Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "PPCMachineFunctionInfo.h"
     16 #include "PPCPerfectShuffle.h"
     17 #include "PPCTargetMachine.h"
     18 #include "MCTargetDesc/PPCPredicates.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/VectorExtras.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/CodeGen/MachineFrameInfo.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/PseudoSourceValue.h"
     27 #include "llvm/CodeGen/SelectionDAG.h"
     28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     29 #include "llvm/CallingConv.h"
     30 #include "llvm/Constants.h"
     31 #include "llvm/Function.h"
     32 #include "llvm/Intrinsics.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Target/TargetOptions.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include "llvm/DerivedTypes.h"
     39 using namespace llvm;
     40 
     41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
     42                                      CCValAssign::LocInfo &LocInfo,
     43                                      ISD::ArgFlagsTy &ArgFlags,
     44                                      CCState &State);
     45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
     46                                             MVT &LocVT,
     47                                             CCValAssign::LocInfo &LocInfo,
     48                                             ISD::ArgFlagsTy &ArgFlags,
     49                                             CCState &State);
     50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
     51                                               MVT &LocVT,
     52                                               CCValAssign::LocInfo &LocInfo,
     53                                               ISD::ArgFlagsTy &ArgFlags,
     54                                               CCState &State);
     55 
     56 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
     57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
     58                                      cl::Hidden);
     59 
     60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
     61   if (TM.getSubtargetImpl()->isDarwin())
     62     return new TargetLoweringObjectFileMachO();
     63 
     64   return new TargetLoweringObjectFileELF();
     65 }
     66 
     67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
     68   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
     69 
     70   setPow2DivIsCheap();
     71 
     72   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     73   setUseUnderscoreSetJmp(true);
     74   setUseUnderscoreLongJmp(true);
     75 
     76   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     77   // arguments are at least 4/8 bytes aligned.
     78   setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
     79 
     80   // Set up the register classes.
     81   addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
     82   addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
     83   addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
     84 
     85   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     86   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
     87   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
     88 
     89   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     90 
     91   // PowerPC has pre-inc load and store's.
     92   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     93   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     94   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
     95   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
     96   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
     97   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
     98   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
     99   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
    100   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
    101   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
    102 
    103   // This is used in the ppcf128->int sequence.  Note it has different semantics
    104   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    105   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    106 
    107   // PowerPC has no SREM/UREM instructions
    108   setOperationAction(ISD::SREM, MVT::i32, Expand);
    109   setOperationAction(ISD::UREM, MVT::i32, Expand);
    110   setOperationAction(ISD::SREM, MVT::i64, Expand);
    111   setOperationAction(ISD::UREM, MVT::i64, Expand);
    112 
    113   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    114   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    115   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    116   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    117   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    118   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    119   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    120   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    121   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    122 
    123   // We don't support sin/cos/sqrt/fmod/pow
    124   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    125   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    126   setOperationAction(ISD::FREM , MVT::f64, Expand);
    127   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    128   setOperationAction(ISD::FMA  , MVT::f64, Expand);
    129   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    130   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    131   setOperationAction(ISD::FREM , MVT::f32, Expand);
    132   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    133   setOperationAction(ISD::FMA  , MVT::f32, Expand);
    134 
    135   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    136 
    137   // If we're enabling GP optimizations, use hardware square root
    138   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
    139     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    140     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    141   }
    142 
    143   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    144   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    145 
    146   // PowerPC does not have BSWAP, CTPOP or CTTZ
    147   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    148   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    149   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    150   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    151   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    152   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    153 
    154   // PowerPC does not have ROTR
    155   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    156   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    157 
    158   // PowerPC does not have Select
    159   setOperationAction(ISD::SELECT, MVT::i32, Expand);
    160   setOperationAction(ISD::SELECT, MVT::i64, Expand);
    161   setOperationAction(ISD::SELECT, MVT::f32, Expand);
    162   setOperationAction(ISD::SELECT, MVT::f64, Expand);
    163 
    164   // PowerPC wants to turn select_cc of FP into fsel when possible.
    165   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    166   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    167 
    168   // PowerPC wants to optimize integer setcc a bit
    169   setOperationAction(ISD::SETCC, MVT::i32, Custom);
    170 
    171   // PowerPC does not have BRCOND which requires SetCC
    172   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    173 
    174   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    175 
    176   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    177   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    178 
    179   // PowerPC does not have [U|S]INT_TO_FP
    180   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    181   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    182 
    183   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    184   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    185   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    186   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    187 
    188   // We cannot sextinreg(i1).  Expand to shifts.
    189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    190 
    191   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    192   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    193   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    194   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
    195 
    196 
    197   // We want to legalize GlobalAddress and ConstantPool nodes into the
    198   // appropriate instructions to materialize the address.
    199   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    200   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    201   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    202   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    203   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    204   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    205   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    206   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    207   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    208   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    209 
    210   // TRAP is legal.
    211   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    212 
    213   // TRAMPOLINE is custom lowered.
    214   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    215   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    216 
    217   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    218   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    219 
    220   // VAARG is custom lowered with the 32-bit SVR4 ABI.
    221   if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
    222       && !TM.getSubtarget<PPCSubtarget>().isPPC64()) {
    223     setOperationAction(ISD::VAARG, MVT::Other, Custom);
    224     setOperationAction(ISD::VAARG, MVT::i64, Custom);
    225   } else
    226     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    227 
    228   // Use the default implementation.
    229   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    230   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    231   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    232   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    233   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    234   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    235 
    236   // We want to custom lower some of our intrinsics.
    237   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    238 
    239   // Comparisons that require checking two conditions.
    240   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    241   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    242   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    243   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    244   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    245   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    246   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    247   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    248   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    249   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    250   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    251   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    252 
    253   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
    254     // They also have instructions for converting between i64 and fp.
    255     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    256     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    257     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    258     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    259     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    260     // We cannot do this with Promote because i64 is not a legal type.
    261     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    262 
    263     // FIXME: disable this lowered code.  This generates 64-bit register values,
    264     // and we don't model the fact that the top part is clobbered by calls.  We
    265     // need to flag these together so that the value isn't live across a call.
    266     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    267   } else {
    268     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    269     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    270   }
    271 
    272   if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
    273     // 64-bit PowerPC implementations can support i64 types directly
    274     addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
    275     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    276     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    277     // 64-bit PowerPC wants to expand i128 shifts itself.
    278     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    279     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    280     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    281   } else {
    282     // 32-bit PowerPC wants to expand i64 shifts itself.
    283     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    284     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    285     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    286   }
    287 
    288   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
    289     // First set operation action for all vector types to expand. Then we
    290     // will selectively turn on ones that can be effectively codegen'd.
    291     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    292          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    293       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
    294 
    295       // add/sub are legal for all supported vector VT's.
    296       setOperationAction(ISD::ADD , VT, Legal);
    297       setOperationAction(ISD::SUB , VT, Legal);
    298 
    299       // We promote all shuffles to v16i8.
    300       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    301       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    302 
    303       // We promote all non-typed operations to v4i32.
    304       setOperationAction(ISD::AND   , VT, Promote);
    305       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    306       setOperationAction(ISD::OR    , VT, Promote);
    307       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    308       setOperationAction(ISD::XOR   , VT, Promote);
    309       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    310       setOperationAction(ISD::LOAD  , VT, Promote);
    311       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    312       setOperationAction(ISD::SELECT, VT, Promote);
    313       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    314       setOperationAction(ISD::STORE, VT, Promote);
    315       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    316 
    317       // No other operations are legal.
    318       setOperationAction(ISD::MUL , VT, Expand);
    319       setOperationAction(ISD::SDIV, VT, Expand);
    320       setOperationAction(ISD::SREM, VT, Expand);
    321       setOperationAction(ISD::UDIV, VT, Expand);
    322       setOperationAction(ISD::UREM, VT, Expand);
    323       setOperationAction(ISD::FDIV, VT, Expand);
    324       setOperationAction(ISD::FNEG, VT, Expand);
    325       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    326       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    327       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    328       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    329       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    330       setOperationAction(ISD::UDIVREM, VT, Expand);
    331       setOperationAction(ISD::SDIVREM, VT, Expand);
    332       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    333       setOperationAction(ISD::FPOW, VT, Expand);
    334       setOperationAction(ISD::CTPOP, VT, Expand);
    335       setOperationAction(ISD::CTLZ, VT, Expand);
    336       setOperationAction(ISD::CTTZ, VT, Expand);
    337     }
    338 
    339     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    340     // with merges, splats, etc.
    341     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    342 
    343     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    344     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    345     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    346     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    347     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
    348     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    349 
    350     addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
    351     addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
    352     addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
    353     addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
    354 
    355     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    356     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    357     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    358     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    359 
    360     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    361     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    362 
    363     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    364     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    365     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    366     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    367   }
    368 
    369   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
    370   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
    371 
    372   setBooleanContents(ZeroOrOneBooleanContent);
    373   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
    374 
    375   if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
    376     setStackPointerRegisterToSaveRestore(PPC::X1);
    377     setExceptionPointerRegister(PPC::X3);
    378     setExceptionSelectorRegister(PPC::X4);
    379   } else {
    380     setStackPointerRegisterToSaveRestore(PPC::R1);
    381     setExceptionPointerRegister(PPC::R3);
    382     setExceptionSelectorRegister(PPC::R4);
    383   }
    384 
    385   // We have target-specific dag combine patterns for the following nodes:
    386   setTargetDAGCombine(ISD::SINT_TO_FP);
    387   setTargetDAGCombine(ISD::STORE);
    388   setTargetDAGCombine(ISD::BR_CC);
    389   setTargetDAGCombine(ISD::BSWAP);
    390 
    391   // Darwin long double math library functions have $LDBL128 appended.
    392   if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
    393     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    394     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    395     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    396     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    397     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    398     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    399     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    400     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    401     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    402     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    403   }
    404 
    405   setMinFunctionAlignment(2);
    406   if (PPCSubTarget.isDarwin())
    407     setPrefFunctionAlignment(4);
    408 
    409   setInsertFencesForAtomic(true);
    410 
    411   computeRegisterProperties();
    412 }
    413 
    414 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    415 /// function arguments in the caller parameter area.
    416 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
    417   const TargetMachine &TM = getTargetMachine();
    418   // Darwin passes everything on 4 byte boundary.
    419   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
    420     return 4;
    421   // FIXME SVR4 TBD
    422   return 4;
    423 }
    424 
    425 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    426   switch (Opcode) {
    427   default: return 0;
    428   case PPCISD::FSEL:            return "PPCISD::FSEL";
    429   case PPCISD::FCFID:           return "PPCISD::FCFID";
    430   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
    431   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
    432   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
    433   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
    434   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
    435   case PPCISD::VPERM:           return "PPCISD::VPERM";
    436   case PPCISD::Hi:              return "PPCISD::Hi";
    437   case PPCISD::Lo:              return "PPCISD::Lo";
    438   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
    439   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
    440   case PPCISD::LOAD:            return "PPCISD::LOAD";
    441   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
    442   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
    443   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
    444   case PPCISD::SRL:             return "PPCISD::SRL";
    445   case PPCISD::SRA:             return "PPCISD::SRA";
    446   case PPCISD::SHL:             return "PPCISD::SHL";
    447   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
    448   case PPCISD::STD_32:          return "PPCISD::STD_32";
    449   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
    450   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
    451   case PPCISD::NOP:             return "PPCISD::NOP";
    452   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
    453   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
    454   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
    455   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
    456   case PPCISD::MFCR:            return "PPCISD::MFCR";
    457   case PPCISD::VCMP:            return "PPCISD::VCMP";
    458   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
    459   case PPCISD::LBRX:            return "PPCISD::LBRX";
    460   case PPCISD::STBRX:           return "PPCISD::STBRX";
    461   case PPCISD::LARX:            return "PPCISD::LARX";
    462   case PPCISD::STCX:            return "PPCISD::STCX";
    463   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
    464   case PPCISD::MFFS:            return "PPCISD::MFFS";
    465   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
    466   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
    467   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
    468   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
    469   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
    470   }
    471 }
    472 
    473 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
    474   return MVT::i32;
    475 }
    476 
    477 //===----------------------------------------------------------------------===//
    478 // Node matching predicates, for use by the tblgen matching code.
    479 //===----------------------------------------------------------------------===//
    480 
    481 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
    482 static bool isFloatingPointZero(SDValue Op) {
    483   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    484     return CFP->getValueAPF().isZero();
    485   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
    486     // Maybe this has already been legalized into the constant pool?
    487     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
    488       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
    489         return CFP->getValueAPF().isZero();
    490   }
    491   return false;
    492 }
    493 
    494 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
    495 /// true if Op is undef or if it matches the specified value.
    496 static bool isConstantOrUndef(int Op, int Val) {
    497   return Op < 0 || Op == Val;
    498 }
    499 
    500 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    501 /// VPKUHUM instruction.
    502 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    503   if (!isUnary) {
    504     for (unsigned i = 0; i != 16; ++i)
    505       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
    506         return false;
    507   } else {
    508     for (unsigned i = 0; i != 8; ++i)
    509       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
    510           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
    511         return false;
    512   }
    513   return true;
    514 }
    515 
    516 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    517 /// VPKUWUM instruction.
    518 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    519   if (!isUnary) {
    520     for (unsigned i = 0; i != 16; i += 2)
    521       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    522           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
    523         return false;
    524   } else {
    525     for (unsigned i = 0; i != 8; i += 2)
    526       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    527           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
    528           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
    529           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
    530         return false;
    531   }
    532   return true;
    533 }
    534 
    535 /// isVMerge - Common function, used to match vmrg* shuffles.
    536 ///
    537 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
    538                      unsigned LHSStart, unsigned RHSStart) {
    539   assert(N->getValueType(0) == MVT::v16i8 &&
    540          "PPC only supports shuffles by bytes!");
    541   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
    542          "Unsupported merge size!");
    543 
    544   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
    545     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
    546       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
    547                              LHSStart+j+i*UnitSize) ||
    548           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
    549                              RHSStart+j+i*UnitSize))
    550         return false;
    551     }
    552   return true;
    553 }
    554 
    555 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    556 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    557 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    558                              bool isUnary) {
    559   if (!isUnary)
    560     return isVMerge(N, UnitSize, 8, 24);
    561   return isVMerge(N, UnitSize, 8, 8);
    562 }
    563 
    564 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    565 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    566 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    567                              bool isUnary) {
    568   if (!isUnary)
    569     return isVMerge(N, UnitSize, 0, 16);
    570   return isVMerge(N, UnitSize, 0, 0);
    571 }
    572 
    573 
    574 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    575 /// amount, otherwise return -1.
    576 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
    577   assert(N->getValueType(0) == MVT::v16i8 &&
    578          "PPC only supports shuffles by bytes!");
    579 
    580   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    581 
    582   // Find the first non-undef value in the shuffle mask.
    583   unsigned i;
    584   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
    585     /*search*/;
    586 
    587   if (i == 16) return -1;  // all undef.
    588 
    589   // Otherwise, check to see if the rest of the elements are consecutively
    590   // numbered from this value.
    591   unsigned ShiftAmt = SVOp->getMaskElt(i);
    592   if (ShiftAmt < i) return -1;
    593   ShiftAmt -= i;
    594 
    595   if (!isUnary) {
    596     // Check the rest of the elements to see if they are consecutive.
    597     for (++i; i != 16; ++i)
    598       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
    599         return -1;
    600   } else {
    601     // Check the rest of the elements to see if they are consecutive.
    602     for (++i; i != 16; ++i)
    603       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
    604         return -1;
    605   }
    606   return ShiftAmt;
    607 }
    608 
    609 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    610 /// specifies a splat of a single element that is suitable for input to
    611 /// VSPLTB/VSPLTH/VSPLTW.
    612 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
    613   assert(N->getValueType(0) == MVT::v16i8 &&
    614          (EltSize == 1 || EltSize == 2 || EltSize == 4));
    615 
    616   // This is a splat operation if each element of the permute is the same, and
    617   // if the value doesn't reference the second vector.
    618   unsigned ElementBase = N->getMaskElt(0);
    619 
    620   // FIXME: Handle UNDEF elements too!
    621   if (ElementBase >= 16)
    622     return false;
    623 
    624   // Check that the indices are consecutive, in the case of a multi-byte element
    625   // splatted with a v16i8 mask.
    626   for (unsigned i = 1; i != EltSize; ++i)
    627     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
    628       return false;
    629 
    630   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
    631     if (N->getMaskElt(i) < 0) continue;
    632     for (unsigned j = 0; j != EltSize; ++j)
    633       if (N->getMaskElt(i+j) != N->getMaskElt(j))
    634         return false;
    635   }
    636   return true;
    637 }
    638 
    639 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    640 /// are -0.0.
    641 bool PPC::isAllNegativeZeroVector(SDNode *N) {
    642   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
    643 
    644   APInt APVal, APUndef;
    645   unsigned BitSize;
    646   bool HasAnyUndefs;
    647 
    648   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
    649     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
    650       return CFP->getValueAPF().isNegZero();
    651 
    652   return false;
    653 }
    654 
    655 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    656 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    657 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
    658   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    659   assert(isSplatShuffleMask(SVOp, EltSize));
    660   return SVOp->getMaskElt(0) / EltSize;
    661 }
    662 
    663 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
    664 /// by using a vspltis[bhw] instruction of the specified element size, return
    665 /// the constant being splatted.  The ByteSize field indicates the number of
    666 /// bytes of each element [124] -> [bhw].
    667 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
    668   SDValue OpVal(0, 0);
    669 
    670   // If ByteSize of the splat is bigger than the element size of the
    671   // build_vector, then we have a case where we are checking for a splat where
    672   // multiple elements of the buildvector are folded together into a single
    673   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
    674   unsigned EltSize = 16/N->getNumOperands();
    675   if (EltSize < ByteSize) {
    676     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
    677     SDValue UniquedVals[4];
    678     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
    679 
    680     // See if all of the elements in the buildvector agree across.
    681     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    682       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    683       // If the element isn't a constant, bail fully out.
    684       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
    685 
    686 
    687       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
    688         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
    689       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
    690         return SDValue();  // no match.
    691     }
    692 
    693     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
    694     // either constant or undef values that are identical for each chunk.  See
    695     // if these chunks can form into a larger vspltis*.
    696 
    697     // Check to see if all of the leading entries are either 0 or -1.  If
    698     // neither, then this won't fit into the immediate field.
    699     bool LeadingZero = true;
    700     bool LeadingOnes = true;
    701     for (unsigned i = 0; i != Multiple-1; ++i) {
    702       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
    703 
    704       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
    705       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
    706     }
    707     // Finally, check the least significant entry.
    708     if (LeadingZero) {
    709       if (UniquedVals[Multiple-1].getNode() == 0)
    710         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
    711       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
    712       if (Val < 16)
    713         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
    714     }
    715     if (LeadingOnes) {
    716       if (UniquedVals[Multiple-1].getNode() == 0)
    717         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
    718       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
    719       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
    720         return DAG.getTargetConstant(Val, MVT::i32);
    721     }
    722 
    723     return SDValue();
    724   }
    725 
    726   // Check to see if this buildvec has a single non-undef value in its elements.
    727   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    728     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    729     if (OpVal.getNode() == 0)
    730       OpVal = N->getOperand(i);
    731     else if (OpVal != N->getOperand(i))
    732       return SDValue();
    733   }
    734 
    735   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
    736 
    737   unsigned ValSizeInBytes = EltSize;
    738   uint64_t Value = 0;
    739   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
    740     Value = CN->getZExtValue();
    741   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
    742     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
    743     Value = FloatToBits(CN->getValueAPF().convertToFloat());
    744   }
    745 
    746   // If the splat value is larger than the element value, then we can never do
    747   // this splat.  The only case that we could fit the replicated bits into our
    748   // immediate field for would be zero, and we prefer to use vxor for it.
    749   if (ValSizeInBytes < ByteSize) return SDValue();
    750 
    751   // If the element value is larger than the splat value, cut it in half and
    752   // check to see if the two halves are equal.  Continue doing this until we
    753   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
    754   while (ValSizeInBytes > ByteSize) {
    755     ValSizeInBytes >>= 1;
    756 
    757     // If the top half equals the bottom half, we're still ok.
    758     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
    759          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
    760       return SDValue();
    761   }
    762 
    763   // Properly sign extend the value.
    764   int ShAmt = (4-ByteSize)*8;
    765   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
    766 
    767   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
    768   if (MaskVal == 0) return SDValue();
    769 
    770   // Finally, if this value fits in a 5 bit sext field, return it
    771   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
    772     return DAG.getTargetConstant(MaskVal, MVT::i32);
    773   return SDValue();
    774 }
    775 
    776 //===----------------------------------------------------------------------===//
    777 //  Addressing Mode Selection
    778 //===----------------------------------------------------------------------===//
    779 
    780 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
    781 /// or 64-bit immediate, and if the value can be accurately represented as a
    782 /// sign extension from a 16-bit value.  If so, this returns true and the
    783 /// immediate.
    784 static bool isIntS16Immediate(SDNode *N, short &Imm) {
    785   if (N->getOpcode() != ISD::Constant)
    786     return false;
    787 
    788   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
    789   if (N->getValueType(0) == MVT::i32)
    790     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
    791   else
    792     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
    793 }
    794 static bool isIntS16Immediate(SDValue Op, short &Imm) {
    795   return isIntS16Immediate(Op.getNode(), Imm);
    796 }
    797 
    798 
    799 /// SelectAddressRegReg - Given the specified addressed, check to see if it
    800 /// can be represented as an indexed [r+r] operation.  Returns false if it
    801 /// can be more efficiently represented with [r+imm].
    802 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
    803                                             SDValue &Index,
    804                                             SelectionDAG &DAG) const {
    805   short imm = 0;
    806   if (N.getOpcode() == ISD::ADD) {
    807     if (isIntS16Immediate(N.getOperand(1), imm))
    808       return false;    // r+i
    809     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
    810       return false;    // r+i
    811 
    812     Base = N.getOperand(0);
    813     Index = N.getOperand(1);
    814     return true;
    815   } else if (N.getOpcode() == ISD::OR) {
    816     if (isIntS16Immediate(N.getOperand(1), imm))
    817       return false;    // r+i can fold it if we can.
    818 
    819     // If this is an or of disjoint bitfields, we can codegen this as an add
    820     // (for better address arithmetic) if the LHS and RHS of the OR are provably
    821     // disjoint.
    822     APInt LHSKnownZero, LHSKnownOne;
    823     APInt RHSKnownZero, RHSKnownOne;
    824     DAG.ComputeMaskedBits(N.getOperand(0),
    825                           APInt::getAllOnesValue(N.getOperand(0)
    826                             .getValueSizeInBits()),
    827                           LHSKnownZero, LHSKnownOne);
    828 
    829     if (LHSKnownZero.getBoolValue()) {
    830       DAG.ComputeMaskedBits(N.getOperand(1),
    831                             APInt::getAllOnesValue(N.getOperand(1)
    832                               .getValueSizeInBits()),
    833                             RHSKnownZero, RHSKnownOne);
    834       // If all of the bits are known zero on the LHS or RHS, the add won't
    835       // carry.
