Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZInstrInfo.h"
     15 #include "SystemZInstrBuilder.h"
     16 #include "SystemZTargetMachine.h"
     17 #include "llvm/CodeGen/LiveVariables.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 
     20 using namespace llvm;
     21 
     22 #define GET_INSTRINFO_CTOR_DTOR
     23 #define GET_INSTRMAP_INFO
     24 #include "SystemZGenInstrInfo.inc"
     25 
     26 // Return a mask with Count low bits set.
     27 static uint64_t allOnes(unsigned int Count) {
     28   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
     29 }
     30 
     31 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
     32 // than a low register.
     33 static bool isHighReg(unsigned int Reg) {
     34   if (SystemZ::GRH32BitRegClass.contains(Reg))
     35     return true;
     36   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
     37   return false;
     38 }
     39 
     40 // Pin the vtable to this file.
     41 void SystemZInstrInfo::anchor() {}
     42 
     43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
     44   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
     45     RI(), STI(sti) {
     46 }
     47 
     48 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
     49 // each having the opcode given by NewOpcode.
     50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
     51                                  unsigned NewOpcode) const {
     52   MachineBasicBlock *MBB = MI->getParent();
     53   MachineFunction &MF = *MBB->getParent();
     54 
     55   // Get two load or store instructions.  Use the original instruction for one
     56   // of them (arbitrarily the second here) and create a clone for the other.
     57   MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
     58   MBB->insert(MI, EarlierMI);
     59 
     60   // Set up the two 64-bit registers.
     61   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
     62   MachineOperand &LowRegOp = MI->getOperand(0);
     63   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
     64   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
     65 
     66   // The address in the first (high) instruction is already correct.
     67   // Adjust the offset in the second (low) instruction.
     68   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
     69   MachineOperand &LowOffsetOp = MI->getOperand(2);
     70   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
     71 
     72  // Clear the kill flags for the base and index registers in the first
     73  // instruction.
     74   EarlierMI->getOperand(1).setIsKill(false);
     75   EarlierMI->getOperand(3).setIsKill(false);
     76 
     77   // Set the opcodes.
     78   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
     79   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
     80   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
     81 
     82   EarlierMI->setDesc(get(HighOpcode));
     83   MI->setDesc(get(LowOpcode));
     84 }
     85 
     86 // Split ADJDYNALLOC instruction MI.
     87 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
     88   MachineBasicBlock *MBB = MI->getParent();
     89   MachineFunction &MF = *MBB->getParent();
     90   MachineFrameInfo *MFFrame = MF.getFrameInfo();
     91   MachineOperand &OffsetMO = MI->getOperand(2);
     92 
     93   uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
     94                      SystemZMC::CallFrameSize +
     95                      OffsetMO.getImm());
     96   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
     97   assert(NewOpcode && "No support for huge argument lists yet");
     98   MI->setDesc(get(NewOpcode));
     99   OffsetMO.setImm(Offset);
    100 }
    101 
    102 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
    103 // if the first operand is a low GR32 and HighOpcode if the first operand
    104 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
    105 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
    106 // MI has the same kind of operand as LowOpcode, so needs to be converted
    107 // if HighOpcode is used.
    108 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
    109                                       unsigned HighOpcode,
    110                                       bool ConvertHigh) const {
    111   unsigned Reg = MI->getOperand(0).getReg();
    112   bool IsHigh = isHighReg(Reg);
    113   MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
    114   if (IsHigh && ConvertHigh)
    115     MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
    116 }
    117 
    118 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
    119 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
    120 // followed by HighOpcode or LowOpcode, depending on whether the target
    121 // is a high or low GR32.
    122 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
    123                                        unsigned LowOpcodeK,
    124                                        unsigned HighOpcode) const {
    125   unsigned DestReg = MI->getOperand(0).getReg();
    126   unsigned SrcReg = MI->getOperand(1).getReg();
    127   bool DestIsHigh = isHighReg(DestReg);
    128   bool SrcIsHigh = isHighReg(SrcReg);
    129   if (!DestIsHigh && !SrcIsHigh)
    130     MI->setDesc(get(LowOpcodeK));
    131   else {
    132     emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
    133                   DestReg, SrcReg, SystemZ::LR, 32,
    134                   MI->getOperand(1).isKill());
    135     MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
    136     MI->getOperand(1).setReg(DestReg);
    137     MI->tieOperands(0, 1);
    138   }
    139 }
    140 
    141 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
    142 // if the first operand is a low GR32 and HighOpcode if the first operand
    143 // is a high GR32.
    144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
    145                                        unsigned HighOpcode) const {
    146   unsigned Reg = MI->getOperand(0).getReg();
    147   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
    148                                        MI->getOperand(2).getImm());
    149   MI->setDesc(get(Opcode));
    150 }
    151 
    152 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
    153 // of one GRX32 into another.  Replace it with LowOpcode if both operands
    154 // are low registers, otherwise use RISB[LH]G.
    155 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
    156                                         unsigned Size) const {
    157   emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
    158                 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
    159                 LowOpcode, Size, MI->getOperand(1).isKill());
    160   MI->eraseFromParent();
    161 }
    162 
    163 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
    164 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
    165 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
    166 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
    167 // KillSrc is true if this move is the last use of SrcReg.
