Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/MC/MCAsmInfo.h"
     16 #include "llvm/MC/MCExpr.h"
     17 #include "llvm/Target/TargetData.h"
     18 #include "llvm/Target/TargetLoweringObjectFile.h"
     19 #include "llvm/Target/TargetMachine.h"
     20 #include "llvm/Target/TargetRegisterInfo.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/DerivedTypes.h"
     23 #include "llvm/CodeGen/Analysis.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/SelectionDAG.h"
     28 #include "llvm/ADT/BitVector.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/MathExtras.h"
     33 #include <cctype>
     34 using namespace llvm;
     35 
     36 /// InitLibcallNames - Set default libcall names.
     37 ///
     38 static void InitLibcallNames(const char **Names) {
     39   Names[RTLIB::SHL_I16] = "__ashlhi3";
     40   Names[RTLIB::SHL_I32] = "__ashlsi3";
     41   Names[RTLIB::SHL_I64] = "__ashldi3";
     42   Names[RTLIB::SHL_I128] = "__ashlti3";
     43   Names[RTLIB::SRL_I16] = "__lshrhi3";
     44   Names[RTLIB::SRL_I32] = "__lshrsi3";
     45   Names[RTLIB::SRL_I64] = "__lshrdi3";
     46   Names[RTLIB::SRL_I128] = "__lshrti3";
     47   Names[RTLIB::SRA_I16] = "__ashrhi3";
     48   Names[RTLIB::SRA_I32] = "__ashrsi3";
     49   Names[RTLIB::SRA_I64] = "__ashrdi3";
     50   Names[RTLIB::SRA_I128] = "__ashrti3";
     51   Names[RTLIB::MUL_I8] = "__mulqi3";
     52   Names[RTLIB::MUL_I16] = "__mulhi3";
     53   Names[RTLIB::MUL_I32] = "__mulsi3";
     54   Names[RTLIB::MUL_I64] = "__muldi3";
     55   Names[RTLIB::MUL_I128] = "__multi3";
     56   Names[RTLIB::MULO_I32] = "__mulosi4";
     57   Names[RTLIB::MULO_I64] = "__mulodi4";
     58   Names[RTLIB::MULO_I128] = "__muloti4";
     59   Names[RTLIB::SDIV_I8] = "__divqi3";
     60   Names[RTLIB::SDIV_I16] = "__divhi3";
     61   Names[RTLIB::SDIV_I32] = "__divsi3";
     62   Names[RTLIB::SDIV_I64] = "__divdi3";
     63   Names[RTLIB::SDIV_I128] = "__divti3";
     64   Names[RTLIB::UDIV_I8] = "__udivqi3";
     65   Names[RTLIB::UDIV_I16] = "__udivhi3";
     66   Names[RTLIB::UDIV_I32] = "__udivsi3";
     67   Names[RTLIB::UDIV_I64] = "__udivdi3";
     68   Names[RTLIB::UDIV_I128] = "__udivti3";
     69   Names[RTLIB::SREM_I8] = "__modqi3";
     70   Names[RTLIB::SREM_I16] = "__modhi3";
     71   Names[RTLIB::SREM_I32] = "__modsi3";
     72   Names[RTLIB::SREM_I64] = "__moddi3";
     73   Names[RTLIB::SREM_I128] = "__modti3";
     74   Names[RTLIB::UREM_I8] = "__umodqi3";
     75   Names[RTLIB::UREM_I16] = "__umodhi3";
     76   Names[RTLIB::UREM_I32] = "__umodsi3";
     77   Names[RTLIB::UREM_I64] = "__umoddi3";
     78   Names[RTLIB::UREM_I128] = "__umodti3";
     79 
     80   // These are generally not available.
     81   Names[RTLIB::SDIVREM_I8] = 0;
     82   Names[RTLIB::SDIVREM_I16] = 0;
     83   Names[RTLIB::SDIVREM_I32] = 0;
     84   Names[RTLIB::SDIVREM_I64] = 0;
     85   Names[RTLIB::SDIVREM_I128] = 0;
     86   Names[RTLIB::UDIVREM_I8] = 0;
     87   Names[RTLIB::UDIVREM_I16] = 0;
     88   Names[RTLIB::UDIVREM_I32] = 0;
     89   Names[RTLIB::UDIVREM_I64] = 0;
     90   Names[RTLIB::UDIVREM_I128] = 0;
     91 
     92   Names[RTLIB::NEG_I32] = "__negsi2";
     93   Names[RTLIB::NEG_I64] = "__negdi2";
     94   Names[RTLIB::ADD_F32] = "__addsf3";
     95   Names[RTLIB::ADD_F64] = "__adddf3";
     96   Names[RTLIB::ADD_F80] = "__addxf3";
     97   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
     98   Names[RTLIB::SUB_F32] = "__subsf3";
     99   Names[RTLIB::SUB_F64] = "__subdf3";
    100   Names[RTLIB::SUB_F80] = "__subxf3";
    101   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    102   Names[RTLIB::MUL_F32] = "__mulsf3";
    103   Names[RTLIB::MUL_F64] = "__muldf3";
    104   Names[RTLIB::MUL_F80] = "__mulxf3";
    105   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    106   Names[RTLIB::DIV_F32] = "__divsf3";
    107   Names[RTLIB::DIV_F64] = "__divdf3";
    108   Names[RTLIB::DIV_F80] = "__divxf3";
    109   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    110   Names[RTLIB::REM_F32] = "fmodf";
    111   Names[RTLIB::REM_F64] = "fmod";
    112   Names[RTLIB::REM_F80] = "fmodl";
    113   Names[RTLIB::REM_PPCF128] = "fmodl";
    114   Names[RTLIB::FMA_F32] = "fmaf";
    115   Names[RTLIB::FMA_F64] = "fma";
    116   Names[RTLIB::FMA_F80] = "fmal";
    117   Names[RTLIB::FMA_PPCF128] = "fmal";
    118   Names[RTLIB::POWI_F32] = "__powisf2";
    119   Names[RTLIB::POWI_F64] = "__powidf2";
    120   Names[RTLIB::POWI_F80] = "__powixf2";
    121   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    122   Names[RTLIB::SQRT_F32] = "sqrtf";
    123   Names[RTLIB::SQRT_F64] = "sqrt";
    124   Names[RTLIB::SQRT_F80] = "sqrtl";
    125   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    126   Names[RTLIB::LOG_F32] = "logf";
    127   Names[RTLIB::LOG_F64] = "log";
    128   Names[RTLIB::LOG_F80] = "logl";
    129   Names[RTLIB::LOG_PPCF128] = "logl";
    130   Names[RTLIB::LOG2_F32] = "log2f";
    131   Names[RTLIB::LOG2_F64] = "log2";
    132   Names[RTLIB::LOG2_F80] = "log2l";
    133   Names[RTLIB::LOG2_PPCF128] = "log2l";
    134   Names[RTLIB::LOG10_F32] = "log10f";
    135   Names[RTLIB::LOG10_F64] = "log10";
    136   Names[RTLIB::LOG10_F80] = "log10l";
    137   Names[RTLIB::LOG10_PPCF128] = "log10l";
    138   Names[RTLIB::EXP_F32] = "expf";
    139   Names[RTLIB::EXP_F64] = "exp";
    140   Names[RTLIB::EXP_F80] = "expl";
    141   Names[RTLIB::EXP_PPCF128] = "expl";
    142   Names[RTLIB::EXP2_F32] = "exp2f";
    143   Names[RTLIB::EXP2_F64] = "exp2";
    144   Names[RTLIB::EXP2_F80] = "exp2l";
    145   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    146   Names[RTLIB::SIN_F32] = "sinf";
    147   Names[RTLIB::SIN_F64] = "sin";
    148   Names[RTLIB::SIN_F80] = "sinl";
    149   Names[RTLIB::SIN_PPCF128] = "sinl";
    150   Names[RTLIB::COS_F32] = "cosf";
    151   Names[RTLIB::COS_F64] = "cos";
    152   Names[RTLIB::COS_F80] = "cosl";
    153   Names[RTLIB::COS_PPCF128] = "cosl";
    154   Names[RTLIB::POW_F32] = "powf";
    155   Names[RTLIB::POW_F64] = "pow";
    156   Names[RTLIB::POW_F80] = "powl";
    157   Names[RTLIB::POW_PPCF128] = "powl";
    158   Names[RTLIB::CEIL_F32] = "ceilf";
    159   Names[RTLIB::CEIL_F64] = "ceil";
    160   Names[RTLIB::CEIL_F80] = "ceill";
    161   Names[RTLIB::CEIL_PPCF128] = "ceill";
    162   Names[RTLIB::TRUNC_F32] = "truncf";
    163   Names[RTLIB::TRUNC_F64] = "trunc";
    164   Names[RTLIB::TRUNC_F80] = "truncl";
    165   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    166   Names[RTLIB::RINT_F32] = "rintf";
    167   Names[RTLIB::RINT_F64] = "rint";
    168   Names[RTLIB::RINT_F80] = "rintl";
    169   Names[RTLIB::RINT_PPCF128] = "rintl";
    170   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    171   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    172   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    173   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    174   Names[RTLIB::FLOOR_F32] = "floorf";
    175   Names[RTLIB::FLOOR_F64] = "floor";
    176   Names[RTLIB::FLOOR_F80] = "floorl";
    177   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    178   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    179   Names[RTLIB::COPYSIGN_F64] = "copysign";
    180   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    181   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    182   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    183   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    184   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    185   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    186   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    187   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
    188   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    189   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
    190   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
    191   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
    192   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    193   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    194   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    195   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
    196   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
    197   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    198   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    199   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    200   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    201   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    202   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    203   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
    204   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    205   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    206   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
    207   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
    208   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    209   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    210   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    211   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
    212   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
    213   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    214   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    215   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    216   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    217   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    218   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    219   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    220   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    221   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    222   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    223   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    224   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    225   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
    226   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    227   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    228   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    229   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    230   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    231   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    232   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    233   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    234   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    235   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    236   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    237   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
    238   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    239   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    240   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    241   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    242   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    243   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    244   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    245   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    246   Names[RTLIB::OEQ_F32] = "__eqsf2";
    247   Names[RTLIB::OEQ_F64] = "__eqdf2";
    248   Names[RTLIB::UNE_F32] = "__nesf2";
    249   Names[RTLIB::UNE_F64] = "__nedf2";
    250   Names[RTLIB::OGE_F32] = "__gesf2";
    251   Names[RTLIB::OGE_F64] = "__gedf2";
    252   Names[RTLIB::OLT_F32] = "__ltsf2";
    253   Names[RTLIB::OLT_F64] = "__ltdf2";
    254   Names[RTLIB::OLE_F32] = "__lesf2";
    255   Names[RTLIB::OLE_F64] = "__ledf2";
    256   Names[RTLIB::OGT_F32] = "__gtsf2";
    257   Names[RTLIB::OGT_F64] = "__gtdf2";
    258   Names[RTLIB::UO_F32] = "__unordsf2";
    259   Names[RTLIB::UO_F64] = "__unorddf2";
    260   Names[RTLIB::O_F32] = "__unordsf2";
    261   Names[RTLIB::O_F64] = "__unorddf2";
    262   Names[RTLIB::MEMCPY] = "memcpy";
    263   Names[RTLIB::MEMMOVE] = "memmove";
    264   Names[RTLIB::MEMSET] = "memset";
    265   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    266   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    267   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    268   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    269   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    270   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    271   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    272   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    273   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    274   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    275   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    276   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    277   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    278   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    279   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    280   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    281   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    282   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    283   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    284   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    285   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    286   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    287   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    288   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    289   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    290   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    291   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    292   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    293   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    294   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    295   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    296   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    297   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    298 }
    299 
    300 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    301 ///
    302 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    303   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    304     CCs[i] = CallingConv::C;
    305   }
    306 }
    307 
    308 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    309 /// UNKNOWN_LIBCALL if there is none.
    310 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    311   if (OpVT == MVT::f32) {
    312     if (RetVT == MVT::f64)
    313       return FPEXT_F32_F64;
    314   }
    315 
    316   return UNKNOWN_LIBCALL;
    317 }
    318 
    319 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    320 /// UNKNOWN_LIBCALL if there is none.
    321 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    322   if (RetVT == MVT::f32) {
    323     if (OpVT == MVT::f64)
    324       return FPROUND_F64_F32;
    325     if (OpVT == MVT::f80)
    326       return FPROUND_F80_F32;
    327     if (OpVT == MVT::ppcf128)
    328       return FPROUND_PPCF128_F32;
    329   } else if (RetVT == MVT::f64) {
    330     if (OpVT == MVT::f80)
    331       return FPROUND_F80_F64;
    332     if (OpVT == MVT::ppcf128)
    333       return FPROUND_PPCF128_F64;
    334   }
    335 
    336   return UNKNOWN_LIBCALL;
    337 }
    338 
    339 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    340 /// UNKNOWN_LIBCALL if there is none.
    341 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    342   if (OpVT == MVT::f32) {
    343     if (RetVT == MVT::i8)
    344       return FPTOSINT_F32_I8;
    345     if (RetVT == MVT::i16)
    346       return FPTOSINT_F32_I16;
    347     if (RetVT == MVT::i32)
    348       return FPTOSINT_F32_I32;
    349     if (RetVT == MVT::i64)
    350       return FPTOSINT_F32_I64;
    351     if (RetVT == MVT::i128)
    352       return FPTOSINT_F32_I128;
    353   } else if (OpVT == MVT::f64) {
    354     if (RetVT == MVT::i8)
    355       return FPTOSINT_F64_I8;
    356     if (RetVT == MVT::i16)
    357       return FPTOSINT_F64_I16;
    358     if (RetVT == MVT::i32)
    359       return FPTOSINT_F64_I32;
    360     if (RetVT == MVT::i64)
    361       return FPTOSINT_F64_I64;
    362     if (RetVT == MVT::i128)
    363       return FPTOSINT_F64_I128;
    364   } else if (OpVT == MVT::f80) {
    365     if (RetVT == MVT::i32)
    366       return FPTOSINT_F80_I32;
    367     if (RetVT == MVT::i64)
    368       return FPTOSINT_F80_I64;
    369     if (RetVT == MVT::i128)
    370       return FPTOSINT_F80_I128;
    371   } else if (OpVT == MVT::ppcf128) {
    372     if (RetVT == MVT::i32)
    373       return FPTOSINT_PPCF128_I32;
    374     if (RetVT == MVT::i64)
    375       return FPTOSINT_PPCF128_I64;
    376     if (RetVT == MVT::i128)
    377       return FPTOSINT_PPCF128_I128;
    378   }
    379   return UNKNOWN_LIBCALL;
    380 }
    381 
    382 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    383 /// UNKNOWN_LIBCALL if there is none.
