Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "SDNodeDbgValue.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/ADT/BitVector.h"
     18 #include "llvm/ADT/PostOrderIterator.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/CallingConv.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Function.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/InlineAsm.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/Intrinsics.h"
     30 #include "llvm/IntrinsicInst.h"
     31 #include "llvm/LLVMContext.h"
     32 #include "llvm/Module.h"
     33 #include "llvm/CodeGen/Analysis.h"
     34 #include "llvm/CodeGen/FastISel.h"
     35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     36 #include "llvm/CodeGen/GCStrategy.h"
     37 #include "llvm/CodeGen/GCMetadata.h"
     38 #include "llvm/CodeGen/MachineFunction.h"
     39 #include "llvm/CodeGen/MachineFrameInfo.h"
     40 #include "llvm/CodeGen/MachineInstrBuilder.h"
     41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     42 #include "llvm/CodeGen/MachineModuleInfo.h"
     43 #include "llvm/CodeGen/MachineRegisterInfo.h"
     44 #include "llvm/CodeGen/PseudoSourceValue.h"
     45 #include "llvm/CodeGen/SelectionDAG.h"
     46 #include "llvm/Analysis/DebugInfo.h"
     47 #include "llvm/Target/TargetData.h"
     48 #include "llvm/Target/TargetFrameLowering.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/Target/TargetIntrinsicInfo.h"
     51 #include "llvm/Target/TargetLowering.h"
     52 #include "llvm/Target/TargetOptions.h"
     53 #include "llvm/Support/CommandLine.h"
     54 #include "llvm/Support/Debug.h"
     55 #include "llvm/Support/ErrorHandling.h"
     56 #include "llvm/Support/MathExtras.h"
     57 #include "llvm/Support/raw_ostream.h"
     58 #include <algorithm>
     59 using namespace llvm;
     60 
     61 /// LimitFloatPrecision - Generate low-precision inline sequences for
     62 /// some float libcalls (6, 8 or 12 bits).
     63 static unsigned LimitFloatPrecision;
     64 
     65 static cl::opt<unsigned, true>
     66 LimitFPPrecision("limit-float-precision",
     67                  cl::desc("Generate low-precision inline sequences "
     68                           "for some float libcalls"),
     69                  cl::location(LimitFloatPrecision),
     70                  cl::init(0));
     71 
     72 // Limit the width of DAG chains. This is important in general to prevent
     73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
     74 // load clustering may not complete in reasonable time. It is difficult to
     75 // recognize and avoid this situation within each individual analysis, and
     76 // future analyses are likely to have the same behavior. Limiting DAG width is
     77 // the safe approach, and will be especially important with global DAGs.
     78 //
     79 // MaxParallelChains default is arbitrarily high to avoid affecting
     80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
     81 // sequence over this should have been converted to llvm.memcpy by the
     82 // frontend. It easy to induce this behavior with .ll code such as:
     83 // %buffer = alloca [4096 x i8]
     84 // %data = load [4096 x i8]* %argPtr
     85 // store [4096 x i8] %data, [4096 x i8]* %buffer
     86 static const unsigned MaxParallelChains = 64;
     87 
     88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
     89                                       const SDValue *Parts, unsigned NumParts,
     90                                       EVT PartVT, EVT ValueVT);
     91 
     92 /// getCopyFromParts - Create a value that contains the specified legal parts
     93 /// combined into the value they represent.  If the parts combine to a type
     94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
     95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
     96 /// (ISD::AssertSext).
     97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
     98                                 const SDValue *Parts,
     99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
    100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
    101   if (ValueVT.isVector())
    102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
    103 
    104   assert(NumParts > 0 && "No parts to assemble!");
    105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    106   SDValue Val = Parts[0];
    107 
    108   if (NumParts > 1) {
    109     // Assemble the value from multiple parts.
    110     if (ValueVT.isInteger()) {
    111       unsigned PartBits = PartVT.getSizeInBits();
    112       unsigned ValueBits = ValueVT.getSizeInBits();
    113 
    114       // Assemble the power of 2 part.
