Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes how to lower LLVM code to machine code.  This has two
     11 // main components:
     12 //
     13 //  1. Which ValueTypes are natively supported by the target.
     14 //  2. Which operations are supported for supported ValueTypes.
     15 //  3. Cost thresholds for alternative implementations of certain operations.
     16 //
     17 // In addition it has a few other components, like information about FP
     18 // immediates.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_TARGET_TARGETLOWERING_H
     23 #define LLVM_TARGET_TARGETLOWERING_H
     24 
     25 #include "llvm/CallingConv.h"
     26 #include "llvm/InlineAsm.h"
     27 #include "llvm/Attributes.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/Support/CallSite.h"
     30 #include "llvm/CodeGen/SelectionDAGNodes.h"
     31 #include "llvm/CodeGen/RuntimeLibcalls.h"
     32 #include "llvm/Support/DebugLoc.h"
     33 #include "llvm/Target/TargetCallingConv.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 #include <climits>
     36 #include <map>
     37 #include <vector>
     38 
     39 namespace llvm {
     40   class CallInst;
     41   class CCState;
     42   class FastISel;
     43   class FunctionLoweringInfo;
     44   class ImmutableCallSite;
     45   class IntrinsicInst;
     46   class MachineBasicBlock;
     47   class MachineFunction;
     48   class MachineInstr;
     49   class MachineJumpTableInfo;
     50   class MCContext;
     51   class MCExpr;
     52   template<typename T> class SmallVectorImpl;
     53   class TargetData;
     54   class TargetRegisterClass;
     55   class TargetLibraryInfo;
     56   class TargetLoweringObjectFile;
     57   class Value;
     58 
     59   namespace Sched {
     60     enum Preference {
     61       None,             // No preference
     62       Source,           // Follow source order.
     63       RegPressure,      // Scheduling for lowest register pressure.
     64       Hybrid,           // Scheduling for both latency and register pressure.
     65       ILP,              // Scheduling for ILP in low register pressure mode.
     66       VLIW              // Scheduling for VLIW targets.
     67     };
     68   }
     69 
     70 
     71 //===----------------------------------------------------------------------===//
     72 /// TargetLowering - This class defines information used to lower LLVM code to
     73 /// legal SelectionDAG operators that the target instruction selector can accept
     74 /// natively.
     75 ///
     76 /// This class also defines callbacks that targets must implement to lower
     77 /// target-specific constructs to SelectionDAG operators.
     78 ///
     79 class TargetLowering {
     80   TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
     81   void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
     82 public:
     83   /// LegalizeAction - This enum indicates whether operations are valid for a
     84   /// target, and if not, what action should be used to make them valid.
     85   enum LegalizeAction {
     86     Legal,      // The target natively supports this operation.
     87     Promote,    // This operation should be executed in a larger type.
     88     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     89     Custom      // Use the LowerOperation hook to implement custom lowering.
     90   };
     91 
     92   /// LegalizeTypeAction - This enum indicates whether a types are legal for a
     93   /// target, and if not, what action should be used to make them valid.
     94   enum LegalizeTypeAction {
     95     TypeLegal,           // The target natively supports this type.
     96     TypePromoteInteger,  // Replace this integer with a larger one.
     97     TypeExpandInteger,   // Split this integer into two of half the size.
     98     TypeSoftenFloat,     // Convert this float to a same size integer type.
     99     TypeExpandFloat,     // Split this float into two of half the size.
    100     TypeScalarizeVector, // Replace this one-element vector with its element.
    101     TypeSplitVector,     // Split this vector into two of half the size.
    102     TypeWidenVector      // This vector should be widened into a larger vector.
    103   };
    104 
    105   enum BooleanContent { // How the target represents true/false values.
    106     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    107     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    108     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    109   };
    110 
    111   enum SelectSupportKind {
    112     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
    113     ScalarCondVectorVal,  // The target supports selects with a scalar condition
    114                           // and vector values (ex: cmov).
    115     VectorMaskSelect      // The target supports vector selects with a vector
    116                           // mask (ex: x86 blends).
    117   };
    118 
    119   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    120     switch (Content) {
    121     case UndefinedBooleanContent:
    122       // Extend by adding rubbish bits.
    123       return ISD::ANY_EXTEND;
    124     case ZeroOrOneBooleanContent:
    125       // Extend by adding zero bits.
    126       return ISD::ZERO_EXTEND;
    127     case ZeroOrNegativeOneBooleanContent:
    128       // Extend by copying the sign bit.
    129       return ISD::SIGN_EXTEND;
    130     }
    131     llvm_unreachable("Invalid content kind");
    132   }
    133 
    134   /// NOTE: The constructor takes ownership of TLOF.
    135   explicit TargetLowering(const TargetMachine &TM,
    136                           const TargetLoweringObjectFile *TLOF);
    137   virtual ~TargetLowering();
    138 
    139   const TargetMachine &getTargetMachine() const { return TM; }
    140   const TargetData *getTargetData() const { return TD; }
    141   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
    142 
    143   bool isBigEndian() const { return !IsLittleEndian; }
    144   bool isLittleEndian() const { return IsLittleEndian; }
    145   MVT getPointerTy() const { return PointerTy; }
    146   virtual MVT getShiftAmountTy(EVT LHSTy) const;
    147 
    148   /// isSelectExpensive - Return true if the select operation is expensive for
    149   /// this target.
    150   bool isSelectExpensive() const { return SelectIsExpensive; }
    151 
    152   virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
    153 
    154   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
    155   /// a sequence of several shifts, adds, and multiplies for this target.
    156   bool isIntDivCheap() const { return IntDivIsCheap; }
    157 
    158   /// isSlowDivBypassed - Returns true if target has indicated at least one
    159   /// type should be bypassed.
    160   bool isSlowDivBypassed() const { return !BypassSlowDivTypes.empty(); }
    161 
    162   /// getBypassSlowDivTypes - Returns map of slow types for division or
    163   /// remainder with corresponding fast types
    164   const DenseMap<Type *, Type *> &getBypassSlowDivTypes() const {
    165     return BypassSlowDivTypes;
    166   }
    167 
    168   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
    169   /// srl/add/sra.
    170   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
    171 
    172   /// isJumpExpensive() - Return true if Flow Control is an expensive operation
    173   /// that should be avoided.
    174   bool isJumpExpensive() const { return JumpIsExpensive; }
    175 
    176   /// isPredictableSelectExpensive - Return true if selects are only cheaper
    177   /// than branches if the branch is unlikely to be predicted right.
    178   bool isPredictableSelectExpensive() const {
    179     return predictableSelectIsExpensive;
    180   }
    181 
    182   /// getSetCCResultType - Return the ValueType of the result of SETCC
    183   /// operations.  Also used to obtain the target's preferred type for
    184   /// the condition operand of SELECT and BRCOND nodes.  In the case of
    185   /// BRCOND the argument passed is MVT::Other since there are no other
    186   /// operands to get a type hint from.
    187   virtual EVT getSetCCResultType(EVT VT) const;
    188 
    189   /// getCmpLibcallReturnType - Return the ValueType for comparison
    190   /// libcalls. Comparions libcalls include floating point comparion calls,
    191   /// and Ordered/Unordered check calls on floating point numbers.
    192   virtual
    193   MVT::SimpleValueType getCmpLibcallReturnType() const;
    194 
    195   /// getBooleanContents - For targets without i1 registers, this gives the
    196   /// nature of the high-bits of boolean values held in types wider than i1.
    197   /// "Boolean values" are special true/false values produced by nodes like
    198   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    199   /// Not to be confused with general values promoted from i1.
    200   /// Some cpus distinguish between vectors of boolean and scalars; the isVec
    201   /// parameter selects between the two kinds.  For example on X86 a scalar
    202   /// boolean should be zero extended from i1, while the elements of a vector
    203   /// of booleans should be sign extended from i1.
    204   BooleanContent getBooleanContents(bool isVec) const {
    205     return isVec ? BooleanVectorContents : BooleanContents;
    206   }
    207 
    208   /// getSchedulingPreference - Return target scheduling preference.
    209   Sched::Preference getSchedulingPreference() const {
    210     return SchedPreferenceInfo;
    211   }
    212 
    213   /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
    214   /// different scheduling heuristics for different nodes. This function returns
    215   /// the preference (or none) for the given node.
    216   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    217     return Sched::None;
    218   }
    219 
    220   /// getRegClassFor - Return the register class that should be used for the
    221   /// specified value type.
    222   virtual const TargetRegisterClass *getRegClassFor(EVT VT) const {
    223     assert(VT.isSimple() && "getRegClassFor called on illegal type!");
    224     const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
    225     assert(RC && "This value type is not natively supported!");
    226     return RC;
    227   }
    228 
    229   /// getRepRegClassFor - Return the 'representative' register class for the
    230   /// specified value type. The 'representative' register class is the largest
    231   /// legal super-reg register class for the register class of the value type.
    232   /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
    233   /// while the rep register class is GR64 on x86_64.
    234   virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
    235     assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
    236     const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
    237     return RC;
    238   }
    239 
    240   /// getRepRegClassCostFor - Return the cost of the 'representative' register
    241   /// class for the specified value type.
    242   virtual uint8_t getRepRegClassCostFor(EVT VT) const {
    243     assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
    244     return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
    245   }
    246 
    247   /// isTypeLegal - Return true if the target has native support for the
    248   /// specified value type.  This means that it has a register that directly
    249   /// holds it without promotions or expansions.
    250   bool isTypeLegal(EVT VT) const {
    251     assert(!VT.isSimple() ||
    252            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    253     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
    254   }
    255 
    256   class ValueTypeActionImpl {
    257     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    258     /// that indicates how instruction selection should deal with the type.
