1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAGISel class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GCStrategy.h" 15 #include "ScheduleDAGSDNodes.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 34 #include "llvm/CodeGen/SchedulerRegistry.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/SelectionDAGISel.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/MC/MCAsmInfo.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetInstrInfo.h" 54 #include "llvm/Target/TargetIntrinsicInfo.h" 55 #include "llvm/Target/TargetLowering.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include "llvm/Target/TargetRegisterInfo.h" 59 #include "llvm/Target/TargetSubtargetInfo.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 67 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 68 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 69 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 70 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 71 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 72 STATISTIC(NumFastIselFailLowerArguments, 73 "Number of entry blocks where fast isel failed to lower arguments"); 74 75 #ifndef NDEBUG 76 static cl::opt<bool> 77 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, 78 cl::desc("Enable extra verbose messages in the \"fast\" " 79 "instruction selector")); 80 81 // Terminators 82 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); 83 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); 84 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); 85 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); 86 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); 87 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); 88 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); 89 90 // Standard binary operators... 91 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); 92 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); 93 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); 94 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); 95 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); 96 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); 97 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); 98 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); 99 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); 100 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); 101 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); 102 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); 103 104 // Logical operators... 105 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); 106 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); 107 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); 108 109 // Memory instructions... 110 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); 111 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); 112 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); 113 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); 114 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); 115 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); 116 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); 117 118 // Convert instructions... 119 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); 120 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); 121 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); 122 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); 123 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); 124 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); 125 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); 126 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); 127 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); 128 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); 129 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); 130 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); 131 132 // Other instructions... 133 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); 134 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); 135 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); 136 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); 137 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); 138 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); 139 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); 140 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); 141 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); 142 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); 143 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); 144 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); 145 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); 146 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); 147 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); 148 149 // Intrinsic instructions... 150 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call"); 151 STATISTIC(NumFastIselFailSAddWithOverflow, 152 "Fast isel fails on sadd.with.overflow"); 153 STATISTIC(NumFastIselFailUAddWithOverflow, 154 "Fast isel fails on uadd.with.overflow"); 155 STATISTIC(NumFastIselFailSSubWithOverflow, 156 "Fast isel fails on ssub.with.overflow"); 157 STATISTIC(NumFastIselFailUSubWithOverflow, 158 "Fast isel fails on usub.with.overflow"); 159 STATISTIC(NumFastIselFailSMulWithOverflow, 160 "Fast isel fails on smul.with.overflow"); 161 STATISTIC(NumFastIselFailUMulWithOverflow, 162 "Fast isel fails on umul.with.overflow"); 163 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress"); 164 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call"); 165 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call"); 166 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call"); 167 #endif 168 169 static cl::opt<bool> 170 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, 171 cl::desc("Enable verbose messages in the \"fast\" " 172 "instruction selector")); 173 static cl::opt<int> EnableFastISelAbort( 174 "fast-isel-abort", cl::Hidden, 175 cl::desc("Enable abort calls when \"fast\" instruction selection " 176 "fails to lower an instruction: 0 disable the abort, 1 will " 177 "abort but for args, calls and terminators, 2 will also " 178 "abort for argument lowering, and 3 will never fallback " 179 "to SelectionDAG.")); 180 181 static cl::opt<bool> 182 UseMBPI("use-mbpi", 183 cl::desc("use Machine Branch Probability Info"), 184 cl::init(true), cl::Hidden); 185 186 #ifndef NDEBUG 187 static cl::opt<std::string> 188 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 189 cl::desc("Only display the basic block whose name " 190 "matches this for all view-*-dags options")); 191 static cl::opt<bool> 192 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 193 cl::desc("Pop up a window to show dags before the first " 194 "dag combine pass")); 195 static cl::opt<bool> 196 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 197 cl::desc("Pop up a window to show dags before legalize types")); 198 static cl::opt<bool> 199 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 200 cl::desc("Pop up a window to show dags before legalize")); 201 static cl::opt<bool> 202 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 203 cl::desc("Pop up a window to show dags before the second " 204 "dag combine pass")); 205 static cl::opt<bool> 206 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 207 cl::desc("Pop up a window to show dags before the post legalize types" 208 " dag combine pass")); 209 static cl::opt<bool> 210 ViewISelDAGs("view-isel-dags", cl::Hidden, 211 cl::desc("Pop up a window to show isel dags as they are selected")); 212 static cl::opt<bool> 213 ViewSchedDAGs("view-sched-dags", cl::Hidden, 214 cl::desc("Pop up a window to show sched dags as they are processed")); 215 static cl::opt<bool> 216 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 217 cl::desc("Pop up a window to show SUnit dags after they are processed")); 218 #else 219 static const bool ViewDAGCombine1 = false, 220 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 221 ViewDAGCombine2 = false, 222 ViewDAGCombineLT = false, 223 ViewISelDAGs = false, ViewSchedDAGs = false, 224 ViewSUnitDAGs = false; 225 #endif 226 227 //===---------------------------------------------------------------------===// 228 /// 229 /// RegisterScheduler class - Track the registration of instruction schedulers. 230 /// 231 //===---------------------------------------------------------------------===// 232 MachinePassRegistry RegisterScheduler::Registry; 233 234 //===---------------------------------------------------------------------===// 235 /// 236 /// ISHeuristic command line option for instruction schedulers. 237 /// 238 //===---------------------------------------------------------------------===// 239 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 240 RegisterPassParser<RegisterScheduler> > 241 ISHeuristic("pre-RA-sched", 242 cl::init(&createDefaultScheduler), cl::Hidden, 243 cl::desc("Instruction schedulers available (before register" 244 " allocation):")); 245 246 static RegisterScheduler 247 defaultListDAGScheduler("default", "Best scheduler for the target", 248 createDefaultScheduler); 249 250 namespace llvm { 251 //===--------------------------------------------------------------------===// 252 /// \brief This class is used by SelectionDAGISel to temporarily override 253 /// the optimization level on a per-function basis. 254 class OptLevelChanger { 255 SelectionDAGISel &IS; 256 CodeGenOpt::Level SavedOptLevel; 257 bool SavedFastISel; 258 259 public: 260 OptLevelChanger(SelectionDAGISel &ISel, 261 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 262 SavedOptLevel = IS.OptLevel; 263 if (NewOptLevel == SavedOptLevel) 264 return; 265 IS.OptLevel = NewOptLevel; 266 IS.TM.setOptLevel(NewOptLevel); 267 DEBUG(dbgs() << "\nChanging optimization level for Function " 268 << IS.MF->getFunction()->getName() << "\n"); 269 DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel 270 << " ; After: -O" << NewOptLevel << "\n"); 271 SavedFastISel = IS.TM.Options.EnableFastISel; 272 if (NewOptLevel == CodeGenOpt::None) { 273 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 274 DEBUG(dbgs() << "\tFastISel is " 275 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 276 << "\n"); 277 } 278 } 279 280 ~OptLevelChanger() { 281 if (IS.OptLevel == SavedOptLevel) 282 return; 283 DEBUG(dbgs() << "\nRestoring optimization level for Function " 284 << IS.MF->getFunction()->getName() << "\n"); 285 DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel 286 << " ; After: -O" << SavedOptLevel << "\n"); 287 IS.OptLevel = SavedOptLevel; 288 IS.TM.setOptLevel(SavedOptLevel); 289 IS.TM.setFastISel(SavedFastISel); 290 } 291 }; 292 293 //===--------------------------------------------------------------------===// 294 /// createDefaultScheduler - This creates an instruction scheduler appropriate 295 /// for the target. 296 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 297 CodeGenOpt::Level OptLevel) { 298 const TargetLowering *TLI = IS->TLI; 299 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 300 301 // Try first to see if the Target has its own way of selecting a scheduler 302 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 303 return SchedulerCtor(IS, OptLevel); 304 } 305 306 if (OptLevel == CodeGenOpt::None || 307 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 308 TLI->getSchedulingPreference() == Sched::Source) 309 return createSourceListDAGScheduler(IS, OptLevel); 310 if (TLI->getSchedulingPreference() == Sched::RegPressure) 311 return createBURRListDAGScheduler(IS, OptLevel); 312 if (TLI->getSchedulingPreference() == Sched::Hybrid) 313 return createHybridListDAGScheduler(IS, OptLevel); 314 if (TLI->getSchedulingPreference() == Sched::VLIW) 315 return createVLIWDAGScheduler(IS, OptLevel); 316 assert(TLI->getSchedulingPreference() == Sched::ILP && 317 "Unknown sched type!"); 318 return createILPListDAGScheduler(IS, OptLevel); 319 } 320 } 321 322 // EmitInstrWithCustomInserter - This method should be implemented by targets 323 // that mark instructions with the 'usesCustomInserter' flag. These 324 // instructions are special in various ways, which require special support to 325 // insert. The specified MachineInstr is created but not inserted into any 326 // basic blocks, and this method is called to expand it into a sequence of 327 // instructions, potentially also creating new basic blocks and control flow. 328 // When new basic blocks are inserted and the edges from MBB to its successors 329 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 330 // DenseMap. 331 MachineBasicBlock * 332 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 333 MachineBasicBlock *MBB) const { 334 #ifndef NDEBUG 335 dbgs() << "If a target marks an instruction with " 336 "'usesCustomInserter', it must implement " 337 "TargetLowering::EmitInstrWithCustomInserter!"; 338 #endif 339 llvm_unreachable(nullptr); 340 } 341 342 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 343 SDNode *Node) const { 344 assert(!MI->hasPostISelHook() && 345 "If a target marks an instruction with 'hasPostISelHook', " 346 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 347 } 348 349 //===----------------------------------------------------------------------===// 350 // SelectionDAGISel code 351 //===----------------------------------------------------------------------===// 352 353 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 354 CodeGenOpt::Level OL) : 355 MachineFunctionPass(ID), TM(tm), 356 FuncInfo(new FunctionLoweringInfo()), 357 CurDAG(new SelectionDAG(tm, OL)), 358 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), 359 GFI(), 360 OptLevel(OL), 361 DAGSize(0) { 362 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 363 initializeBranchProbabilityInfoWrapperPassPass( 364 *PassRegistry::getPassRegistry()); 365 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 366 initializeTargetLibraryInfoWrapperPassPass( 367 *PassRegistry::getPassRegistry()); 368 } 369 370 SelectionDAGISel::~SelectionDAGISel() { 371 delete SDB; 372 delete CurDAG; 373 delete FuncInfo; 374 } 375 376 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 377 AU.addRequired<AAResultsWrapperPass>(); 378 AU.addRequired<GCModuleInfo>(); 379 AU.addPreserved<GCModuleInfo>(); 380 AU.addRequired<TargetLibraryInfoWrapperPass>(); 381 if (UseMBPI && OptLevel != CodeGenOpt::None) 382 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 383 MachineFunctionPass::getAnalysisUsage(AU); 384 } 385 386 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 387 /// may trap on it. In this case we have to split the edge so that the path 388 /// through the predecessor block that doesn't go to the phi block doesn't 389 /// execute the possibly trapping instruction. 390 /// 391 /// This is required for correctness, so it must be done at -O0. 392 /// 393 static void SplitCriticalSideEffectEdges(Function &Fn) { 394 // Loop for blocks with phi nodes. 395 for (BasicBlock &BB : Fn) { 396 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 397 if (!PN) continue; 398 399 ReprocessBlock: 400 // For each block with a PHI node, check to see if any of the input values 401 // are potentially trapping constant expressions. Constant expressions are 402 // the only potentially trapping value that can occur as the argument to a 403 // PHI. 404 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 405 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 406 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 407 if (!CE || !CE->canTrap()) continue; 408 409 // The only case we have to worry about is when the edge is critical. 410 // Since this block has a PHI Node, we assume it has multiple input 411 // edges: check to see if the pred has multiple successors. 412 BasicBlock *Pred = PN->getIncomingBlock(i); 413 if (Pred->getTerminator()->getNumSuccessors() == 1) 414 continue; 415 416 // Okay, we have to split this edge. 417 SplitCriticalEdge( 418 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 419 CriticalEdgeSplittingOptions().setMergeIdenticalEdges()); 420 goto ReprocessBlock; 421 } 422 } 423 } 424 425 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 426 // Do some sanity-checking on the command-line options. 427 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && 428 "-fast-isel-verbose requires -fast-isel"); 429 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 430 "-fast-isel-abort > 0 requires -fast-isel"); 431 432 const Function &Fn = *mf.getFunction(); 433 MF = &mf; 434 435 // Reset the target options before resetting the optimization 436 // level below. 437 // FIXME: This is a horrible hack and should be processed via 438 // codegen looking at the optimization level explicitly when 439 // it wants to look at it. 440 TM.resetTargetOptions(Fn); 441 // Reset OptLevel to None for optnone functions. 442 CodeGenOpt::Level NewOptLevel = OptLevel; 443 if (Fn.hasFnAttribute(Attribute::OptimizeNone)) 444 NewOptLevel = CodeGenOpt::None; 445 OptLevelChanger OLC(*this, NewOptLevel); 446 447 TII = MF->getSubtarget().getInstrInfo(); 448 TLI = MF->getSubtarget().getTargetLowering(); 449 RegInfo = &MF->getRegInfo(); 450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 451 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 452 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 453 454 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 455 456 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn)); 457 458 CurDAG->init(*MF); 459 FuncInfo->set(Fn, *MF, CurDAG); 460 461 if (UseMBPI && OptLevel != CodeGenOpt::None) 462 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 463 else 464 FuncInfo->BPI = nullptr; 465 466 SDB->init(GFI, *AA, LibInfo); 467 468 MF->setHasInlineAsm(false); 469 470 FuncInfo->SplitCSR = false; 471 SmallVector<MachineBasicBlock*, 4> Returns; 472 473 // We split CSR if the target supports it for the given function 474 // and the function has only return exits. 475 if (TLI->supportSplitCSR(MF)) { 476 FuncInfo->SplitCSR = true; 477 478 // Collect all the return blocks. 479 for (const BasicBlock &BB : Fn) { 480 if (!succ_empty(&BB)) 481 continue; 482 483 const TerminatorInst *Term = BB.getTerminator(); 484 if (isa<UnreachableInst>(Term)) 485 continue; 486 if (isa<ReturnInst>(Term)) { 487 Returns.push_back(FuncInfo->MBBMap[&BB]); 488 continue; 489 } 490 491 // Bail out if the exit block is not Return nor Unreachable. 492 FuncInfo->SplitCSR = false; 493 break; 494 } 495 } 496 497 MachineBasicBlock *EntryMBB = &MF->front(); 498 if (FuncInfo->SplitCSR) 499 // This performs initialization so lowering for SplitCSR will be correct. 500 TLI->initializeSplitCSR(EntryMBB); 501 502 SelectAllBasicBlocks(Fn); 503 504 // If the first basic block in the function has live ins that need to be 505 // copied into vregs, emit the copies into the top of the block before 506 // emitting the code for the block. 507 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 508 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 509 510 // Insert copies in the entry block and the return blocks. 511 if (FuncInfo->SplitCSR) 512 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 513 514 DenseMap<unsigned, unsigned> LiveInMap; 515 if (!FuncInfo->ArgDbgValues.empty()) 516 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), 517 E = RegInfo->livein_end(); LI != E; ++LI) 518 if (LI->second) 519 LiveInMap.insert(std::make_pair(LI->first, LI->second)); 520 521 // Insert DBG_VALUE instructions for function arguments to the entry block. 522 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 523 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 524 bool hasFI = MI->getOperand(0).isFI(); 525 unsigned Reg = 526 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 527 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 528 EntryMBB->insert(EntryMBB->begin(), MI); 529 else { 530 MachineInstr *Def = RegInfo->getVRegDef(Reg); 531 if (Def) { 532 MachineBasicBlock::iterator InsertPos = Def; 533 // FIXME: VR def may not be in entry block. 534 Def->getParent()->insert(std::next(InsertPos), MI); 535 } else 536 DEBUG(dbgs() << "Dropping debug info for dead vreg" 537 << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); 538 } 539 540 // If Reg is live-in then update debug info to track its copy in a vreg. 541 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 542 if (LDI != LiveInMap.end()) { 543 assert(!hasFI && "There's no handling of frame pointer updating here yet " 544 "- add if needed"); 545 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 546 MachineBasicBlock::iterator InsertPos = Def; 547 const MDNode *Variable = MI->getDebugVariable(); 548 const MDNode *Expr = MI->getDebugExpression(); 549 DebugLoc DL = MI->getDebugLoc(); 550 bool IsIndirect = MI->isIndirectDebugValue(); 551 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 552 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 553 "Expected inlined-at fields to agree"); 554 // Def is never a terminator here, so it is ok to increment InsertPos. 555 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 556 IsIndirect, LDI->second, Offset, Variable, Expr); 557 558 // If this vreg is directly copied into an exported register then 559 // that COPY instructions also need DBG_VALUE, if it is the only 560 // user of LDI->second. 561 MachineInstr *CopyUseMI = nullptr; 562 for (MachineRegisterInfo::use_instr_iterator 563 UI = RegInfo->use_instr_begin(LDI->second), 564 E = RegInfo->use_instr_end(); UI != E; ) { 565 MachineInstr *UseMI = &*(UI++); 566 if (UseMI->isDebugValue()) continue; 567 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 568 CopyUseMI = UseMI; continue; 569 } 570 // Otherwise this is another use or second copy use. 571 CopyUseMI = nullptr; break; 572 } 573 if (CopyUseMI) { 574 // Use MI's debug location, which describes where Variable was 575 // declared, rather than whatever is attached to CopyUseMI. 576 MachineInstr *NewMI = 577 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 578 CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr); 579 MachineBasicBlock::iterator Pos = CopyUseMI; 580 EntryMBB->insertAfter(Pos, NewMI); 581 } 582 } 583 } 584 585 // Determine if there are any calls in this machine function. 586 MachineFrameInfo *MFI = MF->getFrameInfo(); 587 for (const auto &MBB : *MF) { 588 if (MFI->hasCalls() && MF->hasInlineAsm()) 589 break; 590 591 for (const auto &MI : MBB) { 592 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 593 if ((MCID.isCall() && !MCID.isReturn()) || 594 MI.isStackAligningInlineAsm()) { 595 MFI->setHasCalls(true); 596 } 597 if (MI.isInlineAsm()) { 598 MF->setHasInlineAsm(true); 599 } 600 } 601 } 602 603 // Determine if there is a call to setjmp in the machine function. 604 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 605 606 // Replace forward-declared registers with the registers containing 607 // the desired value. 608 MachineRegisterInfo &MRI = MF->getRegInfo(); 609 for (DenseMap<unsigned, unsigned>::iterator 610 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 611 I != E; ++I) { 612 unsigned From = I->first; 613 unsigned To = I->second; 614 // If To is also scheduled to be replaced, find what its ultimate 615 // replacement is. 616 for (;;) { 617 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 618 if (J == E) break; 619 To = J->second; 620 } 621 // Make sure the new register has a sufficiently constrained register class. 622 if (TargetRegisterInfo::isVirtualRegister(From) && 623 TargetRegisterInfo::isVirtualRegister(To)) 624 MRI.constrainRegClass(To, MRI.getRegClass(From)); 625 // Replace it. 626 627 628 // Replacing one register with another won't touch the kill flags. 629 // We need to conservatively clear the kill flags as a kill on the old 630 // register might dominate existing uses of the new register. 631 if (!MRI.use_empty(To)) 632 MRI.clearKillFlags(From); 633 MRI.replaceRegWith(From, To); 634 } 635 636 // Freeze the set of reserved registers now that MachineFrameInfo has been 637 // set up. All the information required by getReservedRegs() should be 638 // available now. 639 MRI.freezeReservedRegs(*MF); 640 641 // Release function-specific state. SDB and CurDAG are already cleared 642 // at this point. 643 FuncInfo->clear(); 644 645 DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 646 DEBUG(MF->print(dbgs())); 647 648 return true; 649 } 650 651 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 652 BasicBlock::const_iterator End, 653 bool &HadTailCall) { 654 // Lower the instructions. If a call is emitted as a tail call, cease emitting 655 // nodes for this block. 656 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) 657 SDB->visit(*I); 658 659 // Make sure the root of the DAG is up-to-date. 660 CurDAG->setRoot(SDB->getControlRoot()); 661 HadTailCall = SDB->HasTailCall; 662 SDB->clear(); 663 664 // Final step, emit the lowered DAG as machine code. 665 CodeGenAndEmitDAG(); 666 } 667 668 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 669 SmallPtrSet<SDNode*, 128> VisitedNodes; 670 SmallVector<SDNode*, 128> Worklist; 671 672 Worklist.push_back(CurDAG->getRoot().getNode()); 673 674 APInt KnownZero; 675 APInt KnownOne; 676 677 do { 678 SDNode *N = Worklist.pop_back_val(); 679 680 // If we've already seen this node, ignore it. 681 if (!VisitedNodes.insert(N).second) 682 continue; 683 684 // Otherwise, add all chain operands to the worklist. 685 for (const SDValue &Op : N->op_values()) 686 if (Op.getValueType() == MVT::Other) 687 Worklist.push_back(Op.getNode()); 688 689 // If this is a CopyToReg with a vreg dest, process it. 690 if (N->getOpcode() != ISD::CopyToReg) 691 continue; 692 693 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 694 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 695 continue; 696 697 // Ignore non-scalar or non-integer values. 698 SDValue Src = N->getOperand(2); 699 EVT SrcVT = Src.getValueType(); 700 if (!SrcVT.isInteger() || SrcVT.isVector()) 701 continue; 702 703 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 704 CurDAG->computeKnownBits(Src, KnownZero, KnownOne); 705 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); 706 } while (!Worklist.empty()); 707 } 708 709 void SelectionDAGISel::CodeGenAndEmitDAG() { 710 std::string GroupName; 711 if (TimePassesIsEnabled) 712 GroupName = "Instruction Selection and Scheduling"; 713 std::string BlockName; 714 int BlockNumber = -1; 715 (void)BlockNumber; 716 bool MatchFilterBB = false; (void)MatchFilterBB; 717 #ifndef NDEBUG 718 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 719 FilterDAGBasicBlockName == 720 FuncInfo->MBB->getBasicBlock()->getName().str()); 721 #endif 722 #ifdef NDEBUG 723 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 724 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 725 ViewSUnitDAGs) 726 #endif 727 { 728 BlockNumber = FuncInfo->MBB->getNumber(); 729 BlockName = 730 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 731 } 732 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber 733 << " '" << BlockName << "'\n"; CurDAG->dump()); 734 735 if (ViewDAGCombine1 && MatchFilterBB) 736 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 737 738 // Run the DAG combiner in pre-legalize mode. 739 { 740 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); 741 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); 742 } 743 744 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber 745 << " '" << BlockName << "'\n"; CurDAG->dump()); 746 747 // Second step, hack on the DAG until it only uses operations and types that 748 // the target supports. 749 if (ViewLegalizeTypesDAGs && MatchFilterBB) 750 CurDAG->viewGraph("legalize-types input for " + BlockName); 751 752 bool Changed; 753 { 754 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); 755 Changed = CurDAG->LegalizeTypes(); 756 } 757 758 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber 759 << " '" << BlockName << "'\n"; CurDAG->dump()); 760 761 CurDAG->NewNodesMustHaveLegalTypes = true; 762 763 if (Changed) { 764 if (ViewDAGCombineLT && MatchFilterBB) 765 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 766 767 // Run the DAG combiner in post-type-legalize mode. 768 { 769 NamedRegionTimer T("DAG Combining after legalize types", GroupName, 770 TimePassesIsEnabled); 771 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); 772 } 773 774 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber 775 << " '" << BlockName << "'\n"; CurDAG->dump()); 776 777 } 778 779 { 780 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); 781 Changed = CurDAG->LegalizeVectors(); 782 } 783 784 if (Changed) { 785 { 786 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); 787 CurDAG->LegalizeTypes(); 788 } 789 790 if (ViewDAGCombineLT && MatchFilterBB) 791 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 792 793 // Run the DAG combiner in post-type-legalize mode. 794 { 795 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, 796 TimePassesIsEnabled); 797 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); 798 } 799 800 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" 801 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); 802 } 803 804 if (ViewLegalizeDAGs && MatchFilterBB) 805 CurDAG->viewGraph("legalize input for " + BlockName); 806 807 { 808 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); 809 CurDAG->Legalize(); 810 } 811 812 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber 813 << " '" << BlockName << "'\n"; CurDAG->dump()); 814 815 if (ViewDAGCombine2 && MatchFilterBB) 816 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 817 818 // Run the DAG combiner in post-legalize mode. 819 { 820 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); 821 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); 822 } 823 824 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber 825 << " '" << BlockName << "'\n"; CurDAG->dump()); 826 827 if (OptLevel != CodeGenOpt::None) 828 ComputeLiveOutVRegInfo(); 829 830 if (ViewISelDAGs && MatchFilterBB) 831 CurDAG->viewGraph("isel input for " + BlockName); 832 833 // Third, instruction select all of the operations to machine code, adding the 834 // code to the MachineBasicBlock. 835 { 836 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); 837 DoInstructionSelection(); 838 } 839 840 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber 841 << " '" << BlockName << "'\n"; CurDAG->dump()); 842 843 if (ViewSchedDAGs && MatchFilterBB) 844 CurDAG->viewGraph("scheduler input for " + BlockName); 845 846 // Schedule machine code. 847 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 848 { 849 NamedRegionTimer T("Instruction Scheduling", GroupName, 850 TimePassesIsEnabled); 851 Scheduler->Run(CurDAG, FuncInfo->MBB); 852 } 853 854 if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph(); 855 856 // Emit machine code to BB. This can change 'BB' to the last block being 857 // inserted into. 858 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 859 { 860 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); 861 862 // FuncInfo->InsertPt is passed by reference and set to the end of the 863 // scheduled instructions. 864 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 865 } 866 867 // If the block was split, make sure we update any references that are used to 868 // update PHI nodes later on. 869 if (FirstMBB != LastMBB) 870 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 871 872 // Free the scheduler state. 873 { 874 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, 875 TimePassesIsEnabled); 876 delete Scheduler; 877 } 878 879 // Free the SelectionDAG state, now that we're finished with it. 880 CurDAG->clear(); 881 } 882 883 namespace { 884 /// ISelUpdater - helper class to handle updates of the instruction selection 885 /// graph. 886 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 887 SelectionDAG::allnodes_iterator &ISelPosition; 888 public: 889 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 890 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 891 892 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 893 /// deleted is the current ISelPosition node, update ISelPosition. 894 /// 895 void NodeDeleted(SDNode *N, SDNode *E) override { 896 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 897 ++ISelPosition; 898 } 899 }; 900 } // end anonymous namespace 901 902 void SelectionDAGISel::DoInstructionSelection() { 903 DEBUG(dbgs() << "===== Instruction selection begins: BB#" 904 << FuncInfo->MBB->getNumber() 905 << " '" << FuncInfo->MBB->getName() << "'\n"); 906 907 PreprocessISelDAG(); 908 909 // Select target instructions for the DAG. 910 { 911 // Number all nodes with a topological order and set DAGSize. 912 DAGSize = CurDAG->AssignTopologicalOrder(); 913 914 // Create a dummy node (which is not added to allnodes), that adds 915 // a reference to the root node, preventing it from being deleted, 916 // and tracking any changes of the root. 917 HandleSDNode Dummy(CurDAG->getRoot()); 918 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 919 ++ISelPosition; 920 921 // Make sure that ISelPosition gets properly updated when nodes are deleted 922 // in calls made from this function. 923 ISelUpdater ISU(*CurDAG, ISelPosition); 924 925 // The AllNodes list is now topological-sorted. Visit the 926 // nodes by starting at the end of the list (the root of the 927 // graph) and preceding back toward the beginning (the entry 928 // node). 929 while (ISelPosition != CurDAG->allnodes_begin()) { 930 SDNode *Node = &*--ISelPosition; 931 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 932 // but there are currently some corner cases that it misses. Also, this 933 // makes it theoretically possible to disable the DAGCombiner. 934 if (Node->use_empty()) 935 continue; 936 937 SDNode *ResNode = Select(Node); 938 939 // FIXME: This is pretty gross. 'Select' should be changed to not return 940 // anything at all and this code should be nuked with a tactical strike. 941 942 // If node should not be replaced, continue with the next one. 943 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) 944 continue; 945 // Replace node. 946 if (ResNode) { 947 ReplaceUses(Node, ResNode); 948 } 949 950 // If after the replacement this node is not used any more, 951 // remove this dead node. 952 if (Node->use_empty()) // Don't delete EntryToken, etc. 953 CurDAG->RemoveDeadNode(Node); 954 } 955 956 CurDAG->setRoot(Dummy.getValue()); 957 } 958 959 DEBUG(dbgs() << "===== Instruction selection ends:\n"); 960 961 PostprocessISelDAG(); 962 } 963 964 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 965 for (const User *U : CPI->users()) { 966 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 967 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 968 if (IID == Intrinsic::eh_exceptionpointer || 969 IID == Intrinsic::eh_exceptioncode) 970 return true; 971 } 972 } 973 return false; 974 } 975 976 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 977 /// do other setup for EH landing-pad blocks. 978 bool SelectionDAGISel::PrepareEHLandingPad() { 979 MachineBasicBlock *MBB = FuncInfo->MBB; 980 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 981 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 982 const TargetRegisterClass *PtrRC = 983 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 984 985 // Catchpads have one live-in register, which typically holds the exception 986 // pointer or code. 987 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 988 if (hasExceptionPointerOrCodeUser(CPI)) { 989 // Get or create the virtual register to hold the pointer or code. Mark 990 // the live in physreg and copy into the vreg. 991 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 992 assert(EHPhysReg && "target lacks exception pointer register"); 993 MBB->addLiveIn(EHPhysReg); 994 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 995 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 996 TII->get(TargetOpcode::COPY), VReg) 997 .addReg(EHPhysReg, RegState::Kill); 998 } 999 return true; 1000 } 1001 1002 if (!LLVMBB->isLandingPad()) 1003 return true; 1004 1005 // Add a label to mark the beginning of the landing pad. Deletion of the 1006 // landing pad can thus be detected via the MachineModuleInfo. 1007 MCSymbol *Label = MF->getMMI().addLandingPad(MBB); 1008 1009 // Assign the call site to the landing pad's begin label. 1010 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1011 1012 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1013 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1014 .addSym(Label); 1015 1016 // Mark exception register as live in. 1017 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1018 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1019 1020 // Mark exception selector register as live in. 1021 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1022 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1023 1024 return true; 1025 } 1026 1027 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1028 /// side-effect free and is either dead or folded into a generated instruction. 1029 /// Return false if it needs to be emitted. 1030 static bool isFoldedOrDeadInstruction(const Instruction *I, 1031 FunctionLoweringInfo *FuncInfo) { 1032 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1033 !isa<TerminatorInst>(I) && // Terminators aren't folded. 1034 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1035 !I->isEHPad() && // EH pad instructions aren't folded. 1036 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 1037 } 1038 1039 #ifndef NDEBUG 1040 // Collect per Instruction statistics for fast-isel misses. Only those 1041 // instructions that cause the bail are accounted for. It does not account for 1042 // instructions higher in the block. Thus, summing the per instructions stats 1043 // will not add up to what is reported by NumFastIselFailures. 1044 static void collectFailStats(const Instruction *I) { 1045 switch (I->getOpcode()) { 1046 default: assert (0 && "<Invalid operator> "); 1047 1048 // Terminators 1049 case Instruction::Ret: NumFastIselFailRet++; return; 1050 case Instruction::Br: NumFastIselFailBr++; return; 1051 case Instruction::Switch: NumFastIselFailSwitch++; return; 1052 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return; 1053 case Instruction::Invoke: NumFastIselFailInvoke++; return; 1054 case Instruction::Resume: NumFastIselFailResume++; return; 1055 case Instruction::Unreachable: NumFastIselFailUnreachable++; return; 1056 1057 // Standard binary operators... 1058 case Instruction::Add: NumFastIselFailAdd++; return; 1059 case Instruction::FAdd: NumFastIselFailFAdd++; return; 1060 case Instruction::Sub: NumFastIselFailSub++; return; 1061 case Instruction::FSub: NumFastIselFailFSub++; return; 1062 case Instruction::Mul: NumFastIselFailMul++; return; 1063 case Instruction::FMul: NumFastIselFailFMul++; return; 1064 case Instruction::UDiv: NumFastIselFailUDiv++; return; 1065 case Instruction::SDiv: NumFastIselFailSDiv++; return; 1066 case Instruction::FDiv: NumFastIselFailFDiv++; return; 1067 case Instruction::URem: NumFastIselFailURem++; return; 1068 case Instruction::SRem: NumFastIselFailSRem++; return; 1069 case Instruction::FRem: NumFastIselFailFRem++; return; 1070 1071 // Logical operators... 1072 case Instruction::And: NumFastIselFailAnd++; return; 1073 case Instruction::Or: NumFastIselFailOr++; return; 1074 case Instruction::Xor: NumFastIselFailXor++; return; 1075 1076 // Memory instructions... 1077 case Instruction::Alloca: NumFastIselFailAlloca++; return; 1078 case Instruction::Load: NumFastIselFailLoad++; return; 1079 case Instruction::Store: NumFastIselFailStore++; return; 1080 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; 1081 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return; 1082 case Instruction::Fence: NumFastIselFailFence++; return; 1083 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; 1084 1085 // Convert instructions... 1086 case Instruction::Trunc: NumFastIselFailTrunc++; return; 1087 case Instruction::ZExt: NumFastIselFailZExt++; return; 1088 case Instruction::SExt: NumFastIselFailSExt++; return; 1089 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return; 1090 case Instruction::FPExt: NumFastIselFailFPExt++; return; 1091 case Instruction::FPToUI: NumFastIselFailFPToUI++; return; 1092 case Instruction::FPToSI: NumFastIselFailFPToSI++; return; 1093 case Instruction::UIToFP: NumFastIselFailUIToFP++; return; 1094 case Instruction::SIToFP: NumFastIselFailSIToFP++; return; 1095 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; 1096 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; 1097 case Instruction::BitCast: NumFastIselFailBitCast++; return; 1098 1099 // Other instructions... 1100 case Instruction::ICmp: NumFastIselFailICmp++; return; 1101 case Instruction::FCmp: NumFastIselFailFCmp++; return; 1102 case Instruction::PHI: NumFastIselFailPHI++; return; 1103 case Instruction::Select: NumFastIselFailSelect++; return; 1104 case Instruction::Call: { 1105 if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) { 1106 switch (Intrinsic->getIntrinsicID()) { 1107 default: 1108 NumFastIselFailIntrinsicCall++; return; 1109 case Intrinsic::sadd_with_overflow: 1110 NumFastIselFailSAddWithOverflow++; return; 1111 case Intrinsic::uadd_with_overflow: 1112 NumFastIselFailUAddWithOverflow++; return; 1113 case Intrinsic::ssub_with_overflow: 1114 NumFastIselFailSSubWithOverflow++; return; 1115 case Intrinsic::usub_with_overflow: 1116 NumFastIselFailUSubWithOverflow++; return; 1117 case Intrinsic::smul_with_overflow: 1118 NumFastIselFailSMulWithOverflow++; return; 1119 case Intrinsic::umul_with_overflow: 1120 NumFastIselFailUMulWithOverflow++; return; 1121 case Intrinsic::frameaddress: 1122 NumFastIselFailFrameaddress++; return; 1123 case Intrinsic::sqrt: 1124 NumFastIselFailSqrt++; return; 1125 case Intrinsic::experimental_stackmap: 1126 NumFastIselFailStackMap++; return; 1127 case Intrinsic::experimental_patchpoint_void: // fall-through 1128 case Intrinsic::experimental_patchpoint_i64: 1129 NumFastIselFailPatchPoint++; return; 1130 } 1131 } 1132 NumFastIselFailCall++; 1133 return; 1134 } 1135 case Instruction::Shl: NumFastIselFailShl++; return; 1136 case Instruction::LShr: NumFastIselFailLShr++; return; 1137 case Instruction::AShr: NumFastIselFailAShr++; return; 1138 case Instruction::VAArg: NumFastIselFailVAArg++; return; 1139 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; 1140 case Instruction::InsertElement: NumFastIselFailInsertElement++; return; 1141 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return; 1142 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return; 1143 case Instruction::InsertValue: NumFastIselFailInsertValue++; return; 1144 case Instruction::LandingPad: NumFastIselFailLandingPad++; return; 1145 } 1146 } 1147 #endif 1148 1149 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1150 // Initialize the Fast-ISel state, if needed. 1151 FastISel *FastIS = nullptr; 1152 if (TM.Options.EnableFastISel) 1153 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1154 1155 // Iterate over all basic blocks in the function. 1156 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1157 for (ReversePostOrderTraversal<const Function*>::rpo_iterator 1158 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 1159 const BasicBlock *LLVMBB = *I; 1160 1161 if (OptLevel != CodeGenOpt::None) { 1162 bool AllPredsVisited = true; 1163 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1164 PI != PE; ++PI) { 1165 if (!FuncInfo->VisitedBBs.count(*PI)) { 1166 AllPredsVisited = false; 1167 break; 1168 } 1169 } 1170 1171 if (AllPredsVisited) { 1172 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1173 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1174 FuncInfo->ComputePHILiveOutRegInfo(PN); 1175 } else { 1176 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1177 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1178 FuncInfo->InvalidatePHILiveOutRegInfo(PN); 1179 } 1180 1181 FuncInfo->VisitedBBs.insert(LLVMBB); 1182 } 1183 1184 BasicBlock::const_iterator const Begin = 1185 LLVMBB->getFirstNonPHI()->getIterator(); 1186 BasicBlock::const_iterator const End = LLVMBB->end(); 1187 BasicBlock::const_iterator BI = End; 1188 1189 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1190 if (!FuncInfo->MBB) 1191 continue; // Some blocks like catchpads have no code or MBB. 1192 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 1193 1194 // Setup an EH landing-pad block. 1195 FuncInfo->ExceptionPointerVirtReg = 0; 1196 FuncInfo->ExceptionSelectorVirtReg = 0; 1197 if (LLVMBB->isEHPad()) 1198 if (!PrepareEHLandingPad()) 1199 continue; 1200 1201 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1202 if (FastIS) { 1203 FastIS->startNewBlock(); 1204 1205 // Emit code for any incoming arguments. This must happen before 1206 // beginning FastISel on the entry block. 1207 if (LLVMBB == &Fn.getEntryBlock()) { 1208 ++NumEntryBlocks; 1209 1210 // Lower any arguments needed in this block if this is the entry block. 1211 if (!FastIS->lowerArguments()) { 1212 // Fast isel failed to lower these arguments 1213 ++NumFastIselFailLowerArguments; 1214 if (EnableFastISelAbort > 1) 1215 report_fatal_error("FastISel didn't lower all arguments"); 1216 1217 // Use SelectionDAG argument lowering 1218 LowerArguments(Fn); 1219 CurDAG->setRoot(SDB->getControlRoot()); 1220 SDB->clear(); 1221 CodeGenAndEmitDAG(); 1222 } 1223 1224 // If we inserted any instructions at the beginning, make a note of 1225 // where they are, so we can be sure to emit subsequent instructions 1226 // after them. 1227 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1228 FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt)); 1229 else 1230 FastIS->setLastLocalValue(nullptr); 1231 } 1232 1233 unsigned NumFastIselRemaining = std::distance(Begin, End); 1234 // Do FastISel on as many instructions as possible. 1235 for (; BI != Begin; --BI) { 1236 const Instruction *Inst = &*std::prev(BI); 1237 1238 // If we no longer require this instruction, skip it. 1239 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { 1240 --NumFastIselRemaining; 1241 continue; 1242 } 1243 1244 // Bottom-up: reset the insert pos at the top, after any local-value 1245 // instructions. 1246 FastIS->recomputeInsertPt(); 1247 1248 // Try to select the instruction with FastISel. 1249 if (FastIS->selectInstruction(Inst)) { 1250 --NumFastIselRemaining; 1251 ++NumFastIselSuccess; 1252 // If fast isel succeeded, skip over all the folded instructions, and 1253 // then see if there is a load right before the selected instructions. 1254 // Try to fold the load if so. 1255 const Instruction *BeforeInst = Inst; 1256 while (BeforeInst != &*Begin) { 1257 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1258 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1259 break; 1260 } 1261 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1262 BeforeInst->hasOneUse() && 1263 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1264 // If we succeeded, don't re-select the load. 1265 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1266 --NumFastIselRemaining; 1267 ++NumFastIselSuccess; 1268 } 1269 continue; 1270 } 1271 1272 #ifndef NDEBUG 1273 if (EnableFastISelVerbose2) 1274 collectFailStats(Inst); 1275 #endif 1276 1277 // Then handle certain instructions as single-LLVM-Instruction blocks. 1278 if (isa<CallInst>(Inst)) { 1279 1280 if (EnableFastISelVerbose || EnableFastISelAbort) { 1281 dbgs() << "FastISel missed call: "; 1282 Inst->dump(); 1283 } 1284 if (EnableFastISelAbort > 2) 1285 // FastISel selector couldn't handle something and bailed. 1286 // For the purpose of debugging, just abort. 1287 report_fatal_error("FastISel didn't select the entire block"); 1288 1289 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1290 !Inst->use_empty()) { 1291 unsigned &R = FuncInfo->ValueMap[Inst]; 1292 if (!R) 1293 R = FuncInfo->CreateRegs(Inst->getType()); 1294 } 1295 1296 bool HadTailCall = false; 1297 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1298 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1299 1300 // If the call was emitted as a tail call, we're done with the block. 1301 // We also need to delete any previously emitted instructions. 1302 if (HadTailCall) { 1303 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1304 --BI; 1305 break; 1306 } 1307 1308 // Recompute NumFastIselRemaining as Selection DAG instruction 1309 // selection may have handled the call, input args, etc. 1310 unsigned RemainingNow = std::distance(Begin, BI); 1311 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1312 NumFastIselRemaining = RemainingNow; 1313 continue; 1314 } 1315 1316 bool ShouldAbort = EnableFastISelAbort; 1317 if (EnableFastISelVerbose || EnableFastISelAbort) { 1318 if (isa<TerminatorInst>(Inst)) { 1319 // Use a different message for terminator misses. 1320 dbgs() << "FastISel missed terminator: "; 1321 // Don't abort unless for terminator unless the level is really high 1322 ShouldAbort = (EnableFastISelAbort > 2); 1323 } else { 1324 dbgs() << "FastISel miss: "; 1325 } 1326 Inst->dump(); 1327 } 1328 if (ShouldAbort) 1329 // FastISel selector couldn't handle something and bailed. 1330 // For the purpose of debugging, just abort. 1331 report_fatal_error("FastISel didn't select the entire block"); 1332 1333 NumFastIselFailures += NumFastIselRemaining; 1334 break; 1335 } 1336 1337 FastIS->recomputeInsertPt(); 1338 } else { 1339 // Lower any arguments needed in this block if this is the entry block. 1340 if (LLVMBB == &Fn.getEntryBlock()) { 1341 ++NumEntryBlocks; 1342 LowerArguments(Fn); 1343 } 1344 } 1345 1346 if (Begin != BI) 1347 ++NumDAGBlocks; 1348 else 1349 ++NumFastIselBlocks; 1350 1351 if (Begin != BI) { 1352 // Run SelectionDAG instruction selection on the remainder of the block 1353 // not handled by FastISel. If FastISel is not run, this is the entire 1354 // block. 1355 bool HadTailCall; 1356 SelectBasicBlock(Begin, BI, HadTailCall); 1357 } 1358 1359 FinishBasicBlock(); 1360 FuncInfo->PHINodesToUpdate.clear(); 1361 } 1362 1363 delete FastIS; 1364 SDB->clearDanglingDebugInfo(); 1365 SDB->SPDescriptor.resetPerFunctionState(); 1366 } 1367 1368 /// Given that the input MI is before a partial terminator sequence TSeq, return 1369 /// true if M + TSeq also a partial terminator sequence. 1370 /// 1371 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1372 /// lowering copy vregs into physical registers, which are then passed into 1373 /// terminator instructors so we can satisfy ABI constraints. A partial 1374 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1375 /// may be the whole terminator sequence). 1376 static bool MIIsInTerminatorSequence(const MachineInstr *MI) { 1377 // If we do not have a copy or an implicit def, we return true if and only if 1378 // MI is a debug value. 1379 if (!MI->isCopy() && !MI->isImplicitDef()) 1380 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1381 // physical registers if there is debug info associated with the terminator 1382 // of our mbb. We want to include said debug info in our terminator 1383 // sequence, so we return true in that case. 1384 return MI->isDebugValue(); 1385 1386 // We have left the terminator sequence if we are not doing one of the 1387 // following: 1388 // 1389 // 1. Copying a vreg into a physical register. 1390 // 2. Copying a vreg into a vreg. 1391 // 3. Defining a register via an implicit def. 1392 1393 // OPI should always be a register definition... 1394 MachineInstr::const_mop_iterator OPI = MI->operands_begin(); 1395 if (!OPI->isReg() || !OPI->isDef()) 1396 return false; 1397 1398 // Defining any register via an implicit def is always ok. 1399 if (MI->isImplicitDef()) 1400 return true; 1401 1402 // Grab the copy source... 1403 MachineInstr::const_mop_iterator OPI2 = OPI; 1404 ++OPI2; 1405 assert(OPI2 != MI->operands_end() 1406 && "Should have a copy implying we should have 2 arguments."); 1407 1408 // Make sure that the copy dest is not a vreg when the copy source is a 1409 // physical register. 1410 if (!OPI2->isReg() || 1411 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && 1412 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) 1413 return false; 1414 1415 return true; 1416 } 1417 1418 /// Find the split point at which to splice the end of BB into its success stack 1419 /// protector check machine basic block. 1420 /// 1421 /// On many platforms, due to ABI constraints, terminators, even before register 1422 /// allocation, use physical registers. This creates an issue for us since 1423 /// physical registers at this point can not travel across basic 1424 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1425 /// when they enter functions and moves them through a sequence of copies back 1426 /// into the physical registers right before the terminator creating a 1427 /// ``Terminator Sequence''. This function is searching for the beginning of the 1428 /// terminator sequence so that we can ensure that we splice off not just the 1429 /// terminator, but additionally the copies that move the vregs into the 1430 /// physical registers. 1431 static MachineBasicBlock::iterator 1432 FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) { 1433 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1434 // 1435 if (SplitPoint == BB->begin()) 1436 return SplitPoint; 1437 1438 MachineBasicBlock::iterator Start = BB->begin(); 1439 MachineBasicBlock::iterator Previous = SplitPoint; 1440 --Previous; 1441 1442 while (MIIsInTerminatorSequence(Previous)) { 1443 SplitPoint = Previous; 1444 if (Previous == Start) 1445 break; 1446 --Previous; 1447 } 1448 1449 return SplitPoint; 1450 } 1451 1452 void 1453 SelectionDAGISel::FinishBasicBlock() { 1454 1455 DEBUG(dbgs() << "Total amount of phi nodes to update: " 1456 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1457 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) 1458 dbgs() << "Node " << i << " : (" 1459 << FuncInfo->PHINodesToUpdate[i].first 1460 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1461 1462 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1463 // PHI nodes in successors. 1464 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1465 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1466 assert(PHI->isPHI() && 1467 "This is not a machine PHI node that we are updating!"); 1468 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1469 continue; 1470 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1471 } 1472 1473 // Handle stack protector. 1474 if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1475 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1476 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1477 1478 // Find the split point to split the parent mbb. At the same time copy all 1479 // physical registers used in the tail of parent mbb into virtual registers 1480 // before the split point and back into physical registers after the split 1481 // point. This prevents us needing to deal with Live-ins and many other 1482 // register allocation issues caused by us splitting the parent mbb. The 1483 // register allocator will clean up said virtual copies later on. 1484 MachineBasicBlock::iterator SplitPoint = 1485 FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc()); 1486 1487 // Splice the terminator of ParentMBB into SuccessMBB. 1488 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1489 SplitPoint, 1490 ParentMBB->end()); 1491 1492 // Add compare/jump on neq/jump to the parent BB. 1493 FuncInfo->MBB = ParentMBB; 1494 FuncInfo->InsertPt = ParentMBB->end(); 1495 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1496 CurDAG->setRoot(SDB->getRoot()); 1497 SDB->clear(); 1498 CodeGenAndEmitDAG(); 1499 1500 // CodeGen Failure MBB if we have not codegened it yet. 1501 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1502 if (!FailureMBB->size()) { 1503 FuncInfo->MBB = FailureMBB; 1504 FuncInfo->InsertPt = FailureMBB->end(); 1505 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1506 CurDAG->setRoot(SDB->getRoot()); 1507 SDB->clear(); 1508 CodeGenAndEmitDAG(); 1509 } 1510 1511 // Clear the Per-BB State. 1512 SDB->SPDescriptor.resetPerBBState(); 1513 } 1514 1515 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { 1516 // Lower header first, if it wasn't already lowered 1517 if (!SDB->BitTestCases[i].Emitted) { 1518 // Set the current basic block to the mbb we wish to insert the code into 1519 FuncInfo->MBB = SDB->BitTestCases[i].Parent; 1520 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1521 // Emit the code 1522 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); 1523 CurDAG->setRoot(SDB->getRoot()); 1524 SDB->clear(); 1525 CodeGenAndEmitDAG(); 1526 } 1527 1528 BranchProbability UnhandledProb = SDB->BitTestCases[i].Prob; 1529 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { 1530 UnhandledProb -= SDB->BitTestCases[i].Cases[j].ExtraProb; 1531 // Set the current basic block to the mbb we wish to insert the code into 1532 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1533 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1534 // Emit the code 1535 1536 // If all cases cover a contiguous range, it is not necessary to jump to 1537 // the default block after the last bit test fails. This is because the 1538 // range check during bit test header creation has guaranteed that every 1539 // case here doesn't go outside the range. 1540 MachineBasicBlock *NextMBB; 1541 if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej) 1542 NextMBB = SDB->BitTestCases[i].Cases[j + 1].TargetBB; 1543 else if (j + 1 != ej) 1544 NextMBB = SDB->BitTestCases[i].Cases[j + 1].ThisBB; 1545 else 1546 NextMBB = SDB->BitTestCases[i].Default; 1547 1548 SDB->visitBitTestCase(SDB->BitTestCases[i], 1549 NextMBB, 1550 UnhandledProb, 1551 SDB->BitTestCases[i].Reg, 1552 SDB->BitTestCases[i].Cases[j], 1553 FuncInfo->MBB); 1554 1555 CurDAG->setRoot(SDB->getRoot()); 1556 SDB->clear(); 1557 CodeGenAndEmitDAG(); 1558 1559 if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej) 1560 break; 1561 } 1562 1563 // Update PHI Nodes 1564 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1565 pi != pe; ++pi) { 1566 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1567 MachineBasicBlock *PHIBB = PHI->getParent(); 1568 assert(PHI->isPHI() && 1569 "This is not a machine PHI node that we are updating!"); 1570 // This is "default" BB. We have two jumps to it. From "header" BB and 1571 // from last "case" BB. 1572 if (PHIBB == SDB->BitTestCases[i].Default) 1573 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1574 .addMBB(SDB->BitTestCases[i].Parent) 1575 .addReg(FuncInfo->PHINodesToUpdate[pi].second) 1576 .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB); 1577 // One of "cases" BB. 1578 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); 1579 j != ej; ++j) { 1580 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1581 if (cBB->isSuccessor(PHIBB)) 1582 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1583 } 1584 } 1585 } 1586 SDB->BitTestCases.clear(); 1587 1588 // If the JumpTable record is filled in, then we need to emit a jump table. 1589 // Updating the PHI nodes is tricky in this case, since we need to determine 1590 // whether the PHI is a successor of the range check MBB or the jump table MBB 1591 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1592 // Lower header first, if it wasn't already lowered 1593 if (!SDB->JTCases[i].first.Emitted) { 1594 // Set the current basic block to the mbb we wish to insert the code into 1595 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1596 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1597 // Emit the code 1598 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1599 FuncInfo->MBB); 1600 CurDAG->setRoot(SDB->getRoot()); 1601 SDB->clear(); 1602 CodeGenAndEmitDAG(); 1603 } 1604 1605 // Set the current basic block to the mbb we wish to insert the code into 1606 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1607 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1608 // Emit the code 1609 SDB->visitJumpTable(SDB->JTCases[i].second); 1610 CurDAG->setRoot(SDB->getRoot()); 1611 SDB->clear(); 1612 CodeGenAndEmitDAG(); 1613 1614 // Update PHI Nodes 1615 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1616 pi != pe; ++pi) { 1617 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1618 MachineBasicBlock *PHIBB = PHI->getParent(); 1619 assert(PHI->isPHI() && 1620 "This is not a machine PHI node that we are updating!"); 1621 // "default" BB. We can go there only from header BB. 1622 if (PHIBB == SDB->JTCases[i].second.Default) 1623 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1624 .addMBB(SDB->JTCases[i].first.HeaderBB); 1625 // JT BB. Just iterate over successors here 1626 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1627 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1628 } 1629 } 1630 SDB->JTCases.clear(); 1631 1632 // If we generated any switch lowering information, build and codegen any 1633 // additional DAGs necessary. 1634 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1635 // Set the current basic block to the mbb we wish to insert the code into 1636 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1637 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1638 1639 // Determine the unique successors. 1640 SmallVector<MachineBasicBlock *, 2> Succs; 1641 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1642 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1643 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1644 1645 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1646 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1647 CurDAG->setRoot(SDB->getRoot()); 1648 SDB->clear(); 1649 CodeGenAndEmitDAG(); 1650 1651 // Remember the last block, now that any splitting is done, for use in 1652 // populating PHI nodes in successors. 1653 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1654 1655 // Handle any PHI nodes in successors of this chunk, as if we were coming 1656 // from the original BB before switch expansion. Note that PHI nodes can 1657 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1658 // handle them the right number of times. 1659 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1660 FuncInfo->MBB = Succs[i]; 1661 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1662 // FuncInfo->MBB may have been removed from the CFG if a branch was 1663 // constant folded. 1664 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1665 for (MachineBasicBlock::iterator 1666 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1667 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1668 MachineInstrBuilder PHI(*MF, MBBI); 1669 // This value for this PHI node is recorded in PHINodesToUpdate. 1670 for (unsigned pn = 0; ; ++pn) { 1671 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1672 "Didn't find PHI entry!"); 1673 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1674 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1675 break; 1676 } 1677 } 1678 } 1679 } 1680 } 1681 } 1682 SDB->SwitchCases.clear(); 1683 } 1684 1685 1686 /// Create the scheduler. If a specific scheduler was specified 1687 /// via the SchedulerRegistry, use it, otherwise select the 1688 /// one preferred by the target. 1689 /// 1690 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1691 return ISHeuristic(this, OptLevel); 1692 } 1693 1694 //===----------------------------------------------------------------------===// 1695 // Helper functions used by the generated instruction selector. 1696 //===----------------------------------------------------------------------===// 1697 // Calls to these methods are generated by tblgen. 1698 1699 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1700 /// the dag combiner simplified the 255, we still want to match. RHS is the 1701 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1702 /// specified in the .td file (e.g. 255). 1703 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1704 int64_t DesiredMaskS) const { 1705 const APInt &ActualMask = RHS->getAPIntValue(); 1706 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1707 1708 // If the actual mask exactly matches, success! 1709 if (ActualMask == DesiredMask) 1710 return true; 1711 1712 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1713 if (ActualMask.intersects(~DesiredMask)) 1714 return false; 1715 1716 // Otherwise, the DAG Combiner may have proven that the value coming in is 1717 // either already zero or is not demanded. Check for known zero input bits. 1718 APInt NeededMask = DesiredMask & ~ActualMask; 1719 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1720 return true; 1721 1722 // TODO: check to see if missing bits are just not demanded. 1723 1724 // Otherwise, this pattern doesn't match. 1725 return false; 1726 } 1727 1728 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1729 /// the dag combiner simplified the 255, we still want to match. RHS is the 1730 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1731 /// specified in the .td file (e.g. 255). 1732 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1733 int64_t DesiredMaskS) const { 1734 const APInt &ActualMask = RHS->getAPIntValue(); 1735 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1736 1737 // If the actual mask exactly matches, success! 1738 if (ActualMask == DesiredMask) 1739 return true; 1740 1741 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1742 if (ActualMask.intersects(~DesiredMask)) 1743 return false; 1744 1745 // Otherwise, the DAG Combiner may have proven that the value coming in is 1746 // either already zero or is not demanded. Check for known zero input bits. 1747 APInt NeededMask = DesiredMask & ~ActualMask; 1748 1749 APInt KnownZero, KnownOne; 1750 CurDAG->computeKnownBits(LHS, KnownZero, KnownOne); 1751 1752 // If all the missing bits in the or are already known to be set, match! 1753 if ((NeededMask & KnownOne) == NeededMask) 1754 return true; 1755 1756 // TODO: check to see if missing bits are just not demanded. 1757 1758 // Otherwise, this pattern doesn't match. 1759 return false; 1760 } 1761 1762 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1763 /// by tblgen. Others should not call it. 1764 void SelectionDAGISel:: 1765 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SDLoc DL) { 1766 std::vector<SDValue> InOps; 1767 std::swap(InOps, Ops); 1768 1769 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1770 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1771 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1772 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1773 1774 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1775 if (InOps[e-1].getValueType() == MVT::Glue) 1776 --e; // Don't process a glue operand if it is here. 1777 1778 while (i != e) { 1779 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1780 if (!InlineAsm::isMemKind(Flags)) { 1781 // Just skip over this operand, copying the operands verbatim. 1782 Ops.insert(Ops.end(), InOps.begin()+i, 1783 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 1784 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 1785 } else { 1786 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 1787 "Memory operand with multiple values?"); 1788 1789 unsigned TiedToOperand; 1790 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 1791 // We need the constraint ID from the operand this is tied to. 1792 unsigned CurOp = InlineAsm::Op_FirstOperand; 1793 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 1794 for (; TiedToOperand; --TiedToOperand) { 1795 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 1796 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 1797 } 1798 } 1799 1800 // Otherwise, this is a memory operand. Ask the target to select it. 1801 std::vector<SDValue> SelOps; 1802 if (SelectInlineAsmMemoryOperand(InOps[i+1], 1803 InlineAsm::getMemoryConstraintID(Flags), 1804 SelOps)) 1805 report_fatal_error("Could not match memory address. Inline asm" 1806 " failure!"); 1807 1808 // Add this to the output node. 1809 unsigned NewFlags = 1810 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 1811 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 1812 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 1813 i += 2; 1814 } 1815 } 1816 1817 // Add the glue input back if present. 1818 if (e != InOps.size()) 1819 Ops.push_back(InOps.back()); 1820 } 1821 1822 /// findGlueUse - Return use of MVT::Glue value produced by the specified 1823 /// SDNode. 1824 /// 1825 static SDNode *findGlueUse(SDNode *N) { 1826 unsigned FlagResNo = N->getNumValues()-1; 1827 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1828 SDUse &Use = I.getUse(); 1829 if (Use.getResNo() == FlagResNo) 1830 return Use.getUser(); 1831 } 1832 return nullptr; 1833 } 1834 1835 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". 1836 /// This function recursively traverses up the operand chain, ignoring 1837 /// certain nodes. 1838 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 1839 SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited, 1840 bool IgnoreChains) { 1841 // The NodeID's are given uniques ID's where a node ID is guaranteed to be 1842 // greater than all of its (recursive) operands. If we scan to a point where 1843 // 'use' is smaller than the node we're scanning for, then we know we will 1844 // never find it. 1845 // 1846 // The Use may be -1 (unassigned) if it is a newly allocated node. This can 1847 // happen because we scan down to newly selected nodes in the case of glue 1848 // uses. 1849 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) 1850 return false; 1851 1852 // Don't revisit nodes if we already scanned it and didn't fail, we know we 1853 // won't fail if we scan it again. 1854 if (!Visited.insert(Use).second) 1855 return false; 1856 1857 for (const SDValue &Op : Use->op_values()) { 1858 // Ignore chain uses, they are validated by HandleMergeInputChains. 1859 if (Op.getValueType() == MVT::Other && IgnoreChains) 1860 continue; 1861 1862 SDNode *N = Op.getNode(); 1863 if (N == Def) { 1864 if (Use == ImmedUse || Use == Root) 1865 continue; // We are not looking for immediate use. 1866 assert(N != Root); 1867 return true; 1868 } 1869 1870 // Traverse up the operand chain. 1871 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) 1872 return true; 1873 } 1874 return false; 1875 } 1876 1877 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 1878 /// operand node N of U during instruction selection that starts at Root. 1879 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 1880 SDNode *Root) const { 1881 if (OptLevel == CodeGenOpt::None) return false; 1882 return N.hasOneUse(); 1883 } 1884 1885 /// IsLegalToFold - Returns true if the specific operand node N of 1886 /// U can be folded during instruction selection that starts at Root. 1887 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 1888 CodeGenOpt::Level OptLevel, 1889 bool IgnoreChains) { 1890 if (OptLevel == CodeGenOpt::None) return false; 1891 1892 // If Root use can somehow reach N through a path that that doesn't contain 1893 // U then folding N would create a cycle. e.g. In the following 1894 // diagram, Root can reach N through X. If N is folded into into Root, then 1895 // X is both a predecessor and a successor of U. 1896 // 1897 // [N*] // 1898 // ^ ^ // 1899 // / \ // 1900 // [U*] [X]? // 1901 // ^ ^ // 1902 // \ / // 1903 // \ / // 1904 // [Root*] // 1905 // 1906 // * indicates nodes to be folded together. 1907 // 1908 // If Root produces glue, then it gets (even more) interesting. Since it 1909 // will be "glued" together with its glue use in the scheduler, we need to 1910 // check if it might reach N. 1911 // 1912 // [N*] // 1913 // ^ ^ // 1914 // / \ // 1915 // [U*] [X]? // 1916 // ^ ^ // 1917 // \ \ // 1918 // \ | // 1919 // [Root*] | // 1920 // ^ | // 1921 // f | // 1922 // | / // 1923 // [Y] / // 1924 // ^ / // 1925 // f / // 1926 // | / // 1927 // [GU] // 1928 // 1929 // If GU (glue use) indirectly reaches N (the load), and Root folds N 1930 // (call it Fold), then X is a predecessor of GU and a successor of 1931 // Fold. But since Fold and GU are glued together, this will create 1932 // a cycle in the scheduling graph. 1933 1934 // If the node has glue, walk down the graph to the "lowest" node in the 1935 // glueged set. 1936 EVT VT = Root->getValueType(Root->getNumValues()-1); 1937 while (VT == MVT::Glue) { 1938 SDNode *GU = findGlueUse(Root); 1939 if (!GU) 1940 break; 1941 Root = GU; 1942 VT = Root->getValueType(Root->getNumValues()-1); 1943 1944 // If our query node has a glue result with a use, we've walked up it. If 1945 // the user (which has already been selected) has a chain or indirectly uses 1946 // the chain, our WalkChainUsers predicate will not consider it. Because of 1947 // this, we cannot ignore chains in this predicate. 1948 IgnoreChains = false; 1949 } 1950 1951 1952 SmallPtrSet<SDNode*, 16> Visited; 1953 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); 1954 } 1955 1956 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { 1957 SDLoc DL(N); 1958 1959 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 1960 SelectInlineAsmMemoryOperands(Ops, DL); 1961 1962 const EVT VTs[] = {MVT::Other, MVT::Glue}; 1963 SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops); 1964 New->setNodeId(-1); 1965 return New.getNode(); 1966 } 1967 1968 SDNode 1969 *SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 1970 SDLoc dl(Op); 1971 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 1972 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 1973 unsigned Reg = 1974 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), 1975 *CurDAG); 1976 SDValue New = CurDAG->getCopyFromReg( 1977 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 1978 New->setNodeId(-1); 1979 return New.getNode(); 1980 } 1981 1982 SDNode 1983 *SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 1984 SDLoc dl(Op); 1985 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 1986 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 1987 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), 1988 Op->getOperand(2).getValueType(), 1989 *CurDAG); 1990 SDValue New = CurDAG->getCopyToReg( 1991 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 1992 New->setNodeId(-1); 1993 return New.getNode(); 1994 } 1995 1996 1997 1998 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { 1999 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); 2000 } 2001 2002 /// GetVBR - decode a vbr encoding whose top bit is set. 2003 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2004 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2005 assert(Val >= 128 && "Not a VBR"); 2006 Val &= 127; // Remove first vbr bit. 2007 2008 unsigned Shift = 7; 2009 uint64_t NextBits; 2010 do { 2011 NextBits = MatcherTable[Idx++]; 2012 Val |= (NextBits&127) << Shift; 2013 Shift += 7; 2014 } while (NextBits & 128); 2015 2016 return Val; 2017 } 2018 2019 2020 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of 2021 /// interior glue and chain results to use the new glue and chain results. 2022 void SelectionDAGISel:: 2023 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, 2024 const SmallVectorImpl<SDNode*> &ChainNodesMatched, 2025 SDValue InputGlue, 2026 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, 2027 bool isMorphNodeTo) { 2028 SmallVector<SDNode*, 4> NowDeadNodes; 2029 2030 // Now that all the normal results are replaced, we replace the chain and 2031 // glue results if present. 2032 if (!ChainNodesMatched.empty()) { 2033 assert(InputChain.getNode() && 2034 "Matched input chains but didn't produce a chain"); 2035 // Loop over all of the nodes we matched that produced a chain result. 2036 // Replace all the chain results with the final chain we ended up with. 2037 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2038 SDNode *ChainNode = ChainNodesMatched[i]; 2039 2040 // If this node was already deleted, don't look at it. 2041 if (ChainNode->getOpcode() == ISD::DELETED_NODE) 2042 continue; 2043 2044 // Don't replace the results of the root node if we're doing a 2045 // MorphNodeTo. 2046 if (ChainNode == NodeToMatch && isMorphNodeTo) 2047 continue; 2048 2049 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2050 if (ChainVal.getValueType() == MVT::Glue) 2051 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2052 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2053 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); 2054 2055 // If the node became dead and we haven't already seen it, delete it. 2056 if (ChainNode->use_empty() && 2057 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2058 NowDeadNodes.push_back(ChainNode); 2059 } 2060 } 2061 2062 // If the result produces glue, update any glue results in the matched 2063 // pattern with the glue result. 2064 if (InputGlue.getNode()) { 2065 // Handle any interior nodes explicitly marked. 2066 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { 2067 SDNode *FRN = GlueResultNodesMatched[i]; 2068 2069 // If this node was already deleted, don't look at it. 2070 if (FRN->getOpcode() == ISD::DELETED_NODE) 2071 continue; 2072 2073 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && 2074 "Doesn't have a glue result"); 2075 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), 2076 InputGlue); 2077 2078 // If the node became dead and we haven't already seen it, delete it. 2079 if (FRN->use_empty() && 2080 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) 2081 NowDeadNodes.push_back(FRN); 2082 } 2083 } 2084 2085 if (!NowDeadNodes.empty()) 2086 CurDAG->RemoveDeadNodes(NowDeadNodes); 2087 2088 DEBUG(dbgs() << "ISEL: Match complete!\n"); 2089 } 2090 2091 enum ChainResult { 2092 CR_Simple, 2093 CR_InducesCycle, 2094 CR_LeadsToInteriorNode 2095 }; 2096 2097 /// WalkChainUsers - Walk down the users of the specified chained node that is 2098 /// part of the pattern we're matching, looking at all of the users we find. 2099 /// This determines whether something is an interior node, whether we have a 2100 /// non-pattern node in between two pattern nodes (which prevent folding because 2101 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched 2102 /// between pattern nodes (in which case the TF becomes part of the pattern). 2103 /// 2104 /// The walk we do here is guaranteed to be small because we quickly get down to 2105 /// already selected nodes "below" us. 2106 static ChainResult 2107 WalkChainUsers(const SDNode *ChainedNode, 2108 SmallVectorImpl<SDNode*> &ChainedNodesInPattern, 2109 SmallVectorImpl<SDNode*> &InteriorChainedNodes) { 2110 ChainResult Result = CR_Simple; 2111 2112 for (SDNode::use_iterator UI = ChainedNode->use_begin(), 2113 E = ChainedNode->use_end(); UI != E; ++UI) { 2114 // Make sure the use is of the chain, not some other value we produce. 2115 if (UI.getUse().getValueType() != MVT::Other) continue; 2116 2117 SDNode *User = *UI; 2118 2119 if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph. 2120 continue; 2121 2122 // If we see an already-selected machine node, then we've gone beyond the 2123 // pattern that we're selecting down into the already selected chunk of the 2124 // DAG. 2125 unsigned UserOpcode = User->getOpcode(); 2126 if (User->isMachineOpcode() || 2127 UserOpcode == ISD::CopyToReg || 2128 UserOpcode == ISD::CopyFromReg || 2129 UserOpcode == ISD::INLINEASM || 2130 UserOpcode == ISD::EH_LABEL || 2131 UserOpcode == ISD::LIFETIME_START || 2132 UserOpcode == ISD::LIFETIME_END) { 2133 // If their node ID got reset to -1 then they've already been selected. 2134 // Treat them like a MachineOpcode. 2135 if (User->getNodeId() == -1) 2136 continue; 2137 } 2138 2139 // If we have a TokenFactor, we handle it specially. 2140 if (User->getOpcode() != ISD::TokenFactor) { 2141 // If the node isn't a token factor and isn't part of our pattern, then it 2142 // must be a random chained node in between two nodes we're selecting. 2143 // This happens when we have something like: 2144 // x = load ptr 2145 // call 2146 // y = x+4 2147 // store y -> ptr 2148 // Because we structurally match the load/store as a read/modify/write, 2149 // but the call is chained between them. We cannot fold in this case 2150 // because it would induce a cycle in the graph. 2151 if (!std::count(ChainedNodesInPattern.begin(), 2152 ChainedNodesInPattern.end(), User)) 2153 return CR_InducesCycle; 2154 2155 // Otherwise we found a node that is part of our pattern. For example in: 2156 // x = load ptr 2157 // y = x+4 2158 // store y -> ptr 2159 // This would happen when we're scanning down from the load and see the 2160 // store as a user. Record that there is a use of ChainedNode that is 2161 // part of the pattern and keep scanning uses. 2162 Result = CR_LeadsToInteriorNode; 2163 InteriorChainedNodes.push_back(User); 2164 continue; 2165 } 2166 2167 // If we found a TokenFactor, there are two cases to consider: first if the 2168 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no 2169 // uses of the TF are in our pattern) we just want to ignore it. Second, 2170 // the TokenFactor can be sandwiched in between two chained nodes, like so: 2171 // [Load chain] 2172 // ^ 2173 // | 2174 // [Load] 2175 // ^ ^ 2176 // | \ DAG's like cheese 2177 // / \ do you? 2178 // / | 2179 // [TokenFactor] [Op] 2180 // ^ ^ 2181 // | | 2182 // \ / 2183 // \ / 2184 // [Store] 2185 // 2186 // In this case, the TokenFactor becomes part of our match and we rewrite it 2187 // as a new TokenFactor. 2188 // 2189 // To distinguish these two cases, do a recursive walk down the uses. 2190 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { 2191 case CR_Simple: 2192 // If the uses of the TokenFactor are just already-selected nodes, ignore 2193 // it, it is "below" our pattern. 2194 continue; 2195 case CR_InducesCycle: 2196 // If the uses of the TokenFactor lead to nodes that are not part of our 2197 // pattern that are not selected, folding would turn this into a cycle, 2198 // bail out now. 2199 return CR_InducesCycle; 2200 case CR_LeadsToInteriorNode: 2201 break; // Otherwise, keep processing. 2202 } 2203 2204 // Okay, we know we're in the interesting interior case. The TokenFactor 2205 // is now going to be considered part of the pattern so that we rewrite its 2206 // uses (it may have uses that are not part of the pattern) with the 2207 // ultimate chain result of the generated code. We will also add its chain 2208 // inputs as inputs to the ultimate TokenFactor we create. 2209 Result = CR_LeadsToInteriorNode; 2210 ChainedNodesInPattern.push_back(User); 2211 InteriorChainedNodes.push_back(User); 2212 continue; 2213 } 2214 2215 return Result; 2216 } 2217 2218 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2219 /// operation for when the pattern matched at least one node with a chains. The 2220 /// input vector contains a list of all of the chained nodes that we match. We 2221 /// must determine if this is a valid thing to cover (i.e. matching it won't 2222 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2223 /// be used as the input node chain for the generated nodes. 2224 static SDValue 2225 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2226 SelectionDAG *CurDAG) { 2227 // Walk all of the chained nodes we've matched, recursively scanning down the 2228 // users of the chain result. This adds any TokenFactor nodes that are caught 2229 // in between chained nodes to the chained and interior nodes list. 2230 SmallVector<SDNode*, 3> InteriorChainedNodes; 2231 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2232 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, 2233 InteriorChainedNodes) == CR_InducesCycle) 2234 return SDValue(); // Would induce a cycle. 2235 } 2236 2237 // Okay, we have walked all the matched nodes and collected TokenFactor nodes 2238 // that we are interested in. Form our input TokenFactor node. 2239 SmallVector<SDValue, 3> InputChains; 2240 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2241 // Add the input chain of this node to the InputChains list (which will be 2242 // the operands of the generated TokenFactor) if it's not an interior node. 2243 SDNode *N = ChainNodesMatched[i]; 2244 if (N->getOpcode() != ISD::TokenFactor) { 2245 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) 2246 continue; 2247 2248 // Otherwise, add the input chain. 2249 SDValue InChain = ChainNodesMatched[i]->getOperand(0); 2250 assert(InChain.getValueType() == MVT::Other && "Not a chain"); 2251 InputChains.push_back(InChain); 2252 continue; 2253 } 2254 2255 // If we have a token factor, we want to add all inputs of the token factor 2256 // that are not part of the pattern we're matching. 2257 for (const SDValue &Op : N->op_values()) { 2258 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), 2259 Op.getNode())) 2260 InputChains.push_back(Op); 2261 } 2262 } 2263 2264 if (InputChains.size() == 1) 2265 return InputChains[0]; 2266 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2267 MVT::Other, InputChains); 2268 } 2269 2270 /// MorphNode - Handle morphing a node in place for the selector. 2271 SDNode *SelectionDAGISel:: 2272 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2273 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2274 // It is possible we're using MorphNodeTo to replace a node with no 2275 // normal results with one that has a normal result (or we could be 2276 // adding a chain) and the input could have glue and chains as well. 2277 // In this case we need to shift the operands down. 2278 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2279 // than the old isel though. 2280 int OldGlueResultNo = -1, OldChainResultNo = -1; 2281 2282 unsigned NTMNumResults = Node->getNumValues(); 2283 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2284 OldGlueResultNo = NTMNumResults-1; 2285 if (NTMNumResults != 1 && 2286 Node->getValueType(NTMNumResults-2) == MVT::Other) 2287 OldChainResultNo = NTMNumResults-2; 2288 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2289 OldChainResultNo = NTMNumResults-1; 2290 2291 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2292 // that this deletes operands of the old node that become dead. 2293 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2294 2295 // MorphNodeTo can operate in two ways: if an existing node with the 2296 // specified operands exists, it can just return it. Otherwise, it 2297 // updates the node in place to have the requested operands. 2298 if (Res == Node) { 2299 // If we updated the node in place, reset the node ID. To the isel, 2300 // this should be just like a newly allocated machine node. 2301 Res->setNodeId(-1); 2302 } 2303 2304 unsigned ResNumResults = Res->getNumValues(); 2305 // Move the glue if needed. 2306 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2307 (unsigned)OldGlueResultNo != ResNumResults-1) 2308 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), 2309 SDValue(Res, ResNumResults-1)); 2310 2311 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2312 --ResNumResults; 2313 2314 // Move the chain reference if needed. 2315 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2316 (unsigned)OldChainResultNo != ResNumResults-1) 2317 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), 2318 SDValue(Res, ResNumResults-1)); 2319 2320 // Otherwise, no replacement happened because the node already exists. Replace 2321 // Uses of the old node with the new one. 2322 if (Res != Node) 2323 CurDAG->ReplaceAllUsesWith(Node, Res); 2324 2325 return Res; 2326 } 2327 2328 /// CheckSame - Implements OP_CheckSame. 2329 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2330 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2331 SDValue N, 2332 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2333 // Accept if it is exactly the same as a previously recorded node. 2334 unsigned RecNo = MatcherTable[MatcherIndex++]; 2335 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2336 return N == RecordedNodes[RecNo].first; 2337 } 2338 2339 /// CheckChildSame - Implements OP_CheckChildXSame. 2340 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2341 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2342 SDValue N, 2343 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes, 2344 unsigned ChildNo) { 2345 if (ChildNo >= N.getNumOperands()) 2346 return false; // Match fails if out of range child #. 2347 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2348 RecordedNodes); 2349 } 2350 2351 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2352 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2353 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2354 const SelectionDAGISel &SDISel) { 2355 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2356 } 2357 2358 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2359 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2360 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2361 const SelectionDAGISel &SDISel, SDNode *N) { 2362 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2363 } 2364 2365 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2366 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2367 SDNode *N) { 2368 uint16_t Opc = MatcherTable[MatcherIndex++]; 2369 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2370 return N->getOpcode() == Opc; 2371 } 2372 2373 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2374 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2375 const TargetLowering *TLI, const DataLayout &DL) { 2376 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2377 if (N.getValueType() == VT) return true; 2378 2379 // Handle the case when VT is iPTR. 2380 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2381 } 2382 2383 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2384 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2385 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2386 unsigned ChildNo) { 2387 if (ChildNo >= N.getNumOperands()) 2388 return false; // Match fails if out of range child #. 2389 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2390 DL); 2391 } 2392 2393 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2394 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2395 SDValue N) { 2396 return cast<CondCodeSDNode>(N)->get() == 2397 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2398 } 2399 2400 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2401 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2402 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2403 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2404 if (cast<VTSDNode>(N)->getVT() == VT) 2405 return true; 2406 2407 // Handle the case when VT is iPTR. 2408 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2409 } 2410 2411 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2412 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2413 SDValue N) { 2414 int64_t Val = MatcherTable[MatcherIndex++]; 2415 if (Val & 128) 2416 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2417 2418 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2419 return C && C->getSExtValue() == Val; 2420 } 2421 2422 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2423 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2424 SDValue N, unsigned ChildNo) { 2425 if (ChildNo >= N.getNumOperands()) 2426 return false; // Match fails if out of range child #. 2427 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2428 } 2429 2430 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2431 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2432 SDValue N, const SelectionDAGISel &SDISel) { 2433 int64_t Val = MatcherTable[MatcherIndex++]; 2434 if (Val & 128) 2435 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2436 2437 if (N->getOpcode() != ISD::AND) return false; 2438 2439 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2440 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2441 } 2442 2443 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2444 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2445 SDValue N, const SelectionDAGISel &SDISel) { 2446 int64_t Val = MatcherTable[MatcherIndex++]; 2447 if (Val & 128) 2448 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2449 2450 if (N->getOpcode() != ISD::OR) return false; 2451 2452 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2453 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2454 } 2455 2456 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2457 /// scope, evaluate the current node. If the current predicate is known to 2458 /// fail, set Result=true and return anything. If the current predicate is 2459 /// known to pass, set Result=false and return the MatcherIndex to continue 2460 /// with. If the current predicate is unknown, set Result=false and return the 2461 /// MatcherIndex to continue with. 2462 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2463 unsigned Index, SDValue N, 2464 bool &Result, 2465 const SelectionDAGISel &SDISel, 2466 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2467 switch (Table[Index++]) { 2468 default: 2469 Result = false; 2470 return Index-1; // Could not evaluate this predicate. 2471 case SelectionDAGISel::OPC_CheckSame: 2472 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2473 return Index; 2474 case SelectionDAGISel::OPC_CheckChild0Same: 2475 case SelectionDAGISel::OPC_CheckChild1Same: 2476 case SelectionDAGISel::OPC_CheckChild2Same: 2477 case SelectionDAGISel::OPC_CheckChild3Same: 2478 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2479 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2480 return Index; 2481 case SelectionDAGISel::OPC_CheckPatternPredicate: 2482 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2483 return Index; 2484 case SelectionDAGISel::OPC_CheckPredicate: 2485 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2486 return Index; 2487 case SelectionDAGISel::OPC_CheckOpcode: 2488 Result = !::CheckOpcode(Table, Index, N.getNode()); 2489 return Index; 2490 case SelectionDAGISel::OPC_CheckType: 2491 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2492 SDISel.CurDAG->getDataLayout()); 2493 return Index; 2494 case SelectionDAGISel::OPC_CheckChild0Type: 2495 case SelectionDAGISel::OPC_CheckChild1Type: 2496 case SelectionDAGISel::OPC_CheckChild2Type: 2497 case SelectionDAGISel::OPC_CheckChild3Type: 2498 case SelectionDAGISel::OPC_CheckChild4Type: 2499 case SelectionDAGISel::OPC_CheckChild5Type: 2500 case SelectionDAGISel::OPC_CheckChild6Type: 2501 case SelectionDAGISel::OPC_CheckChild7Type: 2502 Result = !::CheckChildType( 2503 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2504 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2505 return Index; 2506 case SelectionDAGISel::OPC_CheckCondCode: 2507 Result = !::CheckCondCode(Table, Index, N); 2508 return Index; 2509 case SelectionDAGISel::OPC_CheckValueType: 2510 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2511 SDISel.CurDAG->getDataLayout()); 2512 return Index; 2513 case SelectionDAGISel::OPC_CheckInteger: 2514 Result = !::CheckInteger(Table, Index, N); 2515 return Index; 2516 case SelectionDAGISel::OPC_CheckChild0Integer: 2517 case SelectionDAGISel::OPC_CheckChild1Integer: 2518 case SelectionDAGISel::OPC_CheckChild2Integer: 2519 case SelectionDAGISel::OPC_CheckChild3Integer: 2520 case SelectionDAGISel::OPC_CheckChild4Integer: 2521 Result = !::CheckChildInteger(Table, Index, N, 2522 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2523 return Index; 2524 case SelectionDAGISel::OPC_CheckAndImm: 2525 Result = !::CheckAndImm(Table, Index, N, SDISel); 2526 return Index; 2527 case SelectionDAGISel::OPC_CheckOrImm: 2528 Result = !::CheckOrImm(Table, Index, N, SDISel); 2529 return Index; 2530 } 2531 } 2532 2533 namespace { 2534 2535 struct MatchScope { 2536 /// FailIndex - If this match fails, this is the index to continue with. 2537 unsigned FailIndex; 2538 2539 /// NodeStack - The node stack when the scope was formed. 2540 SmallVector<SDValue, 4> NodeStack; 2541 2542 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2543 unsigned NumRecordedNodes; 2544 2545 /// NumMatchedMemRefs - The number of matched memref entries. 2546 unsigned NumMatchedMemRefs; 2547 2548 /// InputChain/InputGlue - The current chain/glue 2549 SDValue InputChain, InputGlue; 2550 2551 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2552 bool HasChainNodesMatched, HasGlueResultNodesMatched; 2553 }; 2554 2555 /// \\brief A DAG update listener to keep the matching state 2556 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2557 /// change the DAG while matching. X86 addressing mode matcher is an example 2558 /// for this. 2559 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2560 { 2561 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes; 2562 SmallVectorImpl<MatchScope> &MatchScopes; 2563 public: 2564 MatchStateUpdater(SelectionDAG &DAG, 2565 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN, 2566 SmallVectorImpl<MatchScope> &MS) : 2567 SelectionDAG::DAGUpdateListener(DAG), 2568 RecordedNodes(RN), MatchScopes(MS) { } 2569 2570 void NodeDeleted(SDNode *N, SDNode *E) override { 2571 // Some early-returns here to avoid the search if we deleted the node or 2572 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2573 // do, so it's unnecessary to update matching state at that point). 2574 // Neither of these can occur currently because we only install this 2575 // update listener during matching a complex patterns. 2576 if (!E || E->isMachineOpcode()) 2577 return; 2578 // Performing linear search here does not matter because we almost never 2579 // run this code. You'd have to have a CSE during complex pattern 2580 // matching. 2581 for (auto &I : RecordedNodes) 2582 if (I.first.getNode() == N) 2583 I.first.setNode(E); 2584 2585 for (auto &I : MatchScopes) 2586 for (auto &J : I.NodeStack) 2587 if (J.getNode() == N) 2588 J.setNode(E); 2589 } 2590 }; 2591 } 2592 2593 SDNode *SelectionDAGISel:: 2594 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, 2595 unsigned TableSize) { 2596 // FIXME: Should these even be selected? Handle these cases in the caller? 2597 switch (NodeToMatch->getOpcode()) { 2598 default: 2599 break; 2600 case ISD::EntryToken: // These nodes remain the same. 2601 case ISD::BasicBlock: 2602 case ISD::Register: 2603 case ISD::RegisterMask: 2604 case ISD::HANDLENODE: 2605 case ISD::MDNODE_SDNODE: 2606 case ISD::TargetConstant: 2607 case ISD::TargetConstantFP: 2608 case ISD::TargetConstantPool: 2609 case ISD::TargetFrameIndex: 2610 case ISD::TargetExternalSymbol: 2611 case ISD::MCSymbol: 2612 case ISD::TargetBlockAddress: 2613 case ISD::TargetJumpTable: 2614 case ISD::TargetGlobalTLSAddress: 2615 case ISD::TargetGlobalAddress: 2616 case ISD::TokenFactor: 2617 case ISD::CopyFromReg: 2618 case ISD::CopyToReg: 2619 case ISD::EH_LABEL: 2620 case ISD::LIFETIME_START: 2621 case ISD::LIFETIME_END: 2622 NodeToMatch->setNodeId(-1); // Mark selected. 2623 return nullptr; 2624 case ISD::AssertSext: 2625 case ISD::AssertZext: 2626 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), 2627 NodeToMatch->getOperand(0)); 2628 return nullptr; 2629 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); 2630 case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch); 2631 case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch); 2632 case ISD::UNDEF: return Select_UNDEF(NodeToMatch); 2633 } 2634 2635 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2636 2637 // Set up the node stack with NodeToMatch as the only node on the stack. 2638 SmallVector<SDValue, 8> NodeStack; 2639 SDValue N = SDValue(NodeToMatch, 0); 2640 NodeStack.push_back(N); 2641 2642 // MatchScopes - Scopes used when matching, if a match failure happens, this 2643 // indicates where to continue checking. 2644 SmallVector<MatchScope, 8> MatchScopes; 2645 2646 // RecordedNodes - This is the set of nodes that have been recorded by the 2647 // state machine. The second value is the parent of the node, or null if the 2648 // root is recorded. 2649 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2650 2651 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2652 // pattern. 2653 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2654 2655 // These are the current input chain and glue for use when generating nodes. 2656 // Various Emit operations change these. For example, emitting a copytoreg 2657 // uses and updates these. 2658 SDValue InputChain, InputGlue; 2659 2660 // ChainNodesMatched - If a pattern matches nodes that have input/output 2661 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2662 // which ones they are. The result is captured into this list so that we can 2663 // update the chain results when the pattern is complete. 2664 SmallVector<SDNode*, 3> ChainNodesMatched; 2665 SmallVector<SDNode*, 3> GlueResultNodesMatched; 2666 2667 DEBUG(dbgs() << "ISEL: Starting pattern match on root node: "; 2668 NodeToMatch->dump(CurDAG); 2669 dbgs() << '\n'); 2670 2671 // Determine where to start the interpreter. Normally we start at opcode #0, 2672 // but if the state machine starts with an OPC_SwitchOpcode, then we 2673 // accelerate the first lookup (which is guaranteed to be hot) with the 2674 // OpcodeOffset table. 2675 unsigned MatcherIndex = 0; 2676 2677 if (!OpcodeOffset.empty()) { 2678 // Already computed the OpcodeOffset table, just index into it. 2679 if (N.getOpcode() < OpcodeOffset.size()) 2680 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2681 DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2682 2683 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2684 // Otherwise, the table isn't computed, but the state machine does start 2685 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2686 // is the first time we're selecting an instruction. 2687 unsigned Idx = 1; 2688 while (1) { 2689 // Get the size of this case. 2690 unsigned CaseSize = MatcherTable[Idx++]; 2691 if (CaseSize & 128) 2692 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2693 if (CaseSize == 0) break; 2694 2695 // Get the opcode, add the index to the table. 2696 uint16_t Opc = MatcherTable[Idx++]; 2697 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2698 if (Opc >= OpcodeOffset.size()) 2699 OpcodeOffset.resize((Opc+1)*2); 2700 OpcodeOffset[Opc] = Idx; 2701 Idx += CaseSize; 2702 } 2703 2704 // Okay, do the lookup for the first opcode. 2705 if (N.getOpcode() < OpcodeOffset.size()) 2706 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2707 } 2708 2709 while (1) { 2710 assert(MatcherIndex < TableSize && "Invalid index"); 2711 #ifndef NDEBUG 2712 unsigned CurrentOpcodeIndex = MatcherIndex; 2713 #endif 2714 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2715 switch (Opcode) { 2716 case OPC_Scope: { 2717 // Okay, the semantics of this operation are that we should push a scope 2718 // then evaluate the first child. However, pushing a scope only to have 2719 // the first check fail (which then pops it) is inefficient. If we can 2720 // determine immediately that the first check (or first several) will 2721 // immediately fail, don't even bother pushing a scope for them. 2722 unsigned FailIndex; 2723 2724 while (1) { 2725 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2726 if (NumToSkip & 128) 2727 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2728 // Found the end of the scope with no match. 2729 if (NumToSkip == 0) { 2730 FailIndex = 0; 2731 break; 2732 } 2733 2734 FailIndex = MatcherIndex+NumToSkip; 2735 2736 unsigned MatcherIndexOfPredicate = MatcherIndex; 2737 (void)MatcherIndexOfPredicate; // silence warning. 2738 2739 // If we can't evaluate this predicate without pushing a scope (e.g. if 2740 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2741 // push the scope and evaluate the full predicate chain. 2742 bool Result; 2743 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2744 Result, *this, RecordedNodes); 2745 if (!Result) 2746 break; 2747 2748 DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at " 2749 << "index " << MatcherIndexOfPredicate 2750 << ", continuing at " << FailIndex << "\n"); 2751 ++NumDAGIselRetries; 2752 2753 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2754 // move to the next case. 2755 MatcherIndex = FailIndex; 2756 } 2757 2758 // If the whole scope failed to match, bail. 2759 if (FailIndex == 0) break; 2760 2761 // Push a MatchScope which indicates where to go if the first child fails 2762 // to match. 2763 MatchScope NewEntry; 2764 NewEntry.FailIndex = FailIndex; 2765 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2766 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2767 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2768 NewEntry.InputChain = InputChain; 2769 NewEntry.InputGlue = InputGlue; 2770 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2771 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); 2772 MatchScopes.push_back(NewEntry); 2773 continue; 2774 } 2775 case OPC_RecordNode: { 2776 // Remember this node, it may end up being an operand in the pattern. 2777 SDNode *Parent = nullptr; 2778 if (NodeStack.size() > 1) 2779 Parent = NodeStack[NodeStack.size()-2].getNode(); 2780 RecordedNodes.push_back(std::make_pair(N, Parent)); 2781 continue; 2782 } 2783 2784 case OPC_RecordChild0: case OPC_RecordChild1: 2785 case OPC_RecordChild2: case OPC_RecordChild3: 2786 case OPC_RecordChild4: case OPC_RecordChild5: 2787 case OPC_RecordChild6: case OPC_RecordChild7: { 2788 unsigned ChildNo = Opcode-OPC_RecordChild0; 2789 if (ChildNo >= N.getNumOperands()) 2790 break; // Match fails if out of range child #. 2791 2792 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2793 N.getNode())); 2794 continue; 2795 } 2796 case OPC_RecordMemRef: 2797 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); 2798 continue; 2799 2800 case OPC_CaptureGlueInput: 2801 // If the current node has an input glue, capture it in InputGlue. 2802 if (N->getNumOperands() != 0 && 2803 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2804 InputGlue = N->getOperand(N->getNumOperands()-1); 2805 continue; 2806 2807 case OPC_MoveChild: { 2808 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2809 if (ChildNo >= N.getNumOperands()) 2810 break; // Match fails if out of range child #. 2811 N = N.getOperand(ChildNo); 2812 NodeStack.push_back(N); 2813 continue; 2814 } 2815 2816 case OPC_MoveParent: 2817 // Pop the current node off the NodeStack. 2818 NodeStack.pop_back(); 2819 assert(!NodeStack.empty() && "Node stack imbalance!"); 2820 N = NodeStack.back(); 2821 continue; 2822 2823 case OPC_CheckSame: 2824 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2825 continue; 2826 2827 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 2828 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 2829 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 2830 Opcode-OPC_CheckChild0Same)) 2831 break; 2832 continue; 2833 2834 case OPC_CheckPatternPredicate: 2835 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2836 continue; 2837 case OPC_CheckPredicate: 2838 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2839 N.getNode())) 2840 break; 2841 continue; 2842 case OPC_CheckComplexPat: { 2843 unsigned CPNum = MatcherTable[MatcherIndex++]; 2844 unsigned RecNo = MatcherTable[MatcherIndex++]; 2845 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 2846 2847 // If target can modify DAG during matching, keep the matching state 2848 // consistent. 2849 std::unique_ptr<MatchStateUpdater> MSU; 2850 if (ComplexPatternFuncMutatesDAG()) 2851 MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes, 2852 MatchScopes)); 2853 2854 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 2855 RecordedNodes[RecNo].first, CPNum, 2856 RecordedNodes)) 2857 break; 2858 continue; 2859 } 2860 case OPC_CheckOpcode: 2861 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 2862 continue; 2863 2864 case OPC_CheckType: 2865 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 2866 CurDAG->getDataLayout())) 2867 break; 2868 continue; 2869 2870 case OPC_SwitchOpcode: { 2871 unsigned CurNodeOpcode = N.getOpcode(); 2872 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2873 unsigned CaseSize; 2874 while (1) { 2875 // Get the size of this case. 2876 CaseSize = MatcherTable[MatcherIndex++]; 2877 if (CaseSize & 128) 2878 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2879 if (CaseSize == 0) break; 2880 2881 uint16_t Opc = MatcherTable[MatcherIndex++]; 2882 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2883 2884 // If the opcode matches, then we will execute this case. 2885 if (CurNodeOpcode == Opc) 2886 break; 2887 2888 // Otherwise, skip over this case. 2889 MatcherIndex += CaseSize; 2890 } 2891 2892 // If no cases matched, bail out. 2893 if (CaseSize == 0) break; 2894 2895 // Otherwise, execute the case we found. 2896 DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart 2897 << " to " << MatcherIndex << "\n"); 2898 continue; 2899 } 2900 2901 case OPC_SwitchType: { 2902 MVT CurNodeVT = N.getSimpleValueType(); 2903 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2904 unsigned CaseSize; 2905 while (1) { 2906 // Get the size of this case. 2907 CaseSize = MatcherTable[MatcherIndex++]; 2908 if (CaseSize & 128) 2909 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2910 if (CaseSize == 0) break; 2911 2912 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2913 if (CaseVT == MVT::iPTR) 2914 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 2915 2916 // If the VT matches, then we will execute this case. 2917 if (CurNodeVT == CaseVT) 2918 break; 2919 2920 // Otherwise, skip over this case. 2921 MatcherIndex += CaseSize; 2922 } 2923 2924 // If no cases matched, bail out. 2925 if (CaseSize == 0) break; 2926 2927 // Otherwise, execute the case we found. 2928 DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 2929 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); 2930 continue; 2931 } 2932 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 2933 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 2934 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 2935 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 2936 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 2937 CurDAG->getDataLayout(), 2938 Opcode - OPC_CheckChild0Type)) 2939 break; 2940 continue; 2941 case OPC_CheckCondCode: 2942 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 2943 continue; 2944 case OPC_CheckValueType: 2945 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 2946 CurDAG->getDataLayout())) 2947 break; 2948 continue; 2949 case OPC_CheckInteger: 2950 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 2951 continue; 2952 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 2953 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 2954 case OPC_CheckChild4Integer: 2955 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 2956 Opcode-OPC_CheckChild0Integer)) break; 2957 continue; 2958 case OPC_CheckAndImm: 2959 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 2960 continue; 2961 case OPC_CheckOrImm: 2962 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 2963 continue; 2964 2965 case OPC_CheckFoldableChainNode: { 2966 assert(NodeStack.size() != 1 && "No parent node"); 2967 // Verify that all intermediate nodes between the root and this one have 2968 // a single use. 2969 bool HasMultipleUses = false; 2970 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 2971 if (!NodeStack[i].hasOneUse()) { 2972 HasMultipleUses = true; 2973 break; 2974 } 2975 if (HasMultipleUses) break; 2976 2977 // Check to see that the target thinks this is profitable to fold and that 2978 // we can fold it without inducing cycles in the graph. 2979 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2980 NodeToMatch) || 2981 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2982 NodeToMatch, OptLevel, 2983 true/*We validate our own chains*/)) 2984 break; 2985 2986 continue; 2987 } 2988 case OPC_EmitInteger: { 2989 MVT::SimpleValueType VT = 2990 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2991 int64_t Val = MatcherTable[MatcherIndex++]; 2992 if (Val & 128) 2993 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2994 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2995 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 2996 VT), nullptr)); 2997 continue; 2998 } 2999 case OPC_EmitRegister: { 3000 MVT::SimpleValueType VT = 3001 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3002 unsigned RegNo = MatcherTable[MatcherIndex++]; 3003 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3004 CurDAG->getRegister(RegNo, VT), nullptr)); 3005 continue; 3006 } 3007 case OPC_EmitRegister2: { 3008 // For targets w/ more than 256 register names, the register enum 3009 // values are stored in two bytes in the matcher table (just like 3010 // opcodes). 3011 MVT::SimpleValueType VT = 3012 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3013 unsigned RegNo = MatcherTable[MatcherIndex++]; 3014 RegNo |= MatcherTable[MatcherIndex++] << 8; 3015 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3016 CurDAG->getRegister(RegNo, VT), nullptr)); 3017 continue; 3018 } 3019 3020 case OPC_EmitConvertToTarget: { 3021 // Convert from IMM/FPIMM to target version. 3022 unsigned RecNo = MatcherTable[MatcherIndex++]; 3023 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3024 SDValue Imm = RecordedNodes[RecNo].first; 3025 3026 if (Imm->getOpcode() == ISD::Constant) { 3027 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3028 Imm = CurDAG->getConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType(), 3029 true); 3030 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3031 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3032 Imm = CurDAG->getConstantFP(*Val, SDLoc(NodeToMatch), 3033 Imm.getValueType(), true); 3034 } 3035 3036 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3037 continue; 3038 } 3039 3040 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3041 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 3042 // These are space-optimized forms of OPC_EmitMergeInputChains. 3043 assert(!InputChain.getNode() && 3044 "EmitMergeInputChains should be the first chain producing node"); 3045 assert(ChainNodesMatched.empty() && 3046 "Should only have one EmitMergeInputChains per match"); 3047 3048 // Read all of the chained nodes. 3049 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; 3050 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3051 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3052 3053 // FIXME: What if other value results of the node have uses not matched 3054 // by this pattern? 3055 if (ChainNodesMatched.back() != NodeToMatch && 3056 !RecordedNodes[RecNo].first.hasOneUse()) { 3057 ChainNodesMatched.clear(); 3058 break; 3059 } 3060 3061 // Merge the input chains if they are not intra-pattern references. 3062 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3063 3064 if (!InputChain.getNode()) 3065 break; // Failed to merge. 3066 continue; 3067 } 3068 3069 case OPC_EmitMergeInputChains: { 3070 assert(!InputChain.getNode() && 3071 "EmitMergeInputChains should be the first chain producing node"); 3072 // This node gets a list of nodes we matched in the input that have 3073 // chains. We want to token factor all of the input chains to these nodes 3074 // together. However, if any of the input chains is actually one of the 3075 // nodes matched in this pattern, then we have an intra-match reference. 3076 // Ignore these because the newly token factored chain should not refer to 3077 // the old nodes. 3078 unsigned NumChains = MatcherTable[MatcherIndex++]; 3079 assert(NumChains != 0 && "Can't TF zero chains"); 3080 3081 assert(ChainNodesMatched.empty() && 3082 "Should only have one EmitMergeInputChains per match"); 3083 3084 // Read all of the chained nodes. 3085 for (unsigned i = 0; i != NumChains; ++i) { 3086 unsigned RecNo = MatcherTable[MatcherIndex++]; 3087 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3088 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3089 3090 // FIXME: What if other value results of the node have uses not matched 3091 // by this pattern? 3092 if (ChainNodesMatched.back() != NodeToMatch && 3093 !RecordedNodes[RecNo].first.hasOneUse()) { 3094 ChainNodesMatched.clear(); 3095 break; 3096 } 3097 } 3098 3099 // If the inner loop broke out, the match fails. 3100 if (ChainNodesMatched.empty()) 3101 break; 3102 3103 // Merge the input chains if they are not intra-pattern references. 3104 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3105 3106 if (!InputChain.getNode()) 3107 break; // Failed to merge. 3108 3109 continue; 3110 } 3111 3112 case OPC_EmitCopyToReg: { 3113 unsigned RecNo = MatcherTable[MatcherIndex++]; 3114 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3115 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3116 3117 if (!InputChain.getNode()) 3118 InputChain = CurDAG->getEntryNode(); 3119 3120 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3121 DestPhysReg, RecordedNodes[RecNo].first, 3122 InputGlue); 3123 3124 InputGlue = InputChain.getValue(1); 3125 continue; 3126 } 3127 3128 case OPC_EmitNodeXForm: { 3129 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3130 unsigned RecNo = MatcherTable[MatcherIndex++]; 3131 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3132 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3133 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3134 continue; 3135 } 3136 3137 case OPC_EmitNode: 3138 case OPC_MorphNodeTo: { 3139 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3140 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3141 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3142 // Get the result VT list. 3143 unsigned NumVTs = MatcherTable[MatcherIndex++]; 3144 SmallVector<EVT, 4> VTs; 3145 for (unsigned i = 0; i != NumVTs; ++i) { 3146 MVT::SimpleValueType VT = 3147 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3148 if (VT == MVT::iPTR) 3149 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3150 VTs.push_back(VT); 3151 } 3152 3153 if (EmitNodeInfo & OPFL_Chain) 3154 VTs.push_back(MVT::Other); 3155 if (EmitNodeInfo & OPFL_GlueOutput) 3156 VTs.push_back(MVT::Glue); 3157 3158 // This is hot code, so optimize the two most common cases of 1 and 2 3159 // results. 3160 SDVTList VTList; 3161 if (VTs.size() == 1) 3162 VTList = CurDAG->getVTList(VTs[0]); 3163 else if (VTs.size() == 2) 3164 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3165 else 3166 VTList = CurDAG->getVTList(VTs); 3167 3168 // Get the operand list. 3169 unsigned NumOps = MatcherTable[MatcherIndex++]; 3170 SmallVector<SDValue, 8> Ops; 3171 for (unsigned i = 0; i != NumOps; ++i) { 3172 unsigned RecNo = MatcherTable[MatcherIndex++]; 3173 if (RecNo & 128) 3174 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3175 3176 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3177 Ops.push_back(RecordedNodes[RecNo].first); 3178 } 3179 3180 // If there are variadic operands to add, handle them now. 3181 if (EmitNodeInfo & OPFL_VariadicInfo) { 3182 // Determine the start index to copy from. 3183 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3184 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3185 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3186 "Invalid variadic node"); 3187 // Copy all of the variadic operands, not including a potential glue 3188 // input. 3189 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3190 i != e; ++i) { 3191 SDValue V = NodeToMatch->getOperand(i); 3192 if (V.getValueType() == MVT::Glue) break; 3193 Ops.push_back(V); 3194 } 3195 } 3196 3197 // If this has chain/glue inputs, add them. 3198 if (EmitNodeInfo & OPFL_Chain) 3199 Ops.push_back(InputChain); 3200 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3201 Ops.push_back(InputGlue); 3202 3203 // Create the node. 3204 SDNode *Res = nullptr; 3205 if (Opcode != OPC_MorphNodeTo) { 3206 // If this is a normal EmitNode command, just create the new node and 3207 // add the results to the RecordedNodes list. 3208 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3209 VTList, Ops); 3210 3211 // Add all the non-glue/non-chain results to the RecordedNodes list. 3212 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3213 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3214 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3215 nullptr)); 3216 } 3217 3218 } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) { 3219 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo); 3220 } else { 3221 // NodeToMatch was eliminated by CSE when the target changed the DAG. 3222 // We will visit the equivalent node later. 3223 DEBUG(dbgs() << "Node was eliminated by CSE\n"); 3224 return nullptr; 3225 } 3226 3227 // If the node had chain/glue results, update our notion of the current 3228 // chain and glue. 3229 if (EmitNodeInfo & OPFL_GlueOutput) { 3230 InputGlue = SDValue(Res, VTs.size()-1); 3231 if (EmitNodeInfo & OPFL_Chain) 3232 InputChain = SDValue(Res, VTs.size()-2); 3233 } else if (EmitNodeInfo & OPFL_Chain) 3234 InputChain = SDValue(Res, VTs.size()-1); 3235 3236 // If the OPFL_MemRefs glue is set on this node, slap all of the 3237 // accumulated memrefs onto it. 3238 // 3239 // FIXME: This is vastly incorrect for patterns with multiple outputs 3240 // instructions that access memory and for ComplexPatterns that match 3241 // loads. 3242 if (EmitNodeInfo & OPFL_MemRefs) { 3243 // Only attach load or store memory operands if the generated 3244 // instruction may load or store. 3245 const MCInstrDesc &MCID = TII->get(TargetOpc); 3246 bool mayLoad = MCID.mayLoad(); 3247 bool mayStore = MCID.mayStore(); 3248 3249 unsigned NumMemRefs = 0; 3250 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3251 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3252 if ((*I)->isLoad()) { 3253 if (mayLoad) 3254 ++NumMemRefs; 3255 } else if ((*I)->isStore()) { 3256 if (mayStore) 3257 ++NumMemRefs; 3258 } else { 3259 ++NumMemRefs; 3260 } 3261 } 3262 3263 MachineSDNode::mmo_iterator MemRefs = 3264 MF->allocateMemRefsArray(NumMemRefs); 3265 3266 MachineSDNode::mmo_iterator MemRefsPos = MemRefs; 3267 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3268 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3269 if ((*I)->isLoad()) { 3270 if (mayLoad) 3271 *MemRefsPos++ = *I; 3272 } else if ((*I)->isStore()) { 3273 if (mayStore) 3274 *MemRefsPos++ = *I; 3275 } else { 3276 *MemRefsPos++ = *I; 3277 } 3278 } 3279 3280 cast<MachineSDNode>(Res) 3281 ->setMemRefs(MemRefs, MemRefs + NumMemRefs); 3282 } 3283 3284 DEBUG(dbgs() << " " 3285 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") 3286 << " node: "; Res->dump(CurDAG); dbgs() << "\n"); 3287 3288 // If this was a MorphNodeTo then we're completely done! 3289 if (Opcode == OPC_MorphNodeTo) { 3290 // Update chain and glue uses. 3291 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 3292 InputGlue, GlueResultNodesMatched, true); 3293 return Res; 3294 } 3295 3296 continue; 3297 } 3298 3299 case OPC_MarkGlueResults: { 3300 unsigned NumNodes = MatcherTable[MatcherIndex++]; 3301 3302 // Read and remember all the glue-result nodes. 3303 for (unsigned i = 0; i != NumNodes; ++i) { 3304 unsigned RecNo = MatcherTable[MatcherIndex++]; 3305 if (RecNo & 128) 3306 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3307 3308 assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults"); 3309 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3310 } 3311 continue; 3312 } 3313 3314 case OPC_CompleteMatch: { 3315 // The match has been completed, and any new nodes (if any) have been 3316 // created. Patch up references to the matched dag to use the newly 3317 // created nodes. 3318 unsigned NumResults = MatcherTable[MatcherIndex++]; 3319 3320 for (unsigned i = 0; i != NumResults; ++i) { 3321 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3322 if (ResSlot & 128) 3323 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3324 3325 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3326 SDValue Res = RecordedNodes[ResSlot].first; 3327 3328 assert(i < NodeToMatch->getNumValues() && 3329 NodeToMatch->getValueType(i) != MVT::Other && 3330 NodeToMatch->getValueType(i) != MVT::Glue && 3331 "Invalid number of results to complete!"); 3332 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3333 NodeToMatch->getValueType(i) == MVT::iPTR || 3334 Res.getValueType() == MVT::iPTR || 3335 NodeToMatch->getValueType(i).getSizeInBits() == 3336 Res.getValueType().getSizeInBits()) && 3337 "invalid replacement"); 3338 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); 3339 } 3340 3341 // If the root node defines glue, add it to the glue nodes to update list. 3342 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) 3343 GlueResultNodesMatched.push_back(NodeToMatch); 3344 3345 // Update chain and glue uses. 3346 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 3347 InputGlue, GlueResultNodesMatched, false); 3348 3349 assert(NodeToMatch->use_empty() && 3350 "Didn't replace all uses of the node?"); 3351 3352 // FIXME: We just return here, which interacts correctly with SelectRoot 3353 // above. We should fix this to not return an SDNode* anymore. 3354 return nullptr; 3355 } 3356 } 3357 3358 // If the code reached this point, then the match failed. See if there is 3359 // another child to try in the current 'Scope', otherwise pop it until we 3360 // find a case to check. 3361 DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); 3362 ++NumDAGIselRetries; 3363 while (1) { 3364 if (MatchScopes.empty()) { 3365 CannotYetSelect(NodeToMatch); 3366 return nullptr; 3367 } 3368 3369 // Restore the interpreter state back to the point where the scope was 3370 // formed. 3371 MatchScope &LastScope = MatchScopes.back(); 3372 RecordedNodes.resize(LastScope.NumRecordedNodes); 3373 NodeStack.clear(); 3374 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3375 N = NodeStack.back(); 3376 3377 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3378 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3379 MatcherIndex = LastScope.FailIndex; 3380 3381 DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3382 3383 InputChain = LastScope.InputChain; 3384 InputGlue = LastScope.InputGlue; 3385 if (!LastScope.HasChainNodesMatched) 3386 ChainNodesMatched.clear(); 3387 if (!LastScope.HasGlueResultNodesMatched) 3388 GlueResultNodesMatched.clear(); 3389 3390 // Check to see what the offset is at the new MatcherIndex. If it is zero 3391 // we have reached the end of this scope, otherwise we have another child 3392 // in the current scope to try. 3393 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3394 if (NumToSkip & 128) 3395 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3396 3397 // If we have another child in this scope to match, update FailIndex and 3398 // try it. 3399 if (NumToSkip != 0) { 3400 LastScope.FailIndex = MatcherIndex+NumToSkip; 3401 break; 3402 } 3403 3404 // End of this scope, pop it and try the next child in the containing 3405 // scope. 3406 MatchScopes.pop_back(); 3407 } 3408 } 3409 } 3410 3411 3412 3413 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3414 std::string msg; 3415 raw_string_ostream Msg(msg); 3416 Msg << "Cannot select: "; 3417 3418 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3419 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3420 N->getOpcode() != ISD::INTRINSIC_VOID) { 3421 N->printrFull(Msg, CurDAG); 3422 Msg << "\nIn function: " << MF->getName(); 3423 } else { 3424 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3425 unsigned iid = 3426 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3427 if (iid < Intrinsic::num_intrinsics) 3428 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); 3429 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3430 Msg << "target intrinsic %" << TII->getName(iid); 3431 else 3432 Msg << "unknown intrinsic #" << iid; 3433 } 3434 report_fatal_error(Msg.str()); 3435 } 3436 3437 char SelectionDAGISel::ID = 0; 3438