Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
     11 // of MachineInstrs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "sched-instrs"
     16 #include "llvm/Operator.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/Analysis/ValueTracking.h"
     19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     20 #include "llvm/CodeGen/MachineFunctionPass.h"
     21 #include "llvm/CodeGen/MachineMemOperand.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/PseudoSourceValue.h"
     24 #include "llvm/CodeGen/RegisterPressure.h"
     25 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     26 #include "llvm/MC/MCInstrItineraries.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/Target/TargetInstrInfo.h"
     29 #include "llvm/Target/TargetRegisterInfo.h"
     30 #include "llvm/Target/TargetSubtargetInfo.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/ADT/SmallSet.h"
     35 #include "llvm/ADT/SmallPtrSet.h"
     36 using namespace llvm;
     37 
     38 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
     39     cl::ZeroOrMore, cl::init(false),
     40     cl::desc("Enable use of AA during MI GAD construction"));
     41 
     42 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
     43                                      const MachineLoopInfo &mli,
     44                                      const MachineDominatorTree &mdt,
     45                                      bool IsPostRAFlag,
     46                                      LiveIntervals *lis)
     47   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
     48     InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
     49     IsPostRA(IsPostRAFlag), UnitLatencies(false), CanHandleTerminators(false),
     50     LoopRegs(MDT), FirstDbgValue(0) {
     51   assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
     52   DbgValues.clear();
     53   assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
     54          "Virtual registers must be removed prior to PostRA scheduling");
     55 }
     56 
     57 /// getUnderlyingObjectFromInt - This is the function that does the work of
     58 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
     59 static const Value *getUnderlyingObjectFromInt(const Value *V) {
     60   do {
     61     if (const Operator *U = dyn_cast<Operator>(V)) {
     62       // If we find a ptrtoint, we can transfer control back to the
     63       // regular getUnderlyingObjectFromInt.
     64       if (U->getOpcode() == Instruction::PtrToInt)
     65         return U->getOperand(0);
     66       // If we find an add of a constant or a multiplied value, it's
     67       // likely that the other operand will lead us to the base
     68       // object. We don't have to worry about the case where the
     69       // object address is somehow being computed by the multiply,
     70       // because our callers only care when the result is an
     71       // identifibale object.
     72       if (U->getOpcode() != Instruction::Add ||
     73           (!isa<ConstantInt>(U->getOperand(1)) &&
     74            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
     75         return V;
     76       V = U->getOperand(0);
     77     } else {
     78       return V;
     79     }
     80     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
     81   } while (1);
     82 }
     83 
     84 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
     85 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
     86 static const Value *getUnderlyingObject(const Value *V) {
     87   // First just call Value::getUnderlyingObject to let it do what it does.
     88   do {
     89     V = GetUnderlyingObject(V);
     90     // If it found an inttoptr, use special code to continue climing.
     91     if (Operator::getOpcode(V) != Instruction::IntToPtr)
     92       break;
     93     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
     94     // If that succeeded in finding a pointer, continue the search.
     95     if (!O->getType()->isPointerTy())
     96       break;
     97     V = O;
     98   } while (1);
     99   return V;
    100 }
    101 
    102 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
    103 /// information and it can be tracked to a normal reference to a known
    104 /// object, return the Value for that object. Otherwise return null.
    105 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
    106                                                 const MachineFrameInfo *MFI,
    107                                                 bool &MayAlias) {
    108   MayAlias = true;
    109   if (!MI->hasOneMemOperand() ||
    110       !(*MI->memoperands_begin())->getValue() ||
    111       (*MI->memoperands_begin())->isVolatile())
    112     return 0;
    113 
    114   const Value *V = (*MI->memoperands_begin())->getValue();
    115   if (!V)
    116     return 0;
    117 
    118   V = getUnderlyingObject(V);
    119   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
    120     // For now, ignore PseudoSourceValues which may alias LLVM IR values
    121     // because the code that uses this function has no way to cope with
    122     // such aliases.
    123     if (PSV->isAliased(MFI))
    124       return 0;
    125 
    126     MayAlias = PSV->mayAlias(MFI);
    127     return V;
    128   }
    129 
    130   if (isIdentifiedObject(V))
    131     return V;
    132 
    133   return 0;
    134 }
    135 
    136 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
    137   BB = bb;
    138   LoopRegs.Deps.clear();
    139   if (MachineLoop *ML = MLI.getLoopFor(BB))
    140     if (BB == ML->getLoopLatch())
    141       LoopRegs.VisitLoop(ML);
    142 }
    143 
    144 void ScheduleDAGInstrs::finishBlock() {
    145   // Subclasses should no longer refer to the old block.