    836       if (~(LHSKnownZero | RHSKnownZero) == 0) {
    837         Base = N.getOperand(0);
    838         Index = N.getOperand(1);
    839         return true;
    840       }
    841     }
    842   }
    843 
    844   return false;
    845 }
    846 
    847 /// Returns true if the address N can be represented by a base register plus
    848 /// a signed 16-bit displacement [r+imm], and if it is not better
    849 /// represented as reg+reg.
    850 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
    851                                             SDValue &Base,
    852                                             SelectionDAG &DAG) const {
    853   // FIXME dl should come from parent load or store, not from address
    854   DebugLoc dl = N.getDebugLoc();
    855   // If this can be more profitably realized as r+r, fail.
    856   if (SelectAddressRegReg(N, Disp, Base, DAG))
    857     return false;
    858 
    859   if (N.getOpcode() == ISD::ADD) {
    860     short imm = 0;
    861     if (isIntS16Immediate(N.getOperand(1), imm)) {
    862       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
    863       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
    864         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
    865       } else {
    866         Base = N.getOperand(0);
    867       }
    868       return true; // [r+i]
    869     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
    870       // Match LOAD (ADD (X, Lo(G))).
    871      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
    872              && "Cannot handle constant offsets yet!");
    873       Disp = N.getOperand(1).getOperand(0);  // The global address.
    874       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
    875              Disp.getOpcode() == ISD::TargetConstantPool ||
    876              Disp.getOpcode() == ISD::TargetJumpTable);
    877       Base = N.getOperand(0);
    878       return true;  // [&g+r]
    879     }
    880   } else if (N.getOpcode() == ISD::OR) {
    881     short imm = 0;
    882     if (isIntS16Immediate(N.getOperand(1), imm)) {
    883       // If this is an or of disjoint bitfields, we can codegen this as an add
    884       // (for better address arithmetic) if the LHS and RHS of the OR are
    885       // provably disjoint.
    886       APInt LHSKnownZero, LHSKnownOne;
    887       DAG.ComputeMaskedBits(N.getOperand(0),
    888                             APInt::getAllOnesValue(N.getOperand(0)
    889                                                    .getValueSizeInBits()),
    890                             LHSKnownZero, LHSKnownOne);
    891 
    892       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
    893         // If all of the bits are known zero on the LHS or RHS, the add won't
    894         // carry.
    895         Base = N.getOperand(0);
    896         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
    897         return true;
    898       }
    899     }
    900   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
    901     // Loading from a constant address.
    902 
    903     // If this address fits entirely in a 16-bit sext immediate field, codegen
    904     // this as "d, 0"
    905     short Imm;
    906     if (isIntS16Immediate(CN, Imm)) {
    907       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
    908       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
    909                              CN->getValueType(0));
    910       return true;
    911     }
    912 
    913     // Handle 32-bit sext immediates with LIS + addr mode.
    914     if (CN->getValueType(0) == MVT::i32 ||
    915         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
    916       int Addr = (int)CN->getZExtValue();
    917 
    918       // Otherwise, break this down into an LIS + disp.
    919       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
    920 
    921       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
    922       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
    923       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
    924       return true;
    925     }
    926   }
    927 
    928   Disp = DAG.getTargetConstant(0, getPointerTy());
    929   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
    930     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
    931   else
    932     Base = N;
    933   return true;      // [r+0]
    934 }
    935 
    936 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    937 /// represented as an indexed [r+r] operation.
    938 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
    939                                                 SDValue &Index,
    940                                                 SelectionDAG &DAG) const {
    941   // Check to see if we can easily represent this as an [r+r] address.  This
    942   // will fail if it thinks that the address is more profitably represented as
    943   // reg+imm, e.g. where imm = 0.
    944   if (SelectAddressRegReg(N, Base, Index, DAG))
    945     return true;
    946 
    947   // If the operand is an addition, always emit this as [r+r], since this is
    948   // better (for code size, and execution, as the memop does the add for free)
    949   // than emitting an explicit add.
    950   if (N.getOpcode() == ISD::ADD) {
    951     Base = N.getOperand(0);
    952     Index = N.getOperand(1);
    953     return true;
    954   }
    955 
    956   // Otherwise, do it the hard way, using R0 as the base register.
    957   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
    958                          N.getValueType());
    959   Index = N;
    960   return true;
    961 }
    962 
    963 /// SelectAddressRegImmShift - Returns true if the address N can be
    964 /// represented by a base register plus a signed 14-bit displacement
    965 /// [r+imm*4].  Suitable for use by STD and friends.
    966 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
    967                                                  SDValue &Base,
    968                                                  SelectionDAG &DAG) const {
    969   // FIXME dl should come from the parent load or store, not the address
    970   DebugLoc dl = N.getDebugLoc();
    971   // If this can be more profitably realized as r+r, fail.
    972   if (SelectAddressRegReg(N, Disp, Base, DAG))
    973     return false;
    974 
    975   if (N.getOpcode() == ISD::ADD) {
    976     short imm = 0;
    977     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
    978       Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
    979       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
    980         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
    981       } else {
    982         Base = N.getOperand(0);
    983       }
    984       return true; // [r+i]
    985     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
    986       // Match LOAD (ADD (X, Lo(G))).
    987      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
    988              && "Cannot handle constant offsets yet!");
    989       Disp = N.getOperand(1).getOperand(0);  // The global address.
    990       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
    991              Disp.getOpcode() == ISD::TargetConstantPool ||
    992              Disp.getOpcode() == ISD::TargetJumpTable);
    993       Base = N.getOperand(0);
    994       return true;  // [&g+r]
    995     }
    996   } else if (N.getOpcode() == ISD::OR) {
    997     short imm = 0;
    998     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
    999       // If this is an or of disjoint bitfields, we can codegen this as an add
   1000       // (for better address arithmetic) if the LHS and RHS of the OR are
   1001       // provably disjoint.
   1002       APInt LHSKnownZero, LHSKnownOne;
   1003       DAG.ComputeMaskedBits(N.getOperand(0),
   1004                             APInt::getAllOnesValue(N.getOperand(0)
   1005                                                    .getValueSizeInBits()),
   1006                             LHSKnownZero, LHSKnownOne);
   1007       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1008         // If all of the bits are known zero on the LHS or RHS, the add won't
   1009         // carry.
   1010         Base = N.getOperand(0);
   1011         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
   1012         return true;
   1013       }
   1014     }
   1015   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1016     // Loading from a constant address.  Verify low two bits are clear.
   1017     if ((CN->getZExtValue() & 3) == 0) {
   1018       // If this address fits entirely in a 14-bit sext immediate field, codegen
   1019       // this as "d, 0"
   1020       short Imm;
   1021       if (isIntS16Immediate(CN, Imm)) {
   1022         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
   1023         Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
   1024                                CN->getValueType(0));
   1025         return true;
   1026       }
   1027 
   1028       // Fold the low-part of 32-bit absolute addresses into addr mode.
   1029       if (CN->getValueType(0) == MVT::i32 ||
   1030           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
   1031         int Addr = (int)CN->getZExtValue();
   1032 
   1033         // Otherwise, break this down into an LIS + disp.
   1034         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
   1035         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
   1036         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1037         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
   1038         return true;
   1039       }
   1040     }
   1041   }
   1042 
   1043   Disp = DAG.getTargetConstant(0, getPointerTy());
   1044   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
   1045     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1046   else
   1047     Base = N;
   1048   return true;      // [r+0]
   1049 }
   1050 
   1051 
   1052 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1053 /// offset pointer and addressing mode by reference if the node's address
   1054 /// can be legally represented as pre-indexed load / store address.
   1055 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1056                                                   SDValue &Offset,
   1057                                                   ISD::MemIndexedMode &AM,
   1058                                                   SelectionDAG &DAG) const {
   1059   // Disabled by default for now.
   1060   if (!EnablePPCPreinc) return false;
   1061 
   1062   SDValue Ptr;
   1063   EVT VT;
   1064   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1065     Ptr = LD->getBasePtr();
   1066     VT = LD->getMemoryVT();
   1067 
   1068   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1069     Ptr = ST->getBasePtr();
   1070     VT  = ST->getMemoryVT();
   1071   } else
   1072     return false;
   1073 
   1074   // PowerPC doesn't have preinc load/store instructions for vectors.
   1075   if (VT.isVector())
   1076     return false;
   1077 
   1078   // TODO: Check reg+reg first.
   1079 
   1080   // LDU/STU use reg+imm*4, others use reg+imm.
   1081   if (VT != MVT::i64) {
   1082     // reg + imm
   1083     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
   1084       return false;
   1085   } else {
   1086     // reg + imm * 4.
   1087     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
   1088       return false;
   1089   }
   1090 
   1091   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1092     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1093     // sext i32 to i64 when addr mode is r+i.
   1094     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1095         LD->getExtensionType() == ISD::SEXTLOAD &&
   1096         isa<ConstantSDNode>(Offset))
   1097       return false;
   1098   }
   1099 
   1100   AM = ISD::PRE_INC;
   1101   return true;
   1102 }
   1103 
   1104 //===----------------------------------------------------------------------===//
   1105 //  LowerOperation implementation
   1106 //===----------------------------------------------------------------------===//
   1107 
   1108 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1109 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1110 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
   1111                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
   1112   HiOpFlags = PPCII::MO_HA16;
   1113   LoOpFlags = PPCII::MO_LO16;
   1114 
   1115   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
   1116   // non-darwin platform.  We don't support PIC on other platforms yet.
   1117   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
   1118                TM.getSubtarget<PPCSubtarget>().isDarwin();
   1119   if (isPIC) {
   1120     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1121     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1122   }
   1123 
   1124   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1125   // sure that instruction lowering adds it.
   1126   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
   1127     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1128     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1129 
   1130     if (GV->hasHiddenVisibility()) {
   1131       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1132       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1133     }
   1134   }
   1135 
   1136   return isPIC;
   1137 }
   1138 
   1139 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1140                              SelectionDAG &DAG) {
   1141   EVT PtrVT = HiPart.getValueType();
   1142   SDValue Zero = DAG.getConstant(0, PtrVT);
   1143   DebugLoc DL = HiPart.getDebugLoc();
   1144 
   1145   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1146   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1147 
   1148   // With PIC, the first instruction is actually "GR+hi(&G)".
   1149   if (isPIC)
   1150     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1151                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1152 
   1153   // Generate non-pic code that has direct accesses to the constant pool.
   1154   // The address of the global is just (hi(&g)+lo(&g)).
   1155   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1156 }
   1157 
   1158 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   1159                                              SelectionDAG &DAG) const {
   1160   EVT PtrVT = Op.getValueType();
   1161   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   1162   const Constant *C = CP->getConstVal();
   1163 
   1164   unsigned MOHiFlag, MOLoFlag;
   1165   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1166   SDValue CPIHi =
   1167     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   1168   SDValue CPILo =
   1169     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   1170   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   1171 }
   1172 
   1173 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   1174   EVT PtrVT = Op.getValueType();
   1175   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1176 
   1177   unsigned MOHiFlag, MOLoFlag;
   1178   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1179   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   1180   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   1181   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   1182 }
   1183 
   1184 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   1185                                              SelectionDAG &DAG) const {
   1186   EVT PtrVT = Op.getValueType();
   1187 
   1188   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1189 
   1190   unsigned MOHiFlag, MOLoFlag;
   1191   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1192   SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
   1193   SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
   1194   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   1195 }
   1196 
   1197 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   1198                                               SelectionDAG &DAG) const {
   1199   EVT PtrVT = Op.getValueType();
   1200   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   1201   DebugLoc DL = GSDN->getDebugLoc();
   1202   const GlobalValue *GV = GSDN->getGlobal();
   1203 
   1204   // 64-bit SVR4 ABI code is always position-independent.
   1205   // The actual address of the GlobalValue is stored in the TOC.
   1206   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1207     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   1208     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
   1209                        DAG.getRegister(PPC::X2, MVT::i64));
   1210   }
   1211 
   1212   unsigned MOHiFlag, MOLoFlag;
   1213   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
   1214 
   1215   SDValue GAHi =
   1216     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   1217   SDValue GALo =
   1218     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   1219 
   1220   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   1221 
   1222   // If the global reference is actually to a non-lazy-pointer, we have to do an
   1223   // extra load to get the address of the global.
   1224   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   1225     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   1226                       false, false, 0);
   1227   return Ptr;
   1228 }
   1229 
   1230 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1231   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   1232   DebugLoc dl = Op.getDebugLoc();
   1233 
   1234   // If we're comparing for equality to zero, expose the fact that this is
   1235   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   1236   // fold the new nodes.
   1237   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1238     if (C->isNullValue() && CC == ISD::SETEQ) {
   1239       EVT VT = Op.getOperand(0).getValueType();
   1240       SDValue Zext = Op.getOperand(0);
   1241       if (VT.bitsLT(MVT::i32)) {
   1242         VT = MVT::i32;
   1243         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   1244       }
   1245       unsigned Log2b = Log2_32(VT.getSizeInBits());
   1246       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   1247       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   1248                                 DAG.getConstant(Log2b, MVT::i32));
   1249       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   1250     }
   1251     // Leave comparisons against 0 and -1 alone for now, since they're usually
   1252     // optimized.  FIXME: revisit this when we can custom lower all setcc
   1253     // optimizations.
   1254     if (C->isAllOnesValue() || C->isNullValue())
   1255       return SDValue();
   1256   }
   1257 
   1258   // If we have an integer seteq/setne, turn it into a compare against zero
   1259   // by xor'ing the rhs with the lhs, which is faster than setting a
   1260   // condition register, reading it back out, and masking the correct bit.  The
   1261   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   1262   // the result to other bit-twiddling opportunities.
   1263   EVT LHSVT = Op.getOperand(0).getValueType();
   1264   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   1265     EVT VT = Op.getValueType();
   1266     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   1267                                 Op.getOperand(1));
   1268     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
   1269   }
   1270   return SDValue();
   1271 }
   1272 
   1273 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   1274                                       const PPCSubtarget &Subtarget) const {
   1275   SDNode *Node = Op.getNode();
   1276   EVT VT = Node->getValueType(0);
   1277   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1278   SDValue InChain = Node->getOperand(0);
   1279   SDValue VAListPtr = Node->getOperand(1);
   1280   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   1281   DebugLoc dl = Node->getDebugLoc();
   1282 
   1283   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   1284 
   1285   // gpr_index
   1286   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1287                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   1288                                     false, false, 0);
   1289   InChain = GprIndex.getValue(1);
   1290 
   1291   if (VT == MVT::i64) {
   1292     // Check if GprIndex is even
   1293     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   1294                                  DAG.getConstant(1, MVT::i32));
   1295     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   1296                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
   1297     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   1298                                           DAG.getConstant(1, MVT::i32));
   1299     // Align GprIndex to be even if it isn't
   1300     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   1301                            GprIndex);
   1302   }
   1303 
   1304   // fpr index is 1 byte after gpr
   1305   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1306                                DAG.getConstant(1, MVT::i32));
   1307 
   1308   // fpr
   1309   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1310                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   1311                                     false, false, 0);
   1312   InChain = FprIndex.getValue(1);
   1313 
   1314   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1315                                        DAG.getConstant(8, MVT::i32));
   1316 
   1317   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1318                                         DAG.getConstant(4, MVT::i32));
   1319 
   1320   // areas
   1321   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   1322                                      MachinePointerInfo(), false, false, 0);
   1323   InChain = OverflowArea.getValue(1);
   1324 
   1325   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   1326                                     MachinePointerInfo(), false, false, 0);
   1327   InChain = RegSaveArea.getValue(1);
   1328 
   1329   // select overflow_area if index > 8
   1330   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   1331                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
   1332 
   1333   // adjustment constant gpr_index * 4/8
   1334   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   1335                                     VT.isInteger() ? GprIndex : FprIndex,
   1336                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
   1337                                                     MVT::i32));
   1338 
   1339   // OurReg = RegSaveArea + RegConstant
   1340   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   1341                                RegConstant);
   1342 
   1343   // Floating types are 32 bytes into RegSaveArea
   1344   if (VT.isFloatingPoint())
   1345     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   1346                          DAG.getConstant(32, MVT::i32));
   1347 
   1348   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   1349   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   1350                                    VT.isInteger() ? GprIndex : FprIndex,
   1351                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
   1352                                                    MVT::i32));
   1353 
   1354   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   1355                               VT.isInteger() ? VAListPtr : FprPtr,
   1356                               MachinePointerInfo(SV),
   1357                               MVT::i8, false, false, 0);
   1358 
   1359   // determine if we should load from reg_save_area or overflow_area
   1360   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   1361 
   1362   // increase overflow_area by 4/8 if gpr/fpr > 8
   1363   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   1364                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   1365                                           MVT::i32));
   1366 
   1367   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   1368                              OverflowAreaPlusN);
   1369 
   1370   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   1371                               OverflowAreaPtr,
   1372                               MachinePointerInfo(),
   1373                               MVT::i32, false, false, 0);
   1374 
   1375   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, 0);
   1376 }
   1377 
   1378 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   1379                                                   SelectionDAG &DAG) const {
   1380   return Op.getOperand(0);
   1381 }
   1382 
   1383 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   1384                                                 SelectionDAG &DAG) const {
   1385   SDValue Chain = Op.getOperand(0);
   1386   SDValue Trmp = Op.getOperand(1); // trampoline
   1387   SDValue FPtr = Op.getOperand(2); // nested function
   1388   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   1389   DebugLoc dl = Op.getDebugLoc();
   1390 
   1391   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1392   bool isPPC64 = (PtrVT == MVT::i64);
   1393   Type *IntPtrTy =
   1394     DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
   1395                                                              *DAG.getContext());
   1396 
   1397   TargetLowering::ArgListTy Args;
   1398   TargetLowering::ArgListEntry Entry;
   1399 
   1400   Entry.Ty = IntPtrTy;
   1401   Entry.Node = Trmp; Args.push_back(Entry);
   1402 
   1403   // TrampSize == (isPPC64 ? 48 : 40);
   1404   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
   1405                                isPPC64 ? MVT::i64 : MVT::i32);
   1406   Args.push_back(Entry);
   1407 
   1408   Entry.Node = FPtr; Args.push_back(Entry);
   1409   Entry.Node = Nest; Args.push_back(Entry);
   1410 
   1411   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   1412   std::pair<SDValue, SDValue> CallResult =
   1413     LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
   1414                 false, false, false, false, 0, CallingConv::C, false,
   1415                 /*isReturnValueUsed=*/true,
   1416                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   1417                 Args, DAG, dl);
   1418 
   1419   return CallResult.second;
   1420 }
   1421 
   1422 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   1423                                         const PPCSubtarget &Subtarget) const {
   1424   MachineFunction &MF = DAG.getMachineFunction();
   1425   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1426 
   1427   DebugLoc dl = Op.getDebugLoc();
   1428 
   1429   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   1430     // vastart just stores the address of the VarArgsFrameIndex slot into the
   1431     // memory location argument.
   1432     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1433     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1434     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1435     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   1436                         MachinePointerInfo(SV),
   1437                         false, false, 0);
   1438   }
   1439 
   1440   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   1441   // We suppose the given va_list is already allocated.
   1442   //
   1443   // typedef struct {
   1444   //  char gpr;     /* index into the array of 8 GPRs
   1445   //                 * stored in the register save area
   1446   //                 * gpr=0 corresponds to r3,
   1447   //                 * gpr=1 to r4, etc.
   1448   //                 */
   1449   //  char fpr;     /* index into the array of 8 FPRs
   1450   //                 * stored in the register save area
   1451   //                 * fpr=0 corresponds to f1,
   1452   //                 * fpr=1 to f2, etc.
   1453   //                 */
   1454   //  char *overflow_arg_area;
   1455   //                /* location on stack that holds
   1456   //                 * the next overflow argument
   1457   //                 */
   1458   //  char *reg_save_area;
   1459   //               /* where r3:r10 and f1:f8 (if saved)
   1460   //                * are stored
   1461   //                */
   1462   // } va_list[1];
   1463 
   1464 
   1465   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
   1466   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
   1467 
   1468 
   1469   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1470 
   1471   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   1472                                             PtrVT);
   1473   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1474                                  PtrVT);
   1475 
   1476   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   1477   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
   1478 
   1479   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   1480   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
   1481 
   1482   uint64_t FPROffset = 1;
   1483   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
   1484 
   1485   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1486 
   1487   // Store first byte : number of int regs
   1488   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   1489                                          Op.getOperand(1),
   1490                                          MachinePointerInfo(SV),
   1491                                          MVT::i8, false, false, 0);
   1492   uint64_t nextOffset = FPROffset;
   1493   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   1494                                   ConstFPROffset);
   1495 
   1496   // Store second byte : number of float regs
   1497   SDValue secondStore =
   1498     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   1499                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   1500                       false, false, 0);
   1501   nextOffset += StackOffset;
   1502   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   1503 
   1504   // Store second word : arguments given on stack
   1505   SDValue thirdStore =
   1506     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   1507                  MachinePointerInfo(SV, nextOffset),
   1508                  false, false, 0);
   1509   nextOffset += FrameOffset;
   1510   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   1511 
   1512   // Store third word : arguments given in registers
   1513   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   1514                       MachinePointerInfo(SV, nextOffset),
   1515                       false, false, 0);
   1516 
   1517 }
   1518 
   1519 #include "PPCGenCallingConv.inc"
   1520 
   1521 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   1522                                      CCValAssign::LocInfo &LocInfo,
   1523                                      ISD::ArgFlagsTy &ArgFlags,
   1524                                      CCState &State) {
   1525   return true;
   1526 }
   1527 
   1528 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   1529                                             MVT &LocVT,
   1530                                             CCValAssign::LocInfo &LocInfo,
   1531                                             ISD::ArgFlagsTy &ArgFlags,
   1532                                             CCState &State) {
   1533   static const unsigned ArgRegs[] = {
   1534     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1535     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1536   };
   1537   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1538 
   1539   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1540 
   1541   // Skip one register if the first unallocated register has an even register
   1542   // number and there are still argument registers available which have not been
   1543   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   1544   // need to skip a register if RegNum is odd.
   1545   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   1546     State.AllocateReg(ArgRegs[RegNum]);
   1547   }
   1548 
   1549   // Always return false here, as this function only makes sure that the first
   1550   // unallocated register has an odd register number and does not actually
   1551   // allocate a register for the current argument.
   1552   return false;
   1553 }
   1554 
   1555 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   1556                                               MVT &LocVT,
   1557                                               CCValAssign::LocInfo &LocInfo,
   1558                                               ISD::ArgFlagsTy &ArgFlags,
   1559                                               CCState &State) {
   1560   static const unsigned ArgRegs[] = {
   1561     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1562     PPC::F8
   1563   };
   1564 
   1565   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1566 
   1567   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1568 
   1569   // If there is only one Floating-point register left we need to put both f64
   1570   // values of a split ppc_fp128 value on the stack.
