Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPCCallingConv.h"
     17 #include "PPCMachineFunctionInfo.h"
     18 #include "PPCPerfectShuffle.h"
     19 #include "PPCTargetMachine.h"
     20 #include "PPCTargetObjectFile.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/StringSwitch.h"
     23 #include "llvm/ADT/Triple.h"
     24 #include "llvm/CodeGen/CallingConvLower.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineLoopInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/SelectionDAG.h"
     31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DerivedTypes.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/Intrinsics.h"
     37 #include "llvm/Support/CommandLine.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/MathExtras.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 #include "llvm/Target/TargetOptions.h"
     42 
     43 using namespace llvm;
     44 
     45 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
     46 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
     47 
     48 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
     49 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
     50 
     51 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
     52 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
     53 
     54 // FIXME: Remove this once the bug has been fixed!
     55 extern cl::opt<bool> ANDIGlueBug;
     56 
     57 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
     58                                      const PPCSubtarget &STI)
     59     : TargetLowering(TM), Subtarget(STI) {
     60   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     61   setUseUnderscoreSetJmp(true);
     62   setUseUnderscoreLongJmp(true);
     63 
     64   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     65   // arguments are at least 4/8 bytes aligned.
     66   bool isPPC64 = Subtarget.isPPC64();
     67   setMinStackArgumentAlignment(isPPC64 ? 8:4);
     68 
     69   // Set up the register classes.
     70   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
     71   if (!Subtarget.useSoftFloat()) {
     72     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
     73     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
     74   }
     75 
     76   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     77   for (MVT VT : MVT::integer_valuetypes()) {
     78     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
     79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
     80   }
     81 
     82   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     83 
     84   // PowerPC has pre-inc load and store's.
     85   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     86   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     87   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
     88   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
     89   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
     90   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
     91   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
     92   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
     93   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
     94   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
     95   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
     96   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
     97   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
     98   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
     99 
    100   if (Subtarget.useCRBits()) {
    101     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    102 
    103     if (isPPC64 || Subtarget.hasFPCVT()) {
    104       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
    105       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
    106                          isPPC64 ? MVT::i64 : MVT::i32);
    107       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
    108       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
    109                         isPPC64 ? MVT::i64 : MVT::i32);
    110     } else {
    111       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
    112       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
    113     }
    114 
    115     // PowerPC does not support direct load / store of condition registers
    116     setOperationAction(ISD::LOAD, MVT::i1, Custom);
    117     setOperationAction(ISD::STORE, MVT::i1, Custom);
    118 
    119     // FIXME: Remove this once the ANDI glue bug is fixed:
    120     if (ANDIGlueBug)
    121       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
    122 
    123     for (MVT VT : MVT::integer_valuetypes()) {
    124       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    125       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    126       setTruncStoreAction(VT, MVT::i1, Expand);
    127     }
    128 
    129     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
    130   }
    131 
    132   // This is used in the ppcf128->int sequence.  Note it has different semantics
    133   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    134   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    135 
    136   // We do not currently implement these libm ops for PowerPC.
    137   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    138   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    139   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    140   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    141   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    142   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
    143 
    144   // PowerPC has no SREM/UREM instructions
    145   setOperationAction(ISD::SREM, MVT::i32, Expand);
    146   setOperationAction(ISD::UREM, MVT::i32, Expand);
    147   setOperationAction(ISD::SREM, MVT::i64, Expand);
    148   setOperationAction(ISD::UREM, MVT::i64, Expand);
    149 
    150   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    151   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    152   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    153   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    154   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    155   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    156   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    157   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    158   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    159 
    160   // We don't support sin/cos/sqrt/fmod/pow
    161   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    162   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    163   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    164   setOperationAction(ISD::FREM , MVT::f64, Expand);
    165   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    166   setOperationAction(ISD::FMA  , MVT::f64, Legal);
    167   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    168   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    169   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    170   setOperationAction(ISD::FREM , MVT::f32, Expand);
    171   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    172   setOperationAction(ISD::FMA  , MVT::f32, Legal);
    173 
    174   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    175 
    176   // If we're enabling GP optimizations, use hardware square root
    177   if (!Subtarget.hasFSQRT() &&
    178       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
    179         Subtarget.hasFRE()))
    180     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    181 
    182   if (!Subtarget.hasFSQRT() &&
    183       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
    184         Subtarget.hasFRES()))
    185     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    186 
    187   if (Subtarget.hasFCPSGN()) {
    188     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
    189     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
    190   } else {
    191     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    192     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    193   }
    194 
    195   if (Subtarget.hasFPRND()) {
    196     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    197     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    198     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    199     setOperationAction(ISD::FROUND, MVT::f64, Legal);
    200 
    201     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    202     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    203     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    204     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    205   }
    206 
    207   // PowerPC does not have BSWAP, CTPOP or CTTZ
    208   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    209   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    210   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    211   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    212   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    213   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    214   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    215   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    216 
    217   if (Subtarget.hasPOPCNTD()) {
    218     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    219     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
    220   } else {
    221     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    222     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    223   }
    224 
    225   // PowerPC does not have ROTR
    226   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    227   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    228 
    229   if (!Subtarget.useCRBits()) {
    230     // PowerPC does not have Select
    231     setOperationAction(ISD::SELECT, MVT::i32, Expand);
    232     setOperationAction(ISD::SELECT, MVT::i64, Expand);
    233     setOperationAction(ISD::SELECT, MVT::f32, Expand);
    234     setOperationAction(ISD::SELECT, MVT::f64, Expand);
    235   }
    236 
    237   // PowerPC wants to turn select_cc of FP into fsel when possible.
    238   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    239   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    240 
    241   // PowerPC wants to optimize integer setcc a bit
    242   if (!Subtarget.useCRBits())
    243     setOperationAction(ISD::SETCC, MVT::i32, Custom);
    244 
    245   // PowerPC does not have BRCOND which requires SetCC
    246   if (!Subtarget.useCRBits())
    247     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    248 
    249   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    250 
    251   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    252   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    253 
    254   // PowerPC does not have [U|S]INT_TO_FP
    255   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    256   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    257 
    258   if (Subtarget.hasDirectMove()) {
    259     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
    260     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
    261     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
    262     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
    263   } else {
    264     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    265     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    266     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    267     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    268   }
    269 
    270   // We cannot sextinreg(i1).  Expand to shifts.
    271   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    272 
    273   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    274   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    275   // support continuation, user-level threading, and etc.. As a result, no
    276   // other SjLj exception interfaces are implemented and please don't build
    277   // your own exception handling based on them.
    278   // LLVM/Clang supports zero-cost DWARF exception handling.
    279   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    280   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    281 
    282   // We want to legalize GlobalAddress and ConstantPool nodes into the
    283   // appropriate instructions to materialize the address.
    284   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    285   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    286   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    287   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    288   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    289   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    290   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    291   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    292   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    293   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    294 
    295   // TRAP is legal.
    296   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    297 
    298   // TRAMPOLINE is custom lowered.
    299   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    300   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    301 
    302   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    303   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    304 
    305   if (Subtarget.isSVR4ABI()) {
    306     if (isPPC64) {
    307       // VAARG always uses double-word chunks, so promote anything smaller.
    308       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    309       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    310       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    311       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    312       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    313       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    314       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    315       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    316       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    317     } else {
    318       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    319       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    320       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    321     }
    322   } else
    323     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    324 
    325   if (Subtarget.isSVR4ABI() && !isPPC64)
    326     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
    327     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
    328   else
    329     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    330 
    331   // Use the default implementation.
    332   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    333   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    334   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    335   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    336   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    337   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
    338   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
    339 
    340   // We want to custom lower some of our intrinsics.
    341   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    342 
    343   // To handle counter-based loop conditions.
    344   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
    345 
    346   // Comparisons that require checking two conditions.
    347   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    348   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    349   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    350   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    351   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    352   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    353   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    354   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    355   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    356   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    357   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    358   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    359 
    360   if (Subtarget.has64BitSupport()) {
    361     // They also have instructions for converting between i64 and fp.
    362     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    363     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    364     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    365     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    366     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    367     // We cannot do this with Promote because i64 is not a legal type.
    368     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    369 
    370     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
    371       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    372   } else {
    373     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    374     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    375   }
    376 
    377   // With the instructions enabled under FPCVT, we can do everything.
    378   if (Subtarget.hasFPCVT()) {
    379     if (Subtarget.has64BitSupport()) {
    380       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    381       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    382       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    383       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    384     }
    385 
    386     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    387     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    388     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    389     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    390   }
    391 
    392   if (Subtarget.use64BitRegs()) {
    393     // 64-bit PowerPC implementations can support i64 types directly
    394     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    395     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    396     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    397     // 64-bit PowerPC wants to expand i128 shifts itself.
    398     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    399     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    400     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    401   } else {
    402     // 32-bit PowerPC wants to expand i64 shifts itself.
    403     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    404     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    405     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    406   }
    407 
    408   if (Subtarget.hasAltivec()) {
    409     // First set operation action for all vector types to expand. Then we
    410     // will selectively turn on ones that can be effectively codegen'd.
    411     for (MVT VT : MVT::vector_valuetypes()) {
    412       // add/sub are legal for all supported vector VT's.
    413       setOperationAction(ISD::ADD, VT, Legal);
    414       setOperationAction(ISD::SUB, VT, Legal);
    415 
    416       // Vector instructions introduced in P8
    417       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
    418         setOperationAction(ISD::CTPOP, VT, Legal);
    419         setOperationAction(ISD::CTLZ, VT, Legal);
    420       }
    421       else {
    422         setOperationAction(ISD::CTPOP, VT, Expand);
    423         setOperationAction(ISD::CTLZ, VT, Expand);
    424       }
    425 
    426       // We promote all shuffles to v16i8.
    427       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    428       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    429 
    430       // We promote all non-typed operations to v4i32.
    431       setOperationAction(ISD::AND   , VT, Promote);
    432       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    433       setOperationAction(ISD::OR    , VT, Promote);
    434       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    435       setOperationAction(ISD::XOR   , VT, Promote);
    436       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    437       setOperationAction(ISD::LOAD  , VT, Promote);
    438       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    439       setOperationAction(ISD::SELECT, VT, Promote);
    440       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    441       setOperationAction(ISD::SELECT_CC, VT, Promote);
    442       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
    443       setOperationAction(ISD::STORE, VT, Promote);
    444       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    445 
    446       // No other operations are legal.
    447       setOperationAction(ISD::MUL , VT, Expand);
    448       setOperationAction(ISD::SDIV, VT, Expand);
    449       setOperationAction(ISD::SREM, VT, Expand);
    450       setOperationAction(ISD::UDIV, VT, Expand);
    451       setOperationAction(ISD::UREM, VT, Expand);
    452       setOperationAction(ISD::FDIV, VT, Expand);
    453       setOperationAction(ISD::FREM, VT, Expand);
    454       setOperationAction(ISD::FNEG, VT, Expand);
    455       setOperationAction(ISD::FSQRT, VT, Expand);
    456       setOperationAction(ISD::FLOG, VT, Expand);
    457       setOperationAction(ISD::FLOG10, VT, Expand);
    458       setOperationAction(ISD::FLOG2, VT, Expand);
    459       setOperationAction(ISD::FEXP, VT, Expand);
    460       setOperationAction(ISD::FEXP2, VT, Expand);
    461       setOperationAction(ISD::FSIN, VT, Expand);
    462       setOperationAction(ISD::FCOS, VT, Expand);
    463       setOperationAction(ISD::FABS, VT, Expand);
    464       setOperationAction(ISD::FPOWI, VT, Expand);
    465       setOperationAction(ISD::FFLOOR, VT, Expand);
    466       setOperationAction(ISD::FCEIL,  VT, Expand);
    467       setOperationAction(ISD::FTRUNC, VT, Expand);
    468       setOperationAction(ISD::FRINT,  VT, Expand);
    469       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    470       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    471       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    472       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    473       setOperationAction(ISD::MULHU, VT, Expand);
    474       setOperationAction(ISD::MULHS, VT, Expand);
    475       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    476       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    477       setOperationAction(ISD::UDIVREM, VT, Expand);
    478       setOperationAction(ISD::SDIVREM, VT, Expand);
    479       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    480       setOperationAction(ISD::FPOW, VT, Expand);
    481       setOperationAction(ISD::BSWAP, VT, Expand);
    482       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    483       setOperationAction(ISD::CTTZ, VT, Expand);
    484       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    485       setOperationAction(ISD::VSELECT, VT, Expand);
    486       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    487       setOperationAction(ISD::ROTL, VT, Expand);
    488       setOperationAction(ISD::ROTR, VT, Expand);
    489 
    490       for (MVT InnerVT : MVT::vector_valuetypes()) {
    491         setTruncStoreAction(VT, InnerVT, Expand);
    492         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    493         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    494         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    495       }
    496     }
    497 
    498     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    499     // with merges, splats, etc.
    500     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    501 
    502     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    503     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    504     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    505     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    506     setOperationAction(ISD::SELECT, MVT::v4i32,
    507                        Subtarget.useCRBits() ? Legal : Expand);
    508     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    509     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    510     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    511     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    512     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    513     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    514     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    515     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    516     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    517 
    518     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    519     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    520     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    521     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    522 
    523     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    524     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    525 
    526     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
    527       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    528       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    529     }
    530 
    531     if (Subtarget.hasP8Altivec())
    532       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
    533     else
    534       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    535 
    536     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    537     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    538 
    539     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    540     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    541 
    542     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    543     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    544     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    545     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    546 
    547     // Altivec does not contain unordered floating-point compare instructions
    548     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    549     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    550     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    551     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
    552 
    553     if (Subtarget.hasVSX()) {
    554       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    555       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    556       if (Subtarget.hasP8Vector()) {
    557         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    558         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
    559       }
    560       if (Subtarget.hasDirectMove()) {
    561         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
    562         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
    563         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
    564         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
    565         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
    566         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
    567         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
    568         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    569       }
    570       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    571 
    572       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    573       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    574       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    575       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    576       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    577 
    578       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    579 
    580       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
    581       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    582 
    583       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    584       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    585 
    586       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
    587       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
    588       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
    589       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    590       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
    591 
    592       // Share the Altivec comparison restrictions.
    593       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
    594       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
    595       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
    596       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
    597 
    598       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
    599       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
    600 
    601       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
    602 
    603       if (Subtarget.hasP8Vector())
    604         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
    605 
    606       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
    607 
    608       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
    609       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
    610       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
    611 
    612       if (Subtarget.hasP8Altivec()) {
    613         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
    614         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
    615         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
    616 
    617         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
    618       }
    619       else {
    620         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
    621         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
    622         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
    623 
    624         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
    625 
    626         // VSX v2i64 only supports non-arithmetic operations.
    627         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
    628         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
    629       }
    630 
    631       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
    632       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
    633       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
    634       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
    635 
    636       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
    637 
    638       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    639       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    640       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    641       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    642 
    643       // Vector operation legalization checks the result type of
    644       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
    645       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
    646       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
    647       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
    648       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
    649 
    650       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
    651     }
    652 
    653     if (Subtarget.hasP8Altivec()) {
    654       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
    655       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
    656     }
    657   }
    658 
    659   if (Subtarget.hasQPX()) {
    660     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
    661     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
    662     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
    663     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
    664 
    665     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
    666     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
    667 
    668     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
    669     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
    670 
    671     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
    672     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
    673 
    674     if (!Subtarget.useCRBits())
    675       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
    676     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
    677 
    678     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
    679     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
    680     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
    681     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
    682     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
    683     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
    684     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
    685 
    686     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
    687     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
    688 
    689     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
    690     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
    691     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
    692 
    693     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
    694     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
    695     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
    696     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
    697     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
    698     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
    699     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
    700     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
    701     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
    702     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
    703     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
    704 
    705     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
    706     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
    707 
    708     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
    709     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
    710 
    711     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
    712 
    713     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
    714     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
    715     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
    716     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
    717 
    718     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
    719     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
    720 
    721     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
    722     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
    723 
    724     if (!Subtarget.useCRBits())
    725       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
    726     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    727 
    728     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
    729     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
    730     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
    731     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
    732     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
    733     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    734     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    735 
    736     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
    737     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
    738 
    739     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
    740     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
    741     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
    742     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
    743     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
    744     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
    745     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
    746     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
    747     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
    748     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
    749     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
    750 
    751     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    752     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    753 
    754     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
    755     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
    756 
    757     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
    758 
    759     setOperationAction(ISD::AND , MVT::v4i1, Legal);
    760     setOperationAction(ISD::OR , MVT::v4i1, Legal);
    761     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
    762 
    763     if (!Subtarget.useCRBits())
    764       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
    765     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
    766 
    767     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
    768     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
    769 
    770     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
    771     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
    772     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
    773     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
    774     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
    775     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
    776     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
    777 
    778     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
    779     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
    780 
    781     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
    782 
    783     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
    784     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
    785     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
    786     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
    787 
    788     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    789     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
    790     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    791     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    792 
    793     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
    794     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    795 
    796     // These need to set FE_INEXACT, and so cannot be vectorized here.
    797     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
    798     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    799 
    800     if (TM.Options.UnsafeFPMath) {
    801       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
    802       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
    803 
    804       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    805       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    806     } else {
    807       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
    808       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
    809 
    810       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
    811       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    812     }
    813   }
    814 
    815   if (Subtarget.has64BitSupport())
    816     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    817 
    818   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
    819 
    820   if (!isPPC64) {
    821     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    822     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
    823   }
    824 
    825   setBooleanContents(ZeroOrOneBooleanContent);
    826 
    827   if (Subtarget.hasAltivec()) {
    828     // Altivec instructions set fields to all zeros or all ones.
    829     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    830   }
    831 
    832   if (!isPPC64) {
    833     // These libcalls are not available in 32-bit.
    834     setLibcallName(RTLIB::SHL_I128, nullptr);
    835     setLibcallName(RTLIB::SRL_I128, nullptr);
    836     setLibcallName(RTLIB::SRA_I128, nullptr);
    837   }
    838 
    839   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
    840 
    841   // We have target-specific dag combine patterns for the following nodes:
    842   setTargetDAGCombine(ISD::SINT_TO_FP);
    843   if (Subtarget.hasFPCVT())
    844     setTargetDAGCombine(ISD::UINT_TO_FP);
    845   setTargetDAGCombine(ISD::LOAD);
    846   setTargetDAGCombine(ISD::STORE);
    847   setTargetDAGCombine(ISD::BR_CC);
    848   if (Subtarget.useCRBits())
    849     setTargetDAGCombine(ISD::BRCOND);
    850   setTargetDAGCombine(ISD::BSWAP);
    851   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    852   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    853   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    854 
    855   setTargetDAGCombine(ISD::SIGN_EXTEND);
    856   setTargetDAGCombine(ISD::ZERO_EXTEND);
    857   setTargetDAGCombine(ISD::ANY_EXTEND);
    858 
    859   if (Subtarget.useCRBits()) {
    860     setTargetDAGCombine(ISD::TRUNCATE);
    861     setTargetDAGCombine(ISD::SETCC);
    862     setTargetDAGCombine(ISD::SELECT_CC);
    863   }
    864 
    865   // Use reciprocal estimates.
    866   if (TM.Options.UnsafeFPMath) {
    867     setTargetDAGCombine(ISD::FDIV);
    868     setTargetDAGCombine(ISD::FSQRT);
    869   }
    870 
    871   // Darwin long double math library functions have $LDBL128 appended.
    872   if (Subtarget.isDarwin()) {
    873     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    874     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    875     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    876     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    877     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    878     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    879     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    880     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    881     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    882     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    883   }
    884 
    885   // With 32 condition bits, we don't need to sink (and duplicate) compares
    886   // aggressively in CodeGenPrep.
    887   if (Subtarget.useCRBits()) {
    888     setHasMultipleConditionRegisters();
    889     setJumpIsExpensive();
    890   }
    891 
    892   setMinFunctionAlignment(2);
    893   if (Subtarget.isDarwin())
    894     setPrefFunctionAlignment(4);
    895 
    896   switch (Subtarget.getDarwinDirective()) {
    897   default: break;
    898   case PPC::DIR_970:
    899   case PPC::DIR_A2:
    900   case PPC::DIR_E500mc:
    901   case PPC::DIR_E5500:
    902   case PPC::DIR_PWR4:
    903   case PPC::DIR_PWR5:
    904   case PPC::DIR_PWR5X:
    905   case PPC::DIR_PWR6:
    906   case PPC::DIR_PWR6X:
    907   case PPC::DIR_PWR7:
    908   case PPC::DIR_PWR8:
    909     setPrefFunctionAlignment(4);
    910     setPrefLoopAlignment(4);
    911     break;
    912   }
    913 
    914   setInsertFencesForAtomic(true);
    915 
    916   if (Subtarget.enableMachineScheduler())
    917     setSchedulingPreference(Sched::Source);
    918   else
    919     setSchedulingPreference(Sched::Hybrid);
    920 
    921   computeRegisterProperties(STI.getRegisterInfo());
    922 
    923   // The Freescale cores do better with aggressive inlining of memcpy and
    924   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
    925   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
    926       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
    927     MaxStoresPerMemset = 32;
    928     MaxStoresPerMemsetOptSize = 16;
    929     MaxStoresPerMemcpy = 32;
    930     MaxStoresPerMemcpyOptSize = 8;
    931     MaxStoresPerMemmove = 32;
    932     MaxStoresPerMemmoveOptSize = 8;
    933   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
    934     // The A2 also benefits from (very) aggressive inlining of memcpy and
    935     // friends. The overhead of a the function call, even when warm, can be
    936     // over one hundred cycles.
    937     MaxStoresPerMemset = 128;
    938     MaxStoresPerMemcpy = 128;
    939     MaxStoresPerMemmove = 128;
    940   }
    941 }
    942 
    943 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
    944 /// the desired ByVal argument alignment.
    945 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
    946                              unsigned MaxMaxAlign) {
    947   if (MaxAlign == MaxMaxAlign)
    948     return;
    949   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    950     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
    951       MaxAlign = 32;
    952     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
    953       MaxAlign = 16;
    954   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    955     unsigned EltAlign = 0;
    956     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
    957     if (EltAlign > MaxAlign)
    958       MaxAlign = EltAlign;
    959   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    960     for (auto *EltTy : STy->elements()) {
    961       unsigned EltAlign = 0;
    962       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
    963       if (EltAlign > MaxAlign)
    964         MaxAlign = EltAlign;
    965       if (MaxAlign == MaxMaxAlign)
    966         break;
    967     }
    968   }
    969 }
    970 
    971 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    972 /// function arguments in the caller parameter area.
    973 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
    974                                                   const DataLayout &DL) const {
    975   // Darwin passes everything on 4 byte boundary.
    976   if (Subtarget.isDarwin())
    977     return 4;
    978 
    979   // 16byte and wider vectors are passed on 16byte boundary.