    146   BB = 0;
    147 }
    148 
    149 /// Initialize the map with the number of registers.
    150 void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
    151   PhysRegSet.setUniverse(Limit);
    152   SUnits.resize(Limit);
    153 }
    154 
    155 /// Clear the map without deallocating storage.
    156 void Reg2SUnitsMap::clear() {
    157   for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
    158     SUnits[*I].clear();
    159   }
    160   PhysRegSet.clear();
    161 }
    162 
    163 /// Initialize the DAG and common scheduler state for the current scheduling
    164 /// region. This does not actually create the DAG, only clears it. The
    165 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
    166 /// region.
    167 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
    168                                     MachineBasicBlock::iterator begin,
    169                                     MachineBasicBlock::iterator end,
    170                                     unsigned endcount) {
    171   assert(bb == BB && "startBlock should set BB");
    172   RegionBegin = begin;
    173   RegionEnd = end;
    174   EndIndex = endcount;
    175   MISUnitMap.clear();
    176 
    177   // Check to see if the scheduler cares about latencies.
    178   UnitLatencies = forceUnitLatencies();
    179 
    180   ScheduleDAG::clearDAG();
    181 }
    182 
    183 /// Close the current scheduling region. Don't clear any state in case the
    184 /// driver wants to refer to the previous scheduling region.
    185 void ScheduleDAGInstrs::exitRegion() {
    186   // Nothing to do.
    187 }
    188 
    189 /// addSchedBarrierDeps - Add dependencies from instructions in the current
    190 /// list of instructions being scheduled to scheduling barrier by adding
    191 /// the exit SU to the register defs and use list. This is because we want to
    192 /// make sure instructions which define registers that are either used by
    193 /// the terminator or are live-out are properly scheduled. This is
    194 /// especially important when the definition latency of the return value(s)
    195 /// are too high to be hidden by the branch or when the liveout registers
    196 /// used by instructions in the fallthrough block.
    197 void ScheduleDAGInstrs::addSchedBarrierDeps() {
    198   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
    199   ExitSU.setInstr(ExitMI);
    200   bool AllDepKnown = ExitMI &&
    201     (ExitMI->isCall() || ExitMI->isBarrier());
    202   if (ExitMI && AllDepKnown) {
    203     // If it's a call or a barrier, add dependencies on the defs and uses of
    204     // instruction.
    205     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
    206       const MachineOperand &MO = ExitMI->getOperand(i);
    207       if (!MO.isReg() || MO.isDef()) continue;
    208       unsigned Reg = MO.getReg();
    209       if (Reg == 0) continue;
    210 
    211       if (TRI->isPhysicalRegister(Reg))
    212         Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
    213       else {
    214         assert(!IsPostRA && "Virtual register encountered after regalloc.");
    215         addVRegUseDeps(&ExitSU, i);
    216       }
    217     }
    218   } else {
    219     // For others, e.g. fallthrough, conditional branch, assume the exit
    220     // uses all the registers that are livein to the successor blocks.
    221     assert(Uses.empty() && "Uses in set before adding deps?");
    222     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    223            SE = BB->succ_end(); SI != SE; ++SI)
    224       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    225              E = (*SI)->livein_end(); I != E; ++I) {
    226         unsigned Reg = *I;
    227         if (!Uses.contains(Reg))
    228           Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
    229       }
    230   }
    231 }
    232 
    233 /// MO is an operand of SU's instruction that defines a physical register. Add
    234 /// data dependencies from SU to any uses of the physical register.
    235 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
    236   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
    237   assert(MO.isDef() && "expect physreg def");
    238 
    239   // Ask the target if address-backscheduling is desirable, and if so how much.
    240   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    241   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
    242   unsigned DataLatency = SU->Latency;
    243 
    244   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    245        Alias.isValid(); ++Alias) {
    246     if (!Uses.contains(*Alias))
    247       continue;
    248     std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
    249     for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
    250       SUnit *UseSU = UseList[i].SU;
    251       if (UseSU == SU)
    252         continue;
    253       MachineInstr *UseMI = UseSU->getInstr();
    254       int UseOp = UseList[i].OpIdx;
    255       unsigned LDataLatency = DataLatency;
    256       // Optionally add in a special extra latency for nodes that
    257       // feed addresses.
    258       // TODO: Perhaps we should get rid of
    259       // SpecialAddressLatency and just move this into
    260       // adjustSchedDependency for the targets that care about it.
    261       if (SpecialAddressLatency != 0 && !UnitLatencies &&
    262           UseSU != &ExitSU) {
    263         const MCInstrDesc &UseMCID = UseMI->getDesc();
    264         int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
    265         assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
    266         if (RegUseIndex >= 0 &&
    267             (UseMI->mayLoad() || UseMI->mayStore()) &&
    268             (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
    269             UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
    270           LDataLatency += SpecialAddressLatency;
    271       }
    272       // Adjust the dependence latency using operand def/use
    273       // information (if any), and then allow the target to
    274       // perform its own adjustments.