   1571   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   1572     State.AllocateReg(ArgRegs[RegNum]);
   1573   }
   1574 
   1575   // Always return false here, as this function only makes sure that the two f64
   1576   // values a ppc_fp128 value is split into are both passed in registers or both
   1577   // passed on the stack and does not actually allocate a register for the
   1578   // current argument.
   1579   return false;
   1580 }
   1581 
   1582 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
   1583 /// on Darwin.
   1584 static const unsigned *GetFPR() {
   1585   static const unsigned FPR[] = {
   1586     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1587     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
   1588   };
   1589 
   1590   return FPR;
   1591 }
   1592 
   1593 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   1594 /// the stack.
   1595 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   1596                                        unsigned PtrByteSize) {
   1597   unsigned ArgSize = ArgVT.getSizeInBits()/8;
   1598   if (Flags.isByVal())
   1599     ArgSize = Flags.getByValSize();
   1600   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   1601 
   1602   return ArgSize;
   1603 }
   1604 
   1605 SDValue
   1606 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   1607                                         CallingConv::ID CallConv, bool isVarArg,
   1608                                         const SmallVectorImpl<ISD::InputArg>
   1609                                           &Ins,
   1610                                         DebugLoc dl, SelectionDAG &DAG,
   1611                                         SmallVectorImpl<SDValue> &InVals)
   1612                                           const {
   1613   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
   1614     return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
   1615                                      dl, DAG, InVals);
   1616   } else {
   1617     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   1618                                        dl, DAG, InVals);
   1619   }
   1620 }
   1621 
   1622 SDValue
   1623 PPCTargetLowering::LowerFormalArguments_SVR4(
   1624                                       SDValue Chain,
   1625                                       CallingConv::ID CallConv, bool isVarArg,
   1626                                       const SmallVectorImpl<ISD::InputArg>
   1627                                         &Ins,
   1628                                       DebugLoc dl, SelectionDAG &DAG,
   1629                                       SmallVectorImpl<SDValue> &InVals) const {
   1630 
   1631   // 32-bit SVR4 ABI Stack Frame Layout:
   1632   //              +-----------------------------------+
   1633   //        +-->  |            Back chain             |
   1634   //        |     +-----------------------------------+
   1635   //        |     | Floating-point register save area |
   1636   //        |     +-----------------------------------+
   1637   //        |     |    General register save area     |
   1638   //        |     +-----------------------------------+
   1639   //        |     |          CR save word             |
   1640   //        |     +-----------------------------------+
   1641   //        |     |         VRSAVE save word          |
   1642   //        |     +-----------------------------------+
   1643   //        |     |         Alignment padding         |
   1644   //        |     +-----------------------------------+
   1645   //        |     |     Vector register save area     |
   1646   //        |     +-----------------------------------+
   1647   //        |     |       Local variable space        |
   1648   //        |     +-----------------------------------+
   1649   //        |     |        Parameter list area        |
   1650   //        |     +-----------------------------------+
   1651   //        |     |           LR save word            |
   1652   //        |     +-----------------------------------+
   1653   // SP-->  +---  |            Back chain             |
   1654   //              +-----------------------------------+
   1655   //
   1656   // Specifications:
   1657   //   System V Application Binary Interface PowerPC Processor Supplement
   1658   //   AltiVec Technology Programming Interface Manual
   1659 
   1660   MachineFunction &MF = DAG.getMachineFunction();
   1661   MachineFrameInfo *MFI = MF.getFrameInfo();
   1662   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1663 
   1664   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1665   // Potential tail calls could cause overwriting of argument stack slots.
   1666   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
   1667   unsigned PtrByteSize = 4;
   1668 
   1669   // Assign locations to all of the incoming arguments.
   1670   SmallVector<CCValAssign, 16> ArgLocs;
   1671   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1672 		 getTargetMachine(), ArgLocs, *DAG.getContext());
   1673 
   1674   // Reserve space for the linkage area on the stack.
   1675   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   1676 
   1677   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
   1678 
   1679   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1680     CCValAssign &VA = ArgLocs[i];
   1681 
   1682     // Arguments stored in registers.
   1683     if (VA.isRegLoc()) {
   1684       TargetRegisterClass *RC;
   1685       EVT ValVT = VA.getValVT();
   1686 
   1687       switch (ValVT.getSimpleVT().SimpleTy) {
   1688         default:
   1689           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   1690         case MVT::i32:
   1691           RC = PPC::GPRCRegisterClass;
   1692           break;
   1693         case MVT::f32:
   1694           RC = PPC::F4RCRegisterClass;
   1695           break;
   1696         case MVT::f64:
   1697           RC = PPC::F8RCRegisterClass;
   1698           break;
   1699         case MVT::v16i8:
   1700         case MVT::v8i16:
   1701         case MVT::v4i32:
   1702         case MVT::v4f32:
   1703           RC = PPC::VRRCRegisterClass;
   1704           break;
   1705       }
   1706 
   1707       // Transform the arguments stored in physical registers into virtual ones.
   1708       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   1709       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
   1710 
   1711       InVals.push_back(ArgValue);
   1712     } else {
   1713       // Argument stored in memory.
   1714       assert(VA.isMemLoc());
   1715 
   1716       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
   1717       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   1718                                       isImmutable);
   1719 
   1720       // Create load nodes to retrieve arguments from the stack.
   1721       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   1722       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   1723                                    MachinePointerInfo(),
   1724                                    false, false, 0));
   1725     }
   1726   }
   1727 
   1728   // Assign locations to all of the incoming aggregate by value arguments.
   1729   // Aggregates passed by value are stored in the local variable space of the
   1730   // caller's stack frame, right above the parameter list area.
   1731   SmallVector<CCValAssign, 16> ByValArgLocs;
   1732   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1733 		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
   1734 
   1735   // Reserve stack space for the allocations in CCInfo.
   1736   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   1737 
   1738   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
   1739 
   1740   // Area that is at least reserved in the caller of this function.
   1741   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   1742 
   1743   // Set the size that is at least reserved in caller of this function.  Tail
   1744   // call optimized function's reserved stack space needs to be aligned so that
   1745   // taking the difference between two stack areas will result in an aligned
   1746   // stack.
   1747   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   1748 
   1749   MinReservedArea =
   1750     std::max(MinReservedArea,
   1751              PPCFrameLowering::getMinCallFrameSize(false, false));
   1752 
   1753   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
   1754     getStackAlignment();
   1755   unsigned AlignMask = TargetAlign-1;
   1756   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   1757 
   1758   FI->setMinReservedArea(MinReservedArea);
   1759 
   1760   SmallVector<SDValue, 8> MemOps;
   1761 
   1762   // If the function takes variable number of arguments, make a frame index for
   1763   // the start of the first vararg value... for expansion of llvm.va_start.
   1764   if (isVarArg) {
   1765     static const unsigned GPArgRegs[] = {
   1766       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1767       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1768     };
   1769     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   1770 
   1771     static const unsigned FPArgRegs[] = {
   1772       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1773       PPC::F8
   1774     };
   1775     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   1776 
   1777     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
   1778                                                           NumGPArgRegs));
   1779     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
   1780                                                           NumFPArgRegs));
   1781 
   1782     // Make room for NumGPArgRegs and NumFPArgRegs.
   1783     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   1784                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
   1785 
   1786     FuncInfo->setVarArgsStackOffset(
   1787       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   1788                              CCInfo.getNextStackOffset(), true));
   1789 
   1790     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   1791     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1792 
   1793     // The fixed integer arguments of a variadic function are stored to the
   1794     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   1795     // the result of va_next.
   1796     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   1797       // Get an existing live-in vreg, or add a new one.
   1798       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   1799       if (!VReg)
   1800         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   1801 
   1802       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   1803       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1804                                    MachinePointerInfo(), false, false, 0);
   1805       MemOps.push_back(Store);
   1806       // Increment the address by four for the next argument to store
   1807       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   1808       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   1809     }
   1810 
   1811     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   1812     // is set.
   1813     // The double arguments are stored to the VarArgsFrameIndex
   1814     // on the stack.
   1815     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   1816       // Get an existing live-in vreg, or add a new one.
   1817       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   1818       if (!VReg)
   1819         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   1820 
   1821       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   1822       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1823                                    MachinePointerInfo(), false, false, 0);
   1824       MemOps.push_back(Store);
   1825       // Increment the address by eight for the next argument to store
   1826       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
   1827                                          PtrVT);
   1828       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   1829     }
   1830   }
   1831 
   1832   if (!MemOps.empty())
   1833     Chain = DAG.getNode(ISD::TokenFactor, dl,
   1834                         MVT::Other, &MemOps[0], MemOps.size());
   1835 
   1836   return Chain;
   1837 }
   1838 
   1839 SDValue
   1840 PPCTargetLowering::LowerFormalArguments_Darwin(
   1841                                       SDValue Chain,
   1842                                       CallingConv::ID CallConv, bool isVarArg,
   1843                                       const SmallVectorImpl<ISD::InputArg>
   1844                                         &Ins,
   1845                                       DebugLoc dl, SelectionDAG &DAG,
   1846                                       SmallVectorImpl<SDValue> &InVals) const {
   1847   // TODO: add description of PPC stack frame format, or at least some docs.
   1848   //
   1849   MachineFunction &MF = DAG.getMachineFunction();
   1850   MachineFrameInfo *MFI = MF.getFrameInfo();
   1851   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1852 
   1853   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1854   bool isPPC64 = PtrVT == MVT::i64;
   1855   // Potential tail calls could cause overwriting of argument stack slots.
   1856   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
   1857   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   1858 
   1859   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   1860   // Area that is at least reserved in caller of this function.
   1861   unsigned MinReservedArea = ArgOffset;
   1862 
   1863   static const unsigned GPR_32[] = {           // 32-bit registers.
   1864     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1865     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1866   };
   1867   static const unsigned GPR_64[] = {           // 64-bit registers.
   1868     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   1869     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   1870   };
   1871 
   1872   static const unsigned *FPR = GetFPR();
   1873 
   1874   static const unsigned VR[] = {
   1875     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   1876     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   1877   };
   1878 
   1879   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   1880   const unsigned Num_FPR_Regs = 13;
   1881   const unsigned Num_VR_Regs  = array_lengthof( VR);
   1882 
   1883   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   1884 
   1885   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
   1886 
   1887   // In 32-bit non-varargs functions, the stack space for vectors is after the
   1888   // stack space for non-vectors.  We do not use this space unless we have
   1889   // too many vectors to fit in registers, something that only occurs in
   1890   // constructed examples:), but we have to walk the arglist to figure
   1891   // that out...for the pathological case, compute VecArgOffset as the
   1892   // start of the vector parameter area.  Computing VecArgOffset is the
   1893   // entire point of the following loop.
   1894   unsigned VecArgOffset = ArgOffset;
   1895   if (!isVarArg && !isPPC64) {
   1896     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   1897          ++ArgNo) {
   1898       EVT ObjectVT = Ins[ArgNo].VT;
   1899       unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   1900       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   1901 
   1902       if (Flags.isByVal()) {
   1903         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   1904         ObjSize = Flags.getByValSize();
   1905         unsigned ArgSize =
   1906                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   1907         VecArgOffset += ArgSize;
   1908         continue;
   1909       }
   1910 
   1911       switch(ObjectVT.getSimpleVT().SimpleTy) {
   1912       default: llvm_unreachable("Unhandled argument type!");
   1913       case MVT::i32:
   1914       case MVT::f32:
   1915         VecArgOffset += isPPC64 ? 8 : 4;
   1916         break;
   1917       case MVT::i64:  // PPC64
   1918       case MVT::f64:
   1919         VecArgOffset += 8;
   1920         break;
   1921       case MVT::v4f32:
   1922       case MVT::v4i32:
   1923       case MVT::v8i16:
   1924       case MVT::v16i8:
   1925         // Nothing to do, we're only looking at Nonvector args here.
   1926         break;
   1927       }
   1928     }
   1929   }
   1930   // We've found where the vector parameter area in memory is.  Skip the
   1931   // first 12 parameters; these don't use that memory.
   1932   VecArgOffset = ((VecArgOffset+15)/16)*16;
   1933   VecArgOffset += 12*16;
   1934 
   1935   // Add DAG nodes to load the arguments or copy them out of registers.  On
   1936   // entry to a function on PPC, the arguments start after the linkage area,
   1937   // although the first ones are often in registers.
   1938 
   1939   SmallVector<SDValue, 8> MemOps;
   1940   unsigned nAltivecParamsAtEnd = 0;
   1941   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   1942     SDValue ArgVal;
   1943     bool needsLoad = false;
   1944     EVT ObjectVT = Ins[ArgNo].VT;
   1945     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   1946     unsigned ArgSize = ObjSize;
   1947     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   1948 
   1949     unsigned CurArgOffset = ArgOffset;
   1950 
   1951     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   1952     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   1953         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   1954       if (isVarArg || isPPC64) {
   1955         MinReservedArea = ((MinReservedArea+15)/16)*16;
   1956         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   1957                                                   Flags,
   1958                                                   PtrByteSize);
   1959       } else  nAltivecParamsAtEnd++;
   1960     } else
   1961       // Calculate min reserved area.
   1962       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   1963                                                 Flags,
   1964                                                 PtrByteSize);
   1965 
   1966     // FIXME the codegen can be much improved in some cases.
   1967     // We do not have to keep everything in memory.
   1968     if (Flags.isByVal()) {
   1969       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   1970       ObjSize = Flags.getByValSize();
   1971       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   1972       // Objects of size 1 and 2 are right justified, everything else is
   1973       // left justified.  This means the memory address is adjusted forwards.
   1974       if (ObjSize==1 || ObjSize==2) {
   1975         CurArgOffset = CurArgOffset + (4 - ObjSize);
   1976       }
   1977       // The value of the object is its address.
   1978       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   1979       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   1980       InVals.push_back(FIN);
   1981       if (ObjSize==1 || ObjSize==2) {
   1982         if (GPR_idx != Num_GPR_Regs) {
   1983           unsigned VReg;
   1984           if (isPPC64)
   1985             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   1986           else
   1987             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   1988           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   1989           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   1990                                             MachinePointerInfo(),
   1991                                             ObjSize==1 ? MVT::i8 : MVT::i16,
   1992                                             false, false, 0);
   1993           MemOps.push_back(Store);
   1994           ++GPR_idx;
   1995         }
   1996 
   1997         ArgOffset += PtrByteSize;
   1998 
   1999         continue;
   2000       }
   2001       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2002         // Store whatever pieces of the object are in registers
   2003         // to memory.  ArgVal will be address of the beginning of
   2004         // the object.
   2005         if (GPR_idx != Num_GPR_Regs) {
   2006           unsigned VReg;
   2007           if (isPPC64)
   2008             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2009           else
   2010             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2011           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2012           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2013           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2014           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2015                                        MachinePointerInfo(),
   2016                                        false, false, 0);
   2017           MemOps.push_back(Store);
   2018           ++GPR_idx;
   2019           ArgOffset += PtrByteSize;
   2020         } else {
   2021           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   2022           break;
   2023         }
   2024       }
   2025       continue;
   2026     }
   2027 
   2028     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2029     default: llvm_unreachable("Unhandled argument type!");
   2030     case MVT::i32:
   2031       if (!isPPC64) {
   2032         if (GPR_idx != Num_GPR_Regs) {
   2033           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2034           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2035           ++GPR_idx;
   2036         } else {
   2037           needsLoad = true;
   2038           ArgSize = PtrByteSize;
   2039         }
   2040         // All int arguments reserve stack space in the Darwin ABI.
   2041         ArgOffset += PtrByteSize;
   2042         break;
   2043       }
   2044       // FALLTHROUGH
   2045     case MVT::i64:  // PPC64
   2046       if (GPR_idx != Num_GPR_Regs) {
   2047         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2048         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2049 
   2050         if (ObjectVT == MVT::i32) {
   2051           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2052           // value to MVT::i64 and then truncate to the correct register size.
   2053           if (Flags.isSExt())
   2054             ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   2055                                  DAG.getValueType(ObjectVT));
   2056           else if (Flags.isZExt())
   2057             ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   2058                                  DAG.getValueType(ObjectVT));
   2059 
   2060           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   2061         }
   2062 
   2063         ++GPR_idx;
   2064       } else {
   2065         needsLoad = true;
   2066         ArgSize = PtrByteSize;
   2067       }
   2068       // All int arguments reserve stack space in the Darwin ABI.
   2069       ArgOffset += 8;
   2070       break;
   2071 
   2072     case MVT::f32:
   2073     case MVT::f64:
   2074       // Every 4 bytes of argument space consumes one of the GPRs available for
   2075       // argument passing.
   2076       if (GPR_idx != Num_GPR_Regs) {
   2077         ++GPR_idx;
   2078         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   2079           ++GPR_idx;
   2080       }
   2081       if (FPR_idx != Num_FPR_Regs) {
   2082         unsigned VReg;
   2083 
   2084         if (ObjectVT == MVT::f32)
   2085           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2086         else
   2087           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   2088 
   2089         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2090         ++FPR_idx;
   2091       } else {
   2092         needsLoad = true;
   2093       }
   2094 
   2095       // All FP arguments reserve stack space in the Darwin ABI.
   2096       ArgOffset += isPPC64 ? 8 : ObjSize;
   2097       break;
   2098     case MVT::v4f32:
   2099     case MVT::v4i32:
   2100     case MVT::v8i16:
   2101     case MVT::v16i8:
   2102       // Note that vector arguments in registers don't reserve stack space,
   2103       // except in varargs functions.
   2104       if (VR_idx != Num_VR_Regs) {
   2105         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2106         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2107         if (isVarArg) {
   2108           while ((ArgOffset % 16) != 0) {
   2109             ArgOffset += PtrByteSize;
   2110             if (GPR_idx != Num_GPR_Regs)
   2111               GPR_idx++;
   2112           }
   2113           ArgOffset += 16;
   2114           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   2115         }
   2116         ++VR_idx;
   2117       } else {
   2118         if (!isVarArg && !isPPC64) {
   2119           // Vectors go after all the nonvectors.
   2120           CurArgOffset = VecArgOffset;
   2121           VecArgOffset += 16;
   2122         } else {
   2123           // Vectors are aligned.
   2124           ArgOffset = ((ArgOffset+15)/16)*16;
   2125           CurArgOffset = ArgOffset;
   2126           ArgOffset += 16;
   2127         }
   2128         needsLoad = true;
   2129       }
   2130       break;
   2131     }
   2132 
   2133     // We need to load the argument to a virtual register if we determined above
   2134     // that we ran out of physical registers of the appropriate type.
   2135     if (needsLoad) {
   2136       int FI = MFI->CreateFixedObject(ObjSize,
   2137                                       CurArgOffset + (ArgSize - ObjSize),
   2138                                       isImmutable);
   2139       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2140       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   2141                            false, false, 0);
   2142     }
   2143 
   2144     InVals.push_back(ArgVal);
   2145   }
   2146 
   2147   // Set the size that is at least reserved in caller of this function.  Tail
   2148   // call optimized function's reserved stack space needs to be aligned so that
   2149   // taking the difference between two stack areas will result in an aligned
   2150   // stack.
   2151   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   2152   // Add the Altivec parameters at the end, if needed.
   2153   if (nAltivecParamsAtEnd) {
   2154     MinReservedArea = ((MinReservedArea+15)/16)*16;
   2155     MinReservedArea += 16*nAltivecParamsAtEnd;
   2156   }
   2157   MinReservedArea =
   2158     std::max(MinReservedArea,
   2159              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2160   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
   2161     getStackAlignment();
   2162   unsigned AlignMask = TargetAlign-1;
   2163   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   2164   FI->setMinReservedArea(MinReservedArea);
   2165 
   2166   // If the function takes variable number of arguments, make a frame index for
   2167   // the start of the first vararg value... for expansion of llvm.va_start.
   2168   if (isVarArg) {
   2169     int Depth = ArgOffset;
   2170 
   2171     FuncInfo->setVarArgsFrameIndex(
   2172       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2173                              Depth, true));
   2174     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2175 
   2176     // If this function is vararg, store any remaining integer argument regs
   2177     // to their spots on the stack so that they may be loaded by deferencing the
   2178     // result of va_next.
   2179     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   2180       unsigned VReg;
   2181 
   2182       if (isPPC64)
   2183         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2184       else
   2185         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2186 
   2187       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2188       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2189                                    MachinePointerInfo(), false, false, 0);
   2190       MemOps.push_back(Store);
   2191       // Increment the address by four for the next argument to store
   2192       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2193       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2194     }
   2195   }
   2196 
   2197   if (!MemOps.empty())
   2198     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2199                         MVT::Other, &MemOps[0], MemOps.size());
   2200 
   2201   return Chain;
   2202 }
   2203 
   2204 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
   2205 /// linkage area for the Darwin ABI.
   2206 static unsigned
   2207 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
   2208                                      bool isPPC64,
   2209                                      bool isVarArg,
   2210                                      unsigned CC,
   2211                                      const SmallVectorImpl<ISD::OutputArg>
   2212                                        &Outs,
   2213                                      const SmallVectorImpl<SDValue> &OutVals,
   2214                                      unsigned &nAltivecParamsAtEnd) {
   2215   // Count how many bytes are to be pushed on the stack, including the linkage
   2216   // area, and parameter passing area.  We start with 24/48 bytes, which is
   2217   // prereserved space for [SP][CR][LR][3 x unused].
   2218   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
   2219   unsigned NumOps = Outs.size();
   2220   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   2221 
   2222   // Add up all the space actually used.
   2223   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   2224   // they all go in registers, but we must reserve stack space for them for
   2225   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   2226   // assigned stack space in order, with padding so Altivec parameters are
   2227   // 16-byte aligned.
   2228   nAltivecParamsAtEnd = 0;
   2229   for (unsigned i = 0; i != NumOps; ++i) {
   2230     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2231     EVT ArgVT = Outs[i].VT;
   2232     // Varargs Altivec parameters are padded to a 16 byte boundary.
   2233     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
   2234         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
   2235       if (!isVarArg && !isPPC64) {
   2236         // Non-varargs Altivec parameters go after all the non-Altivec
   2237         // parameters; handle those later so we know how much padding we need.
   2238         nAltivecParamsAtEnd++;
   2239         continue;
   2240       }
   2241       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   2242       NumBytes = ((NumBytes+15)/16)*16;
   2243     }
   2244     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2245   }
   2246 
   2247    // Allow for Altivec parameters at the end, if needed.
   2248   if (nAltivecParamsAtEnd) {
   2249     NumBytes = ((NumBytes+15)/16)*16;
   2250     NumBytes += 16*nAltivecParamsAtEnd;
   2251   }
   2252 
   2253   // The prolog code of the callee may store up to 8 GPR argument registers to
   2254   // the stack, allowing va_start to index over them in memory if its varargs.
   2255   // Because we cannot tell if this is needed on the caller side, we have to
   2256   // conservatively assume that it is needed.  As such, make sure we have at
   2257   // least enough stack space for the caller to store the 8 GPRs.