    384 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    385   if (OpVT == MVT::f32) {
    386     if (RetVT == MVT::i8)
    387       return FPTOUINT_F32_I8;
    388     if (RetVT == MVT::i16)
    389       return FPTOUINT_F32_I16;
    390     if (RetVT == MVT::i32)
    391       return FPTOUINT_F32_I32;
    392     if (RetVT == MVT::i64)
    393       return FPTOUINT_F32_I64;
    394     if (RetVT == MVT::i128)
    395       return FPTOUINT_F32_I128;
    396   } else if (OpVT == MVT::f64) {
    397     if (RetVT == MVT::i8)
    398       return FPTOUINT_F64_I8;
    399     if (RetVT == MVT::i16)
    400       return FPTOUINT_F64_I16;
    401     if (RetVT == MVT::i32)
    402       return FPTOUINT_F64_I32;
    403     if (RetVT == MVT::i64)
    404       return FPTOUINT_F64_I64;
    405     if (RetVT == MVT::i128)
    406       return FPTOUINT_F64_I128;
    407   } else if (OpVT == MVT::f80) {
    408     if (RetVT == MVT::i32)
    409       return FPTOUINT_F80_I32;
    410     if (RetVT == MVT::i64)
    411       return FPTOUINT_F80_I64;
    412     if (RetVT == MVT::i128)
    413       return FPTOUINT_F80_I128;
    414   } else if (OpVT == MVT::ppcf128) {
    415     if (RetVT == MVT::i32)
    416       return FPTOUINT_PPCF128_I32;
    417     if (RetVT == MVT::i64)
    418       return FPTOUINT_PPCF128_I64;
    419     if (RetVT == MVT::i128)
    420       return FPTOUINT_PPCF128_I128;
    421   }
    422   return UNKNOWN_LIBCALL;
    423 }
    424 
    425 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    426 /// UNKNOWN_LIBCALL if there is none.
    427 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    428   if (OpVT == MVT::i32) {
    429     if (RetVT == MVT::f32)
    430       return SINTTOFP_I32_F32;
    431     else if (RetVT == MVT::f64)
    432       return SINTTOFP_I32_F64;
    433     else if (RetVT == MVT::f80)
    434       return SINTTOFP_I32_F80;
    435     else if (RetVT == MVT::ppcf128)
    436       return SINTTOFP_I32_PPCF128;
    437   } else if (OpVT == MVT::i64) {
    438     if (RetVT == MVT::f32)
    439       return SINTTOFP_I64_F32;
    440     else if (RetVT == MVT::f64)
    441       return SINTTOFP_I64_F64;
    442     else if (RetVT == MVT::f80)
    443       return SINTTOFP_I64_F80;
    444     else if (RetVT == MVT::ppcf128)
    445       return SINTTOFP_I64_PPCF128;
    446   } else if (OpVT == MVT::i128) {
    447     if (RetVT == MVT::f32)
    448       return SINTTOFP_I128_F32;
    449     else if (RetVT == MVT::f64)
    450       return SINTTOFP_I128_F64;
    451     else if (RetVT == MVT::f80)
    452       return SINTTOFP_I128_F80;
    453     else if (RetVT == MVT::ppcf128)
    454       return SINTTOFP_I128_PPCF128;
    455   }
    456   return UNKNOWN_LIBCALL;
    457 }
    458 
    459 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    460 /// UNKNOWN_LIBCALL if there is none.
    461 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    462   if (OpVT == MVT::i32) {
    463     if (RetVT == MVT::f32)
    464       return UINTTOFP_I32_F32;
    465     else if (RetVT == MVT::f64)
    466       return UINTTOFP_I32_F64;
    467     else if (RetVT == MVT::f80)
    468       return UINTTOFP_I32_F80;
    469     else if (RetVT == MVT::ppcf128)
    470       return UINTTOFP_I32_PPCF128;
    471   } else if (OpVT == MVT::i64) {
    472     if (RetVT == MVT::f32)
    473       return UINTTOFP_I64_F32;
    474     else if (RetVT == MVT::f64)
    475       return UINTTOFP_I64_F64;
    476     else if (RetVT == MVT::f80)
    477       return UINTTOFP_I64_F80;
    478     else if (RetVT == MVT::ppcf128)
    479       return UINTTOFP_I64_PPCF128;
    480   } else if (OpVT == MVT::i128) {
    481     if (RetVT == MVT::f32)
    482       return UINTTOFP_I128_F32;
    483     else if (RetVT == MVT::f64)
    484       return UINTTOFP_I128_F64;
    485     else if (RetVT == MVT::f80)
    486       return UINTTOFP_I128_F80;
    487     else if (RetVT == MVT::ppcf128)
    488       return UINTTOFP_I128_PPCF128;
    489   }
    490   return UNKNOWN_LIBCALL;
    491 }
    492 
    493 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    494 ///
    495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    496   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    497   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    498   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    499   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    500   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    501   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    502   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    503   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    504   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    505   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    506   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    507   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    508   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    509   CCs[RTLIB::UO_F32] = ISD::SETNE;
    510   CCs[RTLIB::UO_F64] = ISD::SETNE;
    511   CCs[RTLIB::O_F32] = ISD::SETEQ;
    512   CCs[RTLIB::O_F64] = ISD::SETEQ;
    513 }
    514 
    515 /// NOTE: The constructor takes ownership of TLOF.
    516 TargetLowering::TargetLowering(const TargetMachine &tm,
    517                                const TargetLoweringObjectFile *tlof)
    518   : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
    519   // All operations default to being supported.
    520   memset(OpActions, 0, sizeof(OpActions));
    521   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    522   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    523   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    524   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    525 
    526   // Set default actions for various operations.
    527   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
    528     // Default all indexed load / store to expand.
    529     for (unsigned IM = (unsigned)ISD::PRE_INC;
    530          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    531       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
    532       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
    533     }
    534 
    535     // These operations default to expand.
    536     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
    537     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
    538   }
    539 
    540   // Most targets ignore the @llvm.prefetch intrinsic.
    541   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    542 
    543   // ConstantFP nodes default to expand.  Targets can either change this to
    544   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    545   // to optimize expansions for certain constants.
    546   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
    547   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    548   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    549   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    550 
    551   // These library functions default to expand.
    552   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
    553   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
    554   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
    555   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
    556   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
    557   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
    558   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
    559   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
    560   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
    561   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
    562   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
    563   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
    564   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
    565   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
    566   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
    567   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
    568   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
    569   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
    570   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
    571   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
    572   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
    573   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
    574   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
    575   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
    576   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
    577   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
    578   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    579   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
    580   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
    581   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
    582 
    583   // Default ISD::TRAP to expand (which turns it into abort).
    584   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    585 
    586   IsLittleEndian = TD->isLittleEndian();
    587   PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
    588   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
    589   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
    590   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
    591   maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
    592     = maxStoresPerMemmoveOptSize = 4;
    593   benefitFromCodePlacementOpt = false;
    594   UseUnderscoreSetJmp = false;
    595   UseUnderscoreLongJmp = false;
    596   SelectIsExpensive = false;
    597   IntDivIsCheap = false;
    598   Pow2DivIsCheap = false;
    599   JumpIsExpensive = false;
    600   predictableSelectIsExpensive = false;
    601   StackPointerRegisterToSaveRestore = 0;
    602   ExceptionPointerRegister = 0;
    603   ExceptionSelectorRegister = 0;
    604   BooleanContents = UndefinedBooleanContent;
    605   BooleanVectorContents = UndefinedBooleanContent;
    606   SchedPreferenceInfo = Sched::ILP;
    607   JumpBufSize = 0;
    608   JumpBufAlignment = 0;
    609   MinFunctionAlignment = 0;
    610   PrefFunctionAlignment = 0;
    611   PrefLoopAlignment = 0;
    612   MinStackArgumentAlignment = 1;
    613   ShouldFoldAtomicFences = false;
    614   InsertFencesForAtomic = false;
    615   SupportJumpTables = true;
    616 
    617   InitLibcallNames(LibcallRoutineNames);
    618   InitCmpLibcallCCs(CmpLibcallCCs);
    619   InitLibcallCallingConvs(LibcallCallingConvs);
    620 }
    621 
    622 TargetLowering::~TargetLowering() {
    623   delete &TLOF;
    624 }
    625 
    626 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
    627   return MVT::getIntegerVT(8*TD->getPointerSize());
    628 }
    629 
    630 /// canOpTrap - Returns true if the operation can trap for the value type.
    631 /// VT must be a legal type.
    632 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
    633   assert(isTypeLegal(VT));
    634   switch (Op) {
    635   default:
    636     return false;
    637   case ISD::FDIV:
    638   case ISD::FREM:
    639   case ISD::SDIV:
    640   case ISD::UDIV:
    641   case ISD::SREM:
    642   case ISD::UREM:
    643     return true;
    644   }
    645 }
    646 
    647 
    648 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
    649                                           unsigned &NumIntermediates,
    650                                           EVT &RegisterVT,
    651                                           TargetLowering *TLI) {
    652   // Figure out the right, legal destination reg to copy into.
    653   unsigned NumElts = VT.getVectorNumElements();
    654   MVT EltTy = VT.getVectorElementType();
    655 
    656   unsigned NumVectorRegs = 1;
    657 
    658   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    659   // could break down into LHS/RHS like LegalizeDAG does.
    660   if (!isPowerOf2_32(NumElts)) {
    661     NumVectorRegs = NumElts;
    662     NumElts = 1;
    663   }
    664 
    665   // Divide the input until we get to a supported size.  This will always
    666   // end with a scalar if the target doesn't support vectors.
    667   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
    668     NumElts >>= 1;
    669     NumVectorRegs <<= 1;
    670   }
    671 
    672   NumIntermediates = NumVectorRegs;
    673 
    674   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
    675   if (!TLI->isTypeLegal(NewVT))
    676     NewVT = EltTy;
    677   IntermediateVT = NewVT;
    678 
    679   unsigned NewVTSize = NewVT.getSizeInBits();
    680 
    681   // Convert sizes such as i33 to i64.
    682   if (!isPowerOf2_32(NewVTSize))
    683     NewVTSize = NextPowerOf2(NewVTSize);
    684 
    685   EVT DestVT = TLI->getRegisterType(NewVT);
    686   RegisterVT = DestVT;
    687   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
    688     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    689 
    690   // Otherwise, promotion or legal types use the same number of registers as
    691   // the vector decimated to the appropriate level.
    692   return NumVectorRegs;
    693 }
    694 
    695 /// isLegalRC - Return true if the value types that can be represented by the
    696 /// specified register class are all legal.
    697 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
    698   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
    699        I != E; ++I) {
    700     if (isTypeLegal(*I))
    701       return true;
    702   }
    703   return false;
    704 }
    705 
    706 /// findRepresentativeClass - Return the largest legal super-reg register class
    707 /// of the register class for the specified type and its associated "cost".
    708 std::pair<const TargetRegisterClass*, uint8_t>
    709 TargetLowering::findRepresentativeClass(EVT VT) const {
    710   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
    711   const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
    712   if (!RC)
    713     return std::make_pair(RC, 0);
    714 
    715   // Compute the set of all super-register classes.
    716   BitVector SuperRegRC(TRI->getNumRegClasses());
    717   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
    718     SuperRegRC.setBitsInMask(RCI.getMask());
    719 
    720   // Find the first legal register class with the largest spill size.
    721   const TargetRegisterClass *BestRC = RC;
    722   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
    723     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
    724     // We want the largest possible spill size.
    725     if (SuperRC->getSize() <= BestRC->getSize())
    726       continue;
    727     if (!isLegalRC(SuperRC))
    728       continue;
    729     BestRC = SuperRC;
    730   }
    731   return std::make_pair(BestRC, 1);
    732 }
    733 
    734 /// computeRegisterProperties - Once all of the register classes are added,
    735 /// this allows us to compute derived properties we expose.
    736 void TargetLowering::computeRegisterProperties() {
    737   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
    738          "Too many value types for ValueTypeActions to hold!");
    739 
    740   // Everything defaults to needing one register.
    741   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    742     NumRegistersForVT[i] = 1;
    743     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
    744   }
    745   // ...except isVoid, which doesn't need any registers.
    746   NumRegistersForVT[MVT::isVoid] = 0;
    747 
    748   // Find the largest integer register class.
    749   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
    750   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
    751     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
    752 
    753   // Every integer value type larger than this largest register takes twice as
    754   // many registers to represent as the previous ValueType.
    755   for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
    756     EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
    757     if (!ExpandedVT.isInteger())
    758       break;
    759     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
    760     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
    761     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
    762     ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
    763   }
    764 
    765   // Inspect all of the ValueType's smaller than the largest integer
    766   // register to see which ones need promotion.
    767   unsigned LegalIntReg = LargestIntReg;
    768   for (unsigned IntReg = LargestIntReg - 1;
    769        IntReg >= (unsigned)MVT::i1; --IntReg) {
    770     EVT IVT = (MVT::SimpleValueType)IntReg;
    771     if (isTypeLegal(IVT)) {
    772       LegalIntReg = IntReg;
    773     } else {
    774       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
    775         (const MVT::SimpleValueType)LegalIntReg;
    776       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
    777     }
    778   }
    779 
    780   // ppcf128 type is really two f64's.
    781   if (!isTypeLegal(MVT::ppcf128)) {
    782     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
    783     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
    784     TransformToType[MVT::ppcf128] = MVT::f64;
    785     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
    786   }
    787 
    788   // Decide how to handle f64. If the target does not have native f64 support,
    789   // expand it to i64 and we will be generating soft float library calls.
    790   if (!isTypeLegal(MVT::f64)) {
    791     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
    792     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
    793     TransformToType[MVT::f64] = MVT::i64;
    794     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
    795   }
    796 
    797   // Decide how to handle f32. If the target does not have native support for
    798   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
    799   if (!isTypeLegal(MVT::f32)) {
    800     if (isTypeLegal(MVT::f64)) {
    801       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
    802       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
    803       TransformToType[MVT::f32] = MVT::f64;
    804       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
    805     } else {
    806       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
    807       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
    808       TransformToType[MVT::f32] = MVT::i32;
    809       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
    810     }
    811   }
    812 
    813   // Loop over all of the vector value types to see which need transformations.
    814   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
    815        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    816     MVT VT = (MVT::SimpleValueType)i;
    817     if (isTypeLegal(VT)) continue;
    818 
    819     // Determine if there is a legal wider type.  If so, we should promote to
    820     // that wider vector type.
    821     EVT EltVT = VT.getVectorElementType();
    822     unsigned NElts = VT.getVectorNumElements();
    823     if (NElts != 1) {
    824       bool IsLegalWiderType = false;
    825       // First try to promote the elements of integer vectors. If no legal
    826       // promotion was found, fallback to the widen-vector method.
    827       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    828         EVT SVT = (MVT::SimpleValueType)nVT;
    829         // Promote vectors of integers to vectors with the same number
    830         // of elements, with a wider element type.
    831         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
    832             && SVT.getVectorNumElements() == NElts &&
    833             isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
    834           TransformToType[i] = SVT;
    835           RegisterTypeForVT[i] = SVT;
    836           NumRegistersForVT[i] = 1;
    837           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
    838           IsLegalWiderType = true;
    839           break;
    840         }
    841       }
    842 
    843       if (IsLegalWiderType) continue;
    844 
    845       // Try to widen the vector.