    115       unsigned RoundParts = NumParts & (NumParts - 1) ?
    116         1 << Log2_32(NumParts) : NumParts;
    117       unsigned RoundBits = PartBits * RoundParts;
    118       EVT RoundVT = RoundBits == ValueBits ?
    119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
    120       SDValue Lo, Hi;
    121 
    122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
    123 
    124       if (RoundParts > 2) {
    125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
    126                               PartVT, HalfVT);
    127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
    128                               RoundParts / 2, PartVT, HalfVT);
    129       } else {
    130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
    131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
    132       }
    133 
    134       if (TLI.isBigEndian())
    135         std::swap(Lo, Hi);
    136 
    137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
    138 
    139       if (RoundParts < NumParts) {
    140         // Assemble the trailing non-power-of-2 part.
    141         unsigned OddParts = NumParts - RoundParts;
    142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
    143         Hi = getCopyFromParts(DAG, DL,
    144                               Parts + RoundParts, OddParts, PartVT, OddVT);
    145 
    146         // Combine the round and odd parts.
    147         Lo = Val;
    148         if (TLI.isBigEndian())
    149           std::swap(Lo, Hi);
    150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
    152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
    153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
    154                                          TLI.getPointerTy()));
    155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
    156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
    157       }
    158     } else if (PartVT.isFloatingPoint()) {
    159       // FP split into multiple FP parts (for ppcf128)
    160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
    161              "Unexpected split");
    162       SDValue Lo, Hi;
    163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
    164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
    165       if (TLI.isBigEndian())
    166         std::swap(Lo, Hi);
    167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
    168     } else {
    169       // FP split into integer parts (soft fp)
    170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
    171              !PartVT.isVector() && "Unexpected split");
    172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
    173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
    174     }
    175   }
    176 
    177   // There is now one part, held in Val.  Correct it to match ValueVT.
    178   PartVT = Val.getValueType();
    179 
    180   if (PartVT == ValueVT)
    181     return Val;
    182 
    183   if (PartVT.isInteger() && ValueVT.isInteger()) {
    184     if (ValueVT.bitsLT(PartVT)) {
    185       // For a truncate, see if we have any information to
    186       // indicate whether the truncated bits will always be
    187       // zero or sign-extension.
    188       if (AssertOp != ISD::DELETED_NODE)
    189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
    190                           DAG.getValueType(ValueVT));
    191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    192     }
    193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
    194   }
    195 
    196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    197     // FP_ROUND's are always exact here.
    198     if (ValueVT.bitsLT(Val.getValueType()))
    199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
    200                          DAG.getIntPtrConstant(1));
    201 
    202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
    203   }
    204 
    205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
    206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    207 
    208   llvm_unreachable("Unknown mismatch!");
    209   return SDValue();
    210 }
    211 
    212 /// getCopyFromParts - Create a value that contains the specified legal parts
    213 /// combined into the value they represent.  If the parts combine to a type
    214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
    215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
    216 /// (ISD::AssertSext).
    217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
    218                                       const SDValue *Parts, unsigned NumParts,
    219                                       EVT PartVT, EVT ValueVT) {
    220   assert(ValueVT.isVector() && "Not a vector value");
    221   assert(NumParts > 0 && "No parts to assemble!");
    222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    223   SDValue Val = Parts[0];
    224 
    225   // Handle a multi-element vector.
    226   if (NumParts > 1) {
    227     EVT IntermediateVT, RegisterVT;
    228     unsigned NumIntermediates;
    229     unsigned NumRegs =
    230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
    231                                NumIntermediates, RegisterVT);
    232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    233     NumParts = NumRegs; // Silence a compiler warning.
    234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    235     assert(RegisterVT == Parts[0].getValueType() &&
    236            "Part type doesn't match part!");
    237 
    238     // Assemble the parts into intermediate operands.