   2258   NumBytes = std::max(NumBytes,
   2259                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2260 
   2261   // Tail call needs the stack to be aligned.
   2262   if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
   2263     unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
   2264       getStackAlignment();
   2265     unsigned AlignMask = TargetAlign-1;
   2266     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2267   }
   2268 
   2269   return NumBytes;
   2270 }
   2271 
   2272 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   2273 /// adjusted to accommodate the arguments for the tailcall.
   2274 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   2275                                    unsigned ParamSize) {
   2276 
   2277   if (!isTailCall) return 0;
   2278 
   2279   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   2280   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   2281   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   2282   // Remember only if the new adjustement is bigger.
   2283   if (SPDiff < FI->getTailCallSPDelta())
   2284     FI->setTailCallSPDelta(SPDiff);
   2285 
   2286   return SPDiff;
   2287 }
   2288 
   2289 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2290 /// for tail call optimization. Targets which want to do tail call
   2291 /// optimization should implement this function.
   2292 bool
   2293 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2294                                                      CallingConv::ID CalleeCC,
   2295                                                      bool isVarArg,
   2296                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   2297                                                      SelectionDAG& DAG) const {
   2298   if (!GuaranteedTailCallOpt)
   2299     return false;
   2300 
   2301   // Variable argument functions are not supported.
   2302   if (isVarArg)
   2303     return false;
   2304 
   2305   MachineFunction &MF = DAG.getMachineFunction();
   2306   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   2307   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   2308     // Functions containing by val parameters are not supported.
   2309     for (unsigned i = 0; i != Ins.size(); i++) {
   2310        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   2311        if (Flags.isByVal()) return false;
   2312     }
   2313 
   2314     // Non PIC/GOT  tail calls are supported.
   2315     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   2316       return true;
   2317 
   2318     // At the moment we can only do local tail calls (in same module, hidden
   2319     // or protected) if we are generating PIC.
   2320     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   2321       return G->getGlobal()->hasHiddenVisibility()
   2322           || G->getGlobal()->hasProtectedVisibility();
   2323   }
   2324 
   2325   return false;
   2326 }
   2327 
   2328 /// isCallCompatibleAddress - Return the immediate to use if the specified
   2329 /// 32-bit value is representable in the immediate field of a BxA instruction.
   2330 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   2331   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2332   if (!C) return 0;
   2333 
   2334   int Addr = C->getZExtValue();
   2335   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   2336       (Addr << 6 >> 6) != Addr)
   2337     return 0;  // Top 6 bits have to be sext of immediate.
   2338 
   2339   return DAG.getConstant((int)C->getZExtValue() >> 2,
   2340                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
   2341 }
   2342 
   2343 namespace {
   2344 
   2345 struct TailCallArgumentInfo {
   2346   SDValue Arg;
   2347   SDValue FrameIdxOp;
   2348   int       FrameIdx;
   2349 
   2350   TailCallArgumentInfo() : FrameIdx(0) {}
   2351 };
   2352 
   2353 }
   2354 
   2355 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   2356 static void
   2357 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   2358                                            SDValue Chain,
   2359                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
   2360                    SmallVector<SDValue, 8> &MemOpChains,
   2361                    DebugLoc dl) {
   2362   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   2363     SDValue Arg = TailCallArgs[i].Arg;
   2364     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   2365     int FI = TailCallArgs[i].FrameIdx;
   2366     // Store relative to framepointer.
   2367     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
   2368                                        MachinePointerInfo::getFixedStack(FI),
   2369                                        false, false, 0));
   2370   }
   2371 }
   2372 
   2373 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   2374 /// the appropriate stack slot for the tail call optimized function call.
   2375 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   2376                                                MachineFunction &MF,
   2377                                                SDValue Chain,
   2378                                                SDValue OldRetAddr,
   2379                                                SDValue OldFP,
   2380                                                int SPDiff,
   2381                                                bool isPPC64,
   2382                                                bool isDarwinABI,
   2383                                                DebugLoc dl) {
   2384   if (SPDiff) {
   2385     // Calculate the new stack slot for the return address.
   2386     int SlotSize = isPPC64 ? 8 : 4;
   2387     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
   2388                                                                    isDarwinABI);
   2389     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   2390                                                           NewRetAddrLoc, true);
   2391     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   2392     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   2393     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   2394                          MachinePointerInfo::getFixedStack(NewRetAddr),
   2395                          false, false, 0);
   2396 
   2397     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   2398     // slot as the FP is never overwritten.
   2399     if (isDarwinABI) {
   2400       int NewFPLoc =
   2401         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
   2402       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   2403                                                           true);
   2404       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   2405       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
   2406                            MachinePointerInfo::getFixedStack(NewFPIdx),
   2407                            false, false, 0);
   2408     }
   2409   }
   2410   return Chain;
   2411 }
   2412 
   2413 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   2414 /// the position of the argument.
   2415 static void
   2416 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   2417                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   2418                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
   2419   int Offset = ArgOffset + SPDiff;
   2420   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   2421   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2422   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   2423   SDValue FIN = DAG.getFrameIndex(FI, VT);
   2424   TailCallArgumentInfo Info;
   2425   Info.Arg = Arg;
   2426   Info.FrameIdxOp = FIN;
   2427   Info.FrameIdx = FI;
   2428   TailCallArguments.push_back(Info);
   2429 }
   2430 
   2431 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   2432 /// stack slot. Returns the chain as result and the loaded frame pointers in
   2433 /// LROpOut/FPOpout. Used when tail calling.
   2434 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   2435                                                         int SPDiff,
   2436                                                         SDValue Chain,
   2437                                                         SDValue &LROpOut,
   2438                                                         SDValue &FPOpOut,
   2439                                                         bool isDarwinABI,
   2440                                                         DebugLoc dl) const {
   2441   if (SPDiff) {
   2442     // Load the LR and FP stack slot for later adjusting.
   2443     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
   2444     LROpOut = getReturnAddrFrameIndex(DAG);
   2445     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   2446                           false, false, 0);
   2447     Chain = SDValue(LROpOut.getNode(), 1);
   2448 
   2449     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   2450     // slot as the FP is never overwritten.
   2451     if (isDarwinABI) {
   2452       FPOpOut = getFramePointerFrameIndex(DAG);
   2453       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   2454                             false, false, 0);
   2455       Chain = SDValue(FPOpOut.getNode(), 1);
   2456     }
   2457   }
   2458   return Chain;
   2459 }
   2460 
   2461 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   2462 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   2463 /// specified by the specific parameter attribute. The copy will be passed as
   2464 /// a byval function parameter.
   2465 /// Sometimes what we are copying is the end of a larger object, the part that
   2466 /// does not fit in registers.
   2467 static SDValue
   2468 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   2469                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   2470                           DebugLoc dl) {
   2471   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   2472   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   2473                        false, false, MachinePointerInfo(0),
   2474                        MachinePointerInfo(0));
   2475 }
   2476 
   2477 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   2478 /// tail calls.
   2479 static void
   2480 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   2481                  SDValue Arg, SDValue PtrOff, int SPDiff,
   2482                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   2483                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
   2484                  SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
   2485                  DebugLoc dl) {
   2486   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2487   if (!isTailCall) {
   2488     if (isVector) {
   2489       SDValue StackPtr;
   2490       if (isPPC64)
   2491         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   2492       else
   2493         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   2494       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   2495                            DAG.getConstant(ArgOffset, PtrVT));
   2496     }
   2497     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   2498                                        MachinePointerInfo(), false, false, 0));
   2499   // Calculate and remember argument location.
   2500   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   2501                                   TailCallArguments);
   2502 }
   2503 
   2504 static
   2505 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   2506                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   2507                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   2508                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
   2509   MachineFunction &MF = DAG.getMachineFunction();
   2510 
   2511   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   2512   // might overwrite each other in case of tail call optimization.
   2513   SmallVector<SDValue, 8> MemOpChains2;
   2514   // Do not flag preceding copytoreg stuff together with the following stuff.
   2515   InFlag = SDValue();
   2516   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   2517                                     MemOpChains2, dl);
   2518   if (!MemOpChains2.empty())
   2519     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2520                         &MemOpChains2[0], MemOpChains2.size());
   2521 
   2522   // Store the return address to the appropriate stack slot.
   2523   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   2524                                         isPPC64, isDarwinABI, dl);
   2525 
   2526   // Emit callseq_end just before tailcall node.
   2527   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2528                              DAG.getIntPtrConstant(0, true), InFlag);
   2529   InFlag = Chain.getValue(1);
   2530 }
   2531 
   2532 static
   2533 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   2534                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
   2535                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
   2536                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
   2537                      const PPCSubtarget &PPCSubTarget) {
   2538 
   2539   bool isPPC64 = PPCSubTarget.isPPC64();
   2540   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
   2541 
   2542   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2543   NodeTys.push_back(MVT::Other);   // Returns a chain
   2544   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   2545 
   2546   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
   2547 
   2548   bool needIndirectCall = true;
   2549   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   2550     // If this is an absolute destination address, use the munged value.
   2551     Callee = SDValue(Dest, 0);
   2552     needIndirectCall = false;
   2553   }
   2554 
   2555   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2556     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
   2557     // Use indirect calls for ALL functions calls in JIT mode, since the
   2558     // far-call stubs may be outside relocation limits for a BL instruction.
   2559     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
   2560       unsigned OpFlags = 0;
   2561       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   2562           (PPCSubTarget.getTargetTriple().isMacOSX() &&
   2563            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   2564           (G->getGlobal()->isDeclaration() ||
   2565            G->getGlobal()->isWeakForLinker())) {
   2566         // PC-relative references to external symbols should go through $stub,
   2567         // unless we're building with the leopard linker or later, which
   2568         // automatically synthesizes these stubs.
   2569         OpFlags = PPCII::MO_DARWIN_STUB;
   2570       }
   2571 
   2572       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   2573       // every direct call is) turn it into a TargetGlobalAddress /
   2574       // TargetExternalSymbol node so that legalize doesn't hack it.
   2575       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   2576                                           Callee.getValueType(),
   2577                                           0, OpFlags);
   2578       needIndirectCall = false;
   2579     }
   2580   }
   2581 
   2582   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2583     unsigned char OpFlags = 0;
   2584 
   2585     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   2586         (PPCSubTarget.getTargetTriple().isMacOSX() &&
   2587          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2588       // PC-relative references to external symbols should go through $stub,
   2589       // unless we're building with the leopard linker or later, which
   2590       // automatically synthesizes these stubs.
   2591       OpFlags = PPCII::MO_DARWIN_STUB;
   2592     }
   2593 
   2594     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   2595                                          OpFlags);
   2596     needIndirectCall = false;
   2597   }
   2598 
   2599   if (needIndirectCall) {
   2600     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   2601     // to do the call, we can't use PPCISD::CALL.
   2602     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   2603 
   2604     if (isSVR4ABI && isPPC64) {
   2605       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   2606       // entry point, but to the function descriptor (the function entry point
   2607       // address is part of the function descriptor though).
   2608       // The function descriptor is a three doubleword structure with the
   2609       // following fields: function entry point, TOC base address and
   2610       // environment pointer.
   2611       // Thus for a call through a function pointer, the following actions need
   2612       // to be performed:
   2613       //   1. Save the TOC of the caller in the TOC save area of its stack
   2614       //      frame (this is done in LowerCall_Darwin()).
   2615       //   2. Load the address of the function entry point from the function
   2616       //      descriptor.
   2617       //   3. Load the TOC of the callee from the function descriptor into r2.
   2618       //   4. Load the environment pointer from the function descriptor into
   2619       //      r11.
   2620       //   5. Branch to the function entry point address.
   2621       //   6. On return of the callee, the TOC of the caller needs to be
   2622       //      restored (this is done in FinishCall()).
   2623       //
   2624       // All those operations are flagged together to ensure that no other
   2625       // operations can be scheduled in between. E.g. without flagging the
   2626       // operations together, a TOC access in the caller could be scheduled
   2627       // between the load of the callee TOC and the branch to the callee, which
   2628       // results in the TOC access going through the TOC of the callee instead
   2629       // of going through the TOC of the caller, which leads to incorrect code.
   2630 
   2631       // Load the address of the function entry point from the function
   2632       // descriptor.
   2633       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
   2634       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
   2635                                         InFlag.getNode() ? 3 : 2);
   2636       Chain = LoadFuncPtr.getValue(1);
   2637       InFlag = LoadFuncPtr.getValue(2);
   2638 
   2639       // Load environment pointer into r11.
   2640       // Offset of the environment pointer within the function descriptor.
   2641       SDValue PtrOff = DAG.getIntPtrConstant(16);
   2642 
   2643       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   2644       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
   2645                                        InFlag);
   2646       Chain = LoadEnvPtr.getValue(1);
   2647       InFlag = LoadEnvPtr.getValue(2);
   2648 
   2649       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   2650                                         InFlag);
   2651       Chain = EnvVal.getValue(0);
   2652       InFlag = EnvVal.getValue(1);
   2653 
   2654       // Load TOC of the callee into r2. We are using a target-specific load
   2655       // with r2 hard coded, because the result of a target-independent load
   2656       // would never go directly into r2, since r2 is a reserved register (which
   2657       // prevents the register allocator from allocating it), resulting in an
   2658       // additional register being allocated and an unnecessary move instruction
   2659       // being generated.
   2660       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   2661       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
   2662                                        Callee, InFlag);
   2663       Chain = LoadTOCPtr.getValue(0);
   2664       InFlag = LoadTOCPtr.getValue(1);
   2665 
   2666       MTCTROps[0] = Chain;
   2667       MTCTROps[1] = LoadFuncPtr;
   2668       MTCTROps[2] = InFlag;
   2669     }
   2670 
   2671     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
   2672                         2 + (InFlag.getNode() != 0));
   2673     InFlag = Chain.getValue(1);
   2674 
   2675     NodeTys.clear();
   2676     NodeTys.push_back(MVT::Other);
   2677     NodeTys.push_back(MVT::Glue);
   2678     Ops.push_back(Chain);
   2679     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
   2680     Callee.setNode(0);
   2681     // Add CTR register as callee so a bctr can be emitted later.
   2682     if (isTailCall)
   2683       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   2684   }
   2685 
   2686   // If this is a direct call, pass the chain and the callee.
   2687   if (Callee.getNode()) {
   2688     Ops.push_back(Chain);
   2689     Ops.push_back(Callee);
   2690   }
   2691   // If this is a tail call add stack pointer delta.
   2692   if (isTailCall)
   2693     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
   2694 
   2695   // Add argument registers to the end of the list so that they are known live
   2696   // into the call.
   2697   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2698     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2699                                   RegsToPass[i].second.getValueType()));
   2700 
   2701   return CallOpc;
   2702 }
   2703 
   2704 SDValue
   2705 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   2706                                    CallingConv::ID CallConv, bool isVarArg,
   2707                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   2708                                    DebugLoc dl, SelectionDAG &DAG,
   2709                                    SmallVectorImpl<SDValue> &InVals) const {
   2710 
   2711   SmallVector<CCValAssign, 16> RVLocs;
   2712   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2713 		    getTargetMachine(), RVLocs, *DAG.getContext());
   2714   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   2715 
   2716   // Copy all of the result registers out of their specified physreg.
   2717   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   2718     CCValAssign &VA = RVLocs[i];
   2719     EVT VT = VA.getValVT();
   2720     assert(VA.isRegLoc() && "Can only return in registers!");
   2721     Chain = DAG.getCopyFromReg(Chain, dl,
   2722                                VA.getLocReg(), VT, InFlag).getValue(1);
   2723     InVals.push_back(Chain.getValue(0));
   2724     InFlag = Chain.getValue(2);
   2725   }
   2726 
   2727   return Chain;
   2728 }
   2729 
   2730 SDValue
   2731 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
   2732                               bool isTailCall, bool isVarArg,
   2733                               SelectionDAG &DAG,
   2734                               SmallVector<std::pair<unsigned, SDValue>, 8>
   2735                                 &RegsToPass,
   2736                               SDValue InFlag, SDValue Chain,
   2737                               SDValue &Callee,
   2738                               int SPDiff, unsigned NumBytes,
   2739                               const SmallVectorImpl<ISD::InputArg> &Ins,
   2740                               SmallVectorImpl<SDValue> &InVals) const {
   2741   std::vector<EVT> NodeTys;
   2742   SmallVector<SDValue, 8> Ops;
   2743   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
   2744                                  isTailCall, RegsToPass, Ops, NodeTys,
   2745                                  PPCSubTarget);
   2746 
   2747   // When performing tail call optimization the callee pops its arguments off
   2748   // the stack. Account for this here so these bytes can be pushed back on in
   2749   // PPCRegisterInfo::eliminateCallFramePseudoInstr.
   2750   int BytesCalleePops =
   2751     (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
   2752 
   2753   if (InFlag.getNode())
   2754     Ops.push_back(InFlag);
   2755 
   2756   // Emit tail call.
   2757   if (isTailCall) {
   2758     // If this is the first return lowered for this function, add the regs
   2759     // to the liveout set for the function.
   2760     if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
   2761       SmallVector<CCValAssign, 16> RVLocs;
   2762       CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2763 		     getTargetMachine(), RVLocs, *DAG.getContext());
   2764       CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   2765       for (unsigned i = 0; i != RVLocs.size(); ++i)
   2766         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
   2767     }
   2768 
   2769     assert(((Callee.getOpcode() == ISD::Register &&
   2770              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   2771             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   2772             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   2773             isa<ConstantSDNode>(Callee)) &&
   2774     "Expecting an global address, external symbol, absolute value or register");
   2775 
   2776     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
   2777   }
   2778 
   2779   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
   2780   InFlag = Chain.getValue(1);
   2781 
   2782   // Add a NOP immediately after the branch instruction when using the 64-bit
   2783   // SVR4 ABI. At link time, if caller and callee are in a different module and
   2784   // thus have a different TOC, the call will be replaced with a call to a stub
   2785   // function which saves the current TOC, loads the TOC of the callee and
   2786   // branches to the callee. The NOP will be replaced with a load instruction
   2787   // which restores the TOC of the caller from the TOC save slot of the current
   2788   // stack frame. If caller and callee belong to the same module (and have the
   2789   // same TOC), the NOP will remain unchanged.
   2790   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
   2791     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   2792     if (CallOpc == PPCISD::BCTRL_SVR4) {
   2793       // This is a call through a function pointer.
   2794       // Restore the caller TOC from the save area into R2.
   2795       // See PrepareCall() for more information about calls through function
   2796       // pointers in the 64-bit SVR4 ABI.
   2797       // We are using a target-specific load with r2 hard coded, because the
   2798       // result of a target-independent load would never go directly into r2,
   2799       // since r2 is a reserved register (which prevents the register allocator
   2800       // from allocating it), resulting in an additional register being
   2801       // allocated and an unnecessary move instruction being generated.
   2802       Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
   2803       InFlag = Chain.getValue(1);
   2804     } else {
   2805       // Otherwise insert NOP.
   2806       InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
   2807     }
   2808   }
   2809 
   2810   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2811                              DAG.getIntPtrConstant(BytesCalleePops, true),
   2812                              InFlag);
   2813   if (!Ins.empty())
   2814     InFlag = Chain.getValue(1);
   2815 
   2816   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   2817                          Ins, dl, DAG, InVals);
   2818 }
   2819 
   2820 SDValue
   2821 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
   2822                              CallingConv::ID CallConv, bool isVarArg,
   2823                              bool &isTailCall,
   2824                              const SmallVectorImpl<ISD::OutputArg> &Outs,
   2825                              const SmallVectorImpl<SDValue> &OutVals,
   2826                              const SmallVectorImpl<ISD::InputArg> &Ins,
   2827                              DebugLoc dl, SelectionDAG &DAG,
   2828                              SmallVectorImpl<SDValue> &InVals) const {
   2829   if (isTailCall)
   2830     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   2831                                                    Ins, DAG);
   2832 
   2833   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
   2834     return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
   2835                           isTailCall, Outs, OutVals, Ins,
   2836                           dl, DAG, InVals);
   2837 
   2838   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   2839                           isTailCall, Outs, OutVals, Ins,
   2840                           dl, DAG, InVals);
   2841 }
   2842 
   2843 SDValue
   2844 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
   2845                                   CallingConv::ID CallConv, bool isVarArg,
   2846                                   bool isTailCall,
   2847                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2848                                   const SmallVectorImpl<SDValue> &OutVals,
   2849                                   const SmallVectorImpl<ISD::InputArg> &Ins,
   2850                                   DebugLoc dl, SelectionDAG &DAG,
   2851                                   SmallVectorImpl<SDValue> &InVals) const {
   2852   // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
   2853   // of the 32-bit SVR4 ABI stack frame layout.
   2854 
   2855   assert((CallConv == CallingConv::C ||
   2856           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   2857 
   2858   unsigned PtrByteSize = 4;
   2859 
   2860   MachineFunction &MF = DAG.getMachineFunction();
   2861 
   2862   // Mark this function as potentially containing a function that contains a
   2863   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   2864   // and restoring the callers stack pointer in this functions epilog. This is
   2865   // done because by tail calling the called function might overwrite the value
   2866   // in this function's (MF) stack pointer stack slot 0(SP).
   2867   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
   2868     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   2869 
   2870   // Count how many bytes are to be pushed on the stack, including the linkage
   2871   // area, parameter list area and the part of the local variable space which
   2872   // contains copies of aggregates which are passed by value.
   2873 
   2874   // Assign locations to all of the outgoing arguments.
   2875   SmallVector<CCValAssign, 16> ArgLocs;
   2876   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2877 		 getTargetMachine(), ArgLocs, *DAG.getContext());
   2878 
   2879   // Reserve space for the linkage area on the stack.
   2880   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   2881 
   2882   if (isVarArg) {
   2883     // Handle fixed and variable vector arguments differently.
   2884     // Fixed vector arguments go into registers as long as registers are
   2885     // available. Variable vector arguments always go into memory.
   2886     unsigned NumArgs = Outs.size();
   2887 
   2888     for (unsigned i = 0; i != NumArgs; ++i) {
   2889       MVT ArgVT = Outs[i].VT;
   2890       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   2891       bool Result;
   2892 
   2893       if (Outs[i].IsFixed) {
   2894         Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   2895                              CCInfo);
   2896       } else {
   2897         Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   2898                                     ArgFlags, CCInfo);
   2899       }
   2900 
   2901       if (Result) {
   2902 #ifndef NDEBUG
   2903         errs() << "Call operand #" << i << " has unhandled type "
   2904              << EVT(ArgVT).getEVTString() << "\n";
   2905 #endif
   2906         llvm_unreachable(0);
   2907       }
   2908     }
   2909   } else {
   2910     // All arguments are treated the same.
   2911     CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
   2912   }
   2913 
   2914   // Assign locations to all of the outgoing aggregate by value arguments.
   2915   SmallVector<CCValAssign, 16> ByValArgLocs;
   2916   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2917 		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
   2918 
   2919   // Reserve stack space for the allocations in CCInfo.