    846       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    847         EVT SVT = (MVT::SimpleValueType)nVT;
    848         if (SVT.getVectorElementType() == EltVT &&
    849             SVT.getVectorNumElements() > NElts &&
    850             isTypeLegal(SVT)) {
    851           TransformToType[i] = SVT;
    852           RegisterTypeForVT[i] = SVT;
    853           NumRegistersForVT[i] = 1;
    854           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
    855           IsLegalWiderType = true;
    856           break;
    857         }
    858       }
    859       if (IsLegalWiderType) continue;
    860     }
    861 
    862     MVT IntermediateVT;
    863     EVT RegisterVT;
    864     unsigned NumIntermediates;
    865     NumRegistersForVT[i] =
    866       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
    867                                 RegisterVT, this);
    868     RegisterTypeForVT[i] = RegisterVT;
    869 
    870     EVT NVT = VT.getPow2VectorType();
    871     if (NVT == VT) {
    872       // Type is already a power of 2.  The default action is to split.
    873       TransformToType[i] = MVT::Other;
    874       unsigned NumElts = VT.getVectorNumElements();
    875       ValueTypeActions.setTypeAction(VT,
    876             NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
    877     } else {
    878       TransformToType[i] = NVT;
    879       ValueTypeActions.setTypeAction(VT, TypeWidenVector);
    880     }
    881   }
    882 
    883   // Determine the 'representative' register class for each value type.
    884   // An representative register class is the largest (meaning one which is
    885   // not a sub-register class / subreg register class) legal register class for
    886   // a group of value types. For example, on i386, i8, i16, and i32
    887   // representative would be GR32; while on x86_64 it's GR64.
    888   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    889     const TargetRegisterClass* RRC;
    890     uint8_t Cost;
    891     tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
    892     RepRegClassForVT[i] = RRC;
    893     RepRegClassCostForVT[i] = Cost;
    894   }
    895 }
    896 
    897 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
    898   return NULL;
    899 }
    900 
    901 EVT TargetLowering::getSetCCResultType(EVT VT) const {
    902   assert(!VT.isVector() && "No default SetCC type for vectors!");
    903   return PointerTy.SimpleTy;
    904 }
    905 
    906 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
    907   return MVT::i32; // return the default value
    908 }
    909 
    910 /// getVectorTypeBreakdown - Vector types are broken down into some number of
    911 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
    912 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
    913 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
    914 ///
    915 /// This method returns the number of registers needed, and the VT for each
    916 /// register.  It also returns the VT and quantity of the intermediate values
    917 /// before they are promoted/expanded.
    918 ///
    919 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    920                                                 EVT &IntermediateVT,
    921                                                 unsigned &NumIntermediates,
    922                                                 EVT &RegisterVT) const {
    923   unsigned NumElts = VT.getVectorNumElements();
    924 
    925   // If there is a wider vector type with the same element type as this one,
    926   // or a promoted vector type that has the same number of elements which
    927   // are wider, then we should convert to that legal vector type.
    928   // This handles things like <2 x float> -> <4 x float> and
    929   // <4 x i1> -> <4 x i32>.
    930   LegalizeTypeAction TA = getTypeAction(Context, VT);
    931   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
    932     RegisterVT = getTypeToTransformTo(Context, VT);
    933     if (isTypeLegal(RegisterVT)) {
    934       IntermediateVT = RegisterVT;
    935       NumIntermediates = 1;
    936       return 1;
    937     }
    938   }
    939 
    940   // Figure out the right, legal destination reg to copy into.
    941   EVT EltTy = VT.getVectorElementType();
    942 
    943   unsigned NumVectorRegs = 1;
    944 
    945   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    946   // could break down into LHS/RHS like LegalizeDAG does.
    947   if (!isPowerOf2_32(NumElts)) {
    948     NumVectorRegs = NumElts;
    949     NumElts = 1;
    950   }
    951 
    952   // Divide the input until we get to a supported size.  This will always
    953   // end with a scalar if the target doesn't support vectors.
    954   while (NumElts > 1 && !isTypeLegal(
    955                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
    956     NumElts >>= 1;
    957     NumVectorRegs <<= 1;
    958   }
    959 
    960   NumIntermediates = NumVectorRegs;
    961 
    962   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
    963   if (!isTypeLegal(NewVT))
    964     NewVT = EltTy;
    965   IntermediateVT = NewVT;
    966 
    967   EVT DestVT = getRegisterType(Context, NewVT);
    968   RegisterVT = DestVT;
    969   unsigned NewVTSize = NewVT.getSizeInBits();
    970 
    971   // Convert sizes such as i33 to i64.
    972   if (!isPowerOf2_32(NewVTSize))
    973     NewVTSize = NextPowerOf2(NewVTSize);
    974 
    975   if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
    976     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    977 
    978   // Otherwise, promotion or legal types use the same number of registers as
    979   // the vector decimated to the appropriate level.
    980   return NumVectorRegs;
    981 }
    982 
    983 /// Get the EVTs and ArgFlags collections that represent the legalized return
    984 /// type of the given function.  This does not require a DAG or a return value,
    985 /// and is suitable for use before any DAGs for the function are constructed.
    986 /// TODO: Move this out of TargetLowering.cpp.
    987 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
    988                          SmallVectorImpl<ISD::OutputArg> &Outs,
    989                          const TargetLowering &TLI) {
    990   SmallVector<EVT, 4> ValueVTs;
    991   ComputeValueVTs(TLI, ReturnType, ValueVTs);
    992   unsigned NumValues = ValueVTs.size();
    993   if (NumValues == 0) return;
    994 
    995   for (unsigned j = 0, f = NumValues; j != f; ++j) {
    996     EVT VT = ValueVTs[j];
    997     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
    998 
    999     if (attr & Attribute::SExt)
   1000       ExtendKind = ISD::SIGN_EXTEND;
   1001     else if (attr & Attribute::ZExt)
   1002       ExtendKind = ISD::ZERO_EXTEND;
   1003 
   1004     // FIXME: C calling convention requires the return type to be promoted to
   1005     // at least 32-bit. But this is not necessary for non-C calling
   1006     // conventions. The frontend should mark functions whose return values
   1007     // require promoting with signext or zeroext attributes.
   1008     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1009       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1010       if (VT.bitsLT(MinVT))
   1011         VT = MinVT;
   1012     }
   1013 
   1014     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1015     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1016 
   1017     // 'inreg' on function refers to return value
   1018     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1019     if (attr & Attribute::InReg)
   1020       Flags.setInReg();
   1021 
   1022     // Propagate extension type if any
   1023     if (attr & Attribute::SExt)
   1024       Flags.setSExt();
   1025     else if (attr & Attribute::ZExt)
   1026       Flags.setZExt();
   1027 
   1028     for (unsigned i = 0; i < NumParts; ++i) {
   1029       Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
   1030     }
   1031   }
   1032 }
   1033 
   1034 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1035 /// function arguments in the caller parameter area.  This is the actual
   1036 /// alignment, not its logarithm.
   1037 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1038   return TD->getCallFrameTypeAlignment(Ty);
   1039 }
   1040 
   1041 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1042 /// current function.  The returned value is a member of the
   1043 /// MachineJumpTableInfo::JTEntryKind enum.
   1044 unsigned TargetLowering::getJumpTableEncoding() const {
   1045   // In non-pic modes, just use the address of a block.
   1046   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   1047     return MachineJumpTableInfo::EK_BlockAddress;
   1048 
   1049   // In PIC mode, if the target supports a GPRel32 directive, use it.
   1050   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
   1051     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
   1052 
   1053   // Otherwise, use a label difference.
   1054   return MachineJumpTableInfo::EK_LabelDifference32;
   1055 }
   1056 
   1057 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1058                                                  SelectionDAG &DAG) const {
   1059   // If our PIC model is GP relative, use the global offset table as the base.
   1060   unsigned JTEncoding = getJumpTableEncoding();
   1061 
   1062   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
   1063       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
   1064     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
   1065 
   1066   return Table;
   1067 }
   1068 
   1069 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1070 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1071 /// MCExpr.
   1072 const MCExpr *
   1073 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   1074                                              unsigned JTI,MCContext &Ctx) const{
   1075   // The normal PIC reloc base is the label at the start of the jump table.
   1076   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
   1077 }
   1078 
   1079 bool
   1080 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   1081   // Assume that everything is safe in static mode.
   1082   if (getTargetMachine().getRelocationModel() == Reloc::Static)
   1083     return true;
   1084 
   1085   // In dynamic-no-pic mode, assume that known defined values are safe.
   1086   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
   1087       GA &&
   1088       !GA->getGlobal()->isDeclaration() &&
   1089       !GA->getGlobal()->isWeakForLinker())
   1090     return true;
   1091 
   1092   // Otherwise assume nothing is safe.
   1093   return false;
   1094 }
   1095 
   1096 //===----------------------------------------------------------------------===//
   1097 //  Optimization Methods
   1098 //===----------------------------------------------------------------------===//
   1099 
   1100 /// ShrinkDemandedConstant - Check to see if the specified operand of the
   1101 /// specified instruction is a constant integer.  If so, check to see if there
   1102 /// are any bits set in the constant that are not demanded.  If so, shrink the
   1103 /// constant and return true.
   1104 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
   1105                                                         const APInt &Demanded) {
   1106   DebugLoc dl = Op.getDebugLoc();
   1107 
   1108   // FIXME: ISD::SELECT, ISD::SELECT_CC
   1109   switch (Op.getOpcode()) {
   1110   default: break;
   1111   case ISD::XOR:
   1112   case ISD::AND:
   1113   case ISD::OR: {
   1114     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   1115     if (!C) return false;
   1116 
   1117     if (Op.getOpcode() == ISD::XOR &&
   1118         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
   1119       return false;
   1120 
   1121     // if we can expand it to have all bits set, do it
   1122     if (C->getAPIntValue().intersects(~Demanded)) {
   1123       EVT VT = Op.getValueType();
   1124       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
   1125                                 DAG.getConstant(Demanded &
   1126                                                 C->getAPIntValue(),
   1127                                                 VT));
   1128       return CombineTo(Op, New);
   1129     }
   1130 
   1131     break;
   1132   }
   1133   }
   1134 
   1135   return false;
   1136 }
   1137 
   1138 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
   1139 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
   1140 /// cast, but it could be generalized for targets with other types of
   1141 /// implicit widening casts.
   1142 bool
   1143 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
   1144                                                     unsigned BitWidth,
   1145                                                     const APInt &Demanded,
   1146                                                     DebugLoc dl) {
   1147   assert(Op.getNumOperands() == 2 &&
   1148          "ShrinkDemandedOp only supports binary operators!");
   1149   assert(Op.getNode()->getNumValues() == 1 &&
   1150          "ShrinkDemandedOp only supports nodes with one result!");
   1151 
   1152   // Don't do this if the node has another user, which may require the
   1153   // full value.
   1154   if (!Op.getNode()->hasOneUse())
   1155     return false;
   1156 
   1157   // Search for the smallest integer type with free casts to and from
   1158   // Op's type. For expedience, just check power-of-2 integer types.
   1159   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1160   unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
   1161   if (!isPowerOf2_32(SmallVTBits))
   1162     SmallVTBits = NextPowerOf2(SmallVTBits);
   1163   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
   1164     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
   1165     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
   1166         TLI.isZExtFree(SmallVT, Op.getValueType())) {
   1167       // We found a type with free casts.
   1168       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
   1169                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
   1170                                           Op.getNode()->getOperand(0)),
   1171                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
   1172                                           Op.getNode()->getOperand(1)));
   1173       SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
   1174       return CombineTo(Op, Z);
   1175     }
   1176   }
   1177   return false;
   1178 }
   1179 
   1180 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
   1181 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
   1182 /// use this information to simplify Op, create a new simplified DAG node and
   1183 /// return true, returning the original and new nodes in Old and New. Otherwise,
   1184 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
   1185 /// the expression (used to simplify the caller).  The KnownZero/One bits may
   1186 /// only be accurate for those bits in the DemandedMask.
   1187 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
   1188                                           const APInt &DemandedMask,
   1189                                           APInt &KnownZero,
   1190                                           APInt &KnownOne,
   1191                                           TargetLoweringOpt &TLO,
   1192                                           unsigned Depth) const {
   1193   unsigned BitWidth = DemandedMask.getBitWidth();
   1194   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
   1195          "Mask size mismatches value type size!");
   1196   APInt NewMask = DemandedMask;
   1197   DebugLoc dl = Op.getDebugLoc();
   1198 
   1199   // Don't know anything.
   1200   KnownZero = KnownOne = APInt(BitWidth, 0);
   1201 
   1202   // Other users may use these bits.
   1203   if (!Op.getNode()->hasOneUse()) {
   1204     if (Depth != 0) {
   1205       // If not at the root, Just compute the KnownZero/KnownOne bits to
   1206       // simplify things downstream.
   1207       TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
   1208       return false;
   1209     }
   1210     // If this is the root being simplified, allow it to have multiple uses,
   1211     // just set the NewMask to all bits.
   1212     NewMask = APInt::getAllOnesValue(BitWidth);
   1213   } else if (DemandedMask == 0) {
   1214     // Not demanding any bits from Op.
   1215     if (Op.getOpcode() != ISD::UNDEF)
   1216       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
   1217     return false;
   1218   } else if (Depth == 6) {        // Limit search depth.
   1219     return false;
   1220   }
   1221 
   1222   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
   1223   switch (Op.getOpcode()) {
   1224   case ISD::Constant:
   1225     // We know all of the bits for a constant!
   1226     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
   1227     KnownZero = ~KnownOne;
   1228     return false;   // Don't fall through, will infinitely loop.
   1229   case ISD::AND:
   1230     // If the RHS is a constant, check to see if the LHS would be zero without
   1231     // using the bits from the RHS.  Below, we use knowledge about the RHS to
   1232     // simplify the LHS, here we're using information from the LHS to simplify
   1233     // the RHS.
   1234     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1235       APInt LHSZero, LHSOne;
   1236       // Do not increment Depth here; that can cause an infinite loop.
   1237       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
   1238       // If the LHS already has zeros where RHSC does, this and is dead.
   1239       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
   1240         return TLO.CombineTo(Op, Op.getOperand(0));
   1241       // If any of the set bits in the RHS are known zero on the LHS, shrink
   1242       // the constant.
   1243       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
   1244         return true;
   1245     }
   1246 
   1247     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1248                              KnownOne, TLO, Depth+1))
   1249       return true;
   1250     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1251     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
   1252                              KnownZero2, KnownOne2, TLO, Depth+1))
   1253       return true;
   1254     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1255 
   1256     // If all of the demanded bits are known one on one side, return the other.
   1257     // These bits cannot contribute to the result of the 'and'.
   1258     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
   1259       return TLO.CombineTo(Op, Op.getOperand(0));
   1260     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
   1261       return TLO.CombineTo(Op, Op.getOperand(1));
   1262     // If all of the demanded bits in the inputs are known zeros, return zero.