    239     SmallVector<SDValue, 8> Ops(NumIntermediates);
    240     if (NumIntermediates == NumParts) {
    241       // If the register was not expanded, truncate or copy the value,
    242       // as appropriate.
    243       for (unsigned i = 0; i != NumParts; ++i)
    244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
    245                                   PartVT, IntermediateVT);
    246     } else if (NumParts > 0) {
    247       // If the intermediate type was expanded, build the intermediate
    248       // operands from the parts.
    249       assert(NumParts % NumIntermediates == 0 &&
    250              "Must expand into a divisible number of parts!");
    251       unsigned Factor = NumParts / NumIntermediates;
    252       for (unsigned i = 0; i != NumIntermediates; ++i)
    253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
    254                                   PartVT, IntermediateVT);
    255     }
    256 
    257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
    258     // intermediate operands.
    259     Val = DAG.getNode(IntermediateVT.isVector() ?
    260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
    261                       ValueVT, &Ops[0], NumIntermediates);
    262   }
    263 
    264   // There is now one part, held in Val.  Correct it to match ValueVT.
    265   PartVT = Val.getValueType();
    266 
    267   if (PartVT == ValueVT)
    268     return Val;
    269 
    270   if (PartVT.isVector()) {
    271     // If the element type of the source/dest vectors are the same, but the
    272     // parts vector has more elements than the value vector, then we have a
    273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
    274     // elements we want.
    275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
    276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
    277              "Cannot narrow, it would be a lossy transformation");
    278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
    279                          DAG.getIntPtrConstant(0));
    280     }
    281 
    282     // Vector/Vector bitcast.
    283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
    284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    285 
    286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
    287       "Cannot handle this kind of promotion");
    288     // Promoted vector extract
    289     bool Smaller = ValueVT.bitsLE(PartVT);
    290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    291                        DL, ValueVT, Val);
    292 
    293   }
    294 
    295   // Trivial bitcast if the types are the same size and the destination
    296   // vector type is legal.
    297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
    298       TLI.isTypeLegal(ValueVT))
    299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    300 
    301   // Handle cases such as i8 -> <1 x i1>
    302   assert(ValueVT.getVectorNumElements() == 1 &&
    303          "Only trivial scalar-to-vector conversions should get here!");
    304 
    305   if (ValueVT.getVectorNumElements() == 1 &&
    306       ValueVT.getVectorElementType() != PartVT) {
    307     bool Smaller = ValueVT.bitsLE(PartVT);
    308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    309                        DL, ValueVT.getScalarType(), Val);
    310   }
    311 
    312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
    313 }
    314 
    315 
    316 
    317 
    318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
    319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    320                                  EVT PartVT);
    321 
    322 /// getCopyToParts - Create a series of nodes that contain the specified value
    323 /// split into legal parts.  If the parts contain more bits than Val, then, for
    324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
    325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
    326                            SDValue Val, SDValue *Parts, unsigned NumParts,
    327                            EVT PartVT,
    328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
    329   EVT ValueVT = Val.getValueType();
    330 
    331   // Handle the vector case separately.
    332   if (ValueVT.isVector())
    333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
    334 
    335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    336   unsigned PartBits = PartVT.getSizeInBits();
    337   unsigned OrigNumParts = NumParts;
    338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
    339 
    340   if (NumParts == 0)
    341     return;
    342 
    343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
    344   if (PartVT == ValueVT) {
    345     assert(NumParts == 1 && "No-op copy with multiple parts!");
    346     Parts[0] = Val;
    347     return;
    348   }
    349 
    350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
    351     // If the parts cover more bits than the value has, promote the value.
    352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    353       assert(NumParts == 1 && "Do not know what to promote to!");
    354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
    355     } else {
    356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
    357              "Unknown mismatch!");
    358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
    360     }
    361   } else if (PartBits == ValueVT.getSizeInBits()) {
    362     // Different types of the same size.
    363     assert(NumParts == 1 && PartVT != ValueVT);
    364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
    366     // If the parts cover less bits than value has, truncate the value.