   2920   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   2921 
   2922   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
   2923 
   2924   // Size of the linkage area, parameter list area and the part of the local
   2925   // space variable where copies of aggregates which are passed by value are
   2926   // stored.
   2927   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   2928 
   2929   // Calculate by how many bytes the stack has to be adjusted in case of tail
   2930   // call optimization.
   2931   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   2932 
   2933   // Adjust the stack pointer for the new arguments...
   2934   // These operations are automatically eliminated by the prolog/epilog pass
   2935   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   2936   SDValue CallSeqStart = Chain;
   2937 
   2938   // Load the return address and frame pointer so it can be moved somewhere else
   2939   // later.
   2940   SDValue LROp, FPOp;
   2941   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   2942                                        dl);
   2943 
   2944   // Set up a copy of the stack pointer for use loading and storing any
   2945   // arguments that may not fit in the registers available for argument
   2946   // passing.
   2947   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   2948 
   2949   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2950   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   2951   SmallVector<SDValue, 8> MemOpChains;
   2952 
   2953   bool seenFloatArg = false;
   2954   // Walk the register/memloc assignments, inserting copies/loads.
   2955   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   2956        i != e;
   2957        ++i) {
   2958     CCValAssign &VA = ArgLocs[i];
   2959     SDValue Arg = OutVals[i];
   2960     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2961 
   2962     if (Flags.isByVal()) {
   2963       // Argument is an aggregate which is passed by value, thus we need to
   2964       // create a copy of it in the local variable space of the current stack
   2965       // frame (which is the stack frame of the caller) and pass the address of
   2966       // this copy to the callee.
   2967       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   2968       CCValAssign &ByValVA = ByValArgLocs[j++];
   2969       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   2970 
   2971       // Memory reserved in the local variable space of the callers stack frame.
   2972       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   2973 
   2974       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   2975       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   2976 
   2977       // Create a copy of the argument in the local area of the current
   2978       // stack frame.
   2979       SDValue MemcpyCall =
   2980         CreateCopyOfByValArgument(Arg, PtrOff,
   2981                                   CallSeqStart.getNode()->getOperand(0),
   2982                                   Flags, DAG, dl);
   2983 
   2984       // This must go outside the CALLSEQ_START..END.
   2985       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   2986                            CallSeqStart.getNode()->getOperand(1));
   2987       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   2988                              NewCallSeqStart.getNode());
   2989       Chain = CallSeqStart = NewCallSeqStart;
   2990 
   2991       // Pass the address of the aggregate copy on the stack either in a
   2992       // physical register or in the parameter list area of the current stack
   2993       // frame to the callee.
   2994       Arg = PtrOff;
   2995     }
   2996 
   2997     if (VA.isRegLoc()) {
   2998       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   2999       // Put argument in a physical register.
   3000       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   3001     } else {
   3002       // Put argument in the parameter list area of the current stack frame.
   3003       assert(VA.isMemLoc());
   3004       unsigned LocMemOffset = VA.getLocMemOffset();
   3005 
   3006       if (!isTailCall) {
   3007         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3008         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3009 
   3010         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3011                                            MachinePointerInfo(),
   3012                                            false, false, 0));
   3013       } else {
   3014         // Calculate and remember argument location.
   3015         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   3016                                  TailCallArguments);
   3017       }
   3018     }
   3019   }
   3020 
   3021   if (!MemOpChains.empty())
   3022     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3023                         &MemOpChains[0], MemOpChains.size());
   3024 
   3025   // Set CR6 to true if this is a vararg call with floating args passed in
   3026   // registers.
   3027   if (isVarArg) {
   3028     SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET,
   3029                                      dl, MVT::i32), 0);
   3030     RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
   3031   }
   3032 
   3033   // Build a sequence of copy-to-reg nodes chained together with token chain
   3034   // and flag operands which copy the outgoing args into the appropriate regs.
   3035   SDValue InFlag;
   3036   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   3037     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   3038                              RegsToPass[i].second, InFlag);
   3039     InFlag = Chain.getValue(1);
   3040   }
   3041 
   3042   if (isTailCall)
   3043     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   3044                     false, TailCallArguments);
   3045 
   3046   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   3047                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   3048                     Ins, InVals);
   3049 }
   3050 
   3051 SDValue
   3052 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   3053                                     CallingConv::ID CallConv, bool isVarArg,
   3054                                     bool isTailCall,
   3055                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3056                                     const SmallVectorImpl<SDValue> &OutVals,
   3057                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3058                                     DebugLoc dl, SelectionDAG &DAG,
   3059                                     SmallVectorImpl<SDValue> &InVals) const {
   3060 
   3061   unsigned NumOps  = Outs.size();
   3062 
   3063   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3064   bool isPPC64 = PtrVT == MVT::i64;
   3065   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   3066 
   3067   MachineFunction &MF = DAG.getMachineFunction();
   3068 
   3069   // Mark this function as potentially containing a function that contains a
   3070   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3071   // and restoring the callers stack pointer in this functions epilog. This is
   3072   // done because by tail calling the called function might overwrite the value
   3073   // in this function's (MF) stack pointer stack slot 0(SP).
   3074   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
   3075     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3076 
   3077   unsigned nAltivecParamsAtEnd = 0;
   3078 
   3079   // Count how many bytes are to be pushed on the stack, including the linkage
   3080   // area, and parameter passing area.  We start with 24/48 bytes, which is
   3081   // prereserved space for [SP][CR][LR][3 x unused].
   3082   unsigned NumBytes =
   3083     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
   3084                                          Outs, OutVals,
   3085                                          nAltivecParamsAtEnd);
   3086 
   3087   // Calculate by how many bytes the stack has to be adjusted in case of tail
   3088   // call optimization.
   3089   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   3090 
   3091   // To protect arguments on the stack from being clobbered in a tail call,
   3092   // force all the loads to happen before doing any other lowering.
   3093   if (isTailCall)
   3094     Chain = DAG.getStackArgumentTokenFactor(Chain);
   3095 
   3096   // Adjust the stack pointer for the new arguments...
   3097   // These operations are automatically eliminated by the prolog/epilog pass
   3098   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   3099   SDValue CallSeqStart = Chain;
   3100 
   3101   // Load the return address and frame pointer so it can be move somewhere else
   3102   // later.
   3103   SDValue LROp, FPOp;
   3104   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   3105                                        dl);
   3106 
   3107   // Set up a copy of the stack pointer for use loading and storing any
   3108   // arguments that may not fit in the registers available for argument
   3109   // passing.
   3110   SDValue StackPtr;
   3111   if (isPPC64)
   3112     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3113   else
   3114     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3115 
   3116   // Figure out which arguments are going to go in registers, and which in
   3117   // memory.  Also, if this is a vararg function, floating point operations
   3118   // must be stored to our stack, and loaded into integer regs as well, if
   3119   // any integer regs are available for argument passing.
   3120   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   3121   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3122 
   3123   static const unsigned GPR_32[] = {           // 32-bit registers.
   3124     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3125     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3126   };
   3127   static const unsigned GPR_64[] = {           // 64-bit registers.
   3128     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3129     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3130   };
   3131   static const unsigned *FPR = GetFPR();
   3132 
   3133   static const unsigned VR[] = {
   3134     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3135     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3136   };
   3137   const unsigned NumGPRs = array_lengthof(GPR_32);
   3138   const unsigned NumFPRs = 13;
   3139   const unsigned NumVRs  = array_lengthof(VR);
   3140 
   3141   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
   3142 
   3143   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3144   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   3145 
   3146   SmallVector<SDValue, 8> MemOpChains;
   3147   for (unsigned i = 0; i != NumOps; ++i) {
   3148     SDValue Arg = OutVals[i];
   3149     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3150 
   3151     // PtrOff will be used to store the current argument to the stack if a
   3152     // register cannot be found for it.
   3153     SDValue PtrOff;
   3154 
   3155     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   3156 
   3157     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   3158 
   3159     // On PPC64, promote integers to 64-bit values.
   3160     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   3161       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   3162       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   3163       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   3164     }
   3165 
   3166     // FIXME memcpy is used way more than necessary.  Correctness first.
   3167     if (Flags.isByVal()) {
   3168       unsigned Size = Flags.getByValSize();
   3169       if (Size==1 || Size==2) {
   3170         // Very small objects are passed right-justified.
   3171         // Everything else is passed left-justified.
   3172         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   3173         if (GPR_idx != NumGPRs) {
   3174           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   3175                                         MachinePointerInfo(), VT,
   3176                                         false, false, 0);
   3177           MemOpChains.push_back(Load.getValue(1));
   3178           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3179 
   3180           ArgOffset += PtrByteSize;
   3181         } else {
   3182           SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
   3183           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   3184           SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
   3185                                 CallSeqStart.getNode()->getOperand(0),
   3186                                 Flags, DAG, dl);
   3187           // This must go outside the CALLSEQ_START..END.
   3188           SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3189                                CallSeqStart.getNode()->getOperand(1));
   3190           DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3191                                  NewCallSeqStart.getNode());
   3192           Chain = CallSeqStart = NewCallSeqStart;
   3193           ArgOffset += PtrByteSize;
   3194         }
   3195         continue;
   3196       }
   3197       // Copy entire object into memory.  There are cases where gcc-generated
   3198       // code assumes it is there, even if it could be put entirely into
   3199       // registers.  (This is not what the doc says.)
   3200       SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   3201                             CallSeqStart.getNode()->getOperand(0),
   3202                             Flags, DAG, dl);
   3203       // This must go outside the CALLSEQ_START..END.
   3204       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3205                            CallSeqStart.getNode()->getOperand(1));
   3206       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
   3207       Chain = CallSeqStart = NewCallSeqStart;
   3208       // And copy the pieces of it that fit into registers.
   3209       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   3210         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   3211         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   3212         if (GPR_idx != NumGPRs) {
   3213           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   3214                                      MachinePointerInfo(),
   3215                                      false, false, 0);
   3216           MemOpChains.push_back(Load.getValue(1));
   3217           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3218           ArgOffset += PtrByteSize;
   3219         } else {
   3220           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   3221           break;
   3222         }
   3223       }
   3224       continue;
   3225     }
   3226 
   3227     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
   3228     default: llvm_unreachable("Unexpected ValueType for argument!");
   3229     case MVT::i32:
   3230     case MVT::i64:
   3231       if (GPR_idx != NumGPRs) {
   3232         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   3233       } else {
   3234         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3235                          isPPC64, isTailCall, false, MemOpChains,
   3236                          TailCallArguments, dl);
   3237       }
   3238       ArgOffset += PtrByteSize;
   3239       break;
   3240     case MVT::f32:
   3241     case MVT::f64:
   3242       if (FPR_idx != NumFPRs) {
   3243         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   3244 
   3245         if (isVarArg) {
   3246           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   3247                                        MachinePointerInfo(), false, false, 0);
   3248           MemOpChains.push_back(Store);
   3249 
   3250           // Float varargs are always shadowed in available integer registers
   3251           if (GPR_idx != NumGPRs) {
   3252             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   3253                                        MachinePointerInfo(), false, false, 0);
   3254             MemOpChains.push_back(Load.getValue(1));
   3255             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3256           }
   3257           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   3258             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   3259             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   3260             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   3261                                        MachinePointerInfo(),
   3262                                        false, false, 0);
   3263             MemOpChains.push_back(Load.getValue(1));
   3264             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3265           }
   3266         } else {
   3267           // If we have any FPRs remaining, we may also have GPRs remaining.
   3268           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   3269           // GPRs.
   3270           if (GPR_idx != NumGPRs)
   3271             ++GPR_idx;
   3272           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   3273               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   3274             ++GPR_idx;
   3275         }
   3276       } else {
   3277         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3278                          isPPC64, isTailCall, false, MemOpChains,
   3279                          TailCallArguments, dl);
   3280       }
   3281       if (isPPC64)
   3282         ArgOffset += 8;
   3283       else
   3284         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   3285       break;
   3286     case MVT::v4f32:
   3287     case MVT::v4i32:
   3288     case MVT::v8i16:
   3289     case MVT::v16i8:
   3290       if (isVarArg) {
   3291         // These go aligned on the stack, or in the corresponding R registers
   3292         // when within range.  The Darwin PPC ABI doc claims they also go in
   3293         // V registers; in fact gcc does this only for arguments that are
   3294         // prototyped, not for those that match the ...  We do it for all
   3295         // arguments, seems to work.
   3296         while (ArgOffset % 16 !=0) {
   3297           ArgOffset += PtrByteSize;
   3298           if (GPR_idx != NumGPRs)
   3299             GPR_idx++;
   3300         }
   3301         // We could elide this store in the case where the object fits
   3302         // entirely in R registers.  Maybe later.
   3303         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   3304                             DAG.getConstant(ArgOffset, PtrVT));
   3305         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   3306                                      MachinePointerInfo(), false, false, 0);
   3307         MemOpChains.push_back(Store);
   3308         if (VR_idx != NumVRs) {
   3309           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   3310                                      MachinePointerInfo(),
   3311                                      false, false, 0);
   3312           MemOpChains.push_back(Load.getValue(1));
   3313           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   3314         }
   3315         ArgOffset += 16;
   3316         for (unsigned i=0; i<16; i+=PtrByteSize) {
   3317           if (GPR_idx == NumGPRs)
   3318             break;
   3319           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   3320                                   DAG.getConstant(i, PtrVT));
   3321           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   3322                                      false, false, 0);
   3323           MemOpChains.push_back(Load.getValue(1));
   3324           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3325         }
   3326         break;
   3327       }
   3328 
   3329       // Non-varargs Altivec params generally go in registers, but have
   3330       // stack space allocated at the end.
   3331       if (VR_idx != NumVRs) {
   3332         // Doesn't have GPR space allocated.
   3333         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   3334       } else if (nAltivecParamsAtEnd==0) {
   3335         // We are emitting Altivec params in order.
   3336         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3337                          isPPC64, isTailCall, true, MemOpChains,
   3338                          TailCallArguments, dl);
   3339         ArgOffset += 16;
   3340       }
   3341       break;
   3342     }
   3343   }
   3344   // If all Altivec parameters fit in registers, as they usually do,
   3345   // they get stack space following the non-Altivec parameters.  We
   3346   // don't track this here because nobody below needs it.
   3347   // If there are more Altivec parameters than fit in registers emit
   3348   // the stores here.
   3349   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   3350     unsigned j = 0;
   3351     // Offset is aligned; skip 1st 12 params which go in V registers.
   3352     ArgOffset = ((ArgOffset+15)/16)*16;
   3353     ArgOffset += 12*16;
   3354     for (unsigned i = 0; i != NumOps; ++i) {
   3355       SDValue Arg = OutVals[i];
   3356       EVT ArgType = Outs[i].VT;
   3357       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   3358           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   3359         if (++j > NumVRs) {
   3360           SDValue PtrOff;
   3361           // We are emitting Altivec params in order.
   3362           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3363                            isPPC64, isTailCall, true, MemOpChains,
   3364                            TailCallArguments, dl);
   3365           ArgOffset += 16;
   3366         }
   3367       }
   3368     }
   3369   }
   3370 
   3371   if (!MemOpChains.empty())
   3372     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3373                         &MemOpChains[0], MemOpChains.size());
   3374 
   3375   // Check if this is an indirect call (MTCTR/BCTRL).
   3376   // See PrepareCall() for more information about calls through function
   3377   // pointers in the 64-bit SVR4 ABI.
   3378   if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
   3379       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   3380       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   3381       !isBLACompatibleAddress(Callee, DAG)) {
   3382     // Load r2 into a virtual register and store it to the TOC save area.
   3383     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   3384     // TOC save area offset.
   3385     SDValue PtrOff = DAG.getIntPtrConstant(40);
   3386     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   3387     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
   3388                          false, false, 0);
   3389   }
   3390 
   3391   // On Darwin, R12 must contain the address of an indirect callee.  This does
   3392   // not mean the MTCTR instruction must use R12; it's easier to model this as
   3393   // an extra parameter, so do that.
   3394   if (!isTailCall &&
   3395       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   3396       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   3397       !isBLACompatibleAddress(Callee, DAG))
   3398     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   3399                                                    PPC::R12), Callee));
   3400 
   3401   // Build a sequence of copy-to-reg nodes chained together with token chain
   3402   // and flag operands which copy the outgoing args into the appropriate regs.
   3403   SDValue InFlag;
   3404   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   3405     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   3406                              RegsToPass[i].second, InFlag);
   3407     InFlag = Chain.getValue(1);
   3408   }
   3409 
   3410   if (isTailCall)
   3411     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   3412                     FPOp, true, TailCallArguments);
   3413 
   3414   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   3415                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   3416                     Ins, InVals);
   3417 }
   3418 
   3419 bool
   3420 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   3421                                   MachineFunction &MF, bool isVarArg,
   3422                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   3423                                   LLVMContext &Context) const {
   3424   SmallVector<CCValAssign, 16> RVLocs;
   3425   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   3426                  RVLocs, Context);
   3427   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   3428 }
   3429 
   3430 SDValue
   3431 PPCTargetLowering::LowerReturn(SDValue Chain,
   3432                                CallingConv::ID CallConv, bool isVarArg,
   3433                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   3434                                const SmallVectorImpl<SDValue> &OutVals,
   3435                                DebugLoc dl, SelectionDAG &DAG) const {
   3436 
   3437   SmallVector<CCValAssign, 16> RVLocs;
   3438   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3439 		 getTargetMachine(), RVLocs, *DAG.getContext());
   3440   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   3441 
   3442   // If this is the first return lowered for this function, add the regs to the
   3443   // liveout set for the function.
   3444   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
   3445     for (unsigned i = 0; i != RVLocs.size(); ++i)
   3446       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
   3447   }
   3448 
   3449   SDValue Flag;
   3450 
   3451   // Copy the result values into the output registers.
   3452   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   3453     CCValAssign &VA = RVLocs[i];
   3454     assert(VA.isRegLoc() && "Can only return in registers!");
   3455     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   3456                              OutVals[i], Flag);
   3457     Flag = Chain.getValue(1);
   3458   }
   3459 
   3460   if (Flag.getNode())
   3461     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
   3462   else
   3463     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
   3464 }
   3465 
   3466 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   3467                                    const PPCSubtarget &Subtarget) const {
   3468   // When we pop the dynamic allocation we need to restore the SP link.
   3469   DebugLoc dl = Op.getDebugLoc();
   3470 
   3471   // Get the corect type for pointers.
   3472   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3473 
   3474   // Construct the stack pointer operand.
   3475   bool isPPC64 = Subtarget.isPPC64();
   3476   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   3477   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   3478 
   3479   // Get the operands for the STACKRESTORE.
   3480   SDValue Chain = Op.getOperand(0);
   3481   SDValue SaveSP = Op.getOperand(1);
   3482 
   3483   // Load the old link SP.
   3484   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   3485                                    MachinePointerInfo(),
   3486                                    false, false, 0);
   3487 
   3488   // Restore the stack pointer.
   3489   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   3490 
   3491   // Store the old link SP.
   3492   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   3493                       false, false, 0);
   3494 }
   3495 
   3496 
   3497 
   3498 SDValue
   3499 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
   3500   MachineFunction &MF = DAG.getMachineFunction();
   3501   bool isPPC64 = PPCSubTarget.isPPC64();
   3502   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   3503   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3504 
   3505   // Get current frame pointer save index.  The users of this index will be
   3506   // primarily DYNALLOC instructions.
   3507   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   3508   int RASI = FI->getReturnAddrSaveIndex();
   3509 
   3510   // If the frame pointer save index hasn't been defined yet.
   3511   if (!RASI) {
   3512     // Find out what the fix offset of the frame pointer save area.
   3513     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
   3514     // Allocate the frame index for frame pointer save area.
   3515     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
   3516     // Save the result.
   3517     FI->setReturnAddrSaveIndex(RASI);
   3518   }
   3519   return DAG.getFrameIndex(RASI, PtrVT);
   3520 }
   3521 
   3522 SDValue
   3523 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   3524   MachineFunction &MF = DAG.getMachineFunction();
   3525   bool isPPC64 = PPCSubTarget.isPPC64();
   3526   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   3527   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3528 
   3529   // Get current frame pointer save index.  The users of this index will be
   3530   // primarily DYNALLOC instructions.
   3531   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   3532   int FPSI = FI->getFramePointerSaveIndex();
   3533 
   3534   // If the frame pointer save index hasn't been defined yet.
   3535   if (!FPSI) {
   3536     // Find out what the fix offset of the frame pointer save area.
   3537     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
   3538                                                            isDarwinABI);
   3539 
   3540     // Allocate the frame index for frame pointer save area.
   3541     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   3542     // Save the result.
   3543     FI->setFramePointerSaveIndex(FPSI);
   3544   }
   3545   return DAG.getFrameIndex(FPSI, PtrVT);
   3546 }
   3547 
   3548 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   3549                                          SelectionDAG &DAG,
   3550                                          const PPCSubtarget &Subtarget) const {
   3551   // Get the inputs.
   3552   SDValue Chain = Op.getOperand(0);
   3553   SDValue Size  = Op.getOperand(1);
   3554   DebugLoc dl = Op.getDebugLoc();
   3555 
   3556   // Get the corect type for pointers.
   3557   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3558   // Negate the size.
   3559   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   3560                                   DAG.getConstant(0, PtrVT), Size);
   3561   // Construct a node for the frame pointer save index.
   3562   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   3563   // Build a DYNALLOC node.
   3564   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   3565   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   3566   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
   3567 }
   3568 
   3569 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   3570 /// possible.
   3571 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   3572   // Not FP? Not a fsel.
   3573   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   3574       !Op.getOperand(2).getValueType().isFloatingPoint())
   3575     return Op;
   3576 
   3577   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   3578 
   3579   // Cannot handle SETEQ/SETNE.
   3580   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
   3581 
   3582   EVT ResVT = Op.getValueType();
   3583   EVT CmpVT = Op.getOperand(0).getValueType();
   3584   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   3585   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   3586   DebugLoc dl = Op.getDebugLoc();
   3587 
   3588   // If the RHS of the comparison is a 0.0, we don't need to do the
   3589   // subtraction at all.
   3590   if (isFloatingPointZero(RHS))
   3591     switch (CC) {
   3592     default: break;       // SETUO etc aren't handled by fsel.
   3593     case ISD::SETULT:
   3594     case ISD::SETLT:
   3595       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   3596     case ISD::SETOGE:
   3597     case ISD::SETGE:
   3598       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3599         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   3600       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   3601     case ISD::SETUGT:
   3602     case ISD::SETGT:
   3603       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   3604     case ISD::SETOLE:
   3605     case ISD::SETLE:
   3606       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3607         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   3608       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   3609                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   3610     }
   3611 
   3612   SDValue Cmp;
   3613   switch (CC) {
   3614   default: break;       // SETUO etc aren't handled by fsel.