    259     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
    260 
    261   public:
    262     ValueTypeActionImpl() {
    263       std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
    264     }
    265 
    266     LegalizeTypeAction getTypeAction(MVT VT) const {
    267       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
    268     }
    269 
    270     void setTypeAction(EVT VT, LegalizeTypeAction Action) {
    271       unsigned I = VT.getSimpleVT().SimpleTy;
    272       ValueTypeActions[I] = Action;
    273     }
    274   };
    275 
    276   const ValueTypeActionImpl &getValueTypeActions() const {
    277     return ValueTypeActions;
    278   }
    279 
    280   /// getTypeAction - Return how we should legalize values of this type, either
    281   /// it is already legal (return 'Legal') or we need to promote it to a larger
    282   /// type (return 'Promote'), or we need to expand it into multiple registers
    283   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
    284   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    285     return getTypeConversion(Context, VT).first;
    286   }
    287   LegalizeTypeAction getTypeAction(MVT VT) const {
    288     return ValueTypeActions.getTypeAction(VT);
    289   }
    290 
    291   /// getTypeToTransformTo - For types supported by the target, this is an
    292   /// identity function.  For types that must be promoted to larger types, this
    293   /// returns the larger type to promote to.  For integer types that are larger
    294   /// than the largest integer register, this contains one step in the expansion
    295   /// to get to the smaller register. For illegal floating point types, this
    296   /// returns the integer type to transform to.
    297   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    298     return getTypeConversion(Context, VT).second;
    299   }
    300 
    301   /// getTypeToExpandTo - For types supported by the target, this is an
    302   /// identity function.  For types that must be expanded (i.e. integer types
    303   /// that are larger than the largest integer register or illegal floating
    304   /// point types), this returns the largest legal type it will be expanded to.
    305   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    306     assert(!VT.isVector());
    307     while (true) {
    308       switch (getTypeAction(Context, VT)) {
    309       case TypeLegal:
    310         return VT;
    311       case TypeExpandInteger:
    312         VT = getTypeToTransformTo(Context, VT);
    313         break;
    314       default:
    315         llvm_unreachable("Type is not legal nor is it to be expanded!");
    316       }
    317     }
    318   }
    319 
    320   /// getVectorTypeBreakdown - Vector types are broken down into some number of
    321   /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
    322   /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
    323   /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
    324   ///
    325   /// This method returns the number of registers needed, and the VT for each
    326   /// register.  It also returns the VT and quantity of the intermediate values
    327   /// before they are promoted/expanded.
    328   ///
    329   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    330                                   EVT &IntermediateVT,
    331                                   unsigned &NumIntermediates,
    332                                   EVT &RegisterVT) const;
    333 
    334   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
    335   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
    336   /// this is the case, it returns true and store the intrinsic
    337   /// information into the IntrinsicInfo that was passed to the function.
    338   struct IntrinsicInfo {
    339     unsigned     opc;         // target opcode
    340     EVT          memVT;       // memory VT
    341     const Value* ptrVal;      // value representing memory location
    342     int          offset;      // offset off of ptrVal
    343     unsigned     align;       // alignment
    344     bool         vol;         // is volatile?
    345     bool         readMem;     // reads memory?
    346     bool         writeMem;    // writes memory?
    347   };
    348 
    349   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
    350                                   unsigned /*Intrinsic*/) const {
    351     return false;
    352   }
    353 
    354   /// isFPImmLegal - Returns true if the target can instruction select the
    355   /// specified FP immediate natively. If false, the legalizer will materialize
    356   /// the FP immediate as a load from a constant pool.
    357   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    358     return false;
    359   }
    360 
    361   /// isShuffleMaskLegal - Targets can use this to indicate that they only
    362   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    363   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
    364   /// are assumed to be legal.
    365   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    366                                   EVT /*VT*/) const {
    367     return true;
    368   }
    369 
    370   /// canOpTrap - Returns true if the operation can trap for the value type.
    371   /// VT must be a legal type. By default, we optimistically assume most
    372   /// operations don't trap except for divide and remainder.
    373   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    374 
    375   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    376   /// used by Targets can use this to indicate if there is a suitable
    377   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    378   /// pool entry.
    379   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    380                                       EVT /*VT*/) const {
    381     return false;
    382   }
    383 
    384   /// getOperationAction - Return how this operation should be treated: either
    385   /// it is legal, needs to be promoted to a larger size, needs to be
    386   /// expanded to some other code sequence, or the target has a custom expander
    387   /// for it.
    388   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    389     if (VT.isExtended()) return Expand;
    390     // If a target-specific SDNode requires legalization, require the target
    391     // to provide custom legalization for it.
    392     if (Op > array_lengthof(OpActions[0])) return Custom;
    393     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
    394     return (LegalizeAction)OpActions[I][Op];
    395   }
    396 
    397   /// isOperationLegalOrCustom - Return true if the specified operation is
    398   /// legal on this target or can be made legal with custom lowering. This
    399   /// is used to help guide high-level lowering decisions.
    400   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    401     return (VT == MVT::Other || isTypeLegal(VT)) &&
    402       (getOperationAction(Op, VT) == Legal ||
    403        getOperationAction(Op, VT) == Custom);
    404   }
    405 
    406   /// isOperationLegal - Return true if the specified operation is legal on this
    407   /// target.
    408   bool isOperationLegal(unsigned Op, EVT VT) const {
    409     return (VT == MVT::Other || isTypeLegal(VT)) &&
    410            getOperationAction(Op, VT) == Legal;
    411   }
    412 
    413   /// getLoadExtAction - Return how this load with extension should be treated:
    414   /// either it is legal, needs to be promoted to a larger size, needs to be
    415   /// expanded to some other code sequence, or the target has a custom expander
    416   /// for it.
    417   LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
    418     assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
    419            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    420            "Table isn't big enough!");
    421     return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
    422   }
    423 
    424   /// isLoadExtLegal - Return true if the specified load with extension is legal
    425   /// on this target.
    426   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
    427     return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
    428   }
    429 
    430   /// getTruncStoreAction - Return how this store with truncation should be
    431   /// treated: either it is legal, needs to be promoted to a larger size, needs
    432   /// to be expanded to some other code sequence, or the target has a custom
    433   /// expander for it.
    434   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    435     assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    436            MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    437            "Table isn't big enough!");
    438     return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
    439                                             [MemVT.getSimpleVT().SimpleTy];
    440   }
    441 
    442   /// isTruncStoreLegal - Return true if the specified store with truncation is
    443   /// legal on this target.
    444   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    445     return isTypeLegal(ValVT) && MemVT.isSimple() &&
    446            getTruncStoreAction(ValVT, MemVT) == Legal;
    447   }
    448 
    449   /// getIndexedLoadAction - Return how the indexed load should be treated:
    450   /// either it is legal, needs to be promoted to a larger size, needs to be
    451   /// expanded to some other code sequence, or the target has a custom expander
    452   /// for it.
    453   LegalizeAction
    454   getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
    455     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    456            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    457            "Table isn't big enough!");
    458     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    459     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    460   }
    461 
    462   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
    463   /// on this target.
    464   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    465     return VT.isSimple() &&
    466       (getIndexedLoadAction(IdxMode, VT) == Legal ||
    467        getIndexedLoadAction(IdxMode, VT) == Custom);
    468   }
    469 
    470   /// getIndexedStoreAction - Return how the indexed store should be treated:
    471   /// either it is legal, needs to be promoted to a larger size, needs to be
    472   /// expanded to some other code sequence, or the target has a custom expander
    473   /// for it.
    474   LegalizeAction
    475   getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
    476     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    477            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    478            "Table isn't big enough!");
    479     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    480     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    481   }
    482 
    483   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
    484   /// on this target.
    485   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    486     return VT.isSimple() &&
    487       (getIndexedStoreAction(IdxMode, VT) == Legal ||
    488        getIndexedStoreAction(IdxMode, VT) == Custom);
    489   }
    490 
    491   /// getCondCodeAction - Return how the condition code should be treated:
    492   /// either it is legal, needs to be expanded to some other code sequence,
    493   /// or the target has a custom expander for it.
    494   LegalizeAction
    495   getCondCodeAction(ISD::CondCode CC, EVT VT) const {
    496     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    497            (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
    498            "Table isn't big enough!");
    499     LegalizeAction Action = (LegalizeAction)
    500       ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
    501     assert(Action != Promote && "Can't promote condition code!");
    502     return Action;
    503   }
    504 
    505   /// isCondCodeLegal - Return true if the specified condition code is legal
    506   /// on this target.
    507   bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
    508     return getCondCodeAction(CC, VT) == Legal ||
    509            getCondCodeAction(CC, VT) == Custom;
    510   }
    511 
    512 
    513   /// getTypeToPromoteTo - If the action for this operation is to promote, this
    514   /// method returns the ValueType to promote to.
    515   EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
    516     assert(getOperationAction(Op, VT) == Promote &&
    517            "This operation isn't promoted!");
    518 
    519     // See if this has an explicit type specified.
    520     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    521              MVT::SimpleValueType>::const_iterator PTTI =
    522       PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
    523     if (PTTI != PromoteToType.end()) return PTTI->second;
    524 
    525     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    526            "Cannot autopromote this type, add it with AddPromotedToType.");
    527 
    528     EVT NVT = VT;
    529     do {
    530       NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
    531       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    532              "Didn't find type to promote to!");
    533     } while (!isTypeLegal(NVT) ||
    534               getOperationAction(Op, NVT) == Promote);
    535     return NVT;
    536   }
    537 
    538   /// getValueType - Return the EVT corresponding to this LLVM type.
    539   /// This is fixed by the LLVM operations except for the pointer size.  If
    540   /// AllowUnknown is true, this will return MVT::Other for types with no EVT
    541   /// counterpart (e.g. structs), otherwise it will assert.
    542   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
    543     // Lower scalar pointers to native pointer types.
    544     if (Ty->isPointerTy()) return PointerTy;
    545 
    546     if (Ty->isVectorTy()) {
    547       VectorType *VTy = cast<VectorType>(Ty);
    548       Type *Elm = VTy->getElementType();
    549       // Lower vectors of pointers to native pointer types.
    550       if (Elm->isPointerTy())
    551         Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
    552       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
    553                        VTy->getNumElements());
    554     }
    555     return EVT::getEVT(Ty, AllowUnknown);
    556   }
    557 
    558   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    559   /// function arguments in the caller parameter area.  This is the actual
    560   /// alignment, not its logarithm.
    561   virtual unsigned getByValTypeAlignment(Type *Ty) const;
    562 
    563   /// getRegisterType - Return the type of registers that this ValueType will
    564   /// eventually require.
    565   EVT getRegisterType(MVT VT) const {
    566     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    567     return RegisterTypeForVT[VT.SimpleTy];
    568   }
    569 
    570   /// getRegisterType - Return the type of registers that this ValueType will
    571   /// eventually require.