   1263     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
   1264       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
   1265     // If the RHS is a constant, see if we can simplify it.
   1266     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
   1267       return true;
   1268     // If the operation can be done in a smaller type, do so.
   1269     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1270       return true;
   1271 
   1272     // Output known-1 bits are only known if set in both the LHS & RHS.
   1273     KnownOne &= KnownOne2;
   1274     // Output known-0 are known to be clear if zero in either the LHS | RHS.
   1275     KnownZero |= KnownZero2;
   1276     break;
   1277   case ISD::OR:
   1278     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1279                              KnownOne, TLO, Depth+1))
   1280       return true;
   1281     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1282     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
   1283                              KnownZero2, KnownOne2, TLO, Depth+1))
   1284       return true;
   1285     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1286 
   1287     // If all of the demanded bits are known zero on one side, return the other.
   1288     // These bits cannot contribute to the result of the 'or'.
   1289     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
   1290       return TLO.CombineTo(Op, Op.getOperand(0));
   1291     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
   1292       return TLO.CombineTo(Op, Op.getOperand(1));
   1293     // If all of the potentially set bits on one side are known to be set on
   1294     // the other side, just use the 'other' side.
   1295     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
   1296       return TLO.CombineTo(Op, Op.getOperand(0));
   1297     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
   1298       return TLO.CombineTo(Op, Op.getOperand(1));
   1299     // If the RHS is a constant, see if we can simplify it.
   1300     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1301       return true;
   1302     // If the operation can be done in a smaller type, do so.
   1303     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1304       return true;
   1305 
   1306     // Output known-0 bits are only known if clear in both the LHS & RHS.
   1307     KnownZero &= KnownZero2;
   1308     // Output known-1 are known to be set if set in either the LHS | RHS.
   1309     KnownOne |= KnownOne2;
   1310     break;
   1311   case ISD::XOR:
   1312     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1313                              KnownOne, TLO, Depth+1))
   1314       return true;
   1315     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1316     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
   1317                              KnownOne2, TLO, Depth+1))
   1318       return true;
   1319     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1320 
   1321     // If all of the demanded bits are known zero on one side, return the other.
   1322     // These bits cannot contribute to the result of the 'xor'.
   1323     if ((KnownZero & NewMask) == NewMask)
   1324       return TLO.CombineTo(Op, Op.getOperand(0));
   1325     if ((KnownZero2 & NewMask) == NewMask)
   1326       return TLO.CombineTo(Op, Op.getOperand(1));
   1327     // If the operation can be done in a smaller type, do so.
   1328     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1329       return true;
   1330 
   1331     // If all of the unknown bits are known to be zero on one side or the other
   1332     // (but not both) turn this into an *inclusive* or.
   1333     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
   1334     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
   1335       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
   1336                                                Op.getOperand(0),
   1337                                                Op.getOperand(1)));
   1338 
   1339     // Output known-0 bits are known if clear or set in both the LHS & RHS.
   1340     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
   1341     // Output known-1 are known to be set if set in only one of the LHS, RHS.
   1342     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
   1343 
   1344     // If all of the demanded bits on one side are known, and all of the set
   1345     // bits on that side are also known to be set on the other side, turn this
   1346     // into an AND, as we know the bits will be cleared.
   1347     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
   1348     // NB: it is okay if more bits are known than are requested
   1349     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
   1350       if (KnownOne == KnownOne2) { // set bits are the same on both sides
   1351         EVT VT = Op.getValueType();
   1352         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
   1353         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
   1354                                                  Op.getOperand(0), ANDC));
   1355       }
   1356     }
   1357 
   1358     // If the RHS is a constant, see if we can simplify it.
   1359     // for XOR, we prefer to force bits to 1 if they will make a -1.
   1360     // if we can't force bits, try to shrink constant
   1361     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1362       APInt Expanded = C->getAPIntValue() | (~NewMask);
   1363       // if we can expand it to have all bits set, do it
   1364       if (Expanded.isAllOnesValue()) {
   1365         if (Expanded != C->getAPIntValue()) {
   1366           EVT VT = Op.getValueType();
   1367           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
   1368                                           TLO.DAG.getConstant(Expanded, VT));
   1369           return TLO.CombineTo(Op, New);
   1370         }
   1371         // if it already has all the bits set, nothing to change
   1372         // but don't shrink either!
   1373       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
   1374         return true;
   1375       }
   1376     }
   1377 
   1378     KnownZero = KnownZeroOut;
   1379     KnownOne  = KnownOneOut;
   1380     break;
   1381   case ISD::SELECT:
   1382     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
   1383                              KnownOne, TLO, Depth+1))
   1384       return true;
   1385     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
   1386                              KnownOne2, TLO, Depth+1))
   1387       return true;
   1388     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1389     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1390 
   1391     // If the operands are constants, see if we can simplify them.
   1392     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1393       return true;
   1394 
   1395     // Only known if known in both the LHS and RHS.
   1396     KnownOne &= KnownOne2;
   1397     KnownZero &= KnownZero2;
   1398     break;
   1399   case ISD::SELECT_CC:
   1400     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
   1401                              KnownOne, TLO, Depth+1))
   1402       return true;
   1403     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
   1404                              KnownOne2, TLO, Depth+1))
   1405       return true;
   1406     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1407     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1408 
   1409     // If the operands are constants, see if we can simplify them.
   1410     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1411       return true;
   1412 
   1413     // Only known if known in both the LHS and RHS.
   1414     KnownOne &= KnownOne2;
   1415     KnownZero &= KnownZero2;
   1416     break;
   1417   case ISD::SHL:
   1418     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1419       unsigned ShAmt = SA->getZExtValue();
   1420       SDValue InOp = Op.getOperand(0);
   1421 
   1422       // If the shift count is an invalid immediate, don't do anything.
   1423       if (ShAmt >= BitWidth)
   1424         break;
   1425 
   1426       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
   1427       // single shift.  We can do this if the bottom bits (which are shifted
   1428       // out) are never demanded.
   1429       if (InOp.getOpcode() == ISD::SRL &&
   1430           isa<ConstantSDNode>(InOp.getOperand(1))) {
   1431         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
   1432           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
   1433           unsigned Opc = ISD::SHL;
   1434           int Diff = ShAmt-C1;
   1435           if (Diff < 0) {
   1436             Diff = -Diff;
   1437             Opc = ISD::SRL;
   1438           }
   1439 
   1440           SDValue NewSA =
   1441             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
   1442           EVT VT = Op.getValueType();
   1443           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
   1444                                                    InOp.getOperand(0), NewSA));
   1445         }
   1446       }
   1447 
   1448       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
   1449                                KnownZero, KnownOne, TLO, Depth+1))
   1450         return true;
   1451 
   1452       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
   1453       // are not demanded. This will likely allow the anyext to be folded away.
   1454       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
   1455         SDValue InnerOp = InOp.getNode()->getOperand(0);
   1456         EVT InnerVT = InnerOp.getValueType();
   1457         unsigned InnerBits = InnerVT.getSizeInBits();
   1458         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
   1459             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
   1460           EVT ShTy = getShiftAmountTy(InnerVT);
   1461           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
   1462             ShTy = InnerVT;
   1463           SDValue NarrowShl =
   1464             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
   1465                             TLO.DAG.getConstant(ShAmt, ShTy));
   1466           return
   1467             TLO.CombineTo(Op,
   1468                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
   1469                                           NarrowShl));
   1470         }
   1471       }
   1472 
   1473       KnownZero <<= SA->getZExtValue();
   1474       KnownOne  <<= SA->getZExtValue();
   1475       // low bits known zero.
   1476       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
   1477     }
   1478     break;
   1479   case ISD::SRL:
   1480     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1481       EVT VT = Op.getValueType();
   1482       unsigned ShAmt = SA->getZExtValue();
   1483       unsigned VTSize = VT.getSizeInBits();
   1484       SDValue InOp = Op.getOperand(0);
   1485 
   1486       // If the shift count is an invalid immediate, don't do anything.
   1487       if (ShAmt >= BitWidth)
   1488         break;
   1489 
   1490       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
   1491       // single shift.  We can do this if the top bits (which are shifted out)
   1492       // are never demanded.
   1493       if (InOp.getOpcode() == ISD::SHL &&
   1494           isa<ConstantSDNode>(InOp.getOperand(1))) {
   1495         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
   1496           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
   1497           unsigned Opc = ISD::SRL;
   1498           int Diff = ShAmt-C1;
   1499           if (Diff < 0) {
   1500             Diff = -Diff;
   1501             Opc = ISD::SHL;
   1502           }
   1503 
   1504           SDValue NewSA =
   1505             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
   1506           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
   1507                                                    InOp.getOperand(0), NewSA));
   1508         }
   1509       }
   1510 
   1511       // Compute the new bits that are at the top now.
   1512       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
   1513                                KnownZero, KnownOne, TLO, Depth+1))
   1514         return true;
   1515       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1516       KnownZero = KnownZero.lshr(ShAmt);
   1517       KnownOne  = KnownOne.lshr(ShAmt);
   1518 
   1519       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
   1520       KnownZero |= HighBits;  // High bits known zero.
   1521     }
   1522     break;
   1523   case ISD::SRA:
   1524     // If this is an arithmetic shift right and only the low-bit is set, we can
   1525     // always convert this into a logical shr, even if the shift amount is
   1526     // variable.  The low bit of the shift cannot be an input sign bit unless
   1527     // the shift amount is >= the size of the datatype, which is undefined.
   1528     if (NewMask == 1)
   1529       return TLO.CombineTo(Op,
   1530                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
   1531                                            Op.getOperand(0), Op.getOperand(1)));
   1532 
   1533     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1534       EVT VT = Op.getValueType();
   1535       unsigned ShAmt = SA->getZExtValue();
   1536 
   1537       // If the shift count is an invalid immediate, don't do anything.
   1538       if (ShAmt >= BitWidth)
   1539         break;
   1540 
   1541       APInt InDemandedMask = (NewMask << ShAmt);
   1542 
   1543       // If any of the demanded bits are produced by the sign extension, we also
   1544       // demand the input sign bit.
   1545       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
   1546       if (HighBits.intersects(NewMask))
   1547         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
   1548 
   1549       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
   1550                                KnownZero, KnownOne, TLO, Depth+1))
   1551         return true;
   1552       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1553       KnownZero = KnownZero.lshr(ShAmt);
   1554       KnownOne  = KnownOne.lshr(ShAmt);
   1555 
   1556       // Handle the sign bit, adjusted to where it is now in the mask.
   1557       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
   1558 
   1559       // If the input sign bit is known to be zero, or if none of the top bits
   1560       // are demanded, turn this into an unsigned shift right.
   1561       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
   1562         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
   1563                                                  Op.getOperand(0),
   1564                                                  Op.getOperand(1)));
   1565       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
   1566         KnownOne |= HighBits;
   1567       }
   1568     }
   1569     break;
   1570   case ISD::SIGN_EXTEND_INREG: {
   1571     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1572 
   1573     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
   1574     // If we only care about the highest bit, don't bother shifting right.
   1575     if (MsbMask == DemandedMask) {
   1576       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
   1577       SDValue InOp = Op.getOperand(0);
   1578 
   1579       // Compute the correct shift amount type, which must be getShiftAmountTy
   1580       // for scalar types after legalization.
   1581       EVT ShiftAmtTy = Op.getValueType();
   1582       if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
   1583         ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
   1584 
   1585       SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
   1586       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1587                                             Op.getValueType(), InOp, ShiftAmt));
   1588     }
   1589 
   1590     // Sign extension.  Compute the demanded bits in the result that are not
   1591     // present in the input.
   1592     APInt NewBits =
   1593       APInt::getHighBitsSet(BitWidth,
   1594                             BitWidth - ExVT.getScalarType().getSizeInBits());
   1595 
   1596     // If none of the extended bits are demanded, eliminate the sextinreg.
   1597     if ((NewBits & NewMask) == 0)
   1598       return TLO.CombineTo(Op, Op.getOperand(0));
   1599 
   1600     APInt InSignBit =
   1601       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
   1602     APInt InputDemandedBits =
   1603       APInt::getLowBitsSet(BitWidth,
   1604                            ExVT.getScalarType().getSizeInBits()) &
   1605       NewMask;
   1606 
   1607     // Since the sign extended bits are demanded, we know that the sign
   1608     // bit is demanded.
   1609     InputDemandedBits |= InSignBit;
   1610 
   1611     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
   1612                              KnownZero, KnownOne, TLO, Depth+1))
   1613       return true;
   1614     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1615 
   1616     // If the sign bit of the input is known set or clear, then we know the
   1617     // top bits of the result.
   1618 
   1619     // If the input sign bit is known zero, convert this into a zero extension.
   1620     if (KnownZero.intersects(InSignBit))
   1621       return TLO.CombineTo(Op,
   1622                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
   1623 
   1624     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
   1625       KnownOne |= NewBits;
   1626       KnownZero &= ~NewBits;
   1627     } else {                       // Input sign bit unknown
   1628       KnownZero &= ~NewBits;
   1629       KnownOne &= ~NewBits;
   1630     }
   1631     break;
   1632   }
   1633   case ISD::ZERO_EXTEND: {
   1634     unsigned OperandBitWidth =
   1635       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1636     APInt InMask = NewMask.trunc(OperandBitWidth);
   1637 
   1638     // If none of the top bits are demanded, convert this into an any_extend.
   1639     APInt NewBits =
   1640       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
   1641     if (!NewBits.intersects(NewMask))
   1642       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
   1643                                                Op.getValueType(),
   1644                                                Op.getOperand(0)));
   1645 
   1646     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
   1647                              KnownZero, KnownOne, TLO, Depth+1))
   1648       return true;
   1649     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1650     KnownZero = KnownZero.zext(BitWidth);
   1651     KnownOne = KnownOne.zext(BitWidth);
   1652     KnownZero |= NewBits;
   1653     break;
   1654   }
   1655   case ISD::SIGN_EXTEND: {
   1656     EVT InVT = Op.getOperand(0).getValueType();
   1657     unsigned InBits = InVT.getScalarType().getSizeInBits();
   1658     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
   1659     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
   1660     APInt NewBits   = ~InMask & NewMask;
   1661 
   1662     // If none of the top bits are demanded, convert this into an any_extend.
   1663     if (NewBits == 0)
   1664       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
   1665                                               Op.getValueType(),
   1666                                               Op.getOperand(0)));
   1667 
   1668     // Since some of the sign extended bits are demanded, we know that the sign
   1669     // bit is demanded.
   1670     APInt InDemandedBits = InMask & NewMask;
   1671     InDemandedBits |= InSignBit;
   1672     InDemandedBits = InDemandedBits.trunc(InBits);
   1673 
   1674     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
   1675                              KnownOne, TLO, Depth+1))
   1676       return true;
   1677     KnownZero = KnownZero.zext(BitWidth);
   1678     KnownOne = KnownOne.zext(BitWidth);
   1679 
   1680     // If the sign bit is known zero, convert this to a zero extend.