    275       SDep dep(SU, SDep::Data, LDataLatency, *Alias);
    276       if (!UnitLatencies) {
    277         unsigned Latency =
    278           TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx,
    279                                      (UseOp < 0 ? 0 : UseMI), UseOp);
    280         dep.setLatency(Latency);
    281         unsigned MinLatency =
    282           TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx,
    283                                      (UseOp < 0 ? 0 : UseMI), UseOp,
    284                                      /*FindMin=*/true);
    285         dep.setMinLatency(MinLatency);
    286 
    287         ST.adjustSchedDependency(SU, UseSU, dep);
    288       }
    289       UseSU->addPred(dep);
    290     }
    291   }
    292 }
    293 
    294 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
    295 /// this SUnit to following instructions in the same scheduling region that
    296 /// depend the physical register referenced at OperIdx.
    297 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
    298   const MachineInstr *MI = SU->getInstr();
    299   const MachineOperand &MO = MI->getOperand(OperIdx);
    300 
    301   // Optionally add output and anti dependencies. For anti
    302   // dependencies we use a latency of 0 because for a multi-issue
    303   // target we want to allow the defining instruction to issue
    304   // in the same cycle as the using instruction.
    305   // TODO: Using a latency of 1 here for output dependencies assumes
    306   //       there's no cost for reusing registers.
    307   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
    308   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    309        Alias.isValid(); ++Alias) {
    310     if (!Defs.contains(*Alias))
    311       continue;
    312     std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
    313     for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
    314       SUnit *DefSU = DefList[i].SU;
    315       if (DefSU == &ExitSU)
    316         continue;
    317       if (DefSU != SU &&
    318           (Kind != SDep::Output || !MO.isDead() ||
    319            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
    320         if (Kind == SDep::Anti)
    321           DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
    322         else {
    323           unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
    324                                                  DefSU->getInstr());
    325           DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
    326         }
    327       }
    328     }
    329   }
    330 
    331   if (!MO.isDef()) {
    332     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    333     // retrieve the existing SUnits list for this register's uses.
    334     // Push this SUnit on the use list.
    335     Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
    336   }
    337   else {
    338     addPhysRegDataDeps(SU, OperIdx);
    339 
    340     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    341     // retrieve the existing SUnits list for this register's defs.
    342     std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
    343 
    344     // If a def is going to wrap back around to the top of the loop,
    345     // backschedule it.
    346     if (!UnitLatencies && DefList.empty()) {
    347       LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
    348       if (I != LoopRegs.Deps.end()) {
    349         const MachineOperand *UseMO = I->second.first;
    350         unsigned Count = I->second.second;
    351         const MachineInstr *UseMI = UseMO->getParent();
    352         unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
    353         const MCInstrDesc &UseMCID = UseMI->getDesc();
    354         const TargetSubtargetInfo &ST =
    355           TM.getSubtarget<TargetSubtargetInfo>();
    356         unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
    357         // TODO: If we knew the total depth of the region here, we could
    358         // handle the case where the whole loop is inside the region but
    359         // is large enough that the isScheduleHigh trick isn't needed.
    360         if (UseMOIdx < UseMCID.getNumOperands()) {
    361           // Currently, we only support scheduling regions consisting of
    362           // single basic blocks. Check to see if the instruction is in
    363           // the same region by checking to see if it has the same parent.
    364           if (UseMI->getParent() != MI->getParent()) {
    365             unsigned Latency = SU->Latency;
    366             if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
    367               Latency += SpecialAddressLatency;
    368             // This is a wild guess as to the portion of the latency which
    369             // will be overlapped by work done outside the current
    370             // scheduling region.
    371             Latency -= std::min(Latency, Count);
    372             // Add the artificial edge.
    373             ExitSU.addPred(SDep(SU, SDep::Order, Latency,
    374                                 /*Reg=*/0, /*isNormalMemory=*/false,
    375                                 /*isMustAlias=*/false,
    376                                 /*isArtificial=*/true));
    377           } else if (SpecialAddressLatency > 0 &&
    378                      UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
    379             // The entire loop body is within the current scheduling region
    380             // and the latency of this operation is assumed to be greater
    381             // than the latency of the loop.
    382             // TODO: Recursively mark data-edge predecessors as
    383             //       isScheduleHigh too.
