Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the SelectionDAGISel class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/GCStrategy.h"
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/ADT/PostOrderIterator.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/BranchProbabilityInfo.h"
     21 #include "llvm/Analysis/CFG.h"
     22 #include "llvm/Analysis/EHPersonalities.h"
     23 #include "llvm/Analysis/TargetLibraryInfo.h"
     24 #include "llvm/CodeGen/Analysis.h"
     25 #include "llvm/CodeGen/FastISel.h"
     26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     27 #include "llvm/CodeGen/GCMetadata.h"
     28 #include "llvm/CodeGen/MachineFrameInfo.h"
     29 #include "llvm/CodeGen/MachineFunction.h"
     30 #include "llvm/CodeGen/MachineInstrBuilder.h"
     31 #include "llvm/CodeGen/MachineModuleInfo.h"
     32 #include "llvm/CodeGen/MachineRegisterInfo.h"
     33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     34 #include "llvm/CodeGen/SchedulerRegistry.h"
     35 #include "llvm/CodeGen/SelectionDAG.h"
     36 #include "llvm/CodeGen/SelectionDAGISel.h"
     37 #include "llvm/CodeGen/WinEHFuncInfo.h"
     38 #include "llvm/IR/Constants.h"
     39 #include "llvm/IR/DebugInfo.h"
     40 #include "llvm/IR/Function.h"
     41 #include "llvm/IR/InlineAsm.h"
     42 #include "llvm/IR/Instructions.h"
     43 #include "llvm/IR/IntrinsicInst.h"
     44 #include "llvm/IR/Intrinsics.h"
     45 #include "llvm/IR/LLVMContext.h"
     46 #include "llvm/IR/Module.h"
     47 #include "llvm/MC/MCAsmInfo.h"
     48 #include "llvm/Support/Compiler.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/ErrorHandling.h"
     51 #include "llvm/Support/Timer.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/Target/TargetInstrInfo.h"
     54 #include "llvm/Target/TargetIntrinsicInfo.h"
     55 #include "llvm/Target/TargetLowering.h"
     56 #include "llvm/Target/TargetMachine.h"
     57 #include "llvm/Target/TargetOptions.h"
     58 #include "llvm/Target/TargetRegisterInfo.h"
     59 #include "llvm/Target/TargetSubtargetInfo.h"
     60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     61 #include <algorithm>
     62 using namespace llvm;
     63 
     64 #define DEBUG_TYPE "isel"
     65 
     66 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
     67 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
     68 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
     69 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
     70 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
     71 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
     72 STATISTIC(NumFastIselFailLowerArguments,
     73           "Number of entry blocks where fast isel failed to lower arguments");
     74 
     75 #ifndef NDEBUG
     76 static cl::opt<bool>
     77 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
     78           cl::desc("Enable extra verbose messages in the \"fast\" "
     79                    "instruction selector"));
     80 
     81   // Terminators
     82 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
     83 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
     84 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
     85 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
     86 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
     87 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
     88 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
     89 
     90   // Standard binary operators...
     91 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
     92 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
     93 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
     94 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
     95 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
     96 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
     97 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
     98 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
     99 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
    100 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
    101 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
    102 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
    103 
    104   // Logical operators...
    105 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
    106 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
    107 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
    108 
    109   // Memory instructions...
    110 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
    111 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
    112 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
    113 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
    114 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
    115 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
    116 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
    117 
    118   // Convert instructions...
    119 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
    120 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
    121 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
    122 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
    123 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
    124 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
    125 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
    126 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
    127 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
    128 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
    129 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
    130 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
    131 
    132   // Other instructions...
    133 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
    134 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
    135 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
    136 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
    137 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
    138 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
    139 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
    140 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
    141 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
    142 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
    143 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
    144 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
    145 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
    146 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
    147 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
    148 
    149 // Intrinsic instructions...
    150 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
    151 STATISTIC(NumFastIselFailSAddWithOverflow,
    152           "Fast isel fails on sadd.with.overflow");
    153 STATISTIC(NumFastIselFailUAddWithOverflow,
    154           "Fast isel fails on uadd.with.overflow");
    155 STATISTIC(NumFastIselFailSSubWithOverflow,
    156           "Fast isel fails on ssub.with.overflow");
    157 STATISTIC(NumFastIselFailUSubWithOverflow,
    158           "Fast isel fails on usub.with.overflow");
    159 STATISTIC(NumFastIselFailSMulWithOverflow,
    160           "Fast isel fails on smul.with.overflow");
    161 STATISTIC(NumFastIselFailUMulWithOverflow,
    162           "Fast isel fails on umul.with.overflow");
    163 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
    164 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
    165 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
    166 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
    167 #endif
    168 
    169 static cl::opt<bool>
    170 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
    171           cl::desc("Enable verbose messages in the \"fast\" "
    172                    "instruction selector"));
    173 static cl::opt<int> EnableFastISelAbort(
    174     "fast-isel-abort", cl::Hidden,
    175     cl::desc("Enable abort calls when \"fast\" instruction selection "
    176              "fails to lower an instruction: 0 disable the abort, 1 will "
    177              "abort but for args, calls and terminators, 2 will also "
    178              "abort for argument lowering, and 3 will never fallback "
    179              "to SelectionDAG."));
    180 
    181 static cl::opt<bool>
    182 UseMBPI("use-mbpi",
    183         cl::desc("use Machine Branch Probability Info"),
    184         cl::init(true), cl::Hidden);
    185 
    186 #ifndef NDEBUG
    187 static cl::opt<std::string>
    188 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
    189                         cl::desc("Only display the basic block whose name "
    190                                  "matches this for all view-*-dags options"));
    191 static cl::opt<bool>
    192 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
    193           cl::desc("Pop up a window to show dags before the first "
    194                    "dag combine pass"));
    195 static cl::opt<bool>
    196 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
    197           cl::desc("Pop up a window to show dags before legalize types"));
    198 static cl::opt<bool>
    199 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
    200           cl::desc("Pop up a window to show dags before legalize"));
    201 static cl::opt<bool>
    202 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
    203           cl::desc("Pop up a window to show dags before the second "
    204                    "dag combine pass"));
    205 static cl::opt<bool>
    206 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
    207           cl::desc("Pop up a window to show dags before the post legalize types"
    208                    " dag combine pass"));
    209 static cl::opt<bool>
    210 ViewISelDAGs("view-isel-dags", cl::Hidden,
    211           cl::desc("Pop up a window to show isel dags as they are selected"));
    212 static cl::opt<bool>
    213 ViewSchedDAGs("view-sched-dags", cl::Hidden,
    214           cl::desc("Pop up a window to show sched dags as they are processed"));
    215 static cl::opt<bool>
    216 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
    217       cl::desc("Pop up a window to show SUnit dags after they are processed"));
    218 #else
    219 static const bool ViewDAGCombine1 = false,
    220                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
    221                   ViewDAGCombine2 = false,
    222                   ViewDAGCombineLT = false,
    223                   ViewISelDAGs = false, ViewSchedDAGs = false,
    224                   ViewSUnitDAGs = false;
    225 #endif
    226 
    227 //===---------------------------------------------------------------------===//
    228 ///
    229 /// RegisterScheduler class - Track the registration of instruction schedulers.
    230 ///
    231 //===---------------------------------------------------------------------===//
    232 MachinePassRegistry RegisterScheduler::Registry;
    233 
    234 //===---------------------------------------------------------------------===//
    235 ///
    236 /// ISHeuristic command line option for instruction schedulers.
    237 ///
    238 //===---------------------------------------------------------------------===//
    239 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
    240                RegisterPassParser<RegisterScheduler> >
    241 ISHeuristic("pre-RA-sched",
    242             cl::init(&createDefaultScheduler), cl::Hidden,
    243             cl::desc("Instruction schedulers available (before register"
    244                      " allocation):"));
    245 
    246 static RegisterScheduler
    247 defaultListDAGScheduler("default", "Best scheduler for the target",
    248                         createDefaultScheduler);
    249 
    250 namespace llvm {
    251   //===--------------------------------------------------------------------===//
    252   /// \brief This class is used by SelectionDAGISel to temporarily override
    253   /// the optimization level on a per-function basis.
    254   class OptLevelChanger {
    255     SelectionDAGISel &IS;
    256     CodeGenOpt::Level SavedOptLevel;
    257     bool SavedFastISel;
    258 
    259   public:
    260     OptLevelChanger(SelectionDAGISel &ISel,
    261                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
    262       SavedOptLevel = IS.OptLevel;
    263       if (NewOptLevel == SavedOptLevel)
    264         return;
    265       IS.OptLevel = NewOptLevel;
    266       IS.TM.setOptLevel(NewOptLevel);
    267       DEBUG(dbgs() << "\nChanging optimization level for Function "
    268             << IS.MF->getFunction()->getName() << "\n");
    269       DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
    270             << " ; After: -O" << NewOptLevel << "\n");
    271       SavedFastISel = IS.TM.Options.EnableFastISel;
    272       if (NewOptLevel == CodeGenOpt::None) {
    273         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
    274         DEBUG(dbgs() << "\tFastISel is "
    275               << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
    276               << "\n");
    277       }
    278     }
    279 
    280     ~OptLevelChanger() {
    281       if (IS.OptLevel == SavedOptLevel)
    282         return;
    283       DEBUG(dbgs() << "\nRestoring optimization level for Function "
    284             << IS.MF->getFunction()->getName() << "\n");
    285       DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
    286             << " ; After: -O" << SavedOptLevel << "\n");
    287       IS.OptLevel = SavedOptLevel;
    288       IS.TM.setOptLevel(SavedOptLevel);
    289       IS.TM.setFastISel(SavedFastISel);
    290     }
    291   };
    292 
    293   //===--------------------------------------------------------------------===//
    294   /// createDefaultScheduler - This creates an instruction scheduler appropriate
    295   /// for the target.
    296   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
    297                                              CodeGenOpt::Level OptLevel) {
    298     const TargetLowering *TLI = IS->TLI;
    299     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
    300 
    301     // Try first to see if the Target has its own way of selecting a scheduler
    302     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
    303       return SchedulerCtor(IS, OptLevel);
    304     }
    305 
    306     if (OptLevel == CodeGenOpt::None ||
    307         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
    308         TLI->getSchedulingPreference() == Sched::Source)
    309       return createSourceListDAGScheduler(IS, OptLevel);
    310     if (TLI->getSchedulingPreference() == Sched::RegPressure)
    311       return createBURRListDAGScheduler(IS, OptLevel);
    312     if (TLI->getSchedulingPreference() == Sched::Hybrid)
    313       return createHybridListDAGScheduler(IS, OptLevel);
    314     if (TLI->getSchedulingPreference() == Sched::VLIW)
    315       return createVLIWDAGScheduler(IS, OptLevel);
    316     assert(TLI->getSchedulingPreference() == Sched::ILP &&
    317            "Unknown sched type!");
    318     return createILPListDAGScheduler(IS, OptLevel);
    319   }
    320 }
    321 
    322 // EmitInstrWithCustomInserter - This method should be implemented by targets
    323 // that mark instructions with the 'usesCustomInserter' flag.  These
    324 // instructions are special in various ways, which require special support to
    325 // insert.  The specified MachineInstr is created but not inserted into any
    326 // basic blocks, and this method is called to expand it into a sequence of
    327 // instructions, potentially also creating new basic blocks and control flow.
    328 // When new basic blocks are inserted and the edges from MBB to its successors
    329 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
    330 // DenseMap.
    331 MachineBasicBlock *
    332 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    333                                             MachineBasicBlock *MBB) const {
    334 #ifndef NDEBUG
    335   dbgs() << "If a target marks an instruction with "
    336           "'usesCustomInserter', it must implement "
    337           "TargetLowering::EmitInstrWithCustomInserter!";
    338 #endif
    339   llvm_unreachable(nullptr);
    340 }
    341 
    342 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
    343                                                    SDNode *Node) const {
    344   assert(!MI->hasPostISelHook() &&
    345          "If a target marks an instruction with 'hasPostISelHook', "
    346          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
    347 }
    348 
    349 //===----------------------------------------------------------------------===//
    350 // SelectionDAGISel code
    351 //===----------------------------------------------------------------------===//
    352 
    353 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
    354                                    CodeGenOpt::Level OL) :
    355   MachineFunctionPass(ID), TM(tm),
    356   FuncInfo(new FunctionLoweringInfo()),
    357   CurDAG(new SelectionDAG(tm, OL)),
    358   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
    359   GFI(),
    360   OptLevel(OL),
    361   DAGSize(0) {
    362     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
    363     initializeBranchProbabilityInfoWrapperPassPass(
    364         *PassRegistry::getPassRegistry());
    365     initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
    366     initializeTargetLibraryInfoWrapperPassPass(
    367         *PassRegistry::getPassRegistry());
    368   }
    369 
    370 SelectionDAGISel::~SelectionDAGISel() {
    371   delete SDB;
    372   delete CurDAG;
    373   delete FuncInfo;
    374 }
    375 
    376 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
    377   AU.addRequired<AAResultsWrapperPass>();
    378   AU.addRequired<GCModuleInfo>();
    379   AU.addPreserved<GCModuleInfo>();
    380   AU.addRequired<TargetLibraryInfoWrapperPass>();
    381   if (UseMBPI && OptLevel != CodeGenOpt::None)
    382     AU.addRequired<BranchProbabilityInfoWrapperPass>();
    383   MachineFunctionPass::getAnalysisUsage(AU);
    384 }
    385 
    386 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
    387 /// may trap on it.  In this case we have to split the edge so that the path
    388 /// through the predecessor block that doesn't go to the phi block doesn't
    389 /// execute the possibly trapping instruction.
    390 ///
    391 /// This is required for correctness, so it must be done at -O0.
    392 ///
    393 static void SplitCriticalSideEffectEdges(Function &Fn) {
    394   // Loop for blocks with phi nodes.
    395   for (BasicBlock &BB : Fn) {
    396     PHINode *PN = dyn_cast<PHINode>(BB.begin());
    397     if (!PN) continue;
    398 
    399   ReprocessBlock:
    400     // For each block with a PHI node, check to see if any of the input values
    401     // are potentially trapping constant expressions.  Constant expressions are
    402     // the only potentially trapping value that can occur as the argument to a
    403     // PHI.
    404     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    405       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    406         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
    407         if (!CE || !CE->canTrap()) continue;
    408 
    409         // The only case we have to worry about is when the edge is critical.
    410         // Since this block has a PHI Node, we assume it has multiple input
    411         // edges: check to see if the pred has multiple successors.
    412         BasicBlock *Pred = PN->getIncomingBlock(i);
    413         if (Pred->getTerminator()->getNumSuccessors() == 1)
    414           continue;
    415 
    416         // Okay, we have to split this edge.
    417         SplitCriticalEdge(
    418             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
    419             CriticalEdgeSplittingOptions().setMergeIdenticalEdges());
    420         goto ReprocessBlock;
    421       }
    422   }
    423 }
    424 
    425 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
    426   // Do some sanity-checking on the command-line options.
    427   assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
    428          "-fast-isel-verbose requires -fast-isel");
    429   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
    430          "-fast-isel-abort > 0 requires -fast-isel");
    431 
    432   const Function &Fn = *mf.getFunction();
    433   MF = &mf;
    434 
    435   // Reset the target options before resetting the optimization
    436   // level below.
    437   // FIXME: This is a horrible hack and should be processed via
    438   // codegen looking at the optimization level explicitly when
    439   // it wants to look at it.
    440   TM.resetTargetOptions(Fn);
    441   // Reset OptLevel to None for optnone functions.