    980   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    981   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
    982   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
    983     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
    984   return Align;
    985 }
    986 
    987 bool PPCTargetLowering::useSoftFloat() const {
    988   return Subtarget.useSoftFloat();
    989 }
    990 
    991 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    992   switch ((PPCISD::NodeType)Opcode) {
    993   case PPCISD::FIRST_NUMBER:    break;
    994   case PPCISD::FSEL:            return "PPCISD::FSEL";
    995   case PPCISD::FCFID:           return "PPCISD::FCFID";
    996   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
    997   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
    998   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
    999   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
   1000   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
   1001   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
   1002   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
   1003   case PPCISD::FRE:             return "PPCISD::FRE";
   1004   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
   1005   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
   1006   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
   1007   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
   1008   case PPCISD::VPERM:           return "PPCISD::VPERM";
   1009   case PPCISD::CMPB:            return "PPCISD::CMPB";
   1010   case PPCISD::Hi:              return "PPCISD::Hi";
   1011   case PPCISD::Lo:              return "PPCISD::Lo";
   1012   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
   1013   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
   1014   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
   1015   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
   1016   case PPCISD::SRL:             return "PPCISD::SRL";
   1017   case PPCISD::SRA:             return "PPCISD::SRA";
   1018   case PPCISD::SHL:             return "PPCISD::SHL";
   1019   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
   1020   case PPCISD::CALL:            return "PPCISD::CALL";
   1021   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
   1022   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
   1023   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
   1024   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
   1025   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
   1026   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
   1027   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
   1028   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
   1029   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
   1030   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
   1031   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
   1032   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
   1033   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
   1034   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
   1035   case PPCISD::VCMP:            return "PPCISD::VCMP";
   1036   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
   1037   case PPCISD::LBRX:            return "PPCISD::LBRX";
   1038   case PPCISD::STBRX:           return "PPCISD::STBRX";
   1039   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
   1040   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
   1041   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
   1042   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
   1043   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
   1044   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
   1045   case PPCISD::BDZ:             return "PPCISD::BDZ";
   1046   case PPCISD::MFFS:            return "PPCISD::MFFS";
   1047   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
   1048   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
   1049   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
   1050   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
   1051   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
   1052   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
   1053   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
   1054   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
   1055   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
   1056   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
   1057   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
   1058   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
   1059   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
   1060   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
   1061   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
   1062   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
   1063   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
   1064   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
   1065   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
   1066   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
   1067   case PPCISD::SC:              return "PPCISD::SC";
   1068   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
   1069   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
   1070   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
   1071   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
   1072   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
   1073   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
   1074   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
   1075   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
   1076   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
   1077   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
   1078   }
   1079   return nullptr;
   1080 }
   1081 
   1082 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
   1083                                           EVT VT) const {
   1084   if (!VT.isVector())
   1085     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
   1086 
   1087   if (Subtarget.hasQPX())
   1088     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
   1089 
   1090   return VT.changeVectorElementTypeToInteger();
   1091 }
   1092 
   1093 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
   1094   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
   1095   return true;
   1096 }
   1097 
   1098 //===----------------------------------------------------------------------===//
   1099 // Node matching predicates, for use by the tblgen matching code.
   1100 //===----------------------------------------------------------------------===//
   1101 
   1102 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
   1103 static bool isFloatingPointZero(SDValue Op) {
   1104   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   1105     return CFP->getValueAPF().isZero();
   1106   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   1107     // Maybe this has already been legalized into the constant pool?
   1108     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
   1109       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   1110         return CFP->getValueAPF().isZero();
   1111   }
   1112   return false;
   1113 }
   1114 
   1115 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
   1116 /// true if Op is undef or if it matches the specified value.
   1117 static bool isConstantOrUndef(int Op, int Val) {
   1118   return Op < 0 || Op == Val;
   1119 }
   1120 
   1121 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
   1122 /// VPKUHUM instruction.
   1123 /// The ShuffleKind distinguishes between big-endian operations with
   1124 /// two different inputs (0), either-endian operations with two identical
   1125 /// inputs (1), and little-endian operations with two different inputs (2).
   1126 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1127 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1128                                SelectionDAG &DAG) {
   1129   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1130   if (ShuffleKind == 0) {
   1131     if (IsLE)
   1132       return false;
   1133     for (unsigned i = 0; i != 16; ++i)
   1134       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
   1135         return false;
   1136   } else if (ShuffleKind == 2) {
   1137     if (!IsLE)
   1138       return false;
   1139     for (unsigned i = 0; i != 16; ++i)
   1140       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
   1141         return false;
   1142   } else if (ShuffleKind == 1) {
   1143     unsigned j = IsLE ? 0 : 1;
   1144     for (unsigned i = 0; i != 8; ++i)
   1145       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
   1146           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
   1147         return false;
   1148   }
   1149   return true;
   1150 }
   1151 
   1152 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
   1153 /// VPKUWUM instruction.
   1154 /// The ShuffleKind distinguishes between big-endian operations with
   1155 /// two different inputs (0), either-endian operations with two identical
   1156 /// inputs (1), and little-endian operations with two different inputs (2).
   1157 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1158 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1159                                SelectionDAG &DAG) {
   1160   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1161   if (ShuffleKind == 0) {
   1162     if (IsLE)
   1163       return false;
   1164     for (unsigned i = 0; i != 16; i += 2)
   1165       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
   1166           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
   1167         return false;
   1168   } else if (ShuffleKind == 2) {
   1169     if (!IsLE)
   1170       return false;
   1171     for (unsigned i = 0; i != 16; i += 2)
   1172       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1173           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
   1174         return false;
   1175   } else if (ShuffleKind == 1) {
   1176     unsigned j = IsLE ? 0 : 2;
   1177     for (unsigned i = 0; i != 8; i += 2)
   1178       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1179           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1180           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1181           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
   1182         return false;
   1183   }
   1184   return true;
   1185 }
   1186 
   1187 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
   1188 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
   1189 /// current subtarget.
   1190 ///
   1191 /// The ShuffleKind distinguishes between big-endian operations with
   1192 /// two different inputs (0), either-endian operations with two identical
   1193 /// inputs (1), and little-endian operations with two different inputs (2).
   1194 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1195 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1196                                SelectionDAG &DAG) {
   1197   const PPCSubtarget& Subtarget =
   1198     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
   1199   if (!Subtarget.hasP8Vector())
   1200     return false;
   1201 
   1202   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1203   if (ShuffleKind == 0) {
   1204     if (IsLE)
   1205       return false;
   1206     for (unsigned i = 0; i != 16; i += 4)
   1207       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
   1208           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
   1209           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
   1210           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
   1211         return false;
   1212   } else if (ShuffleKind == 2) {
   1213     if (!IsLE)
   1214       return false;
   1215     for (unsigned i = 0; i != 16; i += 4)
   1216       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1217           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
   1218           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
   1219           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
   1220         return false;
   1221   } else if (ShuffleKind == 1) {
   1222     unsigned j = IsLE ? 0 : 4;
   1223     for (unsigned i = 0; i != 8; i += 4)
   1224       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1225           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1226           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
   1227           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
   1228           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1229           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
   1230           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
   1231           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
   1232         return false;
   1233   }
   1234   return true;
   1235 }
   1236 
   1237 /// isVMerge - Common function, used to match vmrg* shuffles.
   1238 ///
   1239 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
   1240                      unsigned LHSStart, unsigned RHSStart) {
   1241   if (N->getValueType(0) != MVT::v16i8)
   1242     return false;
   1243   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
   1244          "Unsupported merge size!");
   1245 
   1246   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
   1247     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
   1248       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
   1249                              LHSStart+j+i*UnitSize) ||
   1250           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
   1251                              RHSStart+j+i*UnitSize))
   1252         return false;
   1253     }
   1254   return true;
   1255 }
   1256 
   1257 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
   1258 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
   1259 /// The ShuffleKind distinguishes between big-endian merges with two
   1260 /// different inputs (0), either-endian merges with two identical inputs (1),
   1261 /// and little-endian merges with two different inputs (2).  For the latter,
   1262 /// the input operands are swapped (see PPCInstrAltivec.td).
   1263 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1264                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1265   if (DAG.getDataLayout().isLittleEndian()) {
   1266     if (ShuffleKind == 1) // unary
   1267       return isVMerge(N, UnitSize, 0, 0);
   1268     else if (ShuffleKind == 2) // swapped
   1269       return isVMerge(N, UnitSize, 0, 16);
   1270     else
   1271       return false;
   1272   } else {
   1273     if (ShuffleKind == 1) // unary
   1274       return isVMerge(N, UnitSize, 8, 8);
   1275     else if (ShuffleKind == 0) // normal
   1276       return isVMerge(N, UnitSize, 8, 24);
   1277     else
   1278       return false;
   1279   }
   1280 }
   1281 
   1282 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
   1283 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
   1284 /// The ShuffleKind distinguishes between big-endian merges with two
   1285 /// different inputs (0), either-endian merges with two identical inputs (1),
   1286 /// and little-endian merges with two different inputs (2).  For the latter,
   1287 /// the input operands are swapped (see PPCInstrAltivec.td).
   1288 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1289                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1290   if (DAG.getDataLayout().isLittleEndian()) {
   1291     if (ShuffleKind == 1) // unary
   1292       return isVMerge(N, UnitSize, 8, 8);
   1293     else if (ShuffleKind == 2) // swapped
   1294       return isVMerge(N, UnitSize, 8, 24);
   1295     else
   1296       return false;
   1297   } else {
   1298     if (ShuffleKind == 1) // unary
   1299       return isVMerge(N, UnitSize, 0, 0);
   1300     else if (ShuffleKind == 0) // normal
   1301       return isVMerge(N, UnitSize, 0, 16);
   1302     else
   1303       return false;
   1304   }
   1305 }
   1306 
   1307 /**
   1308  * \brief Common function used to match vmrgew and vmrgow shuffles
   1309  *
   1310  * The indexOffset determines whether to look for even or odd words in
   1311  * the shuffle mask. This is based on the of the endianness of the target
   1312  * machine.
   1313  *   - Little Endian:
   1314  *     - Use offset of 0 to check for odd elements
   1315  *     - Use offset of 4 to check for even elements
   1316  *   - Big Endian:
   1317  *     - Use offset of 0 to check for even elements
   1318  *     - Use offset of 4 to check for odd elements
   1319  * A detailed description of the vector element ordering for little endian and
   1320  * big endian can be found at
   1321  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
   1322  * Targeting your applications - what little endian and big endian IBM XL C/C++
   1323  * compiler differences mean to you
   1324  *
   1325  * The mask to the shuffle vector instruction specifies the indices of the
   1326  * elements from the two input vectors to place in the result. The elements are
   1327  * numbered in array-access order, starting with the first vector. These vectors
   1328  * are always of type v16i8, thus each vector will contain 16 elements of size
   1329  * 8. More info on the shuffle vector can be found in the
   1330  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
   1331  * Language Reference.
   1332  *
   1333  * The RHSStartValue indicates whether the same input vectors are used (unary)
   1334  * or two different input vectors are used, based on the following:
   1335  *   - If the instruction uses the same vector for both inputs, the range of the
   1336  *     indices will be 0 to 15. In this case, the RHSStart value passed should
   1337  *     be 0.
   1338  *   - If the instruction has two different vectors then the range of the
   1339  *     indices will be 0 to 31. In this case, the RHSStart value passed should
   1340  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
   1341  *     to 31 specify elements in the second vector).
   1342  *
   1343  * \param[in] N The shuffle vector SD Node to analyze
   1344  * \param[in] IndexOffset Specifies whether to look for even or odd elements
   1345  * \param[in] RHSStartValue Specifies the starting index for the righthand input
   1346  * vector to the shuffle_vector instruction
   1347  * \return true iff this shuffle vector represents an even or odd word merge
   1348  */
   1349 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
   1350                      unsigned RHSStartValue) {
   1351   if (N->getValueType(0) != MVT::v16i8)
   1352     return false;
   1353 
   1354   for (unsigned i = 0; i < 2; ++i)
   1355     for (unsigned j = 0; j < 4; ++j)
   1356       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
   1357                              i*RHSStartValue+j+IndexOffset) ||
   1358           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
   1359                              i*RHSStartValue+j+IndexOffset+8))
   1360         return false;
   1361   return true;
   1362 }
   1363 
   1364 /**
   1365  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
   1366  * vmrgow instructions.
   1367  *
   1368  * \param[in] N The shuffle vector SD Node to analyze
   1369  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
   1370  * \param[in] ShuffleKind Identify the type of merge:
   1371  *   - 0 = big-endian merge with two different inputs;
   1372  *   - 1 = either-endian merge with two identical inputs;
   1373  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
   1374  *     little-endian merges).
   1375  * \param[in] DAG The current SelectionDAG
   1376  * \return true iff this shuffle mask
   1377  */
   1378 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
   1379                               unsigned ShuffleKind, SelectionDAG &DAG) {
   1380   if (DAG.getDataLayout().isLittleEndian()) {
   1381     unsigned indexOffset = CheckEven ? 4 : 0;
   1382     if (ShuffleKind == 1) // Unary
   1383       return isVMerge(N, indexOffset, 0);
   1384     else if (ShuffleKind == 2) // swapped
   1385       return isVMerge(N, indexOffset, 16);
   1386     else
   1387       return false;
   1388   }
   1389   else {
   1390     unsigned indexOffset = CheckEven ? 0 : 4;
   1391     if (ShuffleKind == 1) // Unary
   1392       return isVMerge(N, indexOffset, 0);
   1393     else if (ShuffleKind == 0) // Normal
   1394       return isVMerge(N, indexOffset, 16);
   1395     else
   1396       return false;
   1397   }
   1398   return false;
   1399 }
   1400 
   1401 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
   1402 /// amount, otherwise return -1.
   1403 /// The ShuffleKind distinguishes between big-endian operations with two
   1404 /// different inputs (0), either-endian operations with two identical inputs
   1405 /// (1), and little-endian operations with two different inputs (2).  For the
   1406 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
   1407 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
   1408                              SelectionDAG &DAG) {
   1409   if (N->getValueType(0) != MVT::v16i8)
   1410     return -1;
   1411 
   1412   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1413 
   1414   // Find the first non-undef value in the shuffle mask.
   1415   unsigned i;
   1416   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
   1417     /*search*/;
   1418 
   1419   if (i == 16) return -1;  // all undef.
   1420 
   1421   // Otherwise, check to see if the rest of the elements are consecutively
   1422   // numbered from this value.
   1423   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1424   if (ShiftAmt < i) return -1;
   1425 
   1426   ShiftAmt -= i;
   1427   bool isLE = DAG.getDataLayout().isLittleEndian();
   1428 
   1429   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
   1430     // Check the rest of the elements to see if they are consecutive.
   1431     for (++i; i != 16; ++i)
   1432       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1433         return -1;
   1434   } else if (ShuffleKind == 1) {
   1435     // Check the rest of the elements to see if they are consecutive.
   1436     for (++i; i != 16; ++i)
   1437       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
   1438         return -1;
   1439   } else
   1440     return -1;
   1441 
   1442   if (isLE)
   1443     ShiftAmt = 16 - ShiftAmt;
   1444 
   1445   return ShiftAmt;
   1446 }
   1447 
   1448 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
   1449 /// specifies a splat of a single element that is suitable for input to
   1450 /// VSPLTB/VSPLTH/VSPLTW.
   1451 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
   1452   assert(N->getValueType(0) == MVT::v16i8 &&
   1453          (EltSize == 1 || EltSize == 2 || EltSize == 4));
   1454 
   1455   // The consecutive indices need to specify an element, not part of two
   1456   // different elements.  So abandon ship early if this isn't the case.
   1457   if (N->getMaskElt(0) % EltSize != 0)
   1458     return false;
   1459 
   1460   // This is a splat operation if each element of the permute is the same, and
   1461   // if the value doesn't reference the second vector.
   1462   unsigned ElementBase = N->getMaskElt(0);
   1463 
   1464   // FIXME: Handle UNDEF elements too!
   1465   if (ElementBase >= 16)
   1466     return false;
   1467 
   1468   // Check that the indices are consecutive, in the case of a multi-byte element
   1469   // splatted with a v16i8 mask.
   1470   for (unsigned i = 1; i != EltSize; ++i)
   1471     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
   1472       return false;
   1473 
   1474   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
   1475     if (N->getMaskElt(i) < 0) continue;
   1476     for (unsigned j = 0; j != EltSize; ++j)
   1477       if (N->getMaskElt(i+j) != N->getMaskElt(j))
   1478         return false;
   1479   }
   1480   return true;
   1481 }
   1482 
   1483 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
   1484 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
   1485 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
   1486                                 SelectionDAG &DAG) {
   1487   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1488   assert(isSplatShuffleMask(SVOp, EltSize));
   1489   if (DAG.getDataLayout().isLittleEndian())
   1490     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
   1491   else
   1492     return SVOp->getMaskElt(0) / EltSize;
   1493 }
   1494 
   1495 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
   1496 /// by using a vspltis[bhw] instruction of the specified element size, return
   1497 /// the constant being splatted.  The ByteSize field indicates the number of
   1498 /// bytes of each element [124] -> [bhw].
   1499 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
   1500   SDValue OpVal(nullptr, 0);
   1501 
   1502   // If ByteSize of the splat is bigger than the element size of the
   1503   // build_vector, then we have a case where we are checking for a splat where
   1504   // multiple elements of the buildvector are folded together into a single
   1505   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
   1506   unsigned EltSize = 16/N->getNumOperands();
   1507   if (EltSize < ByteSize) {
   1508     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
   1509     SDValue UniquedVals[4];
   1510     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
   1511 
   1512     // See if all of the elements in the buildvector agree across.
   1513     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1514       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1515       // If the element isn't a constant, bail fully out.
   1516       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
   1517 
   1518 
   1519       if (!UniquedVals[i&(Multiple-1)].getNode())
   1520         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
   1521       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
   1522         return SDValue();  // no match.
   1523     }
   1524 
   1525     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
   1526     // either constant or undef values that are identical for each chunk.  See
   1527     // if these chunks can form into a larger vspltis*.
   1528 
   1529     // Check to see if all of the leading entries are either 0 or -1.  If
   1530     // neither, then this won't fit into the immediate field.
   1531     bool LeadingZero = true;
   1532     bool LeadingOnes = true;
   1533     for (unsigned i = 0; i != Multiple-1; ++i) {
   1534       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
   1535 
   1536       LeadingZero &= isNullConstant(UniquedVals[i]);
   1537       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
   1538     }
   1539     // Finally, check the least significant entry.
   1540     if (LeadingZero) {
   1541       if (!UniquedVals[Multiple-1].getNode())
   1542         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
   1543       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
   1544       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
   1545         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   1546     }
   1547     if (LeadingOnes) {
   1548       if (!UniquedVals[Multiple-1].getNode())
   1549         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
   1550       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
   1551       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
   1552         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   1553     }
   1554 
   1555     return SDValue();
   1556   }
   1557 
   1558   // Check to see if this buildvec has a single non-undef value in its elements.
   1559   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1560     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1561     if (!OpVal.getNode())
   1562       OpVal = N->getOperand(i);
   1563     else if (OpVal != N->getOperand(i))
   1564       return SDValue();
   1565   }
   1566 
   1567   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
   1568 
   1569   unsigned ValSizeInBytes = EltSize;
   1570   uint64_t Value = 0;
   1571   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
   1572     Value = CN->getZExtValue();
   1573   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
   1574     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
   1575     Value = FloatToBits(CN->getValueAPF().convertToFloat());
   1576   }
   1577 
   1578   // If the splat value is larger than the element value, then we can never do
   1579   // this splat.  The only case that we could fit the replicated bits into our
   1580   // immediate field for would be zero, and we prefer to use vxor for it.
   1581   if (ValSizeInBytes < ByteSize) return SDValue();
   1582 
   1583   // If the element value is larger than the splat value, check if it consists
   1584   // of a repeated bit pattern of size ByteSize.
   1585   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
   1586     return SDValue();
   1587 
   1588   // Properly sign extend the value.
   1589   int MaskVal = SignExtend32(Value, ByteSize * 8);
   1590 
   1591   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
   1592   if (MaskVal == 0) return SDValue();
   1593 
   1594   // Finally, if this value fits in a 5 bit sext field, return it
   1595   if (SignExtend32<5>(MaskVal) == MaskVal)
   1596     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
   1597   return SDValue();
   1598 }
   1599 
   1600 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
   1601 /// amount, otherwise return -1.
   1602 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
   1603   EVT VT = N->getValueType(0);
   1604   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
   1605     return -1;
   1606 
   1607   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1608 
   1609   // Find the first non-undef value in the shuffle mask.
   1610   unsigned i;
   1611   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
   1612     /*search*/;
   1613 
   1614   if (i == 4) return -1;  // all undef.
   1615 
   1616   // Otherwise, check to see if the rest of the elements are consecutively
   1617   // numbered from this value.
   1618   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1619   if (ShiftAmt < i) return -1;
   1620   ShiftAmt -= i;
   1621 
   1622   // Check the rest of the elements to see if they are consecutive.
   1623   for (++i; i != 4; ++i)
   1624     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1625       return -1;
   1626 
   1627   return ShiftAmt;
   1628 }
   1629 
   1630 //===----------------------------------------------------------------------===//
   1631 //  Addressing Mode Selection
   1632 //===----------------------------------------------------------------------===//
   1633 
   1634 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
   1635 /// or 64-bit immediate, and if the value can be accurately represented as a
   1636 /// sign extension from a 16-bit value.  If so, this returns true and the
   1637 /// immediate.
   1638 static bool isIntS16Immediate(SDNode *N, short &Imm) {
   1639   if (!isa<ConstantSDNode>(N))
   1640     return false;
   1641 
   1642   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
   1643   if (N->getValueType(0) == MVT::i32)
   1644     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
   1645   else
   1646     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
   1647 }
   1648 static bool isIntS16Immediate(SDValue Op, short &Imm) {
   1649   return isIntS16Immediate(Op.getNode(), Imm);
   1650 }
   1651 
   1652 /// SelectAddressRegReg - Given the specified addressed, check to see if it
   1653 /// can be represented as an indexed [r+r] operation.  Returns false if it
   1654 /// can be more efficiently represented with [r+imm].
   1655 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
   1656                                             SDValue &Index,
   1657                                             SelectionDAG &DAG) const {
   1658   short imm = 0;
   1659   if (N.getOpcode() == ISD::ADD) {
   1660     if (isIntS16Immediate(N.getOperand(1), imm))
   1661       return false;    // r+i
   1662     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
   1663       return false;    // r+i
   1664 
   1665     Base = N.getOperand(0);
   1666     Index = N.getOperand(1);
   1667     return true;
   1668   } else if (N.getOpcode() == ISD::OR) {
   1669     if (isIntS16Immediate(N.getOperand(1), imm))
   1670       return false;    // r+i can fold it if we can.
   1671 
   1672     // If this is an or of disjoint bitfields, we can codegen this as an add
   1673     // (for better address arithmetic) if the LHS and RHS of the OR are provably
   1674     // disjoint.
   1675     APInt LHSKnownZero, LHSKnownOne;
   1676     APInt RHSKnownZero, RHSKnownOne;
   1677     DAG.computeKnownBits(N.getOperand(0),
   1678                          LHSKnownZero, LHSKnownOne);
   1679 
   1680     if (LHSKnownZero.getBoolValue()) {
   1681       DAG.computeKnownBits(N.getOperand(1),
   1682                            RHSKnownZero, RHSKnownOne);
   1683       // If all of the bits are known zero on the LHS or RHS, the add won't
   1684       // carry.
   1685       if (~(LHSKnownZero | RHSKnownZero) == 0) {
   1686         Base = N.getOperand(0);
   1687         Index = N.getOperand(1);
   1688         return true;
   1689       }
   1690     }
   1691   }
   1692 
   1693   return false;
   1694 }
   1695 
   1696 // If we happen to be doing an i64 load or store into a stack slot that has
   1697 // less than a 4-byte alignment, then the frame-index elimination may need to
   1698 // use an indexed load or store instruction (because the offset may not be a
   1699 // multiple of 4). The extra register needed to hold the offset comes from the
   1700 // register scavenger, and it is possible that the scavenger will need to use
   1701 // an emergency spill slot. As a result, we need to make sure that a spill slot
   1702 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
   1703 // stack slot.
   1704 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
   1705   // FIXME: This does not handle the LWA case.
