Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86InstrInfo.h"
     15 #include "X86.h"
     16 #include "X86InstrBuilder.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/CodeGen/LivePhysRegs.h"
     22 #include "llvm/CodeGen/LiveVariables.h"
     23 #include "llvm/CodeGen/MachineConstantPool.h"
     24 #include "llvm/CodeGen/MachineDominators.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineModuleInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/StackMaps.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/LLVMContext.h"
     33 #include "llvm/MC/MCAsmInfo.h"
     34 #include "llvm/MC/MCExpr.h"
     35 #include "llvm/MC/MCInst.h"
     36 #include "llvm/Support/CommandLine.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include "llvm/Target/TargetOptions.h"
     41 
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "x86-instr-info"
     45 
     46 #define GET_INSTRINFO_CTOR_DTOR
     47 #include "X86GenInstrInfo.inc"
     48 
     49 static cl::opt<bool>
     50 NoFusing("disable-spill-fusing",
     51          cl::desc("Disable fusing of spill code into instructions"));
     52 static cl::opt<bool>
     53 PrintFailedFusing("print-failed-fuse-candidates",
     54                   cl::desc("Print instructions that the allocator wants to"
     55                            " fuse, but the X86 backend currently can't"),
     56                   cl::Hidden);
     57 static cl::opt<bool>
     58 ReMatPICStubLoad("remat-pic-stub-load",
     59                  cl::desc("Re-materialize load from stub in PIC mode"),
     60                  cl::init(false), cl::Hidden);
     61 static cl::opt<unsigned>
     62 PartialRegUpdateClearance("partial-reg-update-clearance",
     63                           cl::desc("Clearance between two register writes "
     64                                    "for inserting XOR to avoid partial "
     65                                    "register update"),
     66                           cl::init(64), cl::Hidden);
     67 static cl::opt<unsigned>
     68 UndefRegClearance("undef-reg-clearance",
     69                   cl::desc("How many idle instructions we would like before "
     70                            "certain undef register reads"),
     71                   cl::init(64), cl::Hidden);
     72 
     73 enum {
     74   // Select which memory operand is being unfolded.
     75   // (stored in bits 0 - 3)
     76   TB_INDEX_0    = 0,
     77   TB_INDEX_1    = 1,
     78   TB_INDEX_2    = 2,
     79   TB_INDEX_3    = 3,
     80   TB_INDEX_4    = 4,
     81   TB_INDEX_MASK = 0xf,
     82 
     83   // Do not insert the reverse map (MemOp -> RegOp) into the table.
     84   // This may be needed because there is a many -> one mapping.
     85   TB_NO_REVERSE   = 1 << 4,
     86 
     87   // Do not insert the forward map (RegOp -> MemOp) into the table.
     88   // This is needed for Native Client, which prohibits branch
     89   // instructions from using a memory operand.
     90   TB_NO_FORWARD   = 1 << 5,
     91 
     92   TB_FOLDED_LOAD  = 1 << 6,
     93   TB_FOLDED_STORE = 1 << 7,
     94 
     95   // Minimum alignment required for load/store.
     96   // Used for RegOp->MemOp conversion.
     97   // (stored in bits 8 - 15)
     98   TB_ALIGN_SHIFT = 8,
     99   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
    100   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
    101   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
    102   TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
    103   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
    104 };
    105 
    106 struct X86MemoryFoldTableEntry {
    107   uint16_t RegOp;
    108   uint16_t MemOp;
    109   uint16_t Flags;
    110 };
    111 
    112 // Pin the vtable to this file.
    113 void X86InstrInfo::anchor() {}
    114 
    115 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
    116     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
    117                                                : X86::ADJCALLSTACKDOWN32),
    118                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
    119                                                : X86::ADJCALLSTACKUP32),
    120                       X86::CATCHRET,
    121                       (STI.is64Bit() ? X86::RETQ : X86::RETL)),
    122       Subtarget(STI), RI(STI.getTargetTriple()) {
    123 
    124   static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
    125     { X86::ADC32ri,     X86::ADC32mi,    0 },
    126     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
    127     { X86::ADC32rr,     X86::ADC32mr,    0 },
    128     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
    129     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
    130     { X86::ADC64rr,     X86::ADC64mr,    0 },
    131     { X86::ADD16ri,     X86::ADD16mi,    0 },
    132     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
    133     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
    134     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
    135     { X86::ADD16rr,     X86::ADD16mr,    0 },
    136     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
    137     { X86::ADD32ri,     X86::ADD32mi,    0 },
    138     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
    139     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
    140     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
    141     { X86::ADD32rr,     X86::ADD32mr,    0 },
    142     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
    143     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
    144     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
    145     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
    146     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
    147     { X86::ADD64rr,     X86::ADD64mr,    0 },
    148     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
    149     { X86::ADD8ri,      X86::ADD8mi,     0 },
    150     { X86::ADD8rr,      X86::ADD8mr,     0 },
    151     { X86::AND16ri,     X86::AND16mi,    0 },
    152     { X86::AND16ri8,    X86::AND16mi8,   0 },
    153     { X86::AND16rr,     X86::AND16mr,    0 },
    154     { X86::AND32ri,     X86::AND32mi,    0 },
    155     { X86::AND32ri8,    X86::AND32mi8,   0 },
    156     { X86::AND32rr,     X86::AND32mr,    0 },
    157     { X86::AND64ri32,   X86::AND64mi32,  0 },
    158     { X86::AND64ri8,    X86::AND64mi8,   0 },
    159     { X86::AND64rr,     X86::AND64mr,    0 },
    160     { X86::AND8ri,      X86::AND8mi,     0 },
    161     { X86::AND8rr,      X86::AND8mr,     0 },
    162     { X86::DEC16r,      X86::DEC16m,     0 },
    163     { X86::DEC32r,      X86::DEC32m,     0 },
    164     { X86::DEC64r,      X86::DEC64m,     0 },
    165     { X86::DEC8r,       X86::DEC8m,      0 },
    166     { X86::INC16r,      X86::INC16m,     0 },
    167     { X86::INC32r,      X86::INC32m,     0 },
    168     { X86::INC64r,      X86::INC64m,     0 },
    169     { X86::INC8r,       X86::INC8m,      0 },
    170     { X86::NEG16r,      X86::NEG16m,     0 },
    171     { X86::NEG32r,      X86::NEG32m,     0 },
    172     { X86::NEG64r,      X86::NEG64m,     0 },
    173     { X86::NEG8r,       X86::NEG8m,      0 },
    174     { X86::NOT16r,      X86::NOT16m,     0 },
    175     { X86::NOT32r,      X86::NOT32m,     0 },
    176     { X86::NOT64r,      X86::NOT64m,     0 },
    177     { X86::NOT8r,       X86::NOT8m,      0 },
    178     { X86::OR16ri,      X86::OR16mi,     0 },
    179     { X86::OR16ri8,     X86::OR16mi8,    0 },
    180     { X86::OR16rr,      X86::OR16mr,     0 },
    181     { X86::OR32ri,      X86::OR32mi,     0 },
    182     { X86::OR32ri8,     X86::OR32mi8,    0 },
    183     { X86::OR32rr,      X86::OR32mr,     0 },
    184     { X86::OR64ri32,    X86::OR64mi32,   0 },
    185     { X86::OR64ri8,     X86::OR64mi8,    0 },
    186     { X86::OR64rr,      X86::OR64mr,     0 },
    187     { X86::OR8ri,       X86::OR8mi,      0 },
    188     { X86::OR8rr,       X86::OR8mr,      0 },
    189     { X86::ROL16r1,     X86::ROL16m1,    0 },
    190     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
    191     { X86::ROL16ri,     X86::ROL16mi,    0 },
    192     { X86::ROL32r1,     X86::ROL32m1,    0 },
    193     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
    194     { X86::ROL32ri,     X86::ROL32mi,    0 },
    195     { X86::ROL64r1,     X86::ROL64m1,    0 },
    196     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
    197     { X86::ROL64ri,     X86::ROL64mi,    0 },
    198     { X86::ROL8r1,      X86::ROL8m1,     0 },
    199     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
    200     { X86::ROL8ri,      X86::ROL8mi,     0 },
    201     { X86::ROR16r1,     X86::ROR16m1,    0 },
    202     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
    203     { X86::ROR16ri,     X86::ROR16mi,    0 },
    204     { X86::ROR32r1,     X86::ROR32m1,    0 },
    205     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
    206     { X86::ROR32ri,     X86::ROR32mi,    0 },
    207     { X86::ROR64r1,     X86::ROR64m1,    0 },
    208     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
    209     { X86::ROR64ri,     X86::ROR64mi,    0 },
    210     { X86::ROR8r1,      X86::ROR8m1,     0 },
    211     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
    212     { X86::ROR8ri,      X86::ROR8mi,     0 },
    213     { X86::SAR16r1,     X86::SAR16m1,    0 },
    214     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
    215     { X86::SAR16ri,     X86::SAR16mi,    0 },
    216     { X86::SAR32r1,     X86::SAR32m1,    0 },
    217     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
    218     { X86::SAR32ri,     X86::SAR32mi,    0 },
    219     { X86::SAR64r1,     X86::SAR64m1,    0 },
    220     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
    221     { X86::SAR64ri,     X86::SAR64mi,    0 },
    222     { X86::SAR8r1,      X86::SAR8m1,     0 },
    223     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
    224     { X86::SAR8ri,      X86::SAR8mi,     0 },
    225     { X86::SBB32ri,     X86::SBB32mi,    0 },
    226     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
    227     { X86::SBB32rr,     X86::SBB32mr,    0 },
    228     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
    229     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
    230     { X86::SBB64rr,     X86::SBB64mr,    0 },
    231     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
    232     { X86::SHL16ri,     X86::SHL16mi,    0 },
    233     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
    234     { X86::SHL32ri,     X86::SHL32mi,    0 },
    235     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
    236     { X86::SHL64ri,     X86::SHL64mi,    0 },
    237     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
    238     { X86::SHL8ri,      X86::SHL8mi,     0 },
    239     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
    240     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
    241     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
    242     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
    243     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
    244     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
    245     { X86::SHR16r1,     X86::SHR16m1,    0 },
    246     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
    247     { X86::SHR16ri,     X86::SHR16mi,    0 },
    248     { X86::SHR32r1,     X86::SHR32m1,    0 },
    249     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
    250     { X86::SHR32ri,     X86::SHR32mi,    0 },
    251     { X86::SHR64r1,     X86::SHR64m1,    0 },
    252     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
    253     { X86::SHR64ri,     X86::SHR64mi,    0 },
    254     { X86::SHR8r1,      X86::SHR8m1,     0 },
    255     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
    256     { X86::SHR8ri,      X86::SHR8mi,     0 },
    257     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
    258     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
    259     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
    260     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
    261     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
    262     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
    263     { X86::SUB16ri,     X86::SUB16mi,    0 },
    264     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
    265     { X86::SUB16rr,     X86::SUB16mr,    0 },
    266     { X86::SUB32ri,     X86::SUB32mi,    0 },
    267     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
    268     { X86::SUB32rr,     X86::SUB32mr,    0 },
    269     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
    270     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
    271     { X86::SUB64rr,     X86::SUB64mr,    0 },
    272     { X86::SUB8ri,      X86::SUB8mi,     0 },
    273     { X86::SUB8rr,      X86::SUB8mr,     0 },
    274     { X86::XOR16ri,     X86::XOR16mi,    0 },
    275     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
    276     { X86::XOR16rr,     X86::XOR16mr,    0 },
    277     { X86::XOR32ri,     X86::XOR32mi,    0 },
    278     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
    279     { X86::XOR32rr,     X86::XOR32mr,    0 },
    280     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
    281     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
    282     { X86::XOR64rr,     X86::XOR64mr,    0 },
    283     { X86::XOR8ri,      X86::XOR8mi,     0 },
    284     { X86::XOR8rr,      X86::XOR8mr,     0 }
    285   };
    286 
    287   for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) {
    288     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
    289                   Entry.RegOp, Entry.MemOp,
    290                   // Index 0, folded load and store, no alignment requirement.
    291                   Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
    292   }
    293 
    294   static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
    295     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
    296     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
    297     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
    298     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
    299     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
    300     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
    301     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
    302     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
    303     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
    304     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
    305     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
    306     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
    307     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
    308     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
    309     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
    310     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
    311     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
    312     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
    313     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
    314     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
    315     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
    316     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
    317     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
    318     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
    319     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
    320     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
    321     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
    322     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
    323     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
    324     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
    325     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
    326     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
    327     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
    328     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
    329     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
    330     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
    331     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
    332     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
    333     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
    334     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
    335     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    336     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    337     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    338     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
    339     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
    340     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
    341     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
    342     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
    343     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
    344     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
    345     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
    346     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
    347     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
    348     { X86::PEXTRDrr,    X86::PEXTRDmr,      TB_FOLDED_STORE },
    349     { X86::PEXTRQrr,    X86::PEXTRQmr,      TB_FOLDED_STORE },
    350     { X86::PUSH16r,     X86::PUSH16rmm,     TB_FOLDED_LOAD },
    351     { X86::PUSH32r,     X86::PUSH32rmm,     TB_FOLDED_LOAD },
    352     { X86::PUSH64r,     X86::PUSH64rmm,     TB_FOLDED_LOAD },
    353     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
    354     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
    355     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
    356     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
    357     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
    358     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
    359     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
    360     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
    361     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
    362     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
    363     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
    364     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
    365     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
    366     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
    367     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
    368     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
    369     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
    370     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
    371     { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
    372     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
    373     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
    374     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
    375     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
    376 
    377     // AVX 128-bit versions of foldable instructions
    378     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
    379     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    380     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    381     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    382     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    383     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
    384     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
    385     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
    386     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
    387     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
    388     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
    389     { X86::VPEXTRDrr,   X86::VPEXTRDmr,     TB_FOLDED_STORE },
    390     { X86::VPEXTRQrr,   X86::VPEXTRQmr,     TB_FOLDED_STORE },
    391 
    392     // AVX 256-bit foldable instructions
    393     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    394     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    395     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    396     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    397     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
    398     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
    399 
    400     // AVX-512 foldable instructions
    401     { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
    402     { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
    403     { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
    404     { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
    405     { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
    406     { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE },
    407     { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE },
    408     { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE },
    409     { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE },
    410     { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE },
    411     { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE },
    412 
    413     // AVX-512 foldable instructions (256-bit versions)
    414     { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    415     { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    416     { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
    417     { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
    418     { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE },
    419     { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE },
    420     { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE },
    421     { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE },
    422     { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE },
    423     { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE },
    424 
    425     // AVX-512 foldable instructions (128-bit versions)
    426     { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
    427     { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
    428     { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
    429     { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
    430     { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE },
    431     { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE },
    432     { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE },
    433     { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE },
    434     { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE },
    435     { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE },
    436 
    437     // F16C foldable instructions
    438     { X86::VCVTPS2PHrr,        X86::VCVTPS2PHmr,      TB_FOLDED_STORE },
    439     { X86::VCVTPS2PHYrr,       X86::VCVTPS2PHYmr,     TB_FOLDED_STORE }
    440   };
    441 
    442   for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) {
    443     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
    444                   Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags);
    445   }
    446 
    447   static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
    448     { X86::BSF16rr,         X86::BSF16rm,             0 },
    449     { X86::BSF32rr,         X86::BSF32rm,             0 },
    450     { X86::BSF64rr,         X86::BSF64rm,             0 },
    451     { X86::BSR16rr,         X86::BSR16rm,             0 },
    452     { X86::BSR32rr,         X86::BSR32rm,             0 },
    453     { X86::BSR64rr,         X86::BSR64rm,             0 },
    454     { X86::CMP16rr,         X86::CMP16rm,             0 },
    455     { X86::CMP32rr,         X86::CMP32rm,             0 },
    456     { X86::CMP64rr,         X86::CMP64rm,             0 },
    457     { X86::CMP8rr,          X86::CMP8rm,              0 },
    458     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
    459     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
    460     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
    461     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
    462     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
    463     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
    464     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
    465     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
    466     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
    467     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
    468     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
    469     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
    470     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
    471     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
    472     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
    473     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
    474     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
    475     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
    476     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
    477     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
    478     { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
    479     { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
    480     { X86::CVTDQ2PDrr,      X86::CVTDQ2PDrm,          TB_ALIGN_16 },
    481     { X86::CVTDQ2PSrr,      X86::CVTDQ2PSrm,          TB_ALIGN_16 },
    482     { X86::CVTPD2DQrr,      X86::CVTPD2DQrm,          TB_ALIGN_16 },
    483     { X86::CVTPD2PSrr,      X86::CVTPD2PSrm,          TB_ALIGN_16 },
    484     { X86::CVTPS2DQrr,      X86::CVTPS2DQrm,          TB_ALIGN_16 },
    485     { X86::CVTPS2PDrr,      X86::CVTPS2PDrm,          TB_ALIGN_16 },
    486     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
    487     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
    488     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
    489     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
    490     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
    491     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
    492     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
    493     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
    494     { X86::MOV16rr,         X86::MOV16rm,             0 },
    495     { X86::MOV32rr,         X86::MOV32rm,             0 },
    496     { X86::MOV64rr,         X86::MOV64rm,             0 },
    497     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
    498     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
    499     { X86::MOV8rr,          X86::MOV8rm,              0 },
    500     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
    501     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
    502     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
    503     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
    504     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
    505     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
    506     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
    507     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
    508     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
    509     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
    510     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
    511     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
    512     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
    513     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
    514     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
    515     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
    516     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
    517     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
    518     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
    519     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
    520     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
    521     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
    522     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
    523     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
    524     { X86::PCMPESTRIrr,     X86::PCMPESTRIrm,         TB_ALIGN_16 },
    525     { X86::PCMPESTRM128rr,  X86::PCMPESTRM128rm,      TB_ALIGN_16 },
    526     { X86::PCMPISTRIrr,     X86::PCMPISTRIrm,         TB_ALIGN_16 },
    527     { X86::PCMPISTRM128rr,  X86::PCMPISTRM128rm,      TB_ALIGN_16 },
    528     { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128,     TB_ALIGN_16 },
    529     { X86::PMOVSXBDrr,      X86::PMOVSXBDrm,          TB_ALIGN_16 },
    530     { X86::PMOVSXBQrr,      X86::PMOVSXBQrm,          TB_ALIGN_16 },
    531     { X86::PMOVSXBWrr,      X86::PMOVSXBWrm,          TB_ALIGN_16 },
    532     { X86::PMOVSXDQrr,      X86::PMOVSXDQrm,          TB_ALIGN_16 },
    533     { X86::PMOVSXWDrr,      X86::PMOVSXWDrm,          TB_ALIGN_16 },
    534     { X86::PMOVSXWQrr,      X86::PMOVSXWQrm,          TB_ALIGN_16 },
    535     { X86::PMOVZXBDrr,      X86::PMOVZXBDrm,          TB_ALIGN_16 },
    536     { X86::PMOVZXBQrr,      X86::PMOVZXBQrm,          TB_ALIGN_16 },
    537     { X86::PMOVZXBWrr,      X86::PMOVZXBWrm,          TB_ALIGN_16 },
    538     { X86::PMOVZXDQrr,      X86::PMOVZXDQrm,          TB_ALIGN_16 },
    539     { X86::PMOVZXWDrr,      X86::PMOVZXWDrm,          TB_ALIGN_16 },
    540     { X86::PMOVZXWQrr,      X86::PMOVZXWQrm,          TB_ALIGN_16 },
    541     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
    542     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
    543     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
    544     { X86::PTESTrr,         X86::PTESTrm,             TB_ALIGN_16 },
    545     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
    546     { X86::RCPSSr,          X86::RCPSSm,              0 },
    547     { X86::RCPSSr_Int,      X86::RCPSSm_Int,          0 },
    548     { X86::ROUNDPDr,        X86::ROUNDPDm,            TB_ALIGN_16 },
    549     { X86::ROUNDPSr,        X86::ROUNDPSm,            TB_ALIGN_16 },
    550     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
    551     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
    552     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
    553     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
    554     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
    555     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
    556     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
    557     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
    558     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
    559     { X86::TEST16rr,        X86::TEST16rm,            0 },
    560     { X86::TEST32rr,        X86::TEST32rm,            0 },
    561     { X86::TEST64rr,        X86::TEST64rm,            0 },
    562     { X86::TEST8rr,         X86::TEST8rm,             0 },
    563     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    564     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
    565     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
    566 
    567     // MMX version of foldable instructions
    568     { X86::MMX_CVTPD2PIirr,   X86::MMX_CVTPD2PIirm,   0 },
    569     { X86::MMX_CVTPI2PDirr,   X86::MMX_CVTPI2PDirm,   0 },
    570     { X86::MMX_CVTPS2PIirr,   X86::MMX_CVTPS2PIirm,   0 },
    571     { X86::MMX_CVTTPD2PIirr,  X86::MMX_CVTTPD2PIirm,  0 },
    572     { X86::MMX_CVTTPS2PIirr,  X86::MMX_CVTTPS2PIirm,  0 },
    573     { X86::MMX_MOVD64to64rr,  X86::MMX_MOVQ64rm,      0 },
    574     { X86::MMX_PABSBrr64,     X86::MMX_PABSBrm64,     0 },
    575     { X86::MMX_PABSDrr64,     X86::MMX_PABSDrm64,     0 },
    576     { X86::MMX_PABSWrr64,     X86::MMX_PABSWrm64,     0 },
    577     { X86::MMX_PSHUFWri,      X86::MMX_PSHUFWmi,      0 },
    578 
    579     // 3DNow! version of foldable instructions
    580     { X86::PF2IDrr,         X86::PF2IDrm,             0 },
    581     { X86::PF2IWrr,         X86::PF2IWrm,             0 },
    582     { X86::PFRCPrr,         X86::PFRCPrm,             0 },
    583     { X86::PFRSQRTrr,       X86::PFRSQRTrm,           0 },
    584     { X86::PI2FDrr,         X86::PI2FDrm,             0 },
    585     { X86::PI2FWrr,         X86::PI2FWrm,             0 },
    586     { X86::PSWAPDrr,        X86::PSWAPDrm,            0 },
    587 
    588     // AVX 128-bit versions of foldable instructions
    589     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
    590     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
    591     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
    592     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
    593     { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
    594     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
    595     { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
    596     { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
    597     { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
    598     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
    599     { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
    600     { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
    601     { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
    602     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
    603     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
    604     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
    605     { X86::VCVTDQ2PDrr,     X86::VCVTDQ2PDrm,         0 },
    606     { X86::VCVTDQ2PSrr,     X86::VCVTDQ2PSrm,         0 },
    607     { X86::VCVTPD2DQrr,     X86::VCVTPD2DQXrm,        0 },
    608     { X86::VCVTPD2PSrr,     X86::VCVTPD2PSXrm,        0 },
    609     { X86::VCVTPS2DQrr,     X86::VCVTPS2DQrm,         0 },
    610     { X86::VCVTPS2PDrr,     X86::VCVTPS2PDrm,         0 },
    611     { X86::VCVTTPD2DQrr,    X86::VCVTTPD2DQXrm,       0 },
    612     { X86::VCVTTPS2DQrr,    X86::VCVTTPS2DQrm,        0 },
    613     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
    614     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
    615     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
    616     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
    617     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
    618     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
    619     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
    620     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
    621     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         0 },
    622     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         0 },
    623     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
    624     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
    625     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
    626     { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
    627     { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
    628     { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
    629     { X86::VPCMPESTRIrr,    X86::VPCMPESTRIrm,        0 },
    630     { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm,     0 },
    631     { X86::VPCMPISTRIrr,    X86::VPCMPISTRIrm,        0 },
    632     { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm,     0 },
    633     { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128,   0 },
    634     { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
    635     { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
    636     { X86::VPMOVSXBDrr,     X86::VPMOVSXBDrm,         0 },
    637     { X86::VPMOVSXBQrr,     X86::VPMOVSXBQrm,         0 },
    638     { X86::VPMOVSXBWrr,     X86::VPMOVSXBWrm,         0 },
    639     { X86::VPMOVSXDQrr,     X86::VPMOVSXDQrm,         0 },
    640     { X86::VPMOVSXWDrr,     X86::VPMOVSXWDrm,         0 },
    641     { X86::VPMOVSXWQrr,     X86::VPMOVSXWQrm,         0 },
    642     { X86::VPMOVZXBDrr,     X86::VPMOVZXBDrm,         0 },
    643     { X86::VPMOVZXBQrr,     X86::VPMOVZXBQrm,         0 },
    644     { X86::VPMOVZXBWrr,     X86::VPMOVZXBWrm,         0 },
    645     { X86::VPMOVZXDQrr,     X86::VPMOVZXDQrm,         0 },
    646     { X86::VPMOVZXWDrr,     X86::VPMOVZXWDrm,         0 },
    647     { X86::VPMOVZXWQrr,     X86::VPMOVZXWQrm,         0 },
    648     { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
    649     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
    650     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
    651     { X86::VPTESTrr,        X86::VPTESTrm,            0 },
    652     { X86::VRCPPSr,         X86::VRCPPSm,             0 },
    653     { X86::VROUNDPDr,       X86::VROUNDPDm,           0 },
    654     { X86::VROUNDPSr,       X86::VROUNDPSm,           0 },
    655     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
    656     { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
    657     { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
    658     { X86::VTESTPDrr,       X86::VTESTPDrm,           0 },
    659     { X86::VTESTPSrr,       X86::VTESTPSrm,           0 },
    660     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
    661     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
    662 
    663     // AVX 256-bit foldable instructions
    664     { X86::VCVTDQ2PDYrr,    X86::VCVTDQ2PDYrm,        0 },
    665     { X86::VCVTDQ2PSYrr,    X86::VCVTDQ2PSYrm,        0 },
    666     { X86::VCVTPD2DQYrr,    X86::VCVTPD2DQYrm,        0 },
    667     { X86::VCVTPD2PSYrr,    X86::VCVTPD2PSYrm,        0 },
    668     { X86::VCVTPS2DQYrr,    X86::VCVTPS2DQYrm,        0 },
    669     { X86::VCVTPS2PDYrr,    X86::VCVTPS2PDYrm,        0 },
    670     { X86::VCVTTPD2DQYrr,   X86::VCVTTPD2DQYrm,       0 },
    671     { X86::VCVTTPS2DQYrr,   X86::VCVTTPS2DQYrm,       0 },
    672     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
    673     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
    674     { X86::VMOVDDUPYrr,     X86::VMOVDDUPYrm,         0 },
    675     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
    676     { X86::VMOVSLDUPYrr,    X86::VMOVSLDUPYrm,        0 },
    677     { X86::VMOVSHDUPYrr,    X86::VMOVSHDUPYrm,        0 },
    678     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
    679     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
    680     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
    681     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
    682     { X86::VPTESTYrr,       X86::VPTESTYrm,           0 },
    683     { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
    684     { X86::VROUNDYPDr,      X86::VROUNDYPDm,          0 },
    685     { X86::VROUNDYPSr,      X86::VROUNDYPSm,          0 },
    686     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
    687     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
    688     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
    689     { X86::VTESTPDYrr,      X86::VTESTPDYrm,          0 },
    690     { X86::VTESTPSYrr,      X86::VTESTPSYrm,          0 },
    691 
    692     // AVX2 foldable instructions
    693 
    694     // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
    695     // VBROADCASTS{SD}rm memory instructions were available from AVX1.
    696     // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
    697     // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
    698     // so they don't need an equivalent limitation.
    699     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
    700     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
    701     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
    702     { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
    703     { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
    704     { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
    705     { X86::VPBROADCASTBrr,  X86::VPBROADCASTBrm,      0 },
    706     { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm,     0 },
    707     { X86::VPBROADCASTDrr,  X86::VPBROADCASTDrm,      0 },
    708     { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm,     0 },
    709     { X86::VPBROADCASTQrr,  X86::VPBROADCASTQrm,      0 },
    710     { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm,     0 },
    711     { X86::VPBROADCASTWrr,  X86::VPBROADCASTWrm,      0 },
    712     { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm,     0 },
    713     { X86::VPERMPDYri,      X86::VPERMPDYmi,          0 },
    714     { X86::VPERMQYri,       X86::VPERMQYmi,           0 },
    715     { X86::VPMOVSXBDYrr,    X86::VPMOVSXBDYrm,        0 },
    716     { X86::VPMOVSXBQYrr,    X86::VPMOVSXBQYrm,        0 },
    717     { X86::VPMOVSXBWYrr,    X86::VPMOVSXBWYrm,        0 },
    718     { X86::VPMOVSXDQYrr,    X86::VPMOVSXDQYrm,        0 },
    719     { X86::VPMOVSXWDYrr,    X86::VPMOVSXWDYrm,        0 },
    720     { X86::VPMOVSXWQYrr,    X86::VPMOVSXWQYrm,        0 },
    721     { X86::VPMOVZXBDYrr,    X86::VPMOVZXBDYrm,        0 },
    722     { X86::VPMOVZXBQYrr,    X86::VPMOVZXBQYrm,        0 },
    723     { X86::VPMOVZXBWYrr,    X86::VPMOVZXBWYrm,        0 },
    724     { X86::VPMOVZXDQYrr,    X86::VPMOVZXDQYrm,        0 },
    725     { X86::VPMOVZXWDYrr,    X86::VPMOVZXWDYrm,        0 },
    726     { X86::VPMOVZXWQYrr,    X86::VPMOVZXWQYrm,        0 },
    727     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
    728     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
    729     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
    730 
    731     // XOP foldable instructions
    732     { X86::VFRCZPDrr,          X86::VFRCZPDrm,        0 },
    733     { X86::VFRCZPDrrY,         X86::VFRCZPDrmY,       0 },
    734     { X86::VFRCZPSrr,          X86::VFRCZPSrm,        0 },
    735     { X86::VFRCZPSrrY,         X86::VFRCZPSrmY,       0 },
    736     { X86::VFRCZSDrr,          X86::VFRCZSDrm,        0 },
    737     { X86::VFRCZSSrr,          X86::VFRCZSSrm,        0 },
    738     { X86::VPHADDBDrr,         X86::VPHADDBDrm,       0 },
    739     { X86::VPHADDBQrr,         X86::VPHADDBQrm,       0 },
    740     { X86::VPHADDBWrr,         X86::VPHADDBWrm,       0 },
    741     { X86::VPHADDDQrr,         X86::VPHADDDQrm,       0 },
    742     { X86::VPHADDWDrr,         X86::VPHADDWDrm,       0 },
    743     { X86::VPHADDWQrr,         X86::VPHADDWQrm,       0 },
    744     { X86::VPHADDUBDrr,        X86::VPHADDUBDrm,      0 },
    745     { X86::VPHADDUBQrr,        X86::VPHADDUBQrm,      0 },
    746     { X86::VPHADDUBWrr,        X86::VPHADDUBWrm,      0 },
    747     { X86::VPHADDUDQrr,        X86::VPHADDUDQrm,      0 },
    748     { X86::VPHADDUWDrr,        X86::VPHADDUWDrm,      0 },
    749     { X86::VPHADDUWQrr,        X86::VPHADDUWQrm,      0 },
    750     { X86::VPHSUBBWrr,         X86::VPHSUBBWrm,       0 },
    751     { X86::VPHSUBDQrr,         X86::VPHSUBDQrm,       0 },
    752     { X86::VPHSUBWDrr,         X86::VPHSUBWDrm,       0 },
    753     { X86::VPROTBri,           X86::VPROTBmi,         0 },
    754     { X86::VPROTBrr,           X86::VPROTBmr,         0 },
    755     { X86::VPROTDri,           X86::VPROTDmi,         0 },
    756     { X86::VPROTDrr,           X86::VPROTDmr,         0 },
    757     { X86::VPROTQri,           X86::VPROTQmi,         0 },
    758     { X86::VPROTQrr,           X86::VPROTQmr,         0 },
    759     { X86::VPROTWri,           X86::VPROTWmi,         0 },
    760     { X86::VPROTWrr,           X86::VPROTWmr,         0 },
    761     { X86::VPSHABrr,           X86::VPSHABmr,         0 },
    762     { X86::VPSHADrr,           X86::VPSHADmr,         0 },
    763     { X86::VPSHAQrr,           X86::VPSHAQmr,         0 },
    764     { X86::VPSHAWrr,           X86::VPSHAWmr,         0 },
    765     { X86::VPSHLBrr,           X86::VPSHLBmr,         0 },
    766     { X86::VPSHLDrr,           X86::VPSHLDmr,         0 },
    767     { X86::VPSHLQrr,           X86::VPSHLQmr,         0 },
    768     { X86::VPSHLWrr,           X86::VPSHLWmr,         0 },
    769 
    770     // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
    771     { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
    772     { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
    773     { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
    774     { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
    775     { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
    776     { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
    777     { X86::BLCI32rr,        X86::BLCI32rm,            0 },
    778     { X86::BLCI64rr,        X86::BLCI64rm,            0 },
    779     { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
    780     { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
    781     { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
    782     { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
    783     { X86::BLCS32rr,        X86::BLCS32rm,            0 },
    784     { X86::BLCS64rr,        X86::BLCS64rm,            0 },
    785     { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
    786     { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
    787     { X86::BLSI32rr,        X86::BLSI32rm,            0 },
    788     { X86::BLSI64rr,        X86::BLSI64rm,            0 },
    789     { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
    790     { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
    791     { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
    792     { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
    793     { X86::BLSR32rr,        X86::BLSR32rm,            0 },
    794     { X86::BLSR64rr,        X86::BLSR64rm,            0 },
    795     { X86::BZHI32rr,        X86::BZHI32rm,            0 },
    796     { X86::BZHI64rr,        X86::BZHI64rm,            0 },
    797     { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
    798     { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
    799     { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
    800     { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
    801     { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
    802     { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
    803     { X86::RORX32ri,        X86::RORX32mi,            0 },
    804     { X86::RORX64ri,        X86::RORX64mi,            0 },
    805     { X86::SARX32rr,        X86::SARX32rm,            0 },
    806     { X86::SARX64rr,        X86::SARX64rm,            0 },
    807     { X86::SHRX32rr,        X86::SHRX32rm,            0 },
    808     { X86::SHRX64rr,        X86::SHRX64rm,            0 },
    809     { X86::SHLX32rr,        X86::SHLX32rm,            0 },
    810     { X86::SHLX64rr,        X86::SHLX64rm,            0 },
    811     { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
    812     { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
    813     { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
    814     { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
    815     { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
    816     { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
    817     { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
    818 
    819     // AVX-512 foldable instructions
    820     { X86::VMOV64toPQIZrr,   X86::VMOVQI2PQIZrm,      0 },
    821     { X86::VMOVDI2SSZrr,     X86::VMOVDI2SSZrm,       0 },
    822     { X86::VMOVAPDZrr,       X86::VMOVAPDZrm,         TB_ALIGN_64 },
    823     { X86::VMOVAPSZrr,       X86::VMOVAPSZrm,         TB_ALIGN_64 },
    824     { X86::VMOVDQA32Zrr,     X86::VMOVDQA32Zrm,       TB_ALIGN_64 },
    825     { X86::VMOVDQA64Zrr,     X86::VMOVDQA64Zrm,       TB_ALIGN_64 },
    826     { X86::VMOVDQU8Zrr,      X86::VMOVDQU8Zrm,        0 },
    827     { X86::VMOVDQU16Zrr,     X86::VMOVDQU16Zrm,       0 },
    828     { X86::VMOVDQU32Zrr,     X86::VMOVDQU32Zrm,       0 },
    829     { X86::VMOVDQU64Zrr,     X86::VMOVDQU64Zrm,       0 },
    830     { X86::VMOVUPDZrr,       X86::VMOVUPDZrm,         0 },
    831     { X86::VMOVUPSZrr,       X86::VMOVUPSZrm,         0 },
    832     { X86::VPABSDZrr,        X86::VPABSDZrm,          0 },
    833     { X86::VPABSQZrr,        X86::VPABSQZrm,          0 },
    834     { X86::VBROADCASTSSZr,   X86::VBROADCASTSSZm,     TB_NO_REVERSE },
    835     { X86::VBROADCASTSSZr_s, X86::VBROADCASTSSZm,     TB_NO_REVERSE },
    836     { X86::VBROADCASTSDZr,   X86::VBROADCASTSDZm,     TB_NO_REVERSE },
    837     { X86::VBROADCASTSDZr_s, X86::VBROADCASTSDZm,     TB_NO_REVERSE },
    838 
    839     // AVX-512 foldable instructions (256-bit versions)
    840     { X86::VMOVAPDZ256rr,        X86::VMOVAPDZ256rm,        TB_ALIGN_32 },
    841     { X86::VMOVAPSZ256rr,        X86::VMOVAPSZ256rm,        TB_ALIGN_32 },
    842     { X86::VMOVDQA32Z256rr,      X86::VMOVDQA32Z256rm,      TB_ALIGN_32 },
    843     { X86::VMOVDQA64Z256rr,      X86::VMOVDQA64Z256rm,      TB_ALIGN_32 },
    844     { X86::VMOVDQU8Z256rr,       X86::VMOVDQU8Z256rm,       0 },
    845     { X86::VMOVDQU16Z256rr,      X86::VMOVDQU16Z256rm,      0 },
    846     { X86::VMOVDQU32Z256rr,      X86::VMOVDQU32Z256rm,      0 },
    847     { X86::VMOVDQU64Z256rr,      X86::VMOVDQU64Z256rm,      0 },
    848     { X86::VMOVUPDZ256rr,        X86::VMOVUPDZ256rm,        0 },
    849     { X86::VMOVUPSZ256rr,        X86::VMOVUPSZ256rm,        0 },
    850     { X86::VBROADCASTSSZ256r,    X86::VBROADCASTSSZ256m,    TB_NO_REVERSE },
    851     { X86::VBROADCASTSSZ256r_s,  X86::VBROADCASTSSZ256m,    TB_NO_REVERSE },
    852     { X86::VBROADCASTSDZ256r,    X86::VBROADCASTSDZ256m,    TB_NO_REVERSE },
    853     { X86::VBROADCASTSDZ256r_s,  X86::VBROADCASTSDZ256m,    TB_NO_REVERSE },
    854 
    855     // AVX-512 foldable instructions (128-bit versions)
    856     { X86::VMOVAPDZ128rr,        X86::VMOVAPDZ128rm,        TB_ALIGN_16 },
    857     { X86::VMOVAPSZ128rr,        X86::VMOVAPSZ128rm,        TB_ALIGN_16 },
    858     { X86::VMOVDQA32Z128rr,      X86::VMOVDQA32Z128rm,      TB_ALIGN_16 },
    859     { X86::VMOVDQA64Z128rr,      X86::VMOVDQA64Z128rm,      TB_ALIGN_16 },
    860     { X86::VMOVDQU8Z128rr,       X86::VMOVDQU8Z128rm,       0 },
    861     { X86::VMOVDQU16Z128rr,      X86::VMOVDQU16Z128rm,      0 },
    862     { X86::VMOVDQU32Z128rr,      X86::VMOVDQU32Z128rm,      0 },
    863     { X86::VMOVDQU64Z128rr,      X86::VMOVDQU64Z128rm,      0 },
    864     { X86::VMOVUPDZ128rr,        X86::VMOVUPDZ128rm,        0 },
    865     { X86::VMOVUPSZ128rr,        X86::VMOVUPSZ128rm,        0 },
    866     { X86::VBROADCASTSSZ128r,    X86::VBROADCASTSSZ128m,    TB_NO_REVERSE },
    867     { X86::VBROADCASTSSZ128r_s,  X86::VBROADCASTSSZ128m,    TB_NO_REVERSE },
    868     // F16C foldable instructions
    869     { X86::VCVTPH2PSrr,        X86::VCVTPH2PSrm,            0 },
    870     { X86::VCVTPH2PSYrr,       X86::VCVTPH2PSYrm,           0 },
    871 
    872     // AES foldable instructions
    873     { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
    874     { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
    875     { X86::VAESIMCrr,             X86::VAESIMCrm,             0 },
    876     { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
    877   };
    878 
    879   for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) {
    880     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
    881                   Entry.RegOp, Entry.MemOp,
    882                   // Index 1, folded load
    883                   Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
    884   }
    885 
    886   static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
    887     { X86::ADC32rr,         X86::ADC32rm,       0 },
    888     { X86::ADC64rr,         X86::ADC64rm,       0 },
    889     { X86::ADD16rr,         X86::ADD16rm,       0 },
    890     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
    891     { X86::ADD32rr,         X86::ADD32rm,       0 },
    892     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
    893     { X86::ADD64rr,         X86::ADD64rm,       0 },
    894     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
    895     { X86::ADD8rr,          X86::ADD8rm,        0 },
    896     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
    897     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
    898     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
    899     { X86::ADDSDrr_Int,     X86::ADDSDrm_Int,   0 },
    900     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
    901     { X86::ADDSSrr_Int,     X86::ADDSSrm_Int,   0 },
    902     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
    903     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
    904     { X86::AND16rr,         X86::AND16rm,       0 },
    905     { X86::AND32rr,         X86::AND32rm,       0 },
    906     { X86::AND64rr,         X86::AND64rm,       0 },
    907     { X86::AND8rr,          X86::AND8rm,        0 },
    908     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
    909     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
    910     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
    911     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
    912     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
    913     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
    914     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
    915     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
    916     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
    917     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
    918     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
    919     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
    920     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
    921     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
    922     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
    923     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
    924     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
    925     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
    926     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
    927     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
    928     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
    929     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
    930     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
    931     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
    932     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
    933     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
    934     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
    935     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
    936     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
    937     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
    938     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
    939     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
    940     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
    941     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
    942     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
    943     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
    944     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
    945     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
    946     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
    947     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
    948     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
    949     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
    950     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
    951     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
    952     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
    953     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
    954     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
    955     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
    956     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
    957     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
    958     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
    959     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
    960     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
    961     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
    962     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
    963     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
    964     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
    965     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
    966     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
    967     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
    968     { X86::CRC32r32r32,     X86::CRC32r32m32,   0 },
    969     { X86::CRC32r64r64,     X86::CRC32r64m64,   0 },
    970     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
    971     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
    972     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
    973     { X86::DIVSDrr_Int,     X86::DIVSDrm_Int,   0 },
    974     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
    975     { X86::DIVSSrr_Int,     X86::DIVSSrm_Int,   0 },
    976     { X86::DPPDrri,         X86::DPPDrmi,       TB_ALIGN_16 },
    977     { X86::DPPSrri,         X86::DPPSrmi,       TB_ALIGN_16 },
    978 
    979     // Do not fold Fs* scalar logical op loads because there are no scalar
    980     // load variants for these instructions. When folded, the load is required
    981     // to be 128-bits, so the load size would not match.