    384             SU->isScheduleHigh = true;
    385           }
    386         }
    387         LoopRegs.Deps.erase(I);
    388       }
    389     }
    390 
    391     // clear this register's use list
    392     if (Uses.contains(MO.getReg()))
    393       Uses[MO.getReg()].clear();
    394 
    395     if (!MO.isDead())
    396       DefList.clear();
    397 
    398     // Calls will not be reordered because of chain dependencies (see
    399     // below). Since call operands are dead, calls may continue to be added
    400     // to the DefList making dependence checking quadratic in the size of
    401     // the block. Instead, we leave only one call at the back of the
    402     // DefList.
    403     if (SU->isCall) {
    404       while (!DefList.empty() && DefList.back().SU->isCall)
    405         DefList.pop_back();
    406     }
    407     // Defs are pushed in the order they are visited and never reordered.
    408     DefList.push_back(PhysRegSUOper(SU, OperIdx));
    409   }
    410 }
    411 
    412 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
    413 /// to instructions that occur later in the same scheduling region if they read
    414 /// from or write to the virtual register defined at OperIdx.
    415 ///
    416 /// TODO: Hoist loop induction variable increments. This has to be
    417 /// reevaluated. Generally, IV scheduling should be done before coalescing.
    418 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
    419   const MachineInstr *MI = SU->getInstr();
    420   unsigned Reg = MI->getOperand(OperIdx).getReg();
    421 
    422   // Singly defined vregs do not have output/anti dependencies.
    423   // The current operand is a def, so we have at least one.
    424   // Check here if there are any others...
    425   if (MRI.hasOneDef(Reg))
    426     return;
    427 
    428   // Add output dependence to the next nearest def of this vreg.
    429   //
    430   // Unless this definition is dead, the output dependence should be
    431   // transitively redundant with antidependencies from this definition's
    432   // uses. We're conservative for now until we have a way to guarantee the uses
    433   // are not eliminated sometime during scheduling. The output dependence edge
    434   // is also useful if output latency exceeds def-use latency.
    435   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    436   if (DefI == VRegDefs.end())
    437     VRegDefs.insert(VReg2SUnit(Reg, SU));
    438   else {
    439     SUnit *DefSU = DefI->SU;
    440     if (DefSU != SU && DefSU != &ExitSU) {
    441       unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
    442                                                   DefSU->getInstr());
    443       DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
    444     }
    445     DefI->SU = SU;
    446   }
    447 }
    448 
    449 /// addVRegUseDeps - Add a register data dependency if the instruction that
    450 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
    451 /// register antidependency from this SUnit to instructions that occur later in
    452 /// the same scheduling region if they write the virtual register.
    453 ///
    454 /// TODO: Handle ExitSU "uses" properly.
    455 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
    456   MachineInstr *MI = SU->getInstr();
    457   unsigned Reg = MI->getOperand(OperIdx).getReg();
    458 
    459   // Lookup this operand's reaching definition.
    460   assert(LIS && "vreg dependencies requires LiveIntervals");
    461   LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
    462   VNInfo *VNI = LRQ.valueIn();
    463 
    464   // VNI will be valid because MachineOperand::readsReg() is checked by caller.
    465   assert(VNI && "No value to read by operand");
    466   MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
    467   // Phis and other noninstructions (after coalescing) have a NULL Def.
    468   if (Def) {
    469     SUnit *DefSU = getSUnit(Def);
    470     if (DefSU) {
    471       // The reaching Def lives within this scheduling region.
    472       // Create a data dependence.
    473       //
    474       // TODO: Handle "special" address latencies cleanly.
    475       SDep dep(DefSU, SDep::Data, DefSU->Latency, Reg);
    476       if (!UnitLatencies) {
    477         // Adjust the dependence latency using operand def/use information, then
    478         // allow the target to perform its own adjustments.
    479         int DefOp = Def->findRegisterDefOperandIdx(Reg);
    480         unsigned Latency =
    481           TII->computeOperandLatency(InstrItins, Def, DefOp, MI, OperIdx);
    482         dep.setLatency(Latency);
    483         unsigned MinLatency =
    484           TII->computeOperandLatency(InstrItins, Def, DefOp, MI, OperIdx,
    485                                      /*FindMin=*/true);
    486         dep.setMinLatency(MinLatency);
    487 
    488         const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    489         ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
    490       }
    491       SU->addPred(dep);
    492     }
    493   }
    494 
    495   // Add antidependence to the following def of the vreg it uses.
    496   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    497   if (DefI != VRegDefs.end() && DefI->SU != SU)
    498     DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
    499 }
    500 
    501 /// Return true if MI is an instruction we are unable to reason about
    502 /// (like a call or something with unmodeled side effects).
    503 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
    504   if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
    505       (MI->hasOrderedMemoryRef() &&
    506        (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
    507     return true;
    508   return false;
    509 }
    510 
    511 // This MI might have either incomplete info, or known to be unsafe
    512 // to deal with (i.e. volatile object).
    513 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
    514                                         const MachineFrameInfo *MFI) {
    515   if (!MI || MI->memoperands_empty())
    516     return true;
    517   // We purposefully do no check for hasOneMemOperand() here
    518   // in hope to trigger an assert downstream in order to
    519   // finish implementation.
    520   if ((*MI->memoperands_begin())->isVolatile() ||
    521        MI->hasUnmodeledSideEffects())
    522     return true;
    523 
    524   const Value *V = (*MI->memoperands_begin())->getValue();
    525   if (!V)
    526     return true;
    527 
    528   V = getUnderlyingObject(V);
    529   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
    530     // Similarly to getUnderlyingObjectForInstr:
    531     // For now, ignore PseudoSourceValues which may alias LLVM IR values
    532     // because the code that uses this function has no way to cope with
    533     // such aliases.
    534     if (PSV->isAliased(MFI))
    535       return true;
    536   }
    537   // Does this pointer refer to a distinct and identifiable object?
    538   if (!isIdentifiedObject(V))
    539     return true;
    540 
    541   return false;
    542 }
    543 
    544 /// This returns true if the two MIs need a chain edge betwee them.
    545 /// If these are not even memory operations, we still may need
    546 /// chain deps between them. The question really is - could
    547 /// these two MIs be reordered during scheduling from memory dependency
    548 /// point of view.
    549 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    550                              MachineInstr *MIa,
    551                              MachineInstr *MIb) {
    552   // Cover a trivial case - no edge is need to itself.
    553   if (MIa == MIb)
    554     return false;
    555 
    556   if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
    557     return true;
    558 
    559   // If we are dealing with two "normal" loads, we do not need an edge
    560   // between them - they could be reordered.
    561   if (!MIa->mayStore() && !MIb->mayStore())
    562     return false;
    563 
    564   // To this point analysis is generic. From here on we do need AA.
    565   if (!AA)
    566     return true;
    567 
    568   MachineMemOperand *MMOa = *MIa->memoperands_begin();
    569   MachineMemOperand *MMOb = *MIb->memoperands_begin();
    570 
    571   // FIXME: Need to handle multiple memory operands to support all targets.
    572   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
    573     llvm_unreachable("Multiple memory operands.");
    574 
    575   // The following interface to AA is fashioned after DAGCombiner::isAlias
    576   // and operates with MachineMemOperand offset with some important
    577   // assumptions:
    578   //   - LLVM fundamentally assumes flat address spaces.
    579   //   - MachineOperand offset can *only* result from legalization and
    580   //     cannot affect queries other than the trivial case of overlap
    581   //     checking.
    582   //   - These offsets never wrap and never step outside
    583   //     of allocated objects.
    584   //   - There should never be any negative offsets here.
    585   //
    586   // FIXME: Modify API to hide this math from "user"
    587   // FIXME: Even before we go to AA we can reason locally about some
    588   // memory objects. It can save compile time, and possibly catch some
    589   // corner cases not currently covered.
    590 
    591   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
    592   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
    593 
    594   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
    595   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
    596   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
    597 
    598   AliasAnalysis::AliasResult AAResult = AA->alias(
    599   AliasAnalysis::Location(MMOa->getValue(), Overlapa,
    600                           MMOa->getTBAAInfo()),
    601   AliasAnalysis::Location(MMOb->getValue(), Overlapb,
    602                           MMOb->getTBAAInfo()));
    603 
    604   return (AAResult != AliasAnalysis::NoAlias);
    605 }
    606 
    607 /// This recursive function iterates over chain deps of SUb looking for
    608 /// "latest" node that needs a chain edge to SUa.
    609 static unsigned
    610 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    611                  SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
    612                  SmallPtrSet<const SUnit*, 16> &Visited) {
    613   if (!SUa || !SUb || SUb == ExitSU)
    614     return *Depth;
    615 
    616   // Remember visited nodes.
    617   if (!Visited.insert(SUb))
    618       return *Depth;
    619   // If there is _some_ dependency already in place, do not
    620   // descend any further.
    621   // TODO: Need to make sure that if that dependency got eliminated or ignored
    622   // for any reason in the future, we would not violate DAG topology.
    623   // Currently it does not happen, but makes an implicit assumption about
    624   // future implementation.
    625   //
    626   // Independently, if we encounter node that is some sort of global
    627   // object (like a call) we already have full set of dependencies to it
    628   // and we can stop descending.
    629   if (SUa->isSucc(SUb) ||
    630       isGlobalMemoryObject(AA, SUb->getInstr()))
    631     return *Depth;
    632 
    633   // If we do need an edge, or we have exceeded depth budget,
    634   // add that edge to the predecessors chain of SUb,
    635   // and stop descending.