    442   CodeGenOpt::Level NewOptLevel = OptLevel;
    443   if (Fn.hasFnAttribute(Attribute::OptimizeNone))
    444     NewOptLevel = CodeGenOpt::None;
    445   OptLevelChanger OLC(*this, NewOptLevel);
    446 
    447   TII = MF->getSubtarget().getInstrInfo();
    448   TLI = MF->getSubtarget().getTargetLowering();
    449   RegInfo = &MF->getRegInfo();
    450   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    451   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    452   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
    453 
    454   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
    455 
    456   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn));
    457 
    458   CurDAG->init(*MF);
    459   FuncInfo->set(Fn, *MF, CurDAG);
    460 
    461   if (UseMBPI && OptLevel != CodeGenOpt::None)
    462     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    463   else
    464     FuncInfo->BPI = nullptr;
    465 
    466   SDB->init(GFI, *AA, LibInfo);
    467 
    468   MF->setHasInlineAsm(false);
    469 
    470   FuncInfo->SplitCSR = false;
    471   SmallVector<MachineBasicBlock*, 4> Returns;
    472 
    473   // We split CSR if the target supports it for the given function
    474   // and the function has only return exits.
    475   if (TLI->supportSplitCSR(MF)) {
    476     FuncInfo->SplitCSR = true;
    477 
    478     // Collect all the return blocks.
    479     for (const BasicBlock &BB : Fn) {
    480       if (!succ_empty(&BB))
    481         continue;
    482 
    483       const TerminatorInst *Term = BB.getTerminator();
    484       if (isa<UnreachableInst>(Term))
    485         continue;
    486       if (isa<ReturnInst>(Term)) {
    487         Returns.push_back(FuncInfo->MBBMap[&BB]);
    488         continue;
    489       }
    490 
    491       // Bail out if the exit block is not Return nor Unreachable.
    492       FuncInfo->SplitCSR = false;
    493       break;
    494     }
    495   }
    496 
    497   MachineBasicBlock *EntryMBB = &MF->front();
    498   if (FuncInfo->SplitCSR)
    499     // This performs initialization so lowering for SplitCSR will be correct.
    500     TLI->initializeSplitCSR(EntryMBB);
    501 
    502   SelectAllBasicBlocks(Fn);
    503 
    504   // If the first basic block in the function has live ins that need to be
    505   // copied into vregs, emit the copies into the top of the block before
    506   // emitting the code for the block.
    507   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
    508   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
    509 
    510   // Insert copies in the entry block and the return blocks.
    511   if (FuncInfo->SplitCSR)
    512     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
    513 
    514   DenseMap<unsigned, unsigned> LiveInMap;
    515   if (!FuncInfo->ArgDbgValues.empty())
    516     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
    517            E = RegInfo->livein_end(); LI != E; ++LI)
    518       if (LI->second)
    519         LiveInMap.insert(std::make_pair(LI->first, LI->second));
    520 
    521   // Insert DBG_VALUE instructions for function arguments to the entry block.
    522   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
    523     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
    524     bool hasFI = MI->getOperand(0).isFI();
    525     unsigned Reg =
    526         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
    527     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    528       EntryMBB->insert(EntryMBB->begin(), MI);
    529     else {
    530       MachineInstr *Def = RegInfo->getVRegDef(Reg);
    531       if (Def) {
    532         MachineBasicBlock::iterator InsertPos = Def;
    533         // FIXME: VR def may not be in entry block.
    534         Def->getParent()->insert(std::next(InsertPos), MI);
    535       } else
    536         DEBUG(dbgs() << "Dropping debug info for dead vreg"
    537               << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
    538     }
    539 
    540     // If Reg is live-in then update debug info to track its copy in a vreg.
    541     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
    542     if (LDI != LiveInMap.end()) {
    543       assert(!hasFI && "There's no handling of frame pointer updating here yet "
    544                        "- add if needed");
    545       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
    546       MachineBasicBlock::iterator InsertPos = Def;
    547       const MDNode *Variable = MI->getDebugVariable();
    548       const MDNode *Expr = MI->getDebugExpression();
    549       DebugLoc DL = MI->getDebugLoc();
    550       bool IsIndirect = MI->isIndirectDebugValue();
    551       unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
    552       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
    553              "Expected inlined-at fields to agree");
    554       // Def is never a terminator here, so it is ok to increment InsertPos.
    555       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
    556               IsIndirect, LDI->second, Offset, Variable, Expr);
    557 
    558       // If this vreg is directly copied into an exported register then
    559       // that COPY instructions also need DBG_VALUE, if it is the only
    560       // user of LDI->second.
    561       MachineInstr *CopyUseMI = nullptr;
    562       for (MachineRegisterInfo::use_instr_iterator
    563            UI = RegInfo->use_instr_begin(LDI->second),
    564            E = RegInfo->use_instr_end(); UI != E; ) {
    565         MachineInstr *UseMI = &*(UI++);
    566         if (UseMI->isDebugValue()) continue;
    567         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
    568           CopyUseMI = UseMI; continue;
    569         }
    570         // Otherwise this is another use or second copy use.
    571         CopyUseMI = nullptr; break;
    572       }
    573       if (CopyUseMI) {
    574         // Use MI's debug location, which describes where Variable was
    575         // declared, rather than whatever is attached to CopyUseMI.
    576         MachineInstr *NewMI =
    577             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
    578                     CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
    579         MachineBasicBlock::iterator Pos = CopyUseMI;
    580         EntryMBB->insertAfter(Pos, NewMI);
    581       }
    582     }
    583   }
    584 
    585   // Determine if there are any calls in this machine function.
    586   MachineFrameInfo *MFI = MF->getFrameInfo();
    587   for (const auto &MBB : *MF) {
    588     if (MFI->hasCalls() && MF->hasInlineAsm())
    589       break;
    590 
    591     for (const auto &MI : MBB) {
    592       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
    593       if ((MCID.isCall() && !MCID.isReturn()) ||
    594           MI.isStackAligningInlineAsm()) {
    595         MFI->setHasCalls(true);
    596       }
    597       if (MI.isInlineAsm()) {
    598         MF->setHasInlineAsm(true);
    599       }
    600     }
    601   }
    602 
    603   // Determine if there is a call to setjmp in the machine function.
    604   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
    605 
    606   // Replace forward-declared registers with the registers containing
    607   // the desired value.
    608   MachineRegisterInfo &MRI = MF->getRegInfo();
    609   for (DenseMap<unsigned, unsigned>::iterator
    610        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
    611        I != E; ++I) {
    612     unsigned From = I->first;
    613     unsigned To = I->second;
    614     // If To is also scheduled to be replaced, find what its ultimate
    615     // replacement is.
    616     for (;;) {
    617       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
    618       if (J == E) break;
    619       To = J->second;
    620     }
    621     // Make sure the new register has a sufficiently constrained register class.
    622     if (TargetRegisterInfo::isVirtualRegister(From) &&
    623         TargetRegisterInfo::isVirtualRegister(To))
    624       MRI.constrainRegClass(To, MRI.getRegClass(From));
    625     // Replace it.
    626 
    627 
    628     // Replacing one register with another won't touch the kill flags.
    629     // We need to conservatively clear the kill flags as a kill on the old
    630     // register might dominate existing uses of the new register.
    631     if (!MRI.use_empty(To))
    632       MRI.clearKillFlags(From);
    633     MRI.replaceRegWith(From, To);
    634   }
    635 
    636   // Freeze the set of reserved registers now that MachineFrameInfo has been
    637   // set up. All the information required by getReservedRegs() should be
    638   // available now.
    639   MRI.freezeReservedRegs(*MF);
    640 
    641   // Release function-specific state. SDB and CurDAG are already cleared
    642   // at this point.
    643   FuncInfo->clear();
    644 
    645   DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
    646   DEBUG(MF->print(dbgs()));
    647 
    648   return true;
    649 }
    650 
    651 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
    652                                         BasicBlock::const_iterator End,
    653                                         bool &HadTailCall) {
    654   // Lower the instructions. If a call is emitted as a tail call, cease emitting
    655   // nodes for this block.
    656   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
    657     SDB->visit(*I);
    658 
    659   // Make sure the root of the DAG is up-to-date.
    660   CurDAG->setRoot(SDB->getControlRoot());
    661   HadTailCall = SDB->HasTailCall;
    662   SDB->clear();
    663 
    664   // Final step, emit the lowered DAG as machine code.
    665   CodeGenAndEmitDAG();
    666 }
    667 
    668 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
    669   SmallPtrSet<SDNode*, 128> VisitedNodes;
    670   SmallVector<SDNode*, 128> Worklist;
    671 
    672   Worklist.push_back(CurDAG->getRoot().getNode());
    673 
    674   APInt KnownZero;
    675   APInt KnownOne;
    676 
    677   do {
    678     SDNode *N = Worklist.pop_back_val();
    679 
    680     // If we've already seen this node, ignore it.
    681     if (!VisitedNodes.insert(N).second)
    682       continue;
    683 
    684     // Otherwise, add all chain operands to the worklist.
    685     for (const SDValue &Op : N->op_values())
    686       if (Op.getValueType() == MVT::Other)
    687         Worklist.push_back(Op.getNode());
    688 
    689     // If this is a CopyToReg with a vreg dest, process it.
    690     if (N->getOpcode() != ISD::CopyToReg)
    691       continue;
    692 
    693     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
    694     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    695       continue;
    696 
    697     // Ignore non-scalar or non-integer values.
    698     SDValue Src = N->getOperand(2);
    699     EVT SrcVT = Src.getValueType();
    700     if (!SrcVT.isInteger() || SrcVT.isVector())
    701       continue;
    702 
    703     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
    704     CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
    705     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
    706   } while (!Worklist.empty());
    707 }
    708 
    709 void SelectionDAGISel::CodeGenAndEmitDAG() {
    710   std::string GroupName;
    711   if (TimePassesIsEnabled)
    712     GroupName = "Instruction Selection and Scheduling";
    713   std::string BlockName;
    714   int BlockNumber = -1;
    715   (void)BlockNumber;
    716   bool MatchFilterBB = false; (void)MatchFilterBB;
    717 #ifndef NDEBUG
    718   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
    719                    FilterDAGBasicBlockName ==
    720                        FuncInfo->MBB->getBasicBlock()->getName().str());
    721 #endif
    722 #ifdef NDEBUG
    723   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
    724       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
    725       ViewSUnitDAGs)
    726 #endif
    727   {
    728     BlockNumber = FuncInfo->MBB->getNumber();
    729     BlockName =
    730         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
    731   }
    732   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
    733         << " '" << BlockName << "'\n"; CurDAG->dump());
    734 
    735   if (ViewDAGCombine1 && MatchFilterBB)
    736     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
    737 
    738   // Run the DAG combiner in pre-legalize mode.
    739   {
    740     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
    741     CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
    742   }
    743 
    744   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
    745         << " '" << BlockName << "'\n"; CurDAG->dump());
    746 
    747   // Second step, hack on the DAG until it only uses operations and types that
    748   // the target supports.
    749   if (ViewLegalizeTypesDAGs && MatchFilterBB)
    750     CurDAG->viewGraph("legalize-types input for " + BlockName);
    751 
    752   bool Changed;
    753   {
    754     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
    755     Changed = CurDAG->LegalizeTypes();
    756   }
    757 
    758   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
    759         << " '" << BlockName << "'\n"; CurDAG->dump());
    760 
    761   CurDAG->NewNodesMustHaveLegalTypes = true;
    762 
    763   if (Changed) {
    764     if (ViewDAGCombineLT && MatchFilterBB)
    765       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
    766 
    767     // Run the DAG combiner in post-type-legalize mode.
    768     {
    769       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
    770                          TimePassesIsEnabled);
    771       CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
    772     }
    773 
    774     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
    775           << " '" << BlockName << "'\n"; CurDAG->dump());
    776 
    777   }
    778 
    779   {
    780     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
    781     Changed = CurDAG->LegalizeVectors();
    782   }
    783 
    784   if (Changed) {
    785     {
    786       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
    787       CurDAG->LegalizeTypes();
    788     }
    789 
    790     if (ViewDAGCombineLT && MatchFilterBB)
    791       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
    792 
    793     // Run the DAG combiner in post-type-legalize mode.
    794     {
    795       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
    796                          TimePassesIsEnabled);
    797       CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
    798     }
    799 
    800     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
    801           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
    802   }
    803 
    804   if (ViewLegalizeDAGs && MatchFilterBB)
    805     CurDAG->viewGraph("legalize input for " + BlockName);
    806 
    807   {
    808     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
    809     CurDAG->Legalize();
    810   }
    811 
    812   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
    813         << " '" << BlockName << "'\n"; CurDAG->dump());
    814 
    815   if (ViewDAGCombine2 && MatchFilterBB)
    816     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
    817 
    818   // Run the DAG combiner in post-legalize mode.
    819   {
    820     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
    821     CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
    822   }
    823 
    824   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
    825         << " '" << BlockName << "'\n"; CurDAG->dump());
    826 
    827   if (OptLevel != CodeGenOpt::None)
    828     ComputeLiveOutVRegInfo();
    829 
    830   if (ViewISelDAGs && MatchFilterBB)
    831     CurDAG->viewGraph("isel input for " + BlockName);
    832 
    833   // Third, instruction select all of the operations to machine code, adding the
    834   // code to the MachineBasicBlock.
    835   {
    836     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
    837     DoInstructionSelection();
    838   }
    839 
    840   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
    841         << " '" << BlockName << "'\n"; CurDAG->dump());
    842 
    843   if (ViewSchedDAGs && MatchFilterBB)
    844     CurDAG->viewGraph("scheduler input for " + BlockName);
    845 
    846   // Schedule machine code.
    847   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
    848   {
    849     NamedRegionTimer T("Instruction Scheduling", GroupName,
    850                        TimePassesIsEnabled);
    851     Scheduler->Run(CurDAG, FuncInfo->MBB);
    852   }
    853 
    854   if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph();
    855 
    856   // Emit machine code to BB.  This can change 'BB' to the last block being
    857   // inserted into.
    858   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
    859   {
    860     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
    861 
    862     // FuncInfo->InsertPt is passed by reference and set to the end of the
    863     // scheduled instructions.
    864     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
    865   }
    866 
    867   // If the block was split, make sure we update any references that are used to
    868   // update PHI nodes later on.
    869   if (FirstMBB != LastMBB)
    870     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
    871 
    872   // Free the scheduler state.
    873   {
    874     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
    875                        TimePassesIsEnabled);
    876     delete Scheduler;
    877   }
    878 
    879   // Free the SelectionDAG state, now that we're finished with it.
    880   CurDAG->clear();
    881 }
    882 
    883 namespace {
    884 /// ISelUpdater - helper class to handle updates of the instruction selection
    885 /// graph.
    886 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
    887   SelectionDAG::allnodes_iterator &ISelPosition;
    888 public:
    889   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
    890     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
    891 
    892   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
    893   /// deleted is the current ISelPosition node, update ISelPosition.
    894   ///
    895   void NodeDeleted(SDNode *N, SDNode *E) override {
    896     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
    897       ++ISelPosition;
    898   }
    899 };
    900 } // end anonymous namespace
    901 
    902 void SelectionDAGISel::DoInstructionSelection() {
    903   DEBUG(dbgs() << "===== Instruction selection begins: BB#"
    904         << FuncInfo->MBB->getNumber()
    905         << " '" << FuncInfo->MBB->getName() << "'\n");
    906 
    907   PreprocessISelDAG();
    908 
    909   // Select target instructions for the DAG.