    982 
    983     { X86::FvANDNPDrr,      X86::FvANDNPDrm,    TB_ALIGN_16 },
    984     { X86::FvANDNPSrr,      X86::FvANDNPSrm,    TB_ALIGN_16 },
    985     { X86::FvANDPDrr,       X86::FvANDPDrm,     TB_ALIGN_16 },
    986     { X86::FvANDPSrr,       X86::FvANDPSrm,     TB_ALIGN_16 },
    987     { X86::FvORPDrr,        X86::FvORPDrm,      TB_ALIGN_16 },
    988     { X86::FvORPSrr,        X86::FvORPSrm,      TB_ALIGN_16 },
    989     { X86::FvXORPDrr,       X86::FvXORPDrm,     TB_ALIGN_16 },
    990     { X86::FvXORPSrr,       X86::FvXORPSrm,     TB_ALIGN_16 },
    991     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
    992     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
    993     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
    994     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
    995     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
    996     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
    997     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
    998     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
    999     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
   1000     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
   1001     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
   1002     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
   1003     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
   1004     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
   1005     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
   1006     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
   1007     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
   1008     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
   1009     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
   1010     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
   1011     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
   1012     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
   1013     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
   1014     { X86::MINSDrr,         X86::MINSDrm,       0 },
   1015     { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
   1016     { X86::MINSSrr,         X86::MINSSrm,       0 },
   1017     { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
   1018     { X86::MOVLHPSrr,       X86::MOVHPSrm,      TB_NO_REVERSE },
   1019     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
   1020     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
   1021     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
   1022     { X86::MULSDrr,         X86::MULSDrm,       0 },
   1023     { X86::MULSDrr_Int,     X86::MULSDrm_Int,   0 },
   1024     { X86::MULSSrr,         X86::MULSSrm,       0 },
   1025     { X86::MULSSrr_Int,     X86::MULSSrm_Int,   0 },
   1026     { X86::OR16rr,          X86::OR16rm,        0 },
   1027     { X86::OR32rr,          X86::OR32rm,        0 },
   1028     { X86::OR64rr,          X86::OR64rm,        0 },
   1029     { X86::OR8rr,           X86::OR8rm,         0 },
   1030     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
   1031     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
   1032     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
   1033     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
   1034     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
   1035     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
   1036     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
   1037     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
   1038     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
   1039     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
   1040     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
   1041     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
   1042     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
   1043     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
   1044     { X86::PALIGNRrri,      X86::PALIGNRrmi,    TB_ALIGN_16 },
   1045     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
   1046     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
   1047     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
   1048     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
   1049     { X86::PBLENDVBrr0,     X86::PBLENDVBrm0,   TB_ALIGN_16 },
   1050     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
   1051     { X86::PCLMULQDQrr,     X86::PCLMULQDQrm,   TB_ALIGN_16 },
   1052     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
   1053     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
   1054     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
   1055     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
   1056     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
   1057     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
   1058     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
   1059     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
   1060     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
   1061     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
   1062     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
   1063     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
   1064     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
   1065     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
   1066     { X86::PINSRBrr,        X86::PINSRBrm,      0 },
   1067     { X86::PINSRDrr,        X86::PINSRDrm,      0 },
   1068     { X86::PINSRQrr,        X86::PINSRQrm,      0 },
   1069     { X86::PINSRWrri,       X86::PINSRWrmi,     0 },
   1070     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
   1071     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
   1072     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
   1073     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
   1074     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
   1075     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
   1076     { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
   1077     { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
   1078     { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
   1079     { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
   1080     { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
   1081     { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
   1082     { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
   1083     { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
   1084     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
   1085     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
   1086     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
   1087     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
   1088     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
   1089     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
   1090     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
   1091     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
   1092     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
   1093     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
   1094     { X86::PSIGNBrr128,     X86::PSIGNBrm128,   TB_ALIGN_16 },
   1095     { X86::PSIGNWrr128,     X86::PSIGNWrm128,   TB_ALIGN_16 },
   1096     { X86::PSIGNDrr128,     X86::PSIGNDrm128,   TB_ALIGN_16 },
   1097     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
   1098     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
   1099     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
   1100     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
   1101     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
   1102     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
   1103     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
   1104     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
   1105     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
   1106     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
   1107     { X86::PSUBQrr,         X86::PSUBQrm,       TB_ALIGN_16 },
   1108     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
   1109     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
   1110     { X86::PSUBUSBrr,       X86::PSUBUSBrm,     TB_ALIGN_16 },
   1111     { X86::PSUBUSWrr,       X86::PSUBUSWrm,     TB_ALIGN_16 },
   1112     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
   1113     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
   1114     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
   1115     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
   1116     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
   1117     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
   1118     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
   1119     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
   1120     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
   1121     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
   1122     { X86::ROUNDSDr,        X86::ROUNDSDm,      0 },
   1123     { X86::ROUNDSSr,        X86::ROUNDSSm,      0 },
   1124     { X86::SBB32rr,         X86::SBB32rm,       0 },
   1125     { X86::SBB64rr,         X86::SBB64rm,       0 },
   1126     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
   1127     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
   1128     { X86::SUB16rr,         X86::SUB16rm,       0 },
   1129     { X86::SUB32rr,         X86::SUB32rm,       0 },
   1130     { X86::SUB64rr,         X86::SUB64rm,       0 },
   1131     { X86::SUB8rr,          X86::SUB8rm,        0 },
   1132     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
   1133     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
   1134     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
   1135     { X86::SUBSDrr_Int,     X86::SUBSDrm_Int,   0 },
   1136     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
   1137     { X86::SUBSSrr_Int,     X86::SUBSSrm_Int,   0 },
   1138     // FIXME: TEST*rr -> swapped operand of TEST*mr.
   1139     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
   1140     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
   1141     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
   1142     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
   1143     { X86::XOR16rr,         X86::XOR16rm,       0 },
   1144     { X86::XOR32rr,         X86::XOR32rm,       0 },
   1145     { X86::XOR64rr,         X86::XOR64rm,       0 },
   1146     { X86::XOR8rr,          X86::XOR8rm,        0 },
   1147     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
   1148     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
   1149 
   1150     // MMX version of foldable instructions
   1151     { X86::MMX_CVTPI2PSirr,   X86::MMX_CVTPI2PSirm,   0 },
   1152     { X86::MMX_PACKSSDWirr,   X86::MMX_PACKSSDWirm,   0 },
   1153     { X86::MMX_PACKSSWBirr,   X86::MMX_PACKSSWBirm,   0 },
   1154     { X86::MMX_PACKUSWBirr,   X86::MMX_PACKUSWBirm,   0 },
   1155     { X86::MMX_PADDBirr,      X86::MMX_PADDBirm,      0 },
   1156     { X86::MMX_PADDDirr,      X86::MMX_PADDDirm,      0 },
   1157     { X86::MMX_PADDQirr,      X86::MMX_PADDQirm,      0 },
   1158     { X86::MMX_PADDSBirr,     X86::MMX_PADDSBirm,     0 },
   1159     { X86::MMX_PADDSWirr,     X86::MMX_PADDSWirm,     0 },
   1160     { X86::MMX_PADDUSBirr,    X86::MMX_PADDUSBirm,    0 },
   1161     { X86::MMX_PADDUSWirr,    X86::MMX_PADDUSWirm,    0 },
   1162     { X86::MMX_PADDWirr,      X86::MMX_PADDWirm,      0 },
   1163     { X86::MMX_PALIGNR64irr,  X86::MMX_PALIGNR64irm,  0 },
   1164     { X86::MMX_PANDNirr,      X86::MMX_PANDNirm,      0 },
   1165     { X86::MMX_PANDirr,       X86::MMX_PANDirm,       0 },
   1166     { X86::MMX_PAVGBirr,      X86::MMX_PAVGBirm,      0 },
   1167     { X86::MMX_PAVGWirr,      X86::MMX_PAVGWirm,      0 },
   1168     { X86::MMX_PCMPEQBirr,    X86::MMX_PCMPEQBirm,    0 },
   1169     { X86::MMX_PCMPEQDirr,    X86::MMX_PCMPEQDirm,    0 },
   1170     { X86::MMX_PCMPEQWirr,    X86::MMX_PCMPEQWirm,    0 },
   1171     { X86::MMX_PCMPGTBirr,    X86::MMX_PCMPGTBirm,    0 },
   1172     { X86::MMX_PCMPGTDirr,    X86::MMX_PCMPGTDirm,    0 },
   1173     { X86::MMX_PCMPGTWirr,    X86::MMX_PCMPGTWirm,    0 },
   1174     { X86::MMX_PHADDSWrr64,   X86::MMX_PHADDSWrm64,   0 },
   1175     { X86::MMX_PHADDWrr64,    X86::MMX_PHADDWrm64,    0 },
   1176     { X86::MMX_PHADDrr64,     X86::MMX_PHADDrm64,     0 },
   1177     { X86::MMX_PHSUBDrr64,    X86::MMX_PHSUBDrm64,    0 },
   1178     { X86::MMX_PHSUBSWrr64,   X86::MMX_PHSUBSWrm64,   0 },
   1179     { X86::MMX_PHSUBWrr64,    X86::MMX_PHSUBWrm64,    0 },
   1180     { X86::MMX_PINSRWirri,    X86::MMX_PINSRWirmi,    0 },
   1181     { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
   1182     { X86::MMX_PMADDWDirr,    X86::MMX_PMADDWDirm,    0 },
   1183     { X86::MMX_PMAXSWirr,     X86::MMX_PMAXSWirm,     0 },
   1184     { X86::MMX_PMAXUBirr,     X86::MMX_PMAXUBirm,     0 },
   1185     { X86::MMX_PMINSWirr,     X86::MMX_PMINSWirm,     0 },
   1186     { X86::MMX_PMINUBirr,     X86::MMX_PMINUBirm,     0 },
   1187     { X86::MMX_PMULHRSWrr64,  X86::MMX_PMULHRSWrm64,  0 },
   1188     { X86::MMX_PMULHUWirr,    X86::MMX_PMULHUWirm,    0 },
   1189     { X86::MMX_PMULHWirr,     X86::MMX_PMULHWirm,     0 },
   1190     { X86::MMX_PMULLWirr,     X86::MMX_PMULLWirm,     0 },
   1191     { X86::MMX_PMULUDQirr,    X86::MMX_PMULUDQirm,    0 },
   1192     { X86::MMX_PORirr,        X86::MMX_PORirm,        0 },
   1193     { X86::MMX_PSADBWirr,     X86::MMX_PSADBWirm,     0 },
   1194     { X86::MMX_PSHUFBrr64,    X86::MMX_PSHUFBrm64,    0 },
   1195     { X86::MMX_PSIGNBrr64,    X86::MMX_PSIGNBrm64,    0 },
   1196     { X86::MMX_PSIGNDrr64,    X86::MMX_PSIGNDrm64,    0 },
   1197     { X86::MMX_PSIGNWrr64,    X86::MMX_PSIGNWrm64,    0 },
   1198     { X86::MMX_PSLLDrr,       X86::MMX_PSLLDrm,       0 },
   1199     { X86::MMX_PSLLQrr,       X86::MMX_PSLLQrm,       0 },
   1200     { X86::MMX_PSLLWrr,       X86::MMX_PSLLWrm,       0 },
   1201     { X86::MMX_PSRADrr,       X86::MMX_PSRADrm,       0 },
   1202     { X86::MMX_PSRAWrr,       X86::MMX_PSRAWrm,       0 },
   1203     { X86::MMX_PSRLDrr,       X86::MMX_PSRLDrm,       0 },
   1204     { X86::MMX_PSRLQrr,       X86::MMX_PSRLQrm,       0 },
   1205     { X86::MMX_PSRLWrr,       X86::MMX_PSRLWrm,       0 },
   1206     { X86::MMX_PSUBBirr,      X86::MMX_PSUBBirm,      0 },
   1207     { X86::MMX_PSUBDirr,      X86::MMX_PSUBDirm,      0 },
   1208     { X86::MMX_PSUBQirr,      X86::MMX_PSUBQirm,      0 },
   1209     { X86::MMX_PSUBSBirr,     X86::MMX_PSUBSBirm,     0 },
   1210     { X86::MMX_PSUBSWirr,     X86::MMX_PSUBSWirm,     0 },
   1211     { X86::MMX_PSUBUSBirr,    X86::MMX_PSUBUSBirm,    0 },
   1212     { X86::MMX_PSUBUSWirr,    X86::MMX_PSUBUSWirm,    0 },
   1213     { X86::MMX_PSUBWirr,      X86::MMX_PSUBWirm,      0 },
   1214     { X86::MMX_PUNPCKHBWirr,  X86::MMX_PUNPCKHBWirm,  0 },
   1215     { X86::MMX_PUNPCKHDQirr,  X86::MMX_PUNPCKHDQirm,  0 },
   1216     { X86::MMX_PUNPCKHWDirr,  X86::MMX_PUNPCKHWDirm,  0 },
   1217     { X86::MMX_PUNPCKLBWirr,  X86::MMX_PUNPCKLBWirm,  0 },
   1218     { X86::MMX_PUNPCKLDQirr,  X86::MMX_PUNPCKLDQirm,  0 },
   1219     { X86::MMX_PUNPCKLWDirr,  X86::MMX_PUNPCKLWDirm,  0 },
   1220     { X86::MMX_PXORirr,       X86::MMX_PXORirm,       0 },
   1221 
   1222     // 3DNow! version of foldable instructions
   1223     { X86::PAVGUSBrr,         X86::PAVGUSBrm,         0 },
   1224     { X86::PFACCrr,           X86::PFACCrm,           0 },
   1225     { X86::PFADDrr,           X86::PFADDrm,           0 },
   1226     { X86::PFCMPEQrr,         X86::PFCMPEQrm,         0 },
   1227     { X86::PFCMPGErr,         X86::PFCMPGErm,         0 },
   1228     { X86::PFCMPGTrr,         X86::PFCMPGTrm,         0 },
   1229     { X86::PFMAXrr,           X86::PFMAXrm,           0 },
   1230     { X86::PFMINrr,           X86::PFMINrm,           0 },
   1231     { X86::PFMULrr,           X86::PFMULrm,           0 },
   1232     { X86::PFNACCrr,          X86::PFNACCrm,          0 },
   1233     { X86::PFPNACCrr,         X86::PFPNACCrm,         0 },
   1234     { X86::PFRCPIT1rr,        X86::PFRCPIT1rm,        0 },
   1235     { X86::PFRCPIT2rr,        X86::PFRCPIT2rm,        0 },
   1236     { X86::PFRSQIT1rr,        X86::PFRSQIT1rm,        0 },
   1237     { X86::PFSUBrr,           X86::PFSUBrm,           0 },
   1238     { X86::PFSUBRrr,          X86::PFSUBRrm,          0 },
   1239     { X86::PMULHRWrr,         X86::PMULHRWrm,         0 },
   1240 
   1241     // AVX 128-bit versions of foldable instructions
   1242     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
   1243     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
   1244     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
   1245     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
   1246     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
   1247     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
   1248     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
   1249     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
   1250     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
   1251     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
   1252     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
   1253     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
   1254     { X86::VRCPSSr,           X86::VRCPSSm,            0 },
   1255     { X86::VRCPSSr_Int,       X86::VRCPSSm_Int,        0 },
   1256     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
   1257     { X86::VRSQRTSSr_Int,     X86::VRSQRTSSm_Int,      0 },
   1258     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
   1259     { X86::VSQRTSDr_Int,      X86::VSQRTSDm_Int,       0 },
   1260     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
   1261     { X86::VSQRTSSr_Int,      X86::VSQRTSSm_Int,       0 },
   1262     { X86::VADDPDrr,          X86::VADDPDrm,           0 },
   1263     { X86::VADDPSrr,          X86::VADDPSrm,           0 },
   1264     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
   1265     { X86::VADDSDrr_Int,      X86::VADDSDrm_Int,       0 },
   1266     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
   1267     { X86::VADDSSrr_Int,      X86::VADDSSrm_Int,       0 },
   1268     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
   1269     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
   1270     { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
   1271     { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
   1272     { X86::VANDPDrr,          X86::VANDPDrm,           0 },
   1273     { X86::VANDPSrr,          X86::VANDPSrm,           0 },
   1274     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
   1275     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
   1276     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
   1277     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
   1278     { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
   1279     { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
   1280     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
   1281     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
   1282     { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
   1283     { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
   1284     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
   1285     { X86::VDIVSDrr_Int,      X86::VDIVSDrm_Int,       0 },
   1286     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
   1287     { X86::VDIVSSrr_Int,      X86::VDIVSSrm_Int,       0 },
   1288     { X86::VDPPDrri,          X86::VDPPDrmi,           0 },
   1289     { X86::VDPPSrri,          X86::VDPPSrmi,           0 },
   1290     // Do not fold VFs* loads because there are no scalar load variants for
   1291     // these instructions. When folded, the load is required to be 128-bits, so
   1292     // the load size would not match.
   1293     { X86::VFvANDNPDrr,       X86::VFvANDNPDrm,        0 },
   1294     { X86::VFvANDNPSrr,       X86::VFvANDNPSrm,        0 },
   1295     { X86::VFvANDPDrr,        X86::VFvANDPDrm,         0 },
   1296     { X86::VFvANDPSrr,        X86::VFvANDPSrm,         0 },
   1297     { X86::VFvORPDrr,         X86::VFvORPDrm,          0 },
   1298     { X86::VFvORPSrr,         X86::VFvORPSrm,          0 },
   1299     { X86::VFvXORPDrr,        X86::VFvXORPDrm,         0 },
   1300     { X86::VFvXORPSrr,        X86::VFvXORPSrm,         0 },
   1301     { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
   1302     { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
   1303     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
   1304     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
   1305     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
   1306     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
   1307     { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
   1308     { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
   1309     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
   1310     { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
   1311     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
   1312     { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
   1313     { X86::VMINPDrr,          X86::VMINPDrm,           0 },
   1314     { X86::VMINPSrr,          X86::VMINPSrm,           0 },
   1315     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
   1316     { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
   1317     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
   1318     { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
   1319     { X86::VMOVLHPSrr,        X86::VMOVHPSrm,          TB_NO_REVERSE },
   1320     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
   1321     { X86::VMULPDrr,          X86::VMULPDrm,           0 },
   1322     { X86::VMULPSrr,          X86::VMULPSrm,           0 },
   1323     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
   1324     { X86::VMULSDrr_Int,      X86::VMULSDrm_Int,       0 },
   1325     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
   1326     { X86::VMULSSrr_Int,      X86::VMULSSrm_Int,       0 },
   1327     { X86::VORPDrr,           X86::VORPDrm,            0 },
   1328     { X86::VORPSrr,           X86::VORPSrm,            0 },
   1329     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
   1330     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
   1331     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
   1332     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
   1333     { X86::VPADDBrr,          X86::VPADDBrm,           0 },
   1334     { X86::VPADDDrr,          X86::VPADDDrm,           0 },
   1335     { X86::VPADDQrr,          X86::VPADDQrm,           0 },
   1336     { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
   1337     { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
   1338     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
   1339     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
   1340     { X86::VPADDWrr,          X86::VPADDWrm,           0 },
   1341     { X86::VPALIGNRrri,       X86::VPALIGNRrmi,        0 },
   1342     { X86::VPANDNrr,          X86::VPANDNrm,           0 },
   1343     { X86::VPANDrr,           X86::VPANDrm,            0 },
   1344     { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
   1345     { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
   1346     { X86::VPBLENDVBrr,       X86::VPBLENDVBrm,        0 },
   1347     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
   1348     { X86::VPCLMULQDQrr,      X86::VPCLMULQDQrm,       0 },
   1349     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
   1350     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
   1351     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
   1352     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
   1353     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
   1354     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
   1355     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
   1356     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
   1357     { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
   1358     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
   1359     { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
   1360     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
   1361     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
   1362     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
   1363     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
   1364     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
   1365     { X86::VPINSRBrr,         X86::VPINSRBrm,          0 },
   1366     { X86::VPINSRDrr,         X86::VPINSRDrm,          0 },
   1367     { X86::VPINSRQrr,         X86::VPINSRQrm,          0 },
   1368     { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
   1369     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
   1370     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
   1371     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
   1372     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
   1373     { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
   1374     { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
   1375     { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
   1376     { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
   1377     { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
   1378     { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
   1379     { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
   1380     { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
   1381     { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
   1382     { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
   1383     { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
   1384     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
   1385     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
   1386     { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
   1387     { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
   1388     { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
   1389     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
   1390     { X86::VPORrr,            X86::VPORrm,             0 },
   1391     { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
   1392     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
   1393     { X86::VPSIGNBrr128,      X86::VPSIGNBrm128,       0 },
   1394     { X86::VPSIGNWrr128,      X86::VPSIGNWrm128,       0 },
   1395     { X86::VPSIGNDrr128,      X86::VPSIGNDrm128,       0 },
   1396     { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
   1397     { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
   1398     { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
   1399     { X86::VPSRADrr,          X86::VPSRADrm,           0 },
   1400     { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
   1401     { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
   1402     { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
   1403     { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
   1404     { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
   1405     { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
   1406     { X86::VPSUBQrr,          X86::VPSUBQrm,           0 },
   1407     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
   1408     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
   1409     { X86::VPSUBUSBrr,        X86::VPSUBUSBrm,         0 },
   1410     { X86::VPSUBUSWrr,        X86::VPSUBUSWrm,         0 },
   1411     { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
   1412     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
   1413     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
   1414     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
   1415     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
   1416     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
   1417     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
   1418     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
   1419     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
   1420     { X86::VPXORrr,           X86::VPXORrm,            0 },
   1421     { X86::VROUNDSDr,         X86::VROUNDSDm,          0 },
   1422     { X86::VROUNDSSr,         X86::VROUNDSSm,          0 },
   1423     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
   1424     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
   1425     { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
   1426     { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
   1427     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
   1428     { X86::VSUBSDrr_Int,      X86::VSUBSDrm_Int,       0 },
   1429     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
   1430     { X86::VSUBSSrr_Int,      X86::VSUBSSrm_Int,       0 },
   1431     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
   1432     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
   1433     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
   1434     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
   1435     { X86::VXORPDrr,          X86::VXORPDrm,           0 },
   1436     { X86::VXORPSrr,          X86::VXORPSrm,           0 },
   1437 
   1438     // AVX 256-bit foldable instructions
   1439     { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
   1440     { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
   1441     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
   1442     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
   1443     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
   1444     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
   1445     { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
   1446     { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
   1447     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
   1448     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
   1449     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
   1450     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
   1451     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
   1452     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
   1453     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
   1454     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
   1455     { X86::VDPPSYrri,         X86::VDPPSYrmi,          0 },
   1456     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
   1457     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
   1458     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
   1459     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
   1460     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
   1461     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
   1462     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
   1463     { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
   1464     { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
   1465     { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
   1466     { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
   1467     { X86::VORPDYrr,          X86::VORPDYrm,           0 },
   1468     { X86::VORPSYrr,          X86::VORPSYrm,           0 },
   1469     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
   1470     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
   1471     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
   1472     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
   1473     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
   1474     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
   1475     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
   1476     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
   1477     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
   1478     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
   1479     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
   1480     { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
   1481     { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
   1482 
   1483     // AVX2 foldable instructions
   1484     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
   1485     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
   1486     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
   1487     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
   1488     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
   1489     { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
   1490     { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
   1491     { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
   1492     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
   1493     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
   1494     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
   1495     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
   1496     { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
   1497     { X86::VPALIGNRYrri,      X86::VPALIGNRYrmi,       0 },
   1498     { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
   1499     { X86::VPANDYrr,          X86::VPANDYrm,           0 },
   1500     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
   1501     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
   1502     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
   1503     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
   1504     { X86::VPBLENDVBYrr,      X86::VPBLENDVBYrm,       0 },
   1505     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
   1506     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
   1507     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
   1508     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
   1509     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
   1510     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
   1511     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
   1512     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
   1513     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
   1514     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
   1515     { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
   1516     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
   1517     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
   1518     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
   1519     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
   1520     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
   1521     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
   1522     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
   1523     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
   1524     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
   1525     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
   1526     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
   1527     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
   1528     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
   1529     { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
   1530     { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
   1531     { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
   1532     { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
   1533     { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
   1534     { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
   1535     { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
   1536     { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
   1537     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
   1538     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
   1539     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
   1540     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
   1541     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
   1542     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
   1543     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
   1544     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
   1545     { X86::VPORYrr,           X86::VPORYrm,            0 },
   1546     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
   1547     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
   1548     { X86::VPSIGNBYrr256,     X86::VPSIGNBYrm256,      0 },
   1549     { X86::VPSIGNWYrr256,     X86::VPSIGNWYrm256,      0 },
   1550     { X86::VPSIGNDYrr256,     X86::VPSIGNDYrm256,      0 },
   1551     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
   1552     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
   1553     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
   1554     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
   1555     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
   1556     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
   1557     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
   1558     { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
   1559     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
   1560     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
   1561     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
   1562     { X86::VPSRAVD_Intrr,     X86::VPSRAVD_Intrm,      0 },
   1563     { X86::VPSRAVD_IntYrr,    X86::VPSRAVD_IntYrm,     0 },
   1564     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
   1565     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
   1566     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
   1567     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
   1568     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
   1569     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
   1570     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
   1571     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
   1572     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
   1573     { X86::VPSUBQYrr,         X86::VPSUBQYrm,          0 },
   1574     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
   1575     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
   1576     { X86::VPSUBUSBYrr,       X86::VPSUBUSBYrm,        0 },
   1577     { X86::VPSUBUSWYrr,       X86::VPSUBUSWYrm,        0 },
   1578     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
   1579     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
   1580     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
   1581     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
   1582     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
   1583     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
   1584     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
   1585     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
   1586     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
   1587     { X86::VPXORYrr,          X86::VPXORYrm,           0 },
   1588 
   1589     // FMA4 foldable patterns
   1590     { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        TB_ALIGN_NONE },
   1591     { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        TB_ALIGN_NONE },
   1592     { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_NONE },
   1593     { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_NONE },
   1594     { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_NONE },
   1595     { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_NONE },
   1596     { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       TB_ALIGN_NONE },
   1597     { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       TB_ALIGN_NONE },
   1598     { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_NONE },
   1599     { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_NONE },
   1600     { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_NONE },
   1601     { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_NONE },
   1602     { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        TB_ALIGN_NONE },
   1603     { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        TB_ALIGN_NONE },
   1604     { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_NONE },
   1605     { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_NONE },
   1606     { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_NONE },
   1607     { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_NONE },
   1608     { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       TB_ALIGN_NONE },
   1609     { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       TB_ALIGN_NONE },
   1610     { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_NONE },
   1611     { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_NONE },
   1612     { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_NONE },
   1613     { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_NONE },
   1614     { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_NONE },
   1615     { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_NONE },
   1616     { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_NONE },
   1617     { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_NONE },
   1618     { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_NONE },
   1619     { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_NONE },
   1620     { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_NONE },
   1621     { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_NONE },
   1622 
   1623     // XOP foldable instructions
   1624     { X86::VPCMOVrrr,         X86::VPCMOVrmr,           0 },
   1625     { X86::VPCMOVrrrY,        X86::VPCMOVrmrY,          0 },
   1626     { X86::VPCOMBri,          X86::VPCOMBmi,            0 },
   1627     { X86::VPCOMDri,          X86::VPCOMDmi,            0 },
   1628     { X86::VPCOMQri,          X86::VPCOMQmi,            0 },
   1629     { X86::VPCOMWri,          X86::VPCOMWmi,            0 },
   1630     { X86::VPCOMUBri,         X86::VPCOMUBmi,           0 },
   1631     { X86::VPCOMUDri,         X86::VPCOMUDmi,           0 },
   1632     { X86::VPCOMUQri,         X86::VPCOMUQmi,           0 },
   1633     { X86::VPCOMUWri,         X86::VPCOMUWmi,           0 },
   1634     { X86::VPERMIL2PDrr,      X86::VPERMIL2PDmr,        0 },
   1635     { X86::VPERMIL2PDrrY,     X86::VPERMIL2PDmrY,       0 },
   1636     { X86::VPERMIL2PSrr,      X86::VPERMIL2PSmr,        0 },
   1637     { X86::VPERMIL2PSrrY,     X86::VPERMIL2PSmrY,       0 },
   1638     { X86::VPMACSDDrr,        X86::VPMACSDDrm,          0 },
   1639     { X86::VPMACSDQHrr,       X86::VPMACSDQHrm,         0 },
   1640     { X86::VPMACSDQLrr,       X86::VPMACSDQLrm,         0 },
   1641     { X86::VPMACSSDDrr,       X86::VPMACSSDDrm,         0 },
   1642     { X86::VPMACSSDQHrr,      X86::VPMACSSDQHrm,        0 },
   1643     { X86::VPMACSSDQLrr,      X86::VPMACSSDQLrm,        0 },
   1644     { X86::VPMACSSWDrr,       X86::VPMACSSWDrm,         0 },
   1645     { X86::VPMACSSWWrr,       X86::VPMACSSWWrm,         0 },
   1646     { X86::VPMACSWDrr,        X86::VPMACSWDrm,          0 },
   1647     { X86::VPMACSWWrr,        X86::VPMACSWWrm,          0 },
   1648     { X86::VPMADCSSWDrr,      X86::VPMADCSSWDrm,        0 },
   1649     { X86::VPMADCSWDrr,       X86::VPMADCSWDrm,         0 },
   1650     { X86::VPPERMrrr,         X86::VPPERMrmr,           0 },
   1651     { X86::VPROTBrr,          X86::VPROTBrm,            0 },
   1652     { X86::VPROTDrr,          X86::VPROTDrm,            0 },
   1653     { X86::VPROTQrr,          X86::VPROTQrm,            0 },
   1654     { X86::VPROTWrr,          X86::VPROTWrm,            0 },
   1655     { X86::VPSHABrr,          X86::VPSHABrm,            0 },
   1656     { X86::VPSHADrr,          X86::VPSHADrm,            0 },
   1657     { X86::VPSHAQrr,          X86::VPSHAQrm,            0 },
   1658     { X86::VPSHAWrr,          X86::VPSHAWrm,            0 },
   1659     { X86::VPSHLBrr,          X86::VPSHLBrm,            0 },
   1660     { X86::VPSHLDrr,          X86::VPSHLDrm,            0 },
   1661     { X86::VPSHLQrr,          X86::VPSHLQrm,            0 },
   1662     { X86::VPSHLWrr,          X86::VPSHLWrm,            0 },
   1663 
   1664     // BMI/BMI2 foldable instructions
   1665     { X86::ANDN32rr,          X86::ANDN32rm,            0 },
   1666     { X86::ANDN64rr,          X86::ANDN64rm,            0 },
   1667     { X86::MULX32rr,          X86::MULX32rm,            0 },
   1668     { X86::MULX64rr,          X86::MULX64rm,            0 },
   1669     { X86::PDEP32rr,          X86::PDEP32rm,            0 },
   1670     { X86::PDEP64rr,          X86::PDEP64rm,            0 },
   1671     { X86::PEXT32rr,          X86::PEXT32rm,            0 },
   1672     { X86::PEXT64rr,          X86::PEXT64rm,            0 },
   1673 
   1674     // ADX foldable instructions
   1675     { X86::ADCX32rr,          X86::ADCX32rm,            0 },
   1676     { X86::ADCX64rr,          X86::ADCX64rm,            0 },
   1677     { X86::ADOX32rr,          X86::ADOX32rm,            0 },
   1678     { X86::ADOX64rr,          X86::ADOX64rm,            0 },
   1679 
   1680     // AVX-512 foldable instructions
   1681     { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
   1682     { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
   1683     { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
   1684     { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
   1685     { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
   1686     { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
   1687     { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
   1688     { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
   1689     { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
   1690     { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
   1691     { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
   1692     { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
   1693     { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
   1694     { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
   1695     { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
   1696     { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
   1697     { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
   1698     { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
   1699     { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
   1700     { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
   1701     { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
   1702     { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
   1703     { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
   1704     { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
   1705     { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
   1706     { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
   1707     { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
   1708     { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
   1709     { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
   1710     { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
   1711     { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
   1712     { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
   1713     { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
   1714     { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
   1715     { X86::VALIGNQZrri,       X86::VALIGNQZrmi,         0 },
   1716     { X86::VALIGNDZrri,       X86::VALIGNDZrmi,         0 },
   1717     { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
   1718     { X86::VBROADCASTSSZrkz,  X86::VBROADCASTSSZmkz,    TB_NO_REVERSE },
   1719     { X86::VBROADCASTSDZrkz,  X86::VBROADCASTSDZmkz,    TB_NO_REVERSE },
   1720 
   1721     // AVX-512{F,VL} foldable instructions
   1722     { X86::VBROADCASTSSZ256rkz,  X86::VBROADCASTSSZ256mkz,      TB_NO_REVERSE },
   1723     { X86::VBROADCASTSDZ256rkz,  X86::VBROADCASTSDZ256mkz,      TB_NO_REVERSE },
   1724     { X86::VBROADCASTSSZ128rkz,  X86::VBROADCASTSSZ128mkz,      TB_NO_REVERSE },
   1725 
   1726     // AVX-512{F,VL} foldable instructions
   1727     { X86::VADDPDZ128rr,      X86::VADDPDZ128rm,        0 },
   1728     { X86::VADDPDZ256rr,      X86::VADDPDZ256rm,        0 },
   1729     { X86::VADDPSZ128rr,      X86::VADDPSZ128rm,        0 },
   1730     { X86::VADDPSZ256rr,      X86::VADDPSZ256rm,        0 },
   1731 
   1732     // AES foldable instructions
   1733     { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
   1734     { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
   1735     { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
   1736     { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
   1737     { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       0 },
   1738     { X86::VAESDECrr,         X86::VAESDECrm,           0 },
   1739     { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       0 },
   1740     { X86::VAESENCrr,         X86::VAESENCrm,           0 },
   1741 
   1742     // SHA foldable instructions
   1743     { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
   1744     { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
   1745     { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
   1746     { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
   1747     { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
   1748     { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
   1749     { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 }
   1750   };
   1751 
   1752   for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) {
   1753     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
   1754                   Entry.RegOp, Entry.MemOp,
   1755                   // Index 2, folded load
   1756                   Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
   1757   }
   1758 
   1759   static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
   1760     // FMA foldable instructions
   1761     { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
   1762     { X86::VFMADDSSr231r_Int,     X86::VFMADDSSr231m_Int,     TB_ALIGN_NONE },
   1763     { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
   1764     { X86::VFMADDSDr231r_Int,     X86::VFMADDSDr231m_Int,     TB_ALIGN_NONE },
   1765     { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
   1766     { X86::VFMADDSSr132r_Int,     X86::VFMADDSSr132m_Int,     TB_ALIGN_NONE },
   1767     { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
   1768     { X86::VFMADDSDr132r_Int,     X86::VFMADDSDr132m_Int,     TB_ALIGN_NONE },
   1769     { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
   1770     { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     TB_ALIGN_NONE },
   1771     { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
   1772     { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     TB_ALIGN_NONE },
   1773 
   1774     { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
   1775     { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
   1776     { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
   1777     { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
   1778     { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
   1779     { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
   1780     { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
   1781     { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
   1782     { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
   1783     { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
   1784     { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
   1785     { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
   1786 
   1787     { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
   1788     { X86::VFNMADDSSr231r_Int,    X86::VFNMADDSSr231m_Int,    TB_ALIGN_NONE },
   1789     { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
   1790     { X86::VFNMADDSDr231r_Int,    X86::VFNMADDSDr231m_Int,    TB_ALIGN_NONE },
   1791     { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
   1792     { X86::VFNMADDSSr132r_Int,    X86::VFNMADDSSr132m_Int,    TB_ALIGN_NONE },
   1793     { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
   1794     { X86::VFNMADDSDr132r_Int,    X86::VFNMADDSDr132m_Int,    TB_ALIGN_NONE },
   1795     { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
   1796     { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    TB_ALIGN_NONE },
   1797     { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
   1798     { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    TB_ALIGN_NONE },
   1799 
   1800     { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
   1801     { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
   1802     { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
   1803     { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
   1804     { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
   1805     { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
   1806     { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
   1807     { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
   1808     { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
   1809     { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
   1810     { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
   1811     { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
   1812 
   1813     { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
   1814     { X86::VFMSUBSSr231r_Int,     X86::VFMSUBSSr231m_Int,     TB_ALIGN_NONE },
   1815     { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
   1816     { X86::VFMSUBSDr231r_Int,     X86::VFMSUBSDr231m_Int,     TB_ALIGN_NONE },
   1817     { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
   1818     { X86::VFMSUBSSr132r_Int,     X86::VFMSUBSSr132m_Int,     TB_ALIGN_NONE },
   1819     { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
   1820     { X86::VFMSUBSDr132r_Int,     X86::VFMSUBSDr132m_Int,     TB_ALIGN_NONE },
   1821     { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
   1822     { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     TB_ALIGN_NONE },
   1823     { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
   1824     { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     TB_ALIGN_NONE },
   1825 
   1826     { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
   1827     { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
   1828     { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
   1829     { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
   1830     { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
   1831     { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
   1832     { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
   1833     { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
   1834     { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
   1835     { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
   1836     { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
   1837     { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
   1838 
   1839     { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
   1840     { X86::VFNMSUBSSr231r_Int,    X86::VFNMSUBSSr231m_Int,    TB_ALIGN_NONE },
   1841     { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
   1842     { X86::VFNMSUBSDr231r_Int,    X86::VFNMSUBSDr231m_Int,    TB_ALIGN_NONE },
   1843     { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
   1844     { X86::VFNMSUBSSr132r_Int,    X86::VFNMSUBSSr132m_Int,    TB_ALIGN_NONE },
   1845     { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
   1846     { X86::VFNMSUBSDr132r_Int,    X86::VFNMSUBSDr132m_Int,    TB_ALIGN_NONE },
   1847     { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
   1848     { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    TB_ALIGN_NONE },
   1849     { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
   1850     { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    TB_ALIGN_NONE },
   1851 
   1852     { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
   1853     { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
   1854     { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
   1855     { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
   1856     { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
   1857     { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
   1858     { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
   1859     { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
   1860     { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
   1861     { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
   1862     { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
   1863     { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
   1864 
   1865     { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
   1866     { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
   1867     { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
   1868     { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
   1869     { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
   1870     { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
   1871     { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
   1872     { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
   1873     { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
   1874     { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
   1875     { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
   1876     { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
   1877 
   1878     { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
   1879     { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
   1880     { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
   1881     { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
   1882     { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
   1883     { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
   1884     { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
   1885     { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
   1886     { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
   1887     { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
   1888     { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
   1889     { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
   1890 
   1891     // FMA4 foldable patterns
   1892     { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           TB_ALIGN_NONE },
   1893     { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           TB_ALIGN_NONE },
   1894     { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_NONE },
   1895     { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_NONE },
   1896     { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_NONE },
   1897     { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_NONE },
   1898     { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          TB_ALIGN_NONE },
   1899     { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          TB_ALIGN_NONE },
   1900     { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_NONE },
   1901     { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_NONE },
   1902     { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_NONE },
   1903     { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_NONE },
   1904     { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           TB_ALIGN_NONE },
   1905     { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           TB_ALIGN_NONE },
   1906     { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_NONE },
   1907     { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_NONE },
   1908     { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_NONE },
   1909     { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_NONE },
   1910     { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          TB_ALIGN_NONE },
   1911     { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          TB_ALIGN_NONE },
   1912     { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_NONE },
   1913     { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_NONE },
   1914     { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_NONE },
   1915     { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_NONE },
   1916     { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_NONE },
   1917     { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_NONE },
   1918     { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_NONE },
   1919     { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_NONE },
   1920     { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_NONE },
   1921     { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_NONE },
   1922     { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_NONE },
   1923     { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_NONE },
   1924 
   1925     // XOP foldable instructions
   1926     { X86::VPCMOVrrr,             X86::VPCMOVrrm,             0 },
   1927     { X86::VPCMOVrrrY,            X86::VPCMOVrrmY,            0 },
   1928     { X86::VPERMIL2PDrr,          X86::VPERMIL2PDrm,          0 },
   1929     { X86::VPERMIL2PDrrY,         X86::VPERMIL2PDrmY,         0 },
   1930     { X86::VPERMIL2PSrr,          X86::VPERMIL2PSrm,          0 },
   1931     { X86::VPERMIL2PSrrY,         X86::VPERMIL2PSrmY,         0 },
   1932     { X86::VPPERMrrr,             X86::VPPERMrrm,             0 },
   1933 
   1934     // AVX-512 VPERMI instructions with 3 source operands.