    572   EVT getRegisterType(LLVMContext &Context, EVT VT) const {
    573     if (VT.isSimple()) {
    574       assert((unsigned)VT.getSimpleVT().SimpleTy <
    575                 array_lengthof(RegisterTypeForVT));
    576       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    577     }
    578     if (VT.isVector()) {
    579       EVT VT1, RegisterVT;
    580       unsigned NumIntermediates;
    581       (void)getVectorTypeBreakdown(Context, VT, VT1,
    582                                    NumIntermediates, RegisterVT);
    583       return RegisterVT;
    584     }
    585     if (VT.isInteger()) {
    586       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    587     }
    588     llvm_unreachable("Unsupported extended type!");
    589   }
    590 
    591   /// getNumRegisters - Return the number of registers that this ValueType will
    592   /// eventually require.  This is one for any types promoted to live in larger
    593   /// registers, but may be more than one for types (like i64) that are split
    594   /// into pieces.  For types like i140, which are first promoted then expanded,
    595   /// it is the number of registers needed to hold all the bits of the original
    596   /// type.  For an i140 on a 32 bit machine this means 5 registers.
    597   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    598     if (VT.isSimple()) {
    599       assert((unsigned)VT.getSimpleVT().SimpleTy <
    600                 array_lengthof(NumRegistersForVT));
    601       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    602     }
    603     if (VT.isVector()) {
    604       EVT VT1, VT2;
    605       unsigned NumIntermediates;
    606       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    607     }
    608     if (VT.isInteger()) {
    609       unsigned BitWidth = VT.getSizeInBits();
    610       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    611       return (BitWidth + RegWidth - 1) / RegWidth;
    612     }
    613     llvm_unreachable("Unsupported extended type!");
    614   }
    615 
    616   /// ShouldShrinkFPConstant - If true, then instruction selection should
    617   /// seek to shrink the FP constant of the specified type to a smaller type
    618   /// in order to save space and / or reduce runtime.
    619   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
    620 
    621   /// hasTargetDAGCombine - If true, the target has custom DAG combine
    622   /// transformations that it can perform for the specified node.
    623   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    624     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    625     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    626   }
    627 
    628   /// This function returns the maximum number of store operations permitted
    629   /// to replace a call to llvm.memset. The value is set by the target at the
    630   /// performance threshold for such a replacement. If OptSize is true,
    631   /// return the limit for functions that have OptSize attribute.
    632   /// @brief Get maximum # of store operations permitted for llvm.memset
    633   unsigned getMaxStoresPerMemset(bool OptSize) const {
    634     return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
    635   }
    636 
    637   /// This function returns the maximum number of store operations permitted
    638   /// to replace a call to llvm.memcpy. The value is set by the target at the
    639   /// performance threshold for such a replacement. If OptSize is true,
    640   /// return the limit for functions that have OptSize attribute.
    641   /// @brief Get maximum # of store operations permitted for llvm.memcpy
    642   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    643     return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
    644   }
    645 
    646   /// This function returns the maximum number of store operations permitted
    647   /// to replace a call to llvm.memmove. The value is set by the target at the
    648   /// performance threshold for such a replacement. If OptSize is true,
    649   /// return the limit for functions that have OptSize attribute.
    650   /// @brief Get maximum # of store operations permitted for llvm.memmove
    651   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    652     return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
    653   }
    654 
    655   /// This function returns true if the target allows unaligned memory accesses.
    656   /// of the specified type. This is used, for example, in situations where an
    657   /// array copy/move/set is  converted to a sequence of store operations. It's
    658   /// use helps to ensure that such replacements don't generate code that causes
    659   /// an alignment error  (trap) on the target machine.
    660   /// @brief Determine if the target supports unaligned memory accesses.
    661   virtual bool allowsUnalignedMemoryAccesses(EVT) const {
    662     return false;
    663   }
    664 
    665   /// This function returns true if the target would benefit from code placement
    666   /// optimization.
    667   /// @brief Determine if the target should perform code placement optimization.
    668   bool shouldOptimizeCodePlacement() const {
    669     return benefitFromCodePlacementOpt;
    670   }
    671 
    672   /// getOptimalMemOpType - Returns the target specific optimal type for load
    673   /// and store operations as a result of memset, memcpy, and memmove
    674   /// lowering. If DstAlign is zero that means it's safe to destination
    675   /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    676   /// means there isn't a need to check it against alignment requirement,
    677   /// probably because the source does not need to be loaded. If
    678   /// 'IsZeroVal' is true, that means it's safe to return a
    679   /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    680   /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    681   /// constant so it does not need to be loaded.
    682   /// It returns EVT::Other if the type should be determined using generic
    683   /// target-independent logic.
    684   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
    685                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
    686                                   bool /*IsZeroVal*/,
    687                                   bool /*MemcpyStrSrc*/,
    688                                   MachineFunction &/*MF*/) const {
    689     return MVT::Other;
    690   }
    691 
    692   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
    693   /// to implement llvm.setjmp.
    694   bool usesUnderscoreSetJmp() const {
    695     return UseUnderscoreSetJmp;
    696   }
    697 
    698   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
    699   /// to implement llvm.longjmp.
    700   bool usesUnderscoreLongJmp() const {
    701     return UseUnderscoreLongJmp;
    702   }
    703 
    704   /// supportJumpTables - return whether the target can generate code for
    705   /// jump tables.
    706   bool supportJumpTables() const {
    707     return SupportJumpTables;
    708   }
    709 
    710   /// getStackPointerRegisterToSaveRestore - If a physical register, this
    711   /// specifies the register that llvm.savestack/llvm.restorestack should save
    712   /// and restore.
    713   unsigned getStackPointerRegisterToSaveRestore() const {
    714     return StackPointerRegisterToSaveRestore;
    715   }
    716 
    717   /// getExceptionPointerRegister - If a physical register, this returns
    718   /// the register that receives the exception address on entry to a landing
    719   /// pad.
    720   unsigned getExceptionPointerRegister() const {
    721     return ExceptionPointerRegister;
    722   }
    723 
    724   /// getExceptionSelectorRegister - If a physical register, this returns
    725   /// the register that receives the exception typeid on entry to a landing
    726   /// pad.
    727   unsigned getExceptionSelectorRegister() const {
    728     return ExceptionSelectorRegister;
    729   }
    730 
    731   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
    732   /// set, the default is 200)
    733   unsigned getJumpBufSize() const {
    734     return JumpBufSize;
    735   }
    736 
    737   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
    738   /// (if never set, the default is 0)
    739   unsigned getJumpBufAlignment() const {
    740     return JumpBufAlignment;
    741   }
    742 
    743   /// getMinStackArgumentAlignment - return the minimum stack alignment of an
    744   /// argument.
    745   unsigned getMinStackArgumentAlignment() const {
    746     return MinStackArgumentAlignment;
    747   }
    748 
    749   /// getMinFunctionAlignment - return the minimum function alignment.
    750   ///
    751   unsigned getMinFunctionAlignment() const {
    752     return MinFunctionAlignment;
    753   }
    754 
    755   /// getPrefFunctionAlignment - return the preferred function alignment.
    756   ///
    757   unsigned getPrefFunctionAlignment() const {
    758     return PrefFunctionAlignment;
    759   }
    760 
    761   /// getPrefLoopAlignment - return the preferred loop alignment.
    762   ///
    763   unsigned getPrefLoopAlignment() const {
    764     return PrefLoopAlignment;
    765   }
    766 
    767   /// getShouldFoldAtomicFences - return whether the combiner should fold
    768   /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
    769   ///
    770   bool getShouldFoldAtomicFences() const {
    771     return ShouldFoldAtomicFences;
    772   }
    773 
    774   /// getInsertFencesFor - return whether the DAG builder should automatically
    775   /// insert fences and reduce ordering for atomics.
    776   ///
    777   bool getInsertFencesForAtomic() const {
    778     return InsertFencesForAtomic;
    779   }
    780 
    781   /// getPreIndexedAddressParts - returns true by value, base pointer and
    782   /// offset pointer and addressing mode by reference if the node's address
    783   /// can be legally represented as pre-indexed load / store address.
    784   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
    785                                          SDValue &/*Offset*/,
    786                                          ISD::MemIndexedMode &/*AM*/,
    787                                          SelectionDAG &/*DAG*/) const {
    788     return false;
    789   }
    790 
    791   /// getPostIndexedAddressParts - returns true by value, base pointer and
    792   /// offset pointer and addressing mode by reference if this node can be
    793   /// combined with a load / store to form a post-indexed load / store.
    794   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
    795                                           SDValue &/*Base*/, SDValue &/*Offset*/,
    796                                           ISD::MemIndexedMode &/*AM*/,
    797                                           SelectionDAG &/*DAG*/) const {
    798     return false;
    799   }
    800 
    801   /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    802   /// current function.  The returned value is a member of the
    803   /// MachineJumpTableInfo::JTEntryKind enum.
    804   virtual unsigned getJumpTableEncoding() const;
    805 
    806   virtual const MCExpr *
    807   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
    808                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
    809                             MCContext &/*Ctx*/) const {
    810     llvm_unreachable("Need to implement this hook if target has custom JTIs");
    811   }
    812 
    813   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    814   /// jumptable.
    815   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
    816                                            SelectionDAG &DAG) const;
    817 
    818   /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    819   /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    820   /// MCExpr.
    821   virtual const MCExpr *
    822   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    823                                unsigned JTI, MCContext &Ctx) const;
    824 
    825   /// isOffsetFoldingLegal - Return true if folding a constant offset
    826   /// with the given GlobalAddress is legal.  It is frequently not legal in
    827   /// PIC relocation models.
    828   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    829 
    830   /// getStackCookieLocation - Return true if the target stores stack
    831   /// protector cookies at a fixed offset in some non-standard address
    832   /// space, and populates the address space and offset as
    833   /// appropriate.
    834   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
    835                                       unsigned &/*Offset*/) const {
    836     return false;
    837   }
    838 
    839   /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
    840   /// used for loads / stores from the global.