    168 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
    169                                      MachineBasicBlock::iterator MBBI,
    170                                      DebugLoc DL, unsigned DestReg,
    171                                      unsigned SrcReg, unsigned LowLowOpcode,
    172                                      unsigned Size, bool KillSrc) const {
    173   unsigned Opcode;
    174   bool DestIsHigh = isHighReg(DestReg);
    175   bool SrcIsHigh = isHighReg(SrcReg);
    176   if (DestIsHigh && SrcIsHigh)
    177     Opcode = SystemZ::RISBHH;
    178   else if (DestIsHigh && !SrcIsHigh)
    179     Opcode = SystemZ::RISBHL;
    180   else if (!DestIsHigh && SrcIsHigh)
    181     Opcode = SystemZ::RISBLH;
    182   else {
    183     BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
    184       .addReg(SrcReg, getKillRegState(KillSrc));
    185     return;
    186   }
    187   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
    188   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
    189     .addReg(DestReg, RegState::Undef)
    190     .addReg(SrcReg, getKillRegState(KillSrc))
    191     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
    192 }
    193 
    194 // If MI is a simple load or store for a frame object, return the register
    195 // it loads or stores and set FrameIndex to the index of the frame object.
    196 // Return 0 otherwise.
    197 //
    198 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
    199 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
    200                         unsigned Flag) {
    201   const MCInstrDesc &MCID = MI->getDesc();
    202   if ((MCID.TSFlags & Flag) &&
    203       MI->getOperand(1).isFI() &&
    204       MI->getOperand(2).getImm() == 0 &&
    205       MI->getOperand(3).getReg() == 0) {
    206     FrameIndex = MI->getOperand(1).getIndex();
    207     return MI->getOperand(0).getReg();
    208   }
    209   return 0;
    210 }
    211 
    212 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    213                                                int &FrameIndex) const {
    214   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
    215 }
    216 
    217 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    218                                               int &FrameIndex) const {
    219   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
    220 }
    221 
    222 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
    223                                        int &DestFrameIndex,
    224                                        int &SrcFrameIndex) const {
    225   // Check for MVC 0(Length,FI1),0(FI2)
    226   const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
    227   if (MI->getOpcode() != SystemZ::MVC ||
    228       !MI->getOperand(0).isFI() ||
    229       MI->getOperand(1).getImm() != 0 ||
    230       !MI->getOperand(3).isFI() ||
    231       MI->getOperand(4).getImm() != 0)
    232     return false;
    233 
    234   // Check that Length covers the full slots.
    235   int64_t Length = MI->getOperand(2).getImm();
    236   unsigned FI1 = MI->getOperand(0).getIndex();
    237   unsigned FI2 = MI->getOperand(3).getIndex();
    238   if (MFI->getObjectSize(FI1) != Length ||
    239       MFI->getObjectSize(FI2) != Length)
    240     return false;
    241 
    242   DestFrameIndex = FI1;
    243   SrcFrameIndex = FI2;
    244   return true;
    245 }
    246 
    247 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
    248                                      MachineBasicBlock *&TBB,
    249                                      MachineBasicBlock *&FBB,
    250                                      SmallVectorImpl<MachineOperand> &Cond,
    251                                      bool AllowModify) const {
    252   // Most of the code and comments here are boilerplate.
    253 
    254   // Start from the bottom of the block and work up, examining the
    255   // terminator instructions.
    256   MachineBasicBlock::iterator I = MBB.end();
    257   while (I != MBB.begin()) {
    258     --I;
    259     if (I->isDebugValue())
    260       continue;
    261 
    262     // Working from the bottom, when we see a non-terminator instruction, we're
    263     // done.
    264     if (!isUnpredicatedTerminator(I))
    265       break;
    266 
    267     // A terminator that isn't a branch can't easily be handled by this
    268     // analysis.
    269     if (!I->isBranch())
    270       return true;
    271 
    272     // Can't handle indirect branches.
    273     SystemZII::Branch Branch(getBranchInfo(I));
    274     if (!Branch.Target->isMBB())
    275       return true;
    276 
    277     // Punt on compound branches.
    278     if (Branch.Type != SystemZII::BranchNormal)
    279       return true;
    280 
    281     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
    282       // Handle unconditional branches.
    283       if (!AllowModify) {
    284         TBB = Branch.Target->getMBB();
    285         continue;
    286       }
    287 
    288       // If the block has any instructions after a JMP, delete them.
    289       while (std::next(I) != MBB.end())
    290         std::next(I)->eraseFromParent();
    291 
    292       Cond.clear();
    293       FBB = nullptr;
    294 
    295       // Delete the JMP if it's equivalent to a fall-through.
    296       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
    297         TBB = nullptr;
    298         I->eraseFromParent();
    299         I = MBB.end();
    300         continue;
    301       }
    302 
    303       // TBB is used to indicate the unconditinal destination.
    304       TBB = Branch.Target->getMBB();
    305       continue;
    306     }
    307 
    308     // Working from the bottom, handle the first conditional branch.
    309     if (Cond.empty()) {
    310       // FIXME: add X86-style branch swap
    311       FBB = TBB;
    312       TBB = Branch.Target->getMBB();
    313       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
    314       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
    315       continue;
    316     }
    317 
    318     // Handle subsequent conditional branches.
    319     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
    320 
    321     // Only handle the case where all conditional branches branch to the same
    322     // destination.
    323     if (TBB != Branch.Target->getMBB())
    324       return true;
    325 
    326     // If the conditions are the same, we can leave them alone.
