs as indicated in MCInstrDesc.
    732       if (Operands[OpNo].isUse()) {
    733         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
    734         if (DefIdx != -1)
    735           tieOperands(DefIdx, OpNo);
    736       }
    737       // If the register operand is flagged as early, mark the operand as such.
    738       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    739         Operands[OpNo].setIsEarlyClobber(true);
    740     }
    741   }
    742 
    743   // Re-add all the implicit ops.
    744   if (RegInfo) {
    745     for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
    746       assert(Operands[i].isReg() && "Should only be an implicit reg!");
    747       RegInfo->addRegOperandToUseList(&Operands[i]);
    748     }
    749   }
    750 }
    751 
    752 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
    753 /// fewer operand than it started with.
    754 ///
    755 void MachineInstr::RemoveOperand(unsigned OpNo) {
    756   assert(OpNo < Operands.size() && "Invalid operand number");
    757   untieRegOperand(OpNo);
    758   MachineRegisterInfo *RegInfo = getRegInfo();
    759 
    760   // Special case removing the last one.
    761   if (OpNo == Operands.size()-1) {
    762     // If needed, remove from the reg def/use list.
    763     if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList())
    764       RegInfo->removeRegOperandFromUseList(&Operands.back());
    765 
    766     Operands.pop_back();
    767     return;
    768   }
    769 
    770   // Otherwise, we are removing an interior operand.  If we have reginfo to
    771   // update, remove all operands that will be shifted down from their reg lists,
    772   // move everything down, then re-add them.
    773   if (RegInfo) {
    774     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    775       if (Operands[i].isReg())
    776         RegInfo->removeRegOperandFromUseList(&Operands[i]);
    777     }
    778   }
    779 
    780 #ifndef NDEBUG
    781   // Moving tied operands would break the ties.
    782   for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i)
    783     if (Operands[i].isReg())
    784       assert(!Operands[i].isTied() && "Cannot move tied operands");
    785 #endif
    786 
    787   Operands.erase(Operands.begin()+OpNo);
    788 
    789   if (RegInfo) {
    790     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    791       if (Operands[i].isReg())
    792         RegInfo->addRegOperandToUseList(&Operands[i]);
    793     }
    794   }
    795 }
    796 
    797 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
    798 /// This function should be used only occasionally. The setMemRefs function
    799 /// is the primary method for setting up a MachineInstr's MemRefs list.
    800 void MachineInstr::addMemOperand(MachineFunction &MF,
    801                                  MachineMemOperand *MO) {
    802   mmo_iterator OldMemRefs = MemRefs;
    803   uint16_t OldNumMemRefs = NumMemRefs;
    804 
    805   uint16_t NewNum = NumMemRefs + 1;
    806   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
    807 
    808   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
    809   NewMemRefs[NewNum - 1] = MO;
    810 
    811   MemRefs = NewMemRefs;
    812   NumMemRefs = NewNum;
    813 }
    814 
    815 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
    816   const MachineBasicBlock *MBB = getParent();
    817   MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
    818   while (MII != MBB->end() && MII->isInsideBundle()) {
    819     if (MII->getDesc().getFlags() & Mask) {
    820       if (Type == AnyInBundle)
    821         return true;
    822     } else {
    823       if (Type == AllInBundle)
    824         return false;
    825     }
    826     ++MII;
    827   }
    828 
    829   return Type == AllInBundle;
    830 }
    831 
    832 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
    833                                  MICheckType Check) const {
    834   // If opcodes or number of operands are not the same then the two
    835   // instructions are obviously not identical.
    836   if (Other->getOpcode() != getOpcode() ||
    837       Other->getNumOperands() != getNumOperands())
    838     return false;
    839 
    840   if (isBundle()) {
    841     // Both instructions are bundles, compare MIs inside the bundle.
    842     MachineBasicBlock::const_instr_iterator I1 = *this;
    843     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
    844     MachineBasicBlock::const_instr_iterator I2 = *Other;
    845     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
    846     while (++I1 != E1 && I1->isInsideBundle()) {
    847       ++I2;
    848       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
    849         return false;
    850     }
    851   }
    852 
    853   // Check operands to make sure they match.
    854   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    855     const MachineOperand &MO = getOperand(i);
    856     const MachineOperand &OMO = Other->getOperand(i);
    857     if (!MO.isReg()) {
    858       if (!MO.isIdenticalTo(OMO))
    859         return false;
    860       continue;
    861     }
    862 
    863     // Clients may or may not want to ignore defs when testing for equality.
    864     // For example, machine CSE pass only cares about finding common
    865     // subexpressions, so it's safe to ignore virtual register defs.
    866     if (MO.isDef()) {
    867       if (Check == IgnoreDefs)
    868         continue;
    869       else if (Check == IgnoreVRegDefs) {
    870         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
    871             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
    872           if (MO.getReg() != OMO.getReg())
    873             return false;
    874       } else {
    875         if (!MO.isIdenticalTo(OMO))
    876           return false;
    877         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
    878           return false;
    879       }
    880     } else {
    881       if (!MO.isIdenticalTo(OMO))
    882         return false;
    883       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
    884         return false;
    885     }
    886   }
    887   // If DebugLoc does not match then two dbg.values are not identical.
    888   if (isDebugValue())
    889     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
    890         && getDebugLoc() != Other->getDebugLoc())
    891       return false;
    892   return true;
    893 }
    894 
    895 /// removeFromParent - This method unlinks 'this' from the containing basic
    896 /// block, and returns it, but does not delete it.