   1706   if (VT != MVT::i64)
   1707     return;
   1708 
   1709   // NOTE: We'll exclude negative FIs here, which come from argument
   1710   // lowering, because there are no known test cases triggering this problem
   1711   // using packed structures (or similar). We can remove this exclusion if
   1712   // we find such a test case. The reason why this is so test-case driven is
   1713   // because this entire 'fixup' is only to prevent crashes (from the
   1714   // register scavenger) on not-really-valid inputs. For example, if we have:
   1715   //   %a = alloca i1
   1716   //   %b = bitcast i1* %a to i64*
   1717   //   store i64* a, i64 b
   1718   // then the store should really be marked as 'align 1', but is not. If it
   1719   // were marked as 'align 1' then the indexed form would have been
   1720   // instruction-selected initially, and the problem this 'fixup' is preventing
   1721   // won't happen regardless.
   1722   if (FrameIdx < 0)
   1723     return;
   1724 
   1725   MachineFunction &MF = DAG.getMachineFunction();
   1726   MachineFrameInfo *MFI = MF.getFrameInfo();
   1727 
   1728   unsigned Align = MFI->getObjectAlignment(FrameIdx);
   1729   if (Align >= 4)
   1730     return;
   1731 
   1732   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1733   FuncInfo->setHasNonRISpills();
   1734 }
   1735 
   1736 /// Returns true if the address N can be represented by a base register plus
   1737 /// a signed 16-bit displacement [r+imm], and if it is not better
   1738 /// represented as reg+reg.  If Aligned is true, only accept displacements
   1739 /// suitable for STD and friends, i.e. multiples of 4.
   1740 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
   1741                                             SDValue &Base,
   1742                                             SelectionDAG &DAG,
   1743                                             bool Aligned) const {
   1744   // FIXME dl should come from parent load or store, not from address
   1745   SDLoc dl(N);
   1746   // If this can be more profitably realized as r+r, fail.
   1747   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1748     return false;
   1749 
   1750   if (N.getOpcode() == ISD::ADD) {
   1751     short imm = 0;
   1752     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1753         (!Aligned || (imm & 3) == 0)) {
   1754       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   1755       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1756         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1757         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1758       } else {
   1759         Base = N.getOperand(0);
   1760       }
   1761       return true; // [r+i]
   1762     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1763       // Match LOAD (ADD (X, Lo(G))).
   1764       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1765              && "Cannot handle constant offsets yet!");
   1766       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1767       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1768              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   1769              Disp.getOpcode() == ISD::TargetConstantPool ||
   1770              Disp.getOpcode() == ISD::TargetJumpTable);
   1771       Base = N.getOperand(0);
   1772       return true;  // [&g+r]
   1773     }
   1774   } else if (N.getOpcode() == ISD::OR) {
   1775     short imm = 0;
   1776     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1777         (!Aligned || (imm & 3) == 0)) {
   1778       // If this is an or of disjoint bitfields, we can codegen this as an add
   1779       // (for better address arithmetic) if the LHS and RHS of the OR are
   1780       // provably disjoint.
   1781       APInt LHSKnownZero, LHSKnownOne;
   1782       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1783 
   1784       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1785         // If all of the bits are known zero on the LHS or RHS, the add won't
   1786         // carry.
   1787         if (FrameIndexSDNode *FI =
   1788               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1789           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1790           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1791         } else {
   1792           Base = N.getOperand(0);
   1793         }
   1794         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   1795         return true;
   1796       }
   1797     }
   1798   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1799     // Loading from a constant address.
   1800 
   1801     // If this address fits entirely in a 16-bit sext immediate field, codegen
   1802     // this as "d, 0"
   1803     short Imm;
   1804     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
   1805       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
   1806       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1807                              CN->getValueType(0));
   1808       return true;
   1809     }
   1810 
   1811     // Handle 32-bit sext immediates with LIS + addr mode.
   1812     if ((CN->getValueType(0) == MVT::i32 ||
   1813          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
   1814         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
   1815       int Addr = (int)CN->getZExtValue();
   1816 
   1817       // Otherwise, break this down into an LIS + disp.
   1818       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
   1819 
   1820       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
   1821                                    MVT::i32);
   1822       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1823       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   1824       return true;
   1825     }
   1826   }
   1827 
   1828   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
   1829   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
   1830     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1831     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1832   } else
   1833     Base = N;
   1834   return true;      // [r+0]
   1835 }
   1836 
   1837 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   1838 /// represented as an indexed [r+r] operation.
   1839 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   1840                                                 SDValue &Index,
   1841                                                 SelectionDAG &DAG) const {
   1842   // Check to see if we can easily represent this as an [r+r] address.  This
   1843   // will fail if it thinks that the address is more profitably represented as
   1844   // reg+imm, e.g. where imm = 0.
   1845   if (SelectAddressRegReg(N, Base, Index, DAG))
   1846     return true;
   1847 
   1848   // If the operand is an addition, always emit this as [r+r], since this is
   1849   // better (for code size, and execution, as the memop does the add for free)
   1850   // than emitting an explicit add.
   1851   if (N.getOpcode() == ISD::ADD) {
   1852     Base = N.getOperand(0);
   1853     Index = N.getOperand(1);
   1854     return true;
   1855   }
   1856 
   1857   // Otherwise, do it the hard way, using R0 as the base register.
   1858   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1859                          N.getValueType());
   1860   Index = N;
   1861   return true;
   1862 }
   1863 
   1864 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1865 /// offset pointer and addressing mode by reference if the node's address
   1866 /// can be legally represented as pre-indexed load / store address.
   1867 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1868                                                   SDValue &Offset,
   1869                                                   ISD::MemIndexedMode &AM,
   1870                                                   SelectionDAG &DAG) const {
   1871   if (DisablePPCPreinc) return false;
   1872 
   1873   bool isLoad = true;
   1874   SDValue Ptr;
   1875   EVT VT;
   1876   unsigned Alignment;
   1877   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1878     Ptr = LD->getBasePtr();
   1879     VT = LD->getMemoryVT();
   1880     Alignment = LD->getAlignment();
   1881   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1882     Ptr = ST->getBasePtr();
   1883     VT  = ST->getMemoryVT();
   1884     Alignment = ST->getAlignment();
   1885     isLoad = false;
   1886   } else
   1887     return false;
   1888 
   1889   // PowerPC doesn't have preinc load/store instructions for vectors (except
   1890   // for QPX, which does have preinc r+r forms).
   1891   if (VT.isVector()) {
   1892     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
   1893       return false;
   1894     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
   1895       AM = ISD::PRE_INC;
   1896       return true;
   1897     }
   1898   }
   1899 
   1900   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
   1901 
   1902     // Common code will reject creating a pre-inc form if the base pointer
   1903     // is a frame index, or if N is a store and the base pointer is either
   1904     // the same as or a predecessor of the value being stored.  Check for
   1905     // those situations here, and try with swapped Base/Offset instead.
   1906     bool Swap = false;
   1907 
   1908     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
   1909       Swap = true;
   1910     else if (!isLoad) {
   1911       SDValue Val = cast<StoreSDNode>(N)->getValue();
   1912       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
   1913         Swap = true;
   1914     }
   1915 
   1916     if (Swap)
   1917       std::swap(Base, Offset);
   1918 
   1919     AM = ISD::PRE_INC;
   1920     return true;
   1921   }
   1922 
   1923   // LDU/STU can only handle immediates that are a multiple of 4.
   1924   if (VT != MVT::i64) {
   1925     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
   1926       return false;
   1927   } else {
   1928     // LDU/STU need an address with at least 4-byte alignment.
   1929     if (Alignment < 4)
   1930       return false;
   1931 
   1932     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
   1933       return false;
   1934   }
   1935 
   1936   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1937     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1938     // sext i32 to i64 when addr mode is r+i.
   1939     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1940         LD->getExtensionType() == ISD::SEXTLOAD &&
   1941         isa<ConstantSDNode>(Offset))
   1942       return false;
   1943   }
   1944 
   1945   AM = ISD::PRE_INC;
   1946   return true;
   1947 }
   1948 
   1949 //===----------------------------------------------------------------------===//
   1950 //  LowerOperation implementation
   1951 //===----------------------------------------------------------------------===//
   1952 
   1953 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1954 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1955 static bool GetLabelAccessInfo(const TargetMachine &TM,
   1956                                const PPCSubtarget &Subtarget,
   1957                                unsigned &HiOpFlags, unsigned &LoOpFlags,
   1958                                const GlobalValue *GV = nullptr) {
   1959   HiOpFlags = PPCII::MO_HA;
   1960   LoOpFlags = PPCII::MO_LO;
   1961 
   1962   // Don't use the pic base if not in PIC relocation model.
   1963   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
   1964 
   1965   if (isPIC) {
   1966     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1967     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1968   }
   1969 
   1970   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1971   // sure that instruction lowering adds it.
   1972   if (GV && Subtarget.hasLazyResolverStub(GV)) {
   1973     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1974     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1975 
   1976     if (GV->hasHiddenVisibility()) {
   1977       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1978       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1979     }
   1980   }
   1981 
   1982   return isPIC;
   1983 }
   1984 
   1985 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1986                              SelectionDAG &DAG) {
   1987   SDLoc DL(HiPart);
   1988   EVT PtrVT = HiPart.getValueType();
   1989   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
   1990 
   1991   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1992   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1993 
   1994   // With PIC, the first instruction is actually "GR+hi(&G)".
   1995   if (isPIC)
   1996     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1997                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1998 
   1999   // Generate non-pic code that has direct accesses to the constant pool.
   2000   // The address of the global is just (hi(&g)+lo(&g)).
   2001   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   2002 }
   2003 
   2004 static void setUsesTOCBasePtr(MachineFunction &MF) {
   2005   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2006   FuncInfo->setUsesTOCBasePtr();
   2007 }
   2008 
   2009 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
   2010   setUsesTOCBasePtr(DAG.getMachineFunction());
   2011 }
   2012 
   2013 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
   2014                            SDValue GA) {
   2015   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   2016   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
   2017                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
   2018 
   2019   SDValue Ops[] = { GA, Reg };
   2020   return DAG.getMemIntrinsicNode(
   2021       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
   2022       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
   2023       false, 0);
   2024 }
   2025 
   2026 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   2027                                              SelectionDAG &DAG) const {
   2028   EVT PtrVT = Op.getValueType();
   2029   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2030   const Constant *C = CP->getConstVal();
   2031 
   2032   // 64-bit SVR4 ABI code is always position-independent.
   2033   // The actual address of the GlobalValue is stored in the TOC.
   2034   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2035     setUsesTOCBasePtr(DAG);
   2036     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   2037     return getTOCEntry(DAG, SDLoc(CP), true, GA);
   2038   }
   2039 
   2040   unsigned MOHiFlag, MOLoFlag;
   2041   bool isPIC =
   2042       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   2043 
   2044   if (isPIC && Subtarget.isSVR4ABI()) {
   2045     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
   2046                                            PPCII::MO_PIC_FLAG);
   2047     return getTOCEntry(DAG, SDLoc(CP), false, GA);
   2048   }
   2049 
   2050   SDValue CPIHi =
   2051     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   2052   SDValue CPILo =
   2053     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   2054   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   2055 }
   2056 
   2057 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   2058   EVT PtrVT = Op.getValueType();
   2059   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   2060 
   2061   // 64-bit SVR4 ABI code is always position-independent.
   2062   // The actual address of the GlobalValue is stored in the TOC.
   2063   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2064     setUsesTOCBasePtr(DAG);
   2065     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2066     return getTOCEntry(DAG, SDLoc(JT), true, GA);
   2067   }
   2068 
   2069   unsigned MOHiFlag, MOLoFlag;
   2070   bool isPIC =
   2071       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   2072 
   2073   if (isPIC && Subtarget.isSVR4ABI()) {
   2074     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
   2075                                         PPCII::MO_PIC_FLAG);
   2076     return getTOCEntry(DAG, SDLoc(GA), false, GA);
   2077   }
   2078 
   2079   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   2080   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   2081   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   2082 }
   2083 
   2084 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   2085                                              SelectionDAG &DAG) const {
   2086   EVT PtrVT = Op.getValueType();
   2087   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
   2088   const BlockAddress *BA = BASDN->getBlockAddress();
   2089 
   2090   // 64-bit SVR4 ABI code is always position-independent.
   2091   // The actual BlockAddress is stored in the TOC.
   2092   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2093     setUsesTOCBasePtr(DAG);
   2094     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
   2095     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
   2096   }
   2097 
   2098   unsigned MOHiFlag, MOLoFlag;
   2099   bool isPIC =
   2100       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   2101   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   2102   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   2103   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   2104 }
   2105 
   2106 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   2107                                               SelectionDAG &DAG) const {
   2108 
   2109   // FIXME: TLS addresses currently use medium model code sequences,
   2110   // which is the most useful form.  Eventually support for small and
   2111   // large models could be added if users need it, at the cost of
   2112   // additional complexity.
   2113   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2114   if (DAG.getTarget().Options.EmulatedTLS)
   2115     return LowerToTLSEmulatedModel(GA, DAG);
   2116 
   2117   SDLoc dl(GA);
   2118   const GlobalValue *GV = GA->getGlobal();
   2119   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2120   bool is64bit = Subtarget.isPPC64();
   2121   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
   2122   PICLevel::Level picLevel = M->getPICLevel();
   2123 
   2124   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   2125 
   2126   if (Model == TLSModel::LocalExec) {
   2127     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2128                                                PPCII::MO_TPREL_HA);
   2129     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2130                                                PPCII::MO_TPREL_LO);
   2131     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   2132                                      is64bit ? MVT::i64 : MVT::i32);
   2133     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   2134     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   2135   }
   2136 
   2137   if (Model == TLSModel::InitialExec) {
   2138     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2139     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2140                                                 PPCII::MO_TLS);
   2141     SDValue GOTPtr;
   2142     if (is64bit) {
   2143       setUsesTOCBasePtr(DAG);
   2144       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2145       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   2146                            PtrVT, GOTReg, TGA);
   2147     } else
   2148       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
   2149     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   2150                                    PtrVT, TGA, GOTPtr);
   2151     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
   2152   }
   2153 
   2154   if (Model == TLSModel::GeneralDynamic) {
   2155     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2156     SDValue GOTPtr;
   2157     if (is64bit) {
   2158       setUsesTOCBasePtr(DAG);
   2159       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2160       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   2161                                    GOTReg, TGA);
   2162     } else {
   2163       if (picLevel == PICLevel::Small)
   2164         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2165       else
   2166         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2167     }
   2168     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
   2169                        GOTPtr, TGA, TGA);
   2170   }
   2171 
   2172   if (Model == TLSModel::LocalDynamic) {
   2173     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2174     SDValue GOTPtr;
   2175     if (is64bit) {
   2176       setUsesTOCBasePtr(DAG);
   2177       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2178       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   2179                            GOTReg, TGA);
   2180     } else {
   2181       if (picLevel == PICLevel::Small)
   2182         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2183       else
   2184         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2185     }
   2186     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
   2187                                   PtrVT, GOTPtr, TGA, TGA);
   2188     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
   2189                                       PtrVT, TLSAddr, TGA);
   2190     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   2191   }
   2192 
   2193   llvm_unreachable("Unknown TLS model!");
   2194 }
   2195 
   2196 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   2197                                               SelectionDAG &DAG) const {
   2198   EVT PtrVT = Op.getValueType();
   2199   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   2200   SDLoc DL(GSDN);
   2201   const GlobalValue *GV = GSDN->getGlobal();
   2202 
   2203   // 64-bit SVR4 ABI code is always position-independent.
   2204   // The actual address of the GlobalValue is stored in the TOC.
   2205   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2206     setUsesTOCBasePtr(DAG);
   2207     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   2208     return getTOCEntry(DAG, DL, true, GA);
   2209   }
   2210 
   2211   unsigned MOHiFlag, MOLoFlag;
   2212   bool isPIC =
   2213       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
   2214 
   2215   if (isPIC && Subtarget.isSVR4ABI()) {
   2216     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
   2217                                             GSDN->getOffset(),
   2218                                             PPCII::MO_PIC_FLAG);
   2219     return getTOCEntry(DAG, DL, false, GA);
   2220   }
   2221 
   2222   SDValue GAHi =
   2223     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   2224   SDValue GALo =
   2225     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   2226 
   2227   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   2228 
   2229   // If the global reference is actually to a non-lazy-pointer, we have to do an
   2230   // extra load to get the address of the global.
   2231   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   2232     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   2233                       false, false, false, 0);
   2234   return Ptr;
   2235 }
   2236 
   2237 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   2238   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2239   SDLoc dl(Op);
   2240 
   2241   if (Op.getValueType() == MVT::v2i64) {
   2242     // When the operands themselves are v2i64 values, we need to do something
   2243     // special because VSX has no underlying comparison operations for these.
   2244     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
   2245       // Equality can be handled by casting to the legal type for Altivec
   2246       // comparisons, everything else needs to be expanded.
   2247       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   2248         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   2249                  DAG.getSetCC(dl, MVT::v4i32,
   2250                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
   2251                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
   2252                    CC));
   2253       }
   2254 
   2255       return SDValue();
   2256     }
   2257 
   2258     // We handle most of these in the usual way.
   2259     return Op;
   2260   }
   2261 
   2262   // If we're comparing for equality to zero, expose the fact that this is
   2263   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   2264   // fold the new nodes.
   2265   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2266     if (C->isNullValue() && CC == ISD::SETEQ) {
   2267       EVT VT = Op.getOperand(0).getValueType();
   2268       SDValue Zext = Op.getOperand(0);
   2269       if (VT.bitsLT(MVT::i32)) {
   2270         VT = MVT::i32;
   2271         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   2272       }
   2273       unsigned Log2b = Log2_32(VT.getSizeInBits());
   2274       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   2275       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   2276                                 DAG.getConstant(Log2b, dl, MVT::i32));
   2277       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   2278     }
   2279     // Leave comparisons against 0 and -1 alone for now, since they're usually
   2280     // optimized.  FIXME: revisit this when we can custom lower all setcc
   2281     // optimizations.
   2282     if (C->isAllOnesValue() || C->isNullValue())
   2283       return SDValue();
   2284   }
   2285 
   2286   // If we have an integer seteq/setne, turn it into a compare against zero
   2287   // by xor'ing the rhs with the lhs, which is faster than setting a
   2288   // condition register, reading it back out, and masking the correct bit.  The
   2289   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   2290   // the result to other bit-twiddling opportunities.
   2291   EVT LHSVT = Op.getOperand(0).getValueType();
   2292   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   2293     EVT VT = Op.getValueType();
   2294     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   2295                                 Op.getOperand(1));
   2296     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
   2297   }
   2298   return SDValue();
   2299 }
   2300 
   2301 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   2302                                       const PPCSubtarget &Subtarget) const {
   2303   SDNode *Node = Op.getNode();
   2304   EVT VT = Node->getValueType(0);
   2305   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   2306   SDValue InChain = Node->getOperand(0);
   2307   SDValue VAListPtr = Node->getOperand(1);
   2308   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   2309   SDLoc dl(Node);
   2310 
   2311   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   2312 
   2313   // gpr_index
   2314   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2315                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   2316                                     false, false, false, 0);
   2317   InChain = GprIndex.getValue(1);
   2318 
   2319   if (VT == MVT::i64) {
   2320     // Check if GprIndex is even
   2321     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   2322                                  DAG.getConstant(1, dl, MVT::i32));
   2323     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   2324                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
   2325     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   2326                                           DAG.getConstant(1, dl, MVT::i32));
   2327     // Align GprIndex to be even if it isn't
   2328     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   2329                            GprIndex);
   2330   }
   2331 
   2332   // fpr index is 1 byte after gpr
   2333   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2334                                DAG.getConstant(1, dl, MVT::i32));
   2335 
   2336   // fpr
   2337   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2338                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   2339                                     false, false, false, 0);
   2340   InChain = FprIndex.getValue(1);
   2341 
   2342   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2343                                        DAG.getConstant(8, dl, MVT::i32));
   2344 
   2345   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2346                                         DAG.getConstant(4, dl, MVT::i32));
   2347 
   2348   // areas
   2349   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   2350                                      MachinePointerInfo(), false, false,
   2351                                      false, 0);
   2352   InChain = OverflowArea.getValue(1);
   2353 
   2354   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   2355                                     MachinePointerInfo(), false, false,
   2356                                     false, 0);
   2357   InChain = RegSaveArea.getValue(1);
   2358 
   2359   // select overflow_area if index > 8
   2360   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   2361                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
   2362 
   2363   // adjustment constant gpr_index * 4/8
   2364   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   2365                                     VT.isInteger() ? GprIndex : FprIndex,
   2366                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
   2367                                                     MVT::i32));
   2368 
   2369   // OurReg = RegSaveArea + RegConstant
   2370   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   2371                                RegConstant);
   2372 
   2373   // Floating types are 32 bytes into RegSaveArea
   2374   if (VT.isFloatingPoint())
   2375     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   2376                          DAG.getConstant(32, dl, MVT::i32));
   2377 
   2378   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   2379   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   2380                                    VT.isInteger() ? GprIndex : FprIndex,
   2381                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
   2382                                                    MVT::i32));
   2383 
   2384   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   2385                               VT.isInteger() ? VAListPtr : FprPtr,
   2386                               MachinePointerInfo(SV),
   2387                               MVT::i8, false, false, 0);
   2388 
   2389   // determine if we should load from reg_save_area or overflow_area
   2390   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   2391 
   2392   // increase overflow_area by 4/8 if gpr/fpr > 8
   2393   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   2394                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   2395                                           dl, MVT::i32));
   2396 
   2397   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   2398                              OverflowAreaPlusN);
   2399 
   2400   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   2401                               OverflowAreaPtr,
   2402                               MachinePointerInfo(),
   2403                               MVT::i32, false, false, 0);
   2404 
   2405   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   2406                      false, false, false, 0);
   2407 }
   2408 
   2409 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
   2410                                        const PPCSubtarget &Subtarget) const {
   2411   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
   2412 
   2413   // We have to copy the entire va_list struct:
   2414   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
   2415   return DAG.getMemcpy(Op.getOperand(0), Op,
   2416                        Op.getOperand(1), Op.getOperand(2),
   2417                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
   2418                        false, MachinePointerInfo(), MachinePointerInfo());
   2419 }
   2420 
   2421 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   2422                                                   SelectionDAG &DAG) const {
   2423   return Op.getOperand(0);
   2424 }
   2425 
   2426 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   2427                                                 SelectionDAG &DAG) const {
   2428   SDValue Chain = Op.getOperand(0);
   2429   SDValue Trmp = Op.getOperand(1); // trampoline
   2430   SDValue FPtr = Op.getOperand(2); // nested function
   2431   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   2432   SDLoc dl(Op);
   2433 
   2434   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   2435   bool isPPC64 = (PtrVT == MVT::i64);
   2436   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
   2437 
   2438   TargetLowering::ArgListTy Args;
   2439   TargetLowering::ArgListEntry Entry;
   2440 
   2441   Entry.Ty = IntPtrTy;
   2442   Entry.Node = Trmp; Args.push_back(Entry);
   2443 
   2444   // TrampSize == (isPPC64 ? 48 : 40);
   2445   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
   2446                                isPPC64 ? MVT::i64 : MVT::i32);
   2447   Args.push_back(Entry);
   2448 
   2449   Entry.Node = FPtr; Args.push_back(Entry);
   2450   Entry.Node = Nest; Args.push_back(Entry);
   2451 
   2452   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   2453   TargetLowering::CallLoweringInfo CLI(DAG);
   2454   CLI.setDebugLoc(dl).setChain(Chain)
   2455     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
   2456                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   2457                std::move(Args), 0);
   2458 
   2459   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2460   return CallResult.second;
   2461 }
   2462 
   2463 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   2464                                         const PPCSubtarget &Subtarget) const {
   2465   MachineFunction &MF = DAG.getMachineFunction();
   2466   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2467 
   2468   SDLoc dl(Op);
   2469 
   2470   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   2471     // vastart just stores the address of the VarArgsFrameIndex slot into the
   2472     // memory location argument.
   2473     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   2474     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2475     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2476     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2477                         MachinePointerInfo(SV),
   2478                         false, false, 0);
   2479   }
   2480 
   2481   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   2482   // We suppose the given va_list is already allocated.
   2483   //
   2484   // typedef struct {
   2485   //  char gpr;     /* index into the array of 8 GPRs
   2486   //                 * stored in the register save area
   2487   //                 * gpr=0 corresponds to r3,
   2488   //                 * gpr=1 to r4, etc.
   2489   //                 */
   2490   //  char fpr;     /* index into the array of 8 FPRs
   2491   //                 * stored in the register save area
   2492   //                 * fpr=0 corresponds to f1,
   2493   //                 * fpr=1 to f2, etc.
   2494   //                 */
   2495   //  char *overflow_arg_area;
   2496   //                /* location on stack that holds
   2497   //                 * the next overflow argument
   2498   //                 */
   2499   //  char *reg_save_area;
   2500   //               /* where r3:r10 and f1:f8 (if saved)
   2501   //                * are stored
   2502   //                */
   2503   // } va_list[1];
   2504 
   2505   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
   2506   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
   2507 
   2508   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   2509 
   2510   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   2511                                             PtrVT);
   2512   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   2513                                  PtrVT);
   2514 
   2515   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   2516   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
   2517 
   2518   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   2519   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
   2520 
   2521   uint64_t FPROffset = 1;
   2522   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
   2523 
   2524   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2525 
   2526   // Store first byte : number of int regs
   2527   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   2528                                          Op.getOperand(1),
   2529                                          MachinePointerInfo(SV),
   2530                                          MVT::i8, false, false, 0);
   2531   uint64_t nextOffset = FPROffset;
   2532   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   2533                                   ConstFPROffset);
   2534 
   2535   // Store second byte : number of float regs
   2536   SDValue secondStore =
   2537     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   2538                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   2539                       false, false, 0);
   2540   nextOffset += StackOffset;
   2541   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   2542 
   2543   // Store second word : arguments given on stack
   2544   SDValue thirdStore =
   2545     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   2546                  MachinePointerInfo(SV, nextOffset),
   2547                  false, false, 0);
   2548   nextOffset += FrameOffset;
   2549   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   2550 
   2551   // Store third word : arguments given in registers
   2552   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   2553                       MachinePointerInfo(SV, nextOffset),
   2554                       false, false, 0);
   2555 
   2556 }
   2557 
   2558 #include "PPCGenCallingConv.inc"
   2559 
   2560 // Function whose sole purpose is to kill compiler warnings
   2561 // stemming from unused functions included from PPCGenCallingConv.inc.
   2562 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
   2563   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
   2564 }
   2565 
   2566 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   2567                                       CCValAssign::LocInfo &LocInfo,
   2568                                       ISD::ArgFlagsTy &ArgFlags,
   2569                                       CCState &State) {
   2570   return true;
   2571 }
   2572 
   2573 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   2574                                              MVT &LocVT,
   2575                                              CCValAssign::LocInfo &LocInfo,
   2576                                              ISD::ArgFlagsTy &ArgFlags,
   2577                                              CCState &State) {
   2578   static const MCPhysReg ArgRegs[] = {
   2579     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2580     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2581   };
   2582   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2583 
   2584   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2585 
   2586   // Skip one register if the first unallocated register has an even register
   2587   // number and there are still argument registers available which have not been
   2588   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   2589   // need to skip a register if RegNum is odd.
   2590   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   2591     State.AllocateReg(ArgRegs[RegNum]);
   2592   }
   2593 
   2594   // Always return false here, as this function only makes sure that the first
   2595   // unallocated register has an odd register number and does not actually
   2596   // allocate a register for the current argument.
   2597   return false;
   2598 }
   2599 
   2600 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   2601                                                MVT &LocVT,
   2602                                                CCValAssign::LocInfo &LocInfo,
   2603                                                ISD::ArgFlagsTy &ArgFlags,
   2604                                                CCState &State) {
   2605   static const MCPhysReg ArgRegs[] = {
   2606     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2607     PPC::F8
   2608   };
   2609 
   2610   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2611 
   2612   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2613 
   2614   // If there is only one Floating-point register left we need to put both f64
   2615   // values of a split ppc_fp128 value on the stack.
   2616   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   2617     State.AllocateReg(ArgRegs[RegNum]);
   2618   }
   2619 
   2620   // Always return false here, as this function only makes sure that the two f64
   2621   // values a ppc_fp128 value is split into are both passed in registers or both
   2622   // passed on the stack and does not actually allocate a register for the
   2623   // current argument.
   2624   return false;
   2625 }
   2626 
   2627 /// FPR - The set of FP registers that should be allocated for arguments,
   2628 /// on Darwin.
   2629 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
   2630                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
   2631                                 PPC::F11, PPC::F12, PPC::F13};
   2632 
   2633 /// QFPR - The set of QPX registers that should be allocated for arguments.
   2634 static const MCPhysReg QFPR[] = {
   2635     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
   2636     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
   2637 
   2638 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   2639 /// the stack.
   2640 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   2641                                        unsigned PtrByteSize) {
   2642   unsigned ArgSize = ArgVT.getStoreSize();
   2643   if (Flags.isByVal())
   2644     ArgSize = Flags.getByValSize();
   2645 
   2646   // Round up to multiples of the pointer size, except for array members,
   2647   // which are always packed.
   2648   if (!Flags.isInConsecutiveRegs())
   2649     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2650 
   2651   return ArgSize;
   2652 }
   2653 
   2654 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
   2655 /// on the stack.
   2656 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
   2657                                             ISD::ArgFlagsTy Flags,
   2658                                             unsigned PtrByteSize) {
   2659   unsigned Align = PtrByteSize;
   2660 
   2661   // Altivec parameters are padded to a 16 byte boundary.
   2662   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2663       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2664       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   2665       ArgVT == MVT::v1i128)
   2666     Align = 16;
   2667   // QPX vector types stored in double-precision are padded to a 32 byte
   2668   // boundary.
   2669   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
   2670     Align = 32;
   2671 
   2672   // ByVal parameters are aligned as requested.
   2673   if (Flags.isByVal()) {
   2674     unsigned BVAlign = Flags.getByValAlign();
   2675     if (BVAlign > PtrByteSize) {
   2676       if (BVAlign % PtrByteSize != 0)
   2677           llvm_unreachable(
   2678             "ByVal alignment is not a multiple of the pointer size");
   2679 
   2680       Align = BVAlign;
   2681     }
   2682   }
   2683 
   2684   // Array members are always packed to their original alignment.
   2685   if (Flags.isInConsecutiveRegs()) {
   2686     // If the array member was split into multiple registers, the first
   2687     // needs to be aligned to the size of the full type.  (Except for
   2688     // ppcf128, which is only aligned as its f64 components.)
   2689     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
   2690       Align = OrigVT.getStoreSize();
   2691     else
   2692       Align = ArgVT.getStoreSize();
   2693   }
   2694 
   2695   return Align;
   2696 }
   2697 
   2698 /// CalculateStackSlotUsed - Return whether this argument will use its
   2699 /// stack slot (instead of being passed in registers).  ArgOffset,
   2700 /// AvailableFPRs, and AvailableVRs must hold the current argument
   2701 /// position, and will be updated to account for this argument.
   2702 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
   2703                                    ISD::ArgFlagsTy Flags,
   2704                                    unsigned PtrByteSize,
   2705                                    unsigned LinkageSize,
   2706                                    unsigned ParamAreaSize,
   2707                                    unsigned &ArgOffset,
   2708                                    unsigned &AvailableFPRs,
   2709                                    unsigned &AvailableVRs, bool HasQPX) {
   2710   bool UseMemory = false;
   2711 
   2712   // Respect alignment of argument on the stack.
   2713   unsigned Align =
   2714     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   2715   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   2716   // If there's no space left in the argument save area, we must
   2717   // use memory (this check also catches zero-sized arguments).
   2718   if (ArgOffset >= LinkageSize + ParamAreaSize)
   2719     UseMemory = true;
   2720 
   2721   // Allocate argument on the stack.
   2722   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2723   if (Flags.isInConsecutiveRegsLast())
   2724     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2725   // If we overran the argument save area, we must use memory
   2726   // (this check catches arguments passed partially in memory)
   2727   if (ArgOffset > LinkageSize + ParamAreaSize)
   2728     UseMemory = true;
   2729 
   2730   // However, if the argument is actually passed in an FPR or a VR,
   2731   // we don't use memory after all.
   2732   if (!Flags.isByVal()) {
   2733     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
   2734         // QPX registers overlap with the scalar FP registers.
   2735         (HasQPX && (ArgVT == MVT::v4f32 ||
   2736                     ArgVT == MVT::v4f64 ||
   2737                     ArgVT == MVT::v4i1)))
   2738       if (AvailableFPRs > 0) {
   2739         --AvailableFPRs;
   2740         return false;
   2741       }
   2742     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2743         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2744         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   2745         ArgVT == MVT::v1i128)
   2746       if (AvailableVRs > 0) {
   2747         --AvailableVRs;
   2748         return false;
   2749       }
   2750   }
   2751 
   2752   return UseMemory;
   2753 }
   2754 
   2755 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
   2756 /// ensure minimum alignment required for target.
   2757 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
   2758                                      unsigned NumBytes) {
   2759   unsigned TargetAlign = Lowering->getStackAlignment();
   2760   unsigned AlignMask = TargetAlign - 1;
   2761   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2762   return NumBytes;
   2763 }
   2764 
   2765 SDValue
   2766 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   2767                                         CallingConv::ID CallConv, bool isVarArg,
   2768                                         const SmallVectorImpl<ISD::InputArg>
   2769                                           &Ins,
   2770                                         SDLoc dl, SelectionDAG &DAG,
   2771                                         SmallVectorImpl<SDValue> &InVals)
   2772                                           const {
   2773   if (Subtarget.isSVR4ABI()) {
   2774     if (Subtarget.isPPC64())
   2775       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   2776                                          dl, DAG, InVals);
   2777     else
   2778       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   2779                                          dl, DAG, InVals);
   2780   } else {
   2781     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   2782                                        dl, DAG, InVals);
   2783   }
   2784 }
   2785 
   2786 SDValue
   2787 PPCTargetLowering::LowerFormalArguments_32SVR4(
   2788                                       SDValue Chain,
   2789                                       CallingConv::ID CallConv, bool isVarArg,
   2790                                       const SmallVectorImpl<ISD::InputArg>
   2791                                         &Ins,
   2792                                       SDLoc dl, SelectionDAG &DAG,
   2793                                       SmallVectorImpl<SDValue> &InVals) const {
   2794 
   2795   // 32-bit SVR4 ABI Stack Frame Layout:
   2796   //              +-----------------------------------+
   2797   //        +-->  |            Back chain             |
   2798   //        |     +-----------------------------------+
   2799   //        |     | Floating-point register save area |
   2800   //        |     +-----------------------------------+
   2801   //        |     |    General register save area     |
   2802   //        |     +-----------------------------------+
   2803   //        |     |          CR save word             |
   2804   //        |     +-----------------------------------+
   2805   //        |     |         VRSAVE save word          |
   2806   //        |     +-----------------------------------+
   2807   //        |     |         Alignment padding         |
   2808   //        |     +-----------------------------------+
   2809   //        |     |     Vector register save area     |
   2810   //        |     +-----------------------------------+
   2811   //        |     |       Local variable space        |
   2812   //        |     +-----------------------------------+
   2813   //        |     |        Parameter list area        |
   2814   //        |     +-----------------------------------+
   2815   //        |     |           LR save word            |
   2816   //        |     +-----------------------------------+
   2817   // SP-->  +---  |            Back chain             |
   2818   //              +-----------------------------------+
   2819   //
   2820   // Specifications:
   2821   //   System V Application Binary Interface PowerPC Processor Supplement
   2822   //   AltiVec Technology Programming Interface Manual
   2823 
   2824   MachineFunction &MF = DAG.getMachineFunction();
   2825   MachineFrameInfo *MFI = MF.getFrameInfo();
   2826   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2827 
   2828   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   2829   // Potential tail calls could cause overwriting of argument stack slots.
   2830   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2831                        (CallConv == CallingConv::Fast));
   2832   unsigned PtrByteSize = 4;
   2833 
   2834   // Assign locations to all of the incoming arguments.
   2835   SmallVector<CCValAssign, 16> ArgLocs;
   2836   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2837                  *DAG.getContext());
   2838 
   2839   // Reserve space for the linkage area on the stack.
   2840   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   2841   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
   2842 
   2843   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   2844 
   2845   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2846     CCValAssign &VA = ArgLocs[i];
   2847 
   2848     // Arguments stored in registers.
   2849     if (VA.isRegLoc()) {
   2850       const TargetRegisterClass *RC;
   2851       EVT ValVT = VA.getValVT();
   2852 
   2853       switch (ValVT.getSimpleVT().SimpleTy) {
   2854         default:
   2855           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   2856         case MVT::i1:
   2857         case MVT::i32:
   2858           RC = &PPC::GPRCRegClass;
   2859           break;
   2860         case MVT::f32:
   2861           if (Subtarget.hasP8Vector())
   2862             RC = &PPC::VSSRCRegClass;
   2863           else
   2864             RC = &PPC::F4RCRegClass;
   2865           break;
   2866         case MVT::f64:
   2867           if (Subtarget.hasVSX())
   2868             RC = &PPC::VSFRCRegClass;
   2869           else
   2870             RC = &PPC::F8RCRegClass;
   2871           break;
   2872         case MVT::v16i8:
   2873         case MVT::v8i16:
   2874         case MVT::v4i32:
   2875           RC = &PPC::VRRCRegClass;
   2876           break;
   2877         case MVT::v4f32:
   2878           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
   2879           break;
   2880         case MVT::v2f64:
   2881         case MVT::v2i64:
   2882           RC = &PPC::VSHRCRegClass;
   2883           break;
   2884         case MVT::v4f64:
   2885           RC = &PPC::QFRCRegClass;
   2886           break;
   2887         case MVT::v4i1:
   2888           RC = &PPC::QBRCRegClass;
   2889           break;
   2890       }
   2891 
   2892       // Transform the arguments stored in physical registers into virtual ones.
   2893       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2894       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
   2895                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
   2896 
   2897       if (ValVT == MVT::i1)
   2898         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
   2899 
   2900       InVals.push_back(ArgValue);
   2901     } else {
   2902       // Argument stored in memory.
   2903       assert(VA.isMemLoc());
   2904 
   2905       unsigned ArgSize = VA.getLocVT().getStoreSize();
   2906       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   2907                                       isImmutable);
   2908 
   2909       // Create load nodes to retrieve arguments from the stack.
   2910       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2911       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2912                                    MachinePointerInfo(),
   2913                                    false, false, false, 0));
   2914     }
   2915   }
   2916 
   2917   // Assign locations to all of the incoming aggregate by value arguments.
   2918   // Aggregates passed by value are stored in the local variable space of the
   2919   // caller's stack frame, right above the parameter list area.
   2920   SmallVector<CCValAssign, 16> ByValArgLocs;
   2921   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2922                       ByValArgLocs, *DAG.getContext());
   2923 
   2924   // Reserve stack space for the allocations in CCInfo.
   2925   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   2926 
   2927   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   2928 
   2929   // Area that is at least reserved in the caller of this function.
   2930   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   2931   MinReservedArea = std::max(MinReservedArea, LinkageSize);
   2932 
   2933   // Set the size that is at least reserved in caller of this function.  Tail
   2934   // call optimized function's reserved stack space needs to be aligned so that
   2935   // taking the difference between two stack areas will result in an aligned
   2936   // stack.
   2937   MinReservedArea =
   2938       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   2939   FuncInfo->setMinReservedArea(MinReservedArea);
   2940 
   2941   SmallVector<SDValue, 8> MemOps;
   2942 
   2943   // If the function takes variable number of arguments, make a frame index for
   2944   // the start of the first vararg value... for expansion of llvm.va_start.
   2945   if (isVarArg) {
   2946     static const MCPhysReg GPArgRegs[] = {
   2947       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2948       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2949     };
   2950     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   2951 
   2952     static const MCPhysReg FPArgRegs[] = {
   2953       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2954       PPC::F8
   2955     };
   2956     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   2957 
   2958     if (Subtarget.useSoftFloat())
   2959        NumFPArgRegs = 0;
   2960 
   2961     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
   2962     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
   2963 
   2964     // Make room for NumGPArgRegs and NumFPArgRegs.
   2965     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   2966                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
   2967 
   2968     FuncInfo->setVarArgsStackOffset(
   2969       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2970                              CCInfo.getNextStackOffset(), true));
   2971 
   2972     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   2973     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2974 
   2975     // The fixed integer arguments of a variadic function are stored to the
   2976     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   2977     // the result of va_next.
   2978     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   2979       // Get an existing live-in vreg, or add a new one.
   2980       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   2981       if (!VReg)
   2982         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   2983 
   2984       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2985       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2986                                    MachinePointerInfo(), false, false, 0);
   2987       MemOps.push_back(Store);
   2988       // Increment the address by four for the next argument to store
   2989       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   2990       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2991     }
   2992 
   2993     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   2994     // is set.
   2995     // The double arguments are stored to the VarArgsFrameIndex
   2996     // on the stack.
   2997     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   2998       // Get an existing live-in vreg, or add a new one.
   2999       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   3000       if (!VReg)
   3001         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   3002 
   3003       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   3004       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3005                                    MachinePointerInfo(), false, false, 0);
   3006       MemOps.push_back(Store);
   3007       // Increment the address by eight for the next argument to store
   3008       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
   3009                                          PtrVT);
   3010       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3011     }
   3012   }
   3013 
   3014   if (!MemOps.empty())
   3015     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3016 
   3017   return Chain;
   3018 }
   3019 
   3020 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3021 // value to MVT::i64 and then truncate to the correct register size.
   3022 SDValue
   3023 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
   3024                                      SelectionDAG &DAG, SDValue ArgVal,
   3025                                      SDLoc dl) const {
   3026   if (Flags.isSExt())
   3027     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   3028                          DAG.getValueType(ObjectVT));
   3029   else if (Flags.isZExt())
   3030     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   3031                          DAG.getValueType(ObjectVT));
   3032 
   3033   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
   3034 }
   3035 
   3036 SDValue
   3037 PPCTargetLowering::LowerFormalArguments_64SVR4(
   3038                                       SDValue Chain,
   3039                                       CallingConv::ID CallConv, bool isVarArg,
   3040                                       const SmallVectorImpl<ISD::InputArg>
   3041                                         &Ins,
   3042                                       SDLoc dl, SelectionDAG &DAG,
   3043                                       SmallVectorImpl<SDValue> &InVals) const {
   3044   // TODO: add description of PPC stack frame format, or at least some docs.
   3045   //
   3046   bool isELFv2ABI = Subtarget.isELFv2ABI();
   3047   bool isLittleEndian = Subtarget.isLittleEndian();
   3048   MachineFunction &MF = DAG.getMachineFunction();
   3049   MachineFrameInfo *MFI = MF.getFrameInfo();
   3050   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3051 
   3052   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   3053          "fastcc not supported on varargs functions");
   3054 
   3055   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   3056   // Potential tail calls could cause overwriting of argument stack slots.
   3057   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3058                        (CallConv == CallingConv::Fast));
   3059   unsigned PtrByteSize = 8;
   3060   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3061 
   3062   static const MCPhysReg GPR[] = {
   3063     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3064     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3065   };
   3066   static const MCPhysReg VR[] = {
   3067     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3068     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3069   };
   3070   static const MCPhysReg VSRH[] = {
   3071     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   3072     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   3073   };
   3074 
   3075   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   3076   const unsigned Num_FPR_Regs = 13;
   3077   const unsigned Num_VR_Regs  = array_lengthof(VR);
   3078   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
   3079 
   3080   // Do a first pass over the arguments to determine whether the ABI
   3081   // guarantees that our caller has allocated the parameter save area
   3082   // on its stack frame.  In the ELFv1 ABI, this is always the case;
   3083   // in the ELFv2 ABI, it is true if this is a vararg function or if
   3084   // any parameter is located in a stack slot.
   3085 
   3086   bool HasParameterArea = !isELFv2ABI || isVarArg;
   3087   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
   3088   unsigned NumBytes = LinkageSize;
   3089   unsigned AvailableFPRs = Num_FPR_Regs;
   3090   unsigned AvailableVRs = Num_VR_Regs;
   3091   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   3092     if (Ins[i].Flags.isNest())
   3093       continue;
   3094 
   3095     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
   3096                                PtrByteSize, LinkageSize, ParamAreaSize,
   3097                                NumBytes, AvailableFPRs, AvailableVRs,
   3098                                Subtarget.hasQPX()))
   3099       HasParameterArea = true;
   3100   }
   3101 
   3102   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3103   // entry to a function on PPC, the arguments start after the linkage area,
   3104   // although the first ones are often in registers.
   3105 
   3106   unsigned ArgOffset = LinkageSize;
   3107   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3108   unsigned &QFPR_idx = FPR_idx;
   3109   SmallVector<SDValue, 8> MemOps;
   3110   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   3111   unsigned CurArgIdx = 0;
   3112   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3113     SDValue ArgVal;
   3114     bool needsLoad = false;
   3115     EVT ObjectVT = Ins[ArgNo].VT;
   3116     EVT OrigVT = Ins[ArgNo].ArgVT;
   3117     unsigned ObjSize = ObjectVT.getStoreSize();
   3118     unsigned ArgSize = ObjSize;
   3119     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3120     if (Ins[ArgNo].isOrigArg()) {
   3121       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3122       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3123     }
   3124     // We re-align the argument offset for each argument, except when using the
   3125     // fast calling convention, when we need to make sure we do that only when
   3126     // we'll actually use a stack slot.
   3127     unsigned CurArgOffset, Align;
   3128     auto ComputeArgOffset = [&]() {
   3129       /* Respect alignment of argument on the stack.  */
   3130       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
   3131       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   3132       CurArgOffset = ArgOffset;
   3133     };
   3134 
   3135     if (CallConv != CallingConv::Fast) {
   3136       ComputeArgOffset();
   3137 
   3138       /* Compute GPR index associated with argument offset.  */
   3139       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3140       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
   3141     }
   3142 
   3143     // FIXME the codegen can be much improved in some cases.
   3144     // We do not have to keep everything in memory.
   3145     if (Flags.isByVal()) {
   3146       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3147 
   3148       if (CallConv == CallingConv::Fast)
   3149         ComputeArgOffset();
   3150 
   3151       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3152       ObjSize = Flags.getByValSize();
   3153       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3154       // Empty aggregate parameters do not take up registers.  Examples:
   3155       //   struct { } a;
   3156       //   union  { } b;
   3157       //   int c[0];
   3158       // etc.  However, we have to provide a place-holder in InVals, so
   3159       // pretend we have an 8-byte item at the current address for that
   3160       // purpose.
   3161       if (!ObjSize) {
   3162         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   3163         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3164         InVals.push_back(FIN);
   3165         continue;
   3166       }
   3167 
   3168       // Create a stack object covering all stack doublewords occupied
   3169       // by the argument.  If the argument is (fully or partially) on
   3170       // the stack, or if the argument is fully in registers but the
   3171       // caller has allocated the parameter save anyway, we can refer
   3172       // directly to the caller's stack frame.  Otherwise, create a
   3173       // local copy in our own frame.
   3174       int FI;
   3175       if (HasParameterArea ||
   3176           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
   3177         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
   3178       else
   3179         FI = MFI->CreateStackObject(ArgSize, Align, false);
   3180       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3181 
   3182       // Handle aggregates smaller than 8 bytes.
   3183       if (ObjSize < PtrByteSize) {
   3184         // The value of the object is its address, which differs from the
   3185         // address of the enclosing doubleword on big-endian systems.
   3186         SDValue Arg = FIN;
   3187         if (!isLittleEndian) {
   3188           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
   3189           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
   3190         }
   3191         InVals.push_back(Arg);
   3192 
   3193         if (GPR_idx != Num_GPR_Regs) {
   3194           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3195           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3196           SDValue Store;
   3197 
   3198           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   3199             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   3200                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   3201             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
   3202                                       MachinePointerInfo(&*FuncArg), ObjType,
   3203                                       false, false, 0);
   3204           } else {
   3205             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   3206             // store the whole register as-is to the parameter save area
   3207             // slot.
   3208             Store =
   3209                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3210                              MachinePointerInfo(&*FuncArg), false, false, 0);
   3211           }
   3212 
   3213           MemOps.push_back(Store);
   3214         }
   3215         // Whether we copied from a register or not, advance the offset
   3216         // into the parameter save area by a full doubleword.
   3217         ArgOffset += PtrByteSize;
   3218         continue;
   3219       }
   3220 
   3221       // The value of the object is its address, which is the address of
   3222       // its first stack doubleword.
   3223       InVals.push_back(FIN);
   3224 
   3225       // Store whatever pieces of the object are in registers to memory.
   3226       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3227         if (GPR_idx == Num_GPR_Regs)
   3228           break;
   3229 
   3230         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3231         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3232         SDValue Addr = FIN;
   3233         if (j) {
   3234           SDValue Off = DAG.getConstant(j, dl, PtrVT);
   3235           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
   3236         }
   3237         SDValue Store =
   3238             DAG.getStore(Val.getValue(1), dl, Val, Addr,
   3239                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
   3240         MemOps.push_back(Store);
   3241         ++GPR_idx;
   3242       }
   3243       ArgOffset += ArgSize;
   3244       continue;
   3245     }
   3246 
   3247     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3248     default: llvm_unreachable("Unhandled argument type!");
   3249     case MVT::i1:
   3250     case MVT::i32:
   3251     case MVT::i64:
   3252       if (Flags.isNest()) {
   3253         // The 'nest' parameter, if any, is passed in R11.
   3254         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
   3255         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3256 
   3257         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3258           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3259 
   3260         break;
   3261       }
   3262 
   3263       // These can be scalar arguments or elements of an integer array type
   3264       // passed directly.  Clang may use those instead of "byval" aggregate
   3265       // types to avoid forcing arguments to memory unnecessarily.
   3266       if (GPR_idx != Num_GPR_Regs) {
   3267         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3268         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3269 
   3270         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3271           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3272           // value to MVT::i64 and then truncate to the correct register size.
   3273           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3274       } else {
   3275         if (CallConv == CallingConv::Fast)
   3276           ComputeArgOffset();
   3277 
   3278         needsLoad = true;
   3279         ArgSize = PtrByteSize;
   3280       }
   3281       if (CallConv != CallingConv::Fast || needsLoad)
   3282         ArgOffset += 8;
   3283       break;
   3284 
   3285     case MVT::f32:
   3286     case MVT::f64:
   3287       // These can be scalar arguments or elements of a float array type
   3288       // passed directly.  The latter are used to implement ELFv2 homogenous
   3289       // float aggregates.
   3290       if (FPR_idx != Num_FPR_Regs) {
   3291         unsigned VReg;
   3292 
   3293         if (ObjectVT == MVT::f32)
   3294           VReg = MF.addLiveIn(FPR[FPR_idx],
   3295                               Subtarget.hasP8Vector()
   3296                                   ? &PPC::VSSRCRegClass
   3297                                   : &PPC::F4RCRegClass);
   3298         else
   3299           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
   3300                                                 ? &PPC::VSFRCRegClass
   3301                                                 : &PPC::F8RCRegClass);
   3302 
   3303         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3304         ++FPR_idx;
   3305       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
   3306         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   3307         // once we support fp <-> gpr moves.
   3308 
   3309         // This can only ever happen in the presence of f32 array types,
   3310         // since otherwise we never run out of FPRs before running out
   3311         // of GPRs.
   3312         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3313         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3314 
   3315         if (ObjectVT == MVT::f32) {
   3316           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
   3317             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
   3318                                  DAG.getConstant(32, dl, MVT::i32));
   3319           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   3320         }
   3321 
   3322         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
   3323       } else {
   3324         if (CallConv == CallingConv::Fast)
   3325           ComputeArgOffset();
   3326 
   3327         needsLoad = true;
   3328       }
   3329 
   3330       // When passing an array of floats, the array occupies consecutive
   3331       // space in the argument area; only round up to the next doubleword
   3332       // at the end of the array.  Otherwise, each float takes 8 bytes.
   3333       if (CallConv != CallingConv::Fast || needsLoad) {
   3334         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
   3335         ArgOffset += ArgSize;
   3336         if (Flags.isInConsecutiveRegsLast())
   3337           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3338       }
   3339       break;
   3340     case MVT::v4f32:
   3341     case MVT::v4i32:
   3342     case MVT::v8i16:
   3343     case MVT::v16i8:
   3344     case MVT::v2f64:
   3345     case MVT::v2i64:
   3346     case MVT::v1i128:
   3347       if (!Subtarget.hasQPX()) {
   3348       // These can be scalar arguments or elements of a vector array type
   3349       // passed directly.  The latter are used to implement ELFv2 homogenous
   3350       // vector aggregates.
   3351       if (VR_idx != Num_VR_Regs) {
   3352         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
   3353                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
   3354                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3355         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3356         ++VR_idx;
   3357       } else {
   3358         if (CallConv == CallingConv::Fast)
   3359           ComputeArgOffset();
   3360 
   3361         needsLoad = true;
   3362       }
   3363       if (CallConv != CallingConv::Fast || needsLoad)
   3364         ArgOffset += 16;
   3365       break;
   3366       } // not QPX
   3367 
   3368       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
   3369              "Invalid QPX parameter type");
   3370       /* fall through */
   3371 
   3372     case MVT::v4f64:
   3373     case MVT::v4i1:
   3374       // QPX vectors are treated like their scalar floating-point subregisters
   3375       // (except that they're larger).
   3376       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
   3377       if (QFPR_idx != Num_QFPR_Regs) {
   3378         const TargetRegisterClass *RC;
   3379         switch (ObjectVT.getSimpleVT().SimpleTy) {
   3380         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
   3381         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
   3382         default:         RC = &PPC::QBRCRegClass; break;
   3383         }
   3384 
   3385         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
   3386         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3387         ++QFPR_idx;
   3388       } else {
   3389         if (CallConv == CallingConv::Fast)
   3390           ComputeArgOffset();
   3391         needsLoad = true;
   3392       }
   3393       if (CallConv != CallingConv::Fast || needsLoad)
   3394         ArgOffset += Sz;
   3395       break;
   3396     }
   3397 
   3398     // We need to load the argument to a virtual register if we determined
   3399     // above that we ran out of physical registers of the appropriate type.
   3400     if (needsLoad) {
   3401       if (ObjSize < ArgSize && !isLittleEndian)
   3402         CurArgOffset += ArgSize - ObjSize;
   3403       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
   3404       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3405       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3406                            false, false, false, 0);
   3407     }
   3408 
   3409     InVals.push_back(ArgVal);
   3410   }
   3411 
   3412   // Area that is at least reserved in the caller of this function.
   3413   unsigned MinReservedArea;
   3414   if (HasParameterArea)
   3415     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
   3416   else
   3417     MinReservedArea = LinkageSize;
   3418 
   3419   // Set the size that is at least reserved in caller of this function.  Tail
   3420   // call optimized functions' reserved stack space needs to be aligned so that
   3421   // taking the difference between two stack areas will result in an aligned
   3422   // stack.
   3423   MinReservedArea =
   3424       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3425   FuncInfo->setMinReservedArea(MinReservedArea);
   3426 
   3427   // If the function takes variable number of arguments, make a frame index for
   3428   // the start of the first vararg value... for expansion of llvm.va_start.
   3429   if (isVarArg) {
   3430     int Depth = ArgOffset;
   3431 
   3432     FuncInfo->setVarArgsFrameIndex(
   3433       MFI->CreateFixedObject(PtrByteSize, Depth, true));
   3434     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3435 
   3436     // If this function is vararg, store any remaining integer argument regs
   3437     // to their spots on the stack so that they may be loaded by deferencing the
   3438     // result of va_next.
   3439     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3440          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
   3441       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3442       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3443       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3444                                    MachinePointerInfo(), false, false, 0);
   3445       MemOps.push_back(Store);
   3446       // Increment the address by four for the next argument to store
   3447       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
   3448       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3449     }
   3450   }
   3451 
   3452   if (!MemOps.empty())
   3453     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3454 
   3455   return Chain;
   3456 }
   3457 
   3458 SDValue
   3459 PPCTargetLowering::LowerFormalArguments_Darwin(
   3460                                       SDValue Chain,
   3461                                       CallingConv::ID CallConv, bool isVarArg,
   3462                                       const SmallVectorImpl<ISD::InputArg>
   3463                                         &Ins,
   3464                                       SDLoc dl, SelectionDAG &DAG,
   3465                                       SmallVectorImpl<SDValue> &InVals) const {
   3466   // TODO: add description of PPC stack frame format, or at least some docs.
   3467   //
   3468   MachineFunction &MF = DAG.getMachineFunction();
   3469   MachineFrameInfo *MFI = MF.getFrameInfo();
   3470   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3471 
   3472   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   3473   bool isPPC64 = PtrVT == MVT::i64;
   3474   // Potential tail calls could cause overwriting of argument stack slots.
   3475   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3476                        (CallConv == CallingConv::Fast));
   3477   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   3478   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3479   unsigned ArgOffset = LinkageSize;
   3480   // Area that is at least reserved in caller of this function.
   3481   unsigned MinReservedArea = ArgOffset;
   3482 
   3483   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   3484     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3485     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3486   };
   3487   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   3488     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3489     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3490   };
   3491   static const MCPhysReg VR[] = {
   3492     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3493     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3494   };
   3495 
   3496   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   3497   const unsigned Num_FPR_Regs = 13;
   3498   const unsigned Num_VR_Regs  = array_lengthof( VR);
   3499 
   3500   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3501 
   3502   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   3503 
   3504   // In 32-bit non-varargs functions, the stack space for vectors is after the
   3505   // stack space for non-vectors.  We do not use this space unless we have
   3506   // too many vectors to fit in registers, something that only occurs in
   3507   // constructed examples:), but we have to walk the arglist to figure
   3508   // that out...for the pathological case, compute VecArgOffset as the
   3509   // start of the vector parameter area.  Computing VecArgOffset is the
   3510   // entire point of the following loop.
   3511   unsigned VecArgOffset = ArgOffset;
   3512   if (!isVarArg && !isPPC64) {
   3513     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   3514          ++ArgNo) {
   3515       EVT ObjectVT = Ins[ArgNo].VT;
   3516       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3517 
   3518       if (Flags.isByVal()) {
   3519         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   3520         unsigned ObjSize = Flags.getByValSize();
   3521         unsigned ArgSize =
   3522                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3523         VecArgOffset += ArgSize;
   3524         continue;
   3525       }
   3526 
   3527       switch(ObjectVT.getSimpleVT().SimpleTy) {
   3528       default: llvm_unreachable("Unhandled argument type!");
   3529       case MVT::i1:
   3530       case MVT::i32:
   3531       case MVT::f32:
   3532         VecArgOffset += 4;
   3533         break;
   3534       case MVT::i64:  // PPC64
   3535       case MVT::f64:
   3536         // FIXME: We are guaranteed to be !isPPC64 at this point.
   3537         // Does MVT::i64 apply?
   3538         VecArgOffset += 8;
   3539         break;
   3540       case MVT::v4f32:
   3541       case MVT::v4i32:
   3542       case MVT::v8i16:
   3543       case MVT::v16i8:
   3544         // Nothing to do, we're only looking at Nonvector args here.
   3545         break;
   3546       }
   3547     }
   3548   }
   3549   // We've found where the vector parameter area in memory is.  Skip the
   3550   // first 12 parameters; these don't use that memory.
   3551   VecArgOffset = ((VecArgOffset+15)/16)*16;
   3552   VecArgOffset += 12*16;
   3553 
   3554   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3555   // entry to a function on PPC, the arguments start after the linkage area,
   3556   // although the first ones are often in registers.
   3557 
   3558   SmallVector<SDValue, 8> MemOps;
   3559   unsigned nAltivecParamsAtEnd = 0;
   3560   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   3561   unsigned CurArgIdx = 0;
   3562   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3563     SDValue ArgVal;
   3564     bool needsLoad = false;
   3565     EVT ObjectVT = Ins[ArgNo].VT;
   3566     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   3567     unsigned ArgSize = ObjSize;
   3568     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3569     if (Ins[ArgNo].isOrigArg()) {
   3570       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3571       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3572     }
   3573     unsigned CurArgOffset = ArgOffset;
   3574 
   3575     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   3576     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   3577         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   3578       if (isVarArg || isPPC64) {
   3579         MinReservedArea = ((MinReservedArea+15)/16)*16;
   3580         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   3581                                                   Flags,
   3582                                                   PtrByteSize);
   3583       } else  nAltivecParamsAtEnd++;
   3584     } else
   3585       // Calculate min reserved area.
   3586       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   3587                                                 Flags,
   3588                                                 PtrByteSize);
   3589 
   3590     // FIXME the codegen can be much improved in some cases.
   3591     // We do not have to keep everything in memory.
   3592     if (Flags.isByVal()) {
   3593       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3594 
   3595       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3596       ObjSize = Flags.getByValSize();
   3597       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3598       // Objects of size 1 and 2 are right justified, everything else is
   3599       // left justified.  This means the memory address is adjusted forwards.
   3600       if (ObjSize==1 || ObjSize==2) {
   3601         CurArgOffset = CurArgOffset + (4 - ObjSize);
   3602       }
   3603       // The value of the object is its address.
   3604       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
   3605       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3606       InVals.push_back(FIN);
   3607       if (ObjSize==1 || ObjSize==2) {
   3608         if (GPR_idx != Num_GPR_Regs) {
   3609           unsigned VReg;
   3610           if (isPPC64)
   3611             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3612           else
   3613             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3614           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3615           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   3616           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   3617                                             MachinePointerInfo(&*FuncArg),
   3618                                             ObjType, false, false, 0);
   3619           MemOps.push_back(Store);
   3620           ++GPR_idx;
   3621         }
   3622 
   3623         ArgOffset += PtrByteSize;
   3624 
   3625         continue;
   3626       }
   3627       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3628         // Store whatever pieces of the object are in registers
   3629         // to memory.  ArgOffset will be the address of the beginning
   3630         // of the object.
   3631         if (GPR_idx != Num_GPR_Regs) {
   3632           unsigned VReg;
   3633           if (isPPC64)
   3634             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3635           else
   3636             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3637           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   3638           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3639           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3640           SDValue Store =
   3641               DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3642                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
   3643           MemOps.push_back(Store);
   3644           ++GPR_idx;
   3645           ArgOffset += PtrByteSize;
   3646         } else {
   3647           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   3648           break;
   3649         }
   3650       }
   3651       continue;
   3652     }
   3653 
   3654     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3655     default: llvm_unreachable("Unhandled argument type!");
   3656     case MVT::i1:
   3657     case MVT::i32:
   3658       if (!isPPC64) {
   3659         if (GPR_idx != Num_GPR_Regs) {
   3660           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3661           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   3662 
   3663           if (ObjectVT == MVT::i1)
   3664             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
   3665 
   3666           ++GPR_idx;
   3667         } else {
   3668           needsLoad = true;
   3669           ArgSize = PtrByteSize;
   3670         }
   3671         // All int arguments reserve stack space in the Darwin ABI.
   3672         ArgOffset += PtrByteSize;
   3673         break;
   3674       }
   3675       // FALLTHROUGH
   3676     case MVT::i64:  // PPC64
   3677       if (GPR_idx != Num_GPR_Regs) {
   3678         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3679         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3680 
   3681         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3682           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3683           // value to MVT::i64 and then truncate to the correct register size.
   3684           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3685 
   3686         ++GPR_idx;
   3687       } else {
   3688         needsLoad = true;
   3689         ArgSize = PtrByteSize;
   3690       }
   3691       // All int arguments reserve stack space in the Darwin ABI.
   3692       ArgOffset += 8;
   3693       break;
   3694 
   3695     case MVT::f32:
   3696     case MVT::f64:
   3697       // Every 4 bytes of argument space consumes one of the GPRs available for
   3698       // argument passing.
   3699       if (GPR_idx != Num_GPR_Regs) {
   3700         ++GPR_idx;
   3701         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   3702           ++GPR_idx;
   3703       }
   3704       if (FPR_idx != Num_FPR_Regs) {
   3705         unsigned VReg;
   3706 
   3707         if (ObjectVT == MVT::f32)
   3708           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   3709         else
   3710           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   3711 
   3712         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3713         ++FPR_idx;
   3714       } else {
   3715         needsLoad = true;
   3716       }
   3717 
   3718       // All FP arguments reserve stack space in the Darwin ABI.
   3719       ArgOffset += isPPC64 ? 8 : ObjSize;
   3720       break;
   3721     case MVT::v4f32:
   3722     case MVT::v4i32:
   3723     case MVT::v8i16:
   3724     case MVT::v16i8:
   3725       // Note that vector arguments in registers don't reserve stack space,
   3726       // except in varargs functions.
   3727       if (VR_idx != Num_VR_Regs) {
   3728         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3729         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3730         if (isVarArg) {
   3731           while ((ArgOffset % 16) != 0) {
   3732             ArgOffset += PtrByteSize;
   3733             if (GPR_idx != Num_GPR_Regs)
   3734               GPR_idx++;
   3735           }
   3736           ArgOffset += 16;
   3737           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   3738         }
   3739         ++VR_idx;
   3740       } else {
   3741         if (!isVarArg && !isPPC64) {
   3742           // Vectors go after all the nonvectors.
   3743           CurArgOffset = VecArgOffset;
   3744           VecArgOffset += 16;
   3745         } else {
   3746           // Vectors are aligned.
   3747           ArgOffset = ((ArgOffset+15)/16)*16;
   3748           CurArgOffset = ArgOffset;
   3749           ArgOffset += 16;
   3750         }
   3751         needsLoad = true;
   3752       }
   3753       break;
   3754     }
   3755 
   3756     // We need to load the argument to a virtual register if we determined above
   3757     // that we ran out of physical registers of the appropriate type.
   3758     if (needsLoad) {
   3759       int FI = MFI->CreateFixedObject(ObjSize,
   3760                                       CurArgOffset + (ArgSize - ObjSize),
   3761                                       isImmutable);
   3762       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3763       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3764                            false, false, false, 0);
   3765     }
   3766 
   3767     InVals.push_back(ArgVal);
   3768   }
   3769 
   3770   // Allow for Altivec parameters at the end, if needed.
   3771   if (nAltivecParamsAtEnd) {
   3772     MinReservedArea = ((MinReservedArea+15)/16)*16;
   3773     MinReservedArea += 16*nAltivecParamsAtEnd;
   3774   }
   3775 
   3776   // Area that is at least reserved in the caller of this function.
   3777   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
   3778 
   3779   // Set the size that is at least reserved in caller of this function.  Tail
   3780   // call optimized functions' reserved stack space needs to be aligned so that
   3781   // taking the difference between two stack areas will result in an aligned
   3782   // stack.
   3783   MinReservedArea =
   3784       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3785   FuncInfo->setMinReservedArea(MinReservedArea);
   3786 
   3787   // If the function takes variable number of arguments, make a frame index for
   3788   // the start of the first vararg value... for expansion of llvm.va_start.
   3789   if (isVarArg) {
   3790     int Depth = ArgOffset;
   3791 
   3792     FuncInfo->setVarArgsFrameIndex(
   3793       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   3794                              Depth, true));
   3795     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3796 
   3797     // If this function is vararg, store any remaining integer argument regs
   3798     // to their spots on the stack so that they may be loaded by deferencing the
   3799     // result of va_next.
   3800     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   3801       unsigned VReg;
   3802 
   3803       if (isPPC64)
   3804         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3805       else
   3806         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3807 
   3808       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3809       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3810                                    MachinePointerInfo(), false, false, 0);
   3811       MemOps.push_back(Store);
   3812       // Increment the address by four for the next argument to store
   3813       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   3814       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3815     }
   3816   }
   3817 
   3818   if (!MemOps.empty())
   3819     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3820 
   3821   return Chain;
   3822 }
   3823 
   3824 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   3825 /// adjusted to accommodate the arguments for the tailcall.
   3826 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   3827                                    unsigned ParamSize) {
   3828 
   3829   if (!isTailCall) return 0;
   3830 
   3831   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   3832   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   3833   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   3834   // Remember only if the new adjustement is bigger.
   3835   if (SPDiff < FI->getTailCallSPDelta())
   3836     FI->setTailCallSPDelta(SPDiff);
   3837 
   3838   return SPDiff;
   3839 }
   3840 
   3841 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   3842 /// for tail call optimization. Targets which want to do tail call
   3843 /// optimization should implement this function.
   3844 bool
   3845 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   3846                                                      CallingConv::ID CalleeCC,
   3847                                                      bool isVarArg,
   3848                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   3849                                                      SelectionDAG& DAG) const {
   3850   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   3851     return false;
   3852 
   3853   // Variable argument functions are not supported.
   3854   if (isVarArg)
   3855     return false;
   3856 
   3857   MachineFunction &MF = DAG.getMachineFunction();
   3858   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   3859   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   3860     // Functions containing by val parameters are not supported.
   3861     for (unsigned i = 0; i != Ins.size(); i++) {
   3862        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   3863        if (Flags.isByVal()) return false;
   3864     }
   3865 
   3866     // Non-PIC/GOT tail calls are supported.
   3867     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   3868       return true;
   3869 
   3870     // At the moment we can only do local tail calls (in same module, hidden
   3871     // or protected) if we are generating PIC.
   3872     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   3873       return G->getGlobal()->hasHiddenVisibility()
   3874           || G->getGlobal()->hasProtectedVisibility();
   3875   }
   3876 
   3877   return false;
   3878 }
   3879 
   3880 /// isCallCompatibleAddress - Return the immediate to use if the specified
   3881 /// 32-bit value is representable in the immediate field of a BxA instruction.
   3882 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   3883   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   3884   if (!C) return nullptr;
   3885 
   3886   int Addr = C->getZExtValue();
   3887   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   3888       SignExtend32<26>(Addr) != Addr)
   3889     return nullptr;  // Top 6 bits have to be sext of immediate.
   3890 
   3891   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
   3892                          DAG.getTargetLoweringInfo().getPointerTy(
   3893                              DAG.getDataLayout())).getNode();
   3894 }
   3895 
   3896 namespace {
   3897 
   3898 struct TailCallArgumentInfo {
   3899   SDValue Arg;
   3900   SDValue FrameIdxOp;
   3901   int       FrameIdx;
   3902 
   3903   TailCallArgumentInfo() : FrameIdx(0) {}
   3904 };
   3905 }
   3906 
   3907 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   3908 static void
   3909 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   3910                                            SDValue Chain,
   3911                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
   3912                    SmallVectorImpl<SDValue> &MemOpChains,
   3913                    SDLoc dl) {
   3914   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   3915     SDValue Arg = TailCallArgs[i].Arg;
   3916     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   3917     int FI = TailCallArgs[i].FrameIdx;
   3918     // Store relative to framepointer.
   3919     MemOpChains.push_back(DAG.getStore(
   3920         Chain, dl, Arg, FIN,
   3921         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
   3922         false, 0));
   3923   }
   3924 }
   3925 
   3926 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   3927 /// the appropriate stack slot for the tail call optimized function call.