    327     unsigned OldCCValid = Cond[0].getImm();
    328     unsigned OldCCMask = Cond[1].getImm();
    329     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
    330       continue;
    331 
    332     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
    333     return false;
    334   }
    335 
    336   return false;
    337 }
    338 
    339 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    340   // Most of the code and comments here are boilerplate.
    341   MachineBasicBlock::iterator I = MBB.end();
    342   unsigned Count = 0;
    343 
    344   while (I != MBB.begin()) {
    345     --I;
    346     if (I->isDebugValue())
    347       continue;
    348     if (!I->isBranch())
    349       break;
    350     if (!getBranchInfo(I).Target->isMBB())
    351       break;
    352     // Remove the branch.
    353     I->eraseFromParent();
    354     I = MBB.end();
    355     ++Count;
    356   }
    357 
    358   return Count;
    359 }
    360 
    361 bool SystemZInstrInfo::
    362 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    363   assert(Cond.size() == 2 && "Invalid condition");
    364   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
    365   return false;
    366 }
    367 
    368 unsigned
    369 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    370                                MachineBasicBlock *FBB,
    371                                ArrayRef<MachineOperand> Cond,
    372                                DebugLoc DL) const {
    373   // In this function we output 32-bit branches, which should always
    374   // have enough range.  They can be shortened and relaxed by later code
    375   // in the pipeline, if desired.
    376 
    377   // Shouldn't be a fall through.
    378   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    379   assert((Cond.size() == 2 || Cond.size() == 0) &&
    380          "SystemZ branch conditions have one component!");
    381 
    382   if (Cond.empty()) {
    383     // Unconditional branch?
    384     assert(!FBB && "Unconditional branch with multiple successors!");
    385     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
    386     return 1;
    387   }
    388 
    389   // Conditional branch.
    390   unsigned Count = 0;
    391   unsigned CCValid = Cond[0].getImm();
    392   unsigned CCMask = Cond[1].getImm();
    393   BuildMI(&MBB, DL, get(SystemZ::BRC))
    394     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
    395   ++Count;
    396 
    397   if (FBB) {
    398     // Two-way Conditional branch. Insert the second branch.
    399     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
    400     ++Count;
    401   }
    402   return Count;
    403 }
    404 
    405 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
    406                                       unsigned &SrcReg, unsigned &SrcReg2,
    407                                       int &Mask, int &Value) const {
    408   assert(MI->isCompare() && "Caller should have checked for a comparison");
    409 
    410   if (MI->getNumExplicitOperands() == 2 &&
    411       MI->getOperand(0).isReg() &&
    412       MI->getOperand(1).isImm()) {
    413     SrcReg = MI->getOperand(0).getReg();
    414     SrcReg2 = 0;
    415     Value = MI->getOperand(1).getImm();
    416     Mask = ~0;
    417     return true;
    418   }
    419 
    420   return false;
    421 }
    422 
    423 // If Reg is a virtual register, return its definition, otherwise return null.
    424 static MachineInstr *getDef(unsigned Reg,
    425                             const MachineRegisterInfo *MRI) {
    426   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    427     return nullptr;
    428   return MRI->getUniqueVRegDef(Reg);
    429 }
    430 
    431 // Return true if MI is a shift of type Opcode by Imm bits.
    432 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
    433   return (MI->getOpcode() == Opcode &&
    434           !MI->getOperand(2).getReg() &&
    435           MI->getOperand(3).getImm() == Imm);
    436 }
    437 
    438 // If the destination of MI has no uses, delete it as dead.
    439 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
    440   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
    441     MI->eraseFromParent();
    442 }
    443 
    444 // Compare compares SrcReg against zero.  Check whether SrcReg contains
    445 // the result of an IPM sequence whose input CC survives until Compare,
    446 // and whether Compare is therefore redundant.  Delete it and return
    447 // true if so.
    448 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
    449                                   const MachineRegisterInfo *MRI,
    450                                   const TargetRegisterInfo *TRI) {
    451   MachineInstr *LGFR = nullptr;
    452   MachineInstr *RLL = getDef(SrcReg, MRI);
    453   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
    454     LGFR = RLL;
    455     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
    456   }
    457   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
    458     return false;
    459 
    460   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
    461   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
    462     return false;
    463 
    464   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
    465   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
    466     return false;
    467 
    468   // Check that there are no assignments to CC between the IPM and Compare,
    469   if (IPM->getParent() != Compare->getParent())
    470     return false;
    471   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
    472   for (++MBBI; MBBI != MBBE; ++MBBI) {
    473     MachineInstr *MI = MBBI;
    474     if (MI->modifiesRegister(SystemZ::CC, TRI))
    475       return false;
    476   }
    477 
    478   Compare->eraseFromParent();
    479   if (LGFR)
    480     eraseIfDead(LGFR, MRI);
    481   eraseIfDead(RLL, MRI);
    482   eraseIfDead(SRL, MRI);
    483   eraseIfDead(IPM, MRI);
    484 
    485   return true;
    486 }
    487 
    488 bool
    489 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
    490                                        unsigned SrcReg, unsigned SrcReg2,
    491                                        int Mask, int Value,
    492                                        const MachineRegisterInfo *MRI) const {
    493   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
    494   bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
    495   return Value == 0 && !IsLogical &&
    496          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
    497 }
    498 
    499 // If Opcode is a move that has a conditional variant, return that variant,
    500 // otherwise return 0.