    636   if (*Depth > 200 ||
    637       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
    638     SUb->addPred(SDep(SUa, SDep::Order, /*Latency=*/0, /*Reg=*/0,
    639                       /*isNormalMemory=*/true));
    640     return *Depth;
    641   }
    642   // Track current depth.
    643   (*Depth)++;
    644   // Iterate over chain dependencies only.
    645   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
    646        I != E; ++I)
    647     if (I->isCtrl())
    648       iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
    649   return *Depth;
    650 }
    651 
    652 /// This function assumes that "downward" from SU there exist
    653 /// tail/leaf of already constructed DAG. It iterates downward and
    654 /// checks whether SU can be aliasing any node dominated
    655 /// by it.
    656 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    657                             SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
    658                             unsigned LatencyToLoad) {
    659   if (!SU)
    660     return;
    661 
    662   SmallPtrSet<const SUnit*, 16> Visited;
    663   unsigned Depth = 0;
    664 
    665   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
    666        I != IE; ++I) {
    667     if (SU == *I)
    668       continue;
    669     if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
    670       unsigned Latency = ((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0;
    671       (*I)->addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0,
    672                          /*isNormalMemory=*/true));
    673     }
    674     // Now go through all the chain successors and iterate from them.
    675     // Keep track of visited nodes.
    676     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
    677          JE = (*I)->Succs.end(); J != JE; ++J)
    678       if (J->isCtrl())
    679         iterateChainSucc (AA, MFI, SU, J->getSUnit(),
    680                           ExitSU, &Depth, Visited);
    681   }
    682 }
    683 
    684 /// Check whether two objects need a chain edge, if so, add it
    685 /// otherwise remember the rejected SU.
    686 static inline
    687 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
    688                          SUnit *SUa, SUnit *SUb,
    689                          std::set<SUnit *> &RejectList,
    690                          unsigned TrueMemOrderLatency = 0,
    691                          bool isNormalMemory = false) {
    692   // If this is a false dependency,
    693   // do not add the edge, but rememeber the rejected node.
    694   if (!EnableAASchedMI ||
    695       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr()))
    696     SUb->addPred(SDep(SUa, SDep::Order, TrueMemOrderLatency, /*Reg=*/0,
    697                       isNormalMemory));
    698   else {
    699     // Duplicate entries should be ignored.
    700     RejectList.insert(SUb);
    701     DEBUG(dbgs() << "\tReject chain dep between SU("
    702           << SUa->NodeNum << ") and SU("
    703           << SUb->NodeNum << ")\n");
    704   }
    705 }
    706 
    707 /// Create an SUnit for each real instruction, numbered in top-down toplological
    708 /// order. The instruction order A < B, implies that no edge exists from B to A.
    709 ///
    710 /// Map each real instruction to its SUnit.
    711 ///
    712 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
    713 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
    714 /// instead of pointers.
    715 ///
    716 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
    717 /// the original instruction list.
    718 void ScheduleDAGInstrs::initSUnits() {
    719   // We'll be allocating one SUnit for each real instruction in the region,
    720   // which is contained within a basic block.
    721   SUnits.reserve(BB->size());
    722 
    723   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
    724     MachineInstr *MI = I;
    725     if (MI->isDebugValue())
    726       continue;
    727 
    728     SUnit *SU = newSUnit(MI);
    729     MISUnitMap[MI] = SU;
    730 
    731     SU->isCall = MI->isCall();
    732     SU->isCommutable = MI->isCommutable();
    733 
    734     // Assign the Latency field of SU using target-provided information.
    735     if (UnitLatencies)
    736       SU->Latency = 1;
    737     else
    738       computeLatency(SU);
    739   }
    740 }
    741 
    742 /// If RegPressure is non null, compute register pressure as a side effect. The
    743 /// DAG builder is an efficient place to do it because it already visits
    744 /// operands.
    745 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
    746                                         RegPressureTracker *RPTracker) {
    747   // Create an SUnit for each real instruction.
    748   initSUnits();
    749 
    750   // We build scheduling units by walking a block's instruction list from bottom
    751   // to top.
    752 
    753   // Remember where a generic side-effecting instruction is as we procede.
    754   SUnit *BarrierChain = 0, *AliasChain = 0;
    755 
    756   // Memory references to specific known memory locations are tracked
    757   // so that they can be given more precise dependencies. We track
    758   // separately the known memory locations that may alias and those
    759   // that are known not to alias
    760   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
    761   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
    762   std::set<SUnit*> RejectMemNodes;
    763 
    764   // Remove any stale debug info; sometimes BuildSchedGraph is called again
    765   // without emitting the info from the previous call.