   3615   case ISD::SETULT:
   3616   case ISD::SETLT:
   3617     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   3618     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3619       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3620       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   3621   case ISD::SETOGE:
   3622   case ISD::SETGE:
   3623     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   3624     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3625       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3626       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   3627   case ISD::SETUGT:
   3628   case ISD::SETGT:
   3629     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   3630     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3631       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3632       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   3633   case ISD::SETOLE:
   3634   case ISD::SETLE:
   3635     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   3636     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3637       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3638       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   3639   }
   3640   return Op;
   3641 }
   3642 
   3643 // FIXME: Split this code up when LegalizeDAGTypes lands.
   3644 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   3645                                            DebugLoc dl) const {
   3646   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   3647   SDValue Src = Op.getOperand(0);
   3648   if (Src.getValueType() == MVT::f32)
   3649     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   3650 
   3651   SDValue Tmp;
   3652   switch (Op.getValueType().getSimpleVT().SimpleTy) {
   3653   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   3654   case MVT::i32:
   3655     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
   3656                                                          PPCISD::FCTIDZ,
   3657                       dl, MVT::f64, Src);
   3658     break;
   3659   case MVT::i64:
   3660     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
   3661     break;
   3662   }
   3663 
   3664   // Convert the FP value to an int value through memory.
   3665   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
   3666 
   3667   // Emit a store to the stack slot.
   3668   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   3669                                MachinePointerInfo(), false, false, 0);
   3670 
   3671   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   3672   // add in a bias.
   3673   if (Op.getValueType() == MVT::i32)
   3674     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   3675                         DAG.getConstant(4, FIPtr.getValueType()));
   3676   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
   3677                      false, false, 0);
   3678 }
   3679 
   3680 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
   3681                                            SelectionDAG &DAG) const {
   3682   DebugLoc dl = Op.getDebugLoc();
   3683   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   3684   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   3685     return SDValue();
   3686 
   3687   if (Op.getOperand(0).getValueType() == MVT::i64) {
   3688     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
   3689     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
   3690     if (Op.getValueType() == MVT::f32)
   3691       FP = DAG.getNode(ISD::FP_ROUND, dl,
   3692                        MVT::f32, FP, DAG.getIntPtrConstant(0));
   3693     return FP;
   3694   }
   3695 
   3696   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   3697          "Unhandled SINT_TO_FP type in custom expander!");
   3698   // Since we only generate this in 64-bit mode, we can take advantage of
   3699   // 64-bit registers.  In particular, sign extend the input value into the
   3700   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   3701   // then lfd it and fcfid it.
   3702   MachineFunction &MF = DAG.getMachineFunction();
   3703   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   3704   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   3705   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3706   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   3707 
   3708   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
   3709                                 Op.getOperand(0));
   3710 
   3711   // STD the extended value into the stack slot.
   3712   MachineMemOperand *MMO =
   3713     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
   3714                             MachineMemOperand::MOStore, 8, 8);
   3715   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
   3716   SDValue Store =
   3717     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
   3718                             Ops, 4, MVT::i64, MMO);
   3719   // Load the value as a double.
   3720   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
   3721                            false, false, 0);
   3722 
   3723   // FCFID it and return it.
   3724   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
   3725   if (Op.getValueType() == MVT::f32)
   3726     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
   3727   return FP;
   3728 }
   3729 
   3730 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   3731                                             SelectionDAG &DAG) const {
   3732   DebugLoc dl = Op.getDebugLoc();
   3733   /*
   3734    The rounding mode is in bits 30:31 of FPSR, and has the following
   3735    settings:
   3736      00 Round to nearest
   3737      01 Round to 0
   3738      10 Round to +inf
   3739      11 Round to -inf
   3740 
   3741   FLT_ROUNDS, on the other hand, expects the following:
   3742     -1 Undefined
   3743      0 Round to 0
   3744      1 Round to nearest
   3745      2 Round to +inf
   3746      3 Round to -inf
   3747 
   3748   To perform the conversion, we do:
   3749     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   3750   */
   3751 
   3752   MachineFunction &MF = DAG.getMachineFunction();
   3753   EVT VT = Op.getValueType();
   3754   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3755   std::vector<EVT> NodeTys;
   3756   SDValue MFFSreg, InFlag;
   3757 
   3758   // Save FP Control Word to register
   3759   NodeTys.push_back(MVT::f64);    // return register
   3760   NodeTys.push_back(MVT::Glue);   // unused in this context
   3761   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
   3762 
   3763   // Save FP register to stack slot
   3764   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   3765   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   3766   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   3767                                StackSlot, MachinePointerInfo(), false, false,0);
   3768 
   3769   // Load FP Control Word from low 32 bits of stack slot.
   3770   SDValue Four = DAG.getConstant(4, PtrVT);
   3771   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   3772   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   3773                             false, false, 0);
   3774 
   3775   // Transform as necessary
   3776   SDValue CWD1 =
   3777     DAG.getNode(ISD::AND, dl, MVT::i32,
   3778                 CWD, DAG.getConstant(3, MVT::i32));
   3779   SDValue CWD2 =
   3780     DAG.getNode(ISD::SRL, dl, MVT::i32,
   3781                 DAG.getNode(ISD::AND, dl, MVT::i32,
   3782                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   3783                                         CWD, DAG.getConstant(3, MVT::i32)),
   3784                             DAG.getConstant(3, MVT::i32)),
   3785                 DAG.getConstant(1, MVT::i32));
   3786 
   3787   SDValue RetVal =
   3788     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   3789 
   3790   return DAG.getNode((VT.getSizeInBits() < 16 ?
   3791                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   3792 }
   3793 
   3794 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   3795   EVT VT = Op.getValueType();
   3796   unsigned BitWidth = VT.getSizeInBits();
   3797   DebugLoc dl = Op.getDebugLoc();
   3798   assert(Op.getNumOperands() == 3 &&
   3799          VT == Op.getOperand(1).getValueType() &&
   3800          "Unexpected SHL!");
   3801 
   3802   // Expand into a bunch of logical ops.  Note that these ops
   3803   // depend on the PPC behavior for oversized shift amounts.
   3804   SDValue Lo = Op.getOperand(0);
   3805   SDValue Hi = Op.getOperand(1);
   3806   SDValue Amt = Op.getOperand(2);
   3807   EVT AmtVT = Amt.getValueType();
   3808 
   3809   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   3810                              DAG.getConstant(BitWidth, AmtVT), Amt);
   3811   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   3812   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   3813   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   3814   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   3815                              DAG.getConstant(-BitWidth, AmtVT));
   3816   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   3817   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   3818   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   3819   SDValue OutOps[] = { OutLo, OutHi };
   3820   return DAG.getMergeValues(OutOps, 2, dl);
   3821 }
   3822 
   3823 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   3824   EVT VT = Op.getValueType();
   3825   DebugLoc dl = Op.getDebugLoc();
   3826   unsigned BitWidth = VT.getSizeInBits();
   3827   assert(Op.getNumOperands() == 3 &&
   3828          VT == Op.getOperand(1).getValueType() &&
   3829          "Unexpected SRL!");
   3830 
   3831   // Expand into a bunch of logical ops.  Note that these ops
   3832   // depend on the PPC behavior for oversized shift amounts.
   3833   SDValue Lo = Op.getOperand(0);
   3834   SDValue Hi = Op.getOperand(1);
   3835   SDValue Amt = Op.getOperand(2);
   3836   EVT AmtVT = Amt.getValueType();
   3837 
   3838   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   3839                              DAG.getConstant(BitWidth, AmtVT), Amt);
   3840   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   3841   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   3842   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   3843   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   3844                              DAG.getConstant(-BitWidth, AmtVT));
   3845   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   3846   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   3847   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   3848   SDValue OutOps[] = { OutLo, OutHi };
   3849   return DAG.getMergeValues(OutOps, 2, dl);
   3850 }
   3851 
   3852 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   3853   DebugLoc dl = Op.getDebugLoc();
   3854   EVT VT = Op.getValueType();
   3855   unsigned BitWidth = VT.getSizeInBits();
   3856   assert(Op.getNumOperands() == 3 &&
   3857          VT == Op.getOperand(1).getValueType() &&
   3858          "Unexpected SRA!");
   3859 
   3860   // Expand into a bunch of logical ops, followed by a select_cc.
   3861   SDValue Lo = Op.getOperand(0);
   3862   SDValue Hi = Op.getOperand(1);
   3863   SDValue Amt = Op.getOperand(2);
   3864   EVT AmtVT = Amt.getValueType();
   3865 
   3866   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   3867                              DAG.getConstant(BitWidth, AmtVT), Amt);
   3868   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   3869   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   3870   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   3871   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   3872                              DAG.getConstant(-BitWidth, AmtVT));
   3873   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   3874   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   3875   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
   3876                                   Tmp4, Tmp6, ISD::SETLE);
   3877   SDValue OutOps[] = { OutLo, OutHi };
   3878   return DAG.getMergeValues(OutOps, 2, dl);
   3879 }
   3880 
   3881 //===----------------------------------------------------------------------===//
   3882 // Vector related lowering.
   3883 //
   3884 
   3885 /// BuildSplatI - Build a canonical splati of Val with an element size of
   3886 /// SplatSize.  Cast the result to VT.
   3887 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   3888                              SelectionDAG &DAG, DebugLoc dl) {
   3889   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   3890 
   3891   static const EVT VTys[] = { // canonical VT to use for each size.
   3892     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   3893   };
   3894 
   3895   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   3896 
   3897   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   3898   if (Val == -1)
   3899     SplatSize = 1;
   3900 
   3901   EVT CanonicalVT = VTys[SplatSize-1];
   3902 
   3903   // Build a canonical splat for this value.
   3904   SDValue Elt = DAG.getConstant(Val, MVT::i32);
   3905   SmallVector<SDValue, 8> Ops;
   3906   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
   3907   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
   3908                               &Ops[0], Ops.size());
   3909   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
   3910 }
   3911 
   3912 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   3913 /// specified intrinsic ID.
   3914 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   3915                                 SelectionDAG &DAG, DebugLoc dl,
   3916                                 EVT DestVT = MVT::Other) {
   3917   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   3918   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   3919                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
   3920 }
   3921 
   3922 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   3923 /// specified intrinsic ID.
   3924 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   3925                                 SDValue Op2, SelectionDAG &DAG,
   3926                                 DebugLoc dl, EVT DestVT = MVT::Other) {
   3927   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   3928   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   3929                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
   3930 }
   3931 
   3932 
   3933 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   3934 /// amount.  The result has the specified value type.
   3935 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
   3936                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   3937   // Force LHS/RHS to be the right type.
   3938   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   3939   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   3940 
   3941   int Ops[16];
   3942   for (unsigned i = 0; i != 16; ++i)
   3943     Ops[i] = i + Amt;
   3944   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   3945   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   3946 }
   3947 
   3948 // If this is a case we can't handle, return null and let the default
   3949 // expansion code take care of it.  If we CAN select this case, and if it
   3950 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   3951 // this case more efficiently than a constant pool load, lower it to the
   3952 // sequence of ops that should be used.
   3953 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   3954                                              SelectionDAG &DAG) const {
   3955   DebugLoc dl = Op.getDebugLoc();
   3956   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   3957   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   3958 
   3959   // Check if this is a splat of a constant value.
   3960   APInt APSplatBits, APSplatUndef;
   3961   unsigned SplatBitSize;
   3962   bool HasAnyUndefs;
   3963   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   3964                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
   3965     return SDValue();
   3966 
   3967   unsigned SplatBits = APSplatBits.getZExtValue();
   3968   unsigned SplatUndef = APSplatUndef.getZExtValue();
   3969   unsigned SplatSize = SplatBitSize / 8;
   3970 
   3971   // First, handle single instruction cases.
   3972 
   3973   // All zeros?
   3974   if (SplatBits == 0) {
   3975     // Canonicalize all zero vectors to be v4i32.
   3976     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   3977       SDValue Z = DAG.getConstant(0, MVT::i32);
   3978       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
   3979       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   3980     }
   3981     return Op;
   3982   }
   3983 
   3984   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   3985   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   3986                     (32-SplatBitSize));
   3987   if (SextVal >= -16 && SextVal <= 15)
   3988     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   3989 
   3990 
   3991   // Two instruction sequences.
   3992 
   3993   // If this value is in the range [-32,30] and is even, use:
   3994   //    tmp = VSPLTI[bhw], result = add tmp, tmp
   3995   if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
   3996     SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
   3997     Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
   3998     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   3999   }
   4000 
   4001   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   4002   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   4003   // for fneg/fabs.
   4004   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   4005     // Make -1 and vspltisw -1:
   4006     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   4007 
   4008     // Make the VSLW intrinsic, computing 0x8000_0000.
   4009     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   4010                                    OnesV, DAG, dl);
   4011 
   4012     // xor by OnesV to invert it.
   4013     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   4014     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4015   }
   4016 
   4017   // Check to see if this is a wide variety of vsplti*, binop self cases.
   4018   static const signed char SplatCsts[] = {
   4019     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   4020     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   4021   };
   4022 
   4023   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   4024     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   4025     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   4026     int i = SplatCsts[idx];
   4027 
   4028     // Figure out what shift amount will be used by altivec if shifted by i in
   4029     // this splat size.
   4030     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   4031 
   4032     // vsplti + shl self.
   4033     if (SextVal == (i << (int)TypeShiftAmt)) {
   4034       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4035       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4036         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   4037         Intrinsic::ppc_altivec_vslw
   4038       };
   4039       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4040       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4041     }
   4042 
   4043     // vsplti + srl self.
   4044     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   4045       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4046       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4047         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   4048         Intrinsic::ppc_altivec_vsrw
   4049       };
   4050       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4051       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4052     }
   4053 
   4054     // vsplti + sra self.
   4055     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   4056       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4057       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4058         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   4059         Intrinsic::ppc_altivec_vsraw
   4060       };
   4061       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4062       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4063     }
   4064 
   4065     // vsplti + rol self.
   4066     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   4067                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   4068       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4069       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4070         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   4071         Intrinsic::ppc_altivec_vrlw
   4072       };
   4073       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4074       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4075     }
   4076 
   4077     // t = vsplti c, result = vsldoi t, t, 1
   4078     if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
   4079       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   4080       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
   4081     }
   4082     // t = vsplti c, result = vsldoi t, t, 2
   4083     if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
   4084       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   4085       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
   4086     }
   4087     // t = vsplti c, result = vsldoi t, t, 3
   4088     if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   4089       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   4090       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
   4091     }
   4092   }
   4093 
   4094   // Three instruction sequences.
   4095 
   4096   // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
   4097   if (SextVal >= 0 && SextVal <= 31) {
   4098     SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
   4099     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
   4100     LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
   4101     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
   4102   }
   4103   // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
   4104   if (SextVal >= -31 && SextVal <= 0) {
   4105     SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
   4106     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
   4107     LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
   4108     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
   4109   }
   4110 
   4111   return SDValue();
   4112 }
   4113 
   4114 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   4115 /// the specified operations to build the shuffle.
   4116 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   4117                                       SDValue RHS, SelectionDAG &DAG,
   4118                                       DebugLoc dl) {
   4119   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   4120   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   4121   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   4122 
   4123   enum {
   4124     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   4125     OP_VMRGHW,
   4126     OP_VMRGLW,
   4127     OP_VSPLTISW0,
   4128     OP_VSPLTISW1,
   4129     OP_VSPLTISW2,
   4130     OP_VSPLTISW3,
   4131     OP_VSLDOI4,
   4132     OP_VSLDOI8,
   4133     OP_VSLDOI12
   4134   };
   4135 
   4136   if (OpNum == OP_COPY) {
   4137     if (LHSID == (1*9+2)*9+3) return LHS;
   4138     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   4139     return RHS;
   4140   }
   4141 
   4142   SDValue OpLHS, OpRHS;
   4143   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   4144   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   4145 
   4146   int ShufIdxs[16];
   4147   switch (OpNum) {
   4148   default: llvm_unreachable("Unknown i32 permute!");
   4149   case OP_VMRGHW:
   4150     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   4151     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   4152     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   4153     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   4154     break;
   4155   case OP_VMRGLW:
   4156     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   4157     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   4158     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   4159     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   4160     break;
   4161   case OP_VSPLTISW0:
   4162     for (unsigned i = 0; i != 16; ++i)
   4163       ShufIdxs[i] = (i&3)+0;
   4164     break;
   4165   case OP_VSPLTISW1:
   4166     for (unsigned i = 0; i != 16; ++i)
   4167       ShufIdxs[i] = (i&3)+4;
   4168     break;
   4169   case OP_VSPLTISW2:
   4170     for (unsigned i = 0; i != 16; ++i)
   4171       ShufIdxs[i] = (i&3)+8;
   4172     break;
   4173   case OP_VSPLTISW3:
   4174     for (unsigned i = 0; i != 16; ++i)
   4175       ShufIdxs[i] = (i&3)+12;
   4176     break;
   4177   case OP_VSLDOI4:
   4178     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   4179   case OP_VSLDOI8:
   4180     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   4181   case OP_VSLDOI12:
   4182     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   4183   }
   4184   EVT VT = OpLHS.getValueType();
   4185   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   4186   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   4187   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   4188   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   4189 }
   4190 
   4191 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   4192 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   4193 /// return the code it can be lowered into.  Worst case, it can always be
   4194 /// lowered into a vperm.
   4195 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   4196                                                SelectionDAG &DAG) const {
   4197   DebugLoc dl = Op.getDebugLoc();
   4198   SDValue V1 = Op.getOperand(0);
   4199   SDValue V2 = Op.getOperand(1);
   4200   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   4201   EVT VT = Op.getValueType();
   4202 
   4203   // Cases that are handled by instructions that take permute immediates
   4204   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   4205   // selected by the instruction selector.
   4206   if (V2.getOpcode() == ISD::UNDEF) {
   4207     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   4208         PPC::isSplatShuffleMask(SVOp, 2) ||
   4209         PPC::isSplatShuffleMask(SVOp, 4) ||
   4210         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
   4211         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
   4212         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
   4213         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
   4214         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
   4215         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
   4216         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
   4217         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
   4218         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
   4219       return Op;
   4220     }
   4221   }
   4222 
   4223   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   4224   // and produce a fixed permutation.  If any of these match, do not lower to
   4225   // VPERM.
   4226   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
   4227       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
   4228       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
   4229       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
   4230       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
   4231       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
   4232       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
   4233       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
   4234       PPC::isVMRGHShuffleMask(SVOp, 4, false))
   4235     return Op;
   4236 
   4237   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   4238   // perfect shuffle table to emit an optimal matching sequence.
   4239   SmallVector<int, 16> PermMask;
   4240   SVOp->getMask(PermMask);
   4241 
   4242   unsigned PFIndexes[4];
   4243   bool isFourElementShuffle = true;
   4244   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   4245     unsigned EltNo = 8;   // Start out undef.
   4246     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   4247       if (PermMask[i*4+j] < 0)
   4248         continue;   // Undef, ignore it.
   4249 
   4250       unsigned ByteSource = PermMask[i*4+j];
   4251       if ((ByteSource & 3) != j) {
   4252         isFourElementShuffle = false;
   4253         break;
   4254       }
   4255 
   4256       if (EltNo == 8) {
   4257         EltNo = ByteSource/4;
   4258       } else if (EltNo != ByteSource/4) {
   4259         isFourElementShuffle = false;
   4260         break;
   4261       }
   4262     }
   4263     PFIndexes[i] = EltNo;
   4264   }
   4265 
   4266   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   4267   // perfect shuffle vector to determine if it is cost effective to do this as
   4268   // discrete instructions, or whether we should use a vperm.
   4269   if (isFourElementShuffle) {
   4270     // Compute the index in the perfect shuffle table.
   4271     unsigned PFTableIndex =
   4272       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4273 
   4274     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4275     unsigned Cost  = (PFEntry >> 30);
   4276 
   4277     // Determining when to avoid vperm is tricky.  Many things affect the cost
   4278     // of vperm, particularly how many times the perm mask needs to be computed.
   4279     // For example, if the perm mask can be hoisted out of a loop or is already
   4280     // used (perhaps because there are multiple permutes with the same shuffle
   4281     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   4282     // the loop requires an extra register.
   4283     //
   4284     // As a compromise, we only emit discrete instructions if the shuffle can be
   4285     // generated in 3 or fewer operations.  When we have loop information
   4286     // available, if this block is within a loop, we should avoid using vperm
   4287     // for 3-operation perms and use a constant pool load instead.
   4288     if (Cost < 3)
   4289       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   4290   }
   4291 
   4292   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   4293   // vector that will get spilled to the constant pool.
   4294   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   4295 
   4296   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   4297   // that it is in input element units, not in bytes.  Convert now.
   4298   EVT EltVT = V1.getValueType().getVectorElementType();
   4299   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   4300 
   4301   SmallVector<SDValue, 16> ResultMask;
   4302   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   4303     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   4304 
   4305     for (unsigned j = 0; j != BytesPerElement; ++j)
   4306       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
   4307                                            MVT::i32));
   4308   }
   4309 
   4310   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
   4311                                     &ResultMask[0], ResultMask.size());
   4312   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
   4313 }
   4314 
   4315 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
   4316 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
   4317 /// information about the intrinsic.
   4318 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
   4319                                   bool &isDot) {
   4320   unsigned IntrinsicID =
   4321     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   4322   CompareOpc = -1;
   4323   isDot = false;
   4324   switch (IntrinsicID) {
   4325   default: return false;
   4326     // Comparison predicates.
   4327   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   4328   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   4329   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   4330   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   4331   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   4332   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   4333   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   4334   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   4335   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   4336   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   4337   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   4338   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   4339   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   4340 
   4341     // Normal Comparisons.
   4342   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   4343   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   4344   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   4345   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   4346   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   4347   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   4348   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   4349   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   4350   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   4351   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   4352   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   4353   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   4354   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   4355   }
   4356   return true;
   4357 }
   4358 
   4359 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   4360 /// lower, do it, otherwise return null.
   4361 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   4362                                                    SelectionDAG &DAG) const {
   4363   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   4364   // opcode number of the comparison.
   4365   DebugLoc dl = Op.getDebugLoc();
   4366   int CompareOpc;
   4367   bool isDot;
   4368   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
   4369     return SDValue();    // Don't custom lower most intrinsics.
   4370 
   4371   // If this is a non-dot comparison, make the VCMP node and we are done.
   4372   if (!isDot) {
   4373     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   4374                               Op.getOperand(1), Op.getOperand(2),
   4375                               DAG.getConstant(CompareOpc, MVT::i32));
   4376     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   4377   }
   4378 
   4379   // Create the PPCISD altivec 'dot' comparison node.
   4380   SDValue Ops[] = {
   4381     Op.getOperand(2),  // LHS
   4382     Op.getOperand(3),  // RHS
   4383     DAG.getConstant(CompareOpc, MVT::i32)
   4384   };
   4385   std::vector<EVT> VTs;
   4386   VTs.push_back(Op.getOperand(2).getValueType());
   4387   VTs.push_back(MVT::Glue);
   4388   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   4389 
   4390   // Now that we have the comparison, emit a copy from the CR to a GPR.
   4391   // This is flagged to the above dot comparison.