    367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
    368            "Unknown mismatch!");
    369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    371   }
    372 
    373   // The value may have changed - recompute ValueVT.
    374   ValueVT = Val.getValueType();
    375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
    376          "Failed to tile the value with PartVT!");
    377 
    378   if (NumParts == 1) {
    379     assert(PartVT == ValueVT && "Type conversion failed!");
    380     Parts[0] = Val;
    381     return;
    382   }
    383 
    384   // Expand the value into multiple parts.
    385   if (NumParts & (NumParts - 1)) {
    386     // The number of parts is not a power of 2.  Split off and copy the tail.
    387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
    388            "Do not know what to expand to!");
    389     unsigned RoundParts = 1 << Log2_32(NumParts);
    390     unsigned RoundBits = RoundParts * PartBits;
    391     unsigned OddParts = NumParts - RoundParts;
    392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
    393                                  DAG.getIntPtrConstant(RoundBits));
    394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
    395 
    396     if (TLI.isBigEndian())
    397       // The odd parts were reversed by getCopyToParts - unreverse them.
    398       std::reverse(Parts + RoundParts, Parts + NumParts);
    399 
    400     NumParts = RoundParts;
    401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    403   }
    404 
    405   // The number of parts is a power of 2.  Repeatedly bisect the value using
    406   // EXTRACT_ELEMENT.
    407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
    408                          EVT::getIntegerVT(*DAG.getContext(),
    409                                            ValueVT.getSizeInBits()),
    410                          Val);
    411 
    412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
    413     for (unsigned i = 0; i < NumParts; i += StepSize) {
    414       unsigned ThisBits = StepSize * PartBits / 2;
    415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
    416       SDValue &Part0 = Parts[i];
    417       SDValue &Part1 = Parts[i+StepSize/2];
    418 
    419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
    421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
    423 
    424       if (ThisBits == PartBits && ThisVT != PartVT) {
    425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
    426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
    427       }
    428     }
    429   }
    430 
    431   if (TLI.isBigEndian())
    432     std::reverse(Parts, Parts + OrigNumParts);
    433 }
    434 
    435 
    436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
    437 /// value split into legal parts.
    438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
    439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    440                                  EVT PartVT) {
    441   EVT ValueVT = Val.getValueType();
    442   assert(ValueVT.isVector() && "Not a vector");
    443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    444 
    445   if (NumParts == 1) {
    446     if (PartVT == ValueVT) {
    447       // Nothing to do.
    448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
    449       // Bitconvert vector->vector case.
    450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    451     } else if (PartVT.isVector() &&
    452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
    453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
    454       EVT ElementVT = PartVT.getVectorElementType();
    455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
    456       // undef elements.
    457       SmallVector<SDValue, 16> Ops;
    458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
    459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
    461 
    462       for (unsigned i = ValueVT.getVectorNumElements(),
    463            e = PartVT.getVectorNumElements(); i != e; ++i)
    464         Ops.push_back(DAG.getUNDEF(ElementVT));
    465 
    466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
    467 
    468       // FIXME: Use CONCAT for 2x -> 4x.
    469 
    470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
    471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
    472     } else if (PartVT.isVector() &&
    473                PartVT.getVectorElementType().bitsGE(
    474                  ValueVT.getVectorElementType()) &&
    475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
    476 
    477       // Promoted vector extract
    478       bool Smaller = PartVT.bitsLE(ValueVT);
    479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    480                         DL, PartVT, Val);
    481     } else{
    482       // Vector -> scalar conversion.
    483       assert(ValueVT.getVectorNumElements() == 1 &&
    484              "Only trivial vector-to-scalar conversions should get here!");
    485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    486                         PartVT, Val, DAG.getIntPtrConstant(0));
    487 
    488       bool Smaller = ValueVT.bitsLE(PartVT);
    489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    490                          DL, PartVT, Val);
    491     }
    492 
    493     Parts[0] = Val;
    494     return;
    495   }
    496 
    497   // Handle a multi-element vector.
    498   EVT IntermediