Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     16 #include "llvm/ADT/PostOrderIterator.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineModuleInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/WinEHFuncInfo.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DebugInfo.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetFrameLowering.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetLowering.h"
     39 #include "llvm/Target/TargetOptions.h"
     40 #include "llvm/Target/TargetRegisterInfo.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include <algorithm>
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "function-lowering-info"
     46 
     47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     48 /// PHI nodes or outside of the basic block that defines it, or used by a
     49 /// switch or atomic instruction, which may expand to multiple basic blocks.
     50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     51   if (I->use_empty()) return false;
     52   if (isa<PHINode>(I)) return true;
     53   const BasicBlock *BB = I->getParent();
     54   for (const User *U : I->users())
     55     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     56       return true;
     57 
     58   return false;
     59 }
     60 
     61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
     62   // For the users of the source value being used for compare instruction, if
     63   // the number of signed predicate is greater than unsigned predicate, we
     64   // prefer to use SIGN_EXTEND.
     65   //
     66   // With this optimization, we would be able to reduce some redundant sign or
     67   // zero extension instruction, and eventually more machine CSE opportunities
     68   // can be exposed.
     69   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
     70   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
     71   for (const User *U : V->users()) {
     72     if (const auto *CI = dyn_cast<CmpInst>(U)) {
     73       NumOfSigned += CI->isSigned();
     74       NumOfUnsigned += CI->isUnsigned();
     75     }
     76   }
     77   if (NumOfSigned > NumOfUnsigned)
     78     ExtendKind = ISD::SIGN_EXTEND;
     79 
     80   return ExtendKind;
     81 }
     82 
     83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
     84                                SelectionDAG *DAG) {
     85   Fn = &fn;
     86   MF = &mf;
     87   TLI = MF->getSubtarget().getTargetLowering();
     88   RegInfo = &MF->getRegInfo();
     89   MachineModuleInfo &MMI = MF->getMMI();
     90   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
     91 
     92   // Check whether the function can return without sret-demotion.
     93   SmallVector<ISD::OutputArg, 4> Outs;
     94   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
     95                 mf.getDataLayout());
     96   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
     97                                        Fn->isVarArg(), Outs, Fn->getContext());
     98 
     99   // Initialize the mapping of values to registers.  This is only set up for
    100   // instruction values that are used outside of the block that defines
    101   // them.
    102   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
    103   for (; BB != EB; ++BB)
    104     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    105          I != E; ++I) {
    106       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
    107         Type *Ty = AI->getAllocatedType();
    108         unsigned Align =
    109           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
    110                    AI->getAlignment());
    111         unsigned StackAlign = TFI->getStackAlignment();
    112 
    113         // Static allocas can be folded into the initial stack frame
    114         // adjustment. For targets that don't realign the stack, don't
    115         // do this if there is an extra alignment requirement.
    116         if (AI->isStaticAlloca() &&
    117             (TFI->isStackRealignable() || (Align <= StackAlign))) {
    118           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
    119           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
    120 
    121           TySize *= CUI->getZExtValue();   // Get total allocated size.
    122           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
    123 
    124           StaticAllocaMap[AI] =
    125             MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
    126         } else {
    127           // FIXME: Overaligned static allocas should be grouped into
    128           // a single dynamic allocation instead of using a separate
    129           // stack allocation for each one.
    130           if (Align <= StackAlign)
    131             Align = 0;
    132           // Inform the Frame Information that we have variable-sized objects.
    133           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
    134         }
    135       }
    136 
    137       // Look for inline asm that clobbers the SP register.
    138       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    139         ImmutableCallSite CS(&*I);
    140         if (isa<InlineAsm>(CS.getCalledValue())) {
    141           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
    142           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    143           std::vector<TargetLowering::AsmOperandInfo> Ops =
    144               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
    145           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
    146             TargetLowering::AsmOperandInfo &Op = Ops[I];
    147             if (Op.Type == InlineAsm::isClobber) {
    148               // Clobbers don't have SDValue operands, hence SDValue().
    149               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
    150               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
    151                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
    152                                                     Op.ConstraintVT);
    153               if (PhysReg.first == SP)
    154                 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
    155             }
    156           }
    157         }
    158       }
    159 
    160       // Look for calls to the @llvm.va_start intrinsic. We can omit some
    161       // prologue boilerplate for variadic functions that don't examine their
    162       // arguments.
    163       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
    164         if (II->getIntrinsicID() == Intrinsic::vastart)
    165           MF->getFrameInfo()->setHasVAStart(true);
    166       }
    167 
    168       // If we have a musttail call in a variadic function, we need to ensure we
    169       // forward implicit register parameters.
    170       if (const auto *CI = dyn_cast<CallInst>(I)) {
    171         if (CI->isMustTailCall() && Fn->isVarArg())
    172           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
    173       }
    174 
    175       // Mark values used outside their block as exported, by allocating
    176       // a virtual register for them.
    177       if (isUsedOutsideOfDefiningBlock(&*I))
    178         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I)))
    179           InitializeRegForValue(&*I);
    180 
    181       // Collect llvm.dbg.declare information. This is done now instead of
    182       // during the initial isel pass through the IR so that it is done
    183       // in a predictable order.
    184       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    185         assert(DI->getVariable() && "Missing variable");
    186         assert(DI->getDebugLoc() && "Missing location");
    187         if (MMI.hasDebugInfo()) {
    188           // Don't handle byval struct arguments or VLAs, for example.
    189           // Non-byval arguments are handled here (they refer to the stack
    190           // temporary alloca at this point).
    191           const Value *Address = DI->getAddress();
    192           if (Address) {
    193             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    194               Address = BCI->getOperand(0);
    195             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    196               DenseMap<const AllocaInst *, int>::iterator SI =
    197                 StaticAllocaMap.find(AI);
    198               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    199                 int FI = SI->second;
    200                 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
    201                                        FI, DI->getDebugLoc());
    202               }
    203             }
    204           }
    205         }
    206       }
    207 
    208       // Decide the preferred extend type for a value.
    209       PreferredExtendType[&*I] = getPreferredExtendForValue(&*I);
    210     }
    211 
    212   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    213   // also creates the initial PHI MachineInstrs, though none of the input
    214   // operands are populated.
    215   for (BB = Fn->begin(); BB != EB; ++BB) {
    216     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
    217     // are really data, and no instructions can live here.
    218     if (BB->isEHPad()) {
    219       const Instruction *I = BB->getFirstNonPHI();
    220       // If this is a non-landingpad EH pad, mark this function as using
    221       // funclets.
    222       // FIXME: SEH catchpads do not create funclets, so we could avoid setting
    223       // this in such cases in order to improve frame layout.
    224       if (!isa<LandingPadInst>(I)) {
    225         MMI.setHasEHFunclets(true);
    226         MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
    227       }
    228       if (isa<CatchSwitchInst>(I)) {
    229         assert(&*BB->begin() == I &&
    230                "WinEHPrepare failed to remove PHIs from imaginary BBs");
    231         continue;
    232       }
    233       if (isa<FuncletPadInst>(I))
    234         assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs");
    235     }
    236 
    237     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB);
    238     MBBMap[&*BB] = MBB;
    239     MF->push_back(MBB);
    240 
    241     // Transfer the address-taken flag. This is necessary because there could
    242     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    243     // the first one should be marked.
    244     if (BB->hasAddressTaken())
    245       MBB->setHasAddressTaken();
    246 
    247     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    248     // appropriate.
    249     for (BasicBlock::const_iterator I = BB->begin();
    250          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    251       if (PN->use_empty()) continue;
    252 
    253       // Skip empty types
    254       if (PN->getType()->isEmptyTy())
    255         continue;
    256 
    257       DebugLoc DL = PN->getDebugLoc();
    258       unsigned PHIReg = ValueMap[PN];
    259       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    260 
    261       SmallVector<EVT, 4> ValueVTs;
    262       ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
    263       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    264         EVT VT = ValueVTs[vti];
    265         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
    266         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    267         for (unsigned i = 0; i != NumRegisters; ++i)
    268           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    269         PHIReg += NumRegisters;
    270       }
    271     }
    272   }
    273 
    274   // Mark landing pad blocks.
    275   SmallVector<const LandingPadInst *, 4> LPads;
    276   for (BB = Fn->begin(); BB != EB; ++BB) {
    277     const Instruction *FNP = BB->getFirstNonPHI();
    278     if (BB->isEHPad() && MBBMap.count(&*BB))
    279       MBBMap[&*BB]->setIsEHPad();
    280     if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
    281       LPads.push_back(LPI);
    282   }
    283 
    284   // If this personality uses funclets, we need to do a bit more work.
    285   if (!Fn->hasPersonalityFn())
    286     return;
    287   EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn());
    288   if (!isFuncletEHPersonality(Personality))
    289     return;
    290 
    291   // Calculate state numbers if we haven't already.
    292   WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
    293   if (Personality == EHPersonality::MSVC_CXX)
    294     calculateWinCXXEHStateNumbers(&fn, EHInfo);
    295   else if (isAsynchronousEHPersonality(Personality))
    296     calculateSEHStateNumbers(&fn, EHInfo);
    297   else if (Personality == EHPersonality::CoreCLR)
    298     calculateClrEHStateNumbers(&fn, EHInfo);
    299 
    300   calculateCatchReturnSuccessorColors(&fn, EHInfo);
    301 
    302   // Map all BB references in the WinEH data to MBBs.
    303   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
    304     for (WinEHHandlerType &H : TBME.HandlerArray) {
    305       if (H.CatchObj.Alloca) {
    306         assert(StaticAllocaMap.count(H.CatchObj.Alloca));
    307         H.CatchObj.FrameIndex = StaticAllocaMap[H.CatchObj.Alloca];
    308       } else {
    309         H.CatchObj.FrameIndex = INT_MAX;
    310       }
    311       if (H.Handler)
    312         H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
    313     }
    314   }
    315   for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
    316     if (UME.Cleanup)
    317       UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
    318   for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
    319     const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
    320     UME.Handler = MBBMap[BB];
    321   }
    322   for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
    323     const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
    324     CME.Handler = MBBMap[BB];
    325   }
    326 }
    327 
    328 /// clear - Clear out all the function-specific state. This returns this
    329 /// FunctionLoweringInfo to an empty state, ready to be used for a
    330 /// different function.
    331 void FunctionLoweringInfo::clear() {
    332   MBBMap.clear();
    333   ValueMap.clear();
    334   StaticAllocaMap.clear();
    335   LiveOutRegInfo.clear();
    336   VisitedBBs.clear();
    337   ArgDbgValues.clear();
    338   ByValArgFrameIndexMap.clear();
    339   RegFixups.clear();
    340   StatepointStackSlots.clear();
    341   StatepointRelocatedValues.clear();
    342   PreferredExtendType.clear();
    343 }
    344 
    345 /// CreateReg - Allocate a single virtual register for the given type.
    346 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
    347   return RegInfo->createVirtualRegister(
    348       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
    349 }
    350 
    351 /// CreateRegs - Allocate the appropriate number of virtual registers of
    352 /// the correctly promoted or expanded types.  Assign these registers
    353 /// consecutive vreg numbers and return the first assigned number.
    354 ///
    355 /// In the case that the given value has struct or array type, this function
    356 /// will assign registers for each member or element.
    357 ///
    358 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    359   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
    360 
    361   SmallVector<EVT, 4> ValueVTs;
    362   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
    363 
    364   unsigned FirstReg = 0;
    365   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    366     EVT ValueVT = ValueVTs[Value];
    367     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
    368 
    369     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
    370     for (unsigned i = 0; i != NumRegs; ++i) {
    371       unsigned R = CreateReg(RegisterVT);
    372       if (!FirstReg) FirstReg = R;
    373     }
    374   }
    375   return FirstReg;
    376 }
    377 
    378 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    379 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    380 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    381 /// the larger bit width by zero extension. The bit width must be no smaller
    382 /// than the LiveOutInfo's existing bit width.
    383 const FunctionLoweringInfo::LiveOutInfo *
    384 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    385   if (!LiveOutRegInfo.inBounds(Reg))
    386     return nullptr;
    387 
    388   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    389   if (!LOI->IsValid)
    390     return nullptr;
    391 
    392   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    393     LOI->NumSignBits = 1;
    394     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    395     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    396   }
    397 
    398   return LOI;
    399 }
    400 
    401 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    402 /// register based on the LiveOutInfo of its operands.