   1935     { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
   1936     { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
   1937     { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
   1938     { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
   1939     { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
   1940     { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
   1941     { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
   1942     { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 },
   1943     { X86::VBROADCASTSSZrk,       X86::VBROADCASTSSZmk,       TB_NO_REVERSE },
   1944     { X86::VBROADCASTSDZrk,       X86::VBROADCASTSDZmk,       TB_NO_REVERSE },
   1945     { X86::VBROADCASTSSZ256rk,    X86::VBROADCASTSSZ256mk,    TB_NO_REVERSE },
   1946     { X86::VBROADCASTSDZ256rk,    X86::VBROADCASTSDZ256mk,    TB_NO_REVERSE },
   1947     { X86::VBROADCASTSSZ128rk,    X86::VBROADCASTSSZ128mk,    TB_NO_REVERSE },
   1948      // AVX-512 arithmetic instructions
   1949     { X86::VADDPSZrrkz,           X86::VADDPSZrmkz,           0 },
   1950     { X86::VADDPDZrrkz,           X86::VADDPDZrmkz,           0 },
   1951     { X86::VSUBPSZrrkz,           X86::VSUBPSZrmkz,           0 },
   1952     { X86::VSUBPDZrrkz,           X86::VSUBPDZrmkz,           0 },
   1953     { X86::VMULPSZrrkz,           X86::VMULPSZrmkz,           0 },
   1954     { X86::VMULPDZrrkz,           X86::VMULPDZrmkz,           0 },
   1955     { X86::VDIVPSZrrkz,           X86::VDIVPSZrmkz,           0 },
   1956     { X86::VDIVPDZrrkz,           X86::VDIVPDZrmkz,           0 },
   1957     { X86::VMINPSZrrkz,           X86::VMINPSZrmkz,           0 },
   1958     { X86::VMINPDZrrkz,           X86::VMINPDZrmkz,           0 },
   1959     { X86::VMAXPSZrrkz,           X86::VMAXPSZrmkz,           0 },
   1960     { X86::VMAXPDZrrkz,           X86::VMAXPDZrmkz,           0 },
   1961     // AVX-512{F,VL} arithmetic instructions 256-bit
   1962     { X86::VADDPSZ256rrkz,        X86::VADDPSZ256rmkz,        0 },
   1963     { X86::VADDPDZ256rrkz,        X86::VADDPDZ256rmkz,        0 },
   1964     { X86::VSUBPSZ256rrkz,        X86::VSUBPSZ256rmkz,        0 },
   1965     { X86::VSUBPDZ256rrkz,        X86::VSUBPDZ256rmkz,        0 },
   1966     { X86::VMULPSZ256rrkz,        X86::VMULPSZ256rmkz,        0 },
   1967     { X86::VMULPDZ256rrkz,        X86::VMULPDZ256rmkz,        0 },
   1968     { X86::VDIVPSZ256rrkz,        X86::VDIVPSZ256rmkz,        0 },
   1969     { X86::VDIVPDZ256rrkz,        X86::VDIVPDZ256rmkz,        0 },
   1970     { X86::VMINPSZ256rrkz,        X86::VMINPSZ256rmkz,        0 },
   1971     { X86::VMINPDZ256rrkz,        X86::VMINPDZ256rmkz,        0 },
   1972     { X86::VMAXPSZ256rrkz,        X86::VMAXPSZ256rmkz,        0 },
   1973     { X86::VMAXPDZ256rrkz,        X86::VMAXPDZ256rmkz,        0 },
   1974     // AVX-512{F,VL} arithmetic instructions 128-bit
   1975     { X86::VADDPSZ128rrkz,        X86::VADDPSZ128rmkz,        0 },
   1976     { X86::VADDPDZ128rrkz,        X86::VADDPDZ128rmkz,        0 },
   1977     { X86::VSUBPSZ128rrkz,        X86::VSUBPSZ128rmkz,        0 },
   1978     { X86::VSUBPDZ128rrkz,        X86::VSUBPDZ128rmkz,        0 },
   1979     { X86::VMULPSZ128rrkz,        X86::VMULPSZ128rmkz,        0 },
   1980     { X86::VMULPDZ128rrkz,        X86::VMULPDZ128rmkz,        0 },
   1981     { X86::VDIVPSZ128rrkz,        X86::VDIVPSZ128rmkz,        0 },
   1982     { X86::VDIVPDZ128rrkz,        X86::VDIVPDZ128rmkz,        0 },
   1983     { X86::VMINPSZ128rrkz,        X86::VMINPSZ128rmkz,        0 },
   1984     { X86::VMINPDZ128rrkz,        X86::VMINPDZ128rmkz,        0 },
   1985     { X86::VMAXPSZ128rrkz,        X86::VMAXPSZ128rmkz,        0 },
   1986     { X86::VMAXPDZ128rrkz,        X86::VMAXPDZ128rmkz,        0 }
   1987   };
   1988 
   1989   for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) {
   1990     AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
   1991                   Entry.RegOp, Entry.MemOp,
   1992                   // Index 3, folded load
   1993                   Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
   1994   }
   1995 
   1996   static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
   1997      // AVX-512 foldable instructions
   1998     { X86::VADDPSZrrk,         X86::VADDPSZrmk,           0 },
   1999     { X86::VADDPDZrrk,         X86::VADDPDZrmk,           0 },
   2000     { X86::VSUBPSZrrk,         X86::VSUBPSZrmk,           0 },
   2001     { X86::VSUBPDZrrk,         X86::VSUBPDZrmk,           0 },
   2002     { X86::VMULPSZrrk,         X86::VMULPSZrmk,           0 },
   2003     { X86::VMULPDZrrk,         X86::VMULPDZrmk,           0 },
   2004     { X86::VDIVPSZrrk,         X86::VDIVPSZrmk,           0 },
   2005     { X86::VDIVPDZrrk,         X86::VDIVPDZrmk,           0 },
   2006     { X86::VMINPSZrrk,         X86::VMINPSZrmk,           0 },
   2007     { X86::VMINPDZrrk,         X86::VMINPDZrmk,           0 },
   2008     { X86::VMAXPSZrrk,         X86::VMAXPSZrmk,           0 },
   2009     { X86::VMAXPDZrrk,         X86::VMAXPDZrmk,           0 },
   2010     // AVX-512{F,VL} foldable instructions 256-bit
   2011     { X86::VADDPSZ256rrk,      X86::VADDPSZ256rmk,        0 },
   2012     { X86::VADDPDZ256rrk,      X86::VADDPDZ256rmk,        0 },
   2013     { X86::VSUBPSZ256rrk,      X86::VSUBPSZ256rmk,        0 },
   2014     { X86::VSUBPDZ256rrk,      X86::VSUBPDZ256rmk,        0 },
   2015     { X86::VMULPSZ256rrk,      X86::VMULPSZ256rmk,        0 },
   2016     { X86::VMULPDZ256rrk,      X86::VMULPDZ256rmk,        0 },
   2017     { X86::VDIVPSZ256rrk,      X86::VDIVPSZ256rmk,        0 },
   2018     { X86::VDIVPDZ256rrk,      X86::VDIVPDZ256rmk,        0 },
   2019     { X86::VMINPSZ256rrk,      X86::VMINPSZ256rmk,        0 },
   2020     { X86::VMINPDZ256rrk,      X86::VMINPDZ256rmk,        0 },
   2021     { X86::VMAXPSZ256rrk,      X86::VMAXPSZ256rmk,        0 },
   2022     { X86::VMAXPDZ256rrk,      X86::VMAXPDZ256rmk,        0 },
   2023     // AVX-512{F,VL} foldable instructions 128-bit
   2024     { X86::VADDPSZ128rrk,      X86::VADDPSZ128rmk,        0 },
   2025     { X86::VADDPDZ128rrk,      X86::VADDPDZ128rmk,        0 },
   2026     { X86::VSUBPSZ128rrk,      X86::VSUBPSZ128rmk,        0 },
   2027     { X86::VSUBPDZ128rrk,      X86::VSUBPDZ128rmk,        0 },
   2028     { X86::VMULPSZ128rrk,      X86::VMULPSZ128rmk,        0 },
   2029     { X86::VMULPDZ128rrk,      X86::VMULPDZ128rmk,        0 },
   2030     { X86::VDIVPSZ128rrk,      X86::VDIVPSZ128rmk,        0 },
   2031     { X86::VDIVPDZ128rrk,      X86::VDIVPDZ128rmk,        0 },
   2032     { X86::VMINPSZ128rrk,      X86::VMINPSZ128rmk,        0 },
   2033     { X86::VMINPDZ128rrk,      X86::VMINPDZ128rmk,        0 },
   2034     { X86::VMAXPSZ128rrk,      X86::VMAXPSZ128rmk,        0 },
   2035     { X86::VMAXPDZ128rrk,      X86::VMAXPDZ128rmk,        0 }
   2036   };
   2037 
   2038   for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) {
   2039     AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
   2040                   Entry.RegOp, Entry.MemOp,
   2041                   // Index 4, folded load
   2042                   Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
   2043   }
   2044 }
   2045 
   2046 void
   2047 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
   2048                             MemOp2RegOpTableType &M2RTable,
   2049                             uint16_t RegOp, uint16_t MemOp, uint16_t Flags) {
   2050     if ((Flags & TB_NO_FORWARD) == 0) {
   2051       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
   2052       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
   2053     }
   2054     if ((Flags & TB_NO_REVERSE) == 0) {
   2055       assert(!M2RTable.count(MemOp) &&
   2056            "Duplicated entries in unfolding maps?");
   2057       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
   2058     }
   2059 }
   2060 
   2061 bool
   2062 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
   2063                                     unsigned &SrcReg, unsigned &DstReg,
   2064                                     unsigned &SubIdx) const {
   2065   switch (MI.getOpcode()) {
   2066   default: break;
   2067   case X86::MOVSX16rr8:
   2068   case X86::MOVZX16rr8:
   2069   case X86::MOVSX32rr8:
   2070   case X86::MOVZX32rr8:
   2071   case X86::MOVSX64rr8:
   2072     if (!Subtarget.is64Bit())
   2073       // It's not always legal to reference the low 8-bit of the larger
   2074       // register in 32-bit mode.
   2075       return false;
   2076   case X86::MOVSX32rr16:
   2077   case X86::MOVZX32rr16:
   2078   case X86::MOVSX64rr16:
   2079   case X86::MOVSX64rr32: {
   2080     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
   2081       // Be conservative.
   2082       return false;
   2083     SrcReg = MI.getOperand(1).getReg();
   2084     DstReg = MI.getOperand(0).getReg();
   2085     switch (MI.getOpcode()) {
   2086     default: llvm_unreachable("Unreachable!");
   2087     case X86::MOVSX16rr8:
   2088     case X86::MOVZX16rr8:
   2089     case X86::MOVSX32rr8:
   2090     case X86::MOVZX32rr8:
   2091     case X86::MOVSX64rr8:
   2092       SubIdx = X86::sub_8bit;
   2093       break;
   2094     case X86::MOVSX32rr16:
   2095     case X86::MOVZX32rr16:
   2096     case X86::MOVSX64rr16:
   2097       SubIdx = X86::sub_16bit;
   2098       break;
   2099     case X86::MOVSX64rr32:
   2100       SubIdx = X86::sub_32bit;
   2101       break;
   2102     }
   2103     return true;
   2104   }
   2105   }
   2106   return false;
   2107 }
   2108 
   2109 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
   2110   const MachineFunction *MF = MI.getParent()->getParent();
   2111   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
   2112 
   2113   if (MI.getOpcode() == getCallFrameSetupOpcode() ||
   2114       MI.getOpcode() == getCallFrameDestroyOpcode()) {
   2115     unsigned StackAlign = TFI->getStackAlignment();
   2116     int SPAdj =
   2117         (MI.getOperand(0).getImm() + StackAlign - 1) / StackAlign * StackAlign;
   2118 
   2119     SPAdj -= MI.getOperand(1).getImm();
   2120 
   2121     if (MI.getOpcode() == getCallFrameSetupOpcode())
   2122       return SPAdj;
   2123     else
   2124       return -SPAdj;
   2125   }
   2126 
   2127   // To know whether a call adjusts the stack, we need information
   2128   // that is bound to the following ADJCALLSTACKUP pseudo.
   2129   // Look for the next ADJCALLSTACKUP that follows the call.
   2130   if (MI.isCall()) {
   2131     const MachineBasicBlock *MBB = MI.getParent();
   2132     auto I = ++MachineBasicBlock::const_iterator(MI);
   2133     for (auto E = MBB->end(); I != E; ++I) {
   2134       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
   2135           I->isCall())
   2136         break;
   2137     }
   2138 
   2139     // If we could not find a frame destroy opcode, then it has already
   2140     // been simplified, so we don't care.
   2141     if (I->getOpcode() != getCallFrameDestroyOpcode())
   2142       return 0;
   2143 
   2144     return -(I->getOperand(1).getImm());
   2145   }
   2146 
   2147   // Currently handle only PUSHes we can reasonably expect to see
   2148   // in call sequences
   2149   switch (MI.getOpcode()) {
   2150   default:
   2151     return 0;
   2152   case X86::PUSH32i8:
   2153   case X86::PUSH32r:
   2154   case X86::PUSH32rmm:
   2155   case X86::PUSH32rmr:
   2156   case X86::PUSHi32:
   2157     return 4;
   2158   case X86::PUSH64i8:
   2159   case X86::PUSH64r:
   2160   case X86::PUSH64rmm:
   2161   case X86::PUSH64rmr:
   2162   case X86::PUSH64i32:
   2163     return 8;
   2164   }
   2165 }
   2166 
   2167 /// Return true and the FrameIndex if the specified
   2168 /// operand and follow operands form a reference to the stack frame.
   2169 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
   2170                                   int &FrameIndex) const {
   2171   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
   2172       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
   2173       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
   2174       MI.getOperand(Op + X86::AddrDisp).isImm() &&
   2175       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
   2176       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
   2177       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
   2178     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
   2179     return true;
   2180   }
   2181   return false;
   2182 }
   2183 
   2184 static bool isFrameLoadOpcode(int Opcode) {
   2185   switch (Opcode) {
   2186   default:
   2187     return false;
   2188   case X86::MOV8rm:
   2189   case X86::MOV16rm:
   2190   case X86::MOV32rm:
   2191   case X86::MOV64rm:
   2192   case X86::LD_Fp64m:
   2193   case X86::MOVSSrm:
   2194   case X86::MOVSDrm:
   2195   case X86::MOVAPSrm:
   2196   case X86::MOVAPDrm:
   2197   case X86::MOVDQArm:
   2198   case X86::VMOVSSrm:
   2199   case X86::VMOVSDrm:
   2200   case X86::VMOVAPSrm:
   2201   case X86::VMOVAPDrm:
   2202   case X86::VMOVDQArm:
   2203   case X86::VMOVUPSYrm:
   2204   case X86::VMOVAPSYrm:
   2205   case X86::VMOVUPDYrm:
   2206   case X86::VMOVAPDYrm:
   2207   case X86::VMOVDQUYrm:
   2208   case X86::VMOVDQAYrm:
   2209   case X86::MMX_MOVD64rm:
   2210   case X86::MMX_MOVQ64rm:
   2211   case X86::VMOVAPSZrm:
   2212   case X86::VMOVUPSZrm:
   2213     return true;
   2214   }
   2215 }
   2216 
   2217 static bool isFrameStoreOpcode(int Opcode) {
   2218   switch (Opcode) {
   2219   default: break;
   2220   case X86::MOV8mr:
   2221   case X86::MOV16mr:
   2222   case X86::MOV32mr:
   2223   case X86::MOV64mr:
   2224   case X86::ST_FpP64m:
   2225   case X86::MOVSSmr:
   2226   case X86::MOVSDmr:
   2227   case X86::MOVAPSmr:
   2228   case X86::MOVAPDmr:
   2229   case X86::MOVDQAmr:
   2230   case X86::VMOVSSmr:
   2231   case X86::VMOVSDmr:
   2232   case X86::VMOVAPSmr:
   2233   case X86::VMOVAPDmr:
   2234   case X86::VMOVDQAmr:
   2235   case X86::VMOVUPSYmr:
   2236   case X86::VMOVAPSYmr:
   2237   case X86::VMOVUPDYmr:
   2238   case X86::VMOVAPDYmr:
   2239   case X86::VMOVDQUYmr:
   2240   case X86::VMOVDQAYmr:
   2241   case X86::VMOVUPSZmr:
   2242   case X86::VMOVAPSZmr:
   2243   case X86::MMX_MOVD64mr:
   2244   case X86::MMX_MOVQ64mr:
   2245   case X86::MMX_MOVNTQmr:
   2246     return true;
   2247   }
   2248   return false;
   2249 }
   2250 
   2251 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
   2252                                            int &FrameIndex) const {
   2253   if (isFrameLoadOpcode(MI.getOpcode()))
   2254     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
   2255       return MI.getOperand(0).getReg();
   2256   return 0;
   2257 }
   2258 
   2259 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
   2260                                                  int &FrameIndex) const {
   2261   if (isFrameLoadOpcode(MI.getOpcode())) {
   2262     unsigned Reg;
   2263     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
   2264       return Reg;
   2265     // Check for post-frame index elimination operations
   2266     const MachineMemOperand *Dummy;
   2267     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   2268   }
   2269   return 0;
   2270 }
   2271 
   2272 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
   2273                                           int &FrameIndex) const {
   2274   if (isFrameStoreOpcode(MI.getOpcode()))
   2275     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
   2276         isFrameOperand(MI, 0, FrameIndex))
   2277       return MI.getOperand(X86::AddrNumOperands).getReg();
   2278   return 0;
   2279 }
   2280 
   2281 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
   2282                                                 int &FrameIndex) const {
   2283   if (isFrameStoreOpcode(MI.getOpcode())) {
   2284     unsigned Reg;
   2285     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
   2286       return Reg;
   2287     // Check for post-frame index elimination operations
   2288     const MachineMemOperand *Dummy;
   2289     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
   2290   }
   2291   return 0;
   2292 }
   2293 
   2294 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
   2295 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
   2296   // Don't waste compile time scanning use-def chains of physregs.
   2297   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
   2298     return false;
   2299   bool isPICBase = false;
   2300   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
   2301          E = MRI.def_instr_end(); I != E; ++I) {
   2302     MachineInstr *DefMI = &*I;
   2303     if (DefMI->getOpcode() != X86::MOVPC32r)
   2304       return false;
   2305     assert(!isPICBase && "More than one PIC base?");
   2306     isPICBase = true;
   2307   }
   2308   return isPICBase;
   2309 }
   2310 
   2311 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
   2312                                                      AliasAnalysis *AA) const {
   2313   switch (MI.getOpcode()) {
   2314   default: break;
   2315   case X86::MOV8rm:
   2316   case X86::MOV16rm:
   2317   case X86::MOV32rm:
   2318   case X86::MOV64rm:
   2319   case X86::LD_Fp64m:
   2320   case X86::MOVSSrm:
   2321   case X86::MOVSDrm:
   2322   case X86::MOVAPSrm:
   2323   case X86::MOVUPSrm:
   2324   case X86::MOVAPDrm:
   2325   case X86::MOVDQArm:
   2326   case X86::MOVDQUrm:
   2327   case X86::VMOVSSrm:
   2328   case X86::VMOVSDrm:
   2329   case X86::VMOVAPSrm:
   2330   case X86::VMOVUPSrm:
   2331   case X86::VMOVAPDrm:
   2332   case X86::VMOVDQArm:
   2333   case X86::VMOVDQUrm:
   2334   case X86::VMOVAPSYrm:
   2335   case X86::VMOVUPSYrm:
   2336   case X86::VMOVAPDYrm:
   2337   case X86::VMOVDQAYrm:
   2338   case X86::VMOVDQUYrm:
   2339   case X86::MMX_MOVD64rm:
   2340   case X86::MMX_MOVQ64rm:
   2341   case X86::FsVMOVAPSrm:
   2342   case X86::FsVMOVAPDrm:
   2343   case X86::FsMOVAPSrm:
   2344   case X86::FsMOVAPDrm:
   2345   // AVX-512
   2346   case X86::VMOVAPDZ128rm:
   2347   case X86::VMOVAPDZ256rm:
   2348   case X86::VMOVAPDZrm:
   2349   case X86::VMOVAPSZ128rm:
   2350   case X86::VMOVAPSZ256rm:
   2351   case X86::VMOVAPSZrm:
   2352   case X86::VMOVDQA32Z128rm:
   2353   case X86::VMOVDQA32Z256rm:
   2354   case X86::VMOVDQA32Zrm:
   2355   case X86::VMOVDQA64Z128rm:
   2356   case X86::VMOVDQA64Z256rm:
   2357   case X86::VMOVDQA64Zrm:
   2358   case X86::VMOVDQU16Z128rm:
   2359   case X86::VMOVDQU16Z256rm:
   2360   case X86::VMOVDQU16Zrm:
   2361   case X86::VMOVDQU32Z128rm:
   2362   case X86::VMOVDQU32Z256rm:
   2363   case X86::VMOVDQU32Zrm:
   2364   case X86::VMOVDQU64Z128rm:
   2365   case X86::VMOVDQU64Z256rm:
   2366   case X86::VMOVDQU64Zrm:
   2367   case X86::VMOVDQU8Z128rm:
   2368   case X86::VMOVDQU8Z256rm:
   2369   case X86::VMOVDQU8Zrm:
   2370   case X86::VMOVUPSZ128rm:
   2371   case X86::VMOVUPSZ256rm:
   2372   case X86::VMOVUPSZrm: {
   2373     // Loads from constant pools are trivially rematerializable.
   2374     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
   2375         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
   2376         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
   2377         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
   2378         MI.isInvariantLoad(AA)) {
   2379       unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
   2380       if (BaseReg == 0 || BaseReg == X86::RIP)
   2381         return true;
   2382       // Allow re-materialization of PIC load.
   2383       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
   2384         return false;
   2385       const MachineFunction &MF = *MI.getParent()->getParent();
   2386       const MachineRegisterInfo &MRI = MF.getRegInfo();
   2387       return regIsPICBase(BaseReg, MRI);
   2388     }
   2389     return false;
   2390   }
   2391 
   2392   case X86::LEA32r:
   2393   case X86::LEA64r: {
   2394     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
   2395         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
   2396         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
   2397         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
   2398       // lea fi#, lea GV, etc. are all rematerializable.
   2399       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
   2400         return true;
   2401       unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
   2402       if (BaseReg == 0)
   2403         return true;
   2404       // Allow re-materialization of lea PICBase + x.
   2405       const MachineFunction &MF = *MI.getParent()->getParent();
   2406       const MachineRegisterInfo &MRI = MF.getRegInfo();
   2407       return regIsPICBase(BaseReg, MRI);
   2408     }
   2409     return false;
   2410   }
   2411   }
   2412 
   2413   // All other instructions marked M_REMATERIALIZABLE are always trivially
   2414   // rematerializable.
   2415   return true;
   2416 }
   2417 
   2418 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
   2419                                          MachineBasicBlock::iterator I) const {
   2420   MachineBasicBlock::iterator E = MBB.end();
   2421 
   2422   // For compile time consideration, if we are not able to determine the
   2423   // safety after visiting 4 instructions in each direction, we will assume
   2424   // it's not safe.
   2425   MachineBasicBlock::iterator Iter = I;
   2426   for (unsigned i = 0; Iter != E && i < 4; ++i) {
   2427     bool SeenDef = false;
   2428     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   2429       MachineOperand &MO = Iter->getOperand(j);
   2430       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   2431         SeenDef = true;
   2432       if (!MO.isReg())
   2433         continue;
   2434       if (MO.getReg() == X86::EFLAGS) {
   2435         if (MO.isUse())
   2436           return false;
   2437         SeenDef = true;
   2438       }
   2439     }
   2440 
   2441     if (SeenDef)
   2442       // This instruction defines EFLAGS, no need to look any further.
   2443       return true;
   2444     ++Iter;
   2445     // Skip over DBG_VALUE.
   2446     while (Iter != E && Iter->isDebugValue())
   2447       ++Iter;
   2448   }
   2449 
   2450   // It is safe to clobber EFLAGS at the end of a block of no successor has it
   2451   // live in.
   2452   if (Iter == E) {
   2453     for (MachineBasicBlock *S : MBB.successors())
   2454       if (S->isLiveIn(X86::EFLAGS))
   2455         return false;
   2456     return true;
   2457   }
   2458 
   2459   MachineBasicBlock::iterator B = MBB.begin();
   2460   Iter = I;
   2461   for (unsigned i = 0; i < 4; ++i) {
   2462     // If we make it to the beginning of the block, it's safe to clobber
   2463     // EFLAGS iff EFLAGS is not live-in.
   2464     if (Iter == B)
   2465       return !MBB.isLiveIn(X86::EFLAGS);
   2466 
   2467     --Iter;
   2468     // Skip over DBG_VALUE.
   2469     while (Iter != B && Iter->isDebugValue())
   2470       --Iter;
   2471 
   2472     bool SawKill = false;
   2473     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   2474       MachineOperand &MO = Iter->getOperand(j);
   2475       // A register mask may clobber EFLAGS, but we should still look for a
   2476       // live EFLAGS def.
   2477       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   2478         SawKill = true;
   2479       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
   2480         if (MO.isDef()) return MO.isDead();
   2481         if (MO.isKill()) SawKill = true;
   2482       }
   2483     }
   2484 
   2485     if (SawKill)
   2486       // This instruction kills EFLAGS and doesn't redefine it, so
   2487       // there's no need to look further.
   2488       return true;
   2489   }
   2490 
   2491   // Conservative answer.
   2492   return false;
   2493 }
   2494 
   2495 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
   2496                                  MachineBasicBlock::iterator I,
   2497                                  unsigned DestReg, unsigned SubIdx,
   2498                                  const MachineInstr &Orig,
   2499                                  const TargetRegisterInfo &TRI) const {
   2500   bool ClobbersEFLAGS = false;
   2501   for (const MachineOperand &MO : Orig.operands()) {
   2502     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
   2503       ClobbersEFLAGS = true;
   2504       break;
   2505     }
   2506   }
   2507 
   2508   if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
   2509     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
   2510     // effects.
   2511     int Value;
   2512     switch (Orig.getOpcode()) {
   2513     case X86::MOV32r0:  Value = 0; break;
   2514     case X86::MOV32r1:  Value = 1; break;
   2515     case X86::MOV32r_1: Value = -1; break;
   2516     default:
   2517       llvm_unreachable("Unexpected instruction!");
   2518     }
   2519 
   2520     const DebugLoc &DL = Orig.getDebugLoc();
   2521     BuildMI(MBB, I, DL, get(X86::MOV32ri))
   2522         .addOperand(Orig.getOperand(0))
   2523         .addImm(Value);
   2524   } else {
   2525     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
   2526     MBB.insert(I, MI);
   2527   }
   2528 
   2529   MachineInstr &NewMI = *std::prev(I);
   2530   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
   2531 }
   2532 
   2533 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
   2534 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
   2535   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   2536     MachineOperand &MO = MI.getOperand(i);
   2537     if (MO.isReg() && MO.isDef() &&
   2538         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
   2539       return true;
   2540     }
   2541   }
   2542   return false;
   2543 }
   2544 
   2545 /// Check whether the shift count for a machine operand is non-zero.
   2546 inline static unsigned getTruncatedShiftCount(MachineInstr &MI,
   2547                                               unsigned ShiftAmtOperandIdx) {
   2548   // The shift count is six bits with the REX.W prefix and five bits without.
   2549   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
   2550   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
   2551   return Imm & ShiftCountMask;
   2552 }
   2553 
   2554 /// Check whether the given shift count is appropriate
   2555 /// can be represented by a LEA instruction.
   2556 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
   2557   // Left shift instructions can be transformed into load-effective-address
   2558   // instructions if we can encode them appropriately.
   2559   // A LEA instruction utilizes a SIB byte to encode its scale factor.
   2560   // The SIB.scale field is two bits wide which means that we can encode any
   2561   // shift amount less than 4.
   2562   return ShAmt < 4 && ShAmt > 0;
   2563 }
   2564 
   2565 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
   2566                                   unsigned Opc, bool AllowSP, unsigned &NewSrc,
   2567                                   bool &isKill, bool &isUndef,
   2568                                   MachineOperand &ImplicitOp) const {
   2569   MachineFunction &MF = *MI.getParent()->getParent();
   2570   const TargetRegisterClass *RC;
   2571   if (AllowSP) {
   2572     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
   2573   } else {
   2574     RC = Opc != X86::LEA32r ?
   2575       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
   2576   }
   2577   unsigned SrcReg = Src.getReg();
   2578 
   2579   // For both LEA64 and LEA32 the register already has essentially the right
   2580   // type (32-bit or 64-bit) we may just need to forbid SP.
   2581   if (Opc != X86::LEA64_32r) {
   2582     NewSrc = SrcReg;
   2583     isKill = Src.isKill();
   2584     isUndef = Src.isUndef();
   2585 
   2586     if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
   2587         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
   2588       return false;
   2589 
   2590     return true;
   2591   }
   2592 
   2593   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
   2594   // another we need to add 64-bit registers to the final MI.
   2595   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
   2596     ImplicitOp = Src;
   2597     ImplicitOp.setImplicit();
   2598 
   2599     NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
   2600     MachineBasicBlock::LivenessQueryResult LQR =
   2601         MI.getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
   2602 
   2603     switch (LQR) {
   2604     case MachineBasicBlock::LQR_Unknown:
   2605       // We can't give sane liveness flags to the instruction, abandon LEA
   2606       // formation.
   2607       return false;
   2608     case MachineBasicBlock::LQR_Live:
   2609       isKill = MI.killsRegister(SrcReg);
   2610       isUndef = false;
   2611       break;
   2612     default:
   2613       // The physreg itself is dead, so we have to use it as an <undef>.
   2614       isKill = false;
   2615       isUndef = true;
   2616       break;
   2617     }
   2618   } else {
   2619     // Virtual register of the wrong class, we have to create a temporary 64-bit
   2620     // vreg to feed into the LEA.
   2621     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
   2622     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
   2623         .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
   2624         .addOperand(Src);
   2625 
   2626     // Which is obviously going to be dead after we're done with it.
   2627     isKill = true;
   2628     isUndef = false;
   2629   }
   2630 
   2631   // We've set all the parameters without issue.
   2632   return true;
   2633 }
   2634 
   2635 /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
   2636 /// LEA to form 3-address code by promoting to a 32-bit superregister and then
   2637 /// truncating back down to a 16-bit subregister.
   2638 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
   2639     unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
   2640     LiveVariables *LV) const {
   2641   MachineBasicBlock::iterator MBBI = MI.getIterator();
   2642   unsigned Dest = MI.getOperand(0).getReg();
   2643   unsigned Src = MI.getOperand(1).getReg();
   2644   bool isDead = MI.getOperand(0).isDead();
   2645   bool isKill = MI.getOperand(1).isKill();
   2646 
   2647   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
   2648   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   2649   unsigned Opc, leaInReg;
   2650   if (Subtarget.is64Bit()) {
   2651     Opc = X86::LEA64_32r;
   2652     leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   2653   } else {
   2654     Opc = X86::LEA32r;
   2655     leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   2656   }
   2657 
   2658   // Build and insert into an implicit UNDEF value. This is OK because
   2659   // well be shifting and then extracting the lower 16-bits.
   2660   // This has the potential to cause partial register stall. e.g.
   2661   //   movw    (%rbp,%rcx,2), %dx
   2662   //   leal    -65(%rdx), %esi
   2663   // But testing has shown this *does* help performance in 64-bit mode (at
   2664   // least on modern x86 machines).
   2665   BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
   2666   MachineInstr *InsMI =
   2667       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
   2668           .addReg(leaInReg, RegState::Define, X86::sub_16bit)
   2669           .addReg(Src, getKillRegState(isKill));
   2670 
   2671   MachineInstrBuilder MIB =
   2672       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg);
   2673   switch (MIOpc) {
   2674   default: llvm_unreachable("Unreachable!");
   2675   case X86::SHL16ri: {
   2676     unsigned ShAmt = MI.getOperand(2).getImm();
   2677     MIB.addReg(0).addImm(1ULL << ShAmt)
   2678        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
   2679     break;
   2680   }
   2681   case X86::INC16r:
   2682     addRegOffset(MIB, leaInReg, true, 1);
   2683     break;
   2684   case X86::DEC16r:
   2685     addRegOffset(MIB, leaInReg, true, -1);
   2686     break;
   2687   case X86::ADD16ri:
   2688   case X86::ADD16ri8:
   2689   case X86::ADD16ri_DB:
   2690   case X86::ADD16ri8_DB:
   2691     addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm());
   2692     break;
   2693   case X86::ADD16rr:
   2694   case X86::ADD16rr_DB: {
   2695     unsigned Src2 = MI.getOperand(2).getReg();
   2696     bool isKill2 = MI.getOperand(2).isKill();
   2697     unsigned leaInReg2 = 0;
   2698     MachineInstr *InsMI2 = nullptr;
   2699     if (Src == Src2) {
   2700       // ADD16rr %reg1028<kill>, %reg1028
   2701       // just a single insert_subreg.
   2702       addRegReg(MIB, leaInReg, true, leaInReg, false);
   2703     } else {
   2704       if (Subtarget.is64Bit())
   2705         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   2706       else
   2707         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   2708       // Build and insert into an implicit UNDEF value. This is OK because
   2709       // well be shifting and then extracting the lower 16-bits.
   2710       BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
   2711       InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
   2712                    .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
   2713                    .addReg(Src2, getKillRegState(isKill2));
   2714       addRegReg(MIB, leaInReg, true, leaInReg2, true);
   2715     }
   2716     if (LV && isKill2 && InsMI2)
   2717       LV->replaceKillInstruction(Src2, MI, *InsMI2);
   2718     break;
   2719   }
   2720   }
   2721 
   2722   MachineInstr *NewMI = MIB;
   2723   MachineInstr *ExtMI =
   2724       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
   2725           .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   2726           .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
   2727 
   2728   if (LV) {
   2729     // Update live variables
   2730     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
   2731     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
   2732     if (isKill)
   2733       LV->replaceKillInstruction(Src, MI, *InsMI);
   2734     if (isDead)
   2735       LV->replaceKillInstruction(Dest, MI, *ExtMI);
   2736   }
   2737 
   2738   return ExtMI;
   2739 }
   2740 
   2741 /// This method must be implemented by targets that
   2742 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
   2743 /// may be able to convert a two-address instruction into a true
   2744 /// three-address instruction on demand.  This allows the X86 target (for
   2745 /// example) to convert ADD and SHL instructions into LEA instructions if they
   2746 /// would require register copies due to two-addressness.
   2747 ///
   2748 /// This method returns a null pointer if the transformation cannot be
   2749 /// performed, otherwise it returns the new instruction.
   2750 ///
   2751 MachineInstr *
   2752 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   2753                                     MachineInstr &MI, LiveVariables *LV) const {
   2754   // The following opcodes also sets the condition code register(s). Only
   2755   // convert them to equivalent lea if the condition code register def's
   2756   // are dead!
   2757   if (hasLiveCondCodeDef(MI))
   2758     return nullptr;
   2759 
   2760   MachineFunction &MF = *MI.getParent()->getParent();
   2761   // All instructions input are two-addr instructions.  Get the known operands.
   2762   const MachineOperand &Dest = MI.getOperand(0);
   2763   const MachineOperand &Src = MI.getOperand(1);
   2764 
   2765   MachineInstr *NewMI = nullptr;
   2766   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
   2767   // we have better subtarget support, enable the 16-bit LEA generation here.
   2768   // 16-bit LEA is also slow on Core2.
   2769   bool DisableLEA16 = true;
   2770   bool is64Bit = Subtarget.is64Bit();
   2771 
   2772   unsigned MIOpc = MI.getOpcode();
   2773   switch (MIOpc) {
   2774   default: return nullptr;
   2775   case X86::SHL64ri: {
   2776     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
   2777     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2778     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2779 
   2780     // LEA can't handle RSP.
   2781     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   2782         !MF.getRegInfo().constrainRegClass(Src.getReg(),
   2783                                            &X86::GR64_NOSPRegClass))
   2784       return nullptr;
   2785 
   2786     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
   2787                 .addOperand(Dest)
   2788                 .addReg(0)
   2789                 .addImm(1ULL << ShAmt)
   2790                 .addOperand(Src)
   2791                 .addImm(0)
   2792                 .addReg(0);
   2793     break;
   2794   }
   2795   case X86::SHL32ri: {
   2796     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
   2797     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2798     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2799 
   2800     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2801 
   2802     // LEA can't handle ESP.
   2803     bool isKill, isUndef;
   2804     unsigned SrcReg;
   2805     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2806     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2807                         SrcReg, isKill, isUndef, ImplicitOp))
   2808       return nullptr;
   2809 
   2810     MachineInstrBuilder MIB =
   2811         BuildMI(MF, MI.getDebugLoc(), get(Opc))
   2812             .addOperand(Dest)
   2813             .addReg(0)
   2814             .addImm(1ULL << ShAmt)
   2815             .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
   2816             .addImm(0)
   2817             .addReg(0);
   2818     if (ImplicitOp.getReg() != 0)
   2819       MIB.addOperand(ImplicitOp);
   2820     NewMI = MIB;
   2821 
   2822     break;
   2823   }
   2824   case X86::SHL16ri: {
   2825     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
   2826     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2827     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2828 
   2829     if (DisableLEA16)
   2830       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
   2831                      : nullptr;
   2832     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
   2833                 .addOperand(Dest)
   2834                 .addReg(0)
   2835                 .addImm(1ULL << ShAmt)
   2836                 .addOperand(Src)
   2837                 .addImm(0)
   2838                 .addReg(0);
   2839     break;
   2840   }
   2841   case X86::INC64r:
   2842   case X86::INC32r: {
   2843     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
   2844     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
   2845       : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2846     bool isKill, isUndef;
   2847     unsigned SrcReg;
   2848     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2849     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2850                         SrcReg, isKill, isUndef, ImplicitOp))
   2851       return nullptr;
   2852 
   2853     MachineInstrBuilder MIB =
   2854         BuildMI(MF, MI.getDebugLoc(), get(Opc))
   2855             .addOperand(Dest)
   2856             .addReg(SrcReg,
   2857                     getKillRegState(isKill) | getUndefRegState(isUndef));
   2858     if (ImplicitOp.getReg() != 0)
   2859       MIB.addOperand(ImplicitOp);
   2860 
   2861     NewMI = addOffset(MIB, 1);
   2862     break;
   2863   }
   2864   case X86::INC16r:
   2865     if (DisableLEA16)
   2866       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
   2867                      : nullptr;
   2868     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
   2869     NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
   2870                           .addOperand(Dest)
   2871                           .addOperand(Src),
   2872                       1);
   2873     break;
   2874   case X86::DEC64r:
   2875   case X86::DEC32r: {
   2876     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
   2877     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
   2878       : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2879 
   2880     bool isKill, isUndef;
   2881     unsigned SrcReg;
   2882     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2883     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2884                         SrcReg, isKill, isUndef, ImplicitOp))
   2885       return nullptr;
   2886 
   2887     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
   2888                                   .addOperand(Dest)
   2889                                   .addReg(SrcReg, getUndefRegState(isUndef) |
   2890                                                       getKillRegState(isKill));
   2891     if (ImplicitOp.getReg() != 0)
   2892       MIB.addOperand(ImplicitOp);
   2893 
   2894     NewMI = addOffset(MIB, -1);
   2895 
   2896     break;
   2897   }
   2898   case X86::DEC16r:
   2899     if (DisableLEA16)
   2900       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
   2901                      : nullptr;
   2902     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
   2903     NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
   2904                           .addOperand(Dest)
   2905                           .addOperand(Src),
   2906                       -1);
   2907     break;
   2908   case X86::ADD64rr:
   2909   case X86::ADD64rr_DB:
   2910   case X86::ADD32rr:
   2911   case X86::ADD32rr_DB: {
   2912     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
   2913     unsigned Opc;
   2914     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
   2915       Opc = X86::LEA64r;
   2916     else
   2917       Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2918 
   2919     bool isKill, isUndef;
   2920     unsigned SrcReg;
   2921     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2922     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2923                         SrcReg, isKill, isUndef, ImplicitOp))
   2924       return nullptr;
   2925 
   2926     const MachineOperand &Src2 = MI.getOperand(2);
   2927     bool isKill2, isUndef2;
   2928     unsigned SrcReg2;
   2929     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
   2930     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
   2931                         SrcReg2, isKill2, isUndef2, ImplicitOp2))
   2932       return nullptr;
   2933 
   2934     MachineInstrBuilder MIB =
   2935         BuildMI(MF, MI.getDebugLoc(), get(Opc)).addOperand(Dest);
   2936     if (ImplicitOp.getReg() != 0)
   2937       MIB.addOperand(ImplicitOp);
   2938     if (ImplicitOp2.getReg() != 0)
   2939       MIB.addOperand(ImplicitOp2);
   2940 
   2941     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
   2942 
   2943     // Preserve undefness of the operands.
   2944     NewMI->getOperand(1).setIsUndef(isUndef);
   2945     NewMI->getOperand(3).setIsUndef(isUndef2);
   2946 
   2947     if (LV && Src2.isKill())
   2948       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
   2949     break;
   2950   }
   2951   case X86::ADD16rr:
   2952   case X86::ADD16rr_DB: {
   2953     if (DisableLEA16)
   2954       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
   2955                      : nullptr;
   2956     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
   2957     unsigned Src2 = MI.getOperand(2).getReg();
   2958     bool isKill2 = MI.getOperand(2).isKill();
   2959     NewMI = addRegReg(
   2960         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).addOperand(Dest),
   2961         Src.getReg(), Src.isKill(), Src2, isKill2);
   2962 
   2963     // Preserve undefness of the operands.
   2964     bool isUndef = MI.getOperand(1).isUndef();
   2965     bool isUndef2 = MI.getOperand(2).isUndef();
   2966     NewMI->getOperand(1).setIsUndef(isUndef);
   2967     NewMI->getOperand(3).setIsUndef(isUndef2);
   2968 
   2969     if (LV && isKill2)
   2970       LV->replaceKillInstruction(Src2, MI, *NewMI);
   2971     break;
   2972   }
   2973   case X86::ADD64ri32:
   2974   case X86::ADD64ri8:
   2975   case X86::ADD64ri32_DB:
   2976   case X86::ADD64ri8_DB:
   2977     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
   2978     NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
   2979                           .addOperand(Dest)
   2980                           .addOperand(Src),
   2981                       MI.getOperand(2).getImm());
   2982     break;
   2983   case X86::ADD32ri:
   2984   case X86::ADD32ri8:
   2985   case X86::ADD32ri_DB:
   2986   case X86::ADD32ri8_DB: {
   2987     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
   2988     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2989 
   2990     bool isKill, isUndef;
   2991     unsigned SrcReg;
   2992     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2993     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2994                         SrcReg, isKill, isUndef, ImplicitOp))
   2995       return nullptr;
   2996 
   2997     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
   2998                                   .addOperand(Dest)
   2999                                   .addReg(SrcReg, getUndefRegState(isUndef) |
   3000                                                       getKillRegState(isKill));
   3001     if (ImplicitOp.getReg() != 0)
   3002       MIB.addOperand(ImplicitOp);
   3003 
   3004     NewMI = addOffset(MIB, MI.getOperand(2).getImm());
   3005     break;
   3006   }
   3007   case X86::ADD16ri:
   3008   case X86::ADD16ri8:
   3009   case X86::ADD16ri_DB:
   3010   case X86::ADD16ri8_DB:
   3011     if (DisableLEA16)
   3012       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
   3013                      : nullptr;
   3014     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
   3015     NewMI = addOffset(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
   3016                           .addOperand(Dest)
   3017                           .addOperand(Src),
   3018                       MI.getOperand(2).getImm());
   3019     break;
   3020   }
   3021 
   3022   if (!NewMI) return nullptr;
   3023 
   3024   if (LV) {  // Update live variables
   3025     if (Src.isKill())
   3026       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
   3027     if (Dest.isDead())
   3028       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
   3029   }
   3030 
   3031   MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
   3032   return NewMI;
   3033 }
   3034 
   3035 /// Returns true if the given instruction opcode is FMA3.
   3036 /// Otherwise, returns false.
   3037 /// The second parameter is optional and is used as the second return from
   3038 /// the function. It is set to true if the given instruction has FMA3 opcode
   3039 /// that is used for lowering of scalar FMA intrinsics, and it is set to false
   3040 /// otherwise.
   3041 static bool isFMA3(unsigned Opcode, bool *IsIntrinsic = nullptr) {
   3042   if (IsIntrinsic)
   3043     *IsIntrinsic = false;
   3044 
   3045   switch (Opcode) {
   3046     case X86::VFMADDSDr132r:      case X86::VFMADDSDr132m:
   3047     case X86::VFMADDSSr132r:      case X86::VFMADDSSr132m:
   3048     case X86::VFMSUBSDr132r:      case X86::VFMSUBSDr132m:
   3049     case X86::VFMSUBSSr132r:      case X86::VFMSUBSSr132m:
   3050     case X86::VFNMADDSDr132r:     case X86::VFNMADDSDr132m:
   3051     case X86::VFNMADDSSr132r:     case X86::VFNMADDSSr132m:
   3052     case X86::VFNMSUBSDr132r:     case X86::VFNMSUBSDr132m:
   3053     case X86::VFNMSUBSSr132r:     case X86::VFNMSUBSSr132m:
   3054 
   3055     case X86::VFMADDSDr213r:      case X86::VFMADDSDr213m:
   3056     case X86::VFMADDSSr213r:      case X86::VFMADDSSr213m:
   3057     case X86::VFMSUBSDr213r:      case X86::VFMSUBSDr213m:
   3058     case X86::VFMSUBSSr213r:      case X86::VFMSUBSSr213m:
   3059     case X86::VFNMADDSDr213r:     case X86::VFNMADDSDr213m:
   3060     case X86::VFNMADDSSr213r:     case X86::VFNMADDSSr213m:
   3061     case X86::VFNMSUBSDr213r:     case X86::VFNMSUBSDr213m:
   3062     case X86::VFNMSUBSSr213r:     case X86::VFNMSUBSSr213m:
   3063 
   3064     case X86::VFMADDSDr231r:      case X86::VFMADDSDr231m:
   3065     case X86::VFMADDSSr231r:      case X86::VFMADDSSr231m:
   3066     case X86::VFMSUBSDr231r:      case X86::VFMSUBSDr231m:
   3067     case X86::VFMSUBSSr231r:      case X86::VFMSUBSSr231m:
   3068     case X86::VFNMADDSDr231r:     case X86::VFNMADDSDr231m:
   3069     case X86::VFNMADDSSr231r:     case X86::VFNMADDSSr231m:
   3070     case X86::VFNMSUBSDr231r:     case X86::VFNMSUBSDr231m:
   3071     case X86::VFNMSUBSSr231r:     case X86::VFNMSUBSSr231m:
   3072 
   3073     case X86::VFMADDSUBPDr132r:   case X86::VFMADDSUBPDr132m:
   3074     case X86::VFMADDSUBPSr132r:   case X86::VFMADDSUBPSr132m:
   3075     case X86::VFMSUBADDPDr132r:   case X86::VFMSUBADDPDr132m:
   3076     case X86::VFMSUBADDPSr132r:   case X86::VFMSUBADDPSr132m:
   3077     case X86::VFMADDSUBPDr132rY:  case X86::VFMADDSUBPDr132mY:
   3078     case X86::VFMADDSUBPSr132rY:  case X86::VFMADDSUBPSr132mY:
   3079     case X86::VFMSUBADDPDr132rY:  case X86::VFMSUBADDPDr132mY:
   3080     case X86::VFMSUBADDPSr132rY:  case X86::VFMSUBADDPSr132mY:
   3081 
   3082     case X86::VFMADDPDr132r:      case X86::VFMADDPDr132m:
   3083     case X86::VFMADDPSr132r:      case X86::VFMADDPSr132m:
   3084     case X86::VFMSUBPDr132r:      case X86::VFMSUBPDr132m:
   3085     case X86::VFMSUBPSr132r:      case X86::VFMSUBPSr132m:
   3086     case X86::VFNMADDPDr132r:     case X86::VFNMADDPDr132m:
   3087     case X86::VFNMADDPSr132r:     case X86::VFNMADDPSr132m:
   3088     case X86::VFNMSUBPDr132r:     case X86::VFNMSUBPDr132m:
   3089     case X86::VFNMSUBPSr132r:     case X86::VFNMSUBPSr132m:
   3090     case X86::VFMADDPDr132rY:     case X86::VFMADDPDr132mY:
   3091     case X86::VFMADDPSr132rY:     case X86::VFMADDPSr132mY:
   3092     case X86::VFMSUBPDr132rY:     case X86::VFMSUBPDr132mY:
   3093     case X86::VFMSUBPSr132rY:     case X86::VFMSUBPSr132mY:
   3094     case X86::VFNMADDPDr132rY:    case X86::VFNMADDPDr132mY:
   3095     case X86::VFNMADDPSr132rY:    case X86::VFNMADDPSr132mY:
   3096     case X86::VFNMSUBPDr132rY:    case X86::VFNMSUBPDr132mY:
   3097     case X86::VFNMSUBPSr132rY:    case X86::VFNMSUBPSr132mY:
   3098 
   3099     case X86::VFMADDSUBPDr213r:   case X86::VFMADDSUBPDr213m:
   3100     case X86::VFMADDSUBPSr213r:   case X86::VFMADDSUBPSr213m:
   3101     case X86::VFMSUBADDPDr213r:   case X86::VFMSUBADDPDr213m:
   3102     case X86::VFMSUBADDPSr213r:   case X86::VFMSUBADDPSr213m:
   3103     case X86::VFMADDSUBPDr213rY:  case X86::VFMADDSUBPDr213mY:
   3104     case X86::VFMADDSUBPSr213rY:  case X86::VFMADDSUBPSr213mY:
   3105     case X86::VFMSUBADDPDr213rY:  case X86::VFMSUBADDPDr213mY:
   3106     case X86::VFMSUBADDPSr213rY:  case X86::VFMSUBADDPSr213mY:
   3107 
   3108     case X86::VFMADDPDr213r:      case X86::VFMADDPDr213m:
   3109     case X86::VFMADDPSr213r:      case X86::VFMADDPSr213m:
   3110     case X86::VFMSUBPDr213r:      case X86::VFMSUBPDr213m:
   3111     case X86::VFMSUBPSr213r:      case X86::VFMSUBPSr213m:
   3112     case X86::VFNMADDPDr213r:     case X86::VFNMADDPDr213m:
   3113     case X86::VFNMADDPSr213r:     case X86::VFNMADDPSr213m:
   3114     case X86::VFNMSUBPDr213r:     case X86::VFNMSUBPDr213m:
   3115     case X86::VFNMSUBPSr213r:     case X86::VFNMSUBPSr213m:
   3116     case X86::VFMADDPDr213rY:     case X86::VFMADDPDr213mY:
   3117     case X86::VFMADDPSr213rY:     case X86::VFMADDPSr213mY:
   3118     case X86::VFMSUBPDr213rY:     case X86::VFMSUBPDr213mY:
   3119     case X86::VFMSUBPSr213rY:     case X86::VFMSUBPSr213mY:
   3120     case X86::VFNMADDPDr213rY:    case X86::VFNMADDPDr213mY:
   3121     case X86::VFNMADDPSr213rY:    case X86::VFNMADDPSr213mY:
   3122     case X86::VFNMSUBPDr213rY:    case X86::VFNMSUBPDr213mY:
   3123     case X86::VFNMSUBPSr213rY:    case X86::VFNMSUBPSr213mY:
   3124 
   3125     case X86::VFMADDSUBPDr231r:   case X86::VFMADDSUBPDr231m:
   3126     case X86::VFMADDSUBPSr231r:   case X86::VFMADDSUBPSr231m:
   3127     case X86::VFMSUBADDPDr231r:   case X86::VFMSUBADDPDr231m:
   3128     case X86::VFMSUBADDPSr231r:   case X86::VFMSUBADDPSr231m:
   3129     case X86::VFMADDSUBPDr231rY:  case X86::VFMADDSUBPDr231mY:
   3130     case X86::VFMADDSUBPSr231rY:  case X86::VFMADDSUBPSr231mY:
   3131     case X86::VFMSUBADDPDr231rY:  case X86::VFMSUBADDPDr231mY:
   3132     case X86::VFMSUBADDPSr231rY:  case X86::VFMSUBADDPSr231mY:
   3133 
   3134     case X86::VFMADDPDr231r:      case X86::VFMADDPDr231m:
   3135     case X86::VFMADDPSr231r:      case X86::VFMADDPSr231m:
   3136     case X86::VFMSUBPDr231r:      case X86::VFMSUBPDr231m:
   3137     case X86::VFMSUBPSr231r:      case X86::VFMSUBPSr231m:
   3138     case X86::VFNMADDPDr231r:     case X86::VFNMADDPDr231m:
   3139     case X86::VFNMADDPSr231r:     case X86::VFNMADDPSr231m:
   3140     case X86::VFNMSUBPDr231r:     case X86::VFNMSUBPDr231m:
   3141     case X86::VFNMSUBPSr231r:     case X86::VFNMSUBPSr231m:
   3142     case X86::VFMADDPDr231rY:     case X86::VFMADDPDr231mY:
   3143     case X86::VFMADDPSr231rY:     case X86::VFMADDPSr231mY:
   3144     case X86::VFMSUBPDr231rY:     case X86::VFMSUBPDr231mY:
   3145     case X86::VFMSUBPSr231rY:     case X86::VFMSUBPSr231mY:
   3146     case X86::VFNMADDPDr231rY:    case X86::VFNMADDPDr231mY:
   3147     case X86::VFNMADDPSr231rY:    case X86::VFNMADDPSr231mY:
   3148     case X86::VFNMSUBPDr231rY:    case X86::VFNMSUBPDr231mY:
   3149     case X86::VFNMSUBPSr231rY:    case X86::VFNMSUBPSr231mY:
   3150       return true;
   3151 
   3152     case X86::VFMADDSDr132r_Int:  case X86::VFMADDSDr132m_Int:
   3153     case X86::VFMADDSSr132r_Int:  case X86::VFMADDSSr132m_Int:
   3154     case X86::VFMSUBSDr132r_Int:  case X86::VFMSUBSDr132m_Int:
   3155     case X86::VFMSUBSSr132r_Int:  case X86::VFMSUBSSr132m_Int:
   3156     case X86::VFNMADDSDr132r_Int: case X86::VFNMADDSDr132m_Int:
   3157     case X86::VFNMADDSSr132r_Int: case X86::VFNMADDSSr132m_Int:
   3158     case X86::VFNMSUBSDr132r_Int: case X86::VFNMSUBSDr132m_Int:
   3159     case X86::VFNMSUBSSr132r_Int: case X86::VFNMSUBSSr132m_Int:
   3160 
   3161     case X86::VFMADDSDr213r_Int:  case X86::VFMADDSDr213m_Int:
   3162     case X86::VFMADDSSr213r_Int:  case X86::VFMADDSSr213m_Int:
   3163     case X86::VFMSUBSDr213r_Int:  case X86::VFMSUBSDr213m_Int:
   3164     case X86::VFMSUBSSr213r_Int:  case X86::VFMSUBSSr213m_Int:
   3165     case X86::VFNMADDSDr213r_Int: case X86::VFNMADDSDr213m_Int:
   3166     case X86::VFNMADDSSr213r_Int: case X86::VFNMADDSSr213m_Int:
   3167     case X86::VFNMSUBSDr213r_Int: case X86::VFNMSUBSDr213m_Int:
   3168     case X86::VFNMSUBSSr213r_Int: case X86::VFNMSUBSSr213m_Int:
   3169 
   3170     case X86::VFMADDSDr231r_Int:  case X86::VFMADDSDr231m_Int:
   3171     case X86::VFMADDSSr231r_Int:  case X86::VFMADDSSr231m_Int:
   3172     case X86::VFMSUBSDr231r_Int:  case X86::VFMSUBSDr231m_Int:
   3173     case X86::VFMSUBSSr231r_Int:  case X86::VFMSUBSSr231m_Int:
   3174     case X86::VFNMADDSDr231r_Int: case X86::VFNMADDSDr231m_Int:
   3175     case X86::VFNMADDSSr231r_Int: case X86::VFNMADDSSr231m_Int:
   3176     case X86::VFNMSUBSDr231r_Int: case X86::VFNMSUBSDr231m_Int:
   3177     case X86::VFNMSUBSSr231r_Int: case X86::VFNMSUBSSr231m_Int:
   3178       if (IsIntrinsic)
   3179         *IsIntrinsic = true;
   3180       return true;
   3181     default:
   3182       return false;
   3183   }
   3184   llvm_unreachable("Opcode not handled by the switch");
   3185 }
   3186 
   3187 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
   3188                                                    unsigned OpIdx1,
   3189                                                    unsigned OpIdx2) const {
   3190   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
   3191     if (NewMI)
   3192       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
   3193     return MI;
   3194   };
   3195 
   3196   switch (MI.getOpcode()) {
   3197   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
   3198   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
   3199   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
   3200   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
   3201   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
   3202   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
   3203     unsigned Opc;
   3204     unsigned Size;
   3205     switch (MI.getOpcode()) {
   3206     default: llvm_unreachable("Unreachable!");
   3207     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
   3208     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
   3209     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
   3210     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
   3211     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
   3212     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
   3213     }
   3214     unsigned Amt = MI.getOperand(3).getImm();
   3215     auto &WorkingMI = cloneIfNew(MI);
   3216     WorkingMI.setDesc(get(Opc));
   3217     WorkingMI.getOperand(3).setImm(Size - Amt);
   3218     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
   3219                                                    OpIdx1, OpIdx2);
   3220   }
   3221   case X86::BLENDPDrri:
   3222   case X86::BLENDPSrri:
   3223   case X86::PBLENDWrri:
   3224   case X86::VBLENDPDrri:
   3225   case X86::VBLENDPSrri:
   3226   case X86::VBLENDPDYrri:
   3227   case X86::VBLENDPSYrri:
   3228   case X86::VPBLENDDrri:
   3229   case X86::VPBLENDWrri:
   3230   case X86::VPBLENDDYrri:
   3231   case X86::VPBLENDWYrri:{
   3232     unsigned Mask;
   3233     switch (MI.getOpcode()) {
   3234     default: llvm_unreachable("Unreachable!");
   3235     case X86::BLENDPDrri:    Mask = 0x03; break;
   3236     case X86::BLENDPSrri:    Mask = 0x0F; break;
   3237     case X86::PBLENDWrri:    Mask = 0xFF; break;
   3238     case X86::VBLENDPDrri:   Mask = 0x03; break;
   3239     case X86::VBLENDPSrri:   Mask = 0x0F; break;
   3240     case X86::VBLENDPDYrri:  Mask = 0x0F; break;
   3241     case X86::VBLENDPSYrri:  Mask = 0xFF; break;
   3242     case X86::VPBLENDDrri:   Mask = 0x0F; break;
   3243     case X86::VPBLENDWrri:   Mask = 0xFF; break;
   3244     case X86::VPBLENDDYrri:  Mask = 0xFF; break;
   3245     case X86::VPBLENDWYrri:  Mask = 0xFF; break;
   3246     }
   3247     // Only the least significant bits of Imm are used.
   3248     unsigned Imm = MI.getOperand(3).getImm() & Mask;
   3249     auto &WorkingMI = cloneIfNew(MI);
   3250     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
   3251     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
   3252                                                    OpIdx1, OpIdx2);
   3253   }
   3254   case X86::PCLMULQDQrr:
   3255   case X86::VPCLMULQDQrr:{
   3256     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
   3257     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
   3258     unsigned Imm = MI.getOperand(3).getImm();
   3259     unsigned Src1Hi = Imm & 0x01;
   3260     unsigned Src2Hi = Imm & 0x10;
   3261     auto &WorkingMI = cloneIfNew(MI);
   3262     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
   3263     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
   3264                                                    OpIdx1, OpIdx2);
   3265   }
   3266   case X86::CMPPDrri:
   3267   case X86::CMPPSrri:
   3268   case X86::VCMPPDrri:
   3269   case X86::VCMPPSrri:
   3270   case X86::VCMPPDYrri:
   3271   case X86::VCMPPSYrri: {
   3272     // Float comparison can be safely commuted for
   3273     // Ordered/Unordered/Equal/NotEqual tests
   3274     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
   3275     switch (Imm) {
   3276     case 0x00: // EQUAL
   3277     case 0x03: // UNORDERED
   3278     case 0x04: // NOT EQUAL
   3279     case 0x07: // ORDERED
   3280       return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
   3281     default:
   3282       return nullptr;
   3283     }
   3284   }
   3285   case X86::VPCOMBri: case X86::VPCOMUBri:
   3286   case X86::VPCOMDri: case X86::VPCOMUDri:
   3287   case X86::VPCOMQri: case X86::VPCOMUQri:
   3288   case X86::VPCOMWri: case X86::VPCOMUWri: {
   3289     // Flip comparison mode immediate (if necessary).
   3290     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
   3291     switch (Imm) {
   3292     case 0x00: Imm = 0x02; break; // LT -> GT
   3293     case 0x01: Imm = 0x03; break; // LE -> GE
   3294     case 0x02: Imm = 0x00; break; // GT -> LT
   3295     case 0x03: Imm = 0x01; break; // GE -> LE
   3296     case 0x04: // EQ
   3297     case 0x05: // NE
   3298     case 0x06: // FALSE
   3299     case 0x07: // TRUE
   3300     default:
   3301       break;
   3302     }
   3303     auto &WorkingMI = cloneIfNew(MI);
   3304     WorkingMI.getOperand(3).setImm(Imm);
   3305     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
   3306                                                    OpIdx1, OpIdx2);
   3307   }
   3308   case X86::VPERM2F128rr:
   3309   case X86::VPERM2I128rr: {
   3310     // Flip permute source immediate.
   3311     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
   3312     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
   3313     unsigned Imm = MI.getOperand(3).getImm() & 0xFF;
   3314     auto &WorkingMI = cloneIfNew(MI);
   3315     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
   3316     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
   3317                                                    OpIdx1, OpIdx2);
   3318   }
   3319   case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
   3320   case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
   3321   case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
   3322   case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
   3323   case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
   3324   case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
   3325   case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
   3326   case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
   3327   case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
   3328   case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
   3329   case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
   3330   case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
   3331   case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
   3332   case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
   3333   case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
   3334   case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
   3335     unsigned Opc;
   3336     switch (MI.getOpcode()) {
   3337     default: llvm_unreachable("Unreachable!");
   3338     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
   3339     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
   3340     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
   3341     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
   3342     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
   3343     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
   3344     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
   3345     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
   3346     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
   3347     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
   3348     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
   3349     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
   3350     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
   3351     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
   3352     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
   3353     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
   3354     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
   3355     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
   3356     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
   3357     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
   3358     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
   3359     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
   3360     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
   3361     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
   3362     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
   3363     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
   3364     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
   3365     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
   3366     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
   3367     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
   3368     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
   3369     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
   3370     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
   3371     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
   3372     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
   3373     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
   3374     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
   3375     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
   3376     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
   3377     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
   3378     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
   3379     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
   3380     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
   3381     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
   3382     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
   3383     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
   3384     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
   3385     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
   3386     }
   3387     auto &WorkingMI = cloneIfNew(MI);
   3388     WorkingMI.setDesc(get(Opc));
   3389     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
   3390                                                    OpIdx1, OpIdx2);
   3391   }
   3392   default:
   3393     if (isFMA3(MI.getOpcode())) {
   3394       unsigned Opc = getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2);
   3395       if (Opc == 0)
   3396         return nullptr;
   3397       auto &WorkingMI = cloneIfNew(MI);
   3398       WorkingMI.setDesc(get(Opc));
   3399       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
   3400                                                      OpIdx1, OpIdx2);
   3401     }
   3402 
   3403     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
   3404   }
   3405 }
   3406 
   3407 bool X86InstrInfo::findFMA3CommutedOpIndices(MachineInstr &MI,
   3408                                              unsigned &SrcOpIdx1,
   3409                                              unsigned &SrcOpIdx2) const {
   3410 
   3411   unsigned RegOpsNum = isMem(MI, 3) ? 2 : 3;
   3412 
   3413   // Only the first RegOpsNum operands are commutable.
   3414   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
   3415   // that the operand is not specified/fixed.
   3416   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
   3417       (SrcOpIdx1 < 1 || SrcOpIdx1 > RegOpsNum))
   3418     return false;
   3419   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
   3420       (SrcOpIdx2 < 1 || SrcOpIdx2 > RegOpsNum))
   3421     return false;
   3422 
   3423   // Look for two different register operands assumed to be commutable
   3424   // regardless of the FMA opcode. The FMA opcode is adjusted later.
   3425   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
   3426       SrcOpIdx2 == CommuteAnyOperandIndex) {
   3427     unsigned CommutableOpIdx1 = SrcOpIdx1;
   3428     unsigned CommutableOpIdx2 = SrcOpIdx2;
   3429 
   3430     // At least one of operands to be commuted is not specified and
   3431     // this method is free to choose appropriate commutable operands.
   3432     if (SrcOpIdx1 == SrcOpIdx2)
   3433       // Both of operands are not fixed. By default set one of commutable
   3434       // operands to the last register operand of the instruction.
   3435       CommutableOpIdx2 = RegOpsNum;
   3436     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
   3437       // Only one of operands is not fixed.
   3438       CommutableOpIdx2 = SrcOpIdx1;
   3439 
   3440     // CommutableOpIdx2 is well defined now. Let's choose another commutable
   3441     // operand and assign its index to CommutableOpIdx1.
   3442     unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
   3443     for (CommutableOpIdx1 = RegOpsNum; CommutableOpIdx1 > 0; CommutableOpIdx1--) {
   3444       // The commuted operands must have different registers.
   3445       // Otherwise, the commute transformation does not change anything and
   3446       // is useless then.
   3447       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
   3448         break;
   3449     }
   3450 
   3451     // No appropriate commutable operands were found.
   3452     if (CommutableOpIdx1 == 0)
   3453       return false;
   3454 
   3455     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
   3456     // to return those values.
   3457     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
   3458                               CommutableOpIdx1, CommutableOpIdx2))
   3459       return false;
   3460   }
   3461 
   3462   // Check if we can adjust the opcode to preserve the semantics when
   3463   // commute the register operands.
   3464   return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2) != 0;
   3465 }
   3466 
   3467 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
   3468     MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2) const {
   3469   unsigned Opc = MI.getOpcode();
   3470 
   3471   // Define the array that holds FMA opcodes in groups
   3472   // of 3 opcodes(132, 213, 231) in each group.
   3473   static const uint16_t RegularOpcodeGroups[][3] = {
   3474     { X86::VFMADDSSr132r,   X86::VFMADDSSr213r,   X86::VFMADDSSr231r  },
   3475     { X86::VFMADDSDr132r,   X86::VFMADDSDr213r,   X86::VFMADDSDr231r  },
   3476     { X86::VFMADDPSr132r,   X86::VFMADDPSr213r,   X86::VFMADDPSr231r  },
   3477     { X86::VFMADDPDr132r,   X86::VFMADDPDr213r,   X86::VFMADDPDr231r  },
   3478     { X86::VFMADDPSr132rY,  X86::VFMADDPSr213rY,  X86::VFMADDPSr231rY },
   3479     { X86::VFMADDPDr132rY,  X86::VFMADDPDr213rY,  X86::VFMADDPDr231rY },
   3480     { X86::VFMADDSSr132m,   X86::VFMADDSSr213m,   X86::VFMADDSSr231m  },
   3481     { X86::VFMADDSDr132m,   X86::VFMADDSDr213m,   X86::VFMADDSDr231m  },
   3482     { X86::VFMADDPSr132m,   X86::VFMADDPSr213m,   X86::VFMADDPSr231m  },
   3483     { X86::VFMADDPDr132m,   X86::VFMADDPDr213m,   X86::VFMADDPDr231m  },
   3484     { X86::VFMADDPSr132mY,  X86::VFMADDPSr213mY,  X86::VFMADDPSr231mY },
   3485     { X86::VFMADDPDr132mY,  X86::VFMADDPDr213mY,  X86::VFMADDPDr231mY },
   3486 
   3487     { X86::VFMSUBSSr132r,   X86::VFMSUBSSr213r,   X86::VFMSUBSSr231r  },
   3488     { X86::VFMSUBSDr132r,   X86::VFMSUBSDr213r,   X86::VFMSUBSDr231r  },
   3489     { X86::VFMSUBPSr132r,   X86::VFMSUBPSr213r,   X86::VFMSUBPSr231r  },
   3490     { X86::VFMSUBPDr132r,   X86::VFMSUBPDr213r,   X86::VFMSUBPDr231r  },
   3491     { X86::VFMSUBPSr132rY,  X86::VFMSUBPSr213rY,  X86::VFMSUBPSr231rY },
   3492     { X86::VFMSUBPDr132rY,  X86::VFMSUBPDr213rY,  X86::VFMSUBPDr231rY },
   3493     { X86::VFMSUBSSr132m,   X86::VFMSUBSSr213m,   X86::VFMSUBSSr231m  },
   3494     { X86::VFMSUBSDr132m,   X86::VFMSUBSDr213m,   X86::VFMSUBSDr231m  },
   3495     { X86::VFMSUBPSr132m,   X86::VFMSUBPSr213m,   X86::VFMSUBPSr231m  },
   3496     { X86::VFMSUBPDr132m,   X86::VFMSUBPDr213m,   X86::VFMSUBPDr231m  },
   3497     { X86::VFMSUBPSr132mY,  X86::VFMSUBPSr213mY,  X86::VFMSUBPSr231mY },
   3498     { X86::VFMSUBPDr132mY,  X86::VFMSUBPDr213mY,  X86::VFMSUBPDr231mY },
   3499 
   3500     { X86::VFNMADDSSr132r,  X86::VFNMADDSSr213r,  X86::VFNMADDSSr231r  },
   3501     { X86::VFNMADDSDr132r,  X86::VFNMADDSDr213r,  X86::VFNMADDSDr231r  },
   3502     { X86::VFNMADDPSr132r,  X86::VFNMADDPSr213r,  X86::VFNMADDPSr231r  },
   3503     { X86::VFNMADDPDr132r,  X86::VFNMADDPDr213r,  X86::VFNMADDPDr231r  },
   3504     { X86::VFNMADDPSr132rY, X86::VFNMADDPSr213rY, X86::VFNMADDPSr231rY },
   3505     { X86::VFNMADDPDr132rY, X86::VFNMADDPDr213rY, X86::VFNMADDPDr231rY },
   3506     { X86::VFNMADDSSr132m,  X86::VFNMADDSSr213m,  X86::VFNMADDSSr231m  },
   3507     { X86::VFNMADDSDr132m,  X86::VFNMADDSDr213m,  X86::VFNMADDSDr231m  },
   3508     { X86::VFNMADDPSr132m,  X86::VFNMADDPSr213m,  X86::VFNMADDPSr231m  },
   3509     { X86::VFNMADDPDr132m,  X86::VFNMADDPDr213m,  X86::VFNMADDPDr231m  },
   3510     { X86::VFNMADDPSr132mY, X86::VFNMADDPSr213mY, X86::VFNMADDPSr231mY },
   3511     { X86::VFNMADDPDr132mY, X86::VFNMADDPDr213mY, X86::VFNMADDPDr231mY },
   3512 
   3513     { X86::VFNMSUBSSr132r,  X86::VFNMSUBSSr213r,  X86::VFNMSUBSSr231r  },
   3514     { X86::VFNMSUBSDr132r,  X86::VFNMSUBSDr213r,  X86::VFNMSUBSDr231r  },
   3515     { X86::VFNMSUBPSr132r,  X86::VFNMSUBPSr213r,  X86::VFNMSUBPSr231r  },
   3516     { X86::VFNMSUBPDr132r,  X86::VFNMSUBPDr213r,  X86::VFNMSUBPDr231r  },
   3517     { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr231rY },
   3518     { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr231rY },
   3519     { X86::VFNMSUBSSr132m,  X86::VFNMSUBSSr213m,  X86::VFNMSUBSSr231m  },
   3520     { X86::VFNMSUBSDr132m,  X86::VFNMSUBSDr213m,  X86::VFNMSUBSDr231m  },
   3521     { X86::VFNMSUBPSr132m,  X86::VFNMSUBPSr213m,  X86::VFNMSUBPSr231m  },
   3522     { X86::VFNMSUBPDr132m,  X86::VFNMSUBPDr213m,  X86::VFNMSUBPDr231m  },
   3523     { X86::VFNMSUBPSr132mY, X86::VFNMSUBPSr213mY, X86::VFNMSUBPSr231mY },
   3524     { X86::VFNMSUBPDr132mY, X86::VFNMSUBPDr213mY, X86::VFNMSUBPDr231mY },
   3525 
   3526     { X86::VFMADDSUBPSr132r,  X86::VFMADDSUBPSr213r,  X86::VFMADDSUBPSr231r  },
   3527     { X86::VFMADDSUBPDr132r,  X86::VFMADDSUBPDr213r,  X86::VFMADDSUBPDr231r  },
   3528     { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr231rY },
   3529     { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr231rY },
   3530     { X86::VFMADDSUBPSr132m,  X86::VFMADDSUBPSr213m,  X86::VFMADDSUBPSr231m  },
   3531     { X86::VFMADDSUBPDr132m,  X86::VFMADDSUBPDr213m,  X86::VFMADDSUBPDr231m  },
   3532     { X86::VFMADDSUBPSr132mY, X86::VFMADDSUBPSr213mY, X86::VFMADDSUBPSr231mY },
   3533     { X86::VFMADDSUBPDr132mY, X86::VFMADDSUBPDr213mY, X86::VFMADDSUBPDr231mY },
   3534 
   3535     { X86::VFMSUBADDPSr132r,  X86::VFMSUBADDPSr213r,  X86::VFMSUBADDPSr231r  },
   3536     { X86::VFMSUBADDPDr132r,  X86::VFMSUBADDPDr213r,  X86::VFMSUBADDPDr231r  },
   3537     { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr231rY },
   3538     { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr231rY },
   3539     { X86::VFMSUBADDPSr132m,  X86::VFMSUBADDPSr213m,  X86::VFMSUBADDPSr231m  },
   3540     { X86::VFMSUBADDPDr132m,  X86::VFMSUBADDPDr213m,  X86::VFMSUBADDPDr231m  },
   3541     { X86::VFMSUBADDPSr132mY, X86::VFMSUBADDPSr213mY, X86::VFMSUBADDPSr231mY },
   3542     { X86::VFMSUBADDPDr132mY, X86::VFMSUBADDPDr213mY, X86::VFMSUBADDPDr231mY }
   3543   };
   3544 
   3545   // Define the array that holds FMA*_Int opcodes in groups
   3546   // of 3 opcodes(132, 213, 231) in each group.