   1681     if (KnownZero.intersects(InSignBit))
   1682       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
   1683                                                Op.getValueType(),
   1684                                                Op.getOperand(0)));
   1685 
   1686     // If the sign bit is known one, the top bits match.
   1687     if (KnownOne.intersects(InSignBit)) {
   1688       KnownOne |= NewBits;
   1689       assert((KnownZero & NewBits) == 0);
   1690     } else {   // Otherwise, top bits aren't known.
   1691       assert((KnownOne & NewBits) == 0);
   1692       assert((KnownZero & NewBits) == 0);
   1693     }
   1694     break;
   1695   }
   1696   case ISD::ANY_EXTEND: {
   1697     unsigned OperandBitWidth =
   1698       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1699     APInt InMask = NewMask.trunc(OperandBitWidth);
   1700     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
   1701                              KnownZero, KnownOne, TLO, Depth+1))
   1702       return true;
   1703     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1704     KnownZero = KnownZero.zext(BitWidth);
   1705     KnownOne = KnownOne.zext(BitWidth);
   1706     break;
   1707   }
   1708   case ISD::TRUNCATE: {
   1709     // Simplify the input, using demanded bit information, and compute the known
   1710     // zero/one bits live out.
   1711     unsigned OperandBitWidth =
   1712       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1713     APInt TruncMask = NewMask.zext(OperandBitWidth);
   1714     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
   1715                              KnownZero, KnownOne, TLO, Depth+1))
   1716       return true;
   1717     KnownZero = KnownZero.trunc(BitWidth);
   1718     KnownOne = KnownOne.trunc(BitWidth);
   1719 
   1720     // If the input is only used by this truncate, see if we can shrink it based
   1721     // on the known demanded bits.
   1722     if (Op.getOperand(0).getNode()->hasOneUse()) {
   1723       SDValue In = Op.getOperand(0);
   1724       switch (In.getOpcode()) {
   1725       default: break;
   1726       case ISD::SRL:
   1727         // Shrink SRL by a constant if none of the high bits shifted in are
   1728         // demanded.
   1729         if (TLO.LegalTypes() &&
   1730             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
   1731           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
   1732           // undesirable.
   1733           break;
   1734         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
   1735         if (!ShAmt)
   1736           break;
   1737         SDValue Shift = In.getOperand(1);
   1738         if (TLO.LegalTypes()) {
   1739           uint64_t ShVal = ShAmt->getZExtValue();
   1740           Shift =
   1741             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
   1742         }
   1743 
   1744         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
   1745                                                OperandBitWidth - BitWidth);
   1746         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
   1747 
   1748         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
   1749           // None of the shifted in bits are needed.  Add a truncate of the
   1750           // shift input, then shift it.
   1751           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
   1752                                              Op.getValueType(),
   1753                                              In.getOperand(0));
   1754           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
   1755                                                    Op.getValueType(),
   1756                                                    NewTrunc,
   1757                                                    Shift));
   1758         }
   1759         break;
   1760       }
   1761     }
   1762 
   1763     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1764     break;
   1765   }
   1766   case ISD::AssertZext: {
   1767     // AssertZext demands all of the high bits, plus any of the low bits
   1768     // demanded by its users.
   1769     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1770     APInt InMask = APInt::getLowBitsSet(BitWidth,
   1771                                         VT.getSizeInBits());
   1772     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1773                              KnownZero, KnownOne, TLO, Depth+1))
   1774       return true;
   1775     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1776 
   1777     KnownZero |= ~InMask & NewMask;
   1778     break;
   1779   }
   1780   case ISD::BITCAST:
   1781     // If this is an FP->Int bitcast and if the sign bit is the only
   1782     // thing demanded, turn this into a FGETSIGN.
   1783     if (!TLO.LegalOperations() &&
   1784         !Op.getValueType().isVector() &&
   1785         !Op.getOperand(0).getValueType().isVector() &&
   1786         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
   1787         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1788       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
   1789       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1790       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
   1791         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
   1792         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1793         // place.  We expect the SHL to be eliminated by other optimizations.
   1794         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1795         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
   1796         if (!OpVTLegal && OpVTSizeInBits > 32)
   1797           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
   1798         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
   1799         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
   1800         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1801                                                  Op.getValueType(),
   1802                                                  Sign, ShAmt));
   1803       }
   1804     }
   1805     break;
   1806   case ISD::ADD:
   1807   case ISD::MUL:
   1808   case ISD::SUB: {
   1809     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1810     // of the highest bit demanded of them.
   1811     APInt LoMask = APInt::getLowBitsSet(BitWidth,
   1812                                         BitWidth - NewMask.countLeadingZeros());
   1813     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
   1814                              KnownOne2, TLO, Depth+1))
   1815       return true;
   1816     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
   1817                              KnownOne2, TLO, Depth+1))
   1818       return true;
   1819     // See if the operation should be performed at a smaller bit width.
   1820     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1821       return true;
   1822   }
   1823   // FALL THROUGH
   1824   default:
   1825     // Just use ComputeMaskedBits to compute output bits.
   1826     TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
   1827     break;
   1828   }
   1829 
   1830   // If we know the value of all of the demanded bits, return this as a
   1831   // constant.
   1832   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
   1833     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
   1834 
   1835   return false;
   1836 }
   1837 
   1838 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
   1839 /// in Mask are known to be either zero or one and return them in the
   1840 /// KnownZero/KnownOne bitsets.
   1841 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   1842                                                     APInt &KnownZero,
   1843                                                     APInt &KnownOne,
   1844                                                     const SelectionDAG &DAG,
   1845                                                     unsigned Depth) const {
   1846   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1847           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1848           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1849           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1850          "Should use MaskedValueIsZero if you don't know whether Op"
   1851          " is a target node!");
   1852   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1853 }
   1854 
   1855 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1856 /// targets that want to expose additional information about sign bits to the
   1857 /// DAG Combiner.
   1858 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1859                                                          unsigned Depth) const {
   1860   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1861           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1862           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1863           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1864          "Should use ComputeNumSignBits if you don't know whether Op"
   1865          " is a target node!");
   1866   return 1;
   1867 }
   1868 
   1869 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1870 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
   1871 /// determine which bit is set.
   1872 ///
   1873 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1874   // A left-shift of a constant one will have exactly one bit set, because
   1875   // shifting the bit off the end is undefined.
   1876   if (Val.getOpcode() == ISD::SHL)
   1877     if (ConstantSDNode *C =
   1878          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1879       if (C->getAPIntValue() == 1)
   1880         return true;
   1881 
   1882   // Similarly, a right-shift of a constant sign-bit will have exactly
   1883   // one bit set.
   1884   if (Val.getOpcode() == ISD::SRL)
   1885     if (ConstantSDNode *C =
   1886          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1887       if (C->getAPIntValue().isSignBit())
   1888         return true;
   1889 
   1890   // More could be done here, though the above checks are enough
   1891   // to handle some common cases.
   1892 
   1893   // Fall back to ComputeMaskedBits to catch other known cases.
   1894   EVT OpVT = Val.getValueType();
   1895   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1896   APInt KnownZero, KnownOne;
   1897   DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
   1898   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1899          (KnownOne.countPopulation() == 1);
   1900 }
   1901 
   1902 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1903 /// and cc. If it is unable to simplify it, return a null SDValue.
   1904 SDValue
   1905 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1906                               ISD::CondCode Cond, bool foldBooleans,
   1907                               DAGCombinerInfo &DCI, DebugLoc dl) const {
   1908   SelectionDAG &DAG = DCI.DAG;
   1909 
   1910   // These setcc operations always fold.
   1911   switch (Cond) {
   1912   default: break;
   1913   case ISD::SETFALSE:
   1914   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
   1915   case ISD::SETTRUE:
   1916   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
   1917   }
   1918 
   1919   // Ensure that the constant occurs on the RHS, and fold constant
   1920   // comparisons.
   1921   if (isa<ConstantSDNode>(N0.getNode()))
   1922     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
   1923 
   1924   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1925     const APInt &C1 = N1C->getAPIntValue();
   1926 
   1927     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1928     // equality comparison, then we're just comparing whether X itself is
   1929     // zero.
   1930     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1931         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1932         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1933       const APInt &ShAmt
   1934         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1935       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1936           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1937         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1938           // (srl (ctlz x), 5) == 0  -> X != 0
   1939           // (srl (ctlz x), 5) != 1  -> X != 0
   1940           Cond = ISD::SETNE;
   1941         } else {
   1942           // (srl (ctlz x), 5) != 0  -> X == 0
   1943           // (srl (ctlz x), 5) == 1  -> X == 0
   1944           Cond = ISD::SETEQ;
   1945         }
   1946         SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1947         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1948                             Zero, Cond);
   1949       }
   1950     }
   1951 
   1952     SDValue CTPOP = N0;
   1953     // Look through truncs that don't change the value of a ctpop.
   1954     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1955       CTPOP = N0.getOperand(0);
   1956 
   1957     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1958         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1959                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1960       EVT CTVT = CTPOP.getValueType();
   1961       SDValue CTOp = CTPOP.getOperand(0);
   1962 
   1963       // (ctpop x) u< 2 -> (x & x-1) == 0
   1964       // (ctpop x) u> 1 -> (x & x-1) != 0
   1965       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1966         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1967                                   DAG.getConstant(1, CTVT));
   1968         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1969         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1970         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
   1971       }
   1972 
   1973       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1974     }
   1975 
   1976     // (zext x) == C --> x == (trunc C)
   1977     if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
   1978         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1979       unsigned MinBits = N0.getValueSizeInBits();
   1980       SDValue PreZExt;
   1981       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1982         // ZExt
   1983         MinBits = N0->getOperand(0).getValueSizeInBits();
   1984         PreZExt = N0->getOperand(0);
   1985       } else if (N0->getOpcode() == ISD::AND) {
   1986         // DAGCombine turns costly ZExts into ANDs
   1987         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1988           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1989             MinBits = C->getAPIntValue().countTrailingOnes();
   1990             PreZExt = N0->getOperand(0);
   1991           }
   1992       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1993         // ZEXTLOAD
   1994         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1995           MinBits = LN0->getMemoryVT().getSizeInBits();
   1996           PreZExt = N0;
   1997         }
   1998       }
   1999 
   2000       // Make sure we're not losing bits from the constant.
   2001       if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
   2002         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   2003         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   2004           // Will get folded away.
   2005           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
   2006           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
   2007           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   2008         }
   2009       }
   2010     }
   2011 
   2012     // If the LHS is '(and load, const)', the RHS is 0,
   2013     // the test is for equality or unsigned, and all 1 bits of the const are
   2014     // in the same partial word, see if we can shorten the load.
   2015     if (DCI.isBeforeLegalize() &&
   2016         N0.getOpcode() == ISD::AND && C1 == 0 &&
   2017         N0.getNode()->hasOneUse() &&
   2018         isa<LoadSDNode>(N0.getOperand(0)) &&
   2019         N0.getOperand(0).getNode()->hasOneUse() &&
   2020         isa<ConstantSDNode>(N0.getOperand(1))) {
   2021       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   2022       APInt bestMask;
   2023       unsigned bestWidth = 0, bestOffset = 0;
   2024       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   2025         unsigned origWidth = N0.getValueType().getSizeInBits();
   2026         unsigned maskWidth = origWidth;
   2027         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   2028         // 8 bits, but have to be careful...
   2029         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   2030           origWidth = Lod->getMemoryVT().getSizeInBits();
   2031         const APInt &Mask =
   2032           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   2033         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   2034           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   2035           for (unsigned offset=0; offset<origWidth/width; offset++) {
   2036             if ((newMask & Mask) == Mask) {
   2037               if (!TD->isLittleEndian())
   2038                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   2039               else
   2040                 bestOffset = (uint64_t)offset * (width/8);
   2041               bestMask = Mask.lshr(offset * (width/8) * 8);
   2042               bestWidth = width;
   2043               break;
   2044             }
   2045             newMask = newMask << width;
   2046           }
   2047         }
   2048       }
   2049       if (bestWidth) {
   2050         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   2051         if (newVT.isRound()) {
   2052           EVT PtrType = Lod->getOperand(1).getValueType();
   2053           SDValue Ptr = Lod->getBasePtr();
   2054           if (bestOffset != 0)
   2055             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   2056                               DAG.getConstant(bestOffset, PtrType));
   2057           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   2058           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   2059                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   2060                                         false, false, false, NewAlign);
   2061           return DAG.getSetCC(dl, VT,
   2062                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   2063                                       DAG.getConstant(bestMask.trunc(bestWidth),
   2064                                                       newVT)),
   2065                               DAG.getConstant(0LL, newVT), Cond);
   2066         }
   2067       }
   2068     }
   2069 
   2070     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   2071     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   2072       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   2073 
   2074       // If the comparison constant has bits in the upper part, the
   2075       // zero-extended value could never match.
   2076       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   2077                                               C1.getBitWidth() - InSize))) {
   2078         switch (Cond) {
   2079         case ISD::SETUGT:
   2080         case ISD::SETUGE:
   2081         case ISD::SETEQ: return DAG.getConstant(0, VT);
   2082         case ISD::SETULT:
   2083         case ISD::SETULE:
   2084         case ISD::SETNE: return DAG.getConstant(1, VT);
   2085         case ISD::SETGT:
   2086         case ISD::SETGE:
   2087           // True if the sign bit of C1 is set.
   2088           return DAG.getConstant(C1.isNegative(), VT);
   2089         case ISD::SETLT:
   2090         case ISD::SETLE:
   2091           // True if the sign bit of C1 isn't set.
   2092           return DAG.getConstant(C1.isNonNegative(), VT);
   2093         default:
   2094           break;
   2095         }
   2096       }
   2097 
   2098       // Otherwise, we can perform the comparison with the low bits.
   2099       switch (Cond) {
   2100       case ISD::SETEQ:
   2101       case ISD::SETNE:
   2102       case ISD::SETUGT:
   2103       case ISD::SETUGE:
   2104       case ISD::SETULT:
   2105       case ISD::SETULE: {
   2106         EVT newVT = N0.getOperand(0).getValueType();
   2107         if (DCI.isBeforeLegalizeOps() ||
   2108             (isOperationLegal(ISD::SETCC, newVT) &&
   2109               getCondCodeAction(Cond, newVT)==Legal))
   2110           return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2111                               DAG.getConstant(C1.trunc(InSize), newVT),
   2112                               Cond);
   2113         break;
   2114       }
   2115       default:
   2116         break;   // todo, be more careful with signed comparisons
   2117       }
   2118     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   2119                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2120       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   2121       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   2122       EVT ExtDstTy = N0.getValueType();
   2123       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   2124 
   2125       // If the constant doesn't fit into the number of bits for the source of
   2126       // the sign extension, it is impossible for both sides to be equal.