    403 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    404   Type *Ty = PN->getType();
    405   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    406     return;
    407 
    408   SmallVector<EVT, 1> ValueVTs;
    409   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
    410   assert(ValueVTs.size() == 1 &&
    411          "PHIs with non-vector integer types should have a single VT.");
    412   EVT IntVT = ValueVTs[0];
    413 
    414   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
    415     return;
    416   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
    417   unsigned BitWidth = IntVT.getSizeInBits();
    418 
    419   unsigned DestReg = ValueMap[PN];
    420   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    421     return;
    422   LiveOutRegInfo.grow(DestReg);
    423   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    424 
    425   Value *V = PN->getIncomingValue(0);
    426   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    427     DestLOI.NumSignBits = 1;
    428     APInt Zero(BitWidth, 0);
    429     DestLOI.KnownZero = Zero;
    430     DestLOI.KnownOne = Zero;
    431     return;
    432   }
    433 
    434   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    435     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    436     DestLOI.NumSignBits = Val.getNumSignBits();
    437     DestLOI.KnownZero = ~Val;
    438     DestLOI.KnownOne = Val;
    439   } else {
    440     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    441                                 "CopyToReg node was created.");
    442     unsigned SrcReg = ValueMap[V];
    443     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    444       DestLOI.IsValid = false;
    445       return;
    446     }
    447     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    448     if (!SrcLOI) {
    449       DestLOI.IsValid = false;
    450       return;
    451     }
    452     DestLOI = *SrcLOI;
    453   }
    454 
    455   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    456          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    457          "Masks should have the same bit width as the type.");
    458 
    459   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    460     Value *V = PN->getIncomingValue(i);
    461     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    462       DestLOI.NumSignBits = 1;
    463       APInt Zero(BitWidth, 0);
    464       DestLOI.KnownZero = Zero;
    465       DestLOI.KnownOne = Zero;
    466       return;
    467     }
    468 
    469     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    470       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    471       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    472       DestLOI.KnownZero &= ~Val;
    473       DestLOI.KnownOne &= Val;
    474       continue;
    475     }
    476 
    477     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    478                                 "its CopyToReg node was created.");
    479     unsigned SrcReg = ValueMap[V];
    480     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    481       DestLOI.IsValid = false;
    482       return;
    483     }
    484     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    485     if (!SrcLOI) {
    486       DestLOI.IsValid = false;
    487       return;
    488     }
    489     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    490     DestLOI.KnownZero &= SrcLOI->KnownZero;
    491     DestLOI.KnownOne &= SrcLOI->KnownOne;
    492   }
    493 }
    494 
    495 /// setArgumentFrameIndex - Record frame index for the byval
    496 /// argument. This overrides previous frame index entry for this argument,
    497 /// if any.
    498 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    499                                                  int FI) {
    500   ByValArgFrameIndexMap[A] = FI;
    501 }
    502 
    503 /// getArgumentFrameIndex - Get frame index for the byval argument.
    504 /// If the argument does not have any assigned frame index then 0 is
    505 /// returned.
    506 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    507   DenseMap<const Argument *, int>::iterator I =
    508     ByValArgFrameIndexMap.find(A);
    509   if (I != ByValArgFrameIndexMap.end())
    510     return I->second;
    511   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
    512   return 0;
    513 }
    514 
    515 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
    516     const Value *CPI, const TargetRegisterClass *RC) {
    517   MachineRegisterInfo &MRI = MF->getRegInfo();
    518   auto I = CatchPadExceptionPointers.insert({CPI, 0});
    519   unsigned &VReg = I.first->second;
    520   if (I.second)
    521     VReg = MRI.createVirtualRegister(RC);
    522   assert(VReg && "null vreg in exception pointer table!");
    523   return VReg;
    524 }
    525 
    526 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
    527 /// being passed to this variadic function, and set the MachineModuleInfo's
    528 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
    529 /// reference to _fltused on Windows, which will link in MSVCRT's
    530 /// floating-point support.
    531 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
    532                                       MachineModuleInfo *MMI)
    533 {
    534   FunctionType *FT = cast<FunctionType>(
    535     I.getCalledValue()->getType()->getContainedType(0));
    536   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
    537     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
    538       Type* T = I.getArgOperand(i)->getType();
    539       for (auto i : post_order(T)) {
    540         if (i->isFloatingPointTy()) {
    541           MMI->setUsesVAFloatArgument(true);
    542           return;
    543         }
    544       }
    545     }
    546   }
    547 }
    548 
    549 /// AddLandingPadInfo - Extract the exception handling information from the
    550 /// landingpad instruction and add them to the specified machine module info.
    551 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    552                              MachineBasicBlock *MBB) {
    553   if (const auto *PF = dyn_cast<Function>(
    554       I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
    555     MMI.addPersonality(PF);
    556 
    557   if (I.isCleanup())
    558     MMI.addCleanup(MBB);
    559 
    560   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    561   //        but we need to do it this way because of how the DWARF EH emitter
    562   //        processes the clauses.
    563   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    564     Value *Val = I.getClause(i - 1);
    565     if (I.isCatch(i - 1)) {
    566       MMI.addCatchTypeInfo(MBB,
    567                            dyn_cast<GlobalValue>(Val->stripPointerCasts()));
    568     } else {
    569       // Add filters in a list.
    570       Constant *CVal = cast<Constant>(Val);
    571       SmallVector<const GlobalValue*, 4> FilterList;
    572       for (User::op_iterator
    573              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    574         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
    575 
    576       MMI.addFilterTypeInfo(MBB, FilterList);
    577     }
    578   }
    579 }
    580