   3928 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   3929                                                MachineFunction &MF,
   3930                                                SDValue Chain,
   3931                                                SDValue OldRetAddr,
   3932                                                SDValue OldFP,
   3933                                                int SPDiff,
   3934                                                bool isPPC64,
   3935                                                bool isDarwinABI,
   3936                                                SDLoc dl) {
   3937   if (SPDiff) {
   3938     // Calculate the new stack slot for the return address.
   3939     int SlotSize = isPPC64 ? 8 : 4;
   3940     const PPCFrameLowering *FL =
   3941         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
   3942     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
   3943     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   3944                                                           NewRetAddrLoc, true);
   3945     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3946     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   3947     Chain = DAG.getStore(
   3948         Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   3949         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr),
   3950         false, false, 0);
   3951 
   3952     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   3953     // slot as the FP is never overwritten.
   3954     if (isDarwinABI) {
   3955       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
   3956       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   3957                                                           true);
   3958       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   3959       Chain = DAG.getStore(
   3960           Chain, dl, OldFP, NewFramePtrIdx,
   3961           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
   3962           false, false, 0);
   3963     }
   3964   }
   3965   return Chain;
   3966 }
   3967 
   3968 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   3969 /// the position of the argument.
   3970 static void
   3971 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   3972                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   3973                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
   3974   int Offset = ArgOffset + SPDiff;
   3975   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   3976   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   3977   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3978   SDValue FIN = DAG.getFrameIndex(FI, VT);
   3979   TailCallArgumentInfo Info;
   3980   Info.Arg = Arg;
   3981   Info.FrameIdxOp = FIN;
   3982   Info.FrameIdx = FI;
   3983   TailCallArguments.push_back(Info);
   3984 }
   3985 
   3986 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   3987 /// stack slot. Returns the chain as result and the loaded frame pointers in
   3988 /// LROpOut/FPOpout. Used when tail calling.
   3989 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   3990                                                         int SPDiff,
   3991                                                         SDValue Chain,
   3992                                                         SDValue &LROpOut,
   3993                                                         SDValue &FPOpOut,
   3994                                                         bool isDarwinABI,
   3995                                                         SDLoc dl) const {
   3996   if (SPDiff) {
   3997     // Load the LR and FP stack slot for later adjusting.
   3998     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
   3999     LROpOut = getReturnAddrFrameIndex(DAG);
   4000     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   4001                           false, false, false, 0);
   4002     Chain = SDValue(LROpOut.getNode(), 1);
   4003 
   4004     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   4005     // slot as the FP is never overwritten.
   4006     if (isDarwinABI) {
   4007       FPOpOut = getFramePointerFrameIndex(DAG);
   4008       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   4009                             false, false, false, 0);
   4010       Chain = SDValue(FPOpOut.getNode(), 1);
   4011     }
   4012   }
   4013   return Chain;
   4014 }
   4015 
   4016 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   4017 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   4018 /// specified by the specific parameter attribute. The copy will be passed as
   4019 /// a byval function parameter.
   4020 /// Sometimes what we are copying is the end of a larger object, the part that
   4021 /// does not fit in registers.
   4022 static SDValue
   4023 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   4024                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   4025                           SDLoc dl) {
   4026   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
   4027   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   4028                        false, false, false, MachinePointerInfo(),
   4029                        MachinePointerInfo());
   4030 }
   4031 
   4032 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   4033 /// tail calls.
   4034 static void
   4035 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   4036                  SDValue Arg, SDValue PtrOff, int SPDiff,
   4037                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   4038                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
   4039                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
   4040                  SDLoc dl) {
   4041   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4042   if (!isTailCall) {
   4043     if (isVector) {
   4044       SDValue StackPtr;
   4045       if (isPPC64)
   4046         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4047       else
   4048         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4049       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4050                            DAG.getConstant(ArgOffset, dl, PtrVT));
   4051     }
   4052     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   4053                                        MachinePointerInfo(), false, false, 0));
   4054   // Calculate and remember argument location.
   4055   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   4056                                   TailCallArguments);
   4057 }
   4058 
   4059 static
   4060 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   4061                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   4062                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   4063                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
   4064   MachineFunction &MF = DAG.getMachineFunction();
   4065 
   4066   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   4067   // might overwrite each other in case of tail call optimization.
   4068   SmallVector<SDValue, 8> MemOpChains2;
   4069   // Do not flag preceding copytoreg stuff together with the following stuff.
   4070   InFlag = SDValue();
   4071   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   4072                                     MemOpChains2, dl);
   4073   if (!MemOpChains2.empty())
   4074     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
   4075 
   4076   // Store the return address to the appropriate stack slot.
   4077   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   4078                                         isPPC64, isDarwinABI, dl);
   4079 
   4080   // Emit callseq_end just before tailcall node.
   4081   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4082                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
   4083   InFlag = Chain.getValue(1);
   4084 }
   4085 
   4086 // Is this global address that of a function that can be called by name? (as
   4087 // opposed to something that must hold a descriptor for an indirect call).
   4088 static bool isFunctionGlobalAddress(SDValue Callee) {
   4089   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   4090     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
   4091         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
   4092       return false;
   4093 
   4094     return G->getGlobal()->getType()->getElementType()->isFunctionTy();
   4095   }
   4096 
   4097   return false;
   4098 }
   4099 
   4100 static
   4101 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   4102                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
   4103                      bool isTailCall, bool IsPatchPoint, bool hasNest,
   4104                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
   4105                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
   4106                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
   4107 
   4108   bool isPPC64 = Subtarget.isPPC64();
   4109   bool isSVR4ABI = Subtarget.isSVR4ABI();
   4110   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4111 
   4112   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4113   NodeTys.push_back(MVT::Other);   // Returns a chain
   4114   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   4115 
   4116   unsigned CallOpc = PPCISD::CALL;
   4117 
   4118   bool needIndirectCall = true;
   4119   if (!isSVR4ABI || !isPPC64)
   4120     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   4121       // If this is an absolute destination address, use the munged value.
   4122       Callee = SDValue(Dest, 0);
   4123       needIndirectCall = false;
   4124     }
   4125 
   4126   if (isFunctionGlobalAddress(Callee)) {
   4127     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
   4128     // A call to a TLS address is actually an indirect call to a
   4129     // thread-specific pointer.
   4130     unsigned OpFlags = 0;
   4131     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
   4132          (Subtarget.getTargetTriple().isMacOSX() &&
   4133           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   4134          !G->getGlobal()->isStrongDefinitionForLinker()) ||
   4135         (Subtarget.isTargetELF() && !isPPC64 &&
   4136          !G->getGlobal()->hasLocalLinkage() &&
   4137          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
   4138       // PC-relative references to external symbols should go through $stub,
   4139       // unless we're building with the leopard linker or later, which
   4140       // automatically synthesizes these stubs.
   4141       OpFlags = PPCII::MO_PLT_OR_STUB;
   4142     }
   4143 
   4144     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   4145     // every direct call is) turn it into a TargetGlobalAddress /
   4146     // TargetExternalSymbol node so that legalize doesn't hack it.
   4147     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   4148                                         Callee.getValueType(), 0, OpFlags);
   4149     needIndirectCall = false;
   4150   }
   4151 
   4152   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   4153     unsigned char OpFlags = 0;
   4154 
   4155     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
   4156          (Subtarget.getTargetTriple().isMacOSX() &&
   4157           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
   4158         (Subtarget.isTargetELF() && !isPPC64 &&
   4159          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
   4160       // PC-relative references to external symbols should go through $stub,
   4161       // unless we're building with the leopard linker or later, which
   4162       // automatically synthesizes these stubs.
   4163       OpFlags = PPCII::MO_PLT_OR_STUB;
   4164     }
   4165 
   4166     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   4167                                          OpFlags);
   4168     needIndirectCall = false;
   4169   }
   4170 
   4171   if (IsPatchPoint) {
   4172     // We'll form an invalid direct call when lowering a patchpoint; the full
   4173     // sequence for an indirect call is complicated, and many of the
   4174     // instructions introduced might have side effects (and, thus, can't be
   4175     // removed later). The call itself will be removed as soon as the
   4176     // argument/return lowering is complete, so the fact that it has the wrong
   4177     // kind of operands should not really matter.
   4178     needIndirectCall = false;
   4179   }
   4180 
   4181   if (needIndirectCall) {
   4182     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   4183     // to do the call, we can't use PPCISD::CALL.
   4184     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   4185 
   4186     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
   4187       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   4188       // entry point, but to the function descriptor (the function entry point
   4189       // address is part of the function descriptor though).
   4190       // The function descriptor is a three doubleword structure with the
   4191       // following fields: function entry point, TOC base address and
   4192       // environment pointer.
   4193       // Thus for a call through a function pointer, the following actions need
   4194       // to be performed:
   4195       //   1. Save the TOC of the caller in the TOC save area of its stack
   4196       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   4197       //   2. Load the address of the function entry point from the function
   4198       //      descriptor.
   4199       //   3. Load the TOC of the callee from the function descriptor into r2.
   4200       //   4. Load the environment pointer from the function descriptor into
   4201       //      r11.
   4202       //   5. Branch to the function entry point address.
   4203       //   6. On return of the callee, the TOC of the caller needs to be
   4204       //      restored (this is done in FinishCall()).
   4205       //
   4206       // The loads are scheduled at the beginning of the call sequence, and the
   4207       // register copies are flagged together to ensure that no other
   4208       // operations can be scheduled in between. E.g. without flagging the
   4209       // copies together, a TOC access in the caller could be scheduled between
   4210       // the assignment of the callee TOC and the branch to the callee, which
   4211       // results in the TOC access going through the TOC of the callee instead
   4212       // of going through the TOC of the caller, which leads to incorrect code.
   4213 
   4214       // Load the address of the function entry point from the function
   4215       // descriptor.
   4216       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
   4217       if (LDChain.getValueType() == MVT::Glue)
   4218         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
   4219 
   4220       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
   4221 
   4222       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
   4223       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
   4224                                         false, false, LoadsInv, 8);
   4225 
   4226       // Load environment pointer into r11.
   4227       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
   4228       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   4229       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
   4230                                        MPI.getWithOffset(16), false, false,
   4231                                        LoadsInv, 8);
   4232 
   4233       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
   4234       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
   4235       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
   4236                                    MPI.getWithOffset(8), false, false,
   4237                                    LoadsInv, 8);
   4238 
   4239       setUsesTOCBasePtr(DAG);
   4240       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
   4241                                         InFlag);
   4242       Chain = TOCVal.getValue(0);
   4243       InFlag = TOCVal.getValue(1);
   4244 
   4245       // If the function call has an explicit 'nest' parameter, it takes the
   4246       // place of the environment pointer.
   4247       if (!hasNest) {
   4248         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   4249                                           InFlag);
   4250 
   4251         Chain = EnvVal.getValue(0);
   4252         InFlag = EnvVal.getValue(1);
   4253       }
   4254 
   4255       MTCTROps[0] = Chain;
   4256       MTCTROps[1] = LoadFuncPtr;
   4257       MTCTROps[2] = InFlag;
   4258     }
   4259 
   4260     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
   4261                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
   4262     InFlag = Chain.getValue(1);
   4263 
   4264     NodeTys.clear();
   4265     NodeTys.push_back(MVT::Other);
   4266     NodeTys.push_back(MVT::Glue);
   4267     Ops.push_back(Chain);
   4268     CallOpc = PPCISD::BCTRL;
   4269     Callee.setNode(nullptr);
   4270     // Add use of X11 (holding environment pointer)
   4271     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
   4272       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
   4273     // Add CTR register as callee so a bctr can be emitted later.
   4274     if (isTailCall)
   4275       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   4276   }
   4277 
   4278   // If this is a direct call, pass the chain and the callee.
   4279   if (Callee.getNode()) {
   4280     Ops.push_back(Chain);
   4281     Ops.push_back(Callee);
   4282   }
   4283   // If this is a tail call add stack pointer delta.
   4284   if (isTailCall)
   4285     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
   4286 
   4287   // Add argument registers to the end of the list so that they are known live
   4288   // into the call.
   4289   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   4290     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   4291                                   RegsToPass[i].second.getValueType()));
   4292 
   4293   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
   4294   // into the call.
   4295   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
   4296     setUsesTOCBasePtr(DAG);
   4297     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
   4298   }
   4299 
   4300   return CallOpc;
   4301 }
   4302 
   4303 static
   4304 bool isLocalCall(const SDValue &Callee)
   4305 {
   4306   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4307     return G->getGlobal()->isStrongDefinitionForLinker();
   4308   return false;
   4309 }
   4310 
   4311 SDValue
   4312 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   4313                                    CallingConv::ID CallConv, bool isVarArg,
   4314                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   4315                                    SDLoc dl, SelectionDAG &DAG,
   4316                                    SmallVectorImpl<SDValue> &InVals) const {
   4317 
   4318   SmallVector<CCValAssign, 16> RVLocs;
   4319   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   4320                     *DAG.getContext());
   4321   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   4322 
   4323   // Copy all of the result registers out of their specified physreg.
   4324   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   4325     CCValAssign &VA = RVLocs[i];
   4326     assert(VA.isRegLoc() && "Can only return in registers!");
   4327 
   4328     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   4329                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   4330     Chain = Val.getValue(1);
   4331     InFlag = Val.getValue(2);
   4332 
   4333     switch (VA.getLocInfo()) {
   4334     default: llvm_unreachable("Unknown loc info!");
   4335     case CCValAssign::Full: break;
   4336     case CCValAssign::AExt:
   4337       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4338       break;
   4339     case CCValAssign::ZExt:
   4340       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   4341                         DAG.getValueType(VA.getValVT()));
   4342       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4343       break;
   4344     case CCValAssign::SExt:
   4345       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   4346                         DAG.getValueType(VA.getValVT()));
   4347       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4348       break;
   4349     }
   4350 
   4351     InVals.push_back(Val);
   4352   }
   4353 
   4354   return Chain;
   4355 }
   4356 
   4357 SDValue
   4358 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
   4359                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
   4360                               bool hasNest, SelectionDAG &DAG,
   4361                               SmallVector<std::pair<unsigned, SDValue>, 8>
   4362                                 &RegsToPass,
   4363                               SDValue InFlag, SDValue Chain,
   4364                               SDValue CallSeqStart, SDValue &Callee,
   4365                               int SPDiff, unsigned NumBytes,
   4366                               const SmallVectorImpl<ISD::InputArg> &Ins,
   4367                               SmallVectorImpl<SDValue> &InVals,
   4368                               ImmutableCallSite *CS) const {
   4369 
   4370   std::vector<EVT> NodeTys;
   4371   SmallVector<SDValue, 8> Ops;
   4372   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
   4373                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
   4374                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
   4375 
   4376   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   4377   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
   4378     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   4379 
   4380   // When performing tail call optimization the callee pops its arguments off
   4381   // the stack. Account for this here so these bytes can be pushed back on in
   4382   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   4383   int BytesCalleePops =
   4384     (CallConv == CallingConv::Fast &&
   4385      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   4386 
   4387   // Add a register mask operand representing the call-preserved registers.
   4388   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   4389   const uint32_t *Mask =
   4390       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
   4391   assert(Mask && "Missing call preserved mask for calling convention");
   4392   Ops.push_back(DAG.getRegisterMask(Mask));
   4393 
   4394   if (InFlag.getNode())
   4395     Ops.push_back(InFlag);
   4396 
   4397   // Emit tail call.
   4398   if (isTailCall) {
   4399     assert(((Callee.getOpcode() == ISD::Register &&
   4400              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   4401             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   4402             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   4403             isa<ConstantSDNode>(Callee)) &&
   4404     "Expecting an global address, external symbol, absolute value or register");
   4405 
   4406     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
   4407     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
   4408   }
   4409 
   4410   // Add a NOP immediately after the branch instruction when using the 64-bit
   4411   // SVR4 ABI. At link time, if caller and callee are in a different module and
   4412   // thus have a different TOC, the call will be replaced with a call to a stub
   4413   // function which saves the current TOC, loads the TOC of the callee and
   4414   // branches to the callee. The NOP will be replaced with a load instruction
   4415   // which restores the TOC of the caller from the TOC save slot of the current
   4416   // stack frame. If caller and callee belong to the same module (and have the
   4417   // same TOC), the NOP will remain unchanged.
   4418 
   4419   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
   4420       !IsPatchPoint) {
   4421     if (CallOpc == PPCISD::BCTRL) {
   4422       // This is a call through a function pointer.
   4423       // Restore the caller TOC from the save area into R2.
   4424       // See PrepareCall() for more information about calls through function
   4425       // pointers in the 64-bit SVR4 ABI.
   4426       // We are using a target-specific load with r2 hard coded, because the
   4427       // result of a target-independent load would never go directly into r2,
   4428       // since r2 is a reserved register (which prevents the register allocator
   4429       // from allocating it), resulting in an additional register being
   4430       // allocated and an unnecessary move instruction being generated.
   4431       CallOpc = PPCISD::BCTRL_LOAD_TOC;
   4432 
   4433       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4434       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
   4435       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   4436       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   4437       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
   4438 
   4439       // The address needs to go after the chain input but before the flag (or
   4440       // any other variadic arguments).
   4441       Ops.insert(std::next(Ops.begin()), AddTOC);
   4442     } else if ((CallOpc == PPCISD::CALL) &&
   4443                (!isLocalCall(Callee) ||
   4444                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
   4445       // Otherwise insert NOP for non-local calls.
   4446       CallOpc = PPCISD::CALL_NOP;
   4447   }
   4448 
   4449   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   4450   InFlag = Chain.getValue(1);
   4451 
   4452   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4453                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
   4454                              InFlag, dl);
   4455   if (!Ins.empty())
   4456     InFlag = Chain.getValue(1);
   4457 
   4458   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   4459                          Ins, dl, DAG, InVals);
   4460 }
   4461 
   4462 SDValue
   4463 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   4464                              SmallVectorImpl<SDValue> &InVals) const {
   4465   SelectionDAG &DAG                     = CLI.DAG;
   4466   SDLoc &dl                             = CLI.DL;
   4467   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   4468   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   4469   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   4470   SDValue Chain                         = CLI.Chain;
   4471   SDValue Callee                        = CLI.Callee;
   4472   bool &isTailCall                      = CLI.IsTailCall;
   4473   CallingConv::ID CallConv              = CLI.CallConv;
   4474   bool isVarArg                         = CLI.IsVarArg;
   4475   bool IsPatchPoint                     = CLI.IsPatchPoint;
   4476   ImmutableCallSite *CS                 = CLI.CS;
   4477 
   4478   if (isTailCall)
   4479     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   4480                                                    Ins, DAG);
   4481 
   4482   if (!isTailCall && CS && CS->isMustTailCall())
   4483     report_fatal_error("failed to perform tail call elimination on a call "
   4484                        "site marked musttail");
   4485 
   4486   if (Subtarget.isSVR4ABI()) {
   4487     if (Subtarget.isPPC64())
   4488       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   4489                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4490                               dl, DAG, InVals, CS);
   4491     else
   4492       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   4493                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4494                               dl, DAG, InVals, CS);
   4495   }
   4496 
   4497   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   4498                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4499                           dl, DAG, InVals, CS);
   4500 }
   4501 
   4502 SDValue
   4503 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
   4504                                     CallingConv::ID CallConv, bool isVarArg,
   4505                                     bool isTailCall, bool IsPatchPoint,
   4506                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4507                                     const SmallVectorImpl<SDValue> &OutVals,
   4508                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4509                                     SDLoc dl, SelectionDAG &DAG,
   4510                                     SmallVectorImpl<SDValue> &InVals,
   4511                                     ImmutableCallSite *CS) const {
   4512   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   4513   // of the 32-bit SVR4 ABI stack frame layout.
   4514 
   4515   assert((CallConv == CallingConv::C ||
   4516           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   4517 
   4518   unsigned PtrByteSize = 4;
   4519 
   4520   MachineFunction &MF = DAG.getMachineFunction();
   4521 
   4522   // Mark this function as potentially containing a function that contains a
   4523   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4524   // and restoring the callers stack pointer in this functions epilog. This is
   4525   // done because by tail calling the called function might overwrite the value
   4526   // in this function's (MF) stack pointer stack slot 0(SP).
   4527   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4528       CallConv == CallingConv::Fast)
   4529     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4530 
   4531   // Count how many bytes are to be pushed on the stack, including the linkage
   4532   // area, parameter list area and the part of the local variable space which
   4533   // contains copies of aggregates which are passed by value.
   4534 
   4535   // Assign locations to all of the outgoing arguments.
   4536   SmallVector<CCValAssign, 16> ArgLocs;
   4537   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   4538                  *DAG.getContext());
   4539 
   4540   // Reserve space for the linkage area on the stack.
   4541   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
   4542                        PtrByteSize);
   4543 
   4544   if (isVarArg) {
   4545     // Handle fixed and variable vector arguments differently.
   4546     // Fixed vector arguments go into registers as long as registers are
   4547     // available. Variable vector arguments always go into memory.
   4548     unsigned NumArgs = Outs.size();
   4549 
   4550     for (unsigned i = 0; i != NumArgs; ++i) {
   4551       MVT ArgVT = Outs[i].VT;
   4552       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   4553       bool Result;
   4554 
   4555       if (Outs[i].IsFixed) {
   4556         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   4557                                CCInfo);
   4558       } else {
   4559         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   4560                                       ArgFlags, CCInfo);
   4561       }
   4562 
   4563       if (Result) {
   4564 #ifndef NDEBUG
   4565         errs() << "Call operand #" << i << " has unhandled type "
   4566              << EVT(ArgVT).getEVTString() << "\n";
   4567 #endif
   4568         llvm_unreachable(nullptr);
   4569       }
   4570     }
   4571   } else {
   4572     // All arguments are treated the same.
   4573     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   4574   }
   4575 
   4576   // Assign locations to all of the outgoing aggregate by value arguments.
   4577   SmallVector<CCValAssign, 16> ByValArgLocs;
   4578   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   4579                       ByValArgLocs, *DAG.getContext());
   4580 
   4581   // Reserve stack space for the allocations in CCInfo.
   4582   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   4583 
   4584   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   4585 
   4586   // Size of the linkage area, parameter list area and the part of the local
   4587   // space variable where copies of aggregates which are passed by value are
   4588   // stored.
   4589   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   4590 
   4591   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4592   // call optimization.
   4593   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4594 
   4595   // Adjust the stack pointer for the new arguments...
   4596   // These operations are automatically eliminated by the prolog/epilog pass
   4597   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4598                                dl);
   4599   SDValue CallSeqStart = Chain;
   4600 
   4601   // Load the return address and frame pointer so it can be moved somewhere else
   4602   // later.
   4603   SDValue LROp, FPOp;
   4604   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   4605                                        dl);
   4606 
   4607   // Set up a copy of the stack pointer for use loading and storing any
   4608   // arguments that may not fit in the registers available for argument
   4609   // passing.
   4610   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4611 
   4612   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4613   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4614   SmallVector<SDValue, 8> MemOpChains;
   4615 
   4616   bool seenFloatArg = false;
   4617   // Walk the register/memloc assignments, inserting copies/loads.
   4618   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   4619        i != e;
   4620        ++i) {
   4621     CCValAssign &VA = ArgLocs[i];
   4622     SDValue Arg = OutVals[i];
   4623     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4624 
   4625     if (Flags.isByVal()) {
   4626       // Argument is an aggregate which is passed by value, thus we need to
   4627       // create a copy of it in the local variable space of the current stack
   4628       // frame (which is the stack frame of the caller) and pass the address of
   4629       // this copy to the callee.
   4630       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   4631       CCValAssign &ByValVA = ByValArgLocs[j++];
   4632       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   4633 
   4634       // Memory reserved in the local variable space of the callers stack frame.