    841   virtual unsigned getMaximalGlobalOffset() const {
    842     return 0;
    843   }
    844 
    845   //===--------------------------------------------------------------------===//
    846   // TargetLowering Optimization Methods
    847   //
    848 
    849   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
    850   /// SDValues for returning information from TargetLowering to its clients
    851   /// that want to combine
    852   struct TargetLoweringOpt {
    853     SelectionDAG &DAG;
    854     bool LegalTys;
    855     bool LegalOps;
    856     SDValue Old;
    857     SDValue New;
    858 
    859     explicit TargetLoweringOpt(SelectionDAG &InDAG,
    860                                bool LT, bool LO) :
    861       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
    862 
    863     bool LegalTypes() const { return LegalTys; }
    864     bool LegalOperations() const { return LegalOps; }
    865 
    866     bool CombineTo(SDValue O, SDValue N) {
    867       Old = O;
    868       New = N;
    869       return true;
    870     }
    871 
    872     /// ShrinkDemandedConstant - Check to see if the specified operand of the
    873     /// specified instruction is a constant integer.  If so, check to see if
    874     /// there are any bits set in the constant that are not demanded.  If so,
    875     /// shrink the constant and return true.
    876     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
    877 
    878     /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    879     /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    880     /// cast, but it could be generalized for targets with other types of
    881     /// implicit widening casts.
    882     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
    883                           DebugLoc dl);
    884   };
    885 
    886   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    887   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    888   /// use this information to simplify Op, create a new simplified DAG node and
    889   /// return true, returning the original and new nodes in Old and New.
    890   /// Otherwise, analyze the expression and return a mask of KnownOne and
    891   /// KnownZero bits for the expression (used to simplify the caller).
    892   /// The KnownZero/One bits may only be accurate for those bits in the
    893   /// DemandedMask.
    894   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
    895                             APInt &KnownZero, APInt &KnownOne,
    896                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
    897 
    898   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
    899   /// Mask are known to be either zero or one and return them in the
    900   /// KnownZero/KnownOne bitsets.
    901   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    902                                               APInt &KnownZero,
    903                                               APInt &KnownOne,
    904                                               const SelectionDAG &DAG,
    905                                               unsigned Depth = 0) const;
    906 
    907   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
    908   /// targets that want to expose additional information about sign bits to the
    909   /// DAG Combiner.
    910   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    911                                                    unsigned Depth = 0) const;
    912 
    913   struct DAGCombinerInfo {
    914     void *DC;  // The DAG Combiner object.
    915     bool BeforeLegalize;
    916     bool BeforeLegalizeOps;
    917     bool CalledByLegalizer;
    918   public:
    919     SelectionDAG &DAG;
    920 
    921     DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
    922       : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
    923         CalledByLegalizer(cl), DAG(dag) {}
    924 
    925     bool isBeforeLegalize() const { return BeforeLegalize; }
    926     bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
    927     bool isCalledByLegalizer() const { return CalledByLegalizer; }
    928 
    929     void AddToWorklist(SDNode *N);
    930     void RemoveFromWorklist(SDNode *N);
    931     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
    932                       bool AddTo = true);
    933     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
    934     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
    935 
    936     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
    937   };
    938 
    939   /// SimplifySetCC - Try to simplify a setcc built with the specified operands
    940   /// and cc. If it is unable to simplify it, return a null SDValue.
    941   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
    942                           ISD::CondCode Cond, bool foldBooleans,
    943                           DAGCombinerInfo &DCI, DebugLoc dl) const;
    944 
    945   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
    946   /// node is a GlobalAddress + offset.
    947   virtual bool
    948   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
    949 
    950   /// PerformDAGCombine - This method will be invoked for all target nodes and
    951   /// for any target-independent nodes that the target has registered with
    952   /// invoke it for.
    953   ///
    954   /// The semantics are as follows:
    955   /// Return Value:
    956   ///   SDValue.Val == 0   - No change was made
    957   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
    958   ///   otherwise          - N should be replaced by the returned Operand.
    959   ///
    960   /// In addition, methods provided by DAGCombinerInfo may be used to perform
    961   /// more complex transformations.
    962   ///
    963   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    964 
    965   /// isTypeDesirableForOp - Return true if the target has native support for
    966   /// the specified value type and it is 'desirable' to use the type for the
    967   /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    968   /// instruction encodings are longer and some i16 instructions are slow.
    969   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
    970     // By default, assume all legal types are desirable.
    971     return isTypeLegal(VT);
    972   }
    973 
    974   /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
    975   /// to transform a floating point op of specified opcode to a equivalent op of
    976   /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
    977   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
    978                                                  EVT /*VT*/) const {
    979     return false;
    980   }
    981 
    982   /// IsDesirableToPromoteOp - This method query the target whether it is
    983   /// beneficial for dag combiner to promote the specified node. If true, it
    984   /// should return the desired promotion type by reference.
    985   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
    986     return false;
    987   }
    988 
    989   //===--------------------------------------------------------------------===//
    990   // TargetLowering Configuration Methods - These methods should be invoked by
    991   // the derived class constructor to configure this object for the target.
    992   //
    993 
    994 protected:
    995   /// setBooleanContents - Specify how the target extends the result of a
    996   /// boolean value from i1 to a wider type.  See getBooleanContents.
    997   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
    998   /// setBooleanVectorContents - Specify how the target extends the result
    999   /// of a vector boolean value from a vector of i1 to a wider type.  See
   1000   /// getBooleanContents.
   1001   void setBooleanVectorContents(BooleanContent Ty) {
   1002     BooleanVectorContents = Ty;
   1003   }
   1004 
   1005   /// setSchedulingPreference - Specify the target scheduling preference.
   1006   void setSchedulingPreference(Sched::Preference Pref) {
   1007     SchedPreferenceInfo = Pref;
   1008   }
   1009 
   1010   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
   1011   /// use _setjmp to implement llvm.setjmp or the non _ version.
   1012   /// Defaults to false.
   1013   void setUseUnderscoreSetJmp(bool Val) {
   1014     UseUnderscoreSetJmp = Val;
   1015   }
   1016 
   1017   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
   1018   /// use _longjmp to implement llvm.longjmp or the non _ version.
   1019   /// Defaults to false.
   1020   void setUseUnderscoreLongJmp(bool Val) {
   1021     UseUnderscoreLongJmp = Val;
   1022   }
   1023 
   1024   /// setSupportJumpTables - Indicate whether the target can generate code for
   1025   /// jump tables.
   1026   void setSupportJumpTables(bool Val) {
   1027     SupportJumpTables = Val;
   1028   }
   1029 
   1030   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
   1031   /// specifies the register that llvm.savestack/llvm.restorestack should save
   1032   /// and restore.
   1033   void setStackPointerRegisterToSaveRestore(unsigned R) {
   1034     StackPointerRegisterToSaveRestore = R;
   1035   }
   1036 
   1037   /// setExceptionPointerRegister - If set to a physical register, this sets
   1038   /// the register that receives the exception address on entry to a landing
   1039   /// pad.
   1040   void setExceptionPointerRegister(unsigned R) {
   1041     ExceptionPointerRegister = R;
   1042   }
   1043 
   1044   /// setExceptionSelectorRegister - If set to a physical register, this sets
   1045   /// the register that receives the exception typeid on entry to a landing
   1046   /// pad.
   1047   void setExceptionSelectorRegister(unsigned R) {
   1048     ExceptionSelectorRegister = R;
   1049   }
   1050 
   1051   /// SelectIsExpensive - Tells the code generator not to expand operations
   1052   /// into sequences that use the select operations if possible.
   1053   void setSelectIsExpensive(bool isExpensive = true) {
   1054     SelectIsExpensive = isExpensive;
   1055   }
   1056 
   1057   /// JumpIsExpensive - Tells the code generator not to expand sequence of
   1058   /// operations into a separate sequences that increases the amount of
   1059   /// flow control.
   1060   void setJumpIsExpensive(bool isExpensive = true) {
   1061     JumpIsExpensive = isExpensive;
   1062   }
   1063 
   1064   /// setIntDivIsCheap - Tells the code generator that integer divide is
   1065   /// expensive, and if possible, should be replaced by an alternate sequence
   1066   /// of instructions not containing an integer divide.
   1067   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
   1068 
   1069   /// addBypassSlowDivType - Tells the code generator which types to bypass.
   1070   void addBypassSlowDivType(Type *slow_type, Type *fast_type) {
   1071     BypassSlowDivTypes[slow_type] = fast_type;
   1072   }
   1073 
   1074   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
   1075   /// srl/add/sra for a signed divide by power of two, and let the target handle
   1076   /// it.
   1077   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
   1078 
   1079   /// addRegisterClass - Add the specified register class as an available
   1080   /// regclass for the specified value type.  This indicates the selector can
   1081   /// handle values of that class natively.
   1082   void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
   1083     assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
   1084     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1085     RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
   1086   }
   1087 
   1088   /// findRepresentativeClass - Return the largest legal super-reg register class
   1089   /// of the register class for the specified type and its associated "cost".
   1090   virtual std::pair<const TargetRegisterClass*, uint8_t>
   1091   findRepresentativeClass(EVT VT) const;
   1092 
   1093   /// computeRegisterProperties - Once all of the register classes are added,
   1094   /// this allows us to compute derived properties we expose.
   1095   void computeRegisterProperties();
   1096 
   1097   /// setOperationAction - Indicate that the specified operation does not work
   1098   /// with the specified type and indicate what to do about it.
   1099   void setOperationAction(unsigned Op, MVT VT,
   1100                           LegalizeAction Action) {
   1101     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1102     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
   1103   }
   1104 
   1105   /// setLoadExtAction - Indicate that the specified load with extension does
   1106   /// not work with the specified type and indicate what to do about it.
   1107   void setLoadExtAction(unsigned ExtType, MVT VT,
   1108                         LegalizeAction Action) {
   1109     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
   1110            "Table isn't big enough!");
   1111     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
   1112   }
   1113 
   1114   /// setTruncStoreAction - Indicate that the specified truncating store does
   1115   /// not work with the specified type and indicate what to do about it.
   1116   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1117                            LegalizeAction Action) {
   1118     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
   1119            "Table isn't big enough!");
   1120     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
   1121   }
   1122 
   1123   /// setIndexedLoadAction - Indicate that the specified indexed load does or
   1124   /// does not work with the specified type and indicate what to do abort
   1125   /// it. NOTE: All indexed mode loads are initialized to Expand in
   1126   /// TargetLowering.cpp
   1127   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1128                             LegalizeAction Action) {
   1129     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1130            (unsigned)Action < 0xf && "Table isn't big enough!");
   1131     // Load action are kept in the upper half.