    897 MachineInstr *MachineInstr::removeFromParent() {
    898   assert(getParent() && "Not embedded in a basic block!");
    899 
    900   // If it's a bundle then remove the MIs inside the bundle as well.
    901   if (isBundle()) {
    902     MachineBasicBlock *MBB = getParent();
    903     MachineBasicBlock::instr_iterator MII = *this; ++MII;
    904     MachineBasicBlock::instr_iterator E = MBB->instr_end();
    905     while (MII != E && MII->isInsideBundle()) {
    906       MachineInstr *MI = &*MII;
    907       ++MII;
    908       MBB->remove(MI);
    909     }
    910   }
    911   getParent()->remove(this);
    912   return this;
    913 }
    914 
    915 
    916 /// eraseFromParent - This method unlinks 'this' from the containing basic
    917 /// block, and deletes it.
    918 void MachineInstr::eraseFromParent() {
    919   assert(getParent() && "Not embedded in a basic block!");
    920   // If it's a bundle then remove the MIs inside the bundle as well.
    921   if (isBundle()) {
    922     MachineBasicBlock *MBB = getParent();
    923     MachineBasicBlock::instr_iterator MII = *this; ++MII;
    924     MachineBasicBlock::instr_iterator E = MBB->instr_end();
    925     while (MII != E && MII->isInsideBundle()) {
    926       MachineInstr *MI = &*MII;
    927       ++MII;
    928       MBB->erase(MI);
    929     }
    930   }
    931   // Erase the individual instruction, which may itself be inside a bundle.
    932   getParent()->erase_instr(this);
    933 }
    934 
    935 
    936 /// getNumExplicitOperands - Returns the number of non-implicit operands.
    937 ///
    938 unsigned MachineInstr::getNumExplicitOperands() const {
    939   unsigned NumOperands = MCID->getNumOperands();
    940   if (!MCID->isVariadic())
    941     return NumOperands;
    942 
    943   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
    944     const MachineOperand &MO = getOperand(i);
    945     if (!MO.isReg() || !MO.isImplicit())
    946       NumOperands++;
    947   }
    948   return NumOperands;
    949 }
    950 
    951 /// isBundled - Return true if this instruction part of a bundle. This is true
    952 /// if either itself or its following instruction is marked "InsideBundle".
    953 bool MachineInstr::isBundled() const {
    954   if (isInsideBundle())
    955     return true;
    956   MachineBasicBlock::const_instr_iterator nextMI = this;
    957   ++nextMI;
    958   return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
    959 }
    960 
    961 bool MachineInstr::isStackAligningInlineAsm() const {
    962   if (isInlineAsm()) {
    963     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    964     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
    965       return true;
    966   }
    967   return false;
    968 }
    969 
    970 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
    971   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
    972   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    973   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
    974 }
    975 
    976 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
    977                                        unsigned *GroupNo) const {
    978   assert(isInlineAsm() && "Expected an inline asm instruction");
    979   assert(OpIdx < getNumOperands() && "OpIdx out of range");
    980 
    981   // Ignore queries about the initial operands.
    982   if (OpIdx < InlineAsm::MIOp_FirstOperand)
    983     return -1;
    984 
    985   unsigned Group = 0;
    986   unsigned NumOps;
    987   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
    988        i += NumOps) {
    989     const MachineOperand &FlagMO = getOperand(i);
    990     // If we reach the implicit register operands, stop looking.
    991     if (!FlagMO.isImm())
    992       return -1;
    993     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
    994     if (i + NumOps > OpIdx) {
    995       if (GroupNo)
    996         *GroupNo = Group;
    997       return i;
    998     }
    999     ++Group;
   1000   }
   1001   return -1;
   1002 }
   1003 
   1004 const TargetRegisterClass*
   1005 MachineInstr::getRegClassConstraint(unsigned OpIdx,
   1006                                     const TargetInstrInfo *TII,
   1007                                     const TargetRegisterInfo *TRI) const {
   1008   assert(getParent() && "Can't have an MBB reference here!");
   1009   assert(getParent()->getParent() && "Can't have an MF reference here!");
   1010   const MachineFunction &MF = *getParent()->getParent();
   1011 
   1012   // Most opcodes have fixed constraints in their MCInstrDesc.
   1013   if (!isInlineAsm())
   1014     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
   1015 
   1016   if (!getOperand(OpIdx).isReg())
   1017     return NULL;
   1018 
   1019   // For tied uses on inline asm, get the constraint from the def.
   1020   unsigned DefIdx;
   1021   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
   1022     OpIdx = DefIdx;
   1023 
   1024   // Inline asm stores register class constraints in the flag word.
   1025   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
   1026   if (FlagIdx < 0)
   1027     return NULL;
   1028 
   1029   unsigned Flag = getOperand(FlagIdx).getImm();
   1030   unsigned RCID;
   1031   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
   1032     return TRI->getRegClass(RCID);
   1033 
   1034   // Assume that all registers in a memory operand are pointers.
   1035   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
   1036     return TRI->getPointerRegClass(MF);
   1037 
   1038   return NULL;
   1039 }
   1040 
   1041 /// getBundleSize - Return the number of instructions inside the MI bundle.