   2127       if (C1.getMinSignedBits() > ExtSrcTyBits)
   2128         return DAG.getConstant(Cond == ISD::SETNE, VT);
   2129 
   2130       SDValue ZextOp;
   2131       EVT Op0Ty = N0.getOperand(0).getValueType();
   2132       if (Op0Ty == ExtSrcTy) {
   2133         ZextOp = N0.getOperand(0);
   2134       } else {
   2135         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   2136         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   2137                               DAG.getConstant(Imm, Op0Ty));
   2138       }
   2139       if (!DCI.isCalledByLegalizer())
   2140         DCI.AddToWorklist(ZextOp.getNode());
   2141       // Otherwise, make this a use of a zext.
   2142       return DAG.getSetCC(dl, VT, ZextOp,
   2143                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   2144                                                               ExtDstTyBits,
   2145                                                               ExtSrcTyBits),
   2146                                           ExtDstTy),
   2147                           Cond);
   2148     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   2149                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2150       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   2151       if (N0.getOpcode() == ISD::SETCC &&
   2152           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   2153         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   2154         if (TrueWhenTrue)
   2155           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   2156         // Invert the condition.
   2157         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   2158         CC = ISD::getSetCCInverse(CC,
   2159                                   N0.getOperand(0).getValueType().isInteger());
   2160         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   2161       }
   2162 
   2163       if ((N0.getOpcode() == ISD::XOR ||
   2164            (N0.getOpcode() == ISD::AND &&
   2165             N0.getOperand(0).getOpcode() == ISD::XOR &&
   2166             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   2167           isa<ConstantSDNode>(N0.getOperand(1)) &&
   2168           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   2169         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   2170         // can only do this if the top bits are known zero.
   2171         unsigned BitWidth = N0.getValueSizeInBits();
   2172         if (DAG.MaskedValueIsZero(N0,
   2173                                   APInt::getHighBitsSet(BitWidth,
   2174                                                         BitWidth-1))) {
   2175           // Okay, get the un-inverted input value.
   2176           SDValue Val;
   2177           if (N0.getOpcode() == ISD::XOR)
   2178             Val = N0.getOperand(0);
   2179           else {
   2180             assert(N0.getOpcode() == ISD::AND &&
   2181                     N0.getOperand(0).getOpcode() == ISD::XOR);
   2182             // ((X^1)&1)^1 -> X & 1
   2183             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   2184                               N0.getOperand(0).getOperand(0),
   2185                               N0.getOperand(1));
   2186           }
   2187 
   2188           return DAG.getSetCC(dl, VT, Val, N1,
   2189                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2190         }
   2191       } else if (N1C->getAPIntValue() == 1 &&
   2192                  (VT == MVT::i1 ||
   2193                   getBooleanContents(false) == ZeroOrOneBooleanContent)) {
   2194         SDValue Op0 = N0;
   2195         if (Op0.getOpcode() == ISD::TRUNCATE)
   2196           Op0 = Op0.getOperand(0);
   2197 
   2198         if ((Op0.getOpcode() == ISD::XOR) &&
   2199             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   2200             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   2201           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   2202           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   2203           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   2204                               Cond);
   2205         } else if (Op0.getOpcode() == ISD::AND &&
   2206                 isa<ConstantSDNode>(Op0.getOperand(1)) &&
   2207                 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   2208           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   2209           if (Op0.getValueType().bitsGT(VT))
   2210             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2211                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   2212                           DAG.getConstant(1, VT));
   2213           else if (Op0.getValueType().bitsLT(VT))
   2214             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2215                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   2216                         DAG.getConstant(1, VT));
   2217 
   2218           return DAG.getSetCC(dl, VT, Op0,
   2219                               DAG.getConstant(0, Op0.getValueType()),
   2220                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2221         }
   2222       }
   2223     }
   2224 
   2225     APInt MinVal, MaxVal;
   2226     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   2227     if (ISD::isSignedIntSetCC(Cond)) {
   2228       MinVal = APInt::getSignedMinValue(OperandBitSize);
   2229       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   2230     } else {
   2231       MinVal = APInt::getMinValue(OperandBitSize);
   2232       MaxVal = APInt::getMaxValue(OperandBitSize);
   2233     }
   2234 
   2235     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   2236     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   2237       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
   2238       // X >= C0 --> X > (C0-1)
   2239       return DAG.getSetCC(dl, VT, N0,
   2240                           DAG.getConstant(C1-1, N1.getValueType()),
   2241                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
   2242     }
   2243 
   2244     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   2245       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
   2246       // X <= C0 --> X < (C0+1)
   2247       return DAG.getSetCC(dl, VT, N0,
   2248                           DAG.getConstant(C1+1, N1.getValueType()),
   2249                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
   2250     }
   2251 
   2252     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   2253       return DAG.getConstant(0, VT);      // X < MIN --> false
   2254     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   2255       return DAG.getConstant(1, VT);      // X >= MIN --> true
   2256     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   2257       return DAG.getConstant(0, VT);      // X > MAX --> false
   2258     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   2259       return DAG.getConstant(1, VT);      // X <= MAX --> true
   2260 
   2261     // Canonicalize setgt X, Min --> setne X, Min
   2262     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   2263       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2264     // Canonicalize setlt X, Max --> setne X, Max
   2265     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   2266       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2267 
   2268     // If we have setult X, 1, turn it into seteq X, 0
   2269     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   2270       return DAG.getSetCC(dl, VT, N0,
   2271                           DAG.getConstant(MinVal, N0.getValueType()),
   2272                           ISD::SETEQ);
   2273     // If we have setugt X, Max-1, turn it into seteq X, Max
   2274     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   2275       return DAG.getSetCC(dl, VT, N0,
   2276                           DAG.getConstant(MaxVal, N0.getValueType()),
   2277                           ISD::SETEQ);
   2278 
   2279     // If we have "setcc X, C0", check to see if we can shrink the immediate
   2280     // by changing cc.
   2281 
   2282     // SETUGT X, SINTMAX  -> SETLT X, 0
   2283     if (Cond == ISD::SETUGT &&
   2284         C1 == APInt::getSignedMaxValue(OperandBitSize))
   2285       return DAG.getSetCC(dl, VT, N0,
   2286                           DAG.getConstant(0, N1.getValueType()),
   2287                           ISD::SETLT);
   2288 
   2289     // SETULT X, SINTMIN  -> SETGT X, -1
   2290     if (Cond == ISD::SETULT &&
   2291         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   2292       SDValue ConstMinusOne =
   2293           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
   2294                           N1.getValueType());
   2295       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   2296     }
   2297 
   2298     // Fold bit comparisons when we can.
   2299     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2300         (VT == N0.getValueType() ||
   2301          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   2302         N0.getOpcode() == ISD::AND)
   2303       if (ConstantSDNode *AndRHS =
   2304                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2305         EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   2306           getPointerTy() : getShiftAmountTy(N0.getValueType());
   2307         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   2308           // Perform the xform if the AND RHS is a single bit.
   2309           if (AndRHS->getAPIntValue().isPowerOf2()) {
   2310             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2311                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2312                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
   2313           }
   2314         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   2315           // (X & 8) == 8  -->  (X & 8) >> 3
   2316           // Perform the xform if C1 is a single bit.
   2317           if (C1.isPowerOf2()) {
   2318             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2319                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2320                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
   2321           }
   2322         }
   2323       }
   2324 
   2325     if (C1.getMinSignedBits() <= 64 &&
   2326         !isLegalICmpImmediate(C1.getSExtValue())) {
   2327       // (X & -256) == 256 -> (X >> 8) == 1
   2328       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2329           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   2330         if (ConstantSDNode *AndRHS =
   2331             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2332           const APInt &AndRHSC = AndRHS->getAPIntValue();
   2333           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   2334             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   2335             EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   2336               getPointerTy() : getShiftAmountTy(N0.getValueType());
   2337             EVT CmpTy = N0.getValueType();
   2338             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   2339                                         DAG.getConstant(ShiftBits, ShiftTy));
   2340             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
   2341             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   2342           }
   2343         }
   2344       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   2345                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   2346         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   2347         // X <  0x100000000 -> (X >> 32) <  1
   2348         // X >= 0x100000000 -> (X >> 32) >= 1
   2349         // X <= 0x0ffffffff -> (X >> 32) <  1
   2350         // X >  0x0ffffffff -> (X >> 32) >= 1
   2351         unsigned ShiftBits;
   2352         APInt NewC = C1;
   2353         ISD::CondCode NewCond = Cond;
   2354         if (AdjOne) {
   2355           ShiftBits = C1.countTrailingOnes();
   2356           NewC = NewC + 1;
   2357           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   2358         } else {
   2359           ShiftBits = C1.countTrailingZeros();
   2360         }
   2361         NewC = NewC.lshr(ShiftBits);
   2362         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
   2363           EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   2364             getPointerTy() : getShiftAmountTy(N0.getValueType());
   2365           EVT CmpTy = N0.getValueType();
   2366           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   2367                                       DAG.getConstant(ShiftBits, ShiftTy));
   2368           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
   2369           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   2370         }
   2371       }
   2372     }
   2373   }
   2374 
   2375   if (isa<ConstantFPSDNode>(N0.getNode())) {
   2376     // Constant fold or commute setcc.
   2377     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   2378     if (O.getNode()) return O;
   2379   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   2380     // If the RHS of an FP comparison is a constant, simplify it away in
   2381     // some cases.
   2382     if (CFP->getValueAPF().isNaN()) {
   2383       // If an operand is known to be a nan, we can fold it.
   2384       switch (ISD::getUnorderedFlavor(Cond)) {
   2385       default: llvm_unreachable("Unknown flavor!");
   2386       case 0:  // Known false.
   2387         return DAG.getConstant(0, VT);
   2388       case 1:  // Known true.
   2389         return DAG.getConstant(1, VT);
   2390       case 2:  // Undefined.
   2391         return DAG.getUNDEF(VT);
   2392       }
   2393     }
   2394 
   2395     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   2396     // constant if knowing that the operand is non-nan is enough.  We prefer to
   2397     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   2398     // materialize 0.0.
   2399     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   2400       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   2401 
   2402     // If the condition is not legal, see if we can find an equivalent one
   2403     // which is legal.
   2404     if (!isCondCodeLegal(Cond, N0.getValueType())) {
   2405       // If the comparison was an awkward floating-point == or != and one of
   2406       // the comparison operands is infinity or negative infinity, convert the
   2407       // condition to a less-awkward <= or >=.
   2408       if (CFP->getValueAPF().isInfinity()) {
   2409         if (CFP->getValueAPF().isNegative()) {
   2410           if (Cond == ISD::SETOEQ &&
   2411               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
   2412             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   2413           if (Cond == ISD::SETUEQ &&
   2414               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
   2415             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   2416           if (Cond == ISD::SETUNE &&
   2417               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
   2418             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   2419           if (Cond == ISD::SETONE &&
   2420               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
   2421             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   2422         } else {
   2423           if (Cond == ISD::SETOEQ &&
   2424               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
   2425             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   2426           if (Cond == ISD::SETUEQ &&
   2427               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
   2428             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   2429           if (Cond == ISD::SETUNE &&
   2430               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
   2431             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   2432           if (Cond == ISD::SETONE &&
   2433               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
   2434             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   2435         }
   2436       }
   2437     }
   2438   }
   2439 
   2440   if (N0 == N1) {
   2441     // The sext(setcc()) => setcc() optimization relies on the appropriate
   2442     // constant being emitted.
   2443     uint64_t EqVal = 0;
   2444     switch (getBooleanContents(N0.getValueType().isVector())) {
   2445     case UndefinedBooleanContent:
   2446     case ZeroOrOneBooleanContent:
   2447       EqVal = ISD::isTrueWhenEqual(Cond);
   2448       break;
   2449     case ZeroOrNegativeOneBooleanContent:
   2450       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
   2451       break;
   2452     }
   2453 
   2454     // We can always fold X == X for integer setcc's.
   2455     if (N0.getValueType().isInteger()) {
   2456       return DAG.getConstant(EqVal, VT);
   2457     }
   2458     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   2459     if (UOF == 2)   // FP operators that are undefined on NaNs.
   2460       return DAG.getConstant(EqVal, VT);
   2461     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   2462       return DAG.getConstant(EqVal, VT);
   2463     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   2464     // if it is not already.
   2465     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   2466     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
   2467           getCondCodeAction(NewCond, N0.getValueType()) == Legal))
   2468       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   2469   }
   2470 
   2471   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2472       N0.getValueType().isInteger()) {
   2473     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   2474         N0.getOpcode() == ISD::XOR) {
   2475       // Simplify (X+Y) == (X+Z) -->  Y == Z
   2476       if (N0.getOpcode() == N1.getOpcode()) {
   2477         if (N0.getOperand(0) == N1.getOperand(0))
   2478           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   2479         if (N0.getOperand(1) == N1.getOperand(1))
   2480           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   2481         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   2482           // If X op Y == Y op X, try other combinations.
   2483           if (N0.getOperand(0) == N1.getOperand(1))
   2484             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   2485                                 Cond);
   2486           if (N0.getOperand(1) == N1.getOperand(0))
   2487             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   2488                                 Cond);
   2489         }
   2490       }
   2491 
   2492       // If RHS is a legal immediate value for a compare instruction, we need
   2493       // to be careful about increasing register pressure needlessly.
   2494       bool LegalRHSImm = false;
   2495 
   2496       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   2497         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2498           // Turn (X+C1) == C2 --> X == C2-C1
   2499           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   2500             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2501                                 DAG.getConstant(RHSC->getAPIntValue()-
   2502                                                 LHSR->getAPIntValue(),
   2503                                 N0.getValueType()), Cond);
   2504           }
   2505 
   2506           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   2507           if (N0.getOpcode() == ISD::XOR)
   2508             // If we know that all of the inverted bits are zero, don't bother
   2509             // performing the inversion.
   2510             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   2511               return
   2512                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   2513                              DAG.getConstant(LHSR->getAPIntValue() ^
   2514                                                RHSC->getAPIntValue(),
   2515                                              N0.getValueType()),
   2516                              Cond);
   2517         }
   2518 
   2519         // Turn (C1-X) == C2 --> X == C1-C2
   2520         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   2521           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   2522             return
   2523               DAG.getSetCC(dl, VT, N0.getOperand(1),
   2524                            DAG.getConstant(SUBC->getAPIntValue() -
   2525                                              RHSC->getAPIntValue(),
   2526                                            N0.getValueType()),
   2527                            Cond);
   2528           }
   2529         }
   2530 
   2531         // Could RHSC fold directly into a compare?
   2532         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   2533           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   2534       }
   2535 
   2536       // Simplify (X+Z) == X -->  Z == 0
   2537       // Don't do this if X is an immediate that can fold into a cmp
   2538       // instruction and X+Z has other uses. It could be an induction variable
   2539       // chain, and the transform would increase register pressure.