    501 static unsigned getConditionalMove(unsigned Opcode) {
    502   switch (Opcode) {
    503   case SystemZ::LR:  return SystemZ::LOCR;
    504   case SystemZ::LGR: return SystemZ::LOCGR;
    505   default:           return 0;
    506   }
    507 }
    508 
    509 bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
    510   unsigned Opcode = MI->getOpcode();
    511   return STI.hasLoadStoreOnCond() && getConditionalMove(Opcode);
    512 }
    513 
    514 bool SystemZInstrInfo::
    515 isProfitableToIfCvt(MachineBasicBlock &MBB,
    516                     unsigned NumCycles, unsigned ExtraPredCycles,
    517                     BranchProbability Probability) const {
    518   // For now only convert single instructions.
    519   return NumCycles == 1;
    520 }
    521 
    522 bool SystemZInstrInfo::
    523 isProfitableToIfCvt(MachineBasicBlock &TMBB,
    524                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
    525                     MachineBasicBlock &FMBB,
    526                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
    527                     BranchProbability Probability) const {
    528   // For now avoid converting mutually-exclusive cases.
    529   return false;
    530 }
    531 
    532 bool SystemZInstrInfo::
    533 PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
    534   assert(Pred.size() == 2 && "Invalid condition");
    535   unsigned CCValid = Pred[0].getImm();
    536   unsigned CCMask = Pred[1].getImm();
    537   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
    538   unsigned Opcode = MI->getOpcode();
    539   if (STI.hasLoadStoreOnCond()) {
    540     if (unsigned CondOpcode = getConditionalMove(Opcode)) {
    541       MI->setDesc(get(CondOpcode));
    542       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
    543         .addImm(CCValid).addImm(CCMask)
    544         .addReg(SystemZ::CC, RegState::Implicit);
    545       return true;
    546     }
    547   }
    548   return false;
    549 }
    550 
    551 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    552                                    MachineBasicBlock::iterator MBBI,
    553                                    DebugLoc DL, unsigned DestReg,
    554                                    unsigned SrcReg, bool KillSrc) const {
    555   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
    556   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
    557     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
    558                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
    559     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
    560                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
    561     return;
    562   }
    563 
    564   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
    565     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
    566     return;
    567   }
    568 
    569   // Everything else needs only one instruction.
    570   unsigned Opcode;
    571   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
    572     Opcode = SystemZ::LGR;
    573   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
    574     Opcode = SystemZ::LER;
    575   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
    576     Opcode = SystemZ::LDR;
    577   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
    578     Opcode = SystemZ::LXR;
    579   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
    580     Opcode = SystemZ::VLR32;
    581   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
    582     Opcode = SystemZ::VLR64;
    583   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
    584     Opcode = SystemZ::VLR;
    585   else
    586     llvm_unreachable("Impossible reg-to-reg copy");
    587 
    588   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
    589     .addReg(SrcReg, getKillRegState(KillSrc));
    590 }
    591 
    592 void SystemZInstrInfo::storeRegToStackSlot(
    593     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
    594     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
    595     const TargetRegisterInfo *TRI) const {
    596   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
    597 
    598   // Callers may expect a single instruction, so keep 128-bit moves
    599   // together for now and lower them after register allocation.
    600   unsigned LoadOpcode, StoreOpcode;
    601   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
    602   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
    603                         .addReg(SrcReg, getKillRegState(isKill)),
    604                     FrameIdx);
    605 }
    606 
    607 void SystemZInstrInfo::loadRegFromStackSlot(
    608     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
    609     int FrameIdx, const TargetRegisterClass *RC,
    610     const TargetRegisterInfo *TRI) const {
    611   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
    612 
    613   // Callers may expect a single instruction, so keep 128-bit moves
    614   // together for now and lower them after register allocation.
    615   unsigned LoadOpcode, StoreOpcode;
    616   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
    617   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
    618                     FrameIdx);
    619 }
    620 
    621 // Return true if MI is a simple load or store with a 12-bit displacement
    622 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
    623 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
    624   const MCInstrDesc &MCID = MI->getDesc();
    625   return ((MCID.TSFlags & Flag) &&
    626           isUInt<12>(MI->getOperand(2).getImm()) &&
    627           MI->getOperand(3).getReg() == 0);
    628 }
    629 
    630 namespace {
    631 struct LogicOp {
    632   LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
    633   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
    634     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
    635 
    636   explicit operator bool() const { return RegSize; }
    637 
    638   unsigned RegSize, ImmLSB, ImmSize;
    639 };
    640 } // end anonymous namespace
    641 
    642 static LogicOp interpretAndImmediate(unsigned Opcode) {
    643   switch (Opcode) {
    644   case SystemZ::NILMux: return LogicOp(32,  0, 16);
    645   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
    646   case SystemZ::NILL64: return LogicOp(64,  0, 16);
    647   case SystemZ::NILH64: return LogicOp(64, 16, 16);
    648   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
    649   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
    650   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
    651   case SystemZ::NILF64: return LogicOp(64,  0, 32);
    652   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
    653   default:              return LogicOp();
    654   }
    655 }
    656 
    657 // Used to return from convertToThreeAddress after replacing two-address
    658 // instruction OldMI with three-address instruction NewMI.
    659 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
    660                                                  MachineInstr *NewMI,
    661                                                  LiveVariables *LV) {
    662   if (LV) {
    663     unsigned NumOps = OldMI->getNumOperands();
    664     for (unsigned I = 1; I < NumOps; ++I) {
    665       MachineOperand &Op = OldMI->getOperand(I);
    666       if (Op.isReg() && Op.isKill())
    667         LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
    668     }
    669   }
    670   return NewMI;
    671 }
    672 
    673 MachineInstr *
    674 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
    675                                         MachineBasicBlock::iterator &MBBI,
    676                                         LiveVariables *LV) const {
    677   MachineInstr *MI = MBBI;
    678   MachineBasicBlock *MBB = MI->getParent();
    679   MachineFunction *MF = MBB->getParent();
    680   MachineRegisterInfo &MRI = MF->getRegInfo();
    681 
    682   unsigned Opcode = MI->getOpcode();
    683   unsigned NumOps = MI->getNumOperands();
    684 
    685   // Try to convert something like SLL into SLLK, if supported.
    686   // We prefer to keep the two-operand form where possible both
    687   // because it tends to be shorter and because some instructions
    688   // have memory forms that can be used during spilling.
    689   if (STI.hasDistinctOps()) {
    690     MachineOperand &Dest = MI->getOperand(0);
    691     MachineOperand &Src = MI->getOperand(1);
    692     unsigned DestReg = Dest.getReg();
    693     unsigned SrcReg = Src.getReg();
    694     // AHIMux is only really a three-operand instruction when both operands
    695     // are low registers.  Try to constrain both operands to be low if
    696     // possible.
    697     if (Opcode == SystemZ::AHIMux &&
    698         TargetRegisterInfo::isVirtualRegister(DestReg) &&
    699         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    700         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
    701         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
    702       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
    703       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
    704     }
    705     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
    706     if (ThreeOperandOpcode >= 0) {
    707       // Create three address instruction without adding the implicit
    708       // operands. Those will instead be copied over from the original
    709       // instruction by the loop below.
    710       MachineInstrBuilder MIB(*MF,
    711                               MF->CreateMachineInstr(get(ThreeOperandOpcode),
    712                                     MI->getDebugLoc(), /*NoImplicit=*/true));
    713       MIB.addOperand(Dest);
    714       // Keep the kill state, but drop the tied flag.
    715       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
    716       // Keep the remaining operands as-is.
    717       for (unsigned I = 2; I < NumOps; ++I)
    718         MIB.addOperand(MI->getOperand(I));
    719       MBB->insert(MI, MIB);
    720       return finishConvertToThreeAddress(MI, MIB, LV);
    721     }
    722   }
    723 
    724   // Try to convert an AND into an RISBG-type instruction.
    725   if (LogicOp And = interpretAndImmediate(Opcode)) {
    726     uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
    727     // AND IMMEDIATE leaves the other bits of the register unchanged.
    728     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
    729     unsigned Start, End;
    730     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
    731       unsigned NewOpcode;
    732       if (And.RegSize == 64) {
    733         NewOpcode = SystemZ::RISBG;
    734         // Prefer RISBGN if available, since it does not clobber CC.
    735         if (STI.hasMiscellaneousExtensions())
    736           NewOpcode = SystemZ::RISBGN;
    737       } else {
    738         NewOpcode = SystemZ::RISBMux;
    739         Start &= 31;
    740         End &= 31;
    741       }
    742       MachineOperand &Dest = MI->getOperand(0);
    743       MachineOperand &Src = MI->getOperand(1);
    744       MachineInstrBuilder MIB =
    745         BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
    746         .addOperand(Dest).addReg(0)
    747         .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
    748         .addImm(Start).addImm(End + 128).addImm(0);
    749       return finishConvertToThreeAddress(MI, MIB, LV);
    750     }
    751   }
    752   return nullptr;
    753 }
    754 
    755 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
    756     MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
    757     MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
    758   const MachineFrameInfo *MFI = MF.getFrameInfo();
    759   unsigned Size = MFI->getObjectSize(FrameIndex);
    760   unsigned Opcode = MI->getOpcode();
    761 
    762   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
    763     if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
    764         isInt<8>(MI->getOperand(2).getImm()) &&
    765         !MI->getOperand(3).getReg()) {
    766       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
    767       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
    768                      get(SystemZ::AGSI))
    769           .addFrameIndex(FrameIndex)
    770           .addImm(0)
    771           .addImm(MI->getOperand(2).getImm());
    772     }
    773     return nullptr;
    774   }
    775 
    776   // All other cases require a single operand.
    777   if (Ops.size() != 1)
    778     return nullptr;
    779 
    780   unsigned OpNum = Ops[0];
    781   assert(Size == MF.getRegInfo()
    782          .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
    783          "Invalid size combination");
    784 
    785   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
    786       OpNum == 0 &&
    787       isInt<8>(MI->getOperand(2).getImm())) {
    788     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
    789     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
    790     return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
    791                    get(Opcode))
    792         .addFrameIndex(FrameIndex)
    793         .addImm(0)
    794         .addImm(MI->getOperand(2).getImm());
    795   }
    796 
    797   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
    798     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
    799     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
    800     // If we're spilling the destination of an LDGR or LGDR, store the
    801     // source register instead.
    802     if (OpNum == 0) {
    803       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
    804       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
    805                      get(StoreOpcode))
    806           .addOperand(MI->getOperand(1))
    807           .addFrameIndex(FrameIndex)
    808           .addImm(0)
    809           .addReg(0);
    810     }
    811     // If we're spilling the source of an LDGR or LGDR, load the
    812     // destination register instead.
    813     if (OpNum == 1) {
    814       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
    815       unsigned Dest = MI->getOperand(0).getReg();
    816       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
    817                      get(LoadOpcode), Dest)
    818           .addFrameIndex(FrameIndex)
    819           .addImm(0)
    820           .addReg(0);
    821     }
    822   }
    823 
    824   // Look for cases where the source of a simple store or the destination
    825   // of a simple load is being spilled.  Try to use MVC instead.
    826   //
    827   // Although MVC is in practice a fast choice in these cases, it is still
    828   // logically a bytewise copy.  This means that we cannot use it if the
    829   // load or store is volatile.  We also wouldn't be able to use MVC if
    830   // the two memories partially overlap, but that case cannot occur here,
    831   // because we know that one of the memories is a full frame index.
    832   //
    833   // For performance reasons, we also want to avoid using MVC if the addresses
    834   // might be equal.  We don't worry about that case here, because spill slot
    835   // coloring happens later, and because we have special code to remove
    836   // MVCs that turn out to be redundant.
    837   if (OpNum == 0 && MI->hasOneMemOperand()) {
    838     MachineMemOperand *MMO = *MI->memoperands_begin();
    839     if (MMO->getSize() == Size && !MMO->isVolatile()) {
    840       // Handle conversion of loads.
    841       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
    842         return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
    843                        get(SystemZ::MVC))
    844             .addFrameIndex(FrameIndex)
    845             .addImm(0)
    846             .addImm(Size)
    847             .addOperand(MI->getOperand(1))
    848             .addImm(MI->getOperand(2).getImm())
    849             .addMemOperand(MMO);
    850       }
    851       // Handle conversion of stores.
    852       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
    853         return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
    854                        get(SystemZ::MVC))
    855             .addOperand(MI->getOperand(1))
    856             .addImm(MI->getOperand(2).getImm())
    857             .addImm(Size)
    858             .addFrameIndex(FrameIndex)
    859             .addImm(0)
    860             .addMemOperand(MMO);
    861       }
    862     }
    863   }
    864 
    865   // If the spilled operand is the final one, try to change <INSN>R
    866   // into <INSN>.
    867   int MemOpcode = SystemZ::getMemOpcode(Opcode);
    868   if (MemOpcode >= 0) {
    869     unsigned NumOps = MI->getNumExplicitOperands();
    870     if (OpNum == NumOps - 1) {
    871       const MCInstrDesc &MemDesc = get(MemOpcode);
    872       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
    873       assert(AccessBytes != 0 && "Size of access should be known");
    874       assert(AccessBytes <= Size && "Access outside the frame index");
    875       uint64_t Offset = Size - AccessBytes;
    876       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
    877                                         MI->getDebugLoc(), get(MemOpcode));
    878       for (unsigned I = 0; I < OpNum; ++I)
    879         MIB.addOperand(MI->getOperand(I));
    880       MIB.addFrameIndex(FrameIndex).addImm(Offset);
    881       if (MemDesc.TSFlags & SystemZII::HasIndex)
    882         MIB.addReg(0);
    883       return MIB;
    884     }
    885   }
    886 
    887   return nullptr;
    888 }
    889 
    890 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
    891     MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
    892     MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
    893   return nullptr;
    894 }
    895 
    896 bool
    897 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    898   switch (MI->getOpcode()) {
    899   case SystemZ::L128:
    900     splitMove(MI, SystemZ::LG);
    901     return true;
    902 
    903   case SystemZ::ST128:
    904     splitMove(MI, SystemZ::STG);
    905     return true;
    906 
    907   case SystemZ::LX:
    908     splitMove(MI, SystemZ::LD);
    909     return true;
    910 
    911   case SystemZ::STX:
    912     splitMove(MI, SystemZ::STD);
    913     return true;
    914 
    915   case SystemZ::LBMux:
    916     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
    917     return true;
    918 
    919   case SystemZ::LHMux:
    920     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
    921     return true;
    922 
    923   case SystemZ::LLCRMux:
    924     expandZExtPseudo(MI, SystemZ::LLCR, 8);
    925     return true;
    926 
    927   case SystemZ::LLHRMux:
    928     expandZExtPseudo(MI, SystemZ::LLHR, 16);
    929     return true;
    930 
    931   case SystemZ::LLCMux:
    932     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
    933     return true;
    934 
    935   case SystemZ::LLHMux:
    936     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
    937     return true;
    938 
    939   case SystemZ::LMux:
    940     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
    941     return true;
    942 
    943   case SystemZ::STCMux:
    944     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
    945     return true;
    946 
    947   case SystemZ::STHMux:
    948     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
    949     return true;
    950 
    951   case SystemZ::STMux:
    952     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
    953     return true;
    954 
    955   case SystemZ::LHIMux:
    956     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
    957     return true;
    958 
    959   case SystemZ::IIFMux:
    960     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
    961     return true;
    962 
    963   case SystemZ::IILMux:
    964     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
    965     return true;
    966 
    967   case SystemZ::IIHMux:
    968     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
    969     return true;
    970 
    971   case SystemZ::NIFMux:
    972     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
    973     return true;
    974 
    975   case SystemZ::NILMux:
    976     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
    977     return true;
    978 
    979   case SystemZ::NIHMux:
    980     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
    981     return true;
    982 
    983   case SystemZ::OIFMux:
    984     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
    985     return true;
    986 
    987   case SystemZ::OILMux:
    988     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