    910   {
    911     // Number all nodes with a topological order and set DAGSize.
    912     DAGSize = CurDAG->AssignTopologicalOrder();
    913 
    914     // Create a dummy node (which is not added to allnodes), that adds
    915     // a reference to the root node, preventing it from being deleted,
    916     // and tracking any changes of the root.
    917     HandleSDNode Dummy(CurDAG->getRoot());
    918     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
    919     ++ISelPosition;
    920 
    921     // Make sure that ISelPosition gets properly updated when nodes are deleted
    922     // in calls made from this function.
    923     ISelUpdater ISU(*CurDAG, ISelPosition);
    924 
    925     // The AllNodes list is now topological-sorted. Visit the
    926     // nodes by starting at the end of the list (the root of the
    927     // graph) and preceding back toward the beginning (the entry
    928     // node).
    929     while (ISelPosition != CurDAG->allnodes_begin()) {
    930       SDNode *Node = &*--ISelPosition;
    931       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
    932       // but there are currently some corner cases that it misses. Also, this
    933       // makes it theoretically possible to disable the DAGCombiner.
    934       if (Node->use_empty())
    935         continue;
    936 
    937       SDNode *ResNode = Select(Node);
    938 
    939       // FIXME: This is pretty gross.  'Select' should be changed to not return
    940       // anything at all and this code should be nuked with a tactical strike.
    941 
    942       // If node should not be replaced, continue with the next one.
    943       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
    944         continue;
    945       // Replace node.
    946       if (ResNode) {
    947         ReplaceUses(Node, ResNode);
    948       }
    949 
    950       // If after the replacement this node is not used any more,
    951       // remove this dead node.
    952       if (Node->use_empty()) // Don't delete EntryToken, etc.
    953         CurDAG->RemoveDeadNode(Node);
    954     }
    955 
    956     CurDAG->setRoot(Dummy.getValue());
    957   }
    958 
    959   DEBUG(dbgs() << "===== Instruction selection ends:\n");
    960 
    961   PostprocessISelDAG();
    962 }
    963 
    964 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
    965   for (const User *U : CPI->users()) {
    966     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
    967       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
    968       if (IID == Intrinsic::eh_exceptionpointer ||
    969           IID == Intrinsic::eh_exceptioncode)
    970         return true;
    971     }
    972   }
    973   return false;
    974 }
    975 
    976 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
    977 /// do other setup for EH landing-pad blocks.
    978 bool SelectionDAGISel::PrepareEHLandingPad() {
    979   MachineBasicBlock *MBB = FuncInfo->MBB;
    980   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
    981   const BasicBlock *LLVMBB = MBB->getBasicBlock();
    982   const TargetRegisterClass *PtrRC =
    983       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
    984 
    985   // Catchpads have one live-in register, which typically holds the exception
    986   // pointer or code.
    987   if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
    988     if (hasExceptionPointerOrCodeUser(CPI)) {
    989       // Get or create the virtual register to hold the pointer or code.  Mark
    990       // the live in physreg and copy into the vreg.
    991       MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
    992       assert(EHPhysReg && "target lacks exception pointer register");
    993       MBB->addLiveIn(EHPhysReg);
    994       unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
    995       BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
    996               TII->get(TargetOpcode::COPY), VReg)
    997           .addReg(EHPhysReg, RegState::Kill);
    998     }
    999     return true;
   1000   }
   1001 
   1002   if (!LLVMBB->isLandingPad())
   1003     return true;
   1004 
   1005   // Add a label to mark the beginning of the landing pad.  Deletion of the
   1006   // landing pad can thus be detected via the MachineModuleInfo.
   1007   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
   1008 
   1009   // Assign the call site to the landing pad's begin label.
   1010   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
   1011 
   1012   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
   1013   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
   1014     .addSym(Label);
   1015 
   1016   // Mark exception register as live in.
   1017   if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
   1018     FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
   1019 
   1020   // Mark exception selector register as live in.
   1021   if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
   1022     FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
   1023 
   1024   return true;
   1025 }
   1026 
   1027 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
   1028 /// side-effect free and is either dead or folded into a generated instruction.
   1029 /// Return false if it needs to be emitted.
   1030 static bool isFoldedOrDeadInstruction(const Instruction *I,
   1031                                       FunctionLoweringInfo *FuncInfo) {
   1032   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
   1033          !isa<TerminatorInst>(I) &&    // Terminators aren't folded.
   1034          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
   1035          !I->isEHPad() &&              // EH pad instructions aren't folded.
   1036          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
   1037 }
   1038 
   1039 #ifndef NDEBUG
   1040 // Collect per Instruction statistics for fast-isel misses.  Only those
   1041 // instructions that cause the bail are accounted for.  It does not account for
   1042 // instructions higher in the block.  Thus, summing the per instructions stats
   1043 // will not add up to what is reported by NumFastIselFailures.
   1044 static void collectFailStats(const Instruction *I) {
   1045   switch (I->getOpcode()) {
   1046   default: assert (0 && "<Invalid operator> ");
   1047 
   1048   // Terminators
   1049   case Instruction::Ret:         NumFastIselFailRet++; return;
   1050   case Instruction::Br:          NumFastIselFailBr++; return;
   1051   case Instruction::Switch:      NumFastIselFailSwitch++; return;
   1052   case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
   1053   case Instruction::Invoke:      NumFastIselFailInvoke++; return;
   1054   case Instruction::Resume:      NumFastIselFailResume++; return;
   1055   case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
   1056 
   1057   // Standard binary operators...
   1058   case Instruction::Add:  NumFastIselFailAdd++; return;
   1059   case Instruction::FAdd: NumFastIselFailFAdd++; return;
   1060   case Instruction::Sub:  NumFastIselFailSub++; return;
   1061   case Instruction::FSub: NumFastIselFailFSub++; return;
   1062   case Instruction::Mul:  NumFastIselFailMul++; return;
   1063   case Instruction::FMul: NumFastIselFailFMul++; return;
   1064   case Instruction::UDiv: NumFastIselFailUDiv++; return;
   1065   case Instruction::SDiv: NumFastIselFailSDiv++; return;
   1066   case Instruction::FDiv: NumFastIselFailFDiv++; return;
   1067   case Instruction::URem: NumFastIselFailURem++; return;
   1068   case Instruction::SRem: NumFastIselFailSRem++; return;
   1069   case Instruction::FRem: NumFastIselFailFRem++; return;
   1070 
   1071   // Logical operators...
   1072   case Instruction::And: NumFastIselFailAnd++; return;
   1073   case Instruction::Or:  NumFastIselFailOr++; return;
   1074   case Instruction::Xor: NumFastIselFailXor++; return;
   1075 
   1076   // Memory instructions...
   1077   case Instruction::Alloca:        NumFastIselFailAlloca++; return;
   1078   case Instruction::Load:          NumFastIselFailLoad++; return;
   1079   case Instruction::Store:         NumFastIselFailStore++; return;
   1080   case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
   1081   case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
   1082   case Instruction::Fence:         NumFastIselFailFence++; return;
   1083   case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
   1084 
   1085   // Convert instructions...
   1086   case Instruction::Trunc:    NumFastIselFailTrunc++; return;
   1087   case Instruction::ZExt:     NumFastIselFailZExt++; return;
   1088   case Instruction::SExt:     NumFastIselFailSExt++; return;
   1089   case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
   1090   case Instruction::FPExt:    NumFastIselFailFPExt++; return;
   1091   case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
   1092   case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
   1093   case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
   1094   case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
   1095   case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
   1096   case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
   1097   case Instruction::BitCast:  NumFastIselFailBitCast++; return;
   1098 
   1099   // Other instructions...
   1100   case Instruction::ICmp:           NumFastIselFailICmp++; return;
   1101   case Instruction::FCmp:           NumFastIselFailFCmp++; return;
   1102   case Instruction::PHI:            NumFastIselFailPHI++; return;
   1103   case Instruction::Select:         NumFastIselFailSelect++; return;
   1104   case Instruction::Call: {
   1105     if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
   1106       switch (Intrinsic->getIntrinsicID()) {
   1107       default:
   1108         NumFastIselFailIntrinsicCall++; return;
   1109       case Intrinsic::sadd_with_overflow:
   1110         NumFastIselFailSAddWithOverflow++; return;
   1111       case Intrinsic::uadd_with_overflow:
   1112         NumFastIselFailUAddWithOverflow++; return;
   1113       case Intrinsic::ssub_with_overflow:
   1114         NumFastIselFailSSubWithOverflow++; return;
   1115       case Intrinsic::usub_with_overflow:
   1116         NumFastIselFailUSubWithOverflow++; return;
   1117       case Intrinsic::smul_with_overflow:
   1118         NumFastIselFailSMulWithOverflow++; return;
   1119       case Intrinsic::umul_with_overflow:
   1120         NumFastIselFailUMulWithOverflow++; return;
   1121       case Intrinsic::frameaddress:
   1122         NumFastIselFailFrameaddress++; return;
   1123       case Intrinsic::sqrt:
   1124           NumFastIselFailSqrt++; return;
   1125       case Intrinsic::experimental_stackmap:
   1126         NumFastIselFailStackMap++; return;
   1127       case Intrinsic::experimental_patchpoint_void: // fall-through
   1128       case Intrinsic::experimental_patchpoint_i64:
   1129         NumFastIselFailPatchPoint++; return;
   1130       }
   1131     }
   1132     NumFastIselFailCall++;
   1133     return;
   1134   }
   1135   case Instruction::Shl:            NumFastIselFailShl++; return;
   1136   case Instruction::LShr:           NumFastIselFailLShr++; return;
   1137   case Instruction::AShr:           NumFastIselFailAShr++; return;
   1138   case Instruction::VAArg:          NumFastIselFailVAArg++; return;
   1139   case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
   1140   case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
   1141   case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
   1142   case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
   1143   case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
   1144   case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
   1145   }
   1146 }
   1147 #endif
   1148 
   1149 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
   1150   // Initialize the Fast-ISel state, if needed.
   1151   FastISel *FastIS = nullptr;
   1152   if (TM.Options.EnableFastISel)
   1153     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
   1154 
   1155   // Iterate over all basic blocks in the function.
   1156   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
   1157   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
   1158        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
   1159     const BasicBlock *LLVMBB = *I;
   1160 
   1161     if (OptLevel != CodeGenOpt::None) {
   1162       bool AllPredsVisited = true;
   1163       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
   1164            PI != PE; ++PI) {
   1165         if (!FuncInfo->VisitedBBs.count(*PI)) {
   1166           AllPredsVisited = false;
   1167           break;
   1168         }
   1169       }
   1170 
   1171       if (AllPredsVisited) {
   1172         for (BasicBlock::const_iterator I = LLVMBB->begin();
   1173              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
   1174           FuncInfo->ComputePHILiveOutRegInfo(PN);
   1175       } else {
   1176         for (BasicBlock::const_iterator I = LLVMBB->begin();
   1177              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
   1178           FuncInfo->InvalidatePHILiveOutRegInfo(PN);
   1179       }
   1180 
   1181       FuncInfo->VisitedBBs.insert(LLVMBB);
   1182     }
   1183 
   1184     BasicBlock::const_iterator const Begin =
   1185         LLVMBB->getFirstNonPHI()->getIterator();
   1186     BasicBlock::const_iterator const End = LLVMBB->end();
   1187     BasicBlock::const_iterator BI = End;
   1188 
   1189     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
   1190     if (!FuncInfo->MBB)
   1191       continue; // Some blocks like catchpads have no code or MBB.
   1192     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
   1193 
   1194     // Setup an EH landing-pad block.
   1195     FuncInfo->ExceptionPointerVirtReg = 0;
   1196     FuncInfo->ExceptionSelectorVirtReg = 0;
   1197     if (LLVMBB->isEHPad())
   1198       if (!PrepareEHLandingPad())
   1199         continue;
   1200 
   1201     // Before doing SelectionDAG ISel, see if FastISel has been requested.
   1202     if (FastIS) {
   1203       FastIS->startNewBlock();
   1204 
   1205       // Emit code for any incoming arguments. This must happen before
   1206       // beginning FastISel on the entry block.
   1207       if (LLVMBB == &Fn.getEntryBlock()) {
   1208         ++NumEntryBlocks;
   1209 
   1210         // Lower any arguments needed in this block if this is the entry block.
   1211         if (!FastIS->lowerArguments()) {
   1212           // Fast isel failed to lower these arguments
   1213           ++NumFastIselFailLowerArguments;
   1214           if (EnableFastISelAbort > 1)
   1215             report_fatal_error("FastISel didn't lower all arguments");
   1216 
   1217           // Use SelectionDAG argument lowering
   1218           LowerArguments(Fn);
   1219           CurDAG->setRoot(SDB->getControlRoot());
   1220           SDB->clear();
   1221           CodeGenAndEmitDAG();
   1222         }
   1223 
   1224         // If we inserted any instructions at the beginning, make a note of
   1225         // where they are, so we can be sure to emit subsequent instructions
   1226         // after them.
   1227         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
   1228           FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
   1229         else
   1230           FastIS->setLastLocalValue(nullptr);
   1231       }
   1232 
   1233       unsigned NumFastIselRemaining = std::distance(Begin, End);
   1234       // Do FastISel on as many instructions as possible.
   1235       for (; BI != Begin; --BI) {
   1236         const Instruction *Inst = &*std::prev(BI);
   1237 
   1238         // If we no longer require this instruction, skip it.
   1239         if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
   1240           --NumFastIselRemaining;
   1241           continue;
   1242         }
   1243 
   1244         // Bottom-up: reset the insert pos at the top, after any local-value
   1245         // instructions.
   1246         FastIS->recomputeInsertPt();
   1247 
   1248         // Try to select the instruction with FastISel.
   1249         if (FastIS->selectInstruction(Inst)) {
   1250           --NumFastIselRemaining;
   1251           ++NumFastIselSuccess;
   1252           // If fast isel succeeded, skip over all the folded instructions, and
   1253           // then see if there is a load right before the selected instructions.
   1254           // Try to fold the load if so.
   1255           const Instruction *BeforeInst = Inst;
   1256           while (BeforeInst != &*Begin) {
   1257             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
   1258             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
   1259               break;
   1260           }
   1261           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
   1262               BeforeInst->hasOneUse() &&
   1263               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
   1264             // If we succeeded, don't re-select the load.
   1265             BI = std::next(BasicBlock::const_iterator(BeforeInst));
   1266             --NumFastIselRemaining;
   1267             ++NumFastIselSuccess;
   1268           }
   1269           continue;
   1270         }
   1271 
   1272 #ifndef NDEBUG
   1273         if (EnableFastISelVerbose2)
   1274           collectFailStats(Inst);
   1275 #endif
   1276 
   1277         // Then handle certain instructions as single-LLVM-Instruction blocks.
   1278         if (isa<CallInst>(Inst)) {
   1279 
   1280           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1281             dbgs() << "FastISel missed call: ";
   1282             Inst->dump();
   1283           }
   1284           if (EnableFastISelAbort > 2)
   1285             // FastISel selector couldn't handle something and bailed.
   1286             // For the purpose of debugging, just abort.
   1287             report_fatal_error("FastISel didn't select the entire block");
   1288 
   1289           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
   1290               !Inst->use_empty()) {
   1291             unsigned &R = FuncInfo->ValueMap[Inst];
   1292             if (!R)
   1293               R = FuncInfo->CreateRegs(Inst->getType());
   1294           }
   1295 
   1296           bool HadTailCall = false;
   1297           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
   1298           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
   1299 
   1300           // If the call was emitted as a tail call, we're done with the block.
   1301           // We also need to delete any previously emitted instructions.
   1302           if (HadTailCall) {
   1303             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
   1304             --BI;
   1305             break;
   1306           }
   1307 
   1308           // Recompute NumFastIselRemaining as Selection DAG instruction
   1309           // selection may have handled the call, input args, etc.
   1310           unsigned RemainingNow = std::distance(Begin, BI);
   1311           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
   1312           NumFastIselRemaining = RemainingNow;
   1313           continue;
   1314         }
   1315 
   1316         bool ShouldAbort = EnableFastISelAbort;
   1317         if (EnableFastISelVerbose || EnableFastISelAbort) {
   1318           if (isa<TerminatorInst>(Inst)) {
   1319             // Use a different message for terminator misses.
   1320             dbgs() << "FastISel missed terminator: ";
   1321             // Don't abort unless for terminator unless the level is really high
   1322             ShouldAbort = (EnableFastISelAbort > 2);
   1323           } else {
   1324             dbgs() << "FastISel miss: ";
   1325           }
   1326           Inst->dump();
   1327         }
   1328         if (ShouldAbort)
   1329           // FastISel selector couldn't handle something and bailed.
   1330           // For the purpose of debugging, just abort.
   1331           report_fatal_error("FastISel didn't select the entire block");
   1332 
   1333         NumFastIselFailures += NumFastIselRemaining;
   1334         break;
   1335       }
   1336 
   1337       FastIS->recomputeInsertPt();
   1338     } else {
   1339       // Lower any arguments needed in this block if this is the entry block.
   1340       if (LLVMBB == &Fn.getEntryBlock()) {
   1341         ++NumEntryBlocks;
   1342         LowerArguments(Fn);
   1343       }
   1344     }
   1345 
   1346     if (Begin != BI)
   1347       ++NumDAGBlocks;
   1348     else
   1349       ++NumFastIselBlocks;
   1350 
   1351     if (Begin != BI) {
   1352       // Run SelectionDAG instruction selection on the remainder of the block
   1353       // not handled by FastISel. If FastISel is not run, this is the entire
   1354       // block.
   1355       bool HadTailCall;
   1356       SelectBasicBlock(Begin, BI, HadTailCall);
   1357     }
   1358 
   1359     FinishBasicBlock();
   1360     FuncInfo->PHINodesToUpdate.clear();
   1361   }
   1362 
   1363   delete FastIS;
   1364   SDB->clearDanglingDebugInfo();
   1365   SDB->SPDescriptor.resetPerFunctionState();
   1366 }
   1367 
   1368 /// Given that the input MI is before a partial terminator sequence TSeq, return
   1369 /// true if M + TSeq also a partial terminator sequence.
   1370 ///
   1371 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
   1372 /// lowering copy vregs into physical registers, which are then passed into
   1373 /// terminator instructors so we can satisfy ABI constraints. A partial
   1374 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
   1375 /// may be the whole terminator sequence).
   1376 static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
   1377   // If we do not have a copy or an implicit def, we return true if and only if
   1378   // MI is a debug value.
   1379   if (!MI->isCopy() && !MI->isImplicitDef())
   1380     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
   1381     // physical registers if there is debug info associated with the terminator
   1382     // of our mbb. We want to include said debug info in our terminator
   1383     // sequence, so we return true in that case.
   1384     return MI->isDebugValue();
   1385 
   1386   // We have left the terminator sequence if we are not doing one of the
   1387   // following:
   1388   //
   1389   // 1. Copying a vreg into a physical register.
   1390   // 2. Copying a vreg into a vreg.
   1391   // 3. Defining a register via an implicit def.
   1392 
   1393   // OPI should always be a register definition...
   1394   MachineInstr::const_mop_iterator OPI = MI->operands_begin();
   1395   if (!OPI->isReg() || !OPI->isDef())
   1396     return false;
   1397 
   1398   // Defining any register via an implicit def is always ok.
   1399   if (MI->isImplicitDef())
   1400     return true;
   1401 
   1402   // Grab the copy source...
   1403   MachineInstr::const_mop_iterator OPI2 = OPI;
   1404   ++OPI2;
   1405   assert(OPI2 != MI->operands_end()
   1406          && "Should have a copy implying we should have 2 arguments.");
   1407 
   1408   // Make sure that the copy dest is not a vreg when the copy source is a
   1409   // physical register.
   1410   if (!OPI2->isReg() ||
   1411       (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
   1412        TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
   1413     return false;
   1414 
   1415   return true;
   1416 }
   1417 
   1418 /// Find the split point at which to splice the end of BB into its success stack
   1419 /// protector check machine basic block.
   1420 ///
   1421 /// On many platforms, due to ABI constraints, terminators, even before register
   1422 /// allocation, use physical registers. This creates an issue for us since
   1423 /// physical registers at this point can not travel across basic
   1424 /// blocks. Luckily, selectiondag always moves physical registers into vregs
   1425 /// when they enter functions and moves them through a sequence of copies back
   1426 /// into the physical registers right before the terminator creating a
   1427 /// ``Terminator Sequence''. This function is searching for the beginning of the
   1428 /// terminator sequence so that we can ensure that we splice off not just the
   1429 /// terminator, but additionally the copies that move the vregs into the
   1430 /// physical registers.
   1431 static MachineBasicBlock::iterator
   1432 FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
   1433   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
   1434   //
   1435   if (SplitPoint == BB->begin())
   1436     return SplitPoint;
   1437 
   1438   MachineBasicBlock::iterator Start = BB->begin();
   1439   MachineBasicBlock::iterator Previous = SplitPoint;
   1440   --Previous;
   1441 
   1442   while (MIIsInTerminatorSequence(Previous)) {
   1443     SplitPoint = Previous;
   1444     if (Previous == Start)
   1445       break;
   1446     --Previous;
   1447   }
   1448 
   1449   return SplitPoint;
   1450 }
   1451 
   1452 void
   1453 SelectionDAGISel::FinishBasicBlock() {
   1454 
   1455   DEBUG(dbgs() << "Total amount of phi nodes to update: "
   1456                << FuncInfo->PHINodesToUpdate.size() << "\n";
   1457         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
   1458           dbgs() << "Node " << i << " : ("
   1459                  << FuncInfo->PHINodesToUpdate[i].first
   1460                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
   1461 
   1462   // Next, now that we know what the last MBB the LLVM BB expanded is, update
   1463   // PHI nodes in successors.
   1464   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1465     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
   1466     assert(PHI->isPHI() &&
   1467            "This is not a machine PHI node that we are updating!");
   1468     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1469       continue;
   1470     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
   1471   }
   1472 
   1473   // Handle stack protector.
   1474   if (SDB->SPDescriptor.shouldEmitStackProtector()) {
   1475     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
   1476     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
   1477 
   1478     // Find the split point to split the parent mbb. At the same time copy all
   1479     // physical registers used in the tail of parent mbb into virtual registers
   1480     // before the split point and back into physical registers after the split
   1481     // point. This prevents us needing to deal with Live-ins and many other
   1482     // register allocation issues caused by us splitting the parent mbb. The
   1483     // register allocator will clean up said virtual copies later on.
   1484     MachineBasicBlock::iterator SplitPoint =
   1485       FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
   1486 
   1487     // Splice the terminator of ParentMBB into SuccessMBB.
   1488     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
   1489                        SplitPoint,
   1490                        ParentMBB->end());
   1491 
   1492     // Add compare/jump on neq/jump to the parent BB.
   1493     FuncInfo->MBB = ParentMBB;
   1494     FuncInfo->InsertPt = ParentMBB->end();
   1495     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
   1496     CurDAG->setRoot(SDB->getRoot());
   1497     SDB->clear();
   1498     CodeGenAndEmitDAG();
   1499 
   1500     // CodeGen Failure MBB if we have not codegened it yet.
   1501     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
   1502     if (!FailureMBB->size()) {
   1503       FuncInfo->MBB = FailureMBB;
   1504       FuncInfo->InsertPt = FailureMBB->end();
   1505       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
   1506       CurDAG->setRoot(SDB->getRoot());
   1507       SDB->clear();
   1508       CodeGenAndEmitDAG();
   1509     }
   1510 
   1511     // Clear the Per-BB State.
   1512     SDB->SPDescriptor.resetPerBBState();
   1513   }
   1514 
   1515   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
   1516     // Lower header first, if it wasn't already lowered
   1517     if (!SDB->BitTestCases[i].Emitted) {
   1518       // Set the current basic block to the mbb we wish to insert the code into
   1519       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
   1520       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1521       // Emit the code
   1522       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
   1523       CurDAG->setRoot(SDB->getRoot());
   1524       SDB->clear();
   1525       CodeGenAndEmitDAG();
   1526     }
   1527 
   1528     BranchProbability UnhandledProb = SDB->BitTestCases[i].Prob;
   1529     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
   1530       UnhandledProb -= SDB->BitTestCases[i].Cases[j].ExtraProb;
   1531       // Set the current basic block to the mbb we wish to insert the code into
   1532       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1533       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1534       // Emit the code
   1535 
   1536       // If all cases cover a contiguous range, it is not necessary to jump to
   1537       // the default block after the last bit test fails. This is because the
   1538       // range check during bit test header creation has guaranteed that every
   1539       // case here doesn't go outside the range.
   1540       MachineBasicBlock *NextMBB;
   1541       if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
   1542         NextMBB = SDB->BitTestCases[i].Cases[j + 1].TargetBB;
   1543       else if (j + 1 != ej)
   1544         NextMBB = SDB->BitTestCases[i].Cases[j + 1].ThisBB;
   1545       else
   1546         NextMBB = SDB->BitTestCases[i].Default;
   1547 
   1548       SDB->visitBitTestCase(SDB->BitTestCases[i],
   1549                             NextMBB,
   1550                             UnhandledProb,
   1551                             SDB->BitTestCases[i].Reg,
   1552                             SDB->BitTestCases[i].Cases[j],
   1553                             FuncInfo->MBB);
   1554 
   1555       CurDAG->setRoot(SDB->getRoot());
   1556       SDB->clear();
   1557       CodeGenAndEmitDAG();
   1558 
   1559       if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
   1560         break;
   1561     }
   1562 
   1563     // Update PHI Nodes
   1564     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1565          pi != pe; ++pi) {
   1566       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
   1567       MachineBasicBlock *PHIBB = PHI->getParent();
   1568       assert(PHI->isPHI() &&
   1569              "This is not a machine PHI node that we are updating!");
   1570       // This is "default" BB. We have two jumps to it. From "header" BB and
   1571       // from last "case" BB.
   1572       if (PHIBB == SDB->BitTestCases[i].Default)
   1573         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1574            .addMBB(SDB->BitTestCases[i].Parent)
   1575            .addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1576            .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
   1577       // One of "cases" BB.
   1578       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
   1579            j != ej; ++j) {
   1580         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1581         if (cBB->isSuccessor(PHIBB))
   1582           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
   1583       }
   1584     }
   1585   }
   1586   SDB->BitTestCases.clear();
   1587 
   1588   // If the JumpTable record is filled in, then we need to emit a jump table.
   1589   // Updating the PHI nodes is tricky in this case, since we need to determine
   1590   // whether the PHI is a successor of the range check MBB or the jump table MBB
   1591   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
   1592     // Lower header first, if it wasn't already lowered
   1593     if (!SDB->JTCases[i].first.Emitted) {
   1594       // Set the current basic block to the mbb we wish to insert the code into
   1595       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
   1596       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1597       // Emit the code
   1598       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
   1599                                 FuncInfo->MBB);
   1600       CurDAG->setRoot(SDB->getRoot());
   1601       SDB->clear();
   1602       CodeGenAndEmitDAG();
   1603     }
   1604 
   1605     // Set the current basic block to the mbb we wish to insert the code into
   1606     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
   1607     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1608     // Emit the code
   1609     SDB->visitJumpTable(SDB->JTCases[i].second);
   1610     CurDAG->setRoot(SDB->getRoot());
   1611     SDB->clear();
   1612     CodeGenAndEmitDAG();
   1613 
   1614     // Update PHI Nodes
   1615     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1616          pi != pe; ++pi) {
   1617       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
   1618       MachineBasicBlock *PHIBB = PHI->getParent();
   1619       assert(PHI->isPHI() &&
   1620              "This is not a machine PHI node that we are updating!");
   1621       // "default" BB. We can go there only from header BB.
   1622       if (PHIBB == SDB->JTCases[i].second.Default)
   1623         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1624            .addMBB(SDB->JTCases[i].first.HeaderBB);
   1625       // JT BB. Just iterate over successors here
   1626       if (FuncInfo->MBB->isSuccessor(PHIBB))
   1627         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
   1628     }
   1629   }
   1630   SDB->JTCases.clear();
   1631 
   1632   // If we generated any switch lowering information, build and codegen any
   1633   // additional DAGs necessary.
   1634   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
   1635     // Set the current basic block to the mbb we wish to insert the code into
   1636     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
   1637     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1638 
   1639     // Determine the unique successors.
   1640     SmallVector<MachineBasicBlock *, 2> Succs;
   1641     Succs.push_back(SDB->SwitchCases[i].TrueBB);
   1642     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
   1643       Succs.push_back(SDB->SwitchCases[i].FalseBB);
   1644 
   1645     // Emit the code. Note that this could result in FuncInfo->MBB being split.
   1646     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
   1647     CurDAG->setRoot(SDB->getRoot());
   1648     SDB->clear();
   1649     CodeGenAndEmitDAG();
   1650 
   1651     // Remember the last block, now that any splitting is done, for use in
   1652     // populating PHI nodes in successors.
   1653     MachineBasicBlock *ThisBB = FuncInfo->MBB;
   1654 
   1655     // Handle any PHI nodes in successors of this chunk, as if we were coming
   1656     // from the original BB before switch expansion.  Note that PHI nodes can
   1657     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
   1658     // handle them the right number of times.
   1659     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
   1660       FuncInfo->MBB = Succs[i];
   1661       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1662       // FuncInfo->MBB may have been removed from the CFG if a branch was
   1663       // constant folded.
   1664       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
   1665         for (MachineBasicBlock::iterator
   1666              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
   1667              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
   1668           MachineInstrBuilder PHI(*MF, MBBI);
   1669           // This value for this PHI node is recorded in PHINodesToUpdate.
   1670           for (unsigned pn = 0; ; ++pn) {
   1671             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
   1672                    "Didn't find PHI entry!");
   1673             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
   1674               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
   1675               break;
   1676             }
   1677           }
   1678         }
   1679       }
   1680     }
   1681   }
   1682   SDB->SwitchCases.clear();
   1683 }
   1684 
   1685 
   1686 /// Create the scheduler. If a specific scheduler was specified
   1687 /// via the SchedulerRegistry, use it, otherwise select the
   1688 /// one preferred by the target.
   1689 ///
   1690 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
   1691   return ISHeuristic(this, OptLevel);
   1692 }
   1693 
   1694 //===----------------------------------------------------------------------===//
   1695 // Helper functions used by the generated instruction selector.
   1696 //===----------------------------------------------------------------------===//
   1697 // Calls to these methods are generated by tblgen.
   1698 
   1699 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
   1700 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1701 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
   1702 /// specified in the .td file (e.g. 255).
   1703 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
   1704                                     int64_t DesiredMaskS) const {
   1705   const APInt &ActualMask = RHS->getAPIntValue();
   1706   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1707 
   1708   // If the actual mask exactly matches, success!
   1709   if (ActualMask == DesiredMask)
   1710     return true;
   1711 
   1712   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1713   if (ActualMask.intersects(~DesiredMask))
   1714     return false;
   1715 
   1716   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1717   // either already zero or is not demanded.  Check for known zero input bits.
   1718   APInt NeededMask = DesiredMask & ~ActualMask;
   1719   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
   1720     return true;
   1721 
   1722   // TODO: check to see if missing bits are just not demanded.
   1723 
   1724   // Otherwise, this pattern doesn't match.
   1725   return false;
   1726 }
   1727 
   1728 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
   1729 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1730 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
   1731 /// specified in the .td file (e.g. 255).
   1732 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
   1733                                    int64_t DesiredMaskS) const {
   1734   const APInt &ActualMask = RHS->getAPIntValue();
   1735   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1736 
   1737   // If the actual mask exactly matches, success!
   1738   if (ActualMask == DesiredMask)
   1739     return true;
   1740 
   1741   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1742   if (ActualMask.intersects(~DesiredMask))
   1743     return false;
   1744 
   1745   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1746   // either already zero or is not demanded.  Check for known zero input bits.
   1747   APInt NeededMask = DesiredMask & ~ActualMask;
   1748 
   1749   APInt KnownZero, KnownOne;
   1750   CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
   1751 
   1752   // If all the missing bits in the or are already known to be set, match!
   1753   if ((NeededMask & KnownOne) == NeededMask)
   1754     return true;
   1755 
   1756   // TODO: check to see if missing bits are just not demanded.
   1757 
   1758   // Otherwise, this pattern doesn't match.
   1759   return false;
   1760 }
   1761 
   1762 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
   1763 /// by tblgen.  Others should not call it.
   1764 void SelectionDAGISel::
   1765 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SDLoc DL) {
   1766   std::vector<SDValue> InOps;
   1767   std::swap(InOps, Ops);
   1768 
   1769   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
   1770   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
   1771   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
   1772   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
   1773 
   1774   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
   1775   if (InOps[e-1].getValueType() == MVT::Glue)
   1776     --e;  // Don't process a glue operand if it is here.
   1777 
   1778   while (i != e) {
   1779     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
   1780     if (!InlineAsm::isMemKind(Flags)) {
   1781       // Just skip over this operand, copying the operands verbatim.
   1782       Ops.insert(Ops.end(), InOps.begin()+i,
   1783                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
   1784       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
   1785     } else {
   1786       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
   1787              "Memory operand with multiple values?");
   1788 
   1789       unsigned TiedToOperand;
   1790       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
   1791         // We need the constraint ID from the operand this is tied to.
   1792         unsigned CurOp = InlineAsm::Op_FirstOperand;
   1793         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
   1794         for (; TiedToOperand; --TiedToOperand) {
   1795           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
   1796           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
   1797         }
   1798       }
   1799 
   1800       // Otherwise, this is a memory operand.  Ask the target to select it.
   1801       std::vector<SDValue> SelOps;
   1802       if (SelectInlineAsmMemoryOperand(InOps[i+1],
   1803                                        InlineAsm::getMemoryConstraintID(Flags),
   1804                                        SelOps))
   1805         report_fatal_error("Could not match memory address.  Inline asm"
   1806                            " failure!");
   1807 
   1808       // Add this to the output node.
   1809       unsigned NewFlags =
   1810         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
   1811       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
   1812       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
   1813       i += 2;
   1814     }
   1815   }
   1816 
   1817   // Add the glue input back if present.
   1818   if (e != InOps.size())
   1819     Ops.push_back(InOps.back());
   1820 }
   1821 
   1822 /// findGlueUse - Return use of MVT::Glue value produced by the specified
   1823 /// SDNode.
   1824 ///
   1825 static SDNode *findGlueUse(SDNode *N) {
   1826   unsigned FlagResNo = N->getNumValues()-1;
   1827   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   1828     SDUse &Use = I.getUse();
   1829     if (Use.getResNo() == FlagResNo)
   1830       return Use.getUser();
   1831   }
   1832   return nullptr;
   1833 }
   1834 
   1835 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
   1836 /// This function recursively traverses up the operand chain, ignoring
   1837 /// certain nodes.
   1838 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
   1839                           SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
   1840                           bool IgnoreChains) {
   1841   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
   1842   // greater than all of its (recursive) operands.  If we scan to a point where
   1843   // 'use' is smaller than the node we're scanning for, then we know we will
   1844   // never find it.
   1845   //
   1846   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
   1847   // happen because we scan down to newly selected nodes in the case of glue
   1848   // uses.
   1849   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
   1850     return false;
   1851 
   1852   // Don't revisit nodes if we already scanned it and didn't fail, we know we
   1853   // won't fail if we scan it again.
   1854   if (!Visited.insert(Use).second)
   1855     return false;
   1856 
   1857   for (const SDValue &Op : Use->op_values()) {
   1858     // Ignore chain uses, they are validated by HandleMergeInputChains.
   1859     if (Op.getValueType() == MVT::Other && IgnoreChains)
   1860       continue;
   1861 
   1862     SDNode *N = Op.getNode();
   1863     if (N == Def) {
   1864       if (Use == ImmedUse || Use == Root)
   1865         continue;  // We are not looking for immediate use.
   1866       assert(N != Root);
   1867       return true;
   1868     }
   1869 
   1870     // Traverse up the operand chain.
   1871     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
   1872       return true;
   1873   }
   1874   return false;
   1875 }
   1876 
   1877 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
   1878 /// operand node N of U during instruction selection that starts at Root.
   1879 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
   1880                                           SDNode *Root) const {
   1881   if (OptLevel == CodeGenOpt::None) return false;
   1882   return N.hasOneUse();
   1883 }
   1884 
   1885 /// IsLegalToFold - Returns true if the specific operand node N of
   1886 /// U can be folded during instruction selection that starts at Root.
   1887 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
   1888                                      CodeGenOpt::Level OptLevel,
   1889                                      bool IgnoreChains) {
   1890   if (OptLevel == CodeGenOpt::None) return false;
   1891 
   1892   // If Root use can somehow reach N through a path that that doesn't contain
   1893   // U then folding N would create a cycle. e.g. In the following
   1894   // diagram, Root can reach N through X. If N is folded into into Root, then
   1895   // X is both a predecessor and a successor of U.
   1896   //
   1897   //          [N*]           //
   1898   //         ^   ^           //
   1899   //        /     \          //
   1900   //      [U*]    [X]?       //
   1901   //        ^     ^          //
   1902   //         \   /           //
   1903   //          \ /            //
   1904   //         [Root*]         //
   1905   //
   1906   // * indicates nodes to be folded together.
   1907   //
   1908   // If Root produces glue, then it gets (even more) interesting. Since it
   1909   // will be "glued" together with its glue use in the scheduler, we need to
   1910   // check if it might reach N.
   1911   //
   1912   //          [N*]           //
   1913   //         ^   ^           //
   1914   //        /     \          //
   1915   //      [U*]    [X]?       //
   1916   //        ^       ^        //
   1917   //         \       \       //
   1918   //          \      |       //
   1919   //         [Root*] |       //
   1920   //          ^      |       //
   1921   //          f      |       //
   1922   //          |      /       //
   1923   //         [Y]    /        //
   1924   //           ^   /         //
   1925   //           f  /          //
   1926   //           | /           //
   1927   //          [GU]           //
   1928   //
   1929   // If GU (glue use) indirectly reaches N (the load), and Root folds N
   1930   // (call it Fold), then X is a predecessor of GU and a successor of
   1931   // Fold. But since Fold and GU are glued together, this will create
   1932   // a cycle in the scheduling graph.
   1933 
   1934   // If the node has glue, walk down the graph to the "lowest" node in the
   1935   // glueged set.
   1936   EVT VT = Root->getValueType(Root->getNumValues()-1);
   1937   while (VT == MVT::Glue) {
   1938     SDNode *GU = findGlueUse(Root);
   1939     if (!GU)
   1940       break;
   1941     Root = GU;
   1942     VT = Root->getValueType(Root->getNumValues()-1);
   1943 
   1944     // If our query node has a glue result with a use, we've walked up it.  If
   1945     // the user (which has already been selected) has a chain or indirectly uses
   1946     // the chain, our WalkChainUsers predicate will not consider it.  Because of
   1947     // this, we cannot ignore chains in this predicate.
   1948     IgnoreChains = false;
   1949   }
   1950 
   1951 
   1952   SmallPtrSet<SDNode*, 16> Visited;
   1953   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
   1954 }
   1955 
   1956 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
   1957   SDLoc DL(N);
   1958 
   1959   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
   1960   SelectInlineAsmMemoryOperands(Ops, DL);
   1961 
   1962   const EVT VTs[] = {MVT::Other, MVT::Glue};
   1963   SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
   1964   New->setNodeId(-1);
   1965   return New.getNode();
   1966 }
   1967 
   1968 SDNode
   1969 *SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
   1970   SDLoc dl(Op);
   1971   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
   1972   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
   1973   unsigned Reg =
   1974       TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
   1975                              *CurDAG);
   1976   SDValue New = CurDAG->getCopyFromReg(
   1977                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
   1978   New->setNodeId(-1);
   1979   return New.getNode();
   1980 }
   1981 
   1982 SDNode
   1983 *SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
   1984   SDLoc dl(Op);
   1985   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
   1986   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
   1987   unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
   1988                                         Op->getOperand(2).getValueType(),
   1989                                         *CurDAG);
   1990   SDValue New = CurDAG->getCopyToReg(
   1991                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
   1992   New->setNodeId(-1);
   1993   return New.getNode();
   1994 }
   1995 
   1996 
   1997 
   1998 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
   1999   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
   2000 }
   2001 
   2002 /// GetVBR - decode a vbr encoding whose top bit is set.
   2003 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
   2004 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
   2005   assert(Val >= 128 && "Not a VBR");
   2006   Val &= 127;  // Remove first vbr bit.
   2007 
   2008   unsigned Shift = 7;
   2009   uint64_t NextBits;
   2010   do {
   2011     NextBits = MatcherTable[Idx++];
   2012     Val |= (NextBits&127) << Shift;
   2013     Shift += 7;
   2014   } while (NextBits & 128);
   2015 
   2016   return Val;
   2017 }
   2018 
   2019 
   2020 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
   2021 /// interior glue and chain results to use the new glue and chain results.
   2022 void SelectionDAGISel::
   2023 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
   2024                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
   2025                     SDValue InputGlue,
   2026                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
   2027                     bool isMorphNodeTo) {
   2028   SmallVector<SDNode*, 4> NowDeadNodes;
   2029 
   2030   // Now that all the normal results are replaced, we replace the chain and
   2031   // glue results if present.
   2032   if (!ChainNodesMatched.empty()) {
   2033     assert(InputChain.getNode() &&
   2034            "Matched input chains but didn't produce a chain");
   2035     // Loop over all of the nodes we matched that produced a chain result.
   2036     // Replace all the chain results with the final chain we ended up with.
   2037     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   2038       SDNode *ChainNode = ChainNodesMatched[i];
   2039 
   2040       // If this node was already deleted, don't look at it.
   2041       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
   2042         continue;
   2043 
   2044       // Don't replace the results of the root node if we're doing a
   2045       // MorphNodeTo.
   2046       if (ChainNode == NodeToMatch && isMorphNodeTo)
   2047         continue;
   2048 
   2049       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
   2050       if (ChainVal.getValueType() == MVT::Glue)
   2051         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
   2052       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
   2053       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
   2054 
   2055       // If the node became dead and we haven't already seen it, delete it.
   2056       if (ChainNode->use_empty() &&
   2057           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
   2058         NowDeadNodes.push_back(ChainNode);
   2059     }
   2060   }
   2061 
   2062   // If the result produces glue, update any glue results in the matched
   2063   // pattern with the glue result.
   2064   if (InputGlue.getNode()) {
   2065     // Handle any interior nodes explicitly marked.
   2066     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
   2067       SDNode *FRN = GlueResultNodesMatched[i];
   2068 
   2069       // If this node was already deleted, don't look at it.
   2070       if (FRN->getOpcode() == ISD::DELETED_NODE)
   2071         continue;
   2072 
   2073       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
   2074              "Doesn't have a glue result");
   2075       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
   2076                                         InputGlue);
   2077 
   2078       // If the node became dead and we haven't already seen it, delete it.
   2079       if (FRN->use_empty() &&
   2080           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
   2081         NowDeadNodes.push_back(FRN);
   2082     }
   2083   }
   2084 
   2085   if (!NowDeadNodes.empty())
   2086     CurDAG->RemoveDeadNodes(NowDeadNodes);
   2087 
   2088   DEBUG(dbgs() << "ISEL: Match complete!\n");
   2089 }
   2090 
   2091 enum ChainResult {
   2092   CR_Simple,
   2093   CR_InducesCycle,
   2094   CR_LeadsToInteriorNode
   2095 };
   2096 
   2097 /// WalkChainUsers - Walk down the users of the specified chained node that is
   2098 /// part of the pattern we're matching, looking at all of the users we find.
   2099 /// This determines whether something is an interior node, whether we have a
   2100 /// non-pattern node in between two pattern nodes (which prevent folding because
   2101 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
   2102 /// between pattern nodes (in which case the TF becomes part of the pattern).
   2103 ///
   2104 /// The walk we do here is guaranteed to be small because we quickly get down to
   2105 /// already selected nodes "below" us.
   2106 static ChainResult
   2107 WalkChainUsers(const SDNode *ChainedNode,
   2108                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
   2109                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
   2110   ChainResult Result = CR_Simple;
   2111 
   2112   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
   2113          E = ChainedNode->use_end(); UI != E; ++UI) {
   2114     // Make sure the use is of the chain, not some other value we produce.
   2115     if (UI.getUse().getValueType() != MVT::Other) continue;
   2116 
   2117     SDNode *User = *UI;
   2118 
   2119     if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
   2120       continue;
   2121 
   2122     // If we see an already-selected machine node, then we've gone beyond the
   2123     // pattern that we're selecting down into the already selected chunk of the
   2124     // DAG.
   2125     unsigned UserOpcode = User->getOpcode();
   2126     if (User->isMachineOpcode() ||
   2127         UserOpcode == ISD::CopyToReg ||
   2128         UserOpcode == ISD::CopyFromReg ||
   2129         UserOpcode == ISD::INLINEASM ||
   2130         UserOpcode == ISD::EH_LABEL ||
   2131         UserOpcode == ISD::LIFETIME_START ||
   2132         UserOpcode == ISD::LIFETIME_END) {
   2133       // If their node ID got reset to -1 then they've already been selected.
   2134       // Treat them like a MachineOpcode.
   2135       if (User->getNodeId() == -1)
   2136         continue;
   2137     }
   2138 
   2139     // If we have a TokenFactor, we handle it specially.
   2140     if (User->getOpcode() != ISD::TokenFactor) {
   2141       // If the node isn't a token factor and isn't part of our pattern, then it
   2142       // must be a random chained node in between two nodes we're selecting.
   2143       // This happens when we have something like:
   2144       //   x = load ptr
   2145       //   call
   2146       //   y = x+4
   2147       //   store y -> ptr
   2148       // Because we structurally match the load/store as a read/modify/write,
   2149       // but the call is chained between them.  We cannot fold in this case
   2150       // because it would induce a cycle in the graph.
   2151       if (!std::count(ChainedNodesInPattern.begin(),
   2152                       ChainedNodesInPattern.end(), User))
   2153         return CR_InducesCycle;
   2154 
   2155       // Otherwise we found a node that is part of our pattern.  For example in:
   2156       //   x = load ptr
   2157       //   y = x+4
   2158       //   store y -> ptr
   2159       // This would happen when we're scanning down from the load and see the
   2160       // store as a user.  Record that there is a use of ChainedNode that is
   2161       // part of the pattern and keep scanning uses.
   2162       Result = CR_LeadsToInteriorNode;
   2163       InteriorChainedNodes.push_back(User);
   2164       continue;
   2165     }
   2166 
   2167     // If we found a TokenFactor, there are two cases to consider: first if the
   2168     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
   2169     // uses of the TF are in our pattern) we just want to ignore it.  Second,
   2170     // the TokenFactor can be sandwiched in between two chained nodes, like so:
   2171     //     [Load chain]
   2172     //         ^
   2173     //         |
   2174     //       [Load]
   2175     //       ^    ^
   2176     //       |    \                    DAG's like cheese
   2177     //      /       \                       do you?
   2178     //     /         |
   2179     // [TokenFactor] [Op]
   2180     //     ^          ^
   2181     //     |          |
   2182     //      \        /
   2183     //       \      /
   2184     //       [Store]
   2185     //
   2186     // In this case, the TokenFactor becomes part of our match and we rewrite it
   2187     // as a new TokenFactor.
   2188     //
   2189     // To distinguish these two cases, do a recursive walk down the uses.
   2190     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
   2191     case CR_Simple:
   2192       // If the uses of the TokenFactor are just already-selected nodes, ignore
   2193       // it, it is "below" our pattern.
   2194       continue;
   2195     case CR_InducesCycle:
   2196       // If the uses of the TokenFactor lead to nodes that are not part of our
   2197       // pattern that are not selected, folding would turn this into a cycle,
   2198       // bail out now.
   2199       return CR_InducesCycle;
   2200     case CR_LeadsToInteriorNode:
   2201       break;  // Otherwise, keep processing.
   2202     }
   2203 
   2204     // Okay, we know we're in the interesting interior case.  The TokenFactor
   2205     // is now going to be considered part of the pattern so that we rewrite its
   2206     // uses (it may have uses that are not part of the pattern) with the
   2207     // ultimate chain result of the generated code.  We will also add its chain
   2208     // inputs as inputs to the ultimate TokenFactor we create.
   2209     Result = CR_LeadsToInteriorNode;
   2210     ChainedNodesInPattern.push_back(User);
   2211     InteriorChainedNodes.push_back(User);
   2212     continue;
   2213   }
   2214 
   2215   return Result;
   2216 }
   2217 
   2218 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
   2219 /// operation for when the pattern matched at least one node with a chains.  The
   2220 /// input vector contains a list of all of the chained nodes that we match.  We
   2221 /// must determine if this is a valid thing to cover (i.e. matching it won't
   2222 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
   2223 /// be used as the input node chain for the generated nodes.
   2224 static SDValue
   2225 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
   2226                        SelectionDAG *CurDAG) {
   2227   // Walk all of the chained nodes we've matched, recursively scanning down the
   2228   // users of the chain result. This adds any TokenFactor nodes that are caught
   2229   // in between chained nodes to the chained and interior nodes list.
   2230   SmallVector<SDNode*, 3> InteriorChainedNodes;
   2231   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   2232     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
   2233                        InteriorChainedNodes) == CR_InducesCycle)
   2234       return SDValue(); // Would induce a cycle.
   2235   }
   2236 
   2237   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
   2238   // that we are interested in.  Form our input TokenFactor node.
   2239   SmallVector<SDValue, 3> InputChains;
   2240   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   2241     // Add the input chain of this node to the InputChains list (which will be
   2242     // the operands of the generated TokenFactor) if it's not an interior node.
   2243     SDNode *N = ChainNodesMatched[i];
   2244     if (N->getOpcode() != ISD::TokenFactor) {
   2245       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
   2246         continue;
   2247 
   2248       // Otherwise, add the input chain.
   2249       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
   2250       assert(InChain.getValueType() == MVT::Other && "Not a chain");
   2251       InputChains.push_back(InChain);
   2252       continue;
   2253     }
   2254 
   2255     // If we have a token factor, we want to add all inputs of the token factor
   2256     // that are not part of the pattern we're matching.
   2257     for (const SDValue &Op : N->op_values()) {
   2258       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
   2259                       Op.getNode()))
   2260         InputChains.push_back(Op);
   2261     }
   2262   }
   2263 
   2264   if (InputChains.size() == 1)
   2265     return InputChains[0];
   2266   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
   2267                          MVT::Other, InputChains);
   2268 }
   2269 
   2270 /// MorphNode - Handle morphing a node in place for the selector.
   2271 SDNode *SelectionDAGISel::
   2272 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
   2273           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
   2274   // It is possible we're using MorphNodeTo to replace a node with no
   2275   // normal results with one that has a normal result (or we could be
   2276   // adding a chain) and the input could have glue and chains as well.
   2277   // In this case we need to shift the operands down.
   2278   // FIXME: This is a horrible hack and broken in obscure cases, no worse
   2279   // than the old isel though.
   2280   int OldGlueResultNo = -1, OldChainResultNo = -1;
   2281 
   2282   unsigned NTMNumResults = Node->getNumValues();
   2283   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
   2284     OldGlueResultNo = NTMNumResults-1;
   2285     if (NTMNumResults != 1 &&
   2286         Node->getValueType(NTMNumResults-2) == MVT::Other)
   2287       OldChainResultNo = NTMNumResults-2;
   2288   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
   2289     OldChainResultNo = NTMNumResults-1;
   2290 
   2291   // Call the underlying SelectionDAG routine to do the transmogrification. Note
   2292   // that this deletes operands of the old node that become dead.
   2293   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
   2294 
   2295   // MorphNodeTo can operate in two ways: if an existing node with the
   2296   // specified operands exists, it can just return it.  Otherwise, it
   2297   // updates the node in place to have the requested operands.
   2298   if (Res == Node) {
   2299     // If we updated the node in place, reset the node ID.  To the isel,
   2300     // this should be just like a newly allocated machine node.
   2301     Res->setNodeId(-1);
   2302   }
   2303 
   2304   unsigned ResNumResults = Res->getNumValues();
   2305   // Move the glue if needed.
   2306   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
   2307       (unsigned)OldGlueResultNo != ResNumResults-1)
   2308     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
   2309                                       SDValue(Res, ResNumResults-1));
   2310 
   2311   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
   2312     --ResNumResults;
   2313 
   2314   // Move the chain reference if needed.
   2315   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
   2316       (unsigned)OldChainResultNo != ResNumResults-1)
   2317     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
   2318                                       SDValue(Res, ResNumResults-1));
   2319 
   2320   // Otherwise, no replacement happened because the node already exists. Replace
   2321   // Uses of the old node with the new one.
   2322   if (Res != Node)
   2323     CurDAG->ReplaceAllUsesWith(Node, Res);
   2324 
   2325   return Res;
   2326 }
   2327 
   2328 /// CheckSame - Implements OP_CheckSame.
   2329 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2330 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2331           SDValue N,
   2332           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   2333   // Accept if it is exactly the same as a previously recorded node.
   2334   unsigned RecNo = MatcherTable[MatcherIndex++];
   2335   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2336   return N == RecordedNodes[RecNo].first;
   2337 }
   2338 
   2339 /// CheckChildSame - Implements OP_CheckChildXSame.
   2340 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2341 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2342              SDValue N,
   2343              const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
   2344              unsigned ChildNo) {
   2345   if (ChildNo >= N.getNumOperands())
   2346     return false;  // Match fails if out of range child #.
   2347   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
   2348                      RecordedNodes);
   2349 }
   2350 
   2351 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   2352 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2353 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2354                       const SelectionDAGISel &SDISel) {
   2355   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
   2356 }
   2357 
   2358 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
   2359 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2360 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2361                    const SelectionDAGISel &SDISel, SDNode *N) {
   2362   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
   2363 }
   2364 
   2365 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2366 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2367             SDNode *N) {
   2368   uint16_t Opc = MatcherTable[MatcherIndex++];
   2369   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2370   return N->getOpcode() == Opc;
   2371 }
   2372 
   2373 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2374 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
   2375           const TargetLowering *TLI, const DataLayout &DL) {
   2376   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2377   if (N.getValueType() == VT) return true;
   2378 
   2379   // Handle the case when VT is iPTR.
   2380   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
   2381 }
   2382 
   2383 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2384 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2385                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
   2386                unsigned ChildNo) {
   2387   if (ChildNo >= N.getNumOperands())
   2388     return false;  // Match fails if out of range child #.
   2389   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
   2390                      DL);
   2391 }
   2392 
   2393 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2394 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2395               SDValue N) {
   2396   return cast<CondCodeSDNode>(N)->get() ==
   2397       (ISD::CondCode)MatcherTable[MatcherIndex++];
   2398 }
   2399 
   2400 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2401 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2402                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
   2403   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2404   if (cast<VTSDNode>(N)->getVT() == VT)
   2405     return true;
   2406 
   2407   // Handle the case when VT is iPTR.
   2408   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
   2409 }
   2410 
   2411 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2412 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2413              SDValue N) {
   2414   int64_t Val = MatcherTable[MatcherIndex++];
   2415   if (Val & 128)
   2416     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2417 
   2418   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   2419   return C && C->getSExtValue() == Val;
   2420 }
   2421 
   2422 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2423 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2424                   SDValue N, unsigned ChildNo) {
   2425   if (ChildNo >= N.getNumOperands())
   2426     return false;  // Match fails if out of range child #.
   2427   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
   2428 }
   2429 
   2430 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2431 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2432             SDValue N, const SelectionDAGISel &SDISel) {
   2433   int64_t Val = MatcherTable[MatcherIndex++];
   2434   if (Val & 128)
   2435     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2436 
   2437   if (N->getOpcode() != ISD::AND) return false;
   2438 
   2439   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2440   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
   2441 }
   2442 
   2443 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
   2444 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2445            SDValue N, const SelectionDAGISel &SDISel) {
   2446   int64_t Val = MatcherTable[MatcherIndex++];
   2447   if (Val & 128)
   2448     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2449 
   2450   if (N->getOpcode() != ISD::OR) return false;
   2451 
   2452   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2453   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
   2454 }
   2455 
   2456 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
   2457 /// scope, evaluate the current node.  If the current predicate is known to
   2458 /// fail, set Result=true and return anything.  If the current predicate is
   2459 /// known to pass, set Result=false and return the MatcherIndex to continue
   2460 /// with.  If the current predicate is unknown, set Result=false and return the
   2461 /// MatcherIndex to continue with.
   2462 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
   2463                                        unsigned Index, SDValue N,
   2464                                        bool &Result,
   2465                                        const SelectionDAGISel &SDISel,
   2466                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   2467   switch (Table[Index++]) {
   2468   default:
   2469     Result = false;
   2470     return Index-1;  // Could not evaluate this predicate.
   2471   case SelectionDAGISel::OPC_CheckSame:
   2472     Result = !::CheckSame(Table, Index, N, RecordedNodes);
   2473     return Index;
   2474   case SelectionDAGISel::OPC_CheckChild0Same:
   2475   case SelectionDAGISel::OPC_CheckChild1Same:
   2476   case SelectionDAGISel::OPC_CheckChild2Same:
   2477   case SelectionDAGISel::OPC_CheckChild3Same:
   2478     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
   2479                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
   2480     return Index;
   2481   case SelectionDAGISel::OPC_CheckPatternPredicate:
   2482     Result = !::CheckPatternPredicate(Table, Index, SDISel);
   2483     return Index;
   2484   case SelectionDAGISel::OPC_CheckPredicate:
   2485     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
   2486     return Index;
   2487   case SelectionDAGISel::OPC_CheckOpcode:
   2488     Result = !::CheckOpcode(Table, Index, N.getNode());
   2489     return Index;
   2490   case SelectionDAGISel::OPC_CheckType:
   2491     Result = !::CheckType(Table, Index, N, SDISel.TLI,
   2492                           SDISel.CurDAG->getDataLayout());
   2493     return Index;
   2494   case SelectionDAGISel::OPC_CheckChild0Type:
   2495   case SelectionDAGISel::OPC_CheckChild1Type:
   2496   case SelectionDAGISel::OPC_CheckChild2Type:
   2497   case SelectionDAGISel::OPC_CheckChild3Type:
   2498   case SelectionDAGISel::OPC_CheckChild4Type:
   2499   case SelectionDAGISel::OPC_CheckChild5Type:
   2500   case SelectionDAGISel::OPC_CheckChild6Type:
   2501   case SelectionDAGISel::OPC_CheckChild7Type:
   2502     Result = !::CheckChildType(
   2503                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
   2504                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
   2505     return Index;
   2506   case SelectionDAGISel::OPC_CheckCondCode:
   2507     Result = !::CheckCondCode(Table, Index, N);
   2508     return Index;
   2509   case SelectionDAGISel::OPC_CheckValueType:
   2510     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
   2511                                SDISel.CurDAG->getDataLayout());
   2512     return Index;
   2513   case SelectionDAGISel::OPC_CheckInteger:
   2514     Result = !::CheckInteger(Table, Index, N);
   2515     return Index;
   2516   case SelectionDAGISel::OPC_CheckChild0Integer:
   2517   case SelectionDAGISel::OPC_CheckChild1Integer:
   2518   case SelectionDAGISel::OPC_CheckChild2Integer:
   2519   case SelectionDAGISel::OPC_CheckChild3Integer:
   2520   case SelectionDAGISel::OPC_CheckChild4Integer:
   2521     Result = !::CheckChildInteger(Table, Index, N,
   2522                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
   2523     return Index;
   2524   case SelectionDAGISel::OPC_CheckAndImm:
   2525     Result = !::CheckAndImm(Table, Index, N, SDISel);
   2526     return Index;
   2527   case SelectionDAGISel::OPC_CheckOrImm:
   2528     Result = !::CheckOrImm(Table, Index, N, SDISel);
   2529     return Index;
   2530   }
   2531 }
   2532 
   2533 namespace {
   2534 
   2535 struct MatchScope {
   2536   /// FailIndex - If this match fails, this is the index to continue with.
   2537   unsigned FailIndex;
   2538 
   2539   /// NodeStack - The node stack when the scope was formed.
   2540   SmallVector<SDValue, 4> NodeStack;
   2541 
   2542   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
   2543   unsigned NumRecordedNodes;
   2544 
   2545   /// NumMatchedMemRefs - The number of matched memref entries.
   2546   unsigned NumMatchedMemRefs;
   2547 
   2548   /// InputChain/InputGlue - The current chain/glue
   2549   SDValue InputChain, InputGlue;
   2550 
   2551   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
   2552   bool HasChainNodesMatched, HasGlueResultNodesMatched;
   2553 };
   2554 
   2555 /// \\brief A DAG update listener to keep the matching state
   2556 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
   2557 /// change the DAG while matching.  X86 addressing mode matcher is an example
   2558 /// for this.
   2559 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
   2560 {
   2561       SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
   2562       SmallVectorImpl<MatchScope> &MatchScopes;
   2563 public:
   2564   MatchStateUpdater(SelectionDAG &DAG,
   2565                     SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
   2566                     SmallVectorImpl<MatchScope> &MS) :
   2567     SelectionDAG::DAGUpdateListener(DAG),
   2568     RecordedNodes(RN), MatchScopes(MS) { }
   2569 
   2570   void NodeDeleted(SDNode *N, SDNode *E) override {
   2571     // Some early-returns here to avoid the search if we deleted the node or
   2572     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
   2573     // do, so it's unnecessary to update matching state at that point).
   2574     // Neither of these can occur currently because we only install this
   2575     // update listener during matching a complex patterns.
   2576     if (!E || E->isMachineOpcode())
   2577       return;
   2578     // Performing linear search here does not matter because we almost never
   2579     // run this code.  You'd have to have a CSE during complex pattern
   2580     // matching.
   2581     for (auto &I : RecordedNodes)
   2582       if (I.first.getNode() == N)
   2583         I.first.setNode(E);
   2584 
   2585     for (auto &I : MatchScopes)
   2586       for (auto &J : I.NodeStack)
   2587         if (J.getNode() == N)
   2588           J.setNode(E);
   2589   }
   2590 };
   2591 }
   2592 
   2593 SDNode *SelectionDAGISel::
   2594 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
   2595                  unsigned TableSize) {
   2596   // FIXME: Should these even be selected?  Handle these cases in the caller?
   2597   switch (NodeToMatch->getOpcode()) {
   2598   default:
   2599     break;
   2600   case ISD::EntryToken:       // These nodes remain the same.
   2601   case ISD::BasicBlock:
   2602   case ISD::Register:
   2603   case ISD::RegisterMask:
   2604   case ISD::HANDLENODE:
   2605   case ISD::MDNODE_SDNODE:
   2606   case ISD::TargetConstant:
   2607   case ISD::TargetConstantFP:
   2608   case ISD::TargetConstantPool:
   2609   case ISD::TargetFrameIndex:
   2610   case ISD::TargetExternalSymbol:
   2611   case ISD::MCSymbol:
   2612   case ISD::TargetBlockAddress:
   2613   case ISD::TargetJumpTable:
   2614   case ISD::TargetGlobalTLSAddress:
   2615   case ISD::TargetGlobalAddress:
   2616   case ISD::TokenFactor:
   2617   case ISD::CopyFromReg:
   2618   case ISD::CopyToReg:
   2619   case ISD::EH_LABEL:
   2620   case ISD::LIFETIME_START:
   2621   case ISD::LIFETIME_END:
   2622     NodeToMatch->setNodeId(-1); // Mark selected.
   2623     return nullptr;
   2624   case ISD::AssertSext:
   2625   case ISD::AssertZext:
   2626     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
   2627                                       NodeToMatch->getOperand(0));
   2628     return nullptr;
   2629   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
   2630   case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch);
   2631   case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch);
   2632   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
   2633   }
   2634 
   2635   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
   2636 
   2637   // Set up the node stack with NodeToMatch as the only node on the stack.
   2638   SmallVector<SDValue, 8> NodeStack;
   2639   SDValue N = SDValue(NodeToMatch, 0);
   2640   NodeStack.push_back(N);
   2641 
   2642   // MatchScopes - Scopes used when matching, if a match failure happens, this
   2643   // indicates where to continue checking.
   2644   SmallVector<MatchScope, 8> MatchScopes;
   2645 
   2646   // RecordedNodes - This is the set of nodes that have been recorded by the
   2647   // state machine.  The second value is the parent of the node, or null if the
   2648   // root is recorded.
   2649   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
   2650 
   2651   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
   2652   // pattern.
   2653   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
   2654 
   2655   // These are the current input chain and glue for use when generating nodes.
   2656   // Various Emit operations change these.  For example, emitting a copytoreg
   2657   // uses and updates these.
   2658   SDValue InputChain, InputGlue;
   2659 
   2660   // ChainNodesMatched - If a pattern matches nodes that have input/output
   2661   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
   2662   // which ones they are.  The result is captured into this list so that we can
   2663   // update the chain results when the pattern is complete.
   2664   SmallVector<SDNode*, 3> ChainNodesMatched;
   2665   SmallVector<SDNode*, 3> GlueResultNodesMatched;
   2666 
   2667   DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
   2668         NodeToMatch->dump(CurDAG);
   2669         dbgs() << '\n');
   2670 
   2671   // Determine where to start the interpreter.  Normally we start at opcode #0,
   2672   // but if the state machine starts with an OPC_SwitchOpcode, then we
   2673   // accelerate the first lookup (which is guaranteed to be hot) with the
   2674   // OpcodeOffset table.
   2675   unsigned MatcherIndex = 0;
   2676 
   2677   if (!OpcodeOffset.empty()) {
   2678     // Already computed the OpcodeOffset table, just index into it.
   2679     if (N.getOpcode() < OpcodeOffset.size())
   2680       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2681     DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
   2682 
   2683   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
   2684     // Otherwise, the table isn't computed, but the state machine does start
   2685     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
   2686     // is the first time we're selecting an instruction.
   2687     unsigned Idx = 1;
   2688     while (1) {
   2689       // Get the size of this case.
   2690       unsigned CaseSize = MatcherTable[Idx++];
   2691       if (CaseSize & 128)
   2692         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
   2693       if (CaseSize == 0) break;
   2694 
   2695       // Get the opcode, add the index to the table.
   2696       uint16_t Opc = MatcherTable[Idx++];
   2697       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
   2698       if (Opc >= OpcodeOffset.size())
   2699         OpcodeOffset.resize((Opc+1)*2);
   2700       OpcodeOffset[Opc] = Idx;
   2701       Idx += CaseSize;
   2702     }
   2703 
   2704     // Okay, do the lookup for the first opcode.
   2705     if (N.getOpcode() < OpcodeOffset.size())
   2706       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2707   }
   2708 
   2709   while (1) {
   2710     assert(MatcherIndex < TableSize && "Invalid index");
   2711 #ifndef NDEBUG
   2712     unsigned CurrentOpcodeIndex = MatcherIndex;
   2713 #endif
   2714     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
   2715     switch (Opcode) {
   2716     case OPC_Scope: {
   2717       // Okay, the semantics of this operation are that we should push a scope
   2718       // then evaluate the first child.  However, pushing a scope only to have
   2719       // the first check fail (which then pops it) is inefficient.  If we can
   2720       // determine immediately that the first check (or first several) will
   2721       // immediately fail, don't even bother pushing a scope for them.
   2722       unsigned FailIndex;
   2723 
   2724       while (1) {
   2725         unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2726         if (NumToSkip & 128)
   2727           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2728         // Found the end of the scope with no match.
   2729         if (NumToSkip == 0) {
   2730           FailIndex = 0;
   2731           break;
   2732         }
   2733 
   2734         FailIndex = MatcherIndex+NumToSkip;
   2735 
   2736         unsigned MatcherIndexOfPredicate = MatcherIndex;
   2737         (void)MatcherIndexOfPredicate; // silence warning.
   2738 
   2739         // If we can't evaluate this predicate without pushing a scope (e.g. if
   2740         // it is a 'MoveParent') or if the predicate succeeds on this node, we
   2741         // push the scope and evaluate the full predicate chain.
   2742         bool Result;
   2743         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
   2744                                               Result, *this, RecordedNodes);
   2745         if (!Result)
   2746           break;
   2747 
   2748         DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
   2749                      << "index " << MatcherIndexOfPredicate
   2750                      << ", continuing at " << FailIndex << "\n");
   2751         ++NumDAGIselRetries;
   2752 
   2753         // Otherwise, we know that this case of the Scope is guaranteed to fail,
   2754         // move to the next case.
   2755         MatcherIndex = FailIndex;
   2756       }
   2757 
   2758       // If the whole scope failed to match, bail.
   2759       if (FailIndex == 0) break;
   2760 
   2761       // Push a MatchScope which indicates where to go if the first child fails
   2762       // to match.
   2763       MatchScope NewEntry;
   2764       NewEntry.FailIndex = FailIndex;
   2765       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
   2766       NewEntry.NumRecordedNodes = RecordedNodes.size();
   2767       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
   2768       NewEntry.InputChain = InputChain;
   2769       NewEntry.InputGlue = InputGlue;
   2770       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
   2771       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
   2772       MatchScopes.push_back(NewEntry);
   2773       continue;
   2774     }
   2775     case OPC_RecordNode: {
   2776       // Remember this node, it may end up being an operand in the pattern.
   2777       SDNode *Parent = nullptr;
   2778       if (NodeStack.size() > 1)
   2779         Parent = NodeStack[NodeStack.size()-2].getNode();
   2780       RecordedNodes.push_back(std::make_pair(N, Parent));
   2781       continue;
   2782     }
   2783 
   2784     case OPC_RecordChild0: case OPC_RecordChild1:
   2785     case OPC_RecordChild2: case OPC_RecordChild3:
   2786     case OPC_RecordChild4: case OPC_RecordChild5:
   2787     case OPC_RecordChild6: case OPC_RecordChild7: {
   2788       unsigned ChildNo = Opcode-OPC_RecordChild0;
   2789       if (ChildNo >= N.getNumOperands())
   2790         break;  // Match fails if out of range child #.
   2791 
   2792       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
   2793                                              N.getNode()));
   2794       continue;
   2795     }
   2796     case OPC_RecordMemRef:
   2797       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
   2798       continue;
   2799 
   2800     case OPC_CaptureGlueInput:
   2801       // If the current node has an input glue, capture it in InputGlue.
   2802       if (N->getNumOperands() != 0 &&
   2803           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
   2804         InputGlue = N->getOperand(N->getNumOperands()-1);
   2805       continue;
   2806 
   2807     case OPC_MoveChild: {
   2808       unsigned ChildNo = MatcherTable[MatcherIndex++];
   2809       if (ChildNo >= N.getNumOperands())
   2810         break;  // Match fails if out of range child #.
   2811       N = N.getOperand(ChildNo);
   2812       NodeStack.push_back(N);
   2813       continue;
   2814     }
   2815 
   2816     case OPC_MoveParent:
   2817       // Pop the current node off the NodeStack.
   2818       NodeStack.pop_back();
   2819       assert(!NodeStack.empty() && "Node stack imbalance!");
   2820       N = NodeStack.back();
   2821       continue;
   2822 
   2823     case OPC_CheckSame:
   2824       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
   2825       continue;
   2826 
   2827     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
   2828     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
   2829       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
   2830                             Opcode-OPC_CheckChild0Same))
   2831         break;
   2832       continue;
   2833 
   2834     case OPC_CheckPatternPredicate:
   2835       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
   2836       continue;
   2837     case OPC_CheckPredicate:
   2838       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
   2839                                 N.getNode()))
   2840         break;
   2841       continue;
   2842     case OPC_CheckComplexPat: {
   2843       unsigned CPNum = MatcherTable[MatcherIndex++];
   2844       unsigned RecNo = MatcherTable[MatcherIndex++];
   2845       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
   2846 
   2847       // If target can modify DAG during matching, keep the matching state
   2848       // consistent.
   2849       std::unique_ptr<MatchStateUpdater> MSU;
   2850       if (ComplexPatternFuncMutatesDAG())
   2851         MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
   2852                                         MatchScopes));
   2853 
   2854       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
   2855                                RecordedNodes[RecNo].first, CPNum,
   2856                                RecordedNodes))
   2857         break;
   2858       continue;
   2859     }
   2860     case OPC_CheckOpcode:
   2861       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
   2862       continue;
   2863 
   2864     case OPC_CheckType:
   2865       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
   2866                        CurDAG->getDataLayout()))
   2867         break;
   2868       continue;
   2869 
   2870     case OPC_SwitchOpcode: {
   2871       unsigned CurNodeOpcode = N.getOpcode();
   2872       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2873       unsigned CaseSize;
   2874       while (1) {
   2875         // Get the size of this case.
   2876         CaseSize = MatcherTable[MatcherIndex++];
   2877         if (CaseSize & 128)
   2878           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2879         if (CaseSize == 0) break;
   2880 
   2881         uint16_t Opc = MatcherTable[MatcherIndex++];
   2882         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2883 
   2884         // If the opcode matches, then we will execute this case.
   2885         if (CurNodeOpcode == Opc)
   2886           break;
   2887 
   2888         // Otherwise, skip over this case.
   2889         MatcherIndex += CaseSize;
   2890       }
   2891 
   2892       // If no cases matched, bail out.
   2893       if (CaseSize == 0) break;
   2894 
   2895       // Otherwise, execute the case we found.
   2896       DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
   2897                    << " to " << MatcherIndex << "\n");
   2898       continue;
   2899     }
   2900 
   2901     case OPC_SwitchType: {
   2902       MVT CurNodeVT = N.getSimpleValueType();
   2903       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2904       unsigned CaseSize;
   2905       while (1) {
   2906         // Get the size of this case.
   2907         CaseSize = MatcherTable[MatcherIndex++];
   2908         if (CaseSize & 128)
   2909           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2910         if (CaseSize == 0) break;
   2911 
   2912         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2913         if (CaseVT == MVT::iPTR)
   2914           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
   2915 
   2916         // If the VT matches, then we will execute this case.
   2917         if (CurNodeVT == CaseVT)
   2918           break;
   2919 
   2920         // Otherwise, skip over this case.
   2921         MatcherIndex += CaseSize;
   2922       }
   2923 
   2924       // If no cases matched, bail out.
   2925       if (CaseSize == 0) break;
   2926 
   2927       // Otherwise, execute the case we found.
   2928       DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
   2929                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
   2930       continue;
   2931     }
   2932     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
   2933     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
   2934     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
   2935     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
   2936       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
   2937                             CurDAG->getDataLayout(),
   2938                             Opcode - OPC_CheckChild0Type))
   2939         break;
   2940       continue;
   2941     case OPC_CheckCondCode:
   2942       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
   2943       continue;
   2944     case OPC_CheckValueType:
   2945       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
   2946                             CurDAG->getDataLayout()))
   2947         break;
   2948       continue;
   2949     case OPC_CheckInteger:
   2950       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
   2951       continue;
   2952     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
   2953     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
   2954     case OPC_CheckChild4Integer:
   2955       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
   2956                                Opcode-OPC_CheckChild0Integer)) break;
   2957       continue;
   2958     case OPC_CheckAndImm:
   2959       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
   2960       continue;
   2961     case OPC_CheckOrImm:
   2962       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
   2963       continue;
   2964 
   2965     case OPC_CheckFoldableChainNode: {
   2966       assert(NodeStack.size() != 1 && "No parent node");
   2967       // Verify that all intermediate nodes between the root and this one have
   2968       // a single use.
   2969       bool HasMultipleUses = false;
   2970       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
   2971         if (!NodeStack[i].hasOneUse()) {
   2972           HasMultipleUses = true;
   2973           break;
   2974         }
   2975       if (HasMultipleUses) break;
   2976 
   2977       // Check to see that the target thinks this is profitable to fold and that
   2978       // we can fold it without inducing cycles in the graph.
   2979       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2980                               NodeToMatch) ||
   2981           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2982                          NodeToMatch, OptLevel,
   2983                          true/*We validate our own chains*/))
   2984         break;
   2985 
   2986       continue;
   2987     }
   2988     case OPC_EmitInteger: {
   2989       MVT::SimpleValueType VT =
   2990         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2991       int64_t Val = MatcherTable[MatcherIndex++];
   2992       if (Val & 128)
   2993         Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2994       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2995                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
   2996                                                         VT), nullptr));
   2997       continue;
   2998     }
   2999     case OPC_EmitRegister: {
   3000       MVT::SimpleValueType VT =
   3001         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   3002       unsigned RegNo = MatcherTable[MatcherIndex++];
   3003       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   3004                               CurDAG->getRegister(RegNo, VT), nullptr));
   3005       continue;
   3006     }
   3007     case OPC_EmitRegister2: {
   3008       // For targets w/ more than 256 register names, the register enum
   3009       // values are stored in two bytes in the matcher table (just like
   3010       // opcodes).
   3011       MVT::SimpleValueType VT =
   3012         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   3013       unsigned RegNo = MatcherTable[MatcherIndex++];
   3014       RegNo |= MatcherTable[MatcherIndex++] << 8;
   3015       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   3016                               CurDAG->getRegister(RegNo, VT), nullptr));
   3017       continue;
   3018     }
   3019 
   3020     case OPC_EmitConvertToTarget:  {
   3021       // Convert from IMM/FPIMM to target version.
   3022       unsigned RecNo = MatcherTable[MatcherIndex++];
   3023       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
   3024       SDValue Imm = RecordedNodes[RecNo].first;
   3025 
   3026       if (Imm->getOpcode() == ISD::Constant) {
   3027         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
   3028         Imm = CurDAG->getConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType(),
   3029                                   true);
   3030       } else if (Imm->getOpcode() == ISD::ConstantFP) {
   3031         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
   3032         Imm = CurDAG->getConstantFP(*Val, SDLoc(NodeToMatch),
   3033                                     Imm.getValueType(), true);
   3034       }
   3035 
   3036       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
   3037       continue;
   3038     }
   3039 
   3040     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
   3041     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
   3042       // These are space-optimized forms of OPC_EmitMergeInputChains.
   3043       assert(!InputChain.getNode() &&
   3044              "EmitMergeInputChains should be the first chain producing node");
   3045       assert(ChainNodesMatched.empty() &&
   3046              "Should only have one EmitMergeInputChains per match");
   3047 
   3048       // Read all of the chained nodes.
   3049       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
   3050       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
   3051       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   3052 
   3053       // FIXME: What if other value results of the node have uses not matched
   3054       // by this pattern?
   3055       if (ChainNodesMatched.back() != NodeToMatch &&
   3056           !RecordedNodes[RecNo].first.hasOneUse()) {
   3057         ChainNodesMatched.clear();
   3058         break;
   3059       }
   3060 
   3061       // Merge the input chains if they are not intra-pattern references.
   3062       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   3063 
   3064       if (!InputChain.getNode())
   3065         break;  // Failed to merge.
   3066       continue;
   3067     }
   3068 
   3069     case OPC_EmitMergeInputChains: {
   3070       assert(!InputChain.getNode() &&
   3071              "EmitMergeInputChains should be the first chain producing node");
   3072       // This node gets a list of nodes we matched in the input that have
   3073       // chains.  We want to token factor all of the input chains to these nodes
   3074       // together.  However, if any of the input chains is actually one of the
   3075       // nodes matched in this pattern, then we have an intra-match reference.
   3076       // Ignore these because the newly token factored chain should not refer to
   3077       // the old nodes.
   3078       unsigned NumChains = MatcherTable[MatcherIndex++];
   3079       assert(NumChains != 0 && "Can't TF zero chains");
   3080 
   3081       assert(ChainNodesMatched.empty() &&
   3082              "Should only have one EmitMergeInputChains per match");
   3083 
   3084       // Read all of the chained nodes.
   3085       for (unsigned i = 0; i != NumChains; ++i) {
   3086         unsigned RecNo = MatcherTable[MatcherIndex++];
   3087         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
   3088         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   3089 
   3090         // FIXME: What if other value results of the node have uses not matched
   3091         // by this pattern?
   3092         if (ChainNodesMatched.back() != NodeToMatch &&
   3093             !RecordedNodes[RecNo].first.hasOneUse()) {
   3094           ChainNodesMatched.clear();
   3095           break;
   3096         }
   3097       }
   3098 
   3099       // If the inner loop broke out, the match fails.
   3100       if (ChainNodesMatched.empty())
   3101         break;
   3102 
   3103       // Merge the input chains if they are not intra-pattern references.
   3104       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   3105 
   3106       if (!InputChain.getNode())
   3107         break;  // Failed to merge.
   3108 
   3109       continue;
   3110     }
   3111 
   3112     case OPC_EmitCopyToReg: {
   3113       unsigned RecNo = MatcherTable[MatcherIndex++];
   3114       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
   3115       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
   3116 
   3117       if (!InputChain.getNode())
   3118         InputChain = CurDAG->getEntryNode();
   3119 
   3120       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
   3121                                         DestPhysReg, RecordedNodes[RecNo].first,
   3122                                         InputGlue);
   3123 
   3124       InputGlue = InputChain.getValue(1);
   3125       continue;
   3126     }
   3127 
   3128     case OPC_EmitNodeXForm: {
   3129       unsigned XFormNo = MatcherTable[MatcherIndex++];
   3130       unsigned RecNo = MatcherTable[MatcherIndex++];
   3131       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
   3132       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
   3133       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
   3134       continue;
   3135     }
   3136 
   3137     case OPC_EmitNode:
   3138     case OPC_MorphNodeTo: {
   3139       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
   3140       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   3141       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
   3142       // Get the result VT list.
   3143       unsigned NumVTs = MatcherTable[MatcherIndex++];
   3144       SmallVector<EVT, 4> VTs;
   3145       for (unsigned i = 0; i != NumVTs; ++i) {
   3146         MVT::SimpleValueType VT =
   3147           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   3148         if (VT == MVT::iPTR)
   3149           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
   3150         VTs.push_back(VT);
   3151       }
   3152 
   3153       if (EmitNodeInfo & OPFL_Chain)
   3154         VTs.push_back(MVT::Other);
   3155       if (EmitNodeInfo & OPFL_GlueOutput)
   3156         VTs.push_back(MVT::Glue);
   3157 
   3158       // This is hot code, so optimize the two most common cases of 1 and 2
   3159       // results.
   3160       SDVTList VTList;
   3161       if (VTs.size() == 1)
   3162         VTList = CurDAG->getVTList(VTs[0]);
   3163       else if (VTs.size() == 2)
   3164         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
   3165       else
   3166         VTList = CurDAG->getVTList(VTs);
   3167 
   3168       // Get the operand list.
   3169       unsigned NumOps = MatcherTable[MatcherIndex++];
   3170       SmallVector<SDValue, 8> Ops;
   3171       for (unsigned i = 0; i != NumOps; ++i) {
   3172         unsigned RecNo = MatcherTable[MatcherIndex++];
   3173         if (RecNo & 128)
   3174           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   3175 
   3176         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
   3177         Ops.push_back(RecordedNodes[RecNo].first);
   3178       }
   3179 
   3180       // If there are variadic operands to add, handle them now.
   3181       if (EmitNodeInfo & OPFL_VariadicInfo) {
   3182         // Determine the start index to copy from.
   3183         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
   3184         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
   3185         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
   3186                "Invalid variadic node");
   3187         // Copy all of the variadic operands, not including a potential glue
   3188         // input.
   3189         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
   3190              i != e; ++i) {
   3191           SDValue V = NodeToMatch->getOperand(i);
   3192           if (V.getValueType() == MVT::Glue) break;
   3193           Ops.push_back(V);
   3194         }
   3195       }
   3196 
   3197       // If this has chain/glue inputs, add them.
   3198       if (EmitNodeInfo & OPFL_Chain)
   3199         Ops.push_back(InputChain);
   3200       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
   3201         Ops.push_back(InputGlue);
   3202 
   3203       // Create the node.
   3204       SDNode *Res = nullptr;
   3205       if (Opcode != OPC_MorphNodeTo) {
   3206         // If this is a normal EmitNode command, just create the new node and
   3207         // add the results to the RecordedNodes list.
   3208         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
   3209                                      VTList, Ops);
   3210 
   3211         // Add all the non-glue/non-chain results to the RecordedNodes list.
   3212         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   3213           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
   3214           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
   3215                                                              nullptr));
   3216         }
   3217 
   3218       } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
   3219         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
   3220       } else {
   3221         // NodeToMatch was eliminated by CSE when the target changed the DAG.
   3222         // We will visit the equivalent node later.
   3223         DEBUG(dbgs() << "Node was eliminated by CSE\n");
   3224         return nullptr;
   3225       }
   3226 
   3227       // If the node had chain/glue results, update our notion of the current
   3228       // chain and glue.
   3229       if (EmitNodeInfo & OPFL_GlueOutput) {
   3230         InputGlue = SDValue(Res, VTs.size()-1);
   3231         if (EmitNodeInfo & OPFL_Chain)
   3232           InputChain = SDValue(Res, VTs.size()-2);
   3233       } else if (EmitNodeInfo & OPFL_Chain)
   3234         InputChain = SDValue(Res, VTs.size()-1);
   3235 
   3236       // If the OPFL_MemRefs glue is set on this node, slap all of the
   3237       // accumulated memrefs onto it.
   3238       //
   3239       // FIXME: This is vastly incorrect for patterns with multiple outputs
   3240       // instructions that access memory and for ComplexPatterns that match
   3241       // loads.
   3242       if (EmitNodeInfo & OPFL_MemRefs) {
   3243         // Only attach load or store memory operands if the generated
   3244         // instruction may load or store.
   3245         const MCInstrDesc &MCID = TII->get(TargetOpc);
   3246         bool mayLoad = MCID.mayLoad();
   3247         bool mayStore = MCID.mayStore();
   3248 
   3249         unsigned NumMemRefs = 0;
   3250         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
   3251                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   3252           if ((*I)->isLoad()) {
   3253             if (mayLoad)
   3254               ++NumMemRefs;
   3255           } else if ((*I)->isStore()) {
   3256             if (mayStore)
   3257               ++NumMemRefs;
   3258           } else {
   3259             ++NumMemRefs;
   3260           }
   3261         }
   3262 
   3263         MachineSDNode::mmo_iterator MemRefs =
   3264           MF->allocateMemRefsArray(NumMemRefs);
   3265 
   3266         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
   3267         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
   3268                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   3269           if ((*I)->isLoad()) {
   3270             if (mayLoad)
   3271               *MemRefsPos++ = *I;
   3272           } else if ((*I)->isStore()) {
   3273             if (mayStore)
   3274               *MemRefsPos++ = *I;
   3275           } else {
   3276             *MemRefsPos++ = *I;
   3277           }
   3278         }
   3279 
   3280         cast<MachineSDNode>(Res)
   3281           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
   3282       }
   3283 
   3284       DEBUG(dbgs() << "  "
   3285                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
   3286                    << " node: "; Res->dump(CurDAG); dbgs() << "\n");
   3287 
   3288       // If this was a MorphNodeTo then we're completely done!
   3289       if (Opcode == OPC_MorphNodeTo) {
   3290         // Update chain and glue uses.
   3291         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   3292                             InputGlue, GlueResultNodesMatched, true);
   3293         return Res;
   3294       }
   3295 
   3296       continue;
   3297     }
   3298 
   3299     case OPC_MarkGlueResults: {
   3300       unsigned NumNodes = MatcherTable[MatcherIndex++];
   3301 
   3302       // Read and remember all the glue-result nodes.
   3303       for (unsigned i = 0; i != NumNodes; ++i) {
   3304         unsigned RecNo = MatcherTable[MatcherIndex++];
   3305         if (RecNo & 128)
   3306           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   3307 
   3308         assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
   3309         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   3310       }
   3311       continue;
   3312     }
   3313 
   3314     case OPC_CompleteMatch: {
   3315       // The match has been completed, and any new nodes (if any) have been
   3316       // created.  Patch up references to the matched dag to use the newly
   3317       // created nodes.
   3318       unsigned NumResults = MatcherTable[MatcherIndex++];
   3319 
   3320       for (unsigned i = 0; i != NumResults; ++i) {
   3321         unsigned ResSlot = MatcherTable[MatcherIndex++];
   3322         if (ResSlot & 128)
   3323           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
   3324 
   3325         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
   3326         SDValue Res = RecordedNodes[ResSlot].first;
   3327 
   3328         assert(i < NodeToMatch->getNumValues() &&
   3329                NodeToMatch->getValueType(i) != MVT::Other &&
   3330                NodeToMatch->getValueType(i) != MVT::Glue &&
   3331                "Invalid number of results to complete!");
   3332         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
   3333                 NodeToMatch->getValueType(i) == MVT::iPTR ||
   3334                 Res.getValueType() == MVT::iPTR ||
   3335                 NodeToMatch->getValueType(i).getSizeInBits() ==
   3336                     Res.getValueType().getSizeInBits()) &&
   3337                "invalid replacement");
   3338         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
   3339       }
   3340 
   3341       // If the root node defines glue, add it to the glue nodes to update list.
   3342       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
   3343         GlueResultNodesMatched.push_back(NodeToMatch);
   3344 
   3345       // Update chain and glue uses.
   3346       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   3347                           InputGlue, GlueResultNodesMatched, false);
   3348 
   3349       assert(NodeToMatch->use_empty() &&
   3350              "Didn't replace all uses of the node?");
   3351 
   3352       // FIXME: We just return here, which interacts correctly with SelectRoot
   3353       // above.  We should fix this to not return an SDNode* anymore.
   3354       return nullptr;
   3355     }
   3356     }
   3357 
   3358     // If the code reached this point, then the match failed.  See if there is
   3359     // another child to try in the current 'Scope', otherwise pop it until we
   3360     // find a case to check.
   3361     DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
   3362     ++NumDAGIselRetries;
   3363     while (1) {
   3364       if (MatchScopes.empty()) {
   3365         CannotYetSelect(NodeToMatch);
   3366         return nullptr;
   3367       }
   3368 
   3369       // Restore the interpreter state back to the point where the scope was
   3370       // formed.
   3371       MatchScope &LastScope = MatchScopes.back();
   3372       RecordedNodes.resize(LastScope.NumRecordedNodes);
   3373       NodeStack.clear();
   3374       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
   3375       N = NodeStack.back();
   3376 
   3377       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
   3378         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
   3379       MatcherIndex = LastScope.FailIndex;
   3380 
   3381       DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
   3382 
   3383       InputChain = LastScope.InputChain;
   3384       InputGlue = LastScope.InputGlue;
   3385       if (!LastScope.HasChainNodesMatched)
   3386         ChainNodesMatched.clear();
   3387       if (!LastScope.HasGlueResultNodesMatched)
   3388         GlueResultNodesMatched.clear();
   3389 
   3390       // Check to see what the offset is at the new MatcherIndex.  If it is zero
   3391       // we have reached the end of this scope, otherwise we have another child
   3392       // in the current scope to try.
   3393       unsigned NumToSkip = MatcherTable[MatcherIndex++];
   3394       if (NumToSkip & 128)
   3395         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   3396 
   3397       // If we have another child in this scope to match, update FailIndex and
   3398       // try it.
   3399       if (NumToSkip != 0) {
   3400         LastScope.FailIndex = MatcherIndex+NumToSkip;
   3401         break;
   3402       }
   3403 
   3404       // End of this scope, pop it and try the next child in the containing
   3405       // scope.
   3406       MatchScopes.pop_back();
   3407     }
   3408   }
   3409 }
   3410 
   3411 
   3412 
   3413 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
   3414   std::string msg;
   3415   raw_string_ostream Msg(msg);
   3416   Msg << "Cannot select: ";
   3417 
   3418   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
   3419       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
   3420       N->getOpcode() != ISD::INTRINSIC_VOID) {
   3421     N->printrFull(Msg, CurDAG);
   3422     Msg << "\nIn function: " << MF->getName();
   3423   } else {
   3424     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
   3425     unsigned iid =
   3426       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
   3427     if (iid < Intrinsic::num_intrinsics)
   3428       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
   3429     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
   3430       Msg << "target intrinsic %" << TII->getName(iid);
   3431     else
   3432       Msg << "unknown intrinsic #" << iid;
   3433   }
   3434   report_fatal_error(Msg.str());
   3435 }
   3436 
   3437 char SelectionDAGISel::ID = 0;
   3438