   1132     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1133     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1134   }
   1135 
   1136   /// setIndexedStoreAction - Indicate that the specified indexed store does or
   1137   /// does not work with the specified type and indicate what to do about
   1138   /// it. NOTE: All indexed mode stores are initialized to Expand in
   1139   /// TargetLowering.cpp
   1140   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1141                              LegalizeAction Action) {
   1142     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1143            (unsigned)Action < 0xf && "Table isn't big enough!");
   1144     // Store action are kept in the lower half.
   1145     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1146     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1147   }
   1148 
   1149   /// setCondCodeAction - Indicate that the specified condition code is or isn't
   1150   /// supported on the target and indicate what to do about it.
   1151   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1152                          LegalizeAction Action) {
   1153     assert(VT < MVT::LAST_VALUETYPE &&
   1154            (unsigned)CC < array_lengthof(CondCodeActions) &&
   1155            "Table isn't big enough!");
   1156     CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
   1157     CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
   1158   }
   1159 
   1160   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
   1161   /// promotion code defaults to trying a larger integer/fp until it can find
   1162   /// one that works.  If that default is insufficient, this method can be used
   1163   /// by the target to override the default.
   1164   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1165     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1166   }
   1167 
   1168   /// setTargetDAGCombine - Targets should invoke this method for each target
   1169   /// independent node that they want to provide a custom DAG combiner for by
   1170   /// implementing the PerformDAGCombine virtual method.
   1171   void setTargetDAGCombine(ISD::NodeType NT) {
   1172     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1173     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1174   }
   1175 
   1176   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
   1177   /// bytes); default is 200
   1178   void setJumpBufSize(unsigned Size) {
   1179     JumpBufSize = Size;
   1180   }
   1181 
   1182   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
   1183   /// alignment (in bytes); default is 0
   1184   void setJumpBufAlignment(unsigned Align) {
   1185     JumpBufAlignment = Align;
   1186   }
   1187 
   1188   /// setMinFunctionAlignment - Set the target's minimum function alignment (in
   1189   /// log2(bytes))
   1190   void setMinFunctionAlignment(unsigned Align) {
   1191     MinFunctionAlignment = Align;
   1192   }
   1193 
   1194   /// setPrefFunctionAlignment - Set the target's preferred function alignment.
   1195   /// This should be set if there is a performance benefit to
   1196   /// higher-than-minimum alignment (in log2(bytes))
   1197   void setPrefFunctionAlignment(unsigned Align) {
   1198     PrefFunctionAlignment = Align;
   1199   }
   1200 
   1201   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
   1202   /// alignment is zero, it means the target does not care about loop alignment.
   1203   /// The alignment is specified in log2(bytes).
   1204   void setPrefLoopAlignment(unsigned Align) {
   1205     PrefLoopAlignment = Align;
   1206   }
   1207 
   1208   /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
   1209   /// argument (in log2(bytes)).
   1210   void setMinStackArgumentAlignment(unsigned Align) {
   1211     MinStackArgumentAlignment = Align;
   1212   }
   1213 
   1214   /// setShouldFoldAtomicFences - Set if the target's implementation of the
   1215   /// atomic operation intrinsics includes locking. Default is false.
   1216   void setShouldFoldAtomicFences(bool fold) {
   1217     ShouldFoldAtomicFences = fold;
   1218   }
   1219 
   1220   /// setInsertFencesForAtomic - Set if the DAG builder should
   1221   /// automatically insert fences and reduce the order of atomic memory
   1222   /// operations to Monotonic.
   1223   void setInsertFencesForAtomic(bool fence) {
   1224     InsertFencesForAtomic = fence;
   1225   }
   1226 
   1227 public:
   1228   //===--------------------------------------------------------------------===//
   1229   // Lowering methods - These methods must be implemented by targets so that
   1230   // the SelectionDAGLowering code knows how to lower these.
   1231   //
   1232 
   1233   /// LowerFormalArguments - This hook must be implemented to lower the
   1234   /// incoming (formal) arguments, described by the Ins array, into the
   1235   /// specified DAG. The implementation should fill in the InVals array
   1236   /// with legal-type argument values, and return the resulting token
   1237   /// chain value.
   1238   ///
   1239   virtual SDValue
   1240     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   1241                          bool /*isVarArg*/,
   1242                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
   1243                          DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
   1244                          SmallVectorImpl<SDValue> &/*InVals*/) const {
   1245     llvm_unreachable("Not Implemented");
   1246   }
   1247 
   1248   struct ArgListEntry {
   1249     SDValue Node;
   1250     Type* Ty;
   1251     bool isSExt  : 1;
   1252     bool isZExt  : 1;
   1253     bool isInReg : 1;
   1254     bool isSRet  : 1;
   1255     bool isNest  : 1;
   1256     bool isByVal : 1;
   1257     uint16_t Alignment;
   1258 
   1259     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   1260       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
   1261   };
   1262   typedef std::vector<ArgListEntry> ArgListTy;
   1263 
   1264   /// CallLoweringInfo - This structure contains all information that is
   1265   /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
   1266   /// SelectionDAG builder needs to lower a call, and targets will see this
   1267   /// struct in their LowerCall implementation.
   1268   struct CallLoweringInfo {
   1269     SDValue Chain;
   1270     Type *RetTy;
   1271     bool RetSExt           : 1;
   1272     bool RetZExt           : 1;
   1273     bool IsVarArg          : 1;
   1274     bool IsInReg           : 1;
   1275     bool DoesNotReturn     : 1;
   1276     bool IsReturnValueUsed : 1;
   1277 
   1278     // IsTailCall should be modified by implementations of
   1279     // TargetLowering::LowerCall that perform tail call conversions.
   1280     bool IsTailCall;
   1281 
   1282     unsigned NumFixedArgs;
   1283     CallingConv::ID CallConv;
   1284     SDValue Callee;
   1285     ArgListTy &Args;
   1286     SelectionDAG &DAG;
   1287     DebugLoc DL;
   1288     ImmutableCallSite *CS;
   1289     SmallVector<ISD::OutputArg, 32> Outs;
   1290     SmallVector<SDValue, 32> OutVals;
   1291     SmallVector<ISD::InputArg, 32> Ins;
   1292 
   1293 
   1294     /// CallLoweringInfo - Constructs a call lowering context based on the
   1295     /// ImmutableCallSite \p cs.
   1296     CallLoweringInfo(SDValue chain, Type *retTy,
   1297                      FunctionType *FTy, bool isTailCall, SDValue callee,
   1298                      ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
   1299                      ImmutableCallSite &cs)
   1300     : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
   1301       RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
   1302       IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
   1303       DoesNotReturn(cs.doesNotReturn()),
   1304       IsReturnValueUsed(!cs.getInstruction()->use_empty()),
   1305       IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
   1306       CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
   1307       DL(dl), CS(&cs) {}
   1308 
   1309     /// CallLoweringInfo - Constructs a call lowering context based on the
   1310     /// provided call information.
   1311     CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
   1312                      bool isVarArg, bool isInReg, unsigned numFixedArgs,
   1313                      CallingConv::ID callConv, bool isTailCall,
   1314                      bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
   1315                      ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
   1316     : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
   1317       IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
   1318       IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
   1319       NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
   1320       Args(args), DAG(dag), DL(dl), CS(NULL) {}
   1321   };
   1322 
   1323   /// LowerCallTo - This function lowers an abstract call to a function into an
   1324   /// actual call.  This returns a pair of operands.  The first element is the
   1325   /// return value for the function (if RetTy is not VoidTy).  The second
   1326   /// element is the outgoing token chain. It calls LowerCall to do the actual
   1327   /// lowering.
   1328   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
   1329 
   1330   /// LowerCall - This hook must be implemented to lower calls into the
   1331   /// the specified DAG. The outgoing arguments to the call are described
   1332   /// by the Outs array, and the values to be returned by the call are
   1333   /// described by the Ins array. The implementation should fill in the
   1334   /// InVals array with legal-type return values from the call, and return
   1335   /// the resulting token chain value.
   1336   virtual SDValue
   1337     LowerCall(CallLoweringInfo &/*CLI*/,
   1338               SmallVectorImpl<SDValue> &/*InVals*/) const {
   1339     llvm_unreachable("Not Implemented");
   1340   }
   1341 
   1342   /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
   1343   virtual void HandleByVal(CCState *, unsigned &) const {}
   1344 
   1345   /// CanLowerReturn - This hook should be implemented to check whether the
   1346   /// return values described by the Outs array can fit into the return
   1347   /// registers.  If false is returned, an sret-demotion is performed.
   1348   ///
   1349   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
   1350                               MachineFunction &/*MF*/, bool /*isVarArg*/,
   1351                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   1352                LLVMContext &/*Context*/) const
   1353   {
   1354     // Return true by default to get preexisting behavior.
   1355     return true;
   1356   }
   1357 
   1358   /// LowerReturn - This hook must be implemented to lower outgoing
   1359   /// return values, described by the Outs array, into the specified
   1360   /// DAG. The implementation should return the resulting token chain
   1361   /// value.
   1362   ///
   1363   virtual SDValue
   1364     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   1365                 bool /*isVarArg*/,
   1366                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   1367                 const SmallVectorImpl<SDValue> &/*OutVals*/,
   1368                 DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
   1369     llvm_unreachable("Not Implemented");
   1370   }
   1371 
   1372   /// isUsedByReturnOnly - Return true if result of the specified node is used
   1373   /// by a return node only. It also compute and return the input chain for the
   1374   /// tail call.
   1375   /// This is used to determine whether it is possible
   1376   /// to codegen a libcall as tail call at legalization time.
   1377   virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
   1378     return false;
   1379   }
   1380 
   1381   /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
   1382   /// call instruction as a tail call. This is used by optimization passes to
   1383   /// determine if it's profitable to duplicate return instructions to enable
   1384   /// tailcall optimization.
   1385   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
   1386     return false;
   1387   }
   1388 
   1389   /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
   1390   /// sign extend a zeroext/signext integer argument or return value.
   1391   /// FIXME: Most C calling convention requires the return type to be promoted,
   1392   /// but this is not true all the time, e.g. i1 on x86-64. It is also not
   1393   /// necessary for non-C calling conventions. The frontend should handle this
   1394   /// and include all of the necessary information.
   1395   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1396                                        ISD::NodeType /*ExtendKind*/) const {
   1397     EVT MinVT = getRegisterType(Context, MVT::i32);
   1398     return VT.bitsLT(MinVT) ? MinVT : VT;
   1399   }
   1400 
   1401   /// LowerOperationWrapper - This callback is invoked by the type legalizer
   1402   /// to legalize nodes with an illegal operand type but legal result types.
   1403   /// It replaces the LowerOperation callback in the type Legalizer.
   1404   /// The reason we can not do away with LowerOperation entirely is that
   1405   /// LegalizeDAG isn't yet ready to use this callback.
   1406   /// TODO: Consider merging with ReplaceNodeResults.
   1407 
   1408   /// The target places new result values for the node in Results (their number
   1409   /// and types must exactly match those of the original return values of
   1410   /// the node), or leaves Results empty, which indicates that the node is not
   1411   /// to be custom lowered after all.
   1412   /// The default implementation calls LowerOperation.
   1413   virtual void LowerOperationWrapper(SDNode *N,
   1414                                      SmallVectorImpl<SDValue> &Results,
   1415                                      SelectionDAG &DAG) const;
   1416 
   1417   /// LowerOperation - This callback is invoked for operations that are
   1418   /// unsupported by the target, which are registered to use 'custom' lowering,
   1419   /// and whose defined values are all legal.
   1420   /// If the target has no operations that require custom lowering, it need not
   1421   /// implement this.  The default implementation of this aborts.
   1422   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   1423 
   1424   /// ReplaceNodeResults - This callback is invoked when a node result type is
   1425   /// illegal for the target, and the operation was registered to use 'custom'
   1426   /// lowering for that result type.  The target places new result values for
   1427   /// the node in Results (their number and types must exactly match those of
   1428   /// the original return values of the node), or leaves Results empty, which
   1429   /// indicates that the node is not to be custom lowered after all.
   1430   ///
   1431   /// If the target has no operations that require custom lowering, it need not
   1432   /// implement this.  The default implementation aborts.
   1433   virtual void ReplaceNodeResults(SDNode * /*N*/,
   1434                                   SmallVectorImpl<SDValue> &/*Results*/,
   1435                                   SelectionDAG &/*DAG*/) const {
   1436     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
   1437   }
   1438 
   1439   /// getTargetNodeName() - This method returns the name of a target specific
   1440   /// DAG node.
   1441   virtual const char *getTargetNodeName(unsigned Opcode) const;
   1442 
   1443   /// createFastISel - This method returns a target specific FastISel object,
   1444   /// or null if the target does not support "fast" ISel.
   1445   virtual FastISel *createFastISel(FunctionLoweringInfo &,
   1446                                    const TargetLibraryInfo *) const {
   1447     return 0;
   1448   }
   1449 
   1450   //===--------------------------------------------------------------------===//
   1451   // Inline Asm Support hooks
   1452   //
   1453 
   1454   /// ExpandInlineAsm - This hook allows the target to expand an inline asm
   1455   /// call to be explicit llvm code if it wants to.  This is useful for
   1456   /// turning simple inline asms into LLVM intrinsics, which gives the
   1457   /// compiler more information about the behavior of the code.
   1458   virtual bool ExpandInlineAsm(CallInst *) const {
   1459     return false;
   1460   }
   1461 
   1462   enum ConstraintType {
   1463     C_Register,            // Constraint represents specific register(s).
   1464     C_RegisterClass,       // Constraint represents any of register(s) in class.
   1465     C_Memory,              // Memory constraint.
   1466     C_Other,               // Something else.
   1467     C_Unknown              // Unsupported constraint.
   1468   };
   1469 
   1470   enum ConstraintWeight {
   1471     // Generic weights.
   1472     CW_Invalid  = -1,     // No match.
   1473     CW_Okay     = 0,      // Acceptable.
   1474     CW_Good     = 1,      // Good weight.
   1475     CW_Better   = 2,      // Better weight.
   1476     CW_Best     = 3,      // Best weight.
   1477 
   1478     // Well-known weights.
   1479     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   1480     CW_Register     = CW_Good,    // Register operands.
   1481     CW_Memory       = CW_Better,  // Memory operands.
   1482     CW_Constant     = CW_Best,    // Constant operand.
   1483     CW_Default      = CW_Okay     // Default or don't know type.
   1484   };
   1485 
   1486   /// AsmOperandInfo - This contains information for each constraint that we are
   1487   /// lowering.
   1488   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   1489     /// ConstraintCode - This contains the actual string for the code, like "m".
   1490     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
   1491     /// most closely matches the operand.
   1492     std::string ConstraintCode;
   1493 
   1494     /// ConstraintType - Information about the constraint code, e.g. Register,
   1495     /// RegisterClass, Memory, Other, Unknown.
   1496     TargetLowering::ConstraintType ConstraintType;
   1497 
   1498     /// CallOperandval - If this is the result output operand or a
   1499     /// clobber, this is null, otherwise it is the incoming operand to the
   1500     /// CallInst.  This gets modified as the asm is processed.
   1501     Value *CallOperandVal;
   1502 
   1503     /// ConstraintVT - The ValueType for the operand value.
   1504     EVT ConstraintVT;
   1505 
   1506     /// isMatchingInputConstraint - Return true of this is an input operand that
   1507     /// is a matching constraint like "4".
   1508     bool isMatchingInputConstraint() const;
   1509 
   1510     /// getMatchedOperand - If this is an input matching constraint, this method
   1511     /// returns the output operand it matches.
   1512     unsigned getMatchedOperand() const;
   1513 
   1514     /// Copy constructor for copying from an AsmOperandInfo.
   1515     AsmOperandInfo(const AsmOperandInfo &info)
   1516       : InlineAsm::ConstraintInfo(info),
   1517         ConstraintCode(info.ConstraintCode),
   1518         ConstraintType(info.ConstraintType),
   1519         CallOperandVal(info.CallOperandVal),
   1520         ConstraintVT(info.ConstraintVT) {
   1521     }
   1522 
   1523     /// Copy constructor for copying from a ConstraintInfo.
   1524     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
   1525       : InlineAsm::ConstraintInfo(info),
   1526         ConstraintType(TargetLowering::C_Unknown),
   1527         CallOperandVal(0), ConstraintVT(MVT::Other) {
   1528     }
   1529   };
   1530 
   1531   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   1532 
   1533   /// ParseConstraints - Split up the constraint string from the inline
   1534   /// assembly value into the specific constraints and their prefixes,
   1535   /// and also tie in the associated operand values.
   1536   /// If this returns an empty vector, and if the constraint string itself
   1537   /// isn't empty, there was an error parsing.
   1538   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
   1539 
   1540   /// Examine constraint type and operand type and determine a weight value.
   1541   /// The operand object must already have been set up with the operand type.
   1542   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   1543       AsmOperandInfo &info, int maIndex) const;
   1544 
   1545   /// Examine constraint string and operand type and determine a weight value.
   1546   /// The operand object must already have been set up with the operand type.
   1547   virtual ConstraintWeight getSingleConstraintMatchWeight(
   1548       AsmOperandInfo &info, const char *constraint) const;
   1549 
   1550   /// ComputeConstraintToUse - Determines the constraint code and constraint
   1551   /// type to use for the specific AsmOperandInfo, setting
   1552   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
   1553   /// being passed in is available, it can be passed in as Op, otherwise an
   1554   /// empty SDValue can be passed.
   1555   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   1556                                       SDValue Op,
   1557                                       SelectionDAG *DAG = 0) const;
   1558 
   1559   /// getConstraintType - Given a constraint, return the type of constraint it
   1560   /// is for this target.
   1561   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
   1562 
   1563   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
   1564   /// {edx}), return the register number and the register class for the
   1565   /// register.
   1566   ///
   1567   /// Given a register class constraint, like 'r', if this corresponds directly
   1568   /// to an LLVM register class, return a register of 0 and the register class
   1569   /// pointer.
   1570   ///
   1571   /// This should only be used for C_Register constraints.  On error,
   1572   /// this returns a register number of 0 and a null register class pointer..
   1573   virtual std::pair<unsigned, const TargetRegisterClass*>
   1574     getRegForInlineAsmConstraint(const std::string &Constraint,
   1575                                  EVT VT) const;
   1576 
   1577   /// LowerXConstraint - try to replace an X constraint, which matches anything,
   1578   /// with another that has more specific requirements based on the type of the
   1579   /// corresponding operand.  This returns null if there is no replacement to
   1580   /// make.
   1581   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   1582 
   1583   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   1584   /// vector.  If it is invalid, don't add anything to Ops.
   1585   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   1586                                             std::vector<SDValue> &Ops,
   1587                                             SelectionDAG &DAG) const;
   1588 
   1589   //===--------------------------------------------------------------------===//
   1590   // Instruction Emitting Hooks
   1591   //
   1592 
   1593   // EmitInstrWithCustomInserter - This method should be implemented by targets
   1594   // that mark instructions with the 'usesCustomInserter' flag.  These
   1595   // instructions are special in various ways, which require special support to
   1596   // insert.  The specified MachineInstr is created but not inserted into any
   1597   // basic blocks, and this method is called to expand it into a sequence of
   1598   // instructions, potentially also creating new basic blocks and control flow.
   1599   virtual MachineBasicBlock *
   1600     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
   1601 
   1602   /// AdjustInstrPostInstrSelection - This method should be implemented by
   1603   /// targets that mark instructions with the 'hasPostISelHook' flag. These
   1604   /// instructions must be adjusted after instruction selection by target hooks.
   1605   /// e.g. To fill in optional defs for ARM 's' setting instructions.
   1606   virtual void
   1607   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
   1608 
   1609   //===--------------------------------------------------------------------===//
   1610   // Addressing mode description hooks (used by LSR etc).
   1611   //
   1612 
   1613   /// AddrMode - This represents an addressing mode of:
   1614   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1615   /// If BaseGV is null,  there is no BaseGV.
   1616   /// If BaseOffs is zero, there is no base offset.
   1617   /// If HasBaseReg is false, there is no base register.
   1618   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1619   /// no scale.
   1620   ///
   1621   struct AddrMode {
   1622     GlobalValue *BaseGV;
   1623     int64_t      BaseOffs;
   1624     bool         HasBaseReg;
   1625     int64_t      Scale;
   1626     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1627   };
   1628 
   1629   /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
   1630   /// same BB as Load/Store instructions reading the address.  This allows as
   1631   /// much computation as possible to be done in the address mode for that
   1632   /// operand.  This hook lets targets also pass back when this should be done
   1633   /// on intrinsics which load/store.
   1634   virtual bool GetAddrModeArguments(IntrinsicInst *I,
   1635                                     SmallVectorImpl<Value*> &Ops,
   1636                                     Type *&AccessTy) const {
   1637     return false;
   1638   }
   1639 
   1640   /// isLegalAddressingMode - Return true if the addressing mode represented by
   1641   /// AM is legal for this target, for a load/store of the specified type.
   1642   /// The type may be VoidTy, in which case only return true if the addressing
   1643   /// mode is legal for a load/store of any legal type.
   1644   /// TODO: Handle pre/postinc as well.
   1645   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
   1646 
   1647   /// isLegalICmpImmediate - Return true if the specified immediate is legal
   1648   /// icmp immediate, that is the target has icmp instructions which can compare
   1649   /// a register against the immediate without having to materialize the
   1650   /// immediate into a register.
   1651   virtual bool isLegalICmpImmediate(int64_t) const {
   1652     return true;
   1653   }
   1654 
   1655   /// isLegalAddImmediate - Return true if the specified immediate is legal
   1656   /// add immediate, that is the target has add instructions which can add
   1657   /// a register with the immediate without having to materialize the
   1658   /// immediate into a register.
   1659   virtual bool isLegalAddImmediate(int64_t) const {
   1660     return true;
   1661   }
   1662 
   1663   /// isTruncateFree - Return true if it's free to truncate a value of
   1664   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
   1665   /// register EAX to i16 by referencing its sub-register AX.
   1666   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1667     return false;
   1668   }
   1669 
   1670   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1671     return false;
   1672   }
   1673 
   1674   /// isZExtFree - Return true if any actual instruction that defines a
   1675   /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
   1676   /// register. This does not necessarily include registers defined in
   1677   /// unknown ways, such as incoming arguments, or copies from unknown
   1678   /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
   1679   /// does not necessarily apply to truncate instructions. e.g. on x86-64,
   1680   /// all instructions that define 32-bit values implicit zero-extend the
   1681   /// result out to 64 bits.
   1682   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1683     return false;
   1684   }
   1685 
   1686   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1687     return false;
   1688   }
   1689 
   1690   /// isFNegFree - Return true if an fneg operation is free to the point where
   1691   /// it is never worthwhile to replace it with a bitwise operation.
   1692   virtual bool isFNegFree(EVT) const {
   1693     return false;
   1694   }
   1695 
   1696   /// isFAbsFree - Return true if an fneg operation is free to the point where
   1697   /// it is never worthwhile to replace it with a bitwise operation.
   1698   virtual bool isFAbsFree(EVT) const {
   1699     return false;
   1700   }
   1701 
   1702   /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
   1703   /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
   1704   /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
   1705   /// is expanded to mul + add.
   1706   virtual bool isFMAFasterThanMulAndAdd(EVT) const {
   1707     return false;
   1708   }
   1709 
   1710   /// isNarrowingProfitable - Return true if it's profitable to narrow
   1711   /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
   1712   /// from i32 to i8 but not from i32 to i16.
   1713   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
   1714     return false;
   1715   }
   1716 
   1717   //===--------------------------------------------------------------------===//
   1718   // Div utility functions
   1719   //
   1720   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   1721                          SelectionDAG &DAG) const;
   1722   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   1723                       std::vector<SDNode*>* Created) const;
   1724   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   1725                       std::vector<SDNode*>* Created) const;
   1726 
   1727 
   1728   //===--------------------------------------------------------------------===//
   1729   // Runtime Library hooks
   1730   //
   1731 
   1732   /// setLibcallName - Rename the default libcall routine name for the specified
   1733   /// libcall.
   1734   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1735     LibcallRoutineNames[Call] = Name;
   1736   }
   1737 
   1738   /// getLibcallName - Get the libcall routine name for the specified libcall.
   1739   ///
   1740   const char *getLibcallName(RTLIB::Libcall Call) const {
   1741     return LibcallRoutineNames[Call];
   1742   }
   1743 
   1744   /// setCmpLibcallCC - Override the default CondCode to be used to test the
   1745   /// result of the comparison libcall against zero.
   1746   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1747     CmpLibcallCCs[Call] = CC;
   1748   }
   1749 
   1750   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
   1751   /// the comparison libcall against zero.
   1752   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1753     return CmpLibcallCCs[Call];
   1754   }
   1755 
   1756   /// setLibcallCallingConv - Set the CallingConv that should be used for the
   1757   /// specified libcall.
   1758   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1759     LibcallCallingConvs[Call] = CC;
   1760   }
   1761 
   1762   /// getLibcallCallingConv - Get the CallingConv that should be used for the
   1763   /// specified libcall.
   1764   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1765     return LibcallCallingConvs[Call];
   1766   }
   1767 
   1768 private:
   1769   const TargetMachine &TM;
   1770   const TargetData *TD;
   1771   const TargetLoweringObjectFile &TLOF;
   1772 
   1773   /// PointerTy - The type to use for pointers, usually i32 or i64.
   1774   ///
   1775   MVT PointerTy;
   1776 
   1777   /// IsLittleEndian - True if this is a little endian target.
   1778   ///
   1779   bool IsLittleEndian;
   1780 
   1781   /// SelectIsExpensive - Tells the code generator not to expand operations
   1782   /// into sequences that use the select operations if possible.
   1783   bool SelectIsExpensive;
   1784 
   1785   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
   1786   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
   1787   /// a real cost model is in place.  If we ever optimize for size, this will be
   1788   /// set to true unconditionally.
   1789   bool IntDivIsCheap;
   1790 
   1791   /// BypassSlowDivTypes - Tells the code generator to bypass slow divide or
   1792   /// remainder instructions. For example, SlowDivBypass[i32,u8] tells the code
   1793   /// generator to bypass 32-bit signed integer div/rem with an 8-bit unsigned
   1794   /// integer div/rem when the operands are positive and less than 256.
   1795   DenseMap <Type *, Type *> BypassSlowDivTypes;
   1796 
   1797   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
   1798   /// srl/add/sra for a signed divide by power of two, and let the target handle
   1799   /// it.
   1800   bool Pow2DivIsCheap;
   1801 
   1802   /// JumpIsExpensive - Tells the code generator that it shouldn't generate
   1803   /// extra flow control instructions and should attempt to combine flow
   1804   /// control instructions via predication.
   1805   bool JumpIsExpensive;
   1806 
   1807   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
   1808   /// llvm.setjmp.  Defaults to false.
   1809   bool UseUnderscoreSetJmp;
   1810 
   1811   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
   1812   /// llvm.longjmp.  Defaults to false.
   1813   bool UseUnderscoreLongJmp;
   1814 
   1815   /// SupportJumpTables - Whether the target can generate code for jumptables.
   1816   /// If it's not true, then each jumptable must be lowered into if-then-else's.
   1817   bool SupportJumpTables;
   1818 
   1819   /// BooleanContents - Information about the contents of the high-bits in
   1820   /// boolean values held in a type wider than i1.  See getBooleanContents.
   1821   BooleanContent BooleanContents;
   1822   /// BooleanVectorContents - Information about the contents of the high-bits
   1823   /// in boolean vector values when the element type is wider than i1.  See
   1824   /// getBooleanContents.
   1825   BooleanContent BooleanVectorContents;
   1826 
   1827   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
   1828   /// total cycles or lowest register usage.
   1829   Sched::Preference SchedPreferenceInfo;
   1830 
   1831   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
   1832   unsigned JumpBufSize;
   1833 
   1834   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
   1835   /// buffers
   1836   unsigned JumpBufAlignment;
   1837 
   1838   /// MinStackArgumentAlignment - The minimum alignment that any argument
   1839   /// on the stack needs to have.
   1840   ///
   1841   unsigned MinStackArgumentAlignment;
   1842 
   1843   /// MinFunctionAlignment - The minimum function alignment (used when
   1844   /// optimizing for size, and to prevent explicitly provided alignment
   1845   /// from leading to incorrect code).
   1846   ///
   1847   unsigned MinFunctionAlignment;
   1848 
   1849   /// PrefFunctionAlignment - The preferred function alignment (used when
   1850   /// alignment unspecified and optimizing for speed).
   1851   ///
   1852   unsigned PrefFunctionAlignment;
   1853 
   1854   /// PrefLoopAlignment - The preferred loop alignment.
   1855   ///
   1856   unsigned PrefLoopAlignment;
   1857 
   1858   /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
   1859   /// be folded into the enclosed atomic intrinsic instruction by the
   1860   /// combiner.
   1861   bool ShouldFoldAtomicFences;
   1862 
   1863   /// InsertFencesForAtomic - Whether the DAG builder should automatically
   1864   /// insert fences and reduce ordering for atomics.  (This will be set for
   1865   /// for most architectures with weak memory ordering.)
   1866   bool InsertFencesForAtomic;
   1867 
   1868   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
   1869   /// specifies the register that llvm.savestack/llvm.restorestack should save
   1870   /// and restore.
   1871   unsigned StackPointerRegisterToSaveRestore;
   1872 
   1873   /// ExceptionPointerRegister - If set to a physical register, this specifies
   1874   /// the register that receives the exception address on entry to a landing
   1875   /// pad.
   1876   unsigned ExceptionPointerRegister;
   1877 
   1878   /// ExceptionSelectorRegister - If set to a physical register, this specifies
   1879   /// the register that receives the exception typeid on entry to a landing
   1880   /// pad.
   1881   unsigned ExceptionSelectorRegister;
   1882 
   1883   /// RegClassForVT - This indicates the default register class to use for
   1884   /// each ValueType the target supports natively.
   1885   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1886   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1887   EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1888 
   1889   /// RepRegClassForVT - This indicates the "representative" register class to
   1890   /// use for each ValueType the target supports natively. This information is
   1891   /// used by the scheduler to track register pressure. By default, the
   1892   /// representative register class is the largest legal super-reg register
   1893   /// class of the register class of the specified type. e.g. On x86, i8, i16,
   1894   /// and i32's representative class would be GR32.
   1895   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   1896 
   1897   /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
   1898   /// register class for each ValueType. The cost is used by the scheduler to
   1899   /// approximate register pressure.
   1900   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   1901 
   1902   /// TransformToType - For any value types we are promoting or expanding, this
   1903   /// contains the value type that we are changing to.  For Expanded types, this
   1904   /// contains one step of the expand (e.g. i64 -> i32), even if there are
   1905   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
   1906   /// by the system, this holds the same type (e.g. i32 -> i32).
   1907   EVT TransformToType[MVT::LAST_VALUETYPE];
   1908 
   1909   /// OpActions - For each operation and each value type, keep a LegalizeAction
   1910   /// that indicates how instruction selection should deal with the operation.
   1911   /// Most operations are Legal (aka, supported natively by the target), but
   1912   /// operations that are not should be described.  Note that operations on
   1913   /// non-legal value types are not described here.
   1914   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   1915 
   1916   /// LoadExtActions - For each load extension type and each value type,
   1917   /// keep a LegalizeAction that indicates how instruction selection should deal
   1918   /// with a load of a specific value type and extension type.
   1919   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
   1920 
   1921   /// TruncStoreActions - For each value type pair keep a LegalizeAction that
   1922   /// indicates whether a truncating store of a specific value type and
   1923   /// truncating type is legal.
   1924   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   1925 
   1926   /// IndexedModeActions - For each indexed mode and each value type,
   1927   /// keep a pair of LegalizeAction that indicates how instruction
   1928   /// selection should deal with the load / store.  The first dimension is the
   1929   /// value_type for the reference. The second dimension represents the various
   1930   /// modes for load store.
   1931   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   1932 
   1933   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
   1934   /// LegalizeAction that indicates how instruction selection should
   1935   /// deal with the condition code.
   1936   uint64_t CondCodeActions[ISD::SETCC_INVALID];
   1937 
   1938   ValueTypeActionImpl ValueTypeActions;
   1939 
   1940   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
   1941 
   1942   LegalizeKind
   1943   getTypeConversion(LLVMContext &Context, EVT VT) const {
   1944     // If this is a simple type, use the ComputeRegisterProp mechanism.
   1945     if (VT.isSimple()) {
   1946       assert((unsigned)VT.getSimpleVT().SimpleTy <
   1947              array_lengthof(TransformToType));
   1948       EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
   1949       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
   1950 
   1951       assert(
   1952         (!(NVT.isSimple() && LA != TypeLegal) ||
   1953          ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
   1954          && "Promote may not follow Expand or Promote");
   1955 
   1956       return LegalizeKind(LA, NVT);
   1957     }
   1958 
   1959     // Handle Extended Scalar Types.
   1960     if (!VT.isVector()) {
   1961       assert(VT.isInteger() && "Float types must be simple");
   1962       unsigned BitSize = VT.getSizeInBits();
   1963       // First promote to a power-of-two size, then expand if necessary.
   1964       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
   1965         EVT NVT = VT.getRoundIntegerType(Context);
   1966         assert(NVT != VT && "Unable to round integer VT");
   1967         LegalizeKind NextStep = getTypeConversion(Context, NVT);
   1968         // Avoid multi-step promotion.
   1969         if (NextStep.first == TypePromoteInteger) return NextStep;
   1970         // Return rounded integer type.
   1971         return LegalizeKind(TypePromoteInteger, NVT);
   1972       }
   1973 
   1974       return LegalizeKind(TypeExpandInteger,
   1975                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
   1976     }
   1977 
   1978     // Handle vector types.
   1979     unsigned NumElts = VT.getVectorNumElements();
   1980     EVT EltVT = VT.getVectorElementType();
   1981 
   1982     // Vectors with only one element are always scalarized.
   1983     if (NumElts == 1)
   1984       return LegalizeKind(TypeScalarizeVector, EltVT);
   1985 
   1986     // Try to widen vector elements until a legal type is found.
   1987     if (EltVT.isInteger()) {
   1988       // Vectors with a number of elements that is not a power of two are always
   1989       // widened, for example <3 x float> -> <4 x float>.
   1990       if (!VT.isPow2VectorType()) {
   1991         NumElts = (unsigned)NextPowerOf2(NumElts);
   1992         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
   1993         return LegalizeKind(TypeWidenVector, NVT);
   1994       }
   1995 
   1996       // Examine the element type.
   1997       LegalizeKind LK = getTypeConversion(Context, EltVT);
   1998 
   1999       // If type is to be expanded, split the vector.
   2000       //  <4 x i140> -> <2 x i140>
   2001       if (LK.first == TypeExpandInteger)
   2002         return LegalizeKind(TypeSplitVector,
   2003                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
   2004 
   2005       // Promote the integer element types until a legal vector type is found
   2006       // or until the element integer type is too big. If a legal type was not
   2007       // found, fallback to the usual mechanism of widening/splitting the
   2008       // vector.
   2009       while (1) {
   2010         // Increase the bitwidth of the element to the next pow-of-two
   2011         // (which is greater than 8 bits).
   2012         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
   2013                                  ).getRoundIntegerType(Context);
   2014 
   2015         // Stop trying when getting a non-simple element type.
   2016         // Note that vector elements may be greater than legal vector element
   2017         // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
   2018         if (!EltVT.isSimple()) break;
   2019 
   2020         // Build a new vector type and check if it is legal.
   2021         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   2022         // Found a legal promoted vector type.
   2023         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
   2024           return LegalizeKind(TypePromoteInteger,
   2025                               EVT::getVectorVT(Context, EltVT, NumElts));
   2026       }
   2027     }
   2028 
   2029     // Try to widen the vector until a legal type is found.
   2030     // If there is no wider legal type, split the vector.
   2031     while (1) {
   2032       // Round up to the next power of 2.
   2033       NumElts = (unsigned)NextPowerOf2(NumElts);
   2034 
   2035       // If there is no simple vector type with this many elements then there
   2036       // cannot be a larger legal vector type.  Note that this assumes that
   2037       // there are no skipped intermediate vector types in the simple types.
   2038       if (!EltVT.isSimple()) break;
   2039       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   2040       if (LargerVector == MVT()) break;
   2041 
   2042       // If this type is legal then widen the vector.
   2043       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   2044         return LegalizeKind(TypeWidenVector, LargerVector);
   2045     }
   2046 
   2047     // Widen odd vectors to next power of two.
   2048     if (!VT.isPow2VectorType()) {
   2049       EVT NVT = VT.getPow2VectorType(Context);
   2050       return LegalizeKind(TypeWidenVector, NVT);
   2051     }
   2052 
   2053     // Vectors with illegal element types are expanded.
   2054     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   2055     return LegalizeKind(TypeSplitVector, NVT);
   2056   }
   2057 
   2058   std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
   2059 
   2060   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
   2061   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
   2062   /// which sets a bit in this array.
   2063   unsigned char
   2064   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   2065 
   2066   /// PromoteToType - For operations that must be promoted to a specific type,
   2067   /// this holds the destination type.  This map should be sparse, so don't hold
   2068   /// it as an array.
   2069   ///
   2070   /// Targets add entries to this map with AddPromotedToType(..), clients access
   2071   /// this with getTypeToPromoteTo(..).
   2072   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   2073     PromoteToType;
   2074 
   2075   /// LibcallRoutineNames - Stores the name each libcall.
   2076   ///
   2077   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   2078 
   2079   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
   2080   /// of each of the comparison libcall against zero.
   2081   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   2082 
   2083   /// LibcallCallingConvs - Stores the CallingConv that should be used for each
   2084   /// libcall.
   2085   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   2086 
   2087 protected:
   2088   /// When lowering \@llvm.memset this field specifies the maximum number of
   2089   /// store operations that may be substituted for the call to memset. Targets
   2090   /// must set this value based on the cost threshold for that target. Targets
   2091   /// should assume that the memset will be done using as many of the largest
   2092   /// store operations first, followed by smaller ones, if necessary, per
   2093   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   2094   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   2095   /// store.  This only applies to setting a constant array of a constant size.
   2096   /// @brief Specify maximum number of store instructions per memset call.
   2097   unsigned maxStoresPerMemset;
   2098 
   2099   /// Maximum number of stores operations that may be substituted for the call
   2100   /// to memset, used for functions with OptSize attribute.
   2101   unsigned maxStoresPerMemsetOptSize;
   2102 
   2103   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   2104   /// store operations that may be substituted for a call to memcpy. Targets
   2105   /// must set this value based on the cost threshold for that target. Targets
   2106   /// should assume that the memcpy will be done using as many of the largest
   2107   /// store operations first, followed by smaller ones, if necessary, per
   2108   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   2109   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   2110   /// and one 1-byte store. This only applies to copying a constant array of
   2111   /// constant size.
   2112   /// @brief Specify maximum bytes of store instructions per memcpy call.
   2113   unsigned maxStoresPerMemcpy;
   2114 
   2115   /// Maximum number of store operations that may be substituted for a call
   2116   /// to memcpy, used for functions with OptSize attribute.
   2117   unsigned maxStoresPerMemcpyOptSize;
   2118 
   2119   /// When lowering \@llvm.memmove this field specifies the maximum number of
   2120   /// store instructions that may be substituted for a call to memmove. Targets
   2121   /// must set this value based on the cost threshold for that target. Targets
   2122   /// should assume that the memmove will be done using as many of the largest
   2123   /// store operations first, followed by smaller ones, if necessary, per
   2124   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   2125   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   2126   /// applies to copying a constant array of constant size.
   2127   /// @brief Specify maximum bytes of store instructions per memmove call.
   2128   unsigned maxStoresPerMemmove;
   2129 
   2130   /// Maximum number of store instructions that may be substituted for a call
   2131   /// to memmove, used for functions with OpSize attribute.
   2132   unsigned maxStoresPerMemmoveOptSize;
   2133 
   2134   /// This field specifies whether the target can benefit from code placement
   2135   /// optimization.
   2136   bool benefitFromCodePlacementOpt;
   2137 
   2138   /// predictableSelectIsExpensive - Tells the code generator that select is
   2139   /// more expensive than a branch if the branch is usually predicted right.
   2140   bool predictableSelectIsExpensive;
   2141 
   2142 private:
   2143   /// isLegalRC - Return true if the value types that can be represented by the
   2144   /// specified register class are all legal.
   2145   bool isLegalRC(const TargetRegisterClass *RC) const;
   2146 };
   2147 
   2148 /// GetReturnInfo - Given an LLVM IR type and return type attributes,
   2149 /// compute the return value EVTs and flags, and optionally also
   2150 /// the offsets, if the return value is being lowered to memory.
   2151 void GetReturnInfo(Type* ReturnType, Attributes attr,
   2152                    SmallVectorImpl<ISD::OutputArg> &Outs,
   2153                    const TargetLowering &TLI);
   2154 
   2155 } // end llvm namespace
   2156 
   2157 #endif
   2158