   3547   static const uint16_t IntrinOpcodeGroups[][3] = {
   3548     { X86::VFMADDSSr132r_Int,  X86::VFMADDSSr213r_Int,  X86::VFMADDSSr231r_Int },
   3549     { X86::VFMADDSDr132r_Int,  X86::VFMADDSDr213r_Int,  X86::VFMADDSDr231r_Int },
   3550     { X86::VFMADDSSr132m_Int,  X86::VFMADDSSr213m_Int,  X86::VFMADDSSr231m_Int },
   3551     { X86::VFMADDSDr132m_Int,  X86::VFMADDSDr213m_Int,  X86::VFMADDSDr231m_Int },
   3552 
   3553     { X86::VFMSUBSSr132r_Int,  X86::VFMSUBSSr213r_Int,  X86::VFMSUBSSr231r_Int },
   3554     { X86::VFMSUBSDr132r_Int,  X86::VFMSUBSDr213r_Int,  X86::VFMSUBSDr231r_Int },
   3555     { X86::VFMSUBSSr132m_Int,  X86::VFMSUBSSr213m_Int,  X86::VFMSUBSSr231m_Int },
   3556     { X86::VFMSUBSDr132m_Int,  X86::VFMSUBSDr213m_Int,  X86::VFMSUBSDr231m_Int },
   3557 
   3558     { X86::VFNMADDSSr132r_Int, X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr231r_Int },
   3559     { X86::VFNMADDSDr132r_Int, X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr231r_Int },
   3560     { X86::VFNMADDSSr132m_Int, X86::VFNMADDSSr213m_Int, X86::VFNMADDSSr231m_Int },
   3561     { X86::VFNMADDSDr132m_Int, X86::VFNMADDSDr213m_Int, X86::VFNMADDSDr231m_Int },
   3562 
   3563     { X86::VFNMSUBSSr132r_Int, X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr231r_Int },
   3564     { X86::VFNMSUBSDr132r_Int, X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr231r_Int },
   3565     { X86::VFNMSUBSSr132m_Int, X86::VFNMSUBSSr213m_Int, X86::VFNMSUBSSr231m_Int },
   3566     { X86::VFNMSUBSDr132m_Int, X86::VFNMSUBSDr213m_Int, X86::VFNMSUBSDr231m_Int },
   3567   };
   3568 
   3569   const unsigned Form132Index = 0;
   3570   const unsigned Form213Index = 1;
   3571   const unsigned Form231Index = 2;
   3572   const unsigned FormsNum = 3;
   3573 
   3574   bool IsIntrinOpcode;
   3575   isFMA3(Opc, &IsIntrinOpcode);
   3576 
   3577   size_t GroupsNum;
   3578   const uint16_t (*OpcodeGroups)[3];
   3579   if (IsIntrinOpcode) {
   3580     GroupsNum = array_lengthof(IntrinOpcodeGroups);
   3581     OpcodeGroups = IntrinOpcodeGroups;
   3582   } else {
   3583     GroupsNum = array_lengthof(RegularOpcodeGroups);
   3584     OpcodeGroups = RegularOpcodeGroups;
   3585   }
   3586 
   3587   const uint16_t *FoundOpcodesGroup = nullptr;
   3588   size_t FormIndex;
   3589 
   3590   // Look for the input opcode in the corresponding opcodes table.
   3591   for (size_t GroupIndex = 0; GroupIndex < GroupsNum && !FoundOpcodesGroup;
   3592          ++GroupIndex) {
   3593     for (FormIndex = 0; FormIndex < FormsNum; ++FormIndex) {
   3594       if (OpcodeGroups[GroupIndex][FormIndex] == Opc) {
   3595         FoundOpcodesGroup = OpcodeGroups[GroupIndex];
   3596         break;
   3597       }
   3598     }
   3599   }
   3600 
   3601   // The input opcode does not match with any of the opcodes from the tables.
   3602   // The unsupported FMA opcode must be added to one of the two opcode groups
   3603   // defined above.
   3604   assert(FoundOpcodesGroup != nullptr && "Unexpected FMA3 opcode");
   3605 
   3606   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
   3607   if (SrcOpIdx1 > SrcOpIdx2)
   3608     std::swap(SrcOpIdx1, SrcOpIdx2);
   3609 
   3610   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
   3611   // analysis. The commute optimization is legal only if all users of FMA*_Int
   3612   // use only the lowest element of the FMA*_Int instruction. Such analysis are
   3613   // not implemented yet. So, just return 0 in that case.
   3614   // When such analysis are available this place will be the right place for
   3615   // calling it.
   3616   if (IsIntrinOpcode && SrcOpIdx1 == 1)
   3617     return 0;
   3618 
   3619   unsigned Case;
   3620   if (SrcOpIdx1 == 1 && SrcOpIdx2 == 2)
   3621     Case = 0;
   3622   else if (SrcOpIdx1 == 1 && SrcOpIdx2 == 3)
   3623     Case = 1;
   3624   else if (SrcOpIdx1 == 2 && SrcOpIdx2 == 3)
   3625     Case = 2;
   3626   else
   3627     return 0;
   3628 
   3629   // Define the FMA forms mapping array that helps to map input FMA form
   3630   // to output FMA form to preserve the operation semantics after
   3631   // commuting the operands.
   3632   static const unsigned FormMapping[][3] = {
   3633     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
   3634     // FMA132 A, C, b; ==> FMA231 C, A, b;
   3635     // FMA213 B, A, c; ==> FMA213 A, B, c;
   3636     // FMA231 C, A, b; ==> FMA132 A, C, b;
   3637     { Form231Index, Form213Index, Form132Index },
   3638     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
   3639     // FMA132 A, c, B; ==> FMA132 B, c, A;
   3640     // FMA213 B, a, C; ==> FMA231 C, a, B;
   3641     // FMA231 C, a, B; ==> FMA213 B, a, C;
   3642     { Form132Index, Form231Index, Form213Index },
   3643     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
   3644     // FMA132 a, C, B; ==> FMA213 a, B, C;
   3645     // FMA213 b, A, C; ==> FMA132 b, C, A;
   3646     // FMA231 c, A, B; ==> FMA231 c, B, A;
   3647     { Form213Index, Form132Index, Form231Index }
   3648   };
   3649 
   3650   // Everything is ready, just adjust the FMA opcode and return it.
   3651   FormIndex = FormMapping[Case][FormIndex];
   3652   return FoundOpcodesGroup[FormIndex];
   3653 }
   3654 
   3655 bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
   3656                                          unsigned &SrcOpIdx2) const {
   3657   switch (MI.getOpcode()) {
   3658   case X86::CMPPDrri:
   3659   case X86::CMPPSrri:
   3660   case X86::VCMPPDrri:
   3661   case X86::VCMPPSrri:
   3662   case X86::VCMPPDYrri:
   3663   case X86::VCMPPSYrri: {
   3664     // Float comparison can be safely commuted for
   3665     // Ordered/Unordered/Equal/NotEqual tests
   3666     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
   3667     switch (Imm) {
   3668     case 0x00: // EQUAL
   3669     case 0x03: // UNORDERED
   3670     case 0x04: // NOT EQUAL
   3671     case 0x07: // ORDERED
   3672       // The indices of the commutable operands are 1 and 2.
   3673       // Assign them to the returned operand indices here.
   3674       return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
   3675     }
   3676     return false;
   3677   }
   3678   default:
   3679     if (isFMA3(MI.getOpcode()))
   3680       return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
   3681     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
   3682   }
   3683   return false;
   3684 }
   3685 
   3686 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
   3687   switch (BrOpc) {
   3688   default: return X86::COND_INVALID;
   3689   case X86::JE_1:  return X86::COND_E;
   3690   case X86::JNE_1: return X86::COND_NE;
   3691   case X86::JL_1:  return X86::COND_L;
   3692   case X86::JLE_1: return X86::COND_LE;
   3693   case X86::JG_1:  return X86::COND_G;
   3694   case X86::JGE_1: return X86::COND_GE;
   3695   case X86::JB_1:  return X86::COND_B;
   3696   case X86::JBE_1: return X86::COND_BE;
   3697   case X86::JA_1:  return X86::COND_A;
   3698   case X86::JAE_1: return X86::COND_AE;
   3699   case X86::JS_1:  return X86::COND_S;
   3700   case X86::JNS_1: return X86::COND_NS;
   3701   case X86::JP_1:  return X86::COND_P;
   3702   case X86::JNP_1: return X86::COND_NP;
   3703   case X86::JO_1:  return X86::COND_O;
   3704   case X86::JNO_1: return X86::COND_NO;
   3705   }
   3706 }
   3707 
   3708 /// Return condition code of a SET opcode.
   3709 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
   3710   switch (Opc) {
   3711   default: return X86::COND_INVALID;
   3712   case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
   3713   case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
   3714   case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
   3715   case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
   3716   case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
   3717   case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
   3718   case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
   3719   case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
   3720   case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
   3721   case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
   3722   case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
   3723   case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
   3724   case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
   3725   case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
   3726   case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
   3727   case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
   3728   }
   3729 }
   3730 
   3731 /// Return condition code of a CMov opcode.
   3732 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
   3733   switch (Opc) {
   3734   default: return X86::COND_INVALID;
   3735   case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
   3736   case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
   3737     return X86::COND_A;
   3738   case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
   3739   case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
   3740     return X86::COND_AE;
   3741   case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
   3742   case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
   3743     return X86::COND_B;
   3744   case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
   3745   case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
   3746     return X86::COND_BE;
   3747   case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
   3748   case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
   3749     return X86::COND_E;
   3750   case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
   3751   case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
   3752     return X86::COND_G;
   3753   case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
   3754   case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
   3755     return X86::COND_GE;
   3756   case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
   3757   case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
   3758     return X86::COND_L;
   3759   case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
   3760   case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
   3761     return X86::COND_LE;
   3762   case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
   3763   case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
   3764     return X86::COND_NE;
   3765   case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
   3766   case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
   3767     return X86::COND_NO;
   3768   case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
   3769   case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
   3770     return X86::COND_NP;
   3771   case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
   3772   case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
   3773     return X86::COND_NS;
   3774   case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
   3775   case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
   3776     return X86::COND_O;
   3777   case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
   3778   case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
   3779     return X86::COND_P;
   3780   case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
   3781   case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
   3782     return X86::COND_S;
   3783   }
   3784 }
   3785 
   3786 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
   3787   switch (CC) {
   3788   default: llvm_unreachable("Illegal condition code!");
   3789   case X86::COND_E:  return X86::JE_1;
   3790   case X86::COND_NE: return X86::JNE_1;
   3791   case X86::COND_L:  return X86::JL_1;
   3792   case X86::COND_LE: return X86::JLE_1;
   3793   case X86::COND_G:  return X86::JG_1;
   3794   case X86::COND_GE: return X86::JGE_1;
   3795   case X86::COND_B:  return X86::JB_1;
   3796   case X86::COND_BE: return X86::JBE_1;
   3797   case X86::COND_A:  return X86::JA_1;
   3798   case X86::COND_AE: return X86::JAE_1;
   3799   case X86::COND_S:  return X86::JS_1;
   3800   case X86::COND_NS: return X86::JNS_1;
   3801   case X86::COND_P:  return X86::JP_1;
   3802   case X86::COND_NP: return X86::JNP_1;
   3803   case X86::COND_O:  return X86::JO_1;
   3804   case X86::COND_NO: return X86::JNO_1;
   3805   }
   3806 }
   3807 
   3808 /// Return the inverse of the specified condition,
   3809 /// e.g. turning COND_E to COND_NE.
   3810 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
   3811   switch (CC) {
   3812   default: llvm_unreachable("Illegal condition code!");
   3813   case X86::COND_E:  return X86::COND_NE;
   3814   case X86::COND_NE: return X86::COND_E;
   3815   case X86::COND_L:  return X86::COND_GE;
   3816   case X86::COND_LE: return X86::COND_G;
   3817   case X86::COND_G:  return X86::COND_LE;
   3818   case X86::COND_GE: return X86::COND_L;
   3819   case X86::COND_B:  return X86::COND_AE;
   3820   case X86::COND_BE: return X86::COND_A;
   3821   case X86::COND_A:  return X86::COND_BE;
   3822   case X86::COND_AE: return X86::COND_B;
   3823   case X86::COND_S:  return X86::COND_NS;
   3824   case X86::COND_NS: return X86::COND_S;
   3825   case X86::COND_P:  return X86::COND_NP;
   3826   case X86::COND_NP: return X86::COND_P;
   3827   case X86::COND_O:  return X86::COND_NO;
   3828   case X86::COND_NO: return X86::COND_O;
   3829   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
   3830   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
   3831   }
   3832 }
   3833 
   3834 /// Assuming the flags are set by MI(a,b), return the condition code if we
   3835 /// modify the instructions such that flags are set by MI(b,a).
   3836 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
   3837   switch (CC) {
   3838   default: return X86::COND_INVALID;
   3839   case X86::COND_E:  return X86::COND_E;
   3840   case X86::COND_NE: return X86::COND_NE;
   3841   case X86::COND_L:  return X86::COND_G;
   3842   case X86::COND_LE: return X86::COND_GE;
   3843   case X86::COND_G:  return X86::COND_L;
   3844   case X86::COND_GE: return X86::COND_LE;
   3845   case X86::COND_B:  return X86::COND_A;
   3846   case X86::COND_BE: return X86::COND_AE;
   3847   case X86::COND_A:  return X86::COND_B;
   3848   case X86::COND_AE: return X86::COND_BE;
   3849   }
   3850 }
   3851 
   3852 /// Return a set opcode for the given condition and
   3853 /// whether it has memory operand.
   3854 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
   3855   static const uint16_t Opc[16][2] = {
   3856     { X86::SETAr,  X86::SETAm  },
   3857     { X86::SETAEr, X86::SETAEm },
   3858     { X86::SETBr,  X86::SETBm  },
   3859     { X86::SETBEr, X86::SETBEm },
   3860     { X86::SETEr,  X86::SETEm  },
   3861     { X86::SETGr,  X86::SETGm  },
   3862     { X86::SETGEr, X86::SETGEm },
   3863     { X86::SETLr,  X86::SETLm  },
   3864     { X86::SETLEr, X86::SETLEm },
   3865     { X86::SETNEr, X86::SETNEm },
   3866     { X86::SETNOr, X86::SETNOm },
   3867     { X86::SETNPr, X86::SETNPm },
   3868     { X86::SETNSr, X86::SETNSm },
   3869     { X86::SETOr,  X86::SETOm  },
   3870     { X86::SETPr,  X86::SETPm  },
   3871     { X86::SETSr,  X86::SETSm  }
   3872   };
   3873 
   3874   assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
   3875   return Opc[CC][HasMemoryOperand ? 1 : 0];
   3876 }
   3877 
   3878 /// Return a cmov opcode for the given condition,
   3879 /// register size in bytes, and operand type.
   3880 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
   3881                               bool HasMemoryOperand) {
   3882   static const uint16_t Opc[32][3] = {
   3883     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
   3884     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
   3885     { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
   3886     { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
   3887     { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
   3888     { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
   3889     { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
   3890     { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
   3891     { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
   3892     { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
   3893     { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
   3894     { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
   3895     { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
   3896     { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
   3897     { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
   3898     { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
   3899     { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
   3900     { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
   3901     { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
   3902     { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
   3903     { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
   3904     { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
   3905     { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
   3906     { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
   3907     { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
   3908     { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
   3909     { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
   3910     { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
   3911     { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
   3912     { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
   3913     { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
   3914     { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
   3915   };
   3916 
   3917   assert(CC < 16 && "Can only handle standard cond codes");
   3918   unsigned Idx = HasMemoryOperand ? 16+CC : CC;
   3919   switch(RegBytes) {
   3920   default: llvm_unreachable("Illegal register size!");
   3921   case 2: return Opc[Idx][0];
   3922   case 4: return Opc[Idx][1];
   3923   case 8: return Opc[Idx][2];
   3924   }
   3925 }
   3926 
   3927 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
   3928   if (!MI.isTerminator()) return false;
   3929 
   3930   // Conditional branch is a special case.
   3931   if (MI.isBranch() && !MI.isBarrier())
   3932     return true;
   3933   if (!MI.isPredicable())
   3934     return true;
   3935   return !isPredicated(MI);
   3936 }
   3937 
   3938 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
   3939 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
   3940 // fallthrough MBB cannot be identified.
   3941 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
   3942                                             MachineBasicBlock *TBB) {
   3943   // Look for non-EHPad successors other than TBB. If we find exactly one, it
   3944   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
   3945   // and fallthrough MBB. If we find more than one, we cannot identify the
   3946   // fallthrough MBB and should return nullptr.
   3947   MachineBasicBlock *FallthroughBB = nullptr;
   3948   for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
   3949     if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
   3950       continue;
   3951     // Return a nullptr if we found more than one fallthrough successor.
   3952     if (FallthroughBB && FallthroughBB != TBB)
   3953       return nullptr;
   3954     FallthroughBB = *SI;
   3955   }
   3956   return FallthroughBB;
   3957 }
   3958 
   3959 bool X86InstrInfo::AnalyzeBranchImpl(
   3960     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
   3961     SmallVectorImpl<MachineOperand> &Cond,
   3962     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
   3963 
   3964   // Start from the bottom of the block and work up, examining the
   3965   // terminator instructions.
   3966   MachineBasicBlock::iterator I = MBB.end();
   3967   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
   3968   while (I != MBB.begin()) {
   3969     --I;
   3970     if (I->isDebugValue())
   3971       continue;
   3972 
   3973     // Working from the bottom, when we see a non-terminator instruction, we're
   3974     // done.
   3975     if (!isUnpredicatedTerminator(*I))
   3976       break;
   3977 
   3978     // A terminator that isn't a branch can't easily be handled by this
   3979     // analysis.
   3980     if (!I->isBranch())
   3981       return true;
   3982 
   3983     // Handle unconditional branches.
   3984     if (I->getOpcode() == X86::JMP_1) {
   3985       UnCondBrIter = I;
   3986 
   3987       if (!AllowModify) {
   3988         TBB = I->getOperand(0).getMBB();
   3989         continue;
   3990       }
   3991 
   3992       // If the block has any instructions after a JMP, delete them.
   3993       while (std::next(I) != MBB.end())
   3994         std::next(I)->eraseFromParent();
   3995 
   3996       Cond.clear();
   3997       FBB = nullptr;
   3998 
   3999       // Delete the JMP if it's equivalent to a fall-through.
   4000       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
   4001         TBB = nullptr;
   4002         I->eraseFromParent();
   4003         I = MBB.end();
   4004         UnCondBrIter = MBB.end();
   4005         continue;
   4006       }
   4007 
   4008       // TBB is used to indicate the unconditional destination.
   4009       TBB = I->getOperand(0).getMBB();
   4010       continue;
   4011     }
   4012 
   4013     // Handle conditional branches.
   4014     X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
   4015     if (BranchCode == X86::COND_INVALID)
   4016       return true;  // Can't handle indirect branch.
   4017 
   4018     // Working from the bottom, handle the first conditional branch.
   4019     if (Cond.empty()) {
   4020       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
   4021       if (AllowModify && UnCondBrIter != MBB.end() &&
   4022           MBB.isLayoutSuccessor(TargetBB)) {
   4023         // If we can modify the code and it ends in something like:
   4024         //
   4025         //     jCC L1
   4026         //     jmp L2
   4027         //   L1:
   4028         //     ...
   4029         //   L2:
   4030         //
   4031         // Then we can change this to:
   4032         //
   4033         //     jnCC L2
   4034         //   L1:
   4035         //     ...
   4036         //   L2:
   4037         //
   4038         // Which is a bit more efficient.
   4039         // We conditionally jump to the fall-through block.
   4040         BranchCode = GetOppositeBranchCondition(BranchCode);
   4041         unsigned JNCC = GetCondBranchFromCond(BranchCode);
   4042         MachineBasicBlock::iterator OldInst = I;
   4043 
   4044         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
   4045           .addMBB(UnCondBrIter->getOperand(0).getMBB());
   4046         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
   4047           .addMBB(TargetBB);
   4048 
   4049         OldInst->eraseFromParent();
   4050         UnCondBrIter->eraseFromParent();
   4051 
   4052         // Restart the analysis.
   4053         UnCondBrIter = MBB.end();
   4054         I = MBB.end();
   4055         continue;
   4056       }
   4057 
   4058       FBB = TBB;
   4059       TBB = I->getOperand(0).getMBB();
   4060       Cond.push_back(MachineOperand::CreateImm(BranchCode));
   4061       CondBranches.push_back(&*I);
   4062       continue;
   4063     }
   4064 
   4065     // Handle subsequent conditional branches. Only handle the case where all
   4066     // conditional branches branch to the same destination and their condition
   4067     // opcodes fit one of the special multi-branch idioms.
   4068     assert(Cond.size() == 1);
   4069     assert(TBB);
   4070 
   4071     // If the conditions are the same, we can leave them alone.
   4072     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
   4073     auto NewTBB = I->getOperand(0).getMBB();
   4074     if (OldBranchCode == BranchCode && TBB == NewTBB)
   4075       continue;
   4076 
   4077     // If they differ, see if they fit one of the known patterns. Theoretically,
   4078     // we could handle more patterns here, but we shouldn't expect to see them
   4079     // if instruction selection has done a reasonable job.
   4080     if (TBB == NewTBB &&
   4081                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
   4082                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
   4083       BranchCode = X86::COND_NE_OR_P;
   4084     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
   4085                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
   4086       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
   4087         return true;
   4088 
   4089       // X86::COND_E_AND_NP usually has two different branch destinations.
   4090       //
   4091       // JP B1
   4092       // JE B2
   4093       // JMP B1
   4094       // B1:
   4095       // B2:
   4096       //
   4097       // Here this condition branches to B2 only if NP && E. It has another
   4098       // equivalent form:
   4099       //
   4100       // JNE B1
   4101       // JNP B2
   4102       // JMP B1
   4103       // B1:
   4104       // B2:
   4105       //
   4106       // Similarly it branches to B2 only if E && NP. That is why this condition
   4107       // is named with COND_E_AND_NP.
   4108       BranchCode = X86::COND_E_AND_NP;
   4109     } else
   4110       return true;
   4111 
   4112     // Update the MachineOperand.
   4113     Cond[0].setImm(BranchCode);
   4114     CondBranches.push_back(&*I);
   4115   }
   4116 
   4117   return false;
   4118 }
   4119 
   4120 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
   4121                                  MachineBasicBlock *&TBB,
   4122                                  MachineBasicBlock *&FBB,
   4123                                  SmallVectorImpl<MachineOperand> &Cond,
   4124                                  bool AllowModify) const {
   4125   SmallVector<MachineInstr *, 4> CondBranches;
   4126   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
   4127 }
   4128 
   4129 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
   4130                                           MachineBranchPredicate &MBP,
   4131                                           bool AllowModify) const {
   4132   using namespace std::placeholders;
   4133 
   4134   SmallVector<MachineOperand, 4> Cond;
   4135   SmallVector<MachineInstr *, 4> CondBranches;
   4136   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
   4137                         AllowModify))
   4138     return true;
   4139 
   4140   if (Cond.size() != 1)
   4141     return true;
   4142 
   4143   assert(MBP.TrueDest && "expected!");
   4144 
   4145   if (!MBP.FalseDest)
   4146     MBP.FalseDest = MBB.getNextNode();
   4147 
   4148   const TargetRegisterInfo *TRI = &getRegisterInfo();
   4149 
   4150   MachineInstr *ConditionDef = nullptr;
   4151   bool SingleUseCondition = true;
   4152 
   4153   for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
   4154     if (I->modifiesRegister(X86::EFLAGS, TRI)) {
   4155       ConditionDef = &*I;
   4156       break;
   4157     }
   4158 
   4159     if (I->readsRegister(X86::EFLAGS, TRI))
   4160       SingleUseCondition = false;
   4161   }
   4162 
   4163   if (!ConditionDef)
   4164     return true;
   4165 
   4166   if (SingleUseCondition) {
   4167     for (auto *Succ : MBB.successors())
   4168       if (Succ->isLiveIn(X86::EFLAGS))
   4169         SingleUseCondition = false;
   4170   }
   4171 
   4172   MBP.ConditionDef = ConditionDef;
   4173   MBP.SingleUseCondition = SingleUseCondition;
   4174 
   4175   // Currently we only recognize the simple pattern:
   4176   //
   4177   //   test %reg, %reg
   4178   //   je %label
   4179   //
   4180   const unsigned TestOpcode =
   4181       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
   4182 
   4183   if (ConditionDef->getOpcode() == TestOpcode &&
   4184       ConditionDef->getNumOperands() == 3 &&
   4185       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
   4186       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
   4187     MBP.LHS = ConditionDef->getOperand(0);
   4188     MBP.RHS = MachineOperand::CreateImm(0);
   4189     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
   4190                         ? MachineBranchPredicate::PRED_NE
   4191                         : MachineBranchPredicate::PRED_EQ;
   4192     return false;
   4193   }
   4194 
   4195   return true;
   4196 }
   4197 
   4198 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
   4199   MachineBasicBlock::iterator I = MBB.end();
   4200   unsigned Count = 0;
   4201 
   4202   while (I != MBB.begin()) {
   4203     --I;
   4204     if (I->isDebugValue())
   4205       continue;
   4206     if (I->getOpcode() != X86::JMP_1 &&
   4207         getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
   4208       break;
   4209     // Remove the branch.
   4210     I->eraseFromParent();
   4211     I = MBB.end();
   4212     ++Count;
   4213   }
   4214 
   4215   return Count;
   4216 }
   4217 
   4218 unsigned X86InstrInfo::InsertBranch(MachineBasicBlock &MBB,
   4219                                     MachineBasicBlock *TBB,
   4220                                     MachineBasicBlock *FBB,
   4221                                     ArrayRef<MachineOperand> Cond,
   4222                                     const DebugLoc &DL) const {
   4223   // Shouldn't be a fall through.
   4224   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
   4225   assert((Cond.size() == 1 || Cond.size() == 0) &&
   4226          "X86 branch conditions have one component!");
   4227 
   4228   if (Cond.empty()) {
   4229     // Unconditional branch?
   4230     assert(!FBB && "Unconditional branch with multiple successors!");
   4231     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
   4232     return 1;
   4233   }
   4234 
   4235   // If FBB is null, it is implied to be a fall-through block.
   4236   bool FallThru = FBB == nullptr;
   4237 
   4238   // Conditional branch.
   4239   unsigned Count = 0;
   4240   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
   4241   switch (CC) {
   4242   case X86::COND_NE_OR_P:
   4243     // Synthesize NE_OR_P with two branches.
   4244     BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
   4245     ++Count;
   4246     BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
   4247     ++Count;
   4248     break;
   4249   case X86::COND_E_AND_NP:
   4250     // Use the next block of MBB as FBB if it is null.
   4251     if (FBB == nullptr) {
   4252       FBB = getFallThroughMBB(&MBB, TBB);
   4253       assert(FBB && "MBB cannot be the last block in function when the false "
   4254                     "body is a fall-through.");
   4255     }
   4256     // Synthesize COND_E_AND_NP with two branches.
   4257     BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB);
   4258     ++Count;
   4259     BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
   4260     ++Count;
   4261     break;
   4262   default: {
   4263     unsigned Opc = GetCondBranchFromCond(CC);
   4264     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
   4265     ++Count;
   4266   }
   4267   }
   4268   if (!FallThru) {
   4269     // Two-way Conditional branch. Insert the second branch.
   4270     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
   4271     ++Count;
   4272   }
   4273   return Count;
   4274 }
   4275 
   4276 bool X86InstrInfo::
   4277 canInsertSelect(const MachineBasicBlock &MBB,
   4278                 ArrayRef<MachineOperand> Cond,
   4279                 unsigned TrueReg, unsigned FalseReg,
   4280                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
   4281   // Not all subtargets have cmov instructions.
   4282   if (!Subtarget.hasCMov())
   4283     return false;
   4284   if (Cond.size() != 1)
   4285     return false;
   4286   // We cannot do the composite conditions, at least not in SSA form.
   4287   if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
   4288     return false;
   4289 
   4290   // Check register classes.
   4291   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   4292   const TargetRegisterClass *RC =
   4293     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
   4294   if (!RC)
   4295     return false;
   4296 
   4297   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
   4298   if (X86::GR16RegClass.hasSubClassEq(RC) ||
   4299       X86::GR32RegClass.hasSubClassEq(RC) ||
   4300       X86::GR64RegClass.hasSubClassEq(RC)) {
   4301     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
   4302     // Bridge. Probably Ivy Bridge as well.
   4303     CondCycles = 2;
   4304     TrueCycles = 2;
   4305     FalseCycles = 2;
   4306     return true;
   4307   }
   4308 
   4309   // Can't do vectors.
   4310   return false;
   4311 }
   4312 
   4313 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
   4314                                 MachineBasicBlock::iterator I,
   4315                                 const DebugLoc &DL, unsigned DstReg,
   4316                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
   4317                                 unsigned FalseReg) const {
   4318   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   4319   assert(Cond.size() == 1 && "Invalid Cond array");
   4320   unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
   4321                                  MRI.getRegClass(DstReg)->getSize(),
   4322                                  false /*HasMemoryOperand*/);
   4323   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
   4324 }
   4325 
   4326 /// Test if the given register is a physical h register.
   4327 static bool isHReg(unsigned Reg) {
   4328   return X86::GR8_ABCD_HRegClass.contains(Reg);
   4329 }
   4330 
   4331 // Try and copy between VR128/VR64 and GR64 registers.
   4332 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
   4333                                         const X86Subtarget &Subtarget) {
   4334 
   4335   // SrcReg(VR128) -> DestReg(GR64)
   4336   // SrcReg(VR64)  -> DestReg(GR64)
   4337   // SrcReg(GR64)  -> DestReg(VR128)
   4338   // SrcReg(GR64)  -> DestReg(VR64)
   4339 
   4340   bool HasAVX = Subtarget.hasAVX();
   4341   bool HasAVX512 = Subtarget.hasAVX512();
   4342   if (X86::GR64RegClass.contains(DestReg)) {
   4343     if (X86::VR128XRegClass.contains(SrcReg))
   4344       // Copy from a VR128 register to a GR64 register.
   4345       return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
   4346                                                X86::MOVPQIto64rr);
   4347     if (X86::VR64RegClass.contains(SrcReg))
   4348       // Copy from a VR64 register to a GR64 register.
   4349       return X86::MMX_MOVD64from64rr;
   4350   } else if (X86::GR64RegClass.contains(SrcReg)) {
   4351     // Copy from a GR64 register to a VR128 register.
   4352     if (X86::VR128XRegClass.contains(DestReg))
   4353       return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
   4354                                                X86::MOV64toPQIrr);
   4355     // Copy from a GR64 register to a VR64 register.
   4356     if (X86::VR64RegClass.contains(DestReg))
   4357       return X86::MMX_MOVD64to64rr;
   4358   }
   4359 
   4360   // SrcReg(FR32) -> DestReg(GR32)
   4361   // SrcReg(GR32) -> DestReg(FR32)
   4362 
   4363   if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
   4364     // Copy from a FR32 register to a GR32 register.
   4365     return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
   4366 
   4367   if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
   4368     // Copy from a GR32 register to a FR32 register.
   4369     return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
   4370   return 0;
   4371 }
   4372 
   4373 static bool isMaskRegClass(const TargetRegisterClass *RC) {
   4374   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
   4375   return X86::VK16RegClass.hasSubClassEq(RC);
   4376 }
   4377 
   4378 static bool MaskRegClassContains(unsigned Reg) {
   4379   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
   4380   return X86::VK16RegClass.contains(Reg);
   4381 }
   4382 
   4383 static bool GRRegClassContains(unsigned Reg) {
   4384   return X86::GR64RegClass.contains(Reg) ||
   4385          X86::GR32RegClass.contains(Reg) ||
   4386          X86::GR16RegClass.contains(Reg) ||
   4387          X86::GR8RegClass.contains(Reg);
   4388 }
   4389 static
   4390 unsigned copyPhysRegOpcode_AVX512_DQ(unsigned& DestReg, unsigned& SrcReg) {
   4391   if (MaskRegClassContains(SrcReg) && X86::GR8RegClass.contains(DestReg)) {
   4392     DestReg = getX86SubSuperRegister(DestReg, 32);
   4393     return X86::KMOVBrk;
   4394   }
   4395   if (MaskRegClassContains(DestReg) && X86::GR8RegClass.contains(SrcReg)) {
   4396     SrcReg = getX86SubSuperRegister(SrcReg, 32);
   4397     return X86::KMOVBkr;
   4398   }
   4399   return 0;
   4400 }
   4401 
   4402 static
   4403 unsigned copyPhysRegOpcode_AVX512_BW(unsigned& DestReg, unsigned& SrcReg) {
   4404   if (MaskRegClassContains(SrcReg) && MaskRegClassContains(DestReg))
   4405     return X86::KMOVQkk;
   4406   if (MaskRegClassContains(SrcReg) && X86::GR32RegClass.contains(DestReg))
   4407     return X86::KMOVDrk;
   4408   if (MaskRegClassContains(SrcReg) && X86::GR64RegClass.contains(DestReg))
   4409     return X86::KMOVQrk;
   4410   if (MaskRegClassContains(DestReg) && X86::GR32RegClass.contains(SrcReg))
   4411     return X86::KMOVDkr;
   4412   if (MaskRegClassContains(DestReg) && X86::GR64RegClass.contains(SrcReg))
   4413     return X86::KMOVQkr;
   4414   return 0;
   4415 }
   4416 
   4417 static
   4418 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg,
   4419                                   const X86Subtarget &Subtarget)
   4420 {
   4421   if (Subtarget.hasDQI())
   4422     if (auto Opc = copyPhysRegOpcode_AVX512_DQ(DestReg, SrcReg))
   4423       return Opc;
   4424   if (Subtarget.hasBWI())
   4425     if (auto Opc = copyPhysRegOpcode_AVX512_BW(DestReg, SrcReg))
   4426       return Opc;
   4427   if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
   4428       X86::VR256XRegClass.contains(DestReg, SrcReg) ||
   4429       X86::VR512RegClass.contains(DestReg, SrcReg)) {
   4430      DestReg = get512BitSuperRegister(DestReg);
   4431      SrcReg = get512BitSuperRegister(SrcReg);
   4432      return X86::VMOVAPSZrr;
   4433   }
   4434   if (MaskRegClassContains(DestReg) && MaskRegClassContains(SrcReg))
   4435     return X86::KMOVWkk;
   4436   if (MaskRegClassContains(DestReg) && GRRegClassContains(SrcReg)) {
   4437     SrcReg = getX86SubSuperRegister(SrcReg, 32);
   4438     return X86::KMOVWkr;
   4439   }
   4440   if (GRRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) {
   4441     DestReg = getX86SubSuperRegister(DestReg, 32);
   4442     return X86::KMOVWrk;
   4443   }
   4444   return 0;
   4445 }
   4446 
   4447 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
   4448                                MachineBasicBlock::iterator MI,
   4449                                const DebugLoc &DL, unsigned DestReg,
   4450                                unsigned SrcReg, bool KillSrc) const {
   4451   // First deal with the normal symmetric copies.
   4452   bool HasAVX = Subtarget.hasAVX();
   4453   bool HasAVX512 = Subtarget.hasAVX512();
   4454   unsigned Opc = 0;
   4455   if (X86::GR64RegClass.contains(DestReg, SrcReg))
   4456     Opc = X86::MOV64rr;
   4457   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
   4458     Opc = X86::MOV32rr;
   4459   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
   4460     Opc = X86::MOV16rr;
   4461   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
   4462     // Copying to or from a physical H register on x86-64 requires a NOREX
   4463     // move.  Otherwise use a normal move.