   2540       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   2541         if (N0.getOperand(0) == N1)
   2542           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   2543                               DAG.getConstant(0, N0.getValueType()), Cond);
   2544         if (N0.getOperand(1) == N1) {
   2545           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   2546             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2547                                 DAG.getConstant(0, N0.getValueType()), Cond);
   2548           else if (N0.getNode()->hasOneUse()) {
   2549             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   2550             // (Z-X) == X  --> Z == X<<1
   2551             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
   2552                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
   2553             if (!DCI.isCalledByLegalizer())
   2554               DCI.AddToWorklist(SH.getNode());
   2555             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   2556           }
   2557         }
   2558       }
   2559     }
   2560 
   2561     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   2562         N1.getOpcode() == ISD::XOR) {
   2563       // Simplify  X == (X+Z) -->  Z == 0
   2564       if (N1.getOperand(0) == N0) {
   2565         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   2566                         DAG.getConstant(0, N1.getValueType()), Cond);
   2567       } else if (N1.getOperand(1) == N0) {
   2568         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
   2569           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   2570                           DAG.getConstant(0, N1.getValueType()), Cond);
   2571         } else if (N1.getNode()->hasOneUse()) {
   2572           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   2573           // X == (Z-X)  --> X<<1 == Z
   2574           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
   2575                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
   2576           if (!DCI.isCalledByLegalizer())
   2577             DCI.AddToWorklist(SH.getNode());
   2578           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   2579         }
   2580       }
   2581     }
   2582 
   2583     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   2584     // Note that where y is variable and is known to have at most
   2585     // one bit set (for example, if it is z&1) we cannot do this;
   2586     // the expressions are not equivalent when y==0.
   2587     if (N0.getOpcode() == ISD::AND)
   2588       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   2589         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   2590           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2591           SDValue Zero = DAG.getConstant(0, N1.getValueType());
   2592           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   2593         }
   2594       }
   2595     if (N1.getOpcode() == ISD::AND)
   2596       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   2597         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   2598           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2599           SDValue Zero = DAG.getConstant(0, N0.getValueType());
   2600           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   2601         }
   2602       }
   2603   }
   2604 
   2605   // Fold away ALL boolean setcc's.
   2606   SDValue Temp;
   2607   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   2608     switch (Cond) {
   2609     default: llvm_unreachable("Unknown integer setcc!");
   2610     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   2611       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2612       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   2613       if (!DCI.isCalledByLegalizer())
   2614         DCI.AddToWorklist(Temp.getNode());
   2615       break;
   2616     case ISD::SETNE:  // X != Y   -->  (X^Y)
   2617       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2618       break;
   2619     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2620     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2621       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2622       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   2623       if (!DCI.isCalledByLegalizer())
   2624         DCI.AddToWorklist(Temp.getNode());
   2625       break;
   2626     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   2627     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   2628       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2629       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   2630       if (!DCI.isCalledByLegalizer())
   2631         DCI.AddToWorklist(Temp.getNode());
   2632       break;
   2633     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   2634     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   2635       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2636       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   2637       if (!DCI.isCalledByLegalizer())
   2638         DCI.AddToWorklist(Temp.getNode());
   2639       break;
   2640     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   2641     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   2642       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2643       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   2644       break;
   2645     }
   2646     if (VT != MVT::i1) {
   2647       if (!DCI.isCalledByLegalizer())
   2648         DCI.AddToWorklist(N0.getNode());
   2649       // FIXME: If running after legalize, we probably can't do this.
   2650       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   2651     }
   2652     return N0;
   2653   }
   2654 
   2655   // Could not fold it.
   2656   return SDValue();
   2657 }
   2658 
   2659 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   2660 /// node is a GlobalAddress + offset.
   2661 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2662                                     int64_t &Offset) const {
   2663   if (isa<GlobalAddressSDNode>(N)) {
   2664     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   2665     GA = GASD->getGlobal();
   2666     Offset += GASD->getOffset();
   2667     return true;
   2668   }
   2669 
   2670   if (N->getOpcode() == ISD::ADD) {
   2671     SDValue N1 = N->getOperand(0);
   2672     SDValue N2 = N->getOperand(1);
   2673     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2674       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   2675       if (V) {
   2676         Offset += V->getSExtValue();
   2677         return true;
   2678       }
   2679     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2680       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   2681       if (V) {
   2682         Offset += V->getSExtValue();
   2683         return true;
   2684       }
   2685     }
   2686   }
   2687 
   2688   return false;
   2689 }
   2690 
   2691 
   2692 SDValue TargetLowering::
   2693 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   2694   // Default implementation: no optimization.
   2695   return SDValue();
   2696 }
   2697 
   2698 //===----------------------------------------------------------------------===//
   2699 //  Inline Assembler Implementation Methods
   2700 //===----------------------------------------------------------------------===//
   2701 
   2702 
   2703 TargetLowering::ConstraintType
   2704 TargetLowering::getConstraintType(const std::string &Constraint) const {
   2705   if (Constraint.size() == 1) {
   2706     switch (Constraint[0]) {
   2707     default: break;
   2708     case 'r': return C_RegisterClass;
   2709     case 'm':    // memory
   2710     case 'o':    // offsetable
   2711     case 'V':    // not offsetable
   2712       return C_Memory;
   2713     case 'i':    // Simple Integer or Relocatable Constant
   2714     case 'n':    // Simple Integer
   2715     case 'E':    // Floating Point Constant
   2716     case 'F':    // Floating Point Constant
   2717     case 's':    // Relocatable Constant
   2718     case 'p':    // Address.
   2719     case 'X':    // Allow ANY value.
   2720     case 'I':    // Target registers.
   2721     case 'J':
   2722     case 'K':
   2723     case 'L':
   2724     case 'M':
   2725     case 'N':
   2726     case 'O':
   2727     case 'P':
   2728     case '<':
   2729     case '>':
   2730       return C_Other;
   2731     }
   2732   }
   2733 
   2734   if (Constraint.size() > 1 && Constraint[0] == '{' &&
   2735       Constraint[Constraint.size()-1] == '}')
   2736     return C_Register;
   2737   return C_Unknown;
   2738 }
   2739 
   2740 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   2741 /// with another that has more specific requirements based on the type of the
   2742 /// corresponding operand.
   2743 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2744   if (ConstraintVT.isInteger())
   2745     return "r";
   2746   if (ConstraintVT.isFloatingPoint())
   2747     return "f";      // works for many targets
   2748   return 0;
   2749 }
   2750 
   2751 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   2752 /// vector.  If it is invalid, don't add anything to Ops.
   2753 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2754                                                   std::string &Constraint,
   2755                                                   std::vector<SDValue> &Ops,
   2756                                                   SelectionDAG &DAG) const {
   2757 
   2758   if (Constraint.length() > 1) return;
   2759 
   2760   char ConstraintLetter = Constraint[0];
   2761   switch (ConstraintLetter) {
   2762   default: break;
   2763   case 'X':     // Allows any operand; labels (basic block) use this.
   2764     if (Op.getOpcode() == ISD::BasicBlock) {
   2765       Ops.push_back(Op);
   2766       return;
   2767     }
   2768     // fall through
   2769   case 'i':    // Simple Integer or Relocatable Constant
   2770   case 'n':    // Simple Integer
   2771   case 's': {  // Relocatable Constant
   2772     // These operands are interested in values of the form (GV+C), where C may
   2773     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2774     // is possible and fine if either GV or C are missing.
   2775     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2776     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2777 
   2778     // If we have "(add GV, C)", pull out GV/C
   2779     if (Op.getOpcode() == ISD::ADD) {
   2780       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2781       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2782       if (C == 0 || GA == 0) {
   2783         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2784         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2785       }
   2786       if (C == 0 || GA == 0)
   2787         C = 0, GA = 0;
   2788     }
   2789 
   2790     // If we find a valid operand, map to the TargetXXX version so that the
   2791     // value itself doesn't get selected.
   2792     if (GA) {   // Either &GV   or   &GV+C
   2793       if (ConstraintLetter != 'n') {
   2794         int64_t Offs = GA->getOffset();
   2795         if (C) Offs += C->getZExtValue();
   2796         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2797                                                  C ? C->getDebugLoc() : DebugLoc(),
   2798                                                  Op.getValueType(), Offs));
   2799         return;
   2800       }
   2801     }
   2802     if (C) {   // just C, no GV.
   2803       // Simple constants are not allowed for 's'.
   2804       if (ConstraintLetter != 's') {
   2805         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2806         // now; without this it would get ZExt'd later in
   2807         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2808         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   2809                                             MVT::i64));
   2810         return;
   2811       }
   2812     }
   2813     break;
   2814   }
   2815   }
   2816 }
   2817 
   2818 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
   2819 getRegForInlineAsmConstraint(const std::string &Constraint,
   2820                              EVT VT) const {
   2821   if (Constraint[0] != '{')
   2822     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
   2823   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2824 
   2825   // Remove the braces from around the name.
   2826   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2827 
   2828   // Figure out which register class contains this reg.
   2829   const TargetRegisterInfo *RI = TM.getRegisterInfo();
   2830   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2831        E = RI->regclass_end(); RCI != E; ++RCI) {
   2832     const TargetRegisterClass *RC = *RCI;
   2833 
   2834     // If none of the value types for this register class are valid, we
   2835     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2836     if (!isLegalRC(RC))
   2837       continue;
   2838 
   2839     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2840          I != E; ++I) {
   2841       if (RegName.equals_lower(RI->getName(*I)))
   2842         return std::make_pair(*I, RC);
   2843     }
   2844   }
   2845 
   2846   return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
   2847 }
   2848 
   2849 //===----------------------------------------------------------------------===//
   2850 // Constraint Selection.
   2851 
   2852 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2853 /// a matching constraint like "4".
   2854 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2855   assert(!ConstraintCode.empty() && "No known constraint!");
   2856   return isdigit(ConstraintCode[0]);
   2857 }
   2858 
   2859 /// getMatchedOperand - If this is an input matching constraint, this method
   2860 /// returns the output operand it matches.
   2861 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2862   assert(!ConstraintCode.empty() && "No known constraint!");
   2863   return atoi(ConstraintCode.c_str());
   2864 }
   2865 
   2866 
   2867 /// ParseConstraints - Split up the constraint string from the inline
   2868 /// assembly value into the specific constraints and their prefixes,
   2869 /// and also tie in the associated operand values.
   2870 /// If this returns an empty vector, and if the constraint string itself
   2871 /// isn't empty, there was an error parsing.
   2872 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
   2873     ImmutableCallSite CS) const {
   2874   /// ConstraintOperands - Information about all of the constraints.
   2875   AsmOperandInfoVector ConstraintOperands;
   2876   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2877   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2878 
   2879   // Do a prepass over the constraints, canonicalizing them, and building up the
   2880   // ConstraintOperands list.
   2881   InlineAsm::ConstraintInfoVector
   2882     ConstraintInfos = IA->ParseConstraints();
   2883 
   2884   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2885   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2886 
   2887   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
   2888     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
   2889     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2890 
   2891     // Update multiple alternative constraint count.
   2892     if (OpInfo.multipleAlternatives.size() > maCount)
   2893       maCount = OpInfo.multipleAlternatives.size();
   2894 
   2895     OpInfo.ConstraintVT = MVT::Other;
   2896 
   2897     // Compute the value type for each operand.
   2898     switch (OpInfo.Type) {
   2899     case InlineAsm::isOutput:
   2900       // Indirect outputs just consume an argument.
   2901       if (OpInfo.isIndirect) {
   2902         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2903         break;
   2904       }
   2905 
   2906       // The return value of the call is this value.  As such, there is no
   2907       // corresponding argument.
   2908       assert(!CS.getType()->isVoidTy() &&
   2909              "Bad inline asm!");
   2910       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2911         OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
   2912       } else {
   2913         assert(ResNo == 0 && "Asm only has one result!");
   2914         OpInfo.ConstraintVT = getValueType(CS.getType());
   2915       }
   2916       ++ResNo;
   2917       break;
   2918     case InlineAsm::isInput:
   2919       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2920       break;
   2921     case InlineAsm::isClobber:
   2922       // Nothing to do.
   2923       break;
   2924     }
   2925 
   2926     if (OpInfo.CallOperandVal) {
   2927       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2928       if (OpInfo.isIndirect) {
   2929         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2930         if (!PtrTy)
   2931           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2932         OpTy = PtrTy->getElementType();
   2933       }
   2934 
   2935       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2936       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2937         if (STy->getNumElements() == 1)
   2938           OpTy = STy->getElementType(0);
   2939 
   2940       // If OpTy is not a single value, it may be a struct/union that we
   2941       // can tile with integers.
   2942       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2943         unsigned BitSize = TD->getTypeSizeInBits(OpTy);
   2944         switch (BitSize) {
   2945         default: break;
   2946         case 1:
   2947         case 8:
   2948         case 16:
   2949         case 32:
   2950         case 64:
   2951         case 128:
   2952           OpInfo.ConstraintVT =
   2953               EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2954           break;
   2955         }
   2956       } else if (dyn_cast<PointerType>(OpTy)) {
   2957         OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
   2958       } else {
   2959         OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
   2960       }
   2961     }
   2962   }
   2963 
   2964   // If we have multiple alternative constraints, select the best alternative.
   2965   if (ConstraintInfos.size()) {
   2966     if (maCount) {
   2967       unsigned bestMAIndex = 0;
   2968       int bestWeight = -1;
   2969       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2970       int weight = -1;
   2971       unsigned maIndex;
   2972       // Compute the sums of the weights for each alternative, keeping track
   2973       // of the best (highest weight) one so far.
   2974       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2975         int weightSum = 0;
   2976         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2977             cIndex != eIndex; ++cIndex) {
   2978           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2979           if (OpInfo.Type == InlineAsm::isClobber)
   2980             continue;
   2981 
   2982           // If this is an output operand with a matching input operand,
   2983           // look up the matching input. If their types mismatch, e.g. one
   2984           // is an integer, the other is floating point, or their sizes are
   2985           // different, flag it as an maCantMatch.
   2986           if (OpInfo.hasMatchingInput()) {
   2987             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2988             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2989               if ((OpInfo.ConstraintVT.isInteger() !=
   2990                    Input.ConstraintVT.isInteger()) ||
   2991                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2992                    Input.ConstraintVT.getSizeInBits())) {
   2993                 weightSum = -1;  // Can't match.
   2994                 break;
   2995               }
   2996             }
   2997           }
   2998           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2999           if (weight == -1) {
   3000             weightSum = -1;
   3001             break;
   3002           }
   3003           weightSum += weight;
   3004         }
   3005         // Update best.
   3006         if (weightSum > bestWeight) {
   3007           bestWeight = weightSum;
   3008           bestMAIndex = maIndex;
   3009         }
   3010       }
   3011 
   3012       // Now select chosen alternative in each constraint.
   3013       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   3014           cIndex != eIndex; ++cIndex) {
   3015         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   3016         if (cInfo.Type == InlineAsm::isClobber)
   3017           continue;
   3018         cInfo.selectAlternative(bestMAIndex);
   3019       }
   3020     }
   3021   }
   3022 
   3023   // Check and hook up tied operands, choose constraint code to use.
   3024   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   3025       cIndex != eIndex; ++cIndex) {
   3026     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   3027 
   3028     // If this is an output operand with a matching input operand, look up the
   3029     // matching input. If their types mismatch, e.g. one is an integer, the
   3030     // other is floating point, or their sizes are different, flag it as an
   3031     // error.
   3032     if (OpInfo.hasMatchingInput()) {
   3033       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   3034 
   3035       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   3036         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   3037           getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   3038                                        OpInfo.ConstraintVT);
   3039         std::pair<unsigned, const TargetRegisterClass*> InputRC =
   3040           getRegForInlineAsmConstraint(Input.ConstraintCode,
   3041                                        Input.ConstraintVT);
   3042         if ((OpInfo.ConstraintVT.isInteger() !=
   3043              Input.ConstraintVT.isInteger()) ||
   3044             (MatchRC.second != InputRC.second)) {
   3045           report_fatal_error("Unsupported asm: input constraint"
   3046                              " with a matching output constraint of"
   3047                              " incompatible type!");
   3048         }
   3049       }
   3050 
   3051     }
   3052   }
   3053 
   3054   return ConstraintOperands;
   3055 }
   3056 
   3057 
   3058 /// getConstraintGenerality - Return an integer indicating how general CT
   3059 /// is.
   3060 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   3061   switch (CT) {
   3062   case TargetLowering::C_Other:
   3063   case TargetLowering::C_Unknown:
   3064     return 0;
   3065   case TargetLowering::C_Register:
   3066     return 1;
   3067   case TargetLowering::C_RegisterClass:
   3068     return 2;
   3069   case TargetLowering::C_Memory:
   3070     return 3;
   3071   }
   3072   llvm_unreachable("Invalid constraint type");
   3073 }
   3074 
   3075 /// Examine constraint type and operand type and determine a weight value.
   3076 /// This object must already have been set up with the operand type
   3077 /// and the current alternative constraint selected.
   3078 TargetLowering::ConstraintWeight
   3079   TargetLowering::getMultipleConstraintMatchWeight(
   3080     AsmOperandInfo &info, int maIndex) const {
   3081   InlineAsm::ConstraintCodeVector *rCodes;
   3082   if (maIndex >= (int)info.multipleAlternatives.size())
   3083     rCodes = &info.Codes;
   3084   else
   3085     rCodes = &info.multipleAlternatives[maIndex].Codes;
   3086   ConstraintWeight BestWeight = CW_Invalid;
   3087 
   3088   // Loop over the options, keeping track of the most general one.
   3089   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   3090     ConstraintWeight weight =
   3091       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   3092     if (weight > BestWeight)
   3093       BestWeight = weight;
   3094   }
   3095 
   3096   return BestWeight;
   3097 }
   3098 
   3099 /// Examine constraint type and operand type and determine a weight value.
   3100 /// This object must already have been set up with the operand type
   3101 /// and the current alternative constraint selected.
   3102 TargetLowering::ConstraintWeight
   3103   TargetLowering::getSingleConstraintMatchWeight(
   3104     AsmOperandInfo &info, const char *constraint) const {
   3105   ConstraintWeight weight = CW_Invalid;
   3106   Value *CallOperandVal = info.CallOperandVal;
   3107     // If we don't have a value, we can't do a match,
   3108     // but allow it at the lowest weight.
   3109   if (CallOperandVal == NULL)
   3110     return CW_Default;
   3111   // Look at the constraint type.
   3112   switch (*constraint) {
   3113     case 'i': // immediate integer.
   3114     case 'n': // immediate integer with a known value.
   3115       if (isa<ConstantInt>(CallOperandVal))
   3116         weight = CW_Constant;
   3117       break;
   3118     case 's': // non-explicit intregal immediate.
   3119       if (isa<GlobalValue>(CallOperandVal))
   3120         weight = CW_Constant;
   3121       break;
   3122     case 'E': // immediate float if host format.
   3123     case 'F': // immediate float.
   3124       if (isa<ConstantFP>(CallOperandVal))
   3125         weight = CW_Constant;
   3126       break;
   3127     case '<': // memory operand with autodecrement.
   3128     case '>': // memory operand with autoincrement.
   3129     case 'm': // memory operand.
   3130     case 'o': // offsettable memory operand
   3131     case 'V': // non-offsettable memory operand
   3132       weight = CW_Memory;
   3133       break;
   3134     case 'r': // general register.
   3135     case 'g': // general register, memory operand or immediate integer.
   3136               // note: Clang converts "g" to "imr".
   3137       if (CallOperandVal->getType()->isIntegerTy())
   3138         weight = CW_Register;
   3139       break;
   3140     case 'X': // any operand.
   3141     default:
   3142       weight = CW_Default;
   3143       break;
   3144   }
   3145   return weight;
   3146 }
   3147 
   3148 /// ChooseConstraint - If there are multiple different constraints that we
   3149 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   3150 /// This is somewhat tricky: constraints fall into four classes:
   3151 ///    Other         -> immediates and magic values
   3152 ///    Register      -> one specific register
   3153 ///    RegisterClass -> a group of regs
   3154 ///    Memory        -> memory
   3155 /// Ideally, we would pick the most specific constraint possible: if we have
   3156 /// something that fits into a register, we would pick it.  The problem here
   3157 /// is that if we have something that could either be in a register or in
   3158 /// memory that use of the register could cause selection of *other*
   3159 /// operands to fail: they might only succeed if we pick memory.  Because of
   3160 /// this the heuristic we use is:
   3161 ///
   3162 ///  1) If there is an 'other' constraint, and if the operand is valid for
   3163 ///     that constraint, use it.  This makes us take advantage of 'i'
   3164 ///     constraints when available.
   3165 ///  2) Otherwise, pick the most general constraint present.  This prefers
   3166 ///     'm' over 'r', for example.
   3167 ///
   3168 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   3169                              const TargetLowering &TLI,
   3170                              SDValue Op, SelectionDAG *DAG) {
   3171   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   3172   unsigned BestIdx = 0;
   3173   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   3174   int BestGenerality = -1;
   3175 
   3176   // Loop over the options, keeping track of the most general one.
   3177   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   3178     TargetLowering::ConstraintType CType =
   3179       TLI.getConstraintType(OpInfo.Codes[i]);
   3180 
   3181     // If this is an 'other' constraint, see if the operand is valid for it.
   3182     // For example, on X86 we might have an 'rI' constraint.  If the operand
   3183     // is an integer in the range [0..31] we want to use I (saving a load
   3184     // of a register), otherwise we must use 'r'.
   3185     if (CType == TargetLowering::C_Other && Op.getNode()) {
   3186       assert(OpInfo.Codes[i].size() == 1 &&
   3187              "Unhandled multi-letter 'other' constraint");
   3188       std::vector<SDValue> ResultOps;
   3189       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   3190                                        ResultOps, *DAG);
   3191       if (!ResultOps.empty()) {
   3192         BestType = CType;
   3193         BestIdx = i;
   3194         break;
   3195       }
   3196     }
   3197 
   3198     // Things with matching constraints can only be registers, per gcc
   3199     // documentation.  This mainly affects "g" constraints.
   3200     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   3201       continue;
   3202 
   3203     // This constraint letter is more general than the previous one, use it.
   3204     int Generality = getConstraintGenerality(CType);
   3205     if (Generality > BestGenerality) {
   3206       BestType = CType;
   3207       BestIdx = i;
   3208       BestGenerality = Generality;
   3209     }
   3210   }
   3211 
   3212   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   3213   OpInfo.ConstraintType = BestType;
   3214 }
   3215 
   3216 /// ComputeConstraintToUse - Determines the constraint code and constraint
   3217 /// type to use for the specific AsmOperandInfo, setting
   3218 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   3219 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   3220                                             SDValue Op,
   3221                                             SelectionDAG *DAG) const {
   3222   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   3223 
   3224   // Single-letter constraints ('r') are very common.
   3225   if (OpInfo.Codes.size() == 1) {
   3226     OpInfo.ConstraintCode = OpInfo.Codes[0];
   3227     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3228   } else {
   3229     ChooseConstraint(OpInfo, *this, Op, DAG);
   3230   }
   3231 
   3232   // 'X' matches anything.
   3233   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   3234     // Labels and constants are handled elsewhere ('X' is the only thing
   3235     // that matches labels).  For Functions, the type here is the type of
   3236     // the result, which is not what we want to look at; leave them alone.
   3237     Value *v = OpInfo.CallOperandVal;
   3238     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   3239       OpInfo.CallOperandVal = v;
   3240       return;
   3241     }
   3242 
   3243     // Otherwise, try to resolve it to something we know about by looking at
   3244     // the actual operand type.
   3245     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   3246       OpInfo.ConstraintCode = Repl;
   3247       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3248     }
   3249   }
   3250 }
   3251 
   3252 //===----------------------------------------------------------------------===//
   3253 //  Loop Strength Reduction hooks
   3254 //===----------------------------------------------------------------------===//
   3255 
   3256 /// isLegalAddressingMode - Return true if the addressing mode represented
   3257 /// by AM is legal for this target, for a load/store of the specified type.
   3258 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   3259                                            Type *Ty) const {
   3260   // The default implementation of this implements a conservative RISCy, r+r and
   3261   // r+i addr mode.
   3262 
   3263   // Allows a sign-extended 16-bit immediate field.
   3264   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   3265     return false;
   3266 
   3267   // No global is ever allowed as a base.
   3268   if (AM.BaseGV)
   3269     return false;
   3270 
   3271   // Only support r+r,
   3272   switch (AM.Scale) {
   3273   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   3274     break;
   3275   case 1:
   3276     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   3277       return false;
   3278     // Otherwise we have r+r or r+i.
   3279     break;
   3280   case 2:
   3281     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   3282       return false;
   3283     // Allow 2*r as r+r.
   3284     break;
   3285   }
   3286 
   3287   return true;
   3288 }
   3289 
   3290 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
   3291 /// with the multiplicative inverse of the constant.
   3292 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   3293                                        SelectionDAG &DAG) const {
   3294   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
   3295   APInt d = C->getAPIntValue();
   3296   assert(d != 0 && "Division by zero!");
   3297 
   3298   // Shift the value upfront if it is even, so the LSB is one.
   3299   unsigned ShAmt = d.countTrailingZeros();
   3300   if (ShAmt) {
   3301     // TODO: For UDIV use SRL instead of SRA.
   3302     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
   3303     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
   3304     d = d.ashr(ShAmt);
   3305   }
   3306 
   3307   // Calculate the multiplicative inverse, using Newton's method.
   3308   APInt t, xn = d;
   3309   while ((t = d*xn) != 1)
   3310     xn *= APInt(d.getBitWidth(), 2) - t;
   3311 
   3312   Op2 = DAG.getConstant(xn, Op1.getValueType());
   3313   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   3314 }
   3315 
   3316 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
   3317 /// return a DAG expression to select that will generate the same value by
   3318 /// multiplying by a magic number.  See:
   3319 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   3320 SDValue TargetLowering::
   3321 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   3322           std::vector<SDNode*>* Created) const {
   3323   EVT VT = N->getValueType(0);
   3324   DebugLoc dl= N->getDebugLoc();
   3325 
   3326   // Check to see if we can do this.
   3327   // FIXME: We should be more aggressive here.
   3328   if (!isTypeLegal(VT))
   3329     return SDValue();
   3330 
   3331   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   3332   APInt::ms magics = d.magic();
   3333 
   3334   // Multiply the numerator (operand 0) by the magic value
   3335   // FIXME: We should support doing a MUL in a wider type
   3336   SDValue Q;
   3337   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   3338                             isOperationLegalOrCustom(ISD::MULHS, VT))
   3339     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   3340                     DAG.getConstant(magics.m, VT));
   3341   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   3342                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   3343     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   3344                               N->getOperand(0),
   3345                               DAG.getConstant(magics.m, VT)).getNode(), 1);
   3346   else
   3347     return SDValue();       // No mulhs or equvialent
   3348   // If d > 0 and m < 0, add the numerator
   3349   if (d.isStrictlyPositive() && magics.m.isNegative()) {
   3350     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   3351     if (Created)
   3352       Created->push_back(Q.getNode());
   3353   }
   3354   // If d < 0 and m > 0, subtract the numerator.
   3355   if (d.isNegative() && magics.m.isStrictlyPositive()) {
   3356     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   3357     if (Created)
   3358       Created->push_back(Q.getNode());
   3359   }
   3360   // Shift right algebraic if shift value is nonzero
   3361   if (magics.s > 0) {
   3362     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
   3363                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   3364     if (Created)
   3365       Created->push_back(Q.getNode());
   3366   }
   3367   // Extract the sign bit and add it to the quotient
   3368   SDValue T =
   3369     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
   3370                                            getShiftAmountTy(Q.getValueType())));
   3371   if (Created)
   3372     Created->push_back(T.getNode());
   3373   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   3374 }
   3375 
   3376 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
   3377 /// return a DAG expression to select that will generate the same value by
   3378 /// multiplying by a magic number.  See:
   3379 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   3380 SDValue TargetLowering::
   3381 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   3382           std::vector<SDNode*>* Created) const {
   3383   EVT VT = N->getValueType(0);
   3384   DebugLoc dl = N->getDebugLoc();
   3385 
   3386   // Check to see if we can do this.
   3387   // FIXME: We should be more aggressive here.
   3388   if (!isTypeLegal(VT))
   3389     return SDValue();
   3390 
   3391   // FIXME: We should use a narrower constant when the upper
   3392   // bits are known to be zero.
   3393   const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   3394   APInt::mu magics = N1C.magicu();
   3395 
   3396   SDValue Q = N->getOperand(0);
   3397 
   3398   // If the divisor is even, we can avoid using the expensive fixup by shifting
   3399   // the divided value upfront.
   3400   if (magics.a != 0 && !N1C[0]) {
   3401     unsigned Shift = N1C.countTrailingZeros();
   3402     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
   3403                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
   3404     if (Created)
   3405       Created->push_back(Q.getNode());
   3406 
   3407     // Get magic number for the shifted divisor.
   3408     magics = N1C.lshr(Shift).magicu(Shift);
   3409     assert(magics.a == 0 && "Should use cheap fixup now");
   3410   }
   3411 
   3412   // Multiply the numerator (operand 0) by the magic value
   3413   // FIXME: We should support doing a MUL in a wider type
   3414   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   3415                             isOperationLegalOrCustom(ISD::MULHU, VT))
   3416     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
   3417   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   3418                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   3419     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   3420                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   3421   else
   3422     return SDValue();       // No mulhu or equvialent
   3423   if (Created)
   3424     Created->push_back(Q.getNode());
   3425 
   3426   if (magics.a == 0) {
   3427     assert(magics.s < N1C.getBitWidth() &&
   3428            "We shouldn't generate an undefined shift!");
   3429     return DAG.getNode(ISD::SRL, dl, VT, Q,
   3430                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   3431   } else {
   3432     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   3433     if (Created)
   3434       Created->push_back(NPQ.getNode());
   3435     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
   3436                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
   3437     if (Created)
   3438       Created->push_back(NPQ.getNode());
   3439     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   3440     if (Created)
   3441       Created->push_back(NPQ.getNode());
   3442     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
   3443              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
   3444   }
   3445 }
   3446