   4392   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
   4393                                 DAG.getRegister(PPC::CR6, MVT::i32),
   4394                                 CompNode.getValue(1));
   4395 
   4396   // Unpack the result based on how the target uses it.
   4397   unsigned BitNo;   // Bit # of CR6.
   4398   bool InvertBit;   // Invert result?
   4399   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   4400   default:  // Can't happen, don't crash on invalid number though.
   4401   case 0:   // Return the value of the EQ bit of CR6.
   4402     BitNo = 0; InvertBit = false;
   4403     break;
   4404   case 1:   // Return the inverted value of the EQ bit of CR6.
   4405     BitNo = 0; InvertBit = true;
   4406     break;
   4407   case 2:   // Return the value of the LT bit of CR6.
   4408     BitNo = 2; InvertBit = false;
   4409     break;
   4410   case 3:   // Return the inverted value of the LT bit of CR6.
   4411     BitNo = 2; InvertBit = true;
   4412     break;
   4413   }
   4414 
   4415   // Shift the bit into the low position.
   4416   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   4417                       DAG.getConstant(8-(3-BitNo), MVT::i32));
   4418   // Isolate the bit.
   4419   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   4420                       DAG.getConstant(1, MVT::i32));
   4421 
   4422   // If we are supposed to, toggle the bit.
   4423   if (InvertBit)
   4424     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   4425                         DAG.getConstant(1, MVT::i32));
   4426   return Flags;
   4427 }
   4428 
   4429 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   4430                                                    SelectionDAG &DAG) const {
   4431   DebugLoc dl = Op.getDebugLoc();
   4432   // Create a stack slot that is 16-byte aligned.
   4433   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   4434   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   4435   EVT PtrVT = getPointerTy();
   4436   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   4437 
   4438   // Store the input value into Value#0 of the stack slot.
   4439   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   4440                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   4441                                false, false, 0);
   4442   // Load it out.
   4443   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   4444                      false, false, 0);
   4445 }
   4446 
   4447 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   4448   DebugLoc dl = Op.getDebugLoc();
   4449   if (Op.getValueType() == MVT::v4i32) {
   4450     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4451 
   4452     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   4453     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   4454 
   4455     SDValue RHSSwap =   // = vrlw RHS, 16
   4456       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   4457 
   4458     // Shrinkify inputs to v8i16.
   4459     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   4460     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   4461     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   4462 
   4463     // Low parts multiplied together, generating 32-bit results (we ignore the
   4464     // top parts).
   4465     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   4466                                         LHS, RHS, DAG, dl, MVT::v4i32);
   4467 
   4468     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   4469                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   4470     // Shift the high parts up 16 bits.
   4471     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   4472                               Neg16, DAG, dl);
   4473     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   4474   } else if (Op.getValueType() == MVT::v8i16) {
   4475     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4476 
   4477     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   4478 
   4479     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   4480                             LHS, RHS, Zero, DAG, dl);
   4481   } else if (Op.getValueType() == MVT::v16i8) {
   4482     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4483 
   4484     // Multiply the even 8-bit parts, producing 16-bit sums.
   4485     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   4486                                            LHS, RHS, DAG, dl, MVT::v8i16);
   4487     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   4488 
   4489     // Multiply the odd 8-bit parts, producing 16-bit sums.
   4490     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   4491                                           LHS, RHS, DAG, dl, MVT::v8i16);
   4492     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   4493 
   4494     // Merge the results together.
   4495     int Ops[16];
   4496     for (unsigned i = 0; i != 8; ++i) {
   4497       Ops[i*2  ] = 2*i+1;
   4498       Ops[i*2+1] = 2*i+1+16;
   4499     }
   4500     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   4501   } else {
   4502     llvm_unreachable("Unknown mul to lower!");
   4503   }
   4504 }
   4505 
   4506 /// LowerOperation - Provide custom lowering hooks for some operations.
   4507 ///
   4508 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   4509   switch (Op.getOpcode()) {
   4510   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   4511   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   4512   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   4513   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   4514   case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
   4515   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   4516   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   4517   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   4518   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   4519   case ISD::VASTART:
   4520     return LowerVASTART(Op, DAG, PPCSubTarget);
   4521 
   4522   case ISD::VAARG:
   4523     return LowerVAARG(Op, DAG, PPCSubTarget);
   4524 
   4525   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
   4526   case ISD::DYNAMIC_STACKALLOC:
   4527     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
   4528 
   4529   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   4530   case ISD::FP_TO_UINT:
   4531   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   4532                                                        Op.getDebugLoc());
   4533   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   4534   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   4535 
   4536   // Lower 64-bit shifts.
   4537   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   4538   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   4539   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   4540 
   4541   // Vector-related lowering.
   4542   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   4543   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   4544   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   4545   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   4546   case ISD::MUL:                return LowerMUL(Op, DAG);
   4547 
   4548   // Frame & Return address.
   4549   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   4550   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   4551   }
   4552   return SDValue();
   4553 }
   4554 
   4555 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   4556                                            SmallVectorImpl<SDValue>&Results,
   4557                                            SelectionDAG &DAG) const {
   4558   const TargetMachine &TM = getTargetMachine();
   4559   DebugLoc dl = N->getDebugLoc();
   4560   switch (N->getOpcode()) {
   4561   default:
   4562     assert(false && "Do not know how to custom type legalize this operation!");
   4563     return;
   4564   case ISD::VAARG: {
   4565     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
   4566         || TM.getSubtarget<PPCSubtarget>().isPPC64())
   4567       return;
   4568 
   4569     EVT VT = N->getValueType(0);
   4570 
   4571     if (VT == MVT::i64) {
   4572       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
   4573 
   4574       Results.push_back(NewNode);
   4575       Results.push_back(NewNode.getValue(1));
   4576     }
   4577     return;
   4578   }
   4579   case ISD::FP_ROUND_INREG: {
   4580     assert(N->getValueType(0) == MVT::ppcf128);
   4581     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   4582     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   4583                              MVT::f64, N->getOperand(0),
   4584                              DAG.getIntPtrConstant(0));
   4585     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   4586                              MVT::f64, N->getOperand(0),
   4587                              DAG.getIntPtrConstant(1));
   4588 
   4589     // This sequence changes FPSCR to do round-to-zero, adds the two halves
   4590     // of the long double, and puts FPSCR back the way it was.  We do not
   4591     // actually model FPSCR.
   4592     std::vector<EVT> NodeTys;
   4593     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
   4594 
   4595     NodeTys.push_back(MVT::f64);   // Return register
   4596     NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
   4597     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
   4598     MFFSreg = Result.getValue(0);
   4599     InFlag = Result.getValue(1);
   4600 
   4601     NodeTys.clear();
   4602     NodeTys.push_back(MVT::Glue);   // Returns a flag
   4603     Ops[0] = DAG.getConstant(31, MVT::i32);
   4604     Ops[1] = InFlag;
   4605     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
   4606     InFlag = Result.getValue(0);
   4607 
   4608     NodeTys.clear();
   4609     NodeTys.push_back(MVT::Glue);   // Returns a flag
   4610     Ops[0] = DAG.getConstant(30, MVT::i32);
   4611     Ops[1] = InFlag;
   4612     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
   4613     InFlag = Result.getValue(0);
   4614 
   4615     NodeTys.clear();
   4616     NodeTys.push_back(MVT::f64);    // result of add
   4617     NodeTys.push_back(MVT::Glue);   // Returns a flag
   4618     Ops[0] = Lo;
   4619     Ops[1] = Hi;
   4620     Ops[2] = InFlag;
   4621     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
   4622     FPreg = Result.getValue(0);
   4623     InFlag = Result.getValue(1);
   4624 
   4625     NodeTys.clear();
   4626     NodeTys.push_back(MVT::f64);
   4627     Ops[0] = DAG.getConstant(1, MVT::i32);
   4628     Ops[1] = MFFSreg;
   4629     Ops[2] = FPreg;
   4630     Ops[3] = InFlag;
   4631     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
   4632     FPreg = Result.getValue(0);
   4633 
   4634     // We know the low half is about to be thrown away, so just use something
   4635     // convenient.
   4636     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   4637                                 FPreg, FPreg));
   4638     return;
   4639   }
   4640   case ISD::FP_TO_SINT:
   4641     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   4642     return;
   4643   }
   4644 }
   4645 
   4646 
   4647 //===----------------------------------------------------------------------===//
   4648 //  Other Lowering Code
   4649 //===----------------------------------------------------------------------===//
   4650 
   4651 MachineBasicBlock *
   4652 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   4653                                     bool is64bit, unsigned BinOpcode) const {
   4654   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   4655   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   4656 
   4657   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   4658   MachineFunction *F = BB->getParent();
   4659   MachineFunction::iterator It = BB;
   4660   ++It;
   4661 
   4662   unsigned dest = MI->getOperand(0).getReg();
   4663   unsigned ptrA = MI->getOperand(1).getReg();
   4664   unsigned ptrB = MI->getOperand(2).getReg();
   4665   unsigned incr = MI->getOperand(3).getReg();
   4666   DebugLoc dl = MI->getDebugLoc();
   4667 
   4668   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4669   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4670   F->insert(It, loopMBB);
   4671   F->insert(It, exitMBB);
   4672   exitMBB->splice(exitMBB->begin(), BB,
   4673                   llvm::next(MachineBasicBlock::iterator(MI)),
   4674                   BB->end());
   4675   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   4676 
   4677   MachineRegisterInfo &RegInfo = F->getRegInfo();
   4678   unsigned TmpReg = (!BinOpcode) ? incr :
   4679     RegInfo.createVirtualRegister(
   4680        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   4681                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
   4682 
   4683   //  thisMBB:
   4684   //   ...
   4685   //   fallthrough --> loopMBB
   4686   BB->addSuccessor(loopMBB);
   4687 
   4688   //  loopMBB:
   4689   //   l[wd]arx dest, ptr
   4690   //   add r0, dest, incr
   4691   //   st[wd]cx. r0, ptr
   4692   //   bne- loopMBB
   4693   //   fallthrough --> exitMBB
   4694   BB = loopMBB;
   4695   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   4696     .addReg(ptrA).addReg(ptrB);
   4697   if (BinOpcode)
   4698     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   4699   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   4700     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   4701   BuildMI(BB, dl, TII->get(PPC::BCC))
   4702     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   4703   BB->addSuccessor(loopMBB);
   4704   BB->addSuccessor(exitMBB);
   4705 
   4706   //  exitMBB:
   4707   //   ...
   4708   BB = exitMBB;
   4709   return BB;
   4710 }
   4711 
   4712 MachineBasicBlock *
   4713 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
   4714                                             MachineBasicBlock *BB,
   4715                                             bool is8bit,    // operation
   4716                                             unsigned BinOpcode) const {
   4717   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   4718   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   4719   // In 64 bit mode we have to use 64 bits for addresses, even though the
   4720   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   4721   // registers without caring whether they're 32 or 64, but here we're
   4722   // doing actual arithmetic on the addresses.
   4723   bool is64bit = PPCSubTarget.isPPC64();
   4724   unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
   4725 
   4726   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   4727   MachineFunction *F = BB->getParent();
   4728   MachineFunction::iterator It = BB;
   4729   ++It;
   4730 
   4731   unsigned dest = MI->getOperand(0).getReg();
   4732   unsigned ptrA = MI->getOperand(1).getReg();
   4733   unsigned ptrB = MI->getOperand(2).getReg();
   4734   unsigned incr = MI->getOperand(3).getReg();
   4735   DebugLoc dl = MI->getDebugLoc();
   4736 
   4737   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4738   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4739   F->insert(It, loopMBB);
   4740   F->insert(It, exitMBB);
   4741   exitMBB->splice(exitMBB->begin(), BB,
   4742                   llvm::next(MachineBasicBlock::iterator(MI)),
   4743                   BB->end());
   4744   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   4745 
   4746   MachineRegisterInfo &RegInfo = F->getRegInfo();
   4747   const TargetRegisterClass *RC =
   4748     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   4749               (const TargetRegisterClass *) &PPC::GPRCRegClass;
   4750   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   4751   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   4752   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   4753   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   4754   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   4755   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   4756   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   4757   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   4758   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   4759   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   4760   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   4761   unsigned Ptr1Reg;
   4762   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   4763 
   4764   //  thisMBB:
   4765   //   ...
   4766   //   fallthrough --> loopMBB
   4767   BB->addSuccessor(loopMBB);
   4768 
   4769   // The 4-byte load must be aligned, while a char or short may be
   4770   // anywhere in the word.  Hence all this nasty bookkeeping code.
   4771   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   4772   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   4773   //   xori shift, shift1, 24 [16]
   4774   //   rlwinm ptr, ptr1, 0, 0, 29
   4775   //   slw incr2, incr, shift
   4776   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   4777   //   slw mask, mask2, shift
   4778   //  loopMBB:
   4779   //   lwarx tmpDest, ptr
   4780   //   add tmp, tmpDest, incr2
   4781   //   andc tmp2, tmpDest, mask
   4782   //   and tmp3, tmp, mask
   4783   //   or tmp4, tmp3, tmp2
   4784   //   stwcx. tmp4, ptr
   4785   //   bne- loopMBB
   4786   //   fallthrough --> exitMBB
   4787   //   srw dest, tmpDest, shift
   4788   if (ptrA != ZeroReg) {
   4789     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   4790     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   4791       .addReg(ptrA).addReg(ptrB);
   4792   } else {
   4793     Ptr1Reg = ptrB;
   4794   }
   4795   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   4796       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   4797   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   4798       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   4799   if (is64bit)
   4800     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   4801       .addReg(Ptr1Reg).addImm(0).addImm(61);
   4802   else
   4803     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   4804       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   4805   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   4806       .addReg(incr).addReg(ShiftReg);
   4807   if (is8bit)
   4808     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   4809   else {
   4810     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   4811     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   4812   }
   4813   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   4814       .addReg(Mask2Reg).addReg(ShiftReg);
   4815 
   4816   BB = loopMBB;
   4817   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   4818     .addReg(ZeroReg).addReg(PtrReg);
   4819   if (BinOpcode)
   4820     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   4821       .addReg(Incr2Reg).addReg(TmpDestReg);
   4822   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   4823     .addReg(TmpDestReg).addReg(MaskReg);
   4824   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   4825     .addReg(TmpReg).addReg(MaskReg);
   4826   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   4827     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   4828   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   4829     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   4830   BuildMI(BB, dl, TII->get(PPC::BCC))
   4831     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   4832   BB->addSuccessor(loopMBB);
   4833   BB->addSuccessor(exitMBB);
   4834 
   4835   //  exitMBB:
   4836   //   ...
   4837   BB = exitMBB;
   4838   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   4839     .addReg(ShiftReg);
   4840   return BB;
   4841 }
   4842 
   4843 MachineBasicBlock *
   4844 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   4845                                                MachineBasicBlock *BB) const {
   4846   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   4847 
   4848   // To "insert" these instructions we actually have to insert their
   4849   // control-flow patterns.
   4850   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   4851   MachineFunction::iterator It = BB;
   4852   ++It;
   4853 
   4854   MachineFunction *F = BB->getParent();
   4855 
   4856   if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   4857       MI->getOpcode() == PPC::SELECT_CC_I8 ||
   4858       MI->getOpcode() == PPC::SELECT_CC_F4 ||
   4859       MI->getOpcode() == PPC::SELECT_CC_F8 ||
   4860       MI->getOpcode() == PPC::SELECT_CC_VRRC) {
   4861 
   4862     // The incoming instruction knows the destination vreg to set, the
   4863     // condition code register to branch on, the true/false values to
   4864     // select between, and a branch opcode to use.
   4865 
   4866     //  thisMBB:
   4867     //  ...
   4868     //   TrueVal = ...
   4869     //   cmpTY ccX, r1, r2
   4870     //   bCC copy1MBB
   4871     //   fallthrough --> copy0MBB
   4872     MachineBasicBlock *thisMBB = BB;
   4873     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   4874     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4875     unsigned SelectPred = MI->getOperand(4).getImm();
   4876     DebugLoc dl = MI->getDebugLoc();
   4877     F->insert(It, copy0MBB);
   4878     F->insert(It, sinkMBB);
   4879 
   4880     // Transfer the remainder of BB and its successor edges to sinkMBB.
   4881     sinkMBB->splice(sinkMBB->begin(), BB,
   4882                     llvm::next(MachineBasicBlock::iterator(MI)),
   4883                     BB->end());
   4884     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   4885 
   4886     // Next, add the true and fallthrough blocks as its successors.
   4887     BB->addSuccessor(copy0MBB);
   4888     BB->addSuccessor(sinkMBB);
   4889 
   4890     BuildMI(BB, dl, TII->get(PPC::BCC))
   4891       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   4892 
   4893     //  copy0MBB:
   4894     //   %FalseValue = ...
   4895     //   # fallthrough to sinkMBB
   4896     BB = copy0MBB;
   4897 
   4898     // Update machine-CFG edges
   4899     BB->addSuccessor(sinkMBB);
   4900 
   4901     //  sinkMBB:
   4902     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   4903     //  ...
   4904     BB = sinkMBB;
   4905     BuildMI(*BB, BB->begin(), dl,
   4906             TII->get(PPC::PHI), MI->getOperand(0).getReg())
   4907       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   4908       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   4909   }
   4910   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   4911     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   4912   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   4913     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   4914   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   4915     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
   4916   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   4917     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
   4918 
   4919   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   4920     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   4921   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   4922     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   4923   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   4924     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
   4925   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   4926     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
   4927 
   4928   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   4929     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   4930   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   4931     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   4932   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   4933     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
   4934   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   4935     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
   4936 
   4937   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   4938     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   4939   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   4940     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   4941   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   4942     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
   4943   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   4944     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
   4945 
   4946   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   4947     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
   4948   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   4949     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
   4950   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   4951     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
   4952   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   4953     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
   4954 
   4955   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   4956     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   4957   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   4958     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   4959   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   4960     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
   4961   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   4962     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
   4963 
   4964   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
   4965     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   4966   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
   4967     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   4968   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
   4969     BB = EmitAtomicBinary(MI, BB, false, 0);
   4970   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
   4971     BB = EmitAtomicBinary(MI, BB, true, 0);
   4972 
   4973   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   4974            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
   4975     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   4976 
   4977     unsigned dest   = MI->getOperand(0).getReg();
   4978     unsigned ptrA   = MI->getOperand(1).getReg();
   4979     unsigned ptrB   = MI->getOperand(2).getReg();
   4980     unsigned oldval = MI->getOperand(3).getReg();
   4981     unsigned newval = MI->getOperand(4).getReg();
   4982     DebugLoc dl     = MI->getDebugLoc();
   4983 
   4984     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   4985     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   4986     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4987     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4988     F->insert(It, loop1MBB);
   4989     F->insert(It, loop2MBB);
   4990     F->insert(It, midMBB);
   4991     F->insert(It, exitMBB);
   4992     exitMBB->splice(exitMBB->begin(), BB,
   4993                     llvm::next(MachineBasicBlock::iterator(MI)),
   4994                     BB->end());
   4995     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   4996 
   4997     //  thisMBB:
   4998     //   ...
   4999     //   fallthrough --> loopMBB
   5000     BB->addSuccessor(loop1MBB);
   5001 
   5002     // loop1MBB:
   5003     //   l[wd]arx dest, ptr
   5004     //   cmp[wd] dest, oldval
   5005     //   bne- midMBB
   5006     // loop2MBB:
   5007     //   st[wd]cx. newval, ptr
   5008     //   bne- loopMBB
   5009     //   b exitBB
   5010     // midMBB:
   5011     //   st[wd]cx. dest, ptr
   5012     // exitBB:
   5013     BB = loop1MBB;
   5014     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   5015       .addReg(ptrA).addReg(ptrB);
   5016     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   5017       .addReg(oldval).addReg(dest);
   5018     BuildMI(BB, dl, TII->get(PPC::BCC))
   5019       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   5020     BB->addSuccessor(loop2MBB);
   5021     BB->addSuccessor(midMBB);
   5022 
   5023     BB = loop2MBB;
   5024     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   5025       .addReg(newval).addReg(ptrA).addReg(ptrB);
   5026     BuildMI(BB, dl, TII->get(PPC::BCC))
   5027       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   5028     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   5029     BB->addSuccessor(loop1MBB);
   5030     BB->addSuccessor(exitMBB);
   5031 
   5032     BB = midMBB;
   5033     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   5034       .addReg(dest).addReg(ptrA).addReg(ptrB);
   5035     BB->addSuccessor(exitMBB);
   5036 
   5037     //  exitMBB:
   5038     //   ...
   5039     BB = exitMBB;
   5040   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   5041              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   5042     // We must use 64-bit registers for addresses when targeting 64-bit,
   5043     // since we're actually doing arithmetic on them.  Other registers
   5044     // can be 32-bit.
   5045     bool is64bit = PPCSubTarget.isPPC64();
   5046     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   5047 
   5048     unsigned dest   = MI->getOperand(0).getReg();
   5049     unsigned ptrA   = MI->getOperand(1).getReg();
   5050     unsigned ptrB   = MI->getOperand(2).getReg();
   5051     unsigned oldval = MI->getOperand(3).getReg();
   5052     unsigned newval = MI->getOperand(4).getReg();
   5053     DebugLoc dl     = MI->getDebugLoc();
   5054 
   5055     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   5056     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   5057     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5058     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5059     F->insert(It, loop1MBB);
   5060     F->insert(It, loop2MBB);
   5061     F->insert(It, midMBB);
   5062     F->insert(It, exitMBB);
   5063     exitMBB->splice(exitMBB->begin(), BB,
   5064                     llvm::next(MachineBasicBlock::iterator(MI)),
   5065                     BB->end());
   5066     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5067 
   5068     MachineRegisterInfo &RegInfo = F->getRegInfo();
   5069     const TargetRegisterClass *RC =
   5070       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   5071                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
   5072     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   5073     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   5074     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   5075     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   5076     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   5077     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   5078     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   5079     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   5080     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   5081     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   5082     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   5083     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   5084     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   5085     unsigned Ptr1Reg;
   5086     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   5087     unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
   5088     //  thisMBB:
   5089     //   ...
   5090     //   fallthrough --> loopMBB
   5091     BB->addSuccessor(loop1MBB);
   5092 
   5093     // The 4-byte load must be aligned, while a char or short may be
   5094     // anywhere in the word.  Hence all this nasty bookkeeping code.