   4635       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   4636 
   4637       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   4638       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   4639                            StackPtr, PtrOff);
   4640 
   4641       // Create a copy of the argument in the local area of the current
   4642       // stack frame.
   4643       SDValue MemcpyCall =
   4644         CreateCopyOfByValArgument(Arg, PtrOff,
   4645                                   CallSeqStart.getNode()->getOperand(0),
   4646                                   Flags, DAG, dl);
   4647 
   4648       // This must go outside the CALLSEQ_START..END.
   4649       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4650                            CallSeqStart.getNode()->getOperand(1),
   4651                            SDLoc(MemcpyCall));
   4652       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4653                              NewCallSeqStart.getNode());
   4654       Chain = CallSeqStart = NewCallSeqStart;
   4655 
   4656       // Pass the address of the aggregate copy on the stack either in a
   4657       // physical register or in the parameter list area of the current stack
   4658       // frame to the callee.
   4659       Arg = PtrOff;
   4660     }
   4661 
   4662     if (VA.isRegLoc()) {
   4663       if (Arg.getValueType() == MVT::i1)
   4664         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
   4665 
   4666       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   4667       // Put argument in a physical register.
   4668       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   4669     } else {
   4670       // Put argument in the parameter list area of the current stack frame.
   4671       assert(VA.isMemLoc());
   4672       unsigned LocMemOffset = VA.getLocMemOffset();
   4673 
   4674       if (!isTailCall) {
   4675         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   4676         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   4677                              StackPtr, PtrOff);
   4678 
   4679         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   4680                                            MachinePointerInfo(),
   4681                                            false, false, 0));
   4682       } else {
   4683         // Calculate and remember argument location.
   4684         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   4685                                  TailCallArguments);
   4686       }
   4687     }
   4688   }
   4689 
   4690   if (!MemOpChains.empty())
   4691     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   4692 
   4693   // Build a sequence of copy-to-reg nodes chained together with token chain
   4694   // and flag operands which copy the outgoing args into the appropriate regs.
   4695   SDValue InFlag;
   4696   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4697     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4698                              RegsToPass[i].second, InFlag);
   4699     InFlag = Chain.getValue(1);
   4700   }
   4701 
   4702   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   4703   // registers.
   4704   if (isVarArg) {
   4705     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   4706     SDValue Ops[] = { Chain, InFlag };
   4707 
   4708     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   4709                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
   4710 
   4711     InFlag = Chain.getValue(1);
   4712   }
   4713 
   4714   if (isTailCall)
   4715     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   4716                     false, TailCallArguments);
   4717 
   4718   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
   4719                     /* unused except on PPC64 ELFv1 */ false, DAG,
   4720                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   4721                     NumBytes, Ins, InVals, CS);
   4722 }
   4723 
   4724 // Copy an argument into memory, being careful to do this outside the
   4725 // call sequence for the call to which the argument belongs.
   4726 SDValue
   4727 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
   4728                                               SDValue CallSeqStart,
   4729                                               ISD::ArgFlagsTy Flags,
   4730                                               SelectionDAG &DAG,
   4731                                               SDLoc dl) const {
   4732   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   4733                         CallSeqStart.getNode()->getOperand(0),
   4734                         Flags, DAG, dl);
   4735   // The MEMCPY must go outside the CALLSEQ_START..END.
   4736   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4737                              CallSeqStart.getNode()->getOperand(1),
   4738                              SDLoc(MemcpyCall));
   4739   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4740                          NewCallSeqStart.getNode());
   4741   return NewCallSeqStart;
   4742 }
   4743 
   4744 SDValue
   4745 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
   4746                                     CallingConv::ID CallConv, bool isVarArg,
   4747                                     bool isTailCall, bool IsPatchPoint,
   4748                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4749                                     const SmallVectorImpl<SDValue> &OutVals,
   4750                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4751                                     SDLoc dl, SelectionDAG &DAG,
   4752                                     SmallVectorImpl<SDValue> &InVals,
   4753                                     ImmutableCallSite *CS) const {
   4754 
   4755   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4756   bool isLittleEndian = Subtarget.isLittleEndian();
   4757   unsigned NumOps = Outs.size();
   4758   bool hasNest = false;
   4759 
   4760   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4761   unsigned PtrByteSize = 8;
   4762 
   4763   MachineFunction &MF = DAG.getMachineFunction();
   4764 
   4765   // Mark this function as potentially containing a function that contains a
   4766   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4767   // and restoring the callers stack pointer in this functions epilog. This is
   4768   // done because by tail calling the called function might overwrite the value
   4769   // in this function's (MF) stack pointer stack slot 0(SP).
   4770   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4771       CallConv == CallingConv::Fast)
   4772     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4773 
   4774   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   4775          "fastcc not supported on varargs functions");
   4776 
   4777   // Count how many bytes are to be pushed on the stack, including the linkage
   4778   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
   4779   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
   4780   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
   4781   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   4782   unsigned NumBytes = LinkageSize;
   4783   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   4784   unsigned &QFPR_idx = FPR_idx;
   4785 
   4786   static const MCPhysReg GPR[] = {
   4787     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4788     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4789   };
   4790   static const MCPhysReg VR[] = {
   4791     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4792     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4793   };
   4794   static const MCPhysReg VSRH[] = {
   4795     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   4796     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   4797   };
   4798 
   4799   const unsigned NumGPRs = array_lengthof(GPR);
   4800   const unsigned NumFPRs = 13;
   4801   const unsigned NumVRs  = array_lengthof(VR);
   4802   const unsigned NumQFPRs = NumFPRs;
   4803 
   4804   // When using the fast calling convention, we don't provide backing for
   4805   // arguments that will be in registers.
   4806   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
   4807 
   4808   // Add up all the space actually used.
   4809   for (unsigned i = 0; i != NumOps; ++i) {
   4810     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4811     EVT ArgVT = Outs[i].VT;
   4812     EVT OrigVT = Outs[i].ArgVT;
   4813 
   4814     if (Flags.isNest())
   4815       continue;
   4816 
   4817     if (CallConv == CallingConv::Fast) {
   4818       if (Flags.isByVal())
   4819         NumGPRsUsed += (Flags.getByValSize()+7)/8;
   4820       else
   4821         switch (ArgVT.getSimpleVT().SimpleTy) {
   4822         default: llvm_unreachable("Unexpected ValueType for argument!");
   4823         case MVT::i1:
   4824         case MVT::i32:
   4825         case MVT::i64:
   4826           if (++NumGPRsUsed <= NumGPRs)
   4827             continue;
   4828           break;
   4829         case MVT::v4i32:
   4830         case MVT::v8i16:
   4831         case MVT::v16i8:
   4832         case MVT::v2f64:
   4833         case MVT::v2i64:
   4834         case MVT::v1i128:
   4835           if (++NumVRsUsed <= NumVRs)
   4836             continue;
   4837           break;
   4838         case MVT::v4f32:
   4839           // When using QPX, this is handled like a FP register, otherwise, it
   4840           // is an Altivec register.
   4841           if (Subtarget.hasQPX()) {
   4842             if (++NumFPRsUsed <= NumFPRs)
   4843               continue;
   4844           } else {
   4845             if (++NumVRsUsed <= NumVRs)
   4846               continue;
   4847           }
   4848           break;
   4849         case MVT::f32:
   4850         case MVT::f64:
   4851         case MVT::v4f64: // QPX
   4852         case MVT::v4i1:  // QPX
   4853           if (++NumFPRsUsed <= NumFPRs)
   4854             continue;
   4855           break;
   4856         }
   4857     }
   4858 
   4859     /* Respect alignment of argument on the stack.  */
   4860     unsigned Align =
   4861       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   4862     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
   4863 
   4864     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   4865     if (Flags.isInConsecutiveRegsLast())
   4866       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   4867   }
   4868 
   4869   unsigned NumBytesActuallyUsed = NumBytes;
   4870 
   4871   // The prolog code of the callee may store up to 8 GPR argument registers to
   4872   // the stack, allowing va_start to index over them in memory if its varargs.
   4873   // Because we cannot tell if this is needed on the caller side, we have to
   4874   // conservatively assume that it is needed.  As such, make sure we have at
   4875   // least enough stack space for the caller to store the 8 GPRs.
   4876   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
   4877   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   4878 
   4879   // Tail call needs the stack to be aligned.
   4880   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4881       CallConv == CallingConv::Fast)
   4882     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   4883 
   4884   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4885   // call optimization.
   4886   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4887 
   4888   // To protect arguments on the stack from being clobbered in a tail call,
   4889   // force all the loads to happen before doing any other lowering.
   4890   if (isTailCall)
   4891     Chain = DAG.getStackArgumentTokenFactor(Chain);
   4892 
   4893   // Adjust the stack pointer for the new arguments...
   4894   // These operations are automatically eliminated by the prolog/epilog pass
   4895   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4896                                dl);
   4897   SDValue CallSeqStart = Chain;
   4898 
   4899   // Load the return address and frame pointer so it can be move somewhere else
   4900   // later.
   4901   SDValue LROp, FPOp;
   4902   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   4903                                        dl);
   4904 
   4905   // Set up a copy of the stack pointer for use loading and storing any
   4906   // arguments that may not fit in the registers available for argument
   4907   // passing.
   4908   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4909 
   4910   // Figure out which arguments are going to go in registers, and which in
   4911   // memory.  Also, if this is a vararg function, floating point operations
   4912   // must be stored to our stack, and loaded into integer regs as well, if
   4913   // any integer regs are available for argument passing.
   4914   unsigned ArgOffset = LinkageSize;
   4915 
   4916   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4917   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4918 
   4919   SmallVector<SDValue, 8> MemOpChains;
   4920   for (unsigned i = 0; i != NumOps; ++i) {
   4921     SDValue Arg = OutVals[i];
   4922     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4923     EVT ArgVT = Outs[i].VT;
   4924     EVT OrigVT = Outs[i].ArgVT;
   4925 
   4926     // PtrOff will be used to store the current argument to the stack if a
   4927     // register cannot be found for it.
   4928     SDValue PtrOff;
   4929 
   4930     // We re-align the argument offset for each argument, except when using the
   4931     // fast calling convention, when we need to make sure we do that only when
   4932     // we'll actually use a stack slot.
   4933     auto ComputePtrOff = [&]() {
   4934       /* Respect alignment of argument on the stack.  */
   4935       unsigned Align =
   4936         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   4937       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   4938 
   4939       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   4940 
   4941       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4942     };
   4943 
   4944     if (CallConv != CallingConv::Fast) {
   4945       ComputePtrOff();
   4946 
   4947       /* Compute GPR index associated with argument offset.  */
   4948       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   4949       GPR_idx = std::min(GPR_idx, NumGPRs);
   4950     }
   4951 
   4952     // Promote integers to 64-bit values.
   4953     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
   4954       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   4955       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   4956       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   4957     }
   4958 
   4959     // FIXME memcpy is used way more than necessary.  Correctness first.
   4960     // Note: "by value" is code for passing a structure by value, not
   4961     // basic types.
   4962     if (Flags.isByVal()) {
   4963       // Note: Size includes alignment padding, so
   4964       //   struct x { short a; char b; }
   4965       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   4966       // These are the proper values we need for right-justifying the
   4967       // aggregate in a parameter register.
   4968       unsigned Size = Flags.getByValSize();
   4969 
   4970       // An empty aggregate parameter takes up no storage and no
   4971       // registers.
   4972       if (Size == 0)
   4973         continue;
   4974 
   4975       if (CallConv == CallingConv::Fast)
   4976         ComputePtrOff();
   4977 
   4978       // All aggregates smaller than 8 bytes must be passed right-justified.
   4979       if (Size==1 || Size==2 || Size==4) {
   4980         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   4981         if (GPR_idx != NumGPRs) {
   4982           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   4983                                         MachinePointerInfo(), VT,
   4984                                         false, false, false, 0);
   4985           MemOpChains.push_back(Load.getValue(1));
   4986           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4987 
   4988           ArgOffset += PtrByteSize;
   4989           continue;
   4990         }
   4991       }
   4992 
   4993       if (GPR_idx == NumGPRs && Size < 8) {
   4994         SDValue AddPtr = PtrOff;
   4995         if (!isLittleEndian) {
   4996           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   4997                                           PtrOff.getValueType());
   4998           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4999         }
   5000         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5001                                                           CallSeqStart,
   5002                                                           Flags, DAG, dl);
   5003         ArgOffset += PtrByteSize;
   5004         continue;
   5005       }
   5006       // Copy entire object into memory.  There are cases where gcc-generated
   5007       // code assumes it is there, even if it could be put entirely into
   5008       // registers.  (This is not what the doc says.)
   5009 
   5010       // FIXME: The above statement is likely due to a misunderstanding of the
   5011       // documents.  All arguments must be copied into the parameter area BY
   5012       // THE CALLEE in the event that the callee takes the address of any
   5013       // formal argument.  That has not yet been implemented.  However, it is
   5014       // reasonable to use the stack area as a staging area for the register
   5015       // load.
   5016 
   5017       // Skip this for small aggregates, as we will use the same slot for a
   5018       // right-justified copy, below.
   5019       if (Size >= 8)
   5020         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5021                                                           CallSeqStart,
   5022                                                           Flags, DAG, dl);
   5023 
   5024       // When a register is available, pass a small aggregate right-justified.
   5025       if (Size < 8 && GPR_idx != NumGPRs) {
   5026         // The easiest way to get this right-justified in a register
   5027         // is to copy the structure into the rightmost portion of a
   5028         // local variable slot, then load the whole slot into the
   5029         // register.
   5030         // FIXME: The memcpy seems to produce pretty awful code for
   5031         // small aggregates, particularly for packed ones.
   5032         // FIXME: It would be preferable to use the slot in the
   5033         // parameter save area instead of a new local variable.
   5034         SDValue AddPtr = PtrOff;
   5035         if (!isLittleEndian) {
   5036           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
   5037           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5038         }
   5039         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5040                                                           CallSeqStart,
   5041                                                           Flags, DAG, dl);
   5042 
   5043         // Load the slot into the register.
   5044         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
   5045                                    MachinePointerInfo(),
   5046                                    false, false, false, 0);
   5047         MemOpChains.push_back(Load.getValue(1));
   5048         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5049 
   5050         // Done with this argument.
   5051         ArgOffset += PtrByteSize;
   5052         continue;
   5053       }
   5054 
   5055       // For aggregates larger than PtrByteSize, copy the pieces of the
   5056       // object that fit into registers from the parameter save area.
   5057       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5058         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   5059         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5060         if (GPR_idx != NumGPRs) {
   5061           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   5062                                      MachinePointerInfo(),
   5063                                      false, false, false, 0);
   5064           MemOpChains.push_back(Load.getValue(1));
   5065           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5066           ArgOffset += PtrByteSize;
   5067         } else {
   5068           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5069           break;
   5070         }
   5071       }
   5072       continue;
   5073     }
   5074 
   5075     switch (Arg.getSimpleValueType().SimpleTy) {
   5076     default: llvm_unreachable("Unexpected ValueType for argument!");
   5077     case MVT::i1:
   5078     case MVT::i32:
   5079     case MVT::i64:
   5080       if (Flags.isNest()) {
   5081         // The 'nest' parameter, if any, is passed in R11.
   5082         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
   5083         hasNest = true;
   5084         break;
   5085       }
   5086 
   5087       // These can be scalar arguments or elements of an integer array type
   5088       // passed directly.  Clang may use those instead of "byval" aggregate
   5089       // types to avoid forcing arguments to memory unnecessarily.
   5090       if (GPR_idx != NumGPRs) {
   5091         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5092       } else {
   5093         if (CallConv == CallingConv::Fast)
   5094           ComputePtrOff();
   5095 
   5096         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5097                          true, isTailCall, false, MemOpChains,
   5098                          TailCallArguments, dl);
   5099         if (CallConv == CallingConv::Fast)
   5100           ArgOffset += PtrByteSize;
   5101       }
   5102       if (CallConv != CallingConv::Fast)
   5103         ArgOffset += PtrByteSize;
   5104       break;
   5105     case MVT::f32:
   5106     case MVT::f64: {
   5107       // These can be scalar arguments or elements of a float array type
   5108       // passed directly.  The latter are used to implement ELFv2 homogenous
   5109       // float aggregates.
   5110 
   5111       // Named arguments go into FPRs first, and once they overflow, the
   5112       // remaining arguments go into GPRs and then the parameter save area.
   5113       // Unnamed arguments for vararg functions always go to GPRs and
   5114       // then the parameter save area.  For now, put all arguments to vararg
   5115       // routines always in both locations (FPR *and* GPR or stack slot).
   5116       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
   5117       bool NeededLoad = false;
   5118 
   5119       // First load the argument into the next available FPR.
   5120       if (FPR_idx != NumFPRs)
   5121         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5122 
   5123       // Next, load the argument into GPR or stack slot if needed.
   5124       if (!NeedGPROrStack)
   5125         ;
   5126       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
   5127         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   5128         // once we support fp <-> gpr moves.
   5129 
   5130         // In the non-vararg case, this can only ever happen in the
   5131         // presence of f32 array types, since otherwise we never run
   5132         // out of FPRs before running out of GPRs.
   5133         SDValue ArgVal;
   5134 
   5135         // Double values are always passed in a single GPR.
   5136         if (Arg.getValueType() != MVT::f32) {
   5137           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   5138 
   5139         // Non-array float values are extended and passed in a GPR.
   5140         } else if (!Flags.isInConsecutiveRegs()) {
   5141           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5142           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5143 
   5144         // If we have an array of floats, we collect every odd element
   5145         // together with its predecessor into one GPR.
   5146         } else if (ArgOffset % PtrByteSize != 0) {
   5147           SDValue Lo, Hi;
   5148           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
   5149           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5150           if (!isLittleEndian)
   5151             std::swap(Lo, Hi);
   5152           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   5153 
   5154         // The final element, if even, goes into the first half of a GPR.
   5155         } else if (Flags.isInConsecutiveRegsLast()) {
   5156           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5157           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5158           if (!isLittleEndian)
   5159             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
   5160                                  DAG.getConstant(32, dl, MVT::i32));
   5161 
   5162         // Non-final even elements are skipped; they will be handled
   5163         // together the with subsequent argument on the next go-around.
   5164         } else
   5165           ArgVal = SDValue();
   5166 
   5167         if (ArgVal.getNode())
   5168           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
   5169       } else {
   5170         if (CallConv == CallingConv::Fast)
   5171           ComputePtrOff();
   5172 
   5173         // Single-precision floating-point values are mapped to the
   5174         // second (rightmost) word of the stack doubleword.
   5175         if (Arg.getValueType() == MVT::f32 &&
   5176             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
   5177           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   5178           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5179         }
   5180 
   5181         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5182                          true, isTailCall, false, MemOpChains,
   5183                          TailCallArguments, dl);
   5184 
   5185         NeededLoad = true;
   5186       }
   5187       // When passing an array of floats, the array occupies consecutive
   5188       // space in the argument area; only round up to the next doubleword
   5189       // at the end of the array.  Otherwise, each float takes 8 bytes.
   5190       if (CallConv != CallingConv::Fast || NeededLoad) {
   5191         ArgOffset += (Arg.getValueType() == MVT::f32 &&
   5192                       Flags.isInConsecutiveRegs()) ? 4 : 8;
   5193         if (Flags.isInConsecutiveRegsLast())
   5194           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   5195       }
   5196       break;
   5197     }
   5198     case MVT::v4f32:
   5199     case MVT::v4i32:
   5200     case MVT::v8i16:
   5201     case MVT::v16i8:
   5202     case MVT::v2f64:
   5203     case MVT::v2i64:
   5204     case MVT::v1i128:
   5205       if (!Subtarget.hasQPX()) {
   5206       // These can be scalar arguments or elements of a vector array type
   5207       // passed directly.  The latter are used to implement ELFv2 homogenous
   5208       // vector aggregates.
   5209 
   5210       // For a varargs call, named arguments go into VRs or on the stack as
   5211       // usual; unnamed arguments always go to the stack or the corresponding
   5212       // GPRs when within range.  For now, we always put the value in both
   5213       // locations (or even all three).
   5214       if (isVarArg) {
   5215         // We could elide this store in the case where the object fits
   5216         // entirely in R registers.  Maybe later.
   5217         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5218                                      MachinePointerInfo(), false, false, 0);
   5219         MemOpChains.push_back(Store);
   5220         if (VR_idx != NumVRs) {
   5221           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   5222                                      MachinePointerInfo(),
   5223                                      false, false, false, 0);
   5224           MemOpChains.push_back(Load.getValue(1));
   5225 
   5226           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   5227                            Arg.getSimpleValueType() == MVT::v2i64) ?
   5228                           VSRH[VR_idx] : VR[VR_idx];
   5229           ++VR_idx;
   5230 
   5231           RegsToPass.push_back(std::make_pair(VReg, Load));
   5232         }
   5233         ArgOffset += 16;
   5234         for (unsigned i=0; i<16; i+=PtrByteSize) {
   5235           if (GPR_idx == NumGPRs)
   5236             break;
   5237           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5238                                    DAG.getConstant(i, dl, PtrVT));
   5239           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5240                                      false, false, false, 0);
   5241           MemOpChains.push_back(Load.getValue(1));
   5242           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5243         }
   5244         break;
   5245       }
   5246 
   5247       // Non-varargs Altivec params go into VRs or on the stack.
   5248       if (VR_idx != NumVRs) {
   5249         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   5250                          Arg.getSimpleValueType() == MVT::v2i64) ?
   5251                         VSRH[VR_idx] : VR[VR_idx];
   5252         ++VR_idx;
   5253 
   5254         RegsToPass.push_back(std::make_pair(VReg, Arg));
   5255       } else {
   5256         if (CallConv == CallingConv::Fast)
   5257           ComputePtrOff();
   5258 
   5259         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5260                          true, isTailCall, true, MemOpChains,
   5261                          TailCallArguments, dl);
   5262         if (CallConv == CallingConv::Fast)
   5263           ArgOffset += 16;
   5264       }
   5265 
   5266       if (CallConv != CallingConv::Fast)
   5267         ArgOffset += 16;
   5268       break;
   5269       } // not QPX
   5270 
   5271       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
   5272              "Invalid QPX parameter type");
   5273 
   5274       /* fall through */
   5275     case MVT::v4f64:
   5276     case MVT::v4i1: {
   5277       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
   5278       if (isVarArg) {
   5279         // We could elide this store in the case where the object fits
   5280         // entirely in R registers.  Maybe later.
   5281         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5282                                      MachinePointerInfo(), false, false, 0);
   5283         MemOpChains.push_back(Store);
   5284         if (QFPR_idx != NumQFPRs) {
   5285           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
   5286                                      Store, PtrOff, MachinePointerInfo(),
   5287                                      false, false, false, 0);
   5288           MemOpChains.push_back(Load.getValue(1));
   5289           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
   5290         }
   5291         ArgOffset += (IsF32 ? 16 : 32);
   5292         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
   5293           if (GPR_idx == NumGPRs)
   5294             break;
   5295           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5296                                    DAG.getConstant(i, dl, PtrVT));
   5297           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5298                                      false, false, false, 0);
   5299           MemOpChains.push_back(Load.getValue(1));
   5300           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5301         }
   5302         break;
   5303       }
   5304 
   5305       // Non-varargs QPX params go into registers or on the stack.
   5306       if (QFPR_idx != NumQFPRs) {
   5307         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
   5308       } else {
   5309         if (CallConv == CallingConv::Fast)
   5310           ComputePtrOff();
   5311 
   5312         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5313                          true, isTailCall, true, MemOpChains,
   5314                          TailCallArguments, dl);
   5315         if (CallConv == CallingConv::Fast)
   5316           ArgOffset += (IsF32 ? 16 : 32);
   5317       }
   5318 
   5319       if (CallConv != CallingConv::Fast)
   5320         ArgOffset += (IsF32 ? 16 : 32);
   5321       break;
   5322       }
   5323     }
   5324   }
   5325 
   5326   assert(NumBytesActuallyUsed == ArgOffset);
   5327   (void)NumBytesActuallyUsed;
   5328 
   5329   if (!MemOpChains.empty())
   5330     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5331 
   5332   // Check if this is an indirect call (MTCTR/BCTRL).
   5333   // See PrepareCall() for more information about calls through function
   5334   // pointers in the 64-bit SVR4 ABI.
   5335   if (!isTailCall && !IsPatchPoint &&
   5336       !isFunctionGlobalAddress(Callee) &&
   5337       !isa<ExternalSymbolSDNode>(Callee)) {
   5338     // Load r2 into a virtual register and store it to the TOC save area.
   5339     setUsesTOCBasePtr(DAG);
   5340     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   5341     // TOC save area offset.
   5342     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   5343     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   5344     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5345     Chain = DAG.getStore(
   5346         Val.getValue(1), dl, Val, AddPtr,
   5347         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
   5348         false, false, 0);
   5349     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
   5350     // This does not mean the MTCTR instruction must use R12; it's easier
   5351     // to model this as an extra parameter, so do that.
   5352     if (isELFv2ABI && !IsPatchPoint)
   5353       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
   5354   }
   5355 
   5356   // Build a sequence of copy-to-reg nodes chained together with token chain
   5357   // and flag operands which copy the outgoing args into the appropriate regs.
   5358   SDValue InFlag;
   5359   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5360     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5361                              RegsToPass[i].second, InFlag);
   5362     InFlag = Chain.getValue(1);
   5363   }
   5364 
   5365   if (isTailCall)
   5366     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
   5367                     FPOp, true, TailCallArguments);
   5368 
   5369   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest,
   5370                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
   5371                     SPDiff, NumBytes, Ins, InVals, CS);
   5372 }
   5373 
   5374 SDValue
   5375 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   5376                                     CallingConv::ID CallConv, bool isVarArg,
   5377                                     bool isTailCall, bool IsPatchPoint,
   5378                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   5379                                     const SmallVectorImpl<SDValue> &OutVals,
   5380                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   5381                                     SDLoc dl, SelectionDAG &DAG,
   5382                                     SmallVectorImpl<SDValue> &InVals,
   5383                                     ImmutableCallSite *CS) const {
   5384 
   5385   unsigned NumOps = Outs.size();
   5386 
   5387   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   5388   bool isPPC64 = PtrVT == MVT::i64;
   5389   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   5390 
   5391   MachineFunction &MF = DAG.getMachineFunction();
   5392 
   5393   // Mark this function as potentially containing a function that contains a
   5394   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   5395   // and restoring the callers stack pointer in this functions epilog. This is
   5396   // done because by tail calling the called function might overwrite the value
   5397   // in this function's (MF) stack pointer stack slot 0(SP).
   5398   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5399       CallConv == CallingConv::Fast)
   5400     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   5401 
   5402   // Count how many bytes are to be pushed on the stack, including the linkage
   5403   // area, and parameter passing area.  We start with 24/48 bytes, which is
   5404   // prereserved space for [SP][CR][LR][3 x unused].
   5405   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   5406   unsigned NumBytes = LinkageSize;
   5407 
   5408   // Add up all the space actually used.
   5409   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   5410   // they all go in registers, but we must reserve stack space for them for
   5411   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   5412   // assigned stack space in order, with padding so Altivec parameters are
   5413   // 16-byte aligned.
   5414   unsigned nAltivecParamsAtEnd = 0;
   5415   for (unsigned i = 0; i != NumOps; ++i) {
   5416     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5417     EVT ArgVT = Outs[i].VT;
   5418     // Varargs Altivec parameters are padded to a 16 byte boundary.
   5419     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   5420         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   5421         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
   5422       if (!isVarArg && !isPPC64) {
   5423         // Non-varargs Altivec parameters go after all the non-Altivec
   5424         // parameters; handle those later so we know how much padding we need.
   5425         nAltivecParamsAtEnd++;
   5426         continue;
   5427       }
   5428       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   5429       NumBytes = ((NumBytes+15)/16)*16;
   5430     }
   5431     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   5432   }
   5433 
   5434   // Allow for Altivec parameters at the end, if needed.
   5435   if (nAltivecParamsAtEnd) {
   5436     NumBytes = ((NumBytes+15)/16)*16;
   5437     NumBytes += 16*nAltivecParamsAtEnd;
   5438   }
   5439 
   5440   // The prolog code of the callee may store up to 8 GPR argument registers to
   5441   // the stack, allowing va_start to index over them in memory if its varargs.
   5442   // Because we cannot tell if this is needed on the caller side, we have to
   5443   // conservatively assume that it is needed.  As such, make sure we have at
   5444   // least enough stack space for the caller to store the 8 GPRs.
   5445   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   5446 
   5447   // Tail call needs the stack to be aligned.
   5448   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5449       CallConv == CallingConv::Fast)
   5450     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   5451 
   5452   // Calculate by how many bytes the stack has to be adjusted in case of tail
   5453   // call optimization.
   5454   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   5455 
   5456   // To protect arguments on the stack from being clobbered in a tail call,
   5457   // force all the loads to happen before doing any other lowering.
   5458   if (isTailCall)
   5459     Chain = DAG.getStackArgumentTokenFactor(Chain);
   5460 
   5461   // Adjust the stack pointer for the new arguments...
   5462   // These operations are automatically eliminated by the prolog/epilog pass
   5463   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   5464                                dl);
   5465   SDValue CallSeqStart = Chain;
   5466 
   5467   // Load the return address and frame pointer so it can be move somewhere else
   5468   // later.
   5469   SDValue LROp, FPOp;
   5470   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   5471                                        dl);
   5472 
   5473   // Set up a copy of the stack pointer for use loading and storing any
   5474   // arguments that may not fit in the registers available for argument
   5475   // passing.
   5476   SDValue StackPtr;
   5477   if (isPPC64)
   5478     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   5479   else
   5480     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   5481 
   5482   // Figure out which arguments are going to go in registers, and which in
   5483   // memory.  Also, if this is a vararg function, floating point operations
   5484   // must be stored to our stack, and loaded into integer regs as well, if
   5485   // any integer regs are available for argument passing.
   5486   unsigned ArgOffset = LinkageSize;
   5487   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   5488 
   5489   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   5490     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   5491     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   5492   };
   5493   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   5494     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   5495     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   5496   };
   5497   static const MCPhysReg VR[] = {
   5498     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   5499     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   5500   };
   5501   const unsigned NumGPRs = array_lengthof(GPR_32);
   5502   const unsigned NumFPRs = 13;
   5503   const unsigned NumVRs  = array_lengthof(VR);
   5504 
   5505   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   5506 
   5507   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   5508   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   5509 
   5510   SmallVector<SDValue, 8> MemOpChains;
   5511   for (unsigned i = 0; i != NumOps; ++i) {
   5512     SDValue Arg = OutVals[i];
   5513     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5514 
   5515     // PtrOff will be used to store the current argument to the stack if a
   5516     // register cannot be found for it.
   5517     SDValue PtrOff;
   5518 
   5519     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   5520 
   5521     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5522 
   5523     // On PPC64, promote integers to 64-bit values.
   5524     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   5525       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   5526       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   5527       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   5528     }
   5529 
   5530     // FIXME memcpy is used way more than necessary.  Correctness first.
   5531     // Note: "by value" is code for passing a structure by value, not
   5532     // basic types.
   5533     if (Flags.isByVal()) {
   5534       unsigned Size = Flags.getByValSize();
   5535       // Very small objects are passed right-justified.  Everything else is
   5536       // passed left-justified.
   5537       if (Size==1 || Size==2) {
   5538         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   5539         if (GPR_idx != NumGPRs) {
   5540           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   5541                                         MachinePointerInfo(), VT,
   5542                                         false, false, false, 0);
   5543           MemOpChains.push_back(Load.getValue(1));
   5544           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5545 
   5546           ArgOffset += PtrByteSize;
   5547         } else {
   5548           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   5549                                           PtrOff.getValueType());
   5550           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5551           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5552                                                             CallSeqStart,
   5553                                                             Flags, DAG, dl);
   5554           ArgOffset += PtrByteSize;
   5555         }
   5556         continue;
   5557       }
   5558       // Copy entire object into memory.  There are cases where gcc-generated
   5559       // code assumes it is there, even if it could be put entirely into
   5560       // registers.  (This is not what the doc says.)
   5561       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5562                                                         CallSeqStart,
   5563                                                         Flags, DAG, dl);
   5564 
   5565       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   5566       // copy the pieces of the object that fit into registers from the
   5567       // parameter save area.
   5568       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5569         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   5570         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5571         if (GPR_idx != NumGPRs) {
   5572           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   5573                                      MachinePointerInfo(),
   5574                                      false, false, false, 0);
   5575           MemOpChains.push_back(Load.getValue(1));
   5576           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5577           ArgOffset += PtrByteSize;
   5578         } else {
   5579           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5580           break;
   5581         }
   5582       }
   5583       continue;
   5584     }
   5585 
   5586     switch (Arg.getSimpleValueType().SimpleTy) {
   5587     default: llvm_unreachable("Unexpected ValueType for argument!");
   5588     case MVT::i1:
   5589     case MVT::i32:
   5590     case MVT::i64:
   5591       if (GPR_idx != NumGPRs) {
   5592         if (Arg.getValueType() == MVT::i1)
   5593           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
   5594 
   5595         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5596       } else {
   5597         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5598                          isPPC64, isTailCall, false, MemOpChains,
   5599                          TailCallArguments, dl);
   5600       }
   5601       ArgOffset += PtrByteSize;
   5602       break;
   5603     case MVT::f32:
   5604     case MVT::f64:
   5605       if (FPR_idx != NumFPRs) {
   5606         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5607 
   5608         if (isVarArg) {
   5609           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5610                                        MachinePointerInfo(), false, false, 0);
   5611           MemOpChains.push_back(Store);
   5612 
   5613           // Float varargs are always shadowed in available integer registers
   5614           if (GPR_idx != NumGPRs) {
   5615             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5616                                        MachinePointerInfo(), false, false,
   5617                                        false, 0);
   5618             MemOpChains.push_back(Load.getValue(1));
   5619             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5620           }
   5621           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   5622             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   5623             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5624             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5625                                        MachinePointerInfo(),
   5626                                        false, false, false, 0);
   5627             MemOpChains.push_back(Load.getValue(1));
   5628             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5629           }
   5630         } else {
   5631           // If we have any FPRs remaining, we may also have GPRs remaining.
   5632           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   5633           // GPRs.
   5634           if (GPR_idx != NumGPRs)
   5635             ++GPR_idx;
   5636           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   5637               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   5638             ++GPR_idx;
   5639         }
   5640       } else
   5641         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5642                          isPPC64, isTailCall, false, MemOpChains,
   5643                          TailCallArguments, dl);
   5644       if (isPPC64)
   5645         ArgOffset += 8;
   5646       else
   5647         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   5648       break;
   5649     case MVT::v4f32:
   5650     case MVT::v4i32:
   5651     case MVT::v8i16:
   5652     case MVT::v16i8:
   5653       if (isVarArg) {
   5654         // These go aligned on the stack, or in the corresponding R registers
   5655         // when within range.  The Darwin PPC ABI doc claims they also go in
   5656         // V registers; in fact gcc does this only for arguments that are
   5657         // prototyped, not for those that match the ...  We do it for all
   5658         // arguments, seems to work.
   5659         while (ArgOffset % 16 !=0) {
   5660           ArgOffset += PtrByteSize;
   5661           if (GPR_idx != NumGPRs)
   5662             GPR_idx++;
   5663         }
   5664         // We could elide this store in the case where the object fits
   5665         // entirely in R registers.  Maybe later.
   5666         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   5667                              DAG.getConstant(ArgOffset, dl, PtrVT));
   5668         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5669                                      MachinePointerInfo(), false, false, 0);
   5670         MemOpChains.push_back(Store);
   5671         if (VR_idx != NumVRs) {
   5672           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   5673                                      MachinePointerInfo(),
   5674                                      false, false, false, 0);
   5675           MemOpChains.push_back(Load.getValue(1));
   5676           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   5677         }
   5678         ArgOffset += 16;
   5679         for (unsigned i=0; i<16; i+=PtrByteSize) {
   5680           if (GPR_idx == NumGPRs)
   5681             break;
   5682           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5683                                    DAG.getConstant(i, dl, PtrVT));
   5684           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5685                                      false, false, false, 0);
   5686           MemOpChains.push_back(Load.getValue(1));
   5687           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5688         }
   5689         break;
   5690       }
   5691 
   5692       // Non-varargs Altivec params generally go in registers, but have
   5693       // stack space allocated at the end.
   5694       if (VR_idx != NumVRs) {
   5695         // Doesn't have GPR space allocated.
   5696         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   5697       } else if (nAltivecParamsAtEnd==0) {
   5698         // We are emitting Altivec params in order.
   5699         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5700                          isPPC64, isTailCall, true, MemOpChains,
   5701                          TailCallArguments, dl);
   5702         ArgOffset += 16;
   5703       }
   5704       break;
   5705     }
   5706   }
   5707   // If all Altivec parameters fit in registers, as they usually do,
   5708   // they get stack space following the non-Altivec parameters.  We
   5709   // don't track this here because nobody below needs it.
   5710   // If there are more Altivec parameters than fit in registers emit
   5711   // the stores here.
   5712   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   5713     unsigned j = 0;
   5714     // Offset is aligned; skip 1st 12 params which go in V registers.
   5715     ArgOffset = ((ArgOffset+15)/16)*16;
   5716     ArgOffset += 12*16;
   5717     for (unsigned i = 0; i != NumOps; ++i) {
   5718       SDValue Arg = OutVals[i];
   5719       EVT ArgType = Outs[i].VT;
   5720       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   5721           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   5722         if (++j > NumVRs) {
   5723           SDValue PtrOff;
   5724           // We are emitting Altivec params in order.
   5725           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5726                            isPPC64, isTailCall, true, MemOpChains,
   5727                            TailCallArguments, dl);
   5728           ArgOffset += 16;
   5729         }
   5730       }
   5731     }
   5732   }
   5733 
   5734   if (!MemOpChains.empty())
   5735     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5736 
   5737   // On Darwin, R12 must contain the address of an indirect callee.  This does
   5738   // not mean the MTCTR instruction must use R12; it's easier to model this as
   5739   // an extra parameter, so do that.
   5740   if (!isTailCall &&
   5741       !isFunctionGlobalAddress(Callee) &&
   5742       !isa<ExternalSymbolSDNode>(Callee) &&
   5743       !isBLACompatibleAddress(Callee, DAG))
   5744     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   5745                                                    PPC::R12), Callee));
   5746 
   5747   // Build a sequence of copy-to-reg nodes chained together with token chain
   5748   // and flag operands which copy the outgoing args into the appropriate regs.
   5749   SDValue InFlag;
   5750   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5751     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5752                              RegsToPass[i].second, InFlag);
   5753     InFlag = Chain.getValue(1);
   5754   }
   5755 
   5756   if (isTailCall)
   5757     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   5758                     FPOp, true, TailCallArguments);
   5759 
   5760   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
   5761                     /* unused except on PPC64 ELFv1 */ false, DAG,
   5762                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   5763                     NumBytes, Ins, InVals, CS);
   5764 }
   5765 
   5766 bool
   5767 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   5768                                   MachineFunction &MF, bool isVarArg,
   5769                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   5770                                   LLVMContext &Context) const {
   5771   SmallVector<CCValAssign, 16> RVLocs;
   5772   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   5773   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   5774 }
   5775 
   5776 SDValue
   5777 PPCTargetLowering::LowerReturn(SDValue Chain,
   5778                                CallingConv::ID CallConv, bool isVarArg,
   5779                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   5780                                const SmallVectorImpl<SDValue> &OutVals,
   5781                                SDLoc dl, SelectionDAG &DAG) const {
   5782 
   5783   SmallVector<CCValAssign, 16> RVLocs;
   5784   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   5785                  *DAG.getContext());
   5786   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   5787 
   5788   SDValue Flag;
   5789   SmallVector<SDValue, 4> RetOps(1, Chain);
   5790 
   5791   // Copy the result values into the output registers.
   5792   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   5793     CCValAssign &VA = RVLocs[i];
   5794     assert(VA.isRegLoc() && "Can only return in registers!");
   5795 
   5796     SDValue Arg = OutVals[i];
   5797 
   5798     switch (VA.getLocInfo()) {
   5799     default: llvm_unreachable("Unknown loc info!");
   5800     case CCValAssign::Full: break;
   5801     case CCValAssign::AExt:
   5802       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   5803       break;
   5804     case CCValAssign::ZExt:
   5805       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   5806       break;
   5807     case CCValAssign::SExt:
   5808       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   5809       break;
   5810     }
   5811 
   5812     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   5813     Flag = Chain.getValue(1);
   5814     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   5815   }
   5816 
   5817   RetOps[0] = Chain;  // Update chain.
   5818 
   5819   // Add the flag if we have it.
   5820   if (Flag.getNode())
   5821     RetOps.push_back(Flag);
   5822 
   5823   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
   5824 }
   5825 
   5826 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(
   5827     SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const {
   5828   SDLoc dl(Op);
   5829 
   5830   // Get the corect type for integers.
   5831   EVT IntVT = Op.getValueType();
   5832 
   5833   // Get the inputs.
   5834   SDValue Chain = Op.getOperand(0);
   5835   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   5836   // Build a DYNAREAOFFSET node.
   5837   SDValue Ops[2] = {Chain, FPSIdx};
   5838   SDVTList VTs = DAG.getVTList(IntVT);
   5839   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
   5840 }
   5841 
   5842 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   5843                                    const PPCSubtarget &Subtarget) const {
   5844   // When we pop the dynamic allocation we need to restore the SP link.
   5845   SDLoc dl(Op);
   5846 
   5847   // Get the corect type for pointers.
   5848   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   5849 
   5850   // Construct the stack pointer operand.
   5851   bool isPPC64 = Subtarget.isPPC64();
   5852   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   5853   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   5854 
   5855   // Get the operands for the STACKRESTORE.
   5856   SDValue Chain = Op.getOperand(0);
   5857   SDValue SaveSP = Op.getOperand(1);
   5858 
   5859   // Load the old link SP.
   5860   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   5861                                    MachinePointerInfo(),
   5862                                    false, false, false, 0);
   5863 
   5864   // Restore the stack pointer.
   5865   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   5866 
   5867   // Store the old link SP.
   5868   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   5869                       false, false, 0);
   5870 }
   5871 
   5872 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
   5873   MachineFunction &MF = DAG.getMachineFunction();
   5874   bool isPPC64 = Subtarget.isPPC64();
   5875   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   5876 
   5877   // Get current frame pointer save index.  The users of this index will be
   5878   // primarily DYNALLOC instructions.
   5879   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   5880   int RASI = FI->getReturnAddrSaveIndex();
   5881 
   5882   // If the frame pointer save index hasn't been defined yet.
   5883   if (!RASI) {
   5884     // Find out what the fix offset of the frame pointer save area.
   5885     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
   5886     // Allocate the frame index for frame pointer save area.
   5887     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
   5888     // Save the result.
   5889     FI->setReturnAddrSaveIndex(RASI);
   5890   }
   5891   return DAG.getFrameIndex(RASI, PtrVT);
   5892 }
   5893 
   5894 SDValue
   5895 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   5896   MachineFunction &MF = DAG.getMachineFunction();
   5897   bool isPPC64 = Subtarget.isPPC64();
   5898   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   5899 
   5900   // Get current frame pointer save index.  The users of this index will be
   5901   // primarily DYNALLOC instructions.
   5902   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   5903   int FPSI = FI->getFramePointerSaveIndex();
   5904 
   5905   // If the frame pointer save index hasn't been defined yet.
   5906   if (!FPSI) {
   5907     // Find out what the fix offset of the frame pointer save area.
   5908     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
   5909     // Allocate the frame index for frame pointer save area.
   5910     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   5911     // Save the result.
   5912     FI->setFramePointerSaveIndex(FPSI);
   5913   }
   5914   return DAG.getFrameIndex(FPSI, PtrVT);
   5915 }
   5916 
   5917 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   5918                                          SelectionDAG &DAG,
   5919                                          const PPCSubtarget &Subtarget) const {
   5920   // Get the inputs.
   5921   SDValue Chain = Op.getOperand(0);
   5922   SDValue Size  = Op.getOperand(1);
   5923   SDLoc dl(Op);
   5924 
   5925   // Get the corect type for pointers.
   5926   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   5927   // Negate the size.
   5928   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   5929                                 DAG.getConstant(0, dl, PtrVT), Size);
   5930   // Construct a node for the frame pointer save index.
   5931   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   5932   // Build a DYNALLOC node.
   5933   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   5934   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   5935   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
   5936 }
   5937 
   5938 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   5939                                                SelectionDAG &DAG) const {
   5940   SDLoc DL(Op);
   5941   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
   5942                      DAG.getVTList(MVT::i32, MVT::Other),
   5943                      Op.getOperand(0), Op.getOperand(1));
   5944 }
   5945 
   5946 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   5947                                                 SelectionDAG &DAG) const {
   5948   SDLoc DL(Op);
   5949   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   5950                      Op.getOperand(0), Op.getOperand(1));
   5951 }
   5952 
   5953 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   5954   if (Op.getValueType().isVector())
   5955     return LowerVectorLoad(Op, DAG);
   5956 
   5957   assert(Op.getValueType() == MVT::i1 &&
   5958          "Custom lowering only for i1 loads");
   5959 
   5960   // First, load 8 bits into 32 bits, then truncate to 1 bit.
   5961 
   5962   SDLoc dl(Op);
   5963   LoadSDNode *LD = cast<LoadSDNode>(Op);
   5964 
   5965   SDValue Chain = LD->getChain();
   5966   SDValue BasePtr = LD->getBasePtr();
   5967   MachineMemOperand *MMO = LD->getMemOperand();
   5968 
   5969   SDValue NewLD =
   5970       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
   5971                      BasePtr, MVT::i8, MMO);
   5972   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
   5973 
   5974   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
   5975   return DAG.getMergeValues(Ops, dl);
   5976 }
   5977 
   5978 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   5979   if (Op.getOperand(1).getValueType().isVector())
   5980     return LowerVectorStore(Op, DAG);
   5981 
   5982   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
   5983          "Custom lowering only for i1 stores");
   5984 
   5985   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
   5986 
   5987   SDLoc dl(Op);
   5988   StoreSDNode *ST = cast<StoreSDNode>(Op);
   5989 
   5990   SDValue Chain = ST->getChain();
   5991   SDValue BasePtr = ST->getBasePtr();
   5992   SDValue Value = ST->getValue();
   5993   MachineMemOperand *MMO = ST->getMemOperand();
   5994 
   5995   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
   5996                       Value);
   5997   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
   5998 }
   5999 
   6000 // FIXME: Remove this once the ANDI glue bug is fixed:
   6001 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   6002   assert(Op.getValueType() == MVT::i1 &&
   6003          "Custom lowering only for i1 results");
   6004 
   6005   SDLoc DL(Op);
   6006   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
   6007                      Op.getOperand(0));
   6008 }
   6009 
   6010 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   6011 /// possible.
   6012 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   6013   // Not FP? Not a fsel.
   6014   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   6015       !Op.getOperand(2).getValueType().isFloatingPoint())
   6016     return Op;
   6017 
   6018   // We might be able to do better than this under some circumstances, but in
   6019   // general, fsel-based lowering of select is a finite-math-only optimization.
   6020   // For more information, see section F.3 of the 2.06 ISA specification.