   4464     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
   4465         Subtarget.is64Bit()) {
   4466       Opc = X86::MOV8rr_NOREX;
   4467       // Both operands must be encodable without an REX prefix.
   4468       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
   4469              "8-bit H register can not be copied outside GR8_NOREX");
   4470     } else
   4471       Opc = X86::MOV8rr;
   4472   }
   4473   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
   4474     Opc = X86::MMX_MOVQ64rr;
   4475   else if (HasAVX512)
   4476     Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg, Subtarget);
   4477   else if (X86::VR128RegClass.contains(DestReg, SrcReg))
   4478     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
   4479   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
   4480     Opc = X86::VMOVAPSYrr;
   4481   if (!Opc)
   4482     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
   4483 
   4484   if (Opc) {
   4485     BuildMI(MBB, MI, DL, get(Opc), DestReg)
   4486       .addReg(SrcReg, getKillRegState(KillSrc));
   4487     return;
   4488   }
   4489 
   4490   bool FromEFLAGS = SrcReg == X86::EFLAGS;
   4491   bool ToEFLAGS = DestReg == X86::EFLAGS;
   4492   int Reg = FromEFLAGS ? DestReg : SrcReg;
   4493   bool is32 = X86::GR32RegClass.contains(Reg);
   4494   bool is64 = X86::GR64RegClass.contains(Reg);
   4495 
   4496   if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) {
   4497     int Mov = is64 ? X86::MOV64rr : X86::MOV32rr;
   4498     int Push = is64 ? X86::PUSH64r : X86::PUSH32r;
   4499     int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32;
   4500     int Pop = is64 ? X86::POP64r : X86::POP32r;
   4501     int PopF = is64 ? X86::POPF64 : X86::POPF32;
   4502     int AX = is64 ? X86::RAX : X86::EAX;
   4503 
   4504     if (!Subtarget.hasLAHFSAHF()) {
   4505       assert(Subtarget.is64Bit() &&
   4506              "Not having LAHF/SAHF only happens on 64-bit.");
   4507       // Moving EFLAGS to / from another register requires a push and a pop.
   4508       // Notice that we have to adjust the stack if we don't want to clobber the
   4509       // first frame index. See X86FrameLowering.cpp - usesTheStack.
   4510       if (FromEFLAGS) {
   4511         BuildMI(MBB, MI, DL, get(PushF));
   4512         BuildMI(MBB, MI, DL, get(Pop), DestReg);
   4513       }
   4514       if (ToEFLAGS) {
   4515         BuildMI(MBB, MI, DL, get(Push))
   4516             .addReg(SrcReg, getKillRegState(KillSrc));
   4517         BuildMI(MBB, MI, DL, get(PopF));
   4518       }
   4519       return;
   4520     }
   4521 
   4522     // The flags need to be saved, but saving EFLAGS with PUSHF/POPF is
   4523     // inefficient. Instead:
   4524     //   - Save the overflow flag OF into AL using SETO, and restore it using a
   4525     //     signed 8-bit addition of AL and INT8_MAX.
   4526     //   - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH
   4527     //     using LAHF/SAHF.
   4528     //   - When RAX/EAX is live and isn't the destination register, make sure it
   4529     //     isn't clobbered by PUSH/POP'ing it before and after saving/restoring
   4530     //     the flags.
   4531     // This approach is ~2.25x faster than using PUSHF/POPF.
   4532     //
   4533     // This is still somewhat inefficient because we don't know which flags are
   4534     // actually live inside EFLAGS. Were we able to do a single SETcc instead of
   4535     // SETO+LAHF / ADDB+SAHF the code could be 1.02x faster.
   4536     //
   4537     // PUSHF/POPF is also potentially incorrect because it affects other flags
   4538     // such as TF/IF/DF, which LLVM doesn't model.
   4539     //
   4540     // Notice that we have to adjust the stack if we don't want to clobber the
   4541     // first frame index.
   4542     // See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment.
   4543 
   4544     const TargetRegisterInfo *TRI = &getRegisterInfo();
   4545     MachineBasicBlock::LivenessQueryResult LQR =
   4546         MBB.computeRegisterLiveness(TRI, AX, MI);
   4547     // We do not want to save and restore AX if we do not have to.
   4548     // Moreover, if we do so whereas AX is dead, we would need to set
   4549     // an undef flag on the use of AX, otherwise the verifier will
   4550     // complain that we read an undef value.
   4551     // We do not want to change the behavior of the machine verifier
   4552     // as this is usually wrong to read an undef value.
   4553     if (MachineBasicBlock::LQR_Unknown == LQR) {
   4554       LivePhysRegs LPR(TRI);
   4555       LPR.addLiveOuts(MBB);
   4556       MachineBasicBlock::iterator I = MBB.end();
   4557       while (I != MI) {
   4558         --I;
   4559         LPR.stepBackward(*I);
   4560       }
   4561       // AX contains the top most register in the aliasing hierarchy.
   4562       // It may not be live, but one of its aliases may be.
   4563       for (MCRegAliasIterator AI(AX, TRI, true);
   4564            AI.isValid() && LQR != MachineBasicBlock::LQR_Live; ++AI)
   4565         LQR = LPR.contains(*AI) ? MachineBasicBlock::LQR_Live
   4566                                 : MachineBasicBlock::LQR_Dead;
   4567     }
   4568     bool AXDead = (Reg == AX) || (MachineBasicBlock::LQR_Dead == LQR);
   4569     if (!AXDead)
   4570       BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true));
   4571     if (FromEFLAGS) {
   4572       BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL);
   4573       BuildMI(MBB, MI, DL, get(X86::LAHF));
   4574       BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX);
   4575     }
   4576     if (ToEFLAGS) {
   4577       BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc));
   4578       BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL)
   4579           .addReg(X86::AL)
   4580           .addImm(INT8_MAX);
   4581       BuildMI(MBB, MI, DL, get(X86::SAHF));
   4582     }
   4583     if (!AXDead)
   4584       BuildMI(MBB, MI, DL, get(Pop), AX);
   4585     return;
   4586   }
   4587 
   4588   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
   4589                << " to " << RI.getName(DestReg) << '\n');
   4590   llvm_unreachable("Cannot emit physreg copy instruction");
   4591 }
   4592 
   4593 static unsigned getLoadStoreMaskRegOpcode(const TargetRegisterClass *RC,
   4594                                           bool load) {
   4595   switch (RC->getSize()) {
   4596   default:
   4597     llvm_unreachable("Unknown spill size");
   4598   case 2:
   4599     return load ? X86::KMOVWkm : X86::KMOVWmk;
   4600   case 4:
   4601     return load ? X86::KMOVDkm : X86::KMOVDmk;
   4602   case 8:
   4603     return load ? X86::KMOVQkm : X86::KMOVQmk;
   4604   }
   4605 }
   4606 
   4607 static unsigned getLoadStoreRegOpcode(unsigned Reg,
   4608                                       const TargetRegisterClass *RC,
   4609                                       bool isStackAligned,
   4610                                       const X86Subtarget &STI,
   4611                                       bool load) {
   4612   if (STI.hasAVX512()) {
   4613     if (isMaskRegClass(RC))
   4614       return getLoadStoreMaskRegOpcode(RC, load);
   4615     if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
   4616       return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
   4617     if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
   4618       return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
   4619     if (X86::VR512RegClass.hasSubClassEq(RC))
   4620       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
   4621   }
   4622 
   4623   bool HasAVX = STI.hasAVX();
   4624   switch (RC->getSize()) {
   4625   default:
   4626     llvm_unreachable("Unknown spill size");
   4627   case 1:
   4628     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
   4629     if (STI.is64Bit())
   4630       // Copying to or from a physical H register on x86-64 requires a NOREX
   4631       // move.  Otherwise use a normal move.
   4632       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
   4633         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
   4634     return load ? X86::MOV8rm : X86::MOV8mr;
   4635   case 2:
   4636     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
   4637     return load ? X86::MOV16rm : X86::MOV16mr;
   4638   case 4:
   4639     if (X86::GR32RegClass.hasSubClassEq(RC))
   4640       return load ? X86::MOV32rm : X86::MOV32mr;
   4641     if (X86::FR32RegClass.hasSubClassEq(RC))
   4642       return load ?
   4643         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
   4644         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
   4645     if (X86::RFP32RegClass.hasSubClassEq(RC))
   4646       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
   4647     llvm_unreachable("Unknown 4-byte regclass");
   4648   case 8:
   4649     if (X86::GR64RegClass.hasSubClassEq(RC))
   4650       return load ? X86::MOV64rm : X86::MOV64mr;
   4651     if (X86::FR64RegClass.hasSubClassEq(RC))
   4652       return load ?
   4653         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
   4654         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
   4655     if (X86::VR64RegClass.hasSubClassEq(RC))
   4656       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
   4657     if (X86::RFP64RegClass.hasSubClassEq(RC))
   4658       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
   4659     llvm_unreachable("Unknown 8-byte regclass");
   4660   case 10:
   4661     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
   4662     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
   4663   case 16: {
   4664     assert((X86::VR128RegClass.hasSubClassEq(RC) ||
   4665             X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
   4666     // If stack is realigned we can use aligned stores.
   4667     if (X86::VR128RegClass.hasSubClassEq(RC)) {
   4668       if (isStackAligned)
   4669         return load ? (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm)
   4670                     : (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
   4671       else
   4672         return load ? (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm)
   4673                     : (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
   4674     }
   4675     assert(STI.hasVLX() && "Using extended register requires VLX");
   4676     if (isStackAligned)
   4677       return load ? X86::VMOVAPSZ128rm : X86::VMOVAPSZ128mr;
   4678     else
   4679       return load ? X86::VMOVUPSZ128rm : X86::VMOVUPSZ128mr;
   4680   }
   4681   case 32:
   4682     assert((X86::VR256RegClass.hasSubClassEq(RC) ||
   4683             X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
   4684     // If stack is realigned we can use aligned stores.
   4685     if (X86::VR256RegClass.hasSubClassEq(RC)) {
   4686       if (isStackAligned)
   4687         return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
   4688       else
   4689         return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
   4690     }
   4691     assert(STI.hasVLX() && "Using extended register requires VLX");
   4692     if (isStackAligned)
   4693       return load ? X86::VMOVAPSZ256rm : X86::VMOVAPSZ256mr;
   4694     else
   4695       return load ? X86::VMOVUPSZ256rm : X86::VMOVUPSZ256mr;
   4696   case 64:
   4697     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
   4698     assert(STI.hasVLX() && "Using 512-bit register requires AVX512");
   4699     if (isStackAligned)
   4700       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
   4701     else
   4702       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
   4703   }
   4704 }
   4705 
   4706 bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
   4707                                          int64_t &Offset,
   4708                                          const TargetRegisterInfo *TRI) const {
   4709   const MCInstrDesc &Desc = MemOp.getDesc();
   4710   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
   4711   if (MemRefBegin < 0)
   4712     return false;
   4713 
   4714   MemRefBegin += X86II::getOperandBias(Desc);
   4715 
   4716   MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
   4717   if (!BaseMO.isReg()) // Can be an MO_FrameIndex
   4718     return false;
   4719 
   4720   BaseReg = BaseMO.getReg();
   4721   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
   4722     return false;
   4723 
   4724   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
   4725       X86::NoRegister)
   4726     return false;
   4727 
   4728   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
   4729 
   4730   // Displacement can be symbolic
   4731   if (!DispMO.isImm())
   4732     return false;
   4733 
   4734   Offset = DispMO.getImm();
   4735 
   4736   return MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() ==
   4737          X86::NoRegister;
   4738 }
   4739 
   4740 static unsigned getStoreRegOpcode(unsigned SrcReg,
   4741                                   const TargetRegisterClass *RC,
   4742                                   bool isStackAligned,
   4743                                   const X86Subtarget &STI) {
   4744   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
   4745 }
   4746 
   4747 
   4748 static unsigned getLoadRegOpcode(unsigned DestReg,
   4749                                  const TargetRegisterClass *RC,
   4750                                  bool isStackAligned,
   4751                                  const X86Subtarget &STI) {
   4752   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
   4753 }
   4754 
   4755 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   4756                                        MachineBasicBlock::iterator MI,
   4757                                        unsigned SrcReg, bool isKill, int FrameIdx,
   4758                                        const TargetRegisterClass *RC,
   4759                                        const TargetRegisterInfo *TRI) const {
   4760   const MachineFunction &MF = *MBB.getParent();
   4761   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
   4762          "Stack slot too small for store");
   4763   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   4764   bool isAligned =
   4765       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
   4766       RI.canRealignStack(MF);
   4767   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   4768   DebugLoc DL = MBB.findDebugLoc(MI);
   4769   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
   4770     .addReg(SrcReg, getKillRegState(isKill));
   4771 }
   4772 
   4773 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
   4774                                   bool isKill,
   4775                                   SmallVectorImpl<MachineOperand> &Addr,
   4776                                   const TargetRegisterClass *RC,
   4777                                   MachineInstr::mmo_iterator MMOBegin,
   4778                                   MachineInstr::mmo_iterator MMOEnd,
   4779                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
   4780   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   4781   bool isAligned = MMOBegin != MMOEnd &&
   4782                    (*MMOBegin)->getAlignment() >= Alignment;
   4783   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   4784   DebugLoc DL;
   4785   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
   4786   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   4787     MIB.addOperand(Addr[i]);
   4788   MIB.addReg(SrcReg, getKillRegState(isKill));
   4789   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   4790   NewMIs.push_back(MIB);
   4791 }
   4792 
   4793 
   4794 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   4795                                         MachineBasicBlock::iterator MI,
   4796                                         unsigned DestReg, int FrameIdx,
   4797                                         const TargetRegisterClass *RC,
   4798                                         const TargetRegisterInfo *TRI) const {
   4799   const MachineFunction &MF = *MBB.getParent();
   4800   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   4801   bool isAligned =
   4802       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
   4803       RI.canRealignStack(MF);
   4804   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   4805   DebugLoc DL = MBB.findDebugLoc(MI);
   4806   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
   4807 }
   4808 
   4809 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
   4810                                  SmallVectorImpl<MachineOperand> &Addr,
   4811                                  const TargetRegisterClass *RC,
   4812                                  MachineInstr::mmo_iterator MMOBegin,
   4813                                  MachineInstr::mmo_iterator MMOEnd,
   4814                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
   4815   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   4816   bool isAligned = MMOBegin != MMOEnd &&
   4817                    (*MMOBegin)->getAlignment() >= Alignment;
   4818   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   4819   DebugLoc DL;
   4820   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
   4821   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   4822     MIB.addOperand(Addr[i]);
   4823   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   4824   NewMIs.push_back(MIB);
   4825 }
   4826 
   4827 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
   4828                                   unsigned &SrcReg2, int &CmpMask,
   4829                                   int &CmpValue) const {
   4830   switch (MI.getOpcode()) {
   4831   default: break;
   4832   case X86::CMP64ri32:
   4833   case X86::CMP64ri8:
   4834   case X86::CMP32ri:
   4835   case X86::CMP32ri8:
   4836   case X86::CMP16ri:
   4837   case X86::CMP16ri8:
   4838   case X86::CMP8ri:
   4839     SrcReg = MI.getOperand(0).getReg();
   4840     SrcReg2 = 0;
   4841     CmpMask = ~0;
   4842     CmpValue = MI.getOperand(1).getImm();
   4843     return true;
   4844   // A SUB can be used to perform comparison.
   4845   case X86::SUB64rm:
   4846   case X86::SUB32rm:
   4847   case X86::SUB16rm:
   4848   case X86::SUB8rm:
   4849     SrcReg = MI.getOperand(1).getReg();
   4850     SrcReg2 = 0;
   4851     CmpMask = ~0;
   4852     CmpValue = 0;
   4853     return true;
   4854   case X86::SUB64rr:
   4855   case X86::SUB32rr:
   4856   case X86::SUB16rr:
   4857   case X86::SUB8rr:
   4858     SrcReg = MI.getOperand(1).getReg();
   4859     SrcReg2 = MI.getOperand(2).getReg();
   4860     CmpMask = ~0;
   4861     CmpValue = 0;
   4862     return true;
   4863   case X86::SUB64ri32:
   4864   case X86::SUB64ri8:
   4865   case X86::SUB32ri:
   4866   case X86::SUB32ri8:
   4867   case X86::SUB16ri:
   4868   case X86::SUB16ri8:
   4869   case X86::SUB8ri:
   4870     SrcReg = MI.getOperand(1).getReg();
   4871     SrcReg2 = 0;
   4872     CmpMask = ~0;
   4873     CmpValue = MI.getOperand(2).getImm();
   4874     return true;
   4875   case X86::CMP64rr:
   4876   case X86::CMP32rr:
   4877   case X86::CMP16rr:
   4878   case X86::CMP8rr:
   4879     SrcReg = MI.getOperand(0).getReg();
   4880     SrcReg2 = MI.getOperand(1).getReg();
   4881     CmpMask = ~0;
   4882     CmpValue = 0;
   4883     return true;
   4884   case X86::TEST8rr:
   4885   case X86::TEST16rr:
   4886   case X86::TEST32rr:
   4887   case X86::TEST64rr:
   4888     SrcReg = MI.getOperand(0).getReg();
   4889     if (MI.getOperand(1).getReg() != SrcReg)
   4890       return false;
   4891     // Compare against zero.
   4892     SrcReg2 = 0;
   4893     CmpMask = ~0;
   4894     CmpValue = 0;
   4895     return true;
   4896   }
   4897   return false;
   4898 }
   4899 
   4900 /// Check whether the first instruction, whose only
   4901 /// purpose is to update flags, can be made redundant.
   4902 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   4903 /// This function can be extended later on.
   4904 /// SrcReg, SrcRegs: register operands for FlagI.
   4905 /// ImmValue: immediate for FlagI if it takes an immediate.
   4906 inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg,
   4907                                         unsigned SrcReg2, int ImmValue,
   4908                                         MachineInstr &OI) {
   4909   if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
   4910        (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
   4911        (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
   4912        (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
   4913       ((OI.getOperand(1).getReg() == SrcReg &&
   4914         OI.getOperand(2).getReg() == SrcReg2) ||
   4915        (OI.getOperand(1).getReg() == SrcReg2 &&
   4916         OI.getOperand(2).getReg() == SrcReg)))
   4917     return true;
   4918 
   4919   if (((FlagI.getOpcode() == X86::CMP64ri32 &&
   4920         OI.getOpcode() == X86::SUB64ri32) ||
   4921        (FlagI.getOpcode() == X86::CMP64ri8 &&
   4922         OI.getOpcode() == X86::SUB64ri8) ||
   4923        (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
   4924        (FlagI.getOpcode() == X86::CMP32ri8 &&
   4925         OI.getOpcode() == X86::SUB32ri8) ||
   4926        (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
   4927        (FlagI.getOpcode() == X86::CMP16ri8 &&
   4928         OI.getOpcode() == X86::SUB16ri8) ||
   4929        (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
   4930       OI.getOperand(1).getReg() == SrcReg &&
   4931       OI.getOperand(2).getImm() == ImmValue)
   4932     return true;
   4933   return false;
   4934 }
   4935 
   4936 /// Check whether the definition can be converted
   4937 /// to remove a comparison against zero.
   4938 inline static bool isDefConvertible(MachineInstr &MI) {
   4939   switch (MI.getOpcode()) {
   4940   default: return false;
   4941 
   4942   // The shift instructions only modify ZF if their shift count is non-zero.
   4943   // N.B.: The processor truncates the shift count depending on the encoding.
   4944   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
   4945   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
   4946      return getTruncatedShiftCount(MI, 2) != 0;
   4947 
   4948   // Some left shift instructions can be turned into LEA instructions but only
   4949   // if their flags aren't used. Avoid transforming such instructions.
   4950   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
   4951     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   4952     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
   4953     return ShAmt != 0;
   4954   }
   4955 
   4956   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
   4957   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
   4958      return getTruncatedShiftCount(MI, 3) != 0;
   4959 
   4960   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
   4961   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
   4962   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
   4963   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
   4964   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
   4965   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
   4966   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
   4967   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
   4968   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
   4969   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
   4970   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
   4971   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
   4972   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
   4973   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
   4974   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
   4975   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
   4976   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
   4977   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
   4978   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
   4979   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
   4980   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
   4981   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
   4982   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
   4983   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
   4984   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
   4985   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
   4986   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
   4987   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
   4988   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
   4989   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
   4990   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
   4991   case X86::ADC32ri:   case X86::ADC32ri8:
   4992   case X86::ADC32rr:   case X86::ADC64ri32:
   4993   case X86::ADC64ri8:  case X86::ADC64rr:
   4994   case X86::SBB32ri:   case X86::SBB32ri8:
   4995   case X86::SBB32rr:   case X86::SBB64ri32:
   4996   case X86::SBB64ri8:  case X86::SBB64rr:
   4997   case X86::ANDN32rr:  case X86::ANDN32rm:
   4998   case X86::ANDN64rr:  case X86::ANDN64rm:
   4999   case X86::BEXTR32rr: case X86::BEXTR64rr:
   5000   case X86::BEXTR32rm: case X86::BEXTR64rm:
   5001   case X86::BLSI32rr:  case X86::BLSI32rm:
   5002   case X86::BLSI64rr:  case X86::BLSI64rm:
   5003   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
   5004   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
   5005   case X86::BLSR32rr:  case X86::BLSR32rm:
   5006   case X86::BLSR64rr:  case X86::BLSR64rm:
   5007   case X86::BZHI32rr:  case X86::BZHI32rm:
   5008   case X86::BZHI64rr:  case X86::BZHI64rm:
   5009   case X86::LZCNT16rr: case X86::LZCNT16rm:
   5010   case X86::LZCNT32rr: case X86::LZCNT32rm:
   5011   case X86::LZCNT64rr: case X86::LZCNT64rm:
   5012   case X86::POPCNT16rr:case X86::POPCNT16rm:
   5013   case X86::POPCNT32rr:case X86::POPCNT32rm:
   5014   case X86::POPCNT64rr:case X86::POPCNT64rm:
   5015   case X86::TZCNT16rr: case X86::TZCNT16rm:
   5016   case X86::TZCNT32rr: case X86::TZCNT32rm:
   5017   case X86::TZCNT64rr: case X86::TZCNT64rm:
   5018     return true;
   5019   }
   5020 }
   5021 
   5022 /// Check whether the use can be converted to remove a comparison against zero.
   5023 static X86::CondCode isUseDefConvertible(MachineInstr &MI) {
   5024   switch (MI.getOpcode()) {
   5025   default: return X86::COND_INVALID;
   5026   case X86::LZCNT16rr: case X86::LZCNT16rm:
   5027   case X86::LZCNT32rr: case X86::LZCNT32rm:
   5028   case X86::LZCNT64rr: case X86::LZCNT64rm:
   5029     return X86::COND_B;
   5030   case X86::POPCNT16rr:case X86::POPCNT16rm:
   5031   case X86::POPCNT32rr:case X86::POPCNT32rm:
   5032   case X86::POPCNT64rr:case X86::POPCNT64rm:
   5033     return X86::COND_E;
   5034   case X86::TZCNT16rr: case X86::TZCNT16rm:
   5035   case X86::TZCNT32rr: case X86::TZCNT32rm:
   5036   case X86::TZCNT64rr: case X86::TZCNT64rm:
   5037     return X86::COND_B;
   5038   }
   5039 }
   5040 
   5041 /// Check if there exists an earlier instruction that
   5042 /// operates on the same source operands and sets flags in the same way as
   5043 /// Compare; remove Compare if possible.
   5044 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
   5045                                         unsigned SrcReg2, int CmpMask,
   5046                                         int CmpValue,
   5047                                         const MachineRegisterInfo *MRI) const {
   5048   // Check whether we can replace SUB with CMP.
   5049   unsigned NewOpcode = 0;
   5050   switch (CmpInstr.getOpcode()) {
   5051   default: break;
   5052   case X86::SUB64ri32:
   5053   case X86::SUB64ri8:
   5054   case X86::SUB32ri:
   5055   case X86::SUB32ri8:
   5056   case X86::SUB16ri:
   5057   case X86::SUB16ri8:
   5058   case X86::SUB8ri:
   5059   case X86::SUB64rm:
   5060   case X86::SUB32rm:
   5061   case X86::SUB16rm:
   5062   case X86::SUB8rm:
   5063   case X86::SUB64rr:
   5064   case X86::SUB32rr:
   5065   case X86::SUB16rr:
   5066   case X86::SUB8rr: {
   5067     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
   5068       return false;
   5069     // There is no use of the destination register, we can replace SUB with CMP.
   5070     switch (CmpInstr.getOpcode()) {
   5071     default: llvm_unreachable("Unreachable!");
   5072     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
   5073     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
   5074     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
   5075     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
   5076     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
   5077     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
   5078     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
   5079     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
   5080     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
   5081     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
   5082     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
   5083     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
   5084     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
   5085     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
   5086     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
   5087     }
   5088     CmpInstr.setDesc(get(NewOpcode));
   5089     CmpInstr.RemoveOperand(0);
   5090     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
   5091     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
   5092         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
   5093       return false;
   5094   }
   5095   }
   5096 
   5097   // Get the unique definition of SrcReg.
   5098   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   5099   if (!MI) return false;
   5100 
   5101   // CmpInstr is the first instruction of the BB.
   5102   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
   5103 
   5104   // If we are comparing against zero, check whether we can use MI to update
   5105   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
   5106   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
   5107   if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
   5108     return false;
   5109 
   5110   // If we have a use of the source register between the def and our compare
   5111   // instruction we can eliminate the compare iff the use sets EFLAGS in the
   5112   // right way.
   5113   bool ShouldUpdateCC = false;
   5114   X86::CondCode NewCC = X86::COND_INVALID;
   5115   if (IsCmpZero && !isDefConvertible(*MI)) {
   5116     // Scan forward from the use until we hit the use we're looking for or the
   5117     // compare instruction.
   5118     for (MachineBasicBlock::iterator J = MI;; ++J) {
   5119       // Do we have a convertible instruction?
   5120       NewCC = isUseDefConvertible(*J);
   5121       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
   5122           J->getOperand(1).getReg() == SrcReg) {
   5123         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
   5124         ShouldUpdateCC = true; // Update CC later on.
   5125         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
   5126         // with the new def.
   5127         Def = J;
   5128         MI = &*Def;
   5129         break;
   5130       }
   5131 
   5132       if (J == I)
   5133         return false;
   5134     }
   5135   }
   5136 
   5137   // We are searching for an earlier instruction that can make CmpInstr
   5138   // redundant and that instruction will be saved in Sub.
   5139   MachineInstr *Sub = nullptr;
   5140   const TargetRegisterInfo *TRI = &getRegisterInfo();
   5141 
   5142   // We iterate backward, starting from the instruction before CmpInstr and
   5143   // stop when reaching the definition of a source register or done with the BB.
   5144   // RI points to the instruction before CmpInstr.
   5145   // If the definition is in this basic block, RE points to the definition;
   5146   // otherwise, RE is the rend of the basic block.
   5147   MachineBasicBlock::reverse_iterator
   5148       RI = MachineBasicBlock::reverse_iterator(I),
   5149       RE = CmpInstr.getParent() == MI->getParent()
   5150                ? MachineBasicBlock::reverse_iterator(++Def) /* points to MI */
   5151                : CmpInstr.getParent()->rend();
   5152   MachineInstr *Movr0Inst = nullptr;
   5153   for (; RI != RE; ++RI) {
   5154     MachineInstr &Instr = *RI;
   5155     // Check whether CmpInstr can be made redundant by the current instruction.
   5156     if (!IsCmpZero &&
   5157         isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
   5158       Sub = &Instr;
   5159       break;
   5160     }
   5161 
   5162     if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
   5163         Instr.readsRegister(X86::EFLAGS, TRI)) {
   5164       // This instruction modifies or uses EFLAGS.
   5165 
   5166       // MOV32r0 etc. are implemented with xor which clobbers condition code.
   5167       // They are safe to move up, if the definition to EFLAGS is dead and
   5168       // earlier instructions do not read or write EFLAGS.
   5169       if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
   5170           Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
   5171         Movr0Inst = &Instr;
   5172         continue;
   5173       }
   5174 
   5175       // We can't remove CmpInstr.
   5176       return false;
   5177     }
   5178   }
   5179 
   5180   // Return false if no candidates exist.
   5181   if (!IsCmpZero && !Sub)
   5182     return false;
   5183 
   5184   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   5185                     Sub->getOperand(2).getReg() == SrcReg);
   5186 
   5187   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
   5188   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
   5189   // If we are done with the basic block, we need to check whether EFLAGS is
   5190   // live-out.
   5191   bool IsSafe = false;
   5192   SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
   5193   MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
   5194   for (++I; I != E; ++I) {
   5195     const MachineInstr &Instr = *I;
   5196     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
   5197     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
   5198     // We should check the usage if this instruction uses and updates EFLAGS.
   5199     if (!UseEFLAGS && ModifyEFLAGS) {
   5200       // It is safe to remove CmpInstr if EFLAGS is updated again.
   5201       IsSafe = true;
   5202       break;
   5203     }
   5204     if (!UseEFLAGS && !ModifyEFLAGS)
   5205       continue;
   5206 
   5207     // EFLAGS is used by this instruction.
   5208     X86::CondCode OldCC = X86::COND_INVALID;
   5209     bool OpcIsSET = false;
   5210     if (IsCmpZero || IsSwapped) {
   5211       // We decode the condition code from opcode.
   5212       if (Instr.isBranch())
   5213         OldCC = getCondFromBranchOpc(Instr.getOpcode());
   5214       else {
   5215         OldCC = getCondFromSETOpc(Instr.getOpcode());
   5216         if (OldCC != X86::COND_INVALID)
   5217           OpcIsSET = true;
   5218         else
   5219           OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
   5220       }
   5221       if (OldCC == X86::COND_INVALID) return false;
   5222     }
   5223     if (IsCmpZero) {
   5224       switch (OldCC) {
   5225       default: break;
   5226       case X86::COND_A: case X86::COND_AE:
   5227       case X86::COND_B: case X86::COND_BE:
   5228       case X86::COND_G: case X86::COND_GE:
   5229       case X86::COND_L: case X86::COND_LE:
   5230       case X86::COND_O: case X86::COND_NO:
   5231         // CF and OF are used, we can't perform this optimization.
   5232         return false;
   5233       }
   5234 
   5235       // If we're updating the condition code check if we have to reverse the
   5236       // condition.
   5237       if (ShouldUpdateCC)
   5238         switch (OldCC) {
   5239         default:
   5240           return false;
   5241         case X86::COND_E:
   5242           break;
   5243         case X86::COND_NE:
   5244           NewCC = GetOppositeBranchCondition(NewCC);
   5245           break;
   5246         }
   5247     } else if (IsSwapped) {
   5248       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
   5249       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   5250       // We swap the condition code and synthesize the new opcode.
   5251       NewCC = getSwappedCondition(OldCC);
   5252       if (NewCC == X86::COND_INVALID) return false;
   5253     }
   5254 
   5255     if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
   5256       // Synthesize the new opcode.
   5257       bool HasMemoryOperand = Instr.hasOneMemOperand();
   5258       unsigned NewOpc;
   5259       if (Instr.isBranch())
   5260         NewOpc = GetCondBranchFromCond(NewCC);
   5261       else if(OpcIsSET)
   5262         NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
   5263       else {
   5264         unsigned DstReg = Instr.getOperand(0).getReg();
   5265         NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
   5266                                  HasMemoryOperand);
   5267       }
   5268 
   5269       // Push the MachineInstr to OpsToUpdate.
   5270       // If it is safe to remove CmpInstr, the condition code of these
   5271       // instructions will be modified.
   5272       OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
   5273     }
   5274     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
   5275       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
   5276       IsSafe = true;
   5277       break;
   5278     }
   5279   }
   5280 
   5281   // If EFLAGS is not killed nor re-defined, we should check whether it is
   5282   // live-out. If it is live-out, do not optimize.
   5283   if ((IsCmpZero || IsSwapped) && !IsSafe) {
   5284     MachineBasicBlock *MBB = CmpInstr.getParent();
   5285     for (MachineBasicBlock *Successor : MBB->successors())
   5286       if (Successor->isLiveIn(X86::EFLAGS))
   5287         return false;
   5288   }
   5289 
   5290   // The instruction to be updated is either Sub or MI.
   5291   Sub = IsCmpZero ? MI : Sub;
   5292   // Move Movr0Inst to the appropriate place before Sub.
   5293   if (Movr0Inst) {
   5294     // Look backwards until we find a def that doesn't use the current EFLAGS.
   5295     Def = Sub;
   5296     MachineBasicBlock::reverse_iterator
   5297       InsertI = MachineBasicBlock::reverse_iterator(++Def),
   5298                 InsertE = Sub->getParent()->rend();
   5299     for (; InsertI != InsertE; ++InsertI) {
   5300       MachineInstr *Instr = &*InsertI;
   5301       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
   5302           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
   5303         Sub->getParent()->remove(Movr0Inst);
   5304         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
   5305                                    Movr0Inst);
   5306         break;
   5307       }
   5308     }
   5309     if (InsertI == InsertE)
   5310       return false;
   5311   }
   5312 
   5313   // Make sure Sub instruction defines EFLAGS and mark the def live.
   5314   unsigned i = 0, e = Sub->getNumOperands();
   5315   for (; i != e; ++i) {
   5316     MachineOperand &MO = Sub->getOperand(i);
   5317     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
   5318       MO.setIsDead(false);
   5319       break;
   5320     }
   5321   }
   5322   assert(i != e && "Unable to locate a def EFLAGS operand");
   5323 
   5324   CmpInstr.eraseFromParent();
   5325 
   5326   // Modify the condition code of instructions in OpsToUpdate.
   5327   for (auto &Op : OpsToUpdate)
   5328     Op.first->setDesc(get(Op.second));
   5329   return true;
   5330 }
   5331 
   5332 /// Try to remove the load by folding it to a register
   5333 /// operand at the use. We fold the load instructions if load defines a virtual
   5334 /// register, the virtual register is used once in the same BB, and the
   5335 /// instructions in-between do not load or store, and have no side effects.
   5336 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
   5337                                               const MachineRegisterInfo *MRI,
   5338                                               unsigned &FoldAsLoadDefReg,
   5339                                               MachineInstr *&DefMI) const {
   5340   if (FoldAsLoadDefReg == 0)
   5341     return nullptr;
   5342   // To be conservative, if there exists another load, clear the load candidate.
   5343   if (MI.mayLoad()) {
   5344     FoldAsLoadDefReg = 0;
   5345     return nullptr;
   5346   }
   5347 
   5348   // Check whether we can move DefMI here.
   5349   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
   5350   assert(DefMI);
   5351   bool SawStore = false;
   5352   if (!DefMI->isSafeToMove(nullptr, SawStore))
   5353     return nullptr;
   5354 
   5355   // Collect information about virtual register operands of MI.
   5356   unsigned SrcOperandId = 0;
   5357   bool FoundSrcOperand = false;
   5358   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
   5359     MachineOperand &MO = MI.getOperand(i);
   5360     if (!MO.isReg())
   5361       continue;
   5362     unsigned Reg = MO.getReg();
   5363     if (Reg != FoldAsLoadDefReg)
   5364       continue;
   5365     // Do not fold if we have a subreg use or a def or multiple uses.
   5366     if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
   5367       return nullptr;
   5368 
   5369     SrcOperandId = i;
   5370     FoundSrcOperand = true;
   5371   }
   5372   if (!FoundSrcOperand)
   5373     return nullptr;
   5374 
   5375   // Check whether we can fold the def into SrcOperandId.
   5376   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, *DefMI)) {
   5377     FoldAsLoadDefReg = 0;
   5378     return FoldMI;
   5379   }
   5380 
   5381   return nullptr;
   5382 }
   5383 
   5384 /// Expand a single-def pseudo instruction to a two-addr
   5385 /// instruction with two undef reads of the register being defined.
   5386 /// This is used for mapping:
   5387 ///   %xmm4 = V_SET0
   5388 /// to:
   5389 ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
   5390 ///
   5391 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
   5392                              const MCInstrDesc &Desc) {
   5393   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
   5394   unsigned Reg = MIB->getOperand(0).getReg();
   5395   MIB->setDesc(Desc);
   5396 
   5397   // MachineInstr::addOperand() will insert explicit operands before any
   5398   // implicit operands.
   5399   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   5400   // But we don't trust that.
   5401   assert(MIB->getOperand(1).getReg() == Reg &&
   5402          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
   5403   return true;
   5404 }
   5405 
   5406 /// Expand a single-def pseudo instruction to a two-addr
   5407 /// instruction with two %k0 reads.
   5408 /// This is used for mapping:
   5409 ///   %k4 = K_SET1
   5410 /// to:
   5411 ///   %k4 = KXNORrr %k0, %k0
   5412 static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
   5413                             const MCInstrDesc &Desc, unsigned Reg) {
   5414   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
   5415   MIB->setDesc(Desc);
   5416   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   5417   return true;
   5418 }
   5419 
   5420 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
   5421                           bool MinusOne) {
   5422   MachineBasicBlock &MBB = *MIB->getParent();
   5423   DebugLoc DL = MIB->getDebugLoc();
   5424   unsigned Reg = MIB->getOperand(0).getReg();
   5425 
   5426   // Insert the XOR.
   5427   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
   5428       .addReg(Reg, RegState::Undef)
   5429       .addReg(Reg, RegState::Undef);
   5430 
   5431   // Turn the pseudo into an INC or DEC.
   5432   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
   5433   MIB.addReg(Reg);
   5434 
   5435   return true;
   5436 }
   5437 
   5438 bool X86InstrInfo::ExpandMOVImmSExti8(MachineInstrBuilder &MIB) const {
   5439   MachineBasicBlock &MBB = *MIB->getParent();
   5440   DebugLoc DL = MIB->getDebugLoc();
   5441   int64_t Imm = MIB->getOperand(1).getImm();
   5442   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
   5443   MachineBasicBlock::iterator I = MIB.getInstr();
   5444 
   5445   int StackAdjustment;
   5446 
   5447   if (Subtarget.is64Bit()) {
   5448     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
   5449            MIB->getOpcode() == X86::MOV32ImmSExti8);
   5450 
   5451     // Can't use push/pop lowering if the function might write to the red zone.
   5452     X86MachineFunctionInfo *X86FI =
   5453         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
   5454     if (X86FI->getUsesRedZone()) {
   5455       MIB->setDesc(get(MIB->getOpcode() == X86::MOV32ImmSExti8 ? X86::MOV32ri
   5456                                                                : X86::MOV64ri));
   5457       return true;
   5458     }
   5459 
   5460     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
   5461     // widen the register if necessary.
   5462     StackAdjustment = 8;
   5463     BuildMI(MBB, I, DL, get(X86::PUSH64i8)).addImm(Imm);
   5464     MIB->setDesc(get(X86::POP64r));
   5465     MIB->getOperand(0)
   5466         .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
   5467   } else {
   5468     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
   5469     StackAdjustment = 4;
   5470     BuildMI(MBB, I, DL, get(X86::PUSH32i8)).addImm(Imm);
   5471     MIB->setDesc(get(X86::POP32r));
   5472   }
   5473 
   5474   // Build CFI if necessary.
   5475   MachineFunction &MF = *MBB.getParent();
   5476   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
   5477   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
   5478   bool NeedsDwarfCFI =
   5479       !IsWin64Prologue &&
   5480       (MF.getMMI().hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry());
   5481   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
   5482   if (EmitCFI) {
   5483     TFL->BuildCFI(MBB, I, DL,
   5484         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
   5485     TFL->BuildCFI(MBB, std::next(I), DL,
   5486         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
   5487   }
   5488 
   5489   return true;
   5490 }
   5491 
   5492 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
   5493 // code sequence is needed for other targets.
   5494 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
   5495                                  const TargetInstrInfo &TII) {
   5496   MachineBasicBlock &MBB = *MIB->getParent();
   5497   DebugLoc DL = MIB->getDebugLoc();
   5498   unsigned Reg = MIB->getOperand(0).getReg();
   5499   const GlobalValue *GV =
   5500       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
   5501   unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
   5502   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
   5503       MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 8, 8);
   5504   MachineBasicBlock::iterator I = MIB.getInstr();
   5505 
   5506   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
   5507       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
   5508       .addMemOperand(MMO);
   5509   MIB->setDebugLoc(DL);
   5510   MIB->setDesc(TII.get(X86::MOV64rm));
   5511   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
   5512 }
   5513 
   5514 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
   5515   bool HasAVX = Subtarget.hasAVX();
   5516   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
   5517   switch (MI.getOpcode()) {
   5518   case X86::MOV32r0:
   5519     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
   5520   case X86::MOV32r1:
   5521     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
   5522   case X86::MOV32r_1:
   5523     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
   5524   case X86::MOV32ImmSExti8:
   5525   case X86::MOV64ImmSExti8:
   5526     return ExpandMOVImmSExti8(MIB);
   5527   case X86::SETB_C8r:
   5528     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
   5529   case X86::SETB_C16r:
   5530     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
   5531   case X86::SETB_C32r:
   5532     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
   5533   case X86::SETB_C64r:
   5534     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
   5535   case X86::V_SET0:
   5536   case X86::FsFLD0SS:
   5537   case X86::FsFLD0SD:
   5538     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
   5539   case X86::AVX_SET0:
   5540     assert(HasAVX && "AVX not supported");
   5541     return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
   5542   case X86::AVX512_128_SET0:
   5543     return Expand2AddrUndef(MIB, get(X86::VPXORDZ128rr));
   5544   case X86::AVX512_256_SET0:
   5545     return Expand2AddrUndef(MIB, get(X86::VPXORDZ256rr));
   5546   case X86::AVX512_512_SET0:
   5547     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
   5548   case X86::V_SETALLONES:
   5549     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
   5550   case X86::AVX2_SETALLONES:
   5551     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
   5552   case X86::AVX512_512_SETALLONES: {
   5553     unsigned Reg = MIB->getOperand(0).getReg();
   5554     MIB->setDesc(get(X86::VPTERNLOGDZrri));
   5555     // VPTERNLOGD needs 3 register inputs and an immediate.
   5556     // 0xff will return 1s for any input.
   5557     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
   5558        .addReg(Reg, RegState::Undef).addImm(0xff);
   5559     return true;
   5560   }
   5561   case X86::TEST8ri_NOREX:
   5562     MI.setDesc(get(X86::TEST8ri));
   5563     return true;
   5564   case X86::MOV32ri64:
   5565     MI.setDesc(get(X86::MOV32ri));
   5566     return true;
   5567 
   5568   // KNL does not recognize dependency-breaking idioms for mask registers,
   5569   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
   5570   // Using %k0 as the undef input register is a performance heuristic based
   5571   // on the assumption that %k0 is used less frequently than the other mask
   5572   // registers, since it is not usable as a write mask.
   5573   // FIXME: A more advanced approach would be to choose the best input mask
   5574   // register based on context.
   5575   case X86::KSET0B:
   5576   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
   5577   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
   5578   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
   5579   case X86::KSET1B:
   5580   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
   5581   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
   5582   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
   5583   case TargetOpcode::LOAD_STACK_GUARD:
   5584     expandLoadStackGuard(MIB, *this);
   5585     return true;
   5586   }
   5587   return false;
   5588 }
   5589 
   5590 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
   5591                         int PtrOffset = 0) {
   5592   unsigned NumAddrOps = MOs.size();
   5593 
   5594   if (NumAddrOps < 4) {
   5595     // FrameIndex only - add an immediate offset (whether its zero or not).
   5596     for (unsigned i = 0; i != NumAddrOps; ++i)
   5597       MIB.addOperand(MOs[i]);
   5598     addOffset(MIB, PtrOffset);
   5599   } else {
   5600     // General Memory Addressing - we need to add any offset to an existing
   5601     // offset.
   5602     assert(MOs.size() == 5 && "Unexpected memory operand list length");
   5603     for (unsigned i = 0; i != NumAddrOps; ++i) {
   5604       const MachineOperand &MO = MOs[i];
   5605       if (i == 3 && PtrOffset != 0) {
   5606         MIB.addDisp(MO, PtrOffset);
   5607       } else {
   5608         MIB.addOperand(MO);
   5609       }
   5610     }
   5611   }
   5612 }
   5613 
   5614 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
   5615                                      ArrayRef<MachineOperand> MOs,
   5616                                      MachineBasicBlock::iterator InsertPt,
   5617                                      MachineInstr &MI,
   5618                                      const TargetInstrInfo &TII) {
   5619   // Create the base instruction with the memory operand as the first part.
   5620   // Omit the implicit operands, something BuildMI can't do.
   5621   MachineInstr *NewMI =
   5622       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
   5623   MachineInstrBuilder MIB(MF, NewMI);
   5624   addOperands(MIB, MOs);
   5625 
   5626   // Loop over the rest of the ri operands, converting them over.
   5627   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
   5628   for (unsigned i = 0; i != NumOps; ++i) {
   5629     MachineOperand &MO = MI.getOperand(i + 2);
   5630     MIB.addOperand(MO);
   5631   }
   5632   for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
   5633     MachineOperand &MO = MI.getOperand(i);
   5634     MIB.addOperand(MO);
   5635   }
   5636 
   5637   MachineBasicBlock *MBB = InsertPt->getParent();
   5638   MBB->insert(InsertPt, NewMI);
   5639 
   5640   return MIB;
   5641 }
   5642 
   5643 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
   5644                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
   5645                               MachineBasicBlock::iterator InsertPt,
   5646                               MachineInstr &MI, const TargetInstrInfo &TII,
   5647                               int PtrOffset = 0) {
   5648   // Omit the implicit operands, something BuildMI can't do.
   5649   MachineInstr *NewMI =
   5650       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
   5651   MachineInstrBuilder MIB(MF, NewMI);
   5652 
   5653   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   5654     MachineOperand &MO = MI.getOperand(i);
   5655     if (i == OpNo) {
   5656       assert(MO.isReg() && "Expected to fold into reg operand!");
   5657       addOperands(MIB, MOs, PtrOffset);
   5658     } else {
   5659       MIB.addOperand(MO);
   5660     }
   5661   }
   5662 
   5663   MachineBasicBlock *MBB = InsertPt->getParent();
   5664   MBB->insert(InsertPt, NewMI);
   5665 
   5666   return MIB;
   5667 }
   5668 
   5669 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
   5670                                 ArrayRef<MachineOperand> MOs,
   5671                                 MachineBasicBlock::iterator InsertPt,
   5672                                 MachineInstr &MI) {
   5673   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
   5674                                     MI.getDebugLoc(), TII.get(Opcode));
   5675   addOperands(MIB, MOs);
   5676   return MIB.addImm(0);
   5677 }
   5678 
   5679 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
   5680     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
   5681     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
   5682     unsigned Size, unsigned Align) const {
   5683   switch (MI.getOpcode()) {
   5684   case X86::INSERTPSrr:
   5685   case X86::VINSERTPSrr:
   5686     // Attempt to convert the load of inserted vector into a fold load
   5687     // of a single float.
   5688     if (OpNum == 2) {
   5689       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
   5690       unsigned ZMask = Imm & 15;
   5691       unsigned DstIdx = (Imm >> 4) & 3;
   5692       unsigned SrcIdx = (Imm >> 6) & 3;
   5693 
   5694       unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize();
   5695       if (Size <= RCSize && 4 <= Align) {
   5696         int PtrOffset = SrcIdx * 4;
   5697         unsigned NewImm = (DstIdx << 4) | ZMask;
   5698         unsigned NewOpCode =
   5699             (MI.getOpcode() == X86::VINSERTPSrr ? X86::VINSERTPSrm
   5700                                                 : X86::INSERTPSrm);
   5701         MachineInstr *NewMI =
   5702             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
   5703         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
   5704         return NewMI;
   5705       }
   5706     }
   5707     break;
   5708   case X86::MOVHLPSrr:
   5709   case X86::VMOVHLPSrr:
   5710     // Move the upper 64-bits of the second operand to the lower 64-bits.
   5711     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
   5712     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
   5713     if (OpNum == 2) {
   5714       unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize();
   5715       if (Size <= RCSize && 8 <= Align) {
   5716         unsigned NewOpCode =
   5717             (MI.getOpcode() == X86::VMOVHLPSrr ? X86::VMOVLPSrm
   5718                                                : X86::MOVLPSrm);
   5719         MachineInstr *NewMI =
   5720             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
   5721         return NewMI;
   5722       }
   5723     }
   5724     break;
   5725   };
   5726 
   5727   return nullptr;
   5728 }
   5729 
   5730 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
   5731     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
   5732     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
   5733     unsigned Size, unsigned Align, bool AllowCommute) const {
   5734   const DenseMap<unsigned,
   5735                  std::pair<uint16_t, uint16_t> > *OpcodeTablePtr = nullptr;
   5736   bool isCallRegIndirect = Subtarget.callRegIndirect();
   5737   bool isTwoAddrFold = false;
   5738 
   5739   // For CPUs that favor the register form of a call or push,
   5740   // do not fold loads into calls or pushes, unless optimizing for size
   5741   // aggressively.
   5742   if (isCallRegIndirect && !MF.getFunction()->optForMinSize() &&
   5743       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
   5744        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
   5745        MI.getOpcode() == X86::PUSH64r))
   5746     return nullptr;
   5747 
   5748   unsigned NumOps = MI.getDesc().getNumOperands();
   5749   bool isTwoAddr =
   5750       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   5751 
   5752   // FIXME: AsmPrinter doesn't know how to handle
   5753   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   5754   if (MI.getOpcode() == X86::ADD32ri &&
   5755       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   5756     return nullptr;
   5757 
   5758   MachineInstr *NewMI = nullptr;
   5759 
   5760   // Attempt to fold any custom cases we have.
   5761   if (MachineInstr *CustomMI =
   5762           foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
   5763     return CustomMI;
   5764 
   5765   // Folding a memory location into the two-address part of a two-address
   5766   // instruction is different than folding it other places.  It requires
   5767   // replacing the *two* registers with the memory location.
   5768   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
   5769       MI.getOperand(1).isReg() &&
   5770       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
   5771     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   5772     isTwoAddrFold = true;
   5773   } else if (OpNum == 0) {
   5774     if (MI.getOpcode() == X86::MOV32r0) {
   5775       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
   5776       if (NewMI)
   5777         return NewMI;
   5778     }
   5779 
   5780     OpcodeTablePtr = &RegOp2MemOpTable0;
   5781   } else if (OpNum == 1) {
   5782     OpcodeTablePtr = &RegOp2MemOpTable1;
   5783   } else if (OpNum == 2) {
   5784     OpcodeTablePtr = &RegOp2MemOpTable2;
   5785   } else if (OpNum == 3) {
   5786     OpcodeTablePtr = &RegOp2MemOpTable3;
   5787   } else if (OpNum == 4) {
   5788     OpcodeTablePtr = &RegOp2MemOpTable4;
   5789   }
   5790 
   5791   // If table selected...
   5792   if (OpcodeTablePtr) {
   5793     // Find the Opcode to fuse
   5794     auto I = OpcodeTablePtr->find(MI.getOpcode());
   5795     if (I != OpcodeTablePtr->end()) {
   5796       unsigned Opcode = I->second.first;
   5797       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
   5798       if (Align < MinAlign)
   5799         return nullptr;
   5800       bool NarrowToMOV32rm = false;
   5801       if (Size) {
   5802         unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize();
   5803         if (Size < RCSize) {
   5804           // Check if it's safe to fold the load. If the size of the object is
   5805           // narrower than the load width, then it's not.
   5806           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
   5807             return nullptr;
   5808           // If this is a 64-bit load, but the spill slot is 32, then we can do
   5809           // a 32-bit load which is implicitly zero-extended. This likely is
   5810           // due to live interval analysis remat'ing a load from stack slot.
   5811           if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
   5812             return nullptr;
   5813           Opcode = X86::MOV32rm;
   5814           NarrowToMOV32rm = true;
   5815         }
   5816       }
   5817 
   5818       if (isTwoAddrFold)
   5819         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
   5820       else
   5821         NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
   5822 
   5823       if (NarrowToMOV32rm) {
   5824         // If this is the special case where we use a MOV32rm to load a 32-bit
   5825         // value and zero-extend the top bits. Change the destination register
   5826         // to a 32-bit one.
   5827         unsigned DstReg = NewMI->getOperand(0).getReg();
   5828         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
   5829           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
   5830         else
   5831           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
   5832       }
   5833       return NewMI;
   5834     }
   5835   }
   5836 
   5837   // If the instruction and target operand are commutable, commute the
   5838   // instruction and try again.
   5839   if (AllowCommute) {
   5840     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
   5841     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
   5842       bool HasDef = MI.getDesc().getNumDefs();
   5843       unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
   5844       unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
   5845       unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
   5846       bool Tied1 =
   5847           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
   5848       bool Tied2 =
   5849           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
   5850 
   5851       // If either of the commutable operands are tied to the destination
   5852       // then we can not commute + fold.
   5853       if ((HasDef && Reg0 == Reg1 && Tied1) ||
   5854           (HasDef && Reg0 == Reg2 && Tied2))
   5855         return nullptr;
   5856 
   5857       MachineInstr *CommutedMI =
   5858           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
   5859       if (!CommutedMI) {
   5860         // Unable to commute.
   5861         return nullptr;
   5862       }
   5863       if (CommutedMI != &MI) {
   5864         // New instruction. We can't fold from this.
   5865         CommutedMI->eraseFromParent();
   5866         return nullptr;
   5867       }
   5868 
   5869       // Attempt to fold with the commuted version of the instruction.
   5870       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
   5871                                     Size, Align, /*AllowCommute=*/false);
   5872       if (NewMI)
   5873         return NewMI;
   5874 
   5875       // Folding failed again - undo the commute before returning.
   5876       MachineInstr *UncommutedMI =
   5877           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
   5878       if (!UncommutedMI) {
   5879         // Unable to commute.
   5880         return nullptr;
   5881       }
   5882       if (UncommutedMI != &MI) {
   5883         // New instruction. It doesn't need to be kept.
   5884         UncommutedMI->eraseFromParent();
   5885         return nullptr;
   5886       }
   5887 
   5888       // Return here to prevent duplicate fuse failure report.
   5889       return nullptr;
   5890     }
   5891   }
   5892 
   5893   // No fusion
   5894   if (PrintFailedFusing && !MI.isCopy())
   5895     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
   5896   return nullptr;
   5897 }
   5898 
   5899 /// Return true for all instructions that only update
   5900 /// the first 32 or 64-bits of the destination register and leave the rest
   5901 /// unmodified. This can be used to avoid folding loads if the instructions
   5902 /// only update part of the destination register, and the non-updated part is
   5903 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
   5904 /// instructions breaks the partial register dependency and it can improve
   5905 /// performance. e.g.:
   5906 ///
   5907 ///   movss (%rdi), %xmm0
   5908 ///   cvtss2sd %xmm0, %xmm0
   5909 ///
   5910 /// Instead of
   5911 ///   cvtss2sd (%rdi), %xmm0
   5912 ///
   5913 /// FIXME: This should be turned into a TSFlags.
   5914 ///
   5915 static bool hasPartialRegUpdate(unsigned Opcode) {
   5916   switch (Opcode) {
   5917   case X86::CVTSI2SSrr:
   5918   case X86::CVTSI2SSrm:
   5919   case X86::CVTSI2SS64rr:
   5920   case X86::CVTSI2SS64rm:
   5921   case X86::CVTSI2SDrr:
   5922   case X86::CVTSI2SDrm:
   5923   case X86::CVTSI2SD64rr:
   5924   case X86::CVTSI2SD64rm:
   5925   case X86::CVTSD2SSrr:
   5926   case X86::CVTSD2SSrm:
   5927   case X86::Int_CVTSD2SSrr:
   5928   case X86::Int_CVTSD2SSrm:
   5929   case X86::CVTSS2SDrr:
   5930   case X86::CVTSS2SDrm:
   5931   case X86::Int_CVTSS2SDrr:
   5932   case X86::Int_CVTSS2SDrm:
   5933   case X86::MOVHPDrm:
   5934   case X86::MOVHPSrm:
   5935   case X86::MOVLPDrm:
   5936   case X86::MOVLPSrm:
   5937   case X86::RCPSSr:
   5938   case X86::RCPSSm:
   5939   case X86::RCPSSr_Int:
   5940   case X86::RCPSSm_Int:
   5941   case X86::ROUNDSDr:
   5942   case X86::ROUNDSDm:
   5943   case X86::ROUNDSDr_Int:
   5944   case X86::ROUNDSSr:
   5945   case X86::ROUNDSSm:
   5946   case X86::ROUNDSSr_Int:
   5947   case X86::RSQRTSSr:
   5948   case X86::RSQRTSSm:
   5949   case X86::RSQRTSSr_Int:
   5950   case X86::RSQRTSSm_Int:
   5951   case X86::SQRTSSr:
   5952   case X86::SQRTSSm:
   5953   case X86::SQRTSSr_Int:
   5954   case X86::SQRTSSm_Int:
   5955   case X86::SQRTSDr:
   5956   case X86::SQRTSDm:
   5957   case X86::SQRTSDr_Int:
   5958   case X86::SQRTSDm_Int:
   5959     return true;
   5960   }
   5961 
   5962   return false;
   5963 }
   5964 
   5965 /// Inform the ExeDepsFix pass how many idle
   5966 /// instructions we would like before a partial register update.
   5967 unsigned X86InstrInfo::getPartialRegUpdateClearance(
   5968     const MachineInstr &MI, unsigned OpNum,
   5969     const TargetRegisterInfo *TRI) const {
   5970   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode()))
   5971     return 0;
   5972 
   5973   // If MI is marked as reading Reg, the partial register update is wanted.
   5974   const MachineOperand &MO = MI.getOperand(0);
   5975   unsigned Reg = MO.getReg();
   5976   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   5977     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
   5978       return 0;
   5979   } else {
   5980     if (MI.readsRegister(Reg, TRI))
   5981       return 0;
   5982   }
   5983 
   5984   // If any instructions in the clearance range are reading Reg, insert a
   5985   // dependency breaking instruction, which is inexpensive and is likely to
   5986   // be hidden in other instruction's cycles.
   5987   return PartialRegUpdateClearance;
   5988 }
   5989 
   5990 // Return true for any instruction the copies the high bits of the first source
   5991 // operand into the unused high bits of the destination operand.
   5992 static bool hasUndefRegUpdate(unsigned Opcode) {
   5993   switch (Opcode) {
   5994   case X86::VCVTSI2SSrr:
   5995   case X86::VCVTSI2SSrm:
   5996   case X86::Int_VCVTSI2SSrr:
   5997   case X86::Int_VCVTSI2SSrm:
   5998   case X86::VCVTSI2SS64rr:
   5999   case X86::VCVTSI2SS64rm:
   6000   case X86::Int_VCVTSI2SS64rr:
   6001   case X86::Int_VCVTSI2SS64rm:
   6002   case X86::VCVTSI2SDrr:
   6003   case X86::VCVTSI2SDrm:
   6004   case X86::Int_VCVTSI2SDrr:
   6005   case X86::Int_VCVTSI2SDrm:
   6006   case X86::VCVTSI2SD64rr:
   6007   case X86::VCVTSI2SD64rm:
   6008   case X86::Int_VCVTSI2SD64rr:
   6009   case X86::Int_VCVTSI2SD64rm:
   6010   case X86::VCVTSD2SSrr:
   6011   case X86::VCVTSD2SSrm:
   6012   case X86::Int_VCVTSD2SSrr:
   6013   case X86::Int_VCVTSD2SSrm:
   6014   case X86::VCVTSS2SDrr:
   6015   case X86::VCVTSS2SDrm:
   6016   case X86::Int_VCVTSS2SDrr:
   6017   case X86::Int_VCVTSS2SDrm:
   6018   case X86::VRCPSSr:
   6019   case X86::VRCPSSm:
   6020   case X86::VRCPSSm_Int:
   6021   case X86::VROUNDSDr:
   6022   case X86::VROUNDSDm:
   6023   case X86::VROUNDSDr_Int:
   6024   case X86::VROUNDSSr:
   6025   case X86::VROUNDSSm:
   6026   case X86::VROUNDSSr_Int:
   6027   case X86::VRSQRTSSr:
   6028   case X86::VRSQRTSSm:
   6029   case X86::VRSQRTSSm_Int:
   6030   case X86::VSQRTSSr:
   6031   case X86::VSQRTSSm:
   6032   case X86::VSQRTSSm_Int:
   6033   case X86::VSQRTSDr:
   6034   case X86::VSQRTSDm:
   6035   case X86::VSQRTSDm_Int:
   6036     // AVX-512
   6037   case X86::VCVTSD2SSZrr:
   6038   case X86::VCVTSD2SSZrm:
   6039   case X86::VCVTSS2SDZrr:
   6040   case X86::VCVTSS2SDZrm:
   6041     return true;
   6042   }
   6043 
   6044   return false;
   6045 }
   6046 
   6047 /// Inform the ExeDepsFix pass how many idle instructions we would like before
   6048 /// certain undef register reads.
   6049 ///
   6050 /// This catches the VCVTSI2SD family of instructions:
   6051 ///
   6052 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
   6053 ///
   6054 /// We should to be careful *not* to catch VXOR idioms which are presumably
   6055 /// handled specially in the pipeline:
   6056 ///
   6057 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
   6058 ///
   6059 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
   6060 /// high bits that are passed-through are not live.
   6061 unsigned
   6062 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
   6063                                    const TargetRegisterInfo *TRI) const {
   6064   if (!hasUndefRegUpdate(MI.getOpcode()))
   6065     return 0;
   6066 
   6067   // Set the OpNum parameter to the first source operand.
   6068   OpNum = 1;
   6069 
   6070   const MachineOperand &MO = MI.getOperand(OpNum);
   6071   if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
   6072     return UndefRegClearance;
   6073   }
   6074   return 0;
   6075 }
   6076 
   6077 void X86InstrInfo::breakPartialRegDependency(
   6078     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
   6079   unsigned Reg = MI.getOperand(OpNum).getReg();
   6080   // If MI kills this register, the false dependence is already broken.
   6081   if (MI.killsRegister(Reg, TRI))
   6082     return;
   6083 
   6084   if (X86::VR128RegClass.contains(Reg)) {
   6085     // These instructions are all floating point domain, so xorps is the best
   6086     // choice.
   6087     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
   6088     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
   6089         .addReg(Reg, RegState::Undef)
   6090         .addReg(Reg, RegState::Undef);
   6091     MI.addRegisterKilled(Reg, TRI, true);
   6092   } else if (X86::VR256RegClass.contains(Reg)) {
   6093     // Use vxorps to clear the full ymm register.
   6094     // It wants to read and write the xmm sub-register.
   6095     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
   6096     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
   6097         .addReg(XReg, RegState::Undef)
   6098         .addReg(XReg, RegState::Undef)
   6099         .addReg(Reg, RegState::ImplicitDefine);
   6100     MI.addRegisterKilled(Reg, TRI, true);
   6101   }
   6102 }
   6103 
   6104 MachineInstr *
   6105 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
   6106                                     ArrayRef<unsigned> Ops,
   6107                                     MachineBasicBlock::iterator InsertPt,
   6108                                     int FrameIndex, LiveIntervals *LIS) const {
   6109   // Check switch flag
   6110   if (NoFusing)
   6111     return nullptr;
   6112 
   6113   // Unless optimizing for size, don't fold to avoid partial
   6114   // register update stalls
   6115   if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode()))
   6116     return nullptr;
   6117 
   6118   const MachineFrameInfo *MFI = MF.getFrameInfo();
   6119   unsigned Size = MFI->getObjectSize(FrameIndex);
   6120   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
   6121   // If the function stack isn't realigned we don't want to fold instructions
   6122   // that need increased alignment.
   6123   if (!RI.needsStackRealignment(MF))
   6124     Alignment =
   6125         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
   6126   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   6127     unsigned NewOpc = 0;
   6128     unsigned RCSize = 0;
   6129     switch (MI.getOpcode()) {
   6130     default: return nullptr;
   6131     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
   6132     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
   6133     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
   6134     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
   6135     }
   6136     // Check if it's safe to fold the load. If the size of the object is
   6137     // narrower than the load width, then it's not.
   6138     if (Size < RCSize)
   6139       return nullptr;
   6140     // Change to CMPXXri r, 0 first.
   6141     MI.setDesc(get(NewOpc));
   6142     MI.getOperand(1).ChangeToImmediate(0);
   6143   } else if (Ops.size() != 1)
   6144     return nullptr;
   6145 
   6146   return foldMemoryOperandImpl(MF, MI, Ops[0],
   6147                                MachineOperand::CreateFI(FrameIndex), InsertPt,
   6148                                Size, Alignment, /*AllowCommute=*/true);
   6149 }
   6150 
   6151 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
   6152 /// because the latter uses contents that wouldn't be defined in the folded
   6153 /// version.  For instance, this transformation isn't legal:
   6154 ///   movss (%rdi), %xmm0
   6155 ///   addps %xmm0, %xmm0
   6156 /// ->
   6157 ///   addps (%rdi), %xmm0
   6158 ///
   6159 /// But this one is:
   6160 ///   movss (%rdi), %xmm0
   6161 ///   addss %xmm0, %xmm0
   6162 /// ->
   6163 ///   addss (%rdi), %xmm0
   6164 ///
   6165 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
   6166                                              const MachineInstr &UserMI,
   6167                                              const MachineFunction &MF) {
   6168   unsigned Opc = LoadMI.getOpcode();
   6169   unsigned UserOpc = UserMI.getOpcode();
   6170   unsigned RegSize =
   6171       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
   6172 
   6173   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) {
   6174     // These instructions only load 32 bits, we can't fold them if the
   6175     // destination register is wider than 32 bits (4 bytes), and its user
   6176     // instruction isn't scalar (SS).
   6177     switch (UserOpc) {
   6178     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int:
   6179     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int:
   6180     case X86::MULSSrr_Int: case X86::VMULSSrr_Int:
   6181     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int:
   6182     case X86::VFMADDSSr132r_Int: case X86::VFNMADDSSr132r_Int:
   6183     case X86::VFMADDSSr213r_Int: case X86::VFNMADDSSr213r_Int:
   6184     case X86::VFMADDSSr231r_Int: case X86::VFNMADDSSr231r_Int:
   6185     case X86::VFMSUBSSr132r_Int: case X86::VFNMSUBSSr132r_Int:
   6186     case X86::VFMSUBSSr213r_Int: case X86::VFNMSUBSSr213r_Int:
   6187     case X86::VFMSUBSSr231r_Int: case X86::VFNMSUBSSr231r_Int:
   6188       return false;
   6189     default:
   6190       return true;
   6191     }
   6192   }
   6193 
   6194   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) {
   6195     // These instructions only load 64 bits, we can't fold them if the
   6196     // destination register is wider than 64 bits (8 bytes), and its user
   6197     // instruction isn't scalar (SD).
   6198     switch (UserOpc) {
   6199     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int:
   6200     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int:
   6201     case X86::MULSDrr_Int: case X86::VMULSDrr_Int:
   6202     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int:
   6203     case X86::VFMADDSDr132r_Int: case X86::VFNMADDSDr132r_Int:
   6204     case X86::VFMADDSDr213r_Int: case X86::VFNMADDSDr213r_Int:
   6205     case X86::VFMADDSDr231r_Int: case X86::VFNMADDSDr231r_Int:
   6206     case X86::VFMSUBSDr132r_Int: case X86::VFNMSUBSDr132r_Int:
   6207     case X86::VFMSUBSDr213r_Int: case X86::VFNMSUBSDr213r_Int:
   6208     case X86::VFMSUBSDr231r_Int: case X86::VFNMSUBSDr231r_Int:
   6209       return false;
   6210     default:
   6211       return true;
   6212     }
   6213   }
   6214 
   6215   return false;
   6216 }
   6217 
   6218 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
   6219     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
   6220     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
   6221     LiveIntervals *LIS) const {
   6222   // If loading from a FrameIndex, fold directly from the FrameIndex.
   6223   unsigned NumOps = LoadMI.getDesc().getNumOperands();
   6224   int FrameIndex;
   6225   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
   6226     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
   6227       return nullptr;
   6228     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
   6229   }
   6230 
   6231   // Check switch flag
   6232   if (NoFusing) return nullptr;
   6233 
   6234   // Avoid partial register update stalls unless optimizing for size.
   6235   if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode()))
   6236     return nullptr;
   6237 
   6238   // Determine the alignment of the load.
   6239   unsigned Alignment = 0;
   6240   if (LoadMI.hasOneMemOperand())
   6241     Alignment = (*LoadMI.memoperands_begin())->getAlignment();
   6242   else
   6243     switch (LoadMI.getOpcode()) {
   6244     case X86::AVX512_512_SET0:
   6245     case X86::AVX512_512_SETALLONES:
   6246       Alignment = 64;
   6247       break;
   6248     case X86::AVX2_SETALLONES:
   6249     case X86::AVX_SET0:
   6250     case X86::AVX512_256_SET0:
   6251       Alignment = 32;
   6252       break;
   6253     case X86::V_SET0:
   6254     case X86::V_SETALLONES:
   6255     case X86::AVX512_128_SET0:
   6256       Alignment = 16;
   6257       break;
   6258     case X86::FsFLD0SD:
   6259       Alignment = 8;
   6260       break;
   6261     case X86::FsFLD0SS:
   6262       Alignment = 4;
   6263       break;
   6264     default:
   6265       return nullptr;
   6266     }
   6267   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   6268     unsigned NewOpc = 0;
   6269     switch (MI.getOpcode()) {
   6270     default: return nullptr;
   6271     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
   6272     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
   6273     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
   6274     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
   6275     }
   6276     // Change to CMPXXri r, 0 first.
   6277     MI.setDesc(get(NewOpc));
   6278     MI.getOperand(1).ChangeToImmediate(0);
   6279   } else if (Ops.size() != 1)
   6280     return nullptr;
   6281 
   6282   // Make sure the subregisters match.
   6283   // Otherwise we risk changing the size of the load.
   6284   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
   6285     return nullptr;
   6286 
   6287   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
   6288   switch (LoadMI.getOpcode()) {
   6289   case X86::V_SET0:
   6290   case X86::V_SETALLONES:
   6291   case X86::AVX2_SETALLONES:
   6292   case X86::AVX_SET0:
   6293   case X86::AVX512_128_SET0:
   6294   case X86::AVX512_256_SET0:
   6295   case X86::AVX512_512_SET0:
   6296   case X86::AVX512_512_SETALLONES:
   6297   case X86::FsFLD0SD:
   6298   case X86::FsFLD0SS: {
   6299     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
   6300     // Create a constant-pool entry and operands to load from it.
   6301 
   6302     // Medium and large mode can't fold loads this way.
   6303     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
   6304         MF.getTarget().getCodeModel() != CodeModel::Kernel)
   6305       return nullptr;
   6306 
   6307     // x86-32 PIC requires a PIC base register for constant pools.
   6308     unsigned PICBase = 0;
   6309     if (MF.getTarget().isPositionIndependent()) {
   6310       if (Subtarget.is64Bit())
   6311         PICBase = X86::RIP;
   6312       else
   6313         // FIXME: PICBase = getGlobalBaseReg(&MF);
   6314         // This doesn't work for several reasons.
   6315         // 1. GlobalBaseReg may have been spilled.
   6316         // 2. It may not be live at MI.
   6317         return nullptr;
   6318     }
   6319 
   6320     // Create a constant-pool entry.
   6321     MachineConstantPool &MCP = *MF.getConstantPool();
   6322     Type *Ty;
   6323     unsigned Opc = LoadMI.getOpcode();
   6324     if (Opc == X86::FsFLD0SS)
   6325       Ty = Type::getFloatTy(MF.getFunction()->getContext());
   6326     else if (Opc == X86::FsFLD0SD)
   6327       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
   6328     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
   6329       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()),16);
   6330     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
   6331              Opc == X86::AVX512_256_SET0)
   6332       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
   6333     else
   6334       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
   6335 
   6336     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
   6337                       Opc == X86::AVX512_512_SETALLONES);
   6338     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
   6339                                     Constant::getNullValue(Ty);
   6340     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
   6341 
   6342     // Create operands to load from the constant pool entry.
   6343     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
   6344     MOs.push_back(MachineOperand::CreateImm(1));
   6345     MOs.push_back(MachineOperand::CreateReg(0, false));
   6346     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
   6347     MOs.push_back(MachineOperand::CreateReg(0, false));
   6348     break;
   6349   }
   6350   default: {
   6351     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
   6352       return nullptr;
   6353 
   6354     // Folding a normal load. Just copy the load's address operands.
   6355     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
   6356                LoadMI.operands_begin() + NumOps);
   6357     break;
   6358   }
   6359   }
   6360   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
   6361                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
   6362 }
   6363 
   6364 bool X86InstrInfo::unfoldMemoryOperand(
   6365     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
   6366     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
   6367   auto I = MemOp2RegOpTable.find(MI.getOpcode());
   6368   if (I == MemOp2RegOpTable.end())
   6369     return false;
   6370   unsigned Opc = I->second.first;
   6371   unsigned Index = I->second.second & TB_INDEX_MASK;
   6372   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   6373   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   6374   if (UnfoldLoad && !FoldedLoad)
   6375     return false;
   6376   UnfoldLoad &= FoldedLoad;
   6377   if (UnfoldStore && !FoldedStore)
   6378     return false;
   6379   UnfoldStore &= FoldedStore;
   6380 
   6381   const MCInstrDesc &MCID = get(Opc);
   6382   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   6383   // TODO: Check if 32-byte or greater accesses are slow too?
   6384   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
   6385       Subtarget.isUnalignedMem16Slow())
   6386     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
   6387     // conservatively assume the address is unaligned. That's bad for
   6388     // performance.
   6389     return false;
   6390   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
   6391   SmallVector<MachineOperand,2> BeforeOps;
   6392   SmallVector<MachineOperand,2> AfterOps;
   6393   SmallVector<MachineOperand,4> ImpOps;
   6394   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   6395     MachineOperand &Op = MI.getOperand(i);
   6396     if (i >= Index && i < Index + X86::AddrNumOperands)
   6397       AddrOps.push_back(Op);
   6398     else if (Op.isReg() && Op.isImplicit())
   6399       ImpOps.push_back(Op);
   6400     else if (i < Index)
   6401       BeforeOps.push_back(Op);
   6402     else if (i > Index)
   6403       AfterOps.push_back(Op);
   6404   }
   6405 
   6406   // Emit the load instruction.
   6407   if (UnfoldLoad) {
   6408     std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
   6409         MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   6410     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
   6411     if (UnfoldStore) {
   6412       // Address operands cannot be marked isKill.
   6413       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
   6414         MachineOperand &MO = NewMIs[0]->getOperand(i);
   6415         if (MO.isReg())
   6416           MO.setIsKill(false);
   6417       }
   6418     }
   6419   }
   6420 
   6421   // Emit the data processing instruction.
   6422   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
   6423   MachineInstrBuilder MIB(MF, DataMI);
   6424 
   6425   if (FoldedStore)
   6426     MIB.addReg(Reg, RegState::Define);
   6427   for (MachineOperand &BeforeOp : BeforeOps)
   6428     MIB.addOperand(BeforeOp);
   6429   if (FoldedLoad)
   6430     MIB.addReg(Reg);
   6431   for (MachineOperand &AfterOp : AfterOps)
   6432     MIB.addOperand(AfterOp);
   6433   for (MachineOperand &ImpOp : ImpOps) {
   6434     MIB.addReg(ImpOp.getReg(),
   6435                getDefRegState(ImpOp.isDef()) |
   6436                RegState::Implicit |
   6437                getKillRegState(ImpOp.isKill()) |
   6438                getDeadRegState(ImpOp.isDead()) |
   6439                getUndefRegState(ImpOp.isUndef()));
   6440   }
   6441   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
   6442   switch (DataMI->getOpcode()) {
   6443   default: break;
   6444   case X86::CMP64ri32:
   6445   case X86::CMP64ri8:
   6446   case X86::CMP32ri:
   6447   case X86::CMP32ri8:
   6448   case X86::CMP16ri:
   6449   case X86::CMP16ri8:
   6450   case X86::CMP8ri: {
   6451     MachineOperand &MO0 = DataMI->getOperand(0);
   6452     MachineOperand &MO1 = DataMI->getOperand(1);
   6453     if (MO1.getImm() == 0) {
   6454       unsigned NewOpc;
   6455       switch (DataMI->getOpcode()) {
   6456       default: llvm_unreachable("Unreachable!");
   6457       case X86::CMP64ri8:
   6458       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
   6459       case X86::CMP32ri8:
   6460       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
   6461       case X86::CMP16ri8:
   6462       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
   6463       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
   6464       }
   6465       DataMI->setDesc(get(NewOpc));
   6466       MO1.ChangeToRegister(MO0.getReg(), false);
   6467     }
   6468   }
   6469   }
   6470   NewMIs.push_back(DataMI);
   6471 
   6472   // Emit the store instruction.