   5095     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   5096     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   5097     //   xori shift, shift1, 24 [16]
   5098     //   rlwinm ptr, ptr1, 0, 0, 29
   5099     //   slw newval2, newval, shift
   5100     //   slw oldval2, oldval,shift
   5101     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   5102     //   slw mask, mask2, shift
   5103     //   and newval3, newval2, mask
   5104     //   and oldval3, oldval2, mask
   5105     // loop1MBB:
   5106     //   lwarx tmpDest, ptr
   5107     //   and tmp, tmpDest, mask
   5108     //   cmpw tmp, oldval3
   5109     //   bne- midMBB
   5110     // loop2MBB:
   5111     //   andc tmp2, tmpDest, mask
   5112     //   or tmp4, tmp2, newval3
   5113     //   stwcx. tmp4, ptr
   5114     //   bne- loop1MBB
   5115     //   b exitBB
   5116     // midMBB:
   5117     //   stwcx. tmpDest, ptr
   5118     // exitBB:
   5119     //   srw dest, tmpDest, shift
   5120     if (ptrA != ZeroReg) {
   5121       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   5122       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   5123         .addReg(ptrA).addReg(ptrB);
   5124     } else {
   5125       Ptr1Reg = ptrB;
   5126     }
   5127     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   5128         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   5129     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   5130         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   5131     if (is64bit)
   5132       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   5133         .addReg(Ptr1Reg).addImm(0).addImm(61);
   5134     else
   5135       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   5136         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   5137     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   5138         .addReg(newval).addReg(ShiftReg);
   5139     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   5140         .addReg(oldval).addReg(ShiftReg);
   5141     if (is8bit)
   5142       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   5143     else {
   5144       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   5145       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   5146         .addReg(Mask3Reg).addImm(65535);
   5147     }
   5148     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   5149         .addReg(Mask2Reg).addReg(ShiftReg);
   5150     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   5151         .addReg(NewVal2Reg).addReg(MaskReg);
   5152     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   5153         .addReg(OldVal2Reg).addReg(MaskReg);
   5154 
   5155     BB = loop1MBB;
   5156     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   5157         .addReg(ZeroReg).addReg(PtrReg);
   5158     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   5159         .addReg(TmpDestReg).addReg(MaskReg);
   5160     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   5161         .addReg(TmpReg).addReg(OldVal3Reg);
   5162     BuildMI(BB, dl, TII->get(PPC::BCC))
   5163         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   5164     BB->addSuccessor(loop2MBB);
   5165     BB->addSuccessor(midMBB);
   5166 
   5167     BB = loop2MBB;
   5168     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   5169         .addReg(TmpDestReg).addReg(MaskReg);
   5170     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   5171         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   5172     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   5173         .addReg(ZeroReg).addReg(PtrReg);
   5174     BuildMI(BB, dl, TII->get(PPC::BCC))
   5175       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   5176     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   5177     BB->addSuccessor(loop1MBB);
   5178     BB->addSuccessor(exitMBB);
   5179 
   5180     BB = midMBB;
   5181     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   5182       .addReg(ZeroReg).addReg(PtrReg);
   5183     BB->addSuccessor(exitMBB);
   5184 
   5185     //  exitMBB:
   5186     //   ...
   5187     BB = exitMBB;
   5188     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   5189       .addReg(ShiftReg);
   5190   } else {
   5191     llvm_unreachable("Unexpected instr type to insert");
   5192   }
   5193 
   5194   MI->eraseFromParent();   // The pseudo instruction is gone now.
   5195   return BB;
   5196 }
   5197 
   5198 //===----------------------------------------------------------------------===//
   5199 // Target Optimization Hooks
   5200 //===----------------------------------------------------------------------===//
   5201 
   5202 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   5203                                              DAGCombinerInfo &DCI) const {
   5204   const TargetMachine &TM = getTargetMachine();
   5205   SelectionDAG &DAG = DCI.DAG;
   5206   DebugLoc dl = N->getDebugLoc();
   5207   switch (N->getOpcode()) {
   5208   default: break;
   5209   case PPCISD::SHL:
   5210     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   5211       if (C->isNullValue())   // 0 << V -> 0.
   5212         return N->getOperand(0);
   5213     }
   5214     break;
   5215   case PPCISD::SRL:
   5216     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   5217       if (C->isNullValue())   // 0 >>u V -> 0.
   5218         return N->getOperand(0);
   5219     }
   5220     break;
   5221   case PPCISD::SRA:
   5222     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   5223       if (C->isNullValue() ||   //  0 >>s V -> 0.
   5224           C->isAllOnesValue())    // -1 >>s V -> -1.
   5225         return N->getOperand(0);
   5226     }
   5227     break;
   5228 
   5229   case ISD::SINT_TO_FP:
   5230     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
   5231       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
   5232         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
   5233         // We allow the src/dst to be either f32/f64, but the intermediate
   5234         // type must be i64.
   5235         if (N->getOperand(0).getValueType() == MVT::i64 &&
   5236             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
   5237           SDValue Val = N->getOperand(0).getOperand(0);
   5238           if (Val.getValueType() == MVT::f32) {
   5239             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   5240             DCI.AddToWorklist(Val.getNode());
   5241           }
   5242 
   5243           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
   5244           DCI.AddToWorklist(Val.getNode());
   5245           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
   5246           DCI.AddToWorklist(Val.getNode());
   5247           if (N->getValueType(0) == MVT::f32) {
   5248             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
   5249                               DAG.getIntPtrConstant(0));
   5250             DCI.AddToWorklist(Val.getNode());
   5251           }
   5252           return Val;
   5253         } else if (N->getOperand(0).getValueType() == MVT::i32) {
   5254           // If the intermediate type is i32, we can avoid the load/store here
   5255           // too.
   5256         }
   5257       }
   5258     }
   5259     break;
   5260   case ISD::STORE:
   5261     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   5262     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
   5263         !cast<StoreSDNode>(N)->isTruncatingStore() &&
   5264         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   5265         N->getOperand(1).getValueType() == MVT::i32 &&
   5266         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   5267       SDValue Val = N->getOperand(1).getOperand(0);
   5268       if (Val.getValueType() == MVT::f32) {
   5269         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   5270         DCI.AddToWorklist(Val.getNode());
   5271       }
   5272       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   5273       DCI.AddToWorklist(Val.getNode());
   5274 
   5275       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
   5276                         N->getOperand(2), N->getOperand(3));
   5277       DCI.AddToWorklist(Val.getNode());
   5278       return Val;
   5279     }
   5280 
   5281     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   5282     if (cast<StoreSDNode>(N)->isUnindexed() &&
   5283         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   5284         N->getOperand(1).getNode()->hasOneUse() &&
   5285         (N->getOperand(1).getValueType() == MVT::i32 ||
   5286          N->getOperand(1).getValueType() == MVT::i16)) {
   5287       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   5288       // Do an any-extend to 32-bits if this is a half-word input.
   5289       if (BSwapOp.getValueType() == MVT::i16)
   5290         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   5291 
   5292       SDValue Ops[] = {
   5293         N->getOperand(0), BSwapOp, N->getOperand(2),
   5294         DAG.getValueType(N->getOperand(1).getValueType())
   5295       };
   5296       return
   5297         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   5298                                 Ops, array_lengthof(Ops),
   5299                                 cast<StoreSDNode>(N)->getMemoryVT(),
   5300                                 cast<StoreSDNode>(N)->getMemOperand());
   5301     }
   5302     break;
   5303   case ISD::BSWAP:
   5304     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   5305     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   5306         N->getOperand(0).hasOneUse() &&
   5307         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
   5308       SDValue Load = N->getOperand(0);
   5309       LoadSDNode *LD = cast<LoadSDNode>(Load);
   5310       // Create the byte-swapping load.
   5311       SDValue Ops[] = {
   5312         LD->getChain(),    // Chain
   5313         LD->getBasePtr(),  // Ptr
   5314         DAG.getValueType(N->getValueType(0)) // VT
   5315       };
   5316       SDValue BSLoad =
   5317         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   5318                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
   5319                                 LD->getMemoryVT(), LD->getMemOperand());
   5320 
   5321       // If this is an i16 load, insert the truncate.
   5322       SDValue ResVal = BSLoad;
   5323       if (N->getValueType(0) == MVT::i16)
   5324         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   5325 
   5326       // First, combine the bswap away.  This makes the value produced by the
   5327       // load dead.
   5328       DCI.CombineTo(N, ResVal);
   5329 
   5330       // Next, combine the load away, we give it a bogus result value but a real
   5331       // chain result.  The result value is dead because the bswap is dead.
   5332       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   5333 
   5334       // Return N so it doesn't get rechecked!
   5335       return SDValue(N, 0);
   5336     }
   5337 
   5338     break;
   5339   case PPCISD::VCMP: {
   5340     // If a VCMPo node already exists with exactly the same operands as this
   5341     // node, use its result instead of this node (VCMPo computes both a CR6 and
   5342     // a normal output).
   5343     //
   5344     if (!N->getOperand(0).hasOneUse() &&
   5345         !N->getOperand(1).hasOneUse() &&
   5346         !N->getOperand(2).hasOneUse()) {
   5347 
   5348       // Scan all of the users of the LHS, looking for VCMPo's that match.
   5349       SDNode *VCMPoNode = 0;
   5350 
   5351       SDNode *LHSN = N->getOperand(0).getNode();
   5352       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   5353            UI != E; ++UI)
   5354         if (UI->getOpcode() == PPCISD::VCMPo &&
   5355             UI->getOperand(1) == N->getOperand(1) &&
   5356             UI->getOperand(2) == N->getOperand(2) &&
   5357             UI->getOperand(0) == N->getOperand(0)) {
   5358           VCMPoNode = *UI;
   5359           break;
   5360         }
   5361 
   5362       // If there is no VCMPo node, or if the flag value has a single use, don't
   5363       // transform this.
   5364       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   5365         break;
   5366 
   5367       // Look at the (necessarily single) use of the flag value.  If it has a
   5368       // chain, this transformation is more complex.  Note that multiple things
   5369       // could use the value result, which we should ignore.
   5370       SDNode *FlagUser = 0;
   5371       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   5372            FlagUser == 0; ++UI) {
   5373         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   5374         SDNode *User = *UI;
   5375         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   5376           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   5377             FlagUser = User;
   5378             break;
   5379           }
   5380         }
   5381       }
   5382 
   5383       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
   5384       // give up for right now.
   5385       if (FlagUser->getOpcode() == PPCISD::MFCR)
   5386         return SDValue(VCMPoNode, 0);
   5387     }
   5388     break;
   5389   }
   5390   case ISD::BR_CC: {
   5391     // If this is a branch on an altivec predicate comparison, lower this so
   5392     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
   5393     // lowering is done pre-legalize, because the legalizer lowers the predicate
   5394     // compare down to code that is difficult to reassemble.
   5395     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   5396     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   5397     int CompareOpc;
   5398     bool isDot;
   5399 
   5400     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   5401         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   5402         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
   5403       assert(isDot && "Can't compare against a vector result!");
   5404 
   5405       // If this is a comparison against something other than 0/1, then we know
   5406       // that the condition is never/always true.
   5407       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   5408       if (Val != 0 && Val != 1) {
   5409         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   5410           return N->getOperand(0);
   5411         // Always !=, turn it into an unconditional branch.
   5412         return DAG.getNode(ISD::BR, dl, MVT::Other,
   5413                            N->getOperand(0), N->getOperand(4));
   5414       }
   5415 
   5416       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   5417 
   5418       // Create the PPCISD altivec 'dot' comparison node.
   5419       std::vector<EVT> VTs;
   5420       SDValue Ops[] = {
   5421         LHS.getOperand(2),  // LHS of compare
   5422         LHS.getOperand(3),  // RHS of compare
   5423         DAG.getConstant(CompareOpc, MVT::i32)
   5424       };
   5425       VTs.push_back(LHS.getOperand(2).getValueType());
   5426       VTs.push_back(MVT::Glue);
   5427       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   5428 
   5429       // Unpack the result based on how the target uses it.
   5430       PPC::Predicate CompOpc;
   5431       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   5432       default:  // Can't happen, don't crash on invalid number though.
   5433       case 0:   // Branch on the value of the EQ bit of CR6.
   5434         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   5435         break;
   5436       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   5437         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   5438         break;
   5439       case 2:   // Branch on the value of the LT bit of CR6.
   5440         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   5441         break;
   5442       case 3:   // Branch on the inverted value of the LT bit of CR6.
   5443         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   5444         break;
   5445       }
   5446 
   5447       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   5448                          DAG.getConstant(CompOpc, MVT::i32),
   5449                          DAG.getRegister(PPC::CR6, MVT::i32),
   5450                          N->getOperand(4), CompNode.getValue(1));
   5451     }
   5452     break;
   5453   }
   5454   }
   5455 
   5456   return SDValue();
   5457 }
   5458 
   5459 //===----------------------------------------------------------------------===//
   5460 // Inline Assembly Support
   5461 //===----------------------------------------------------------------------===//
   5462 
   5463 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   5464                                                        const APInt &Mask,
   5465                                                        APInt &KnownZero,
   5466                                                        APInt &KnownOne,
   5467                                                        const SelectionDAG &DAG,
   5468                                                        unsigned Depth) const {
   5469   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
   5470   switch (Op.getOpcode()) {
   5471   default: break;
   5472   case PPCISD::LBRX: {
   5473     // lhbrx is known to have the top bits cleared out.
   5474     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   5475       KnownZero = 0xFFFF0000;
   5476     break;
   5477   }
   5478   case ISD::INTRINSIC_WO_CHAIN: {
   5479     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   5480     default: break;
   5481     case Intrinsic::ppc_altivec_vcmpbfp_p:
   5482     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   5483     case Intrinsic::ppc_altivec_vcmpequb_p:
   5484     case Intrinsic::ppc_altivec_vcmpequh_p:
   5485     case Intrinsic::ppc_altivec_vcmpequw_p:
   5486     case Intrinsic::ppc_altivec_vcmpgefp_p:
   5487     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   5488     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   5489     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   5490     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   5491     case Intrinsic::ppc_altivec_vcmpgtub_p:
   5492     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   5493     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   5494       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   5495       break;
   5496     }
   5497   }
   5498   }
   5499 }
   5500 
   5501 
   5502 /// getConstraintType - Given a constraint, return the type of
   5503 /// constraint it is for this target.
   5504 PPCTargetLowering::ConstraintType
   5505 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
   5506   if (Constraint.size() == 1) {
   5507     switch (Constraint[0]) {
   5508     default: break;
   5509     case 'b':
   5510     case 'r':
   5511     case 'f':
   5512     case 'v':
   5513     case 'y':
   5514       return C_RegisterClass;
   5515     }
   5516   }
   5517   return TargetLowering::getConstraintType(Constraint);
   5518 }
   5519 
   5520 /// Examine constraint type and operand type and determine a weight value.
   5521 /// This object must already have been set up with the operand type
   5522 /// and the current alternative constraint selected.
   5523 TargetLowering::ConstraintWeight
   5524 PPCTargetLowering::getSingleConstraintMatchWeight(
   5525     AsmOperandInfo &info, const char *constraint) const {
   5526   ConstraintWeight weight = CW_Invalid;
   5527   Value *CallOperandVal = info.CallOperandVal;
   5528     // If we don't have a value, we can't do a match,
   5529     // but allow it at the lowest weight.
   5530   if (CallOperandVal == NULL)
   5531     return CW_Default;
   5532   Type *type = CallOperandVal->getType();
   5533   // Look at the constraint type.
   5534   switch (*constraint) {
   5535   default:
   5536     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   5537     break;
   5538   case 'b':
   5539     if (type->isIntegerTy())
   5540       weight = CW_Register;
   5541     break;
   5542   case 'f':
   5543     if (type->isFloatTy())
   5544       weight = CW_Register;
   5545     break;
   5546   case 'd':
   5547     if (type->isDoubleTy())
   5548       weight = CW_Register;
   5549     break;
   5550   case 'v':
   5551     if (type->isVectorTy())
   5552       weight = CW_Register;
   5553     break;
   5554   case 'y':
   5555     weight = CW_Register;
   5556     break;
   5557   }
   5558   return weight;
   5559 }
   5560 
   5561 std::pair<unsigned, const TargetRegisterClass*>
   5562 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   5563                                                 EVT VT) const {
   5564   if (Constraint.size() == 1) {
   5565     // GCC RS6000 Constraint Letters
   5566     switch (Constraint[0]) {
   5567     case 'b':   // R1-R31
   5568     case 'r':   // R0-R31
   5569       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
   5570         return std::make_pair(0U, PPC::G8RCRegisterClass);
   5571       return std::make_pair(0U, PPC::GPRCRegisterClass);
   5572     case 'f':
   5573       if (VT == MVT::f32)
   5574         return std::make_pair(0U, PPC::F4RCRegisterClass);
   5575       else if (VT == MVT::f64)
   5576         return std::make_pair(0U, PPC::F8RCRegisterClass);
   5577       break;
   5578     case 'v':
   5579       return std::make_pair(0U, PPC::VRRCRegisterClass);
   5580     case 'y':   // crrc
   5581       return std::make_pair(0U, PPC::CRRCRegisterClass);
   5582     }
   5583   }
   5584 
   5585   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   5586 }
   5587 
   5588 
   5589 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   5590 /// vector.  If it is invalid, don't add anything to Ops.
   5591 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   5592                                                      std::string &Constraint,
   5593                                                      std::vector<SDValue>&Ops,
   5594                                                      SelectionDAG &DAG) const {
   5595   SDValue Result(0,0);
   5596 
   5597   // Only support length 1 constraints.
   5598   if (Constraint.length() > 1) return;
   5599 
   5600   char Letter = Constraint[0];
   5601   switch (Letter) {
   5602   default: break;
   5603   case 'I':
   5604   case 'J':
   5605   case 'K':
   5606   case 'L':
   5607   case 'M':
   5608   case 'N':
   5609   case 'O':
   5610   case 'P': {
   5611     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   5612     if (!CST) return; // Must be an immediate to match.
   5613     unsigned Value = CST->getZExtValue();
   5614     switch (Letter) {
   5615     default: llvm_unreachable("Unknown constraint letter!");
   5616     case 'I':  // "I" is a signed 16-bit constant.
   5617       if ((short)Value == (int)Value)
   5618         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5619       break;
   5620     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   5621     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   5622       if ((short)Value == 0)
   5623         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5624       break;
   5625     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   5626       if ((Value >> 16) == 0)
   5627         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5628       break;
   5629     case 'M':  // "M" is a constant that is greater than 31.
   5630       if (Value > 31)
   5631         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5632       break;
   5633     case 'N':  // "N" is a positive constant that is an exact power of two.
   5634       if ((int)Value > 0 && isPowerOf2_32(Value))
   5635         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5636       break;
   5637     case 'O':  // "O" is the constant zero.
   5638       if (Value == 0)
   5639         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5640       break;
   5641     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   5642       if ((short)-Value == (int)-Value)
   5643         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5644       break;
   5645     }
   5646     break;
   5647   }
   5648   }
   5649 
   5650   if (Result.getNode()) {
   5651     Ops.push_back(Result);
   5652     return;
   5653   }
   5654 
   5655   // Handle standard constraint letters.
   5656   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   5657 }
   5658 
   5659 // isLegalAddressingMode - Return true if the addressing mode represented
   5660 // by AM is legal for this target, for a load/store of the specified type.
   5661 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   5662                                               Type *Ty) const {
   5663   // FIXME: PPC does not allow r+i addressing modes for vectors!
   5664 
   5665   // PPC allows a sign-extended 16-bit immediate field.
   5666   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   5667     return false;
   5668 
   5669   // No global is ever allowed as a base.
   5670   if (AM.BaseGV)
   5671     return false;
   5672 
   5673   // PPC only support r+r,
   5674   switch (AM.Scale) {
   5675   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   5676     break;
   5677   case 1:
   5678     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   5679       return false;
   5680     // Otherwise we have r+r or r+i.
   5681     break;
   5682   case 2:
   5683     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   5684       return false;
   5685     // Allow 2*r as r+r.
   5686     break;
   5687   default:
   5688     // No other scales are supported.
   5689     return false;
   5690   }
   5691 
   5692   return true;
   5693 }
   5694 
   5695 /// isLegalAddressImmediate - Return true if the integer value can be used
   5696 /// as the offset of the target addressing mode for load / store of the
   5697 /// given type.
   5698 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
   5699   // PPC allows a sign-extended 16-bit immediate field.
   5700   return (V > -(1 << 16) && V < (1 << 16)-1);
   5701 }
   5702 
   5703 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
   5704   return false;
   5705 }
   5706 
   5707 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   5708                                            SelectionDAG &DAG) const {
   5709   MachineFunction &MF = DAG.getMachineFunction();
   5710   MachineFrameInfo *MFI = MF.getFrameInfo();
   5711   MFI->setReturnAddressIsTaken(true);
   5712 
   5713   DebugLoc dl = Op.getDebugLoc();
   5714   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5715 
   5716   // Make sure the function does not optimize away the store of the RA to
   5717   // the stack.
   5718   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   5719   FuncInfo->setLRStoreRequired();
   5720   bool isPPC64 = PPCSubTarget.isPPC64();
   5721   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   5722 
   5723   if (Depth > 0) {
   5724     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   5725     SDValue Offset =
   5726 
   5727       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
   5728                       isPPC64? MVT::i64 : MVT::i32);
   5729     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   5730                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   5731                                    FrameAddr, Offset),
   5732                        MachinePointerInfo(), false, false, 0);
   5733   }
   5734 
   5735   // Just load the return address off the stack.
   5736   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   5737   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   5738                      RetAddrFI, MachinePointerInfo(), false, false, 0);
   5739 }
   5740 
   5741 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   5742                                           SelectionDAG &DAG) const {
   5743   DebugLoc dl = Op.getDebugLoc();
   5744   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5745 
   5746   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5747   bool isPPC64 = PtrVT == MVT::i64;
   5748 
   5749   MachineFunction &MF = DAG.getMachineFunction();
   5750   MachineFrameInfo *MFI = MF.getFrameInfo();
   5751   MFI->setFrameAddressIsTaken(true);
   5752   bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
   5753                   MFI->getStackSize() &&
   5754                   !MF.getFunction()->hasFnAttr(Attribute::Naked);
   5755   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
   5756                                 (is31 ? PPC::R31 : PPC::R1);
   5757   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   5758                                          PtrVT);
   5759   while (Depth--)
   5760     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   5761                             FrameAddr, MachinePointerInfo(), false, false, 0);
   5762   return FrameAddr;
   5763 }
   5764 
   5765 bool
   5766 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   5767   // The PowerPC target isn't yet aware of offsets.
   5768   return false;
   5769 }
   5770 
   5771 /// getOptimalMemOpType - Returns the target specific optimal type for load
   5772 /// and store operations as a result of memset, memcpy, and memmove
   5773 /// lowering. If DstAlign is zero that means it's safe to destination
   5774 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   5775 /// means there isn't a need to check it against alignment requirement,
   5776 /// probably because the source does not need to be loaded. If
   5777 /// 'NonScalarIntSafe' is true, that means it's safe to return a
   5778 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
   5779 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
   5780 /// constant so it does not need to be loaded.
   5781 /// It returns EVT::Other if the type should be determined using generic
   5782 /// target-independent logic.
   5783 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   5784                                            unsigned DstAlign, unsigned SrcAlign,
   5785                                            bool NonScalarIntSafe,
   5786                                            bool MemcpyStrSrc,
   5787                                            MachineFunction &MF) const {
   5788   if (this->PPCSubTarget.isPPC64()) {
   5789     return MVT::i64;
   5790   } else {
   5791     return MVT::i32;
   5792   }
   5793 }
   5794