    766   DbgValues.clear();
    767   FirstDbgValue = NULL;
    768 
    769   assert(Defs.empty() && Uses.empty() &&
    770          "Only BuildGraph should update Defs/Uses");
    771   Defs.setRegLimit(TRI->getNumRegs());
    772   Uses.setRegLimit(TRI->getNumRegs());
    773 
    774   assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
    775   // FIXME: Allow SparseSet to reserve space for the creation of virtual
    776   // registers during scheduling. Don't artificially inflate the Universe
    777   // because we want to assert that vregs are not created during DAG building.
    778   VRegDefs.setUniverse(MRI.getNumVirtRegs());
    779 
    780   // Model data dependencies between instructions being scheduled and the
    781   // ExitSU.
    782   addSchedBarrierDeps();
    783 
    784   // Walk the list of instructions, from bottom moving up.
    785   MachineInstr *PrevMI = NULL;
    786   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
    787        MII != MIE; --MII) {
    788     MachineInstr *MI = prior(MII);
    789     if (MI && PrevMI) {
    790       DbgValues.push_back(std::make_pair(PrevMI, MI));
    791       PrevMI = NULL;
    792     }
    793 
    794     if (MI->isDebugValue()) {
    795       PrevMI = MI;
    796       continue;
    797     }
    798     if (RPTracker) {
    799       RPTracker->recede();
    800       assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
    801     }
    802 
    803     assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
    804            "Cannot schedule terminators or labels!");
    805 
    806     SUnit *SU = MISUnitMap[MI];
    807     assert(SU && "No SUnit mapped to this MI");
    808 
    809     // Add register-based dependencies (data, anti, and output).
    810     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
    811       const MachineOperand &MO = MI->getOperand(j);
    812       if (!MO.isReg()) continue;
    813       unsigned Reg = MO.getReg();
    814       if (Reg == 0) continue;
    815 
    816       if (TRI->isPhysicalRegister(Reg))
    817         addPhysRegDeps(SU, j);
    818       else {
    819         assert(!IsPostRA && "Virtual register encountered!");
    820         if (MO.isDef())
    821           addVRegDefDeps(SU, j);
    822         else if (MO.readsReg()) // ignore undef operands
    823           addVRegUseDeps(SU, j);
    824       }
    825     }
    826 
    827     // Add chain dependencies.
    828     // Chain dependencies used to enforce memory order should have
    829     // latency of 0 (except for true dependency of Store followed by
    830     // aliased Load... we estimate that with a single cycle of latency
    831     // assuming the hardware will bypass)
    832     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    833     // after stack slots are lowered to actual addresses.
    834     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    835     // produce more precise dependence information.
    836     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
    837     if (isGlobalMemoryObject(AA, MI)) {
    838       // Be conservative with these and add dependencies on all memory
    839       // references, even those that are known to not alias.
    840       for (std::map<const Value *, SUnit *>::iterator I =
    841              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
    842         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    843       }
    844       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
    845              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
    846         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    847           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
    848       }
    849       // Add SU to the barrier chain.
    850       if (BarrierChain)
    851         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    852       BarrierChain = SU;
    853       // This is a barrier event that acts as a pivotal node in the DAG,
    854       // so it is safe to clear list of exposed nodes.
    855       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    856                       TrueMemOrderLatency);
    857       RejectMemNodes.clear();
    858       NonAliasMemDefs.clear();
    859       NonAliasMemUses.clear();
    860 
    861       // fall-through
    862     new_alias_chain:
    863       // Chain all possibly aliasing memory references though SU.
    864       if (AliasChain) {
    865         unsigned ChainLatency = 0;
    866         if (AliasChain->getInstr()->mayLoad())
    867           ChainLatency = TrueMemOrderLatency;
    868         addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
    869                            ChainLatency);
    870       }
    871       AliasChain = SU;
    872       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    873         addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
    874                            TrueMemOrderLatency);
    875       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
    876            E = AliasMemDefs.end(); I != E; ++I)
    877         addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
    878       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
    879            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
    880         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    881           addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
    882                              TrueMemOrderLatency);
    883       }
    884       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    885                       TrueMemOrderLatency);
    886       PendingLoads.clear();
    887       AliasMemDefs.clear();
    888       AliasMemUses.clear();
    889     } else if (MI->mayStore()) {
    890       bool MayAlias = true;
    891       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
    892         // A store to a specific PseudoSourceValue. Add precise dependencies.
    893         // Record the def in MemDefs, first adding a dep if there is
    894         // an existing def.
    895         std::map<const Value *, SUnit *>::iterator I =
    896           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    897         std::map<const Value *, SUnit *>::iterator IE =
    898           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    899         if (I != IE) {
    900           addChainDependency(AA, MFI, SU, I->second, RejectMemNodes,
    901                              0, true);
    902           I->second = SU;
    903         } else {
    904           if (MayAlias)
    905             AliasMemDefs[V] = SU;
    906           else
    907             NonAliasMemDefs[V] = SU;
    908         }
    909         // Handle the uses in MemUses, if there are any.
    910         std::map<const Value *, std::vector<SUnit *> >::iterator J =
    911           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
    912         std::map<const Value *, std::vector<SUnit *> >::iterator JE =
    913           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
    914         if (J != JE) {
    915           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
    916             addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
    917                                TrueMemOrderLatency, true);
    918           J->second.clear();
    919         }
    920         if (MayAlias) {
    921           // Add dependencies from all the PendingLoads, i.e. loads
    922           // with no underlying object.
    923           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    924             addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
    925                                TrueMemOrderLatency);
    926           // Add dependence on alias chain, if needed.
    927           if (AliasChain)
    928             addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
    929           // But we also should check dependent instructions for the
    930           // SU in question.
    931           adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
    932                           TrueMemOrderLatency);
    933         }
    934         // Add dependence on barrier chain, if needed.
    935         // There is no point to check aliasing on barrier event. Even if
    936         // SU and barrier _could_ be reordered, they should not. In addition,
    937         // we have lost all RejectMemNodes below barrier.
    938         if (BarrierChain)
    939           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    940       } else {
    941         // Treat all other stores conservatively.
    942         goto new_alias_chain;
    943       }
    944 
    945       if (!ExitSU.isPred(SU))
    946         // Push store's up a bit to avoid them getting in between cmp
    947         // and branches.
    948         ExitSU.addPred(SDep(SU, SDep::Order, 0,
    949                             /*Reg=*/0, /*isNormalMemory=*/false,
    950                             /*isMustAlias=*/false,
    951                             /*isArtificial=*/true));
    952     } else if (MI->mayLoad()) {
    953       bool MayAlias = true;
    954       if (MI->isInvariantLoad(AA)) {
    955         // Invariant load, no chain dependencies needed!
    956       } else {
    957         if (const Value *V =
    958             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
    959           // A load from a specific PseudoSourceValue. Add precise dependencies.
    960           std::map<const Value *, SUnit *>::iterator I =
    961             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    962           std::map<const Value *, SUnit *>::iterator IE =
    963             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    964           if (I != IE)
    965             addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
    966           if (MayAlias)
    967             AliasMemUses[V].push_back(SU);
    968           else
    969             NonAliasMemUses[V].push_back(SU);
    970         } else {
    971           // A load with no underlying object. Depend on all
    972           // potentially aliasing stores.
    973           for (std::map<const Value *, SUnit *>::iterator I =
    974                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
    975             addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
    976 
    977           PendingLoads.push_back(SU);
    978           MayAlias = true;
    979         }
    980         if (MayAlias)
    981           adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
    982         // Add dependencies on alias and barrier chains, if needed.
    983         if (MayAlias && AliasChain)
    984           addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
    985         if (BarrierChain)
    986           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    987       }
    988     }
    989   }
    990   if (PrevMI)
    991     FirstDbgValue = PrevMI;
    992 
    993   Defs.clear();
    994   Uses.clear();
    995   VRegDefs.clear();
    996   PendingLoads.clear();
    997 }
    998 
    999 void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
   1000   // Compute the latency for the node. We only provide a default for missing
   1001   // itineraries. Empty itineraries still have latency properties.
   1002   if (!InstrItins) {
   1003     SU->Latency = 1;
   1004 
   1005     // Simplistic target-independent heuristic: assume that loads take
   1006     // extra time.
   1007     if (SU->getInstr()->mayLoad())
   1008       SU->Latency += 2;
   1009   } else {
   1010     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
   1011   }
   1012 }
   1013 
   1014 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
   1015 #ifndef NDEBUG
   1016   SU->getInstr()->dump();
   1017 #endif
   1018 }
   1019 
   1020 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
   1021   std::string s;
   1022   raw_string_ostream oss(s);
   1023   if (SU == &EntrySU)
   1024     oss << "<entry>";
   1025   else if (SU == &ExitSU)
   1026     oss << "<exit>";
   1027   else
   1028     SU->getInstr()->print(oss);
   1029   return oss.str();
   1030 }
   1031 
   1032 /// Return the basic block label. It is not necessarilly unique because a block
   1033 /// contains multiple scheduling regions. But it is fine for visualization.
   1034 std::string ScheduleDAGInstrs::getDAGName() const {
   1035   return "dag." + BB->getFullName();
   1036 }
   1037