    989     return true;
    990 
    991   case SystemZ::OIHMux:
    992     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
    993     return true;
    994 
    995   case SystemZ::XIFMux:
    996     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
    997     return true;
    998 
    999   case SystemZ::TMLMux:
   1000     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
   1001     return true;
   1002 
   1003   case SystemZ::TMHMux:
   1004     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
   1005     return true;
   1006 
   1007   case SystemZ::AHIMux:
   1008     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
   1009     return true;
   1010 
   1011   case SystemZ::AHIMuxK:
   1012     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
   1013     return true;
   1014 
   1015   case SystemZ::AFIMux:
   1016     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
   1017     return true;
   1018 
   1019   case SystemZ::CFIMux:
   1020     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
   1021     return true;
   1022 
   1023   case SystemZ::CLFIMux:
   1024     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
   1025     return true;
   1026 
   1027   case SystemZ::CMux:
   1028     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
   1029     return true;
   1030 
   1031   case SystemZ::CLMux:
   1032     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
   1033     return true;
   1034 
   1035   case SystemZ::RISBMux: {
   1036     bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
   1037     bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
   1038     if (SrcIsHigh == DestIsHigh)
   1039       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
   1040     else {
   1041       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
   1042       MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
   1043     }
   1044     return true;
   1045   }
   1046 
   1047   case SystemZ::ADJDYNALLOC:
   1048     splitAdjDynAlloc(MI);
   1049     return true;
   1050 
   1051   default:
   1052     return false;
   1053   }
   1054 }
   1055 
   1056 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
   1057   if (MI->getOpcode() == TargetOpcode::INLINEASM) {
   1058     const MachineFunction *MF = MI->getParent()->getParent();
   1059     const char *AsmStr = MI->getOperand(0).getSymbolName();
   1060     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
   1061   }
   1062   return MI->getDesc().getSize();
   1063 }
   1064 
   1065 SystemZII::Branch
   1066 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
   1067   switch (MI->getOpcode()) {
   1068   case SystemZ::BR:
   1069   case SystemZ::J:
   1070   case SystemZ::JG:
   1071     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
   1072                              SystemZ::CCMASK_ANY, &MI->getOperand(0));
   1073 
   1074   case SystemZ::BRC:
   1075   case SystemZ::BRCL:
   1076     return SystemZII::Branch(SystemZII::BranchNormal,
   1077                              MI->getOperand(0).getImm(),
   1078                              MI->getOperand(1).getImm(), &MI->getOperand(2));
   1079 
   1080   case SystemZ::BRCT:
   1081     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
   1082                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
   1083 
   1084   case SystemZ::BRCTG:
   1085     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
   1086                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
   1087 
   1088   case SystemZ::CIJ:
   1089   case SystemZ::CRJ:
   1090     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
   1091                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1092 
   1093   case SystemZ::CLIJ:
   1094   case SystemZ::CLRJ:
   1095     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
   1096                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1097 
   1098   case SystemZ::CGIJ:
   1099   case SystemZ::CGRJ:
   1100     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
   1101                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1102 
   1103   case SystemZ::CLGIJ:
   1104   case SystemZ::CLGRJ:
   1105     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
   1106                              MI->getOperand(2).getImm(), &MI->getOperand(3));
   1107 
   1108   default:
   1109     llvm_unreachable("Unrecognized branch opcode");
   1110   }
   1111 }
   1112 
   1113 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
   1114                                            unsigned &LoadOpcode,
   1115                                            unsigned &StoreOpcode) const {
   1116   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
   1117     LoadOpcode = SystemZ::L;
   1118     StoreOpcode = SystemZ::ST;
   1119   } else if (RC == &SystemZ::GRH32BitRegClass) {
   1120     LoadOpcode = SystemZ::LFH;
   1121     StoreOpcode = SystemZ::STFH;
   1122   } else if (RC == &SystemZ::GRX32BitRegClass) {
   1123     LoadOpcode = SystemZ::LMux;
   1124     StoreOpcode = SystemZ::STMux;
   1125   } else if (RC == &SystemZ::GR64BitRegClass ||
   1126              RC == &SystemZ::ADDR64BitRegClass) {
   1127     LoadOpcode = SystemZ::LG;
   1128     StoreOpcode = SystemZ::STG;
   1129   } else if (RC == &SystemZ::GR128BitRegClass ||
   1130              RC == &SystemZ::ADDR128BitRegClass) {
   1131     LoadOpcode = SystemZ::L128;
   1132     StoreOpcode = SystemZ::ST128;
   1133   } else if (RC == &SystemZ::FP32BitRegClass) {
   1134     LoadOpcode = SystemZ::LE;
   1135     StoreOpcode = SystemZ::STE;
   1136   } else if (RC == &SystemZ::FP64BitRegClass) {
   1137     LoadOpcode = SystemZ::LD;
   1138     StoreOpcode = SystemZ::STD;
   1139   } else if (RC == &SystemZ::FP128BitRegClass) {
   1140     LoadOpcode = SystemZ::LX;
   1141     StoreOpcode = SystemZ::STX;
   1142   } else if (RC == &SystemZ::VR32BitRegClass) {
   1143     LoadOpcode = SystemZ::VL32;
   1144     StoreOpcode = SystemZ::VST32;
   1145   } else if (RC == &SystemZ::VR64BitRegClass) {
   1146     LoadOpcode = SystemZ::VL64;
   1147     StoreOpcode = SystemZ::VST64;
   1148   } else if (RC == &SystemZ::VF128BitRegClass ||
   1149              RC == &SystemZ::VR128BitRegClass) {
   1150     LoadOpcode = SystemZ::VL;
   1151     StoreOpcode = SystemZ::VST;
   1152   } else
   1153     llvm_unreachable("Unsupported regclass to load or store");
   1154 }
   1155 
   1156 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
   1157                                               int64_t Offset) const {
   1158   const MCInstrDesc &MCID = get(Opcode);
   1159   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
   1160   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
   1161     // Get the instruction to use for unsigned 12-bit displacements.
   1162     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
   1163     if (Disp12Opcode >= 0)
   1164       return Disp12Opcode;
   1165 
   1166     // All address-related instructions can use unsigned 12-bit
   1167     // displacements.
   1168     return Opcode;
   1169   }
   1170   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
   1171     // Get the instruction to use for signed 20-bit displacements.
   1172     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
   1173     if (Disp20Opcode >= 0)
   1174       return Disp20Opcode;
   1175 
   1176     // Check whether Opcode allows signed 20-bit displacements.
   1177     if (MCID.TSFlags & SystemZII::Has20BitOffset)
   1178       return Opcode;
   1179   }
   1180   return 0;
   1181 }
   1182 
   1183 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
   1184   switch (Opcode) {
   1185   case SystemZ::L:      return SystemZ::LT;
   1186   case SystemZ::LY:     return SystemZ::LT;
   1187   case SystemZ::LG:     return SystemZ::LTG;
   1188   case SystemZ::LGF:    return SystemZ::LTGF;
   1189   case SystemZ::LR:     return SystemZ::LTR;
   1190   case SystemZ::LGFR:   return SystemZ::LTGFR;
   1191   case SystemZ::LGR:    return SystemZ::LTGR;
   1192   case SystemZ::LER:    return SystemZ::LTEBR;
   1193   case SystemZ::LDR:    return SystemZ::LTDBR;
   1194   case SystemZ::LXR:    return SystemZ::LTXBR;
   1195   case SystemZ::LCDFR:  return SystemZ::LCDBR;
   1196   case SystemZ::LPDFR:  return SystemZ::LPDBR;
   1197   case SystemZ::LNDFR:  return SystemZ::LNDBR;
   1198   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
   1199   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
   1200   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
   1201   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
   1202   // actually use the condition code, we may turn it back into RISGB.
   1203   // Note that RISBG is not really a "load-and-test" instruction,
   1204   // but sets the same condition code values, so is OK to use here.
   1205   case SystemZ::RISBGN: return SystemZ::RISBG;
   1206   default:              return 0;
   1207   }
   1208 }
   1209 
   1210 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
   1211 // have already been filtered out.  Store the first set bit in LSB and
   1212 // the number of set bits in Length if so.
   1213 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
   1214   unsigned First = findFirstSet(Mask);
   1215   uint64_t Top = (Mask >> First) + 1;
   1216   if ((Top & -Top) == Top) {
   1217     LSB = First;
   1218     Length = findFirstSet(Top);
   1219     return true;
   1220   }
   1221   return false;
   1222 }
   1223 
   1224 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
   1225                                    unsigned &Start, unsigned &End) const {
   1226   // Reject trivial all-zero masks.
   1227   Mask &= allOnes(BitSize);
   1228   if (Mask == 0)
   1229     return false;
   1230 
   1231   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
   1232   // the msb and End specifies the index of the lsb.
   1233   unsigned LSB, Length;
   1234   if (isStringOfOnes(Mask, LSB, Length)) {
   1235     Start = 63 - (LSB + Length - 1);
   1236     End = 63 - LSB;
   1237     return true;
   1238   }
   1239 
   1240   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
   1241   // of the low 1s and End specifies the lsb of the high 1s.
   1242   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
   1243     assert(LSB > 0 && "Bottom bit must be set");
   1244     assert(LSB + Length < BitSize && "Top bit must be set");
   1245     Start = 63 - (LSB - 1);
   1246     End = 63 - (LSB + Length);
   1247     return true;
   1248   }
   1249 
   1250   return false;
   1251 }
   1252 
   1253 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
   1254                                                const MachineInstr *MI) const {
   1255   switch (Opcode) {
   1256   case SystemZ::CR:
   1257     return SystemZ::CRJ;
   1258   case SystemZ::CGR:
   1259     return SystemZ::CGRJ;
   1260   case SystemZ::CHI:
   1261     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
   1262   case SystemZ::CGHI:
   1263     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
   1264   case SystemZ::CLR:
   1265     return SystemZ::CLRJ;
   1266   case SystemZ::CLGR:
   1267     return SystemZ::CLGRJ;
   1268   case SystemZ::CLFI:
   1269     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
   1270   case SystemZ::CLGFI:
   1271     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
   1272   default:
   1273     return 0;
   1274   }
   1275 }
   1276 
   1277 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
   1278                                      MachineBasicBlock::iterator MBBI,
   1279                                      unsigned Reg, uint64_t Value) const {
   1280   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
   1281   unsigned Opcode;
   1282   if (isInt<16>(Value))
   1283     Opcode = SystemZ::LGHI;
   1284   else if (SystemZ::isImmLL(Value))
   1285     Opcode = SystemZ::LLILL;
   1286   else if (SystemZ::isImmLH(Value)) {
   1287     Opcode = SystemZ::LLILH;
   1288     Value >>= 16;
   1289   } else {
   1290     assert(isInt<32>(Value) && "Huge values not handled yet");
   1291     Opcode = SystemZ::LGFI;
   1292   }
   1293   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
   1294 }
   1295