   1042 unsigned MachineInstr::getBundleSize() const {
   1043   assert(isBundle() && "Expecting a bundle");
   1044 
   1045   MachineBasicBlock::const_instr_iterator I = *this;
   1046   unsigned Size = 0;
   1047   while ((++I)->isInsideBundle()) {
   1048     ++Size;
   1049   }
   1050   assert(Size > 1 && "Malformed bundle");
   1051 
   1052   return Size;
   1053 }
   1054 
   1055 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
   1056 /// the specific register or -1 if it is not found. It further tightens
   1057 /// the search criteria to a use that kills the register if isKill is true.
   1058 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
   1059                                           const TargetRegisterInfo *TRI) const {
   1060   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1061     const MachineOperand &MO = getOperand(i);
   1062     if (!MO.isReg() || !MO.isUse())
   1063       continue;
   1064     unsigned MOReg = MO.getReg();
   1065     if (!MOReg)
   1066       continue;
   1067     if (MOReg == Reg ||
   1068         (TRI &&
   1069          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
   1070          TargetRegisterInfo::isPhysicalRegister(Reg) &&
   1071          TRI->isSubRegister(MOReg, Reg)))
   1072       if (!isKill || MO.isKill())
   1073         return i;
   1074   }
   1075   return -1;
   1076 }
   1077 
   1078 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
   1079 /// indicating if this instruction reads or writes Reg. This also considers
   1080 /// partial defines.
   1081 std::pair<bool,bool>
   1082 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
   1083                                          SmallVectorImpl<unsigned> *Ops) const {
   1084   bool PartDef = false; // Partial redefine.
   1085   bool FullDef = false; // Full define.
   1086   bool Use = false;
   1087 
   1088   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1089     const MachineOperand &MO = getOperand(i);
   1090     if (!MO.isReg() || MO.getReg() != Reg)
   1091       continue;
   1092     if (Ops)
   1093       Ops->push_back(i);
   1094     if (MO.isUse())
   1095       Use |= !MO.isUndef();
   1096     else if (MO.getSubReg() && !MO.isUndef())
   1097       // A partial <def,undef> doesn't count as reading the register.
   1098       PartDef = true;
   1099     else
   1100       FullDef = true;
   1101   }
   1102   // A partial redefine uses Reg unless there is also a full define.
   1103   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
   1104 }
   1105 
   1106 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
   1107 /// the specified register or -1 if it is not found. If isDead is true, defs
   1108 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
   1109 /// also checks if there is a def of a super-register.
   1110 int
   1111 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
   1112                                         const TargetRegisterInfo *TRI) const {
   1113   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
   1114   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1115     const MachineOperand &MO = getOperand(i);
   1116     // Accept regmask operands when Overlap is set.
   1117     // Ignore them when looking for a specific def operand (Overlap == false).
   1118     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
   1119       return i;
   1120     if (!MO.isReg() || !MO.isDef())
   1121       continue;
   1122     unsigned MOReg = MO.getReg();
   1123     bool Found = (MOReg == Reg);
   1124     if (!Found && TRI && isPhys &&
   1125         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1126       if (Overlap)
   1127         Found = TRI->regsOverlap(MOReg, Reg);
   1128       else
   1129         Found = TRI->isSubRegister(MOReg, Reg);
   1130     }
   1131     if (Found && (!isDead || MO.isDead()))
   1132       return i;
   1133   }
   1134   return -1;
   1135 }
   1136 
   1137 /// findFirstPredOperandIdx() - Find the index of the first operand in the
   1138 /// operand list that is used to represent the predicate. It returns -1 if
   1139 /// none is found.
   1140 int MachineInstr::findFirstPredOperandIdx() const {
   1141   // Don't call MCID.findFirstPredOperandIdx() because this variant
   1142   // is sometimes called on an instruction that's not yet complete, and
   1143   // so the number of operands is less than the MCID indicates. In
   1144   // particular, the PTX target does this.
   1145   const MCInstrDesc &MCID = getDesc();
   1146   if (MCID.isPredicable()) {
   1147     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1148       if (MCID.OpInfo[i].isPredicate())
   1149         return i;
   1150   }
   1151 
   1152   return -1;
   1153 }
   1154 
   1155 // MachineOperand::TiedTo is 4 bits wide.
   1156 const unsigned TiedMax = 15;
   1157 
   1158 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
   1159 ///
   1160 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
   1161 /// field. TiedTo can have these values:
   1162 ///
   1163 /// 0:              Operand is not tied to anything.
   1164 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
   1165 /// TiedMax:        Tied to an operand >= TiedMax-1.
   1166 ///
   1167 /// The tied def must be one of the first TiedMax operands on a normal
   1168 /// instruction. INLINEASM instructions allow more tied defs.
   1169 ///
   1170 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
   1171   MachineOperand &DefMO = getOperand(DefIdx);
   1172   MachineOperand &UseMO = getOperand(UseIdx);
   1173   assert(DefMO.isDef() && "DefIdx must be a def operand");
   1174   assert(UseMO.isUse() && "UseIdx must be a use operand");
   1175   assert(!DefMO.isTied() && "Def is already tied to another use");
   1176   assert(!UseMO.isTied() && "Use is already tied to another def");
   1177 
   1178   if (DefIdx < TiedMax)
   1179     UseMO.TiedTo = DefIdx + 1;
   1180   else {
   1181     // Inline asm can use the group descriptors to find tied operands, but on
   1182     // normal instruction, the tied def must be within the first TiedMax
   1183     // operands.
   1184     assert(isInlineAsm() && "DefIdx out of range");
   1185     UseMO.TiedTo = TiedMax;
   1186   }
   1187 
   1188   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
   1189   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
   1190 }
   1191 
   1192 /// Given the index of a tied register operand, find the operand it is tied to.
   1193 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
   1194 /// which must exist.
   1195 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
   1196   const MachineOperand &MO = getOperand(OpIdx);
   1197   assert(MO.isTied() && "Operand isn't tied");
   1198 
   1199   // Normally TiedTo is in range.
   1200   if (MO.TiedTo < TiedMax)
   1201     return MO.TiedTo - 1;
   1202 
   1203   // Uses on normal instructions can be out of range.
   1204   if (!isInlineAsm()) {
   1205     // Normal tied defs must be in the 0..TiedMax-1 range.
   1206     if (MO.isUse())
   1207       return TiedMax - 1;
   1208     // MO is a def. Search for the tied use.
   1209     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
   1210       const MachineOperand &UseMO = getOperand(i);
   1211       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
   1212         return i;
   1213     }
   1214     llvm_unreachable("Can't find tied use");
   1215   }
   1216 
   1217   // Now deal with inline asm by parsing the operand group descriptor flags.
   1218   // Find the beginning of each operand group.
   1219   SmallVector<unsigned, 8> GroupIdx;
   1220   unsigned OpIdxGroup = ~0u;
   1221   unsigned NumOps;
   1222   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
   1223        i += NumOps) {
   1224     const MachineOperand &FlagMO = getOperand(i);
   1225     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
   1226     unsigned CurGroup = GroupIdx.size();
   1227     GroupIdx.push_back(i);
   1228     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
   1229     // OpIdx belongs to this operand group.
   1230     if (OpIdx > i && OpIdx < i + NumOps)
   1231       OpIdxGroup = CurGroup;
   1232     unsigned TiedGroup;
   1233     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
   1234       continue;
   1235     // Operands in this group are tied to operands in TiedGroup which must be
   1236     // earlier. Find the number of operands between the two groups.
   1237     unsigned Delta = i - GroupIdx[TiedGroup];
   1238 
   1239     // OpIdx is a use tied to TiedGroup.
   1240     if (OpIdxGroup == CurGroup)
   1241       return OpIdx - Delta;
   1242 
   1243     // OpIdx is a def tied to this use group.
   1244     if (OpIdxGroup == TiedGroup)
   1245       return OpIdx + Delta;
   1246   }
   1247   llvm_unreachable("Invalid tied operand on inline asm");
   1248 }
   1249 
   1250 /// clearKillInfo - Clears kill flags on all operands.
   1251 ///
   1252 void MachineInstr::clearKillInfo() {
   1253   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1254     MachineOperand &MO = getOperand(i);
   1255     if (MO.isReg() && MO.isUse())
   1256       MO.setIsKill(false);
   1257   }
   1258 }
   1259 
   1260 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
   1261 ///
   1262 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
   1263   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1264     const MachineOperand &MO = MI->getOperand(i);
   1265     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
   1266       continue;
   1267     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
   1268       MachineOperand &MOp = getOperand(j);
   1269       if (!MOp.isIdenticalTo(MO))
   1270         continue;
   1271       if (MO.isKill())
   1272         MOp.setIsKill();
   1273       else
   1274         MOp.setIsDead();
   1275       break;
   1276     }
   1277   }
   1278 }
   1279 
   1280 /// copyPredicates - Copies predicate operand(s) from MI.
   1281 void MachineInstr::copyPredicates(const MachineInstr *MI) {
   1282   assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
   1283 
   1284   const MCInstrDesc &MCID = MI->getDesc();
   1285   if (!MCID.isPredicable())
   1286     return;
   1287   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1288     if (MCID.OpInfo[i].isPredicate()) {
   1289       // Predicated operands must be last operands.
   1290       addOperand(MI->getOperand(i));
   1291     }
   1292   }
   1293 }
   1294 
   1295 void MachineInstr::substituteRegister(unsigned FromReg,
   1296                                       unsigned ToReg,
   1297                                       unsigned SubIdx,
   1298                                       const TargetRegisterInfo &RegInfo) {
   1299   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
   1300     if (SubIdx)
   1301       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
   1302     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1303       MachineOperand &MO = getOperand(i);
   1304       if (!MO.isReg() || MO.getReg() != FromReg)
   1305         continue;
   1306       MO.substPhysReg(ToReg, RegInfo);
   1307     }
   1308   } else {
   1309     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1310       MachineOperand &MO = getOperand(i);
   1311       if (!MO.isReg() || MO.getReg() != FromReg)
   1312         continue;
   1313       MO.substVirtReg(ToReg, SubIdx, RegInfo);
   1314     }
   1315   }
   1316 }
   1317 
   1318 /// isSafeToMove - Return true if it is safe to move this instruction. If
   1319 /// SawStore is set to true, it means that there is a store (or call) between
   1320 /// the instruction's location and its intended destination.
   1321 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
   1322                                 AliasAnalysis *AA,
   1323                                 bool &SawStore) const {
   1324   // Ignore stuff that we obviously can't move.
   1325   //
   1326   // Treat volatile loads as stores. This is not strictly necessary for
   1327   // volatiles, but it is required for atomic loads. It is not allowed to move
   1328   // a load across an atomic load with Ordering > Monotonic.
   1329   if (mayStore() || isCall() ||
   1330       (mayLoad() && hasOrderedMemoryRef())) {
   1331     SawStore = true;
   1332     return false;
   1333   }
   1334 
   1335   if (isLabel() || isDebugValue() ||
   1336       isTerminator() || hasUnmodeledSideEffects())
   1337     return false;
   1338 
   1339   // See if this instruction does a load.  If so, we have to guarantee that the
   1340   // loaded value doesn't change between the load and the its intended
   1341   // destination. The check for isInvariantLoad gives the targe the chance to
   1342   // classify the load as always returning a constant, e.g. a constant pool
   1343   // load.
   1344   if (mayLoad() && !isInvariantLoad(AA))
   1345     // Otherwise, this is a real load.  If there is a store between the load and
   1346     // end of block, we can't move it.
   1347     return !SawStore;
   1348 
   1349   return true;
   1350 }
   1351 
   1352 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
   1353 /// instruction which defined the specified register instead of copying it.
   1354 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
   1355                                  AliasAnalysis *AA,
   1356                                  unsigned DstReg) const {
   1357   bool SawStore = false;
   1358   if (!TII->isTriviallyReMaterializable(this, AA) ||
   1359       !isSafeToMove(TII, AA, SawStore))
   1360     return false;
   1361   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1362     const MachineOperand &MO = getOperand(i);
   1363     if (!MO.isReg())
   1364       continue;
   1365     // FIXME: For now, do not remat any instruction with register operands.
   1366     // Later on, we can loosen the restriction is the register operands have
   1367     // not been modified between the def and use. Note, this is different from
   1368     // MachineSink because the code is no longer in two-address form (at least
   1369     // partially).
   1370     if (MO.isUse())
   1371       return false;
   1372     else if (!MO.isDead() && MO.getReg() != DstReg)
   1373       return false;
   1374   }
   1375   return true;
   1376 }
   1377 
   1378 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
   1379 /// or volatile memory reference, or if the information describing the memory
   1380 /// reference is not available. Return false if it is known to have no ordered
   1381 /// memory references.
   1382 bool MachineInstr::hasOrderedMemoryRef() const {
   1383   // An instruction known never to access memory won't have a volatile access.
   1384   if (!mayStore() &&
   1385       !mayLoad() &&
   1386       !isCall() &&
   1387       !hasUnmodeledSideEffects())
   1388     return false;
   1389 
   1390   // Otherwise, if the instruction has no memory reference information,
   1391   // conservatively assume it wasn't preserved.
   1392   if (memoperands_empty())
   1393     return true;
   1394 
   1395   // Check the memory reference information for ordered references.
   1396   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
   1397     if (!(*I)->isUnordered())
   1398       return true;
   1399 
   1400   return false;
   1401 }
   1402 
   1403 /// isInvariantLoad - Return true if this instruction is loading from a
   1404 /// location whose value is invariant across the function.  For example,
   1405 /// loading a value from the constant pool or from the argument area
   1406 /// of a function if it does not change.  This should only return true of
   1407 /// *all* loads the instruction does are invariant (if it does multiple loads).
   1408 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
   1409   // If the instruction doesn't load at all, it isn't an invariant load.
   1410   if (!mayLoad())
   1411     return false;
   1412 
   1413   // If the instruction has lost its memoperands, conservatively assume that
   1414   // it may not be an invariant load.
   1415   if (memoperands_empty())
   1416     return false;
   1417 
   1418   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
   1419 
   1420   for (mmo_iterator I = memoperands_begin(),
   1421        E = memoperands_end(); I != E; ++I) {
   1422     if ((*I)->isVolatile()) return false;
   1423     if ((*I)->isStore()) return false;
   1424     if ((*I)->isInvariant()) return true;
   1425 
   1426     if (const Value *V = (*I)->getValue()) {
   1427       // A load from a constant PseudoSourceValue is invariant.
   1428       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
   1429         if (PSV->isConstant(MFI))
   1430           continue;
   1431       // If we have an AliasAnalysis, ask it whether the memory is constant.
   1432       if (AA && AA->pointsToConstantMemory(
   1433                       AliasAnalysis::Location(V, (*I)->getSize(),
   1434                                               (*I)->getTBAAInfo())))
   1435         continue;
   1436     }
   1437 
   1438     // Otherwise assume conservatively.
   1439     return false;
   1440   }
   1441 
   1442   // Everything checks out.
   1443   return true;
   1444 }
   1445 
   1446 /// isConstantValuePHI - If the specified instruction is a PHI that always
   1447 /// merges together the same virtual register, return the register, otherwise
   1448 /// return 0.
   1449 unsigned MachineInstr::isConstantValuePHI() const {
   1450   if (!isPHI())
   1451     return 0;
   1452   assert(getNumOperands() >= 3 &&
   1453          "It's illegal to have a PHI without source operands");
   1454 
   1455   unsigned Reg = getOperand(1).getReg();
   1456   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
   1457     if (getOperand(i).getReg() != Reg)
   1458       return 0;
   1459   return Reg;
   1460 }
   1461 
   1462 bool MachineInstr::hasUnmodeledSideEffects() const {
   1463   if (hasProperty(MCID::UnmodeledSideEffects))
   1464     return true;
   1465   if (isInlineAsm()) {
   1466     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1467     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1468       return true;
   1469   }
   1470 
   1471   return false;
   1472 }
   1473 
   1474 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
   1475 ///
   1476 bool MachineInstr::allDefsAreDead() const {
   1477   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
   1478     const MachineOperand &MO = getOperand(i);
   1479     if (!MO.isReg() || MO.isUse())
   1480       continue;
   1481     if (!MO.isDead())
   1482       return false;
   1483   }
   1484   return true;
   1485 }
   1486 
   1487 /// copyImplicitOps - Copy implicit register operands from specified
   1488 /// instruction to this instruction.
   1489 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
   1490   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
   1491        i != e; ++i) {
   1492     const MachineOperand &MO = MI->getOperand(i);
   1493     if (MO.isReg() && MO.isImplicit())
   1494       addOperand(MO);
   1495   }
   1496 }
   1497 
   1498 void MachineInstr::dump() const {
   1499 #ifndef NDEBUG
   1500   dbgs() << "  " << *this;
   1501 #endif
   1502 }
   1503 
   1504 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
   1505                          raw_ostream &CommentOS) {
   1506   const LLVMContext &Ctx = MF->getFunction()->getContext();
   1507   if (!DL.isUnknown()) {          // Print source line info.
   1508     DIScope Scope(DL.getScope(Ctx));
   1509     // Omit the directory, because it's likely to be long and uninteresting.
   1510     if (Scope.Verify())
   1511       CommentOS << Scope.getFilename();
   1512     else
   1513       CommentOS << "<unknown>";
   1514     CommentOS << ':' << DL.getLine();
   1515     if (DL.getCol() != 0)
   1516       CommentOS << ':' << DL.getCol();
   1517     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
   1518     if (!InlinedAtDL.isUnknown()) {
   1519       CommentOS << " @[ ";
   1520       printDebugLoc(InlinedAtDL, MF, CommentOS);
   1521       CommentOS << " ]";
   1522     }
   1523   }
   1524 }
   1525 
   1526 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
   1527   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
   1528   const MachineFunction *MF = 0;
   1529   const MachineRegisterInfo *MRI = 0;
   1530   if (const MachineBasicBlock *MBB = getParent()) {
   1531     MF = MBB->getParent();
   1532     if (!TM && MF)
   1533       TM = &MF->getTarget();
   1534     if (MF)
   1535       MRI = &MF->getRegInfo();
   1536   }
   1537 
   1538   // Save a list of virtual registers.
   1539   SmallVector<unsigned, 8> VirtRegs;
   1540 
   1541   // Print explicitly defined operands on the left of an assignment syntax.
   1542   unsigned StartOp = 0, e = getNumOperands();
   1543   for (; StartOp < e && getOperand(StartOp).isReg() &&
   1544          getOperand(StartOp).isDef() &&
   1545          !getOperand(StartOp).isImplicit();
   1546        ++StartOp) {
   1547     if (StartOp != 0) OS << ", ";
   1548     getOperand(StartOp).print(OS, TM);
   1549     unsigned Reg = getOperand(StartOp).getReg();
   1550     if (TargetRegisterInfo::isVirtualRegister(Reg))
   1551       VirtRegs.push_back(Reg);
   1552   }
   1553 
   1554   if (StartOp != 0)
   1555     OS << " = ";
   1556 
   1557   // Print the opcode name.
   1558   if (TM && TM->getInstrInfo())
   1559     OS << TM->getInstrInfo()->getName(getOpcode());
   1560   else
   1561     OS << "UNKNOWN";
   1562 
   1563   // Print the rest of the operands.
   1564   bool OmittedAnyCallClobbers = false;
   1565   bool FirstOp = true;
   1566   unsigned AsmDescOp = ~0u;
   1567   unsigned AsmOpCount = 0;
   1568 
   1569   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
   1570     // Print asm string.
   1571     OS << " ";
   1572     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
   1573 
   1574     // Print HasSideEffects, IsAlignStack
   1575     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1576     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1577       OS << " [sideeffect]";
   1578     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
   1579       OS << " [alignstack]";
   1580     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
   1581       OS << " [attdialect]";
   1582     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
   1583       OS << " [inteldialect]";
   1584 
   1585     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
   1586     FirstOp = false;
   1587   }
   1588 
   1589 
   1590   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
   1591     const MachineOperand &MO = getOperand(i);
   1592 
   1593     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1594       VirtRegs.push_back(MO.getReg());
   1595 
   1596     // Omit call-clobbered registers which aren't used anywhere. This makes
   1597     // call instructions much less noisy on targets where calls clobber lots
   1598     // of registers. Don't rely on MO.isDead() because we may be called before
   1599     // LiveVariables is run, or we may be looking at a non-allocatable reg.
   1600     if (MF && isCall() &&
   1601         MO.isReg() && MO.isImplicit() && MO.isDef()) {
   1602       unsigned Reg = MO.getReg();
   1603       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1604         const MachineRegisterInfo &MRI = MF->getRegInfo();
   1605         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
   1606           bool HasAliasLive = false;
   1607           for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
   1608                AI.isValid(); ++AI) {
   1609             unsigned AliasReg = *AI;
   1610             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
   1611               HasAliasLive = true;
   1612               break;
   1613             }
   1614           }
   1615           if (!HasAliasLive) {
   1616             OmittedAnyCallClobbers = true;
   1617             continue;
   1618           }
   1619         }
   1620       }
   1621     }
   1622 
   1623     if (FirstOp) FirstOp = false; else OS << ",";
   1624     OS << " ";
   1625     if (i < getDesc().NumOperands) {
   1626       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
   1627       if (MCOI.isPredicate())
   1628         OS << "pred:";
   1629       if (MCOI.isOptionalDef())
   1630         OS << "opt:";
   1631     }
   1632     if (isDebugValue() && MO.isMetadata()) {
   1633       // Pretty print DBG_VALUE instructions.
   1634       const MDNode *MD = MO.getMetadata();
   1635       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
   1636         OS << "!\"" << MDS->getString() << '\"';
   1637       else
   1638         MO.print(OS, TM);
   1639     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
   1640       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
   1641     } else if (i == AsmDescOp && MO.isImm()) {
   1642       // Pretty print the inline asm operand descriptor.
   1643       OS << '$' << AsmOpCount++;
   1644       unsigned Flag = MO.getImm();
   1645       switch (InlineAsm::getKind(Flag)) {
   1646       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
   1647       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
   1648       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
   1649       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
   1650       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
   1651       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
   1652       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
   1653       }
   1654 
   1655       unsigned RCID = 0;
   1656       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
   1657         if (TM)
   1658           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
   1659         else
   1660           OS << ":RC" << RCID;
   1661       }
   1662 
   1663       unsigned TiedTo = 0;
   1664       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
   1665         OS << " tiedto:$" << TiedTo;
   1666 
   1667       OS << ']';
   1668 
   1669       // Compute the index of the next operand descriptor.
   1670       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
   1671     } else
   1672       MO.print(OS, TM);
   1673   }
   1674 
   1675   // Briefly indicate whether any call clobbers were omitted.
   1676   if (OmittedAnyCallClobbers) {
   1677     if (!FirstOp) OS << ",";
   1678     OS << " ...";
   1679   }
   1680 
   1681   bool HaveSemi = false;
   1682   if (Flags) {
   1683     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1684     OS << " flags: ";
   1685 
   1686     if (Flags & FrameSetup)
   1687       OS << "FrameSetup";
   1688   }
   1689 
   1690   if (!memoperands_empty()) {
   1691     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1692 
   1693     OS << " mem:";
   1694     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
   1695          i != e; ++i) {
   1696       OS << **i;
   1697       if (llvm::next(i) != e)
   1698         OS << " ";
   1699     }
   1700   }
   1701 
   1702   // Print the regclass of any virtual registers encountered.
   1703   if (MRI && !VirtRegs.empty()) {
   1704     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1705     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
   1706       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
   1707       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
   1708       for (unsigned j = i+1; j != VirtRegs.size();) {
   1709         if (MRI->getRegClass(VirtRegs[j]) != RC) {
   1710           ++j;
   1711           continue;
   1712         }
   1713         if (VirtRegs[i] != VirtRegs[j])
   1714           OS << "," << PrintReg(VirtRegs[j]);
   1715         VirtRegs.erase(VirtRegs.begin()+j);
   1716       }
   1717     }
   1718   }
   1719 
   1720   // Print debug location information.
   1721   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
   1722     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1723     DIVariable DV(getOperand(e - 1).getMetadata());
   1724     OS << " line no:" <<  DV.getLineNumber();
   1725     if (MDNode *InlinedAt = DV.getInlinedAt()) {
   1726       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
   1727       if (!InlinedAtDL.isUnknown()) {
   1728         OS << " inlined @[ ";
   1729         printDebugLoc(InlinedAtDL, MF, OS);
   1730         OS << " ]";
   1731       }
   1732     }
   1733   } else if (!debugLoc.isUnknown() && MF) {
   1734     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1735     OS << " dbg:";
   1736     printDebugLoc(debugLoc, MF, OS);
   1737   }
   1738 
   1739   OS << '\n';
   1740 }
   1741 
   1742 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
   1743                                      const TargetRegisterInfo *RegInfo,
   1744                                      bool AddIfNotFound) {
   1745   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1746   bool hasAliases = isPhysReg &&
   1747     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
   1748   bool Found = false;
   1749   SmallVector<unsigned,4> DeadOps;
   1750   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1751     MachineOperand &MO = getOperand(i);
   1752     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
   1753       continue;
   1754     unsigned Reg = MO.getReg();
   1755     if (!Reg)
   1756       continue;
   1757 
   1758     if (Reg == IncomingReg) {
   1759       if (!Found) {
   1760         if (MO.isKill())
   1761           // The register is already marked kill.
   1762           return true;
   1763         if (isPhysReg && isRegTiedToDefOperand(i))
   1764           // Two-address uses of physregs must not be marked kill.
   1765           return true;
   1766         MO.setIsKill();
   1767         Found = true;
   1768       }
   1769     } else if (hasAliases && MO.isKill() &&
   1770                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1771       // A super-register kill already exists.
   1772       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1773         return true;
   1774       if (RegInfo->isSubRegister(IncomingReg, Reg))
   1775         DeadOps.push_back(i);
   1776     }
   1777   }
   1778 
   1779   // Trim unneeded kill operands.
   1780   while (!DeadOps.empty()) {
   1781     unsigned OpIdx = DeadOps.back();
   1782     if (getOperand(OpIdx).isImplicit())
   1783       RemoveOperand(OpIdx);
   1784     else
   1785       getOperand(OpIdx).setIsKill(false);
   1786     DeadOps.pop_back();
   1787   }
   1788 
   1789   // If not found, this means an alias of one of the operands is killed. Add a
   1790   // new implicit operand if required.
   1791   if (!Found && AddIfNotFound) {
   1792     addOperand(MachineOperand::CreateReg(IncomingReg,
   1793                                          false /*IsDef*/,
   1794                                          true  /*IsImp*/,
   1795                                          true  /*IsKill*/));
   1796     return true;
   1797   }
   1798   return Found;
   1799 }
   1800 
   1801 void MachineInstr::clearRegisterKills(unsigned Reg,
   1802                                       const TargetRegisterInfo *RegInfo) {
   1803   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
   1804     RegInfo = 0;
   1805   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1806     MachineOperand &MO = getOperand(i);
   1807     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
   1808       continue;
   1809     unsigned OpReg = MO.getReg();
   1810     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
   1811       MO.setIsKill(false);
   1812   }
   1813 }
   1814 
   1815 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
   1816                                    const TargetRegisterInfo *RegInfo,
   1817                                    bool AddIfNotFound) {
   1818   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1819   bool hasAliases = isPhysReg &&
   1820     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
   1821   bool Found = false;
   1822   SmallVector<unsigned,4> DeadOps;
   1823   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1824     MachineOperand &MO = getOperand(i);
   1825     if (!MO.isReg() || !MO.isDef())
   1826       continue;
   1827     unsigned Reg = MO.getReg();
   1828     if (!Reg)
   1829       continue;
   1830 
   1831     if (Reg == IncomingReg) {
   1832       MO.setIsDead();
   1833       Found = true;
   1834     } else if (hasAliases && MO.isDead() &&
   1835                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1836       // There exists a super-register that's marked dead.
   1837       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1838         return true;
   1839       if (RegInfo->isSubRegister(IncomingReg, Reg))
   1840         DeadOps.push_back(i);
   1841     }
   1842   }
   1843 
   1844   // Trim unneeded dead operands.
   1845   while (!DeadOps.empty()) {
   1846     unsigned OpIdx = DeadOps.back();
   1847     if (getOperand(OpIdx).isImplicit())
   1848       RemoveOperand(OpIdx);
   1849     else
   1850       getOperand(OpIdx).setIsDead(false);
   1851     DeadOps.pop_back();
   1852   }
   1853 
   1854   // If not found, this means an alias of one of the operands is dead. Add a
   1855   // new implicit operand if required.
   1856   if (Found || !AddIfNotFound)
   1857     return Found;
   1858 
   1859   addOperand(MachineOperand::CreateReg(IncomingReg,
   1860                                        true  /*IsDef*/,
   1861                                        true  /*IsImp*/,
   1862                                        false /*IsKill*/,
   1863                                        true  /*IsDead*/));
   1864   return true;
   1865 }
   1866 
   1867 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
   1868                                       const TargetRegisterInfo *RegInfo) {
   1869   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
   1870     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
   1871     if (MO)
   1872       return;
   1873   } else {
   1874     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1875       const MachineOperand &MO = getOperand(i);
   1876       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
   1877           MO.getSubReg() == 0)
   1878         return;
   1879     }
   1880   }
   1881   addOperand(MachineOperand::CreateReg(IncomingReg,
   1882                                        true  /*IsDef*/,
   1883                                        true  /*IsImp*/));
   1884 }
   1885 
   1886 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1887                                          const TargetRegisterInfo &TRI) {
   1888   bool HasRegMask = false;
   1889   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1890     MachineOperand &MO = getOperand(i);
   1891     if (MO.isRegMask()) {
   1892       HasRegMask = true;
   1893       continue;
   1894     }
   1895     if (!MO.isReg() || !MO.isDef()) continue;
   1896     unsigned Reg = MO.getReg();
   1897     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
   1898     bool Dead = true;
   1899     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
   1900          I != E; ++I)
   1901       if (TRI.regsOverlap(*I, Reg)) {
   1902         Dead = false;
   1903         break;
   1904       }
   1905     // If there are no uses, including partial uses, the def is dead.
   1906     if (Dead) MO.setIsDead();
   1907   }
   1908 
   1909   // This is a call with a register mask operand.
   1910   // Mask clobbers are always dead, so add defs for the non-dead defines.
   1911   if (HasRegMask)
   1912     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
   1913          I != E; ++I)
   1914       addRegisterDefined(*I, &TRI);
   1915 }
   1916 
   1917 unsigned
   1918 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
   1919   // Build up a buffer of hash code components.
   1920   SmallVector<size_t, 8> HashComponents;
   1921   HashComponents.reserve(MI->getNumOperands() + 1);
   1922   HashComponents.push_back(MI->getOpcode());
   1923   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1924     const MachineOperand &MO = MI->getOperand(i);
   1925     if (MO.isReg() && MO.isDef() &&
   1926         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1927       continue;  // Skip virtual register defs.
   1928 
   1929     HashComponents.push_back(hash_value(MO));
   1930   }
   1931   return hash_combine_range(HashComponents.begin(), HashComponents.end());
   1932 }
   1933 
   1934 void MachineInstr::emitError(StringRef Msg) const {
   1935   // Find the source location cookie.
   1936   unsigned LocCookie = 0;
   1937   const MDNode *LocMD = 0;
   1938   for (unsigned i = getNumOperands(); i != 0; --i) {
   1939     if (getOperand(i-1).isMetadata() &&
   1940         (LocMD = getOperand(i-1).getMetadata()) &&
   1941         LocMD->getNumOperands() != 0) {
   1942       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
   1943         LocCookie = CI->getZExtValue();
   1944         break;
   1945       }
   1946     }
   1947   }
   1948 
   1949   if (const MachineBasicBlock *MBB = getParent())
   1950     if (const MachineFunction *MF = MBB->getParent())
   1951       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
   1952   report_fatal_error(Msg);
   1953 }
   1954