   6473   if (UnfoldStore) {
   6474     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
   6475     std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
   6476         MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   6477     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
   6478   }
   6479 
   6480   return true;
   6481 }
   6482 
   6483 bool
   6484 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   6485                                   SmallVectorImpl<SDNode*> &NewNodes) const {
   6486   if (!N->isMachineOpcode())
   6487     return false;
   6488 
   6489   auto I = MemOp2RegOpTable.find(N->getMachineOpcode());
   6490   if (I == MemOp2RegOpTable.end())
   6491     return false;
   6492   unsigned Opc = I->second.first;
   6493   unsigned Index = I->second.second & TB_INDEX_MASK;
   6494   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   6495   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   6496   const MCInstrDesc &MCID = get(Opc);
   6497   MachineFunction &MF = DAG.getMachineFunction();
   6498   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   6499   unsigned NumDefs = MCID.NumDefs;
   6500   std::vector<SDValue> AddrOps;
   6501   std::vector<SDValue> BeforeOps;
   6502   std::vector<SDValue> AfterOps;
   6503   SDLoc dl(N);
   6504   unsigned NumOps = N->getNumOperands();
   6505   for (unsigned i = 0; i != NumOps-1; ++i) {
   6506     SDValue Op = N->getOperand(i);
   6507     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
   6508       AddrOps.push_back(Op);
   6509     else if (i < Index-NumDefs)
   6510       BeforeOps.push_back(Op);
   6511     else if (i > Index-NumDefs)
   6512       AfterOps.push_back(Op);
   6513   }
   6514   SDValue Chain = N->getOperand(NumOps-1);
   6515   AddrOps.push_back(Chain);
   6516 
   6517   // Emit the load instruction.
   6518   SDNode *Load = nullptr;
   6519   if (FoldedLoad) {
   6520     EVT VT = *RC->vt_begin();
   6521     std::pair<MachineInstr::mmo_iterator,
   6522               MachineInstr::mmo_iterator> MMOs =
   6523       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   6524                             cast<MachineSDNode>(N)->memoperands_end());
   6525     if (!(*MMOs.first) &&
   6526         RC == &X86::VR128RegClass &&
   6527         Subtarget.isUnalignedMem16Slow())
   6528       // Do not introduce a slow unaligned load.
   6529       return false;
   6530     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
   6531     // memory access is slow above.
   6532     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   6533     bool isAligned = (*MMOs.first) &&
   6534                      (*MMOs.first)->getAlignment() >= Alignment;
   6535     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
   6536                               VT, MVT::Other, AddrOps);
   6537     NewNodes.push_back(Load);
   6538 
   6539     // Preserve memory reference information.
   6540     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   6541   }
   6542 
   6543   // Emit the data processing instruction.
   6544   std::vector<EVT> VTs;
   6545   const TargetRegisterClass *DstRC = nullptr;
   6546   if (MCID.getNumDefs() > 0) {
   6547     DstRC = getRegClass(MCID, 0, &RI, MF);
   6548     VTs.push_back(*DstRC->vt_begin());
   6549   }
   6550   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
   6551     EVT VT = N->getValueType(i);
   6552     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
   6553       VTs.push_back(VT);
   6554   }
   6555   if (Load)
   6556     BeforeOps.push_back(SDValue(Load, 0));
   6557   BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
   6558   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
   6559   NewNodes.push_back(NewNode);
   6560 
   6561   // Emit the store instruction.
   6562   if (FoldedStore) {
   6563     AddrOps.pop_back();
   6564     AddrOps.push_back(SDValue(NewNode, 0));
   6565     AddrOps.push_back(Chain);
   6566     std::pair<MachineInstr::mmo_iterator,
   6567               MachineInstr::mmo_iterator> MMOs =
   6568       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   6569                              cast<MachineSDNode>(N)->memoperands_end());
   6570     if (!(*MMOs.first) &&
   6571         RC == &X86::VR128RegClass &&
   6572         Subtarget.isUnalignedMem16Slow())
   6573       // Do not introduce a slow unaligned store.
   6574       return false;
   6575     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
   6576     // memory access is slow above.
   6577     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   6578     bool isAligned = (*MMOs.first) &&
   6579                      (*MMOs.first)->getAlignment() >= Alignment;
   6580     SDNode *Store =
   6581         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
   6582                            dl, MVT::Other, AddrOps);
   6583     NewNodes.push_back(Store);
   6584 
   6585     // Preserve memory reference information.
   6586     cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
   6587   }
   6588 
   6589   return true;
   6590 }
   6591 
   6592 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
   6593                                       bool UnfoldLoad, bool UnfoldStore,
   6594                                       unsigned *LoadRegIndex) const {
   6595   auto I = MemOp2RegOpTable.find(Opc);
   6596   if (I == MemOp2RegOpTable.end())
   6597     return 0;
   6598   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   6599   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   6600   if (UnfoldLoad && !FoldedLoad)
   6601     return 0;
   6602   if (UnfoldStore && !FoldedStore)
   6603     return 0;
   6604   if (LoadRegIndex)
   6605     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
   6606   return I->second.first;
   6607 }
   6608 
   6609 bool
   6610 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   6611                                      int64_t &Offset1, int64_t &Offset2) const {
   6612   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   6613     return false;
   6614   unsigned Opc1 = Load1->getMachineOpcode();
   6615   unsigned Opc2 = Load2->getMachineOpcode();
   6616   switch (Opc1) {
   6617   default: return false;
   6618   case X86::MOV8rm:
   6619   case X86::MOV16rm:
   6620   case X86::MOV32rm:
   6621   case X86::MOV64rm:
   6622   case X86::LD_Fp32m:
   6623   case X86::LD_Fp64m:
   6624   case X86::LD_Fp80m:
   6625   case X86::MOVSSrm:
   6626   case X86::MOVSDrm:
   6627   case X86::MMX_MOVD64rm:
   6628   case X86::MMX_MOVQ64rm:
   6629   case X86::FsMOVAPSrm:
   6630   case X86::FsMOVAPDrm:
   6631   case X86::MOVAPSrm:
   6632   case X86::MOVUPSrm:
   6633   case X86::MOVAPDrm:
   6634   case X86::MOVDQArm:
   6635   case X86::MOVDQUrm:
   6636   // AVX load instructions
   6637   case X86::VMOVSSrm:
   6638   case X86::VMOVSDrm:
   6639   case X86::FsVMOVAPSrm:
   6640   case X86::FsVMOVAPDrm:
   6641   case X86::VMOVAPSrm:
   6642   case X86::VMOVUPSrm:
   6643   case X86::VMOVAPDrm:
   6644   case X86::VMOVDQArm:
   6645   case X86::VMOVDQUrm:
   6646   case X86::VMOVAPSYrm:
   6647   case X86::VMOVUPSYrm:
   6648   case X86::VMOVAPDYrm:
   6649   case X86::VMOVDQAYrm:
   6650   case X86::VMOVDQUYrm:
   6651     break;
   6652   }
   6653   switch (Opc2) {
   6654   default: return false;
   6655   case X86::MOV8rm:
   6656   case X86::MOV16rm:
   6657   case X86::MOV32rm:
   6658   case X86::MOV64rm:
   6659   case X86::LD_Fp32m:
   6660   case X86::LD_Fp64m:
   6661   case X86::LD_Fp80m:
   6662   case X86::MOVSSrm:
   6663   case X86::MOVSDrm:
   6664   case X86::MMX_MOVD64rm:
   6665   case X86::MMX_MOVQ64rm:
   6666   case X86::FsMOVAPSrm:
   6667   case X86::FsMOVAPDrm:
   6668   case X86::MOVAPSrm:
   6669   case X86::MOVUPSrm:
   6670   case X86::MOVAPDrm:
   6671   case X86::MOVDQArm:
   6672   case X86::MOVDQUrm:
   6673   // AVX load instructions
   6674   case X86::VMOVSSrm:
   6675   case X86::VMOVSDrm:
   6676   case X86::FsVMOVAPSrm:
   6677   case X86::FsVMOVAPDrm:
   6678   case X86::VMOVAPSrm:
   6679   case X86::VMOVUPSrm:
   6680   case X86::VMOVAPDrm:
   6681   case X86::VMOVDQArm:
   6682   case X86::VMOVDQUrm:
   6683   case X86::VMOVAPSYrm:
   6684   case X86::VMOVUPSYrm:
   6685   case X86::VMOVAPDYrm:
   6686   case X86::VMOVDQAYrm:
   6687   case X86::VMOVDQUYrm:
   6688     break;
   6689   }
   6690 
   6691   // Check if chain operands and base addresses match.
   6692   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   6693       Load1->getOperand(5) != Load2->getOperand(5))
   6694     return false;
   6695   // Segment operands should match as well.
   6696   if (Load1->getOperand(4) != Load2->getOperand(4))
   6697     return false;
   6698   // Scale should be 1, Index should be Reg0.
   6699   if (Load1->getOperand(1) == Load2->getOperand(1) &&
   6700       Load1->getOperand(2) == Load2->getOperand(2)) {
   6701     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
   6702       return false;
   6703 
   6704     // Now let's examine the displacements.
   6705     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
   6706         isa<ConstantSDNode>(Load2->getOperand(3))) {
   6707       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
   6708       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
   6709       return true;
   6710     }
   6711   }
   6712   return false;
   6713 }
   6714 
   6715 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   6716                                            int64_t Offset1, int64_t Offset2,
   6717                                            unsigned NumLoads) const {
   6718   assert(Offset2 > Offset1);
   6719   if ((Offset2 - Offset1) / 8 > 64)
   6720     return false;
   6721 
   6722   unsigned Opc1 = Load1->getMachineOpcode();
   6723   unsigned Opc2 = Load2->getMachineOpcode();
   6724   if (Opc1 != Opc2)
   6725     return false;  // FIXME: overly conservative?
   6726 
   6727   switch (Opc1) {
   6728   default: break;
   6729   case X86::LD_Fp32m:
   6730   case X86::LD_Fp64m:
   6731   case X86::LD_Fp80m:
   6732   case X86::MMX_MOVD64rm:
   6733   case X86::MMX_MOVQ64rm:
   6734     return false;
   6735   }
   6736 
   6737   EVT VT = Load1->getValueType(0);
   6738   switch (VT.getSimpleVT().SimpleTy) {
   6739   default:
   6740     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
   6741     // have 16 of them to play with.
   6742     if (Subtarget.is64Bit()) {
   6743       if (NumLoads >= 3)
   6744         return false;
   6745     } else if (NumLoads) {
   6746       return false;
   6747     }
   6748     break;
   6749   case MVT::i8:
   6750   case MVT::i16:
   6751   case MVT::i32:
   6752   case MVT::i64:
   6753   case MVT::f32:
   6754   case MVT::f64:
   6755     if (NumLoads)
   6756       return false;
   6757     break;
   6758   }
   6759 
   6760   return true;
   6761 }
   6762 
   6763 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr &First,
   6764                                           MachineInstr &Second) const {
   6765   // Check if this processor supports macro-fusion. Since this is a minor
   6766   // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
   6767   // proxy for SandyBridge+.
   6768   if (!Subtarget.hasAVX())
   6769     return false;
   6770 
   6771   enum {
   6772     FuseTest,
   6773     FuseCmp,
   6774     FuseInc
   6775   } FuseKind;
   6776 
   6777   switch (Second.getOpcode()) {
   6778   default:
   6779     return false;
   6780   case X86::JE_1:
   6781   case X86::JNE_1:
   6782   case X86::JL_1:
   6783   case X86::JLE_1:
   6784   case X86::JG_1:
   6785   case X86::JGE_1:
   6786     FuseKind = FuseInc;
   6787     break;
   6788   case X86::JB_1:
   6789   case X86::JBE_1:
   6790   case X86::JA_1:
   6791   case X86::JAE_1:
   6792     FuseKind = FuseCmp;
   6793     break;
   6794   case X86::JS_1:
   6795   case X86::JNS_1:
   6796   case X86::JP_1:
   6797   case X86::JNP_1:
   6798   case X86::JO_1:
   6799   case X86::JNO_1:
   6800     FuseKind = FuseTest;
   6801     break;
   6802   }
   6803   switch (First.getOpcode()) {
   6804   default:
   6805     return false;
   6806   case X86::TEST8rr:
   6807   case X86::TEST16rr:
   6808   case X86::TEST32rr:
   6809   case X86::TEST64rr:
   6810   case X86::TEST8ri:
   6811   case X86::TEST16ri:
   6812   case X86::TEST32ri:
   6813   case X86::TEST32i32:
   6814   case X86::TEST64i32:
   6815   case X86::TEST64ri32:
   6816   case X86::TEST8rm:
   6817   case X86::TEST16rm:
   6818   case X86::TEST32rm:
   6819   case X86::TEST64rm:
   6820   case X86::TEST8ri_NOREX:
   6821   case X86::AND16i16:
   6822   case X86::AND16ri:
   6823   case X86::AND16ri8:
   6824   case X86::AND16rm:
   6825   case X86::AND16rr:
   6826   case X86::AND32i32:
   6827   case X86::AND32ri:
   6828   case X86::AND32ri8:
   6829   case X86::AND32rm:
   6830   case X86::AND32rr:
   6831   case X86::AND64i32:
   6832   case X86::AND64ri32:
   6833   case X86::AND64ri8:
   6834   case X86::AND64rm:
   6835   case X86::AND64rr:
   6836   case X86::AND8i8:
   6837   case X86::AND8ri:
   6838   case X86::AND8rm:
   6839   case X86::AND8rr:
   6840     return true;
   6841   case X86::CMP16i16:
   6842   case X86::CMP16ri:
   6843   case X86::CMP16ri8:
   6844   case X86::CMP16rm:
   6845   case X86::CMP16rr:
   6846   case X86::CMP32i32:
   6847   case X86::CMP32ri:
   6848   case X86::CMP32ri8:
   6849   case X86::CMP32rm:
   6850   case X86::CMP32rr:
   6851   case X86::CMP64i32:
   6852   case X86::CMP64ri32:
   6853   case X86::CMP64ri8:
   6854   case X86::CMP64rm:
   6855   case X86::CMP64rr:
   6856   case X86::CMP8i8:
   6857   case X86::CMP8ri:
   6858   case X86::CMP8rm:
   6859   case X86::CMP8rr:
   6860   case X86::ADD16i16:
   6861   case X86::ADD16ri:
   6862   case X86::ADD16ri8:
   6863   case X86::ADD16ri8_DB:
   6864   case X86::ADD16ri_DB:
   6865   case X86::ADD16rm:
   6866   case X86::ADD16rr:
   6867   case X86::ADD16rr_DB:
   6868   case X86::ADD32i32:
   6869   case X86::ADD32ri:
   6870   case X86::ADD32ri8:
   6871   case X86::ADD32ri8_DB:
   6872   case X86::ADD32ri_DB:
   6873   case X86::ADD32rm:
   6874   case X86::ADD32rr:
   6875   case X86::ADD32rr_DB:
   6876   case X86::ADD64i32:
   6877   case X86::ADD64ri32:
   6878   case X86::ADD64ri32_DB:
   6879   case X86::ADD64ri8:
   6880   case X86::ADD64ri8_DB:
   6881   case X86::ADD64rm:
   6882   case X86::ADD64rr:
   6883   case X86::ADD64rr_DB:
   6884   case X86::ADD8i8:
   6885   case X86::ADD8mi:
   6886   case X86::ADD8mr:
   6887   case X86::ADD8ri:
   6888   case X86::ADD8rm:
   6889   case X86::ADD8rr:
   6890   case X86::SUB16i16:
   6891   case X86::SUB16ri:
   6892   case X86::SUB16ri8:
   6893   case X86::SUB16rm:
   6894   case X86::SUB16rr:
   6895   case X86::SUB32i32:
   6896   case X86::SUB32ri:
   6897   case X86::SUB32ri8:
   6898   case X86::SUB32rm:
   6899   case X86::SUB32rr:
   6900   case X86::SUB64i32:
   6901   case X86::SUB64ri32:
   6902   case X86::SUB64ri8:
   6903   case X86::SUB64rm:
   6904   case X86::SUB64rr:
   6905   case X86::SUB8i8:
   6906   case X86::SUB8ri:
   6907   case X86::SUB8rm:
   6908   case X86::SUB8rr:
   6909     return FuseKind == FuseCmp || FuseKind == FuseInc;
   6910   case X86::INC16r:
   6911   case X86::INC32r:
   6912   case X86::INC64r:
   6913   case X86::INC8r:
   6914   case X86::DEC16r:
   6915   case X86::DEC32r:
   6916   case X86::DEC64r:
   6917   case X86::DEC8r:
   6918     return FuseKind == FuseInc;
   6919   }
   6920 }
   6921 
   6922 bool X86InstrInfo::
   6923 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   6924   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
   6925   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
   6926   Cond[0].setImm(GetOppositeBranchCondition(CC));
   6927   return false;
   6928 }
   6929 
   6930 bool X86InstrInfo::
   6931 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   6932   // FIXME: Return false for x87 stack register classes for now. We can't
   6933   // allow any loads of these registers before FpGet_ST0_80.
   6934   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
   6935            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
   6936 }
   6937 
   6938 /// Return a virtual register initialized with the
   6939 /// the global base register value. Output instructions required to
   6940 /// initialize the register in the function entry block, if necessary.
   6941 ///
   6942 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
   6943 ///
   6944 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
   6945   assert(!Subtarget.is64Bit() &&
   6946          "X86-64 PIC uses RIP relative addressing");
   6947 
   6948   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
   6949   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   6950   if (GlobalBaseReg != 0)
   6951     return GlobalBaseReg;
   6952 
   6953   // Create the register. The code to initialize it is inserted
   6954   // later, by the CGBR pass (below).
   6955   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   6956   GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   6957   X86FI->setGlobalBaseReg(GlobalBaseReg);
   6958   return GlobalBaseReg;
   6959 }
   6960 
   6961 // These are the replaceable SSE instructions. Some of these have Int variants
   6962 // that we don't include here. We don't want to replace instructions selected
   6963 // by intrinsics.
   6964 static const uint16_t ReplaceableInstrs[][3] = {
   6965   //PackedSingle     PackedDouble    PackedInt
   6966   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
   6967   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
   6968   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
   6969   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
   6970   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
   6971   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr  },
   6972   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
   6973   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
   6974   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
   6975   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
   6976   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
   6977   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
   6978   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
   6979   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
   6980   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
   6981   // AVX 128-bit support
   6982   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
   6983   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
   6984   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
   6985   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
   6986   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
   6987   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr  },
   6988   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
   6989   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
   6990   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
   6991   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
   6992   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
   6993   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
   6994   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
   6995   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
   6996   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
   6997   // AVX 256-bit support
   6998   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
   6999   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
   7000   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
   7001   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
   7002   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
   7003   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
   7004 };
   7005 
   7006 static const uint16_t ReplaceableInstrsAVX2[][3] = {
   7007   //PackedSingle       PackedDouble       PackedInt
   7008   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
   7009   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
   7010   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
   7011   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
   7012   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
   7013   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
   7014   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
   7015   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
   7016   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
   7017   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
   7018   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
   7019   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
   7020   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
   7021   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
   7022   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
   7023   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
   7024   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
   7025   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
   7026   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
   7027   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
   7028 };
   7029 
   7030 // FIXME: Some shuffle and unpack instructions have equivalents in different
   7031 // domains, but they require a bit more work than just switching opcodes.
   7032 
   7033 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
   7034   for (const uint16_t (&Row)[3] : ReplaceableInstrs)
   7035     if (Row[domain-1] == opcode)
   7036       return Row;
   7037   return nullptr;
   7038 }
   7039 
   7040 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
   7041   for (const uint16_t (&Row)[3] : ReplaceableInstrsAVX2)
   7042     if (Row[domain-1] == opcode)
   7043       return Row;
   7044   return nullptr;
   7045 }
   7046 
   7047 std::pair<uint16_t, uint16_t>
   7048 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
   7049   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   7050   bool hasAVX2 = Subtarget.hasAVX2();
   7051   uint16_t validDomains = 0;
   7052   if (domain && lookup(MI.getOpcode(), domain))
   7053     validDomains = 0xe;
   7054   else if (domain && lookupAVX2(MI.getOpcode(), domain))
   7055     validDomains = hasAVX2 ? 0xe : 0x6;
   7056   return std::make_pair(domain, validDomains);
   7057 }
   7058 
   7059 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
   7060   assert(Domain>0 && Domain<4 && "Invalid execution domain");
   7061   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   7062   assert(dom && "Not an SSE instruction");
   7063   const uint16_t *table = lookup(MI.getOpcode(), dom);
   7064   if (!table) { // try the other table
   7065     assert((Subtarget.hasAVX2() || Domain < 3) &&
   7066            "256-bit vector operations only available in AVX2");
   7067     table = lookupAVX2(MI.getOpcode(), dom);
   7068   }
   7069   assert(table && "Cannot change domain");
   7070   MI.setDesc(get(table[Domain - 1]));
   7071 }
   7072 
   7073 /// Return the noop instruction to use for a noop.
   7074 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   7075   NopInst.setOpcode(X86::NOOP);
   7076 }
   7077 
   7078 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
   7079 // In particular, getJumpInstrTableEntryBound must always return an upper bound
   7080 // on the encoding lengths of the instructions generated by
   7081 // getUnconditionalBranch and getTrap.
   7082 void X86InstrInfo::getUnconditionalBranch(
   7083     MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
   7084   Branch.setOpcode(X86::JMP_1);
   7085   Branch.addOperand(MCOperand::createExpr(BranchTarget));
   7086 }
   7087 
   7088 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
   7089 // In particular, getJumpInstrTableEntryBound must always return an upper bound
   7090 // on the encoding lengths of the instructions generated by
   7091 // getUnconditionalBranch and getTrap.
   7092 void X86InstrInfo::getTrap(MCInst &MI) const {
   7093   MI.setOpcode(X86::TRAP);
   7094 }
   7095 
   7096 // See getTrap and getUnconditionalBranch for conditions on the value returned
   7097 // by this function.
   7098 unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
   7099   // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
   7100   // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
   7101   return 5;
   7102 }
   7103 
   7104 bool X86InstrInfo::isHighLatencyDef(int opc) const {
   7105   switch (opc) {
   7106   default: return false;
   7107   case X86::DIVSDrm:
   7108   case X86::DIVSDrm_Int:
   7109   case X86::DIVSDrr:
   7110   case X86::DIVSDrr_Int:
   7111   case X86::DIVSSrm:
   7112   case X86::DIVSSrm_Int:
   7113   case X86::DIVSSrr:
   7114   case X86::DIVSSrr_Int:
   7115   case X86::SQRTPDm:
   7116   case X86::SQRTPDr:
   7117   case X86::SQRTPSm:
   7118   case X86::SQRTPSr:
   7119   case X86::SQRTSDm:
   7120   case X86::SQRTSDm_Int:
   7121   case X86::SQRTSDr:
   7122   case X86::SQRTSDr_Int:
   7123   case X86::SQRTSSm:
   7124   case X86::SQRTSSm_Int:
   7125   case X86::SQRTSSr:
   7126   case X86::SQRTSSr_Int:
   7127   // AVX instructions with high latency
   7128   case X86::VDIVSDrm:
   7129   case X86::VDIVSDrm_Int:
   7130   case X86::VDIVSDrr:
   7131   case X86::VDIVSDrr_Int:
   7132   case X86::VDIVSSrm:
   7133   case X86::VDIVSSrm_Int:
   7134   case X86::VDIVSSrr:
   7135   case X86::VDIVSSrr_Int:
   7136   case X86::VSQRTPDm:
   7137   case X86::VSQRTPDr:
   7138   case X86::VSQRTPSm:
   7139   case X86::VSQRTPSr:
   7140   case X86::VSQRTSDm:
   7141   case X86::VSQRTSDm_Int:
   7142   case X86::VSQRTSDr:
   7143   case X86::VSQRTSSm:
   7144   case X86::VSQRTSSm_Int:
   7145   case X86::VSQRTSSr:
   7146   case X86::VSQRTPDZm:
   7147   case X86::VSQRTPDZr:
   7148   case X86::VSQRTPSZm:
   7149   case X86::VSQRTPSZr:
   7150   case X86::VSQRTSDZm:
   7151   case X86::VSQRTSDZm_Int:
   7152   case X86::VSQRTSDZr:
   7153   case X86::VSQRTSSZm_Int:
   7154   case X86::VSQRTSSZr:
   7155   case X86::VSQRTSSZm:
   7156   case X86::VDIVSDZrm:
   7157   case X86::VDIVSDZrr:
   7158   case X86::VDIVSSZrm:
   7159   case X86::VDIVSSZrr:
   7160 
   7161   case X86::VGATHERQPSZrm:
   7162   case X86::VGATHERQPDZrm:
   7163   case X86::VGATHERDPDZrm:
   7164   case X86::VGATHERDPSZrm:
   7165   case X86::VPGATHERQDZrm:
   7166   case X86::VPGATHERQQZrm:
   7167   case X86::VPGATHERDDZrm:
   7168   case X86::VPGATHERDQZrm:
   7169   case X86::VSCATTERQPDZmr:
   7170   case X86::VSCATTERQPSZmr:
   7171   case X86::VSCATTERDPDZmr:
   7172   case X86::VSCATTERDPSZmr:
   7173   case X86::VPSCATTERQDZmr:
   7174   case X86::VPSCATTERQQZmr:
   7175   case X86::VPSCATTERDDZmr:
   7176   case X86::VPSCATTERDQZmr:
   7177     return true;
   7178   }
   7179 }
   7180 
   7181 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
   7182                                          const MachineRegisterInfo *MRI,
   7183                                          const MachineInstr &DefMI,
   7184                                          unsigned DefIdx,
   7185                                          const MachineInstr &UseMI,
   7186                                          unsigned UseIdx) const {
   7187   return isHighLatencyDef(DefMI.getOpcode());
   7188 }
   7189 
   7190 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
   7191                                            const MachineBasicBlock *MBB) const {
   7192   assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
   7193          "Reassociation needs binary operators");
   7194 
   7195   // Integer binary math/logic instructions have a third source operand:
   7196   // the EFLAGS register. That operand must be both defined here and never
   7197   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
   7198   // not change anything because rearranging the operands could affect other
   7199   // instructions that depend on the exact status flags (zero, sign, etc.)
   7200   // that are set by using these particular operands with this operation.
   7201   if (Inst.getNumOperands() == 4) {
   7202     assert(Inst.getOperand(3).isReg() &&
   7203            Inst.getOperand(3).getReg() == X86::EFLAGS &&
   7204            "Unexpected operand in reassociable instruction");
   7205     if (!Inst.getOperand(3).isDead())
   7206       return false;
   7207   }
   7208 
   7209   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
   7210 }
   7211 
   7212 // TODO: There are many more machine instruction opcodes to match:
   7213 //       1. Other data types (integer, vectors)
   7214 //       2. Other math / logic operations (xor, or)
   7215 //       3. Other forms of the same operation (intrinsics and other variants)
   7216 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
   7217   switch (Inst.getOpcode()) {
   7218   case X86::AND8rr:
   7219   case X86::AND16rr:
   7220   case X86::AND32rr:
   7221   case X86::AND64rr:
   7222   case X86::OR8rr:
   7223   case X86::OR16rr:
   7224   case X86::OR32rr:
   7225   case X86::OR64rr:
   7226   case X86::XOR8rr:
   7227   case X86::XOR16rr:
   7228   case X86::XOR32rr:
   7229   case X86::XOR64rr:
   7230   case X86::IMUL16rr:
   7231   case X86::IMUL32rr:
   7232   case X86::IMUL64rr:
   7233   case X86::PANDrr:
   7234   case X86::PORrr:
   7235   case X86::PXORrr:
   7236   case X86::VPANDrr:
   7237   case X86::VPANDYrr:
   7238   case X86::VPORrr:
   7239   case X86::VPORYrr:
   7240   case X86::VPXORrr:
   7241   case X86::VPXORYrr:
   7242   // Normal min/max instructions are not commutative because of NaN and signed
   7243   // zero semantics, but these are. Thus, there's no need to check for global
   7244   // relaxed math; the instructions themselves have the properties we need.
   7245   case X86::MAXCPDrr:
   7246   case X86::MAXCPSrr:
   7247   case X86::MAXCSDrr:
   7248   case X86::MAXCSSrr:
   7249   case X86::MINCPDrr:
   7250   case X86::MINCPSrr:
   7251   case X86::MINCSDrr:
   7252   case X86::MINCSSrr:
   7253   case X86::VMAXCPDrr:
   7254   case X86::VMAXCPSrr:
   7255   case X86::VMAXCPDYrr:
   7256   case X86::VMAXCPSYrr:
   7257   case X86::VMAXCSDrr:
   7258   case X86::VMAXCSSrr:
   7259   case X86::VMINCPDrr:
   7260   case X86::VMINCPSrr:
   7261   case X86::VMINCPDYrr:
   7262   case X86::VMINCPSYrr:
   7263   case X86::VMINCSDrr:
   7264   case X86::VMINCSSrr:
   7265     return true;
   7266   case X86::ADDPDrr:
   7267   case X86::ADDPSrr:
   7268   case X86::ADDSDrr:
   7269   case X86::ADDSSrr:
   7270   case X86::MULPDrr:
   7271   case X86::MULPSrr:
   7272   case X86::MULSDrr:
   7273   case X86::MULSSrr:
   7274   case X86::VADDPDrr:
   7275   case X86::VADDPSrr:
   7276   case X86::VADDPDYrr:
   7277   case X86::VADDPSYrr:
   7278   case X86::VADDSDrr:
   7279   case X86::VADDSSrr:
   7280   case X86::VMULPDrr:
   7281   case X86::VMULPSrr:
   7282   case X86::VMULPDYrr:
   7283   case X86::VMULPSYrr:
   7284   case X86::VMULSDrr:
   7285   case X86::VMULSSrr:
   7286     return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
   7287   default:
   7288     return false;
   7289   }
   7290 }
   7291 
   7292 /// This is an architecture-specific helper function of reassociateOps.
   7293 /// Set special operand attributes for new instructions after reassociation.
   7294 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
   7295                                          MachineInstr &OldMI2,
   7296                                          MachineInstr &NewMI1,
   7297                                          MachineInstr &NewMI2) const {
   7298   // Integer instructions define an implicit EFLAGS source register operand as
   7299   // the third source (fourth total) operand.
   7300   if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
   7301     return;
   7302 
   7303   assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
   7304          "Unexpected instruction type for reassociation");
   7305 
   7306   MachineOperand &OldOp1 = OldMI1.getOperand(3);
   7307   MachineOperand &OldOp2 = OldMI2.getOperand(3);
   7308   MachineOperand &NewOp1 = NewMI1.getOperand(3);
   7309   MachineOperand &NewOp2 = NewMI2.getOperand(3);
   7310 
   7311   assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
   7312          "Must have dead EFLAGS operand in reassociable instruction");
   7313   assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
   7314          "Must have dead EFLAGS operand in reassociable instruction");
   7315 
   7316   (void)OldOp1;
   7317   (void)OldOp2;
   7318 
   7319   assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
   7320          "Unexpected operand in reassociable instruction");
   7321   assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
   7322          "Unexpected operand in reassociable instruction");
   7323 
   7324   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
   7325   // of this pass or other passes. The EFLAGS operands must be dead in these new
   7326   // instructions because the EFLAGS operands in the original instructions must
   7327   // be dead in order for reassociation to occur.
   7328   NewOp1.setIsDead();
   7329   NewOp2.setIsDead();
   7330 }
   7331 
   7332 std::pair<unsigned, unsigned>
   7333 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
   7334   return std::make_pair(TF, 0u);
   7335 }
   7336 
   7337 ArrayRef<std::pair<unsigned, const char *>>
   7338 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
   7339   using namespace X86II;
   7340   static const std::pair<unsigned, const char *> TargetFlags[] = {
   7341       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
   7342       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
   7343       {MO_GOT, "x86-got"},
   7344       {MO_GOTOFF, "x86-gotoff"},
   7345       {MO_GOTPCREL, "x86-gotpcrel"},
   7346       {MO_PLT, "x86-plt"},
   7347       {MO_TLSGD, "x86-tlsgd"},
   7348       {MO_TLSLD, "x86-tlsld"},
   7349       {MO_TLSLDM, "x86-tlsldm"},
   7350       {MO_GOTTPOFF, "x86-gottpoff"},
   7351       {MO_INDNTPOFF, "x86-indntpoff"},
   7352       {MO_TPOFF, "x86-tpoff"},
   7353       {MO_DTPOFF, "x86-dtpoff"},
   7354       {MO_NTPOFF, "x86-ntpoff"},
   7355       {MO_GOTNTPOFF, "x86-gotntpoff"},
   7356       {MO_DLLIMPORT, "x86-dllimport"},
   7357       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
   7358       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
   7359       {MO_TLVP, "x86-tlvp"},
   7360       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
   7361       {MO_SECREL, "x86-secrel"}};
   7362   return makeArrayRef(TargetFlags);
   7363 }
   7364 
   7365 namespace {
   7366   /// Create Global Base Reg pass. This initializes the PIC
   7367   /// global base register for x86-32.
   7368   struct CGBR : public MachineFunctionPass {
   7369     static char ID;
   7370     CGBR() : MachineFunctionPass(ID) {}
   7371 
   7372     bool runOnMachineFunction(MachineFunction &MF) override {
   7373       const X86TargetMachine *TM =
   7374         static_cast<const X86TargetMachine *>(&MF.getTarget());
   7375       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
   7376 
   7377       // Don't do anything if this is 64-bit as 64-bit PIC
   7378       // uses RIP relative addressing.
   7379       if (STI.is64Bit())
   7380         return false;
   7381 
   7382       // Only emit a global base reg in PIC mode.
   7383       if (!TM->isPositionIndependent())
   7384         return false;
   7385 
   7386       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   7387       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   7388 
   7389       // If we didn't need a GlobalBaseReg, don't insert code.
   7390       if (GlobalBaseReg == 0)
   7391         return false;
   7392 
   7393       // Insert the set of GlobalBaseReg into the first MBB of the function
   7394       MachineBasicBlock &FirstMBB = MF.front();
   7395       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
   7396       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
   7397       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   7398       const X86InstrInfo *TII = STI.getInstrInfo();
   7399 
   7400       unsigned PC;
   7401       if (STI.isPICStyleGOT())
   7402         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   7403       else
   7404         PC = GlobalBaseReg;
   7405 
   7406       // Operand of MovePCtoStack is completely ignored by asm printer. It's
   7407       // only used in JIT code emission as displacement to pc.
   7408       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
   7409 
   7410       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
   7411       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
   7412       if (STI.isPICStyleGOT()) {
   7413         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
   7414         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
   7415           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
   7416                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
   7417       }
   7418 
   7419       return true;
   7420     }
   7421 
   7422     const char *getPassName() const override {
   7423       return "X86 PIC Global Base Reg Initialization";
   7424     }
   7425 
   7426     void getAnalysisUsage(AnalysisUsage &AU) const override {
   7427       AU.setPreservesCFG();
   7428       MachineFunctionPass::getAnalysisUsage(AU);
   7429     }
   7430   };
   7431 }
   7432 
   7433 char CGBR::ID = 0;
   7434 FunctionPass*
   7435 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
   7436 
   7437 namespace {
   7438   struct LDTLSCleanup : public MachineFunctionPass {
   7439     static char ID;
   7440     LDTLSCleanup() : MachineFunctionPass(ID) {}
   7441 
   7442     bool runOnMachineFunction(MachineFunction &MF) override {
   7443       if (skipFunction(*MF.getFunction()))
   7444         return false;
   7445 
   7446       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
   7447       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
   7448         // No point folding accesses if there isn't at least two.
   7449         return false;
   7450       }
   7451 
   7452       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
   7453       return VisitNode(DT->getRootNode(), 0);
   7454     }
   7455 
   7456     // Visit the dominator subtree rooted at Node in pre-order.
   7457     // If TLSBaseAddrReg is non-null, then use that to replace any
   7458     // TLS_base_addr instructions. Otherwise, create the register
   7459     // when the first such instruction is seen, and then use it
   7460     // as we encounter more instructions.
   7461     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
   7462       MachineBasicBlock *BB = Node->getBlock();
   7463       bool Changed = false;
   7464 
   7465       // Traverse the current block.
   7466       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
   7467            ++I) {
   7468         switch (I->getOpcode()) {
   7469           case X86::TLS_base_addr32:
   7470           case X86::TLS_base_addr64:
   7471             if (TLSBaseAddrReg)
   7472               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
   7473             else
   7474               I = SetRegister(*I, &TLSBaseAddrReg);
   7475             Changed = true;
   7476             break;
   7477           default:
   7478             break;
   7479         }
   7480       }
   7481 
   7482       // Visit the children of this block in the dominator tree.
   7483       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
   7484            I != E; ++I) {
   7485         Changed |= VisitNode(*I, TLSBaseAddrReg);
   7486       }
   7487 
   7488       return Changed;
   7489     }
   7490 
   7491     // Replace the TLS_base_addr instruction I with a copy from
   7492     // TLSBaseAddrReg, returning the new instruction.
   7493     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
   7494                                          unsigned TLSBaseAddrReg) {
   7495       MachineFunction *MF = I.getParent()->getParent();
   7496       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
   7497       const bool is64Bit = STI.is64Bit();
   7498       const X86InstrInfo *TII = STI.getInstrInfo();
   7499 
   7500       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
   7501       MachineInstr *Copy =
   7502           BuildMI(*I.getParent(), I, I.getDebugLoc(),
   7503                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
   7504               .addReg(TLSBaseAddrReg);
   7505 
   7506       // Erase the TLS_base_addr instruction.
   7507       I.eraseFromParent();
   7508 
   7509       return Copy;
   7510     }
   7511 
   7512     // Create a virtal register in *TLSBaseAddrReg, and populate it by
   7513     // inserting a copy instruction after I. Returns the new instruction.
   7514     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
   7515       MachineFunction *MF = I.getParent()->getParent();
   7516       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
   7517       const bool is64Bit = STI.is64Bit();
   7518       const X86InstrInfo *TII = STI.getInstrInfo();
   7519 
   7520       // Create a virtual register for the TLS base address.
   7521       MachineRegisterInfo &RegInfo = MF->getRegInfo();
   7522       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
   7523                                                       ? &X86::GR64RegClass
   7524                                                       : &X86::GR32RegClass);
   7525 
   7526       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
   7527       MachineInstr *Next = I.getNextNode();
   7528       MachineInstr *Copy =
   7529           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
   7530                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
   7531               .addReg(is64Bit ? X86::RAX : X86::EAX);
   7532 
   7533       return Copy;
   7534     }
   7535 
   7536     const char *getPassName() const override {
   7537       return "Local Dynamic TLS Access Clean-up";
   7538     }
   7539 
   7540     void getAnalysisUsage(AnalysisUsage &AU) const override {
   7541       AU.setPreservesCFG();
   7542       AU.addRequired<MachineDominatorTree>();
   7543       MachineFunctionPass::getAnalysisUsage(AU);
   7544     }
   7545   };
   7546 }
   7547 
   7548 char LDTLSCleanup::ID = 0;
   7549 FunctionPass*
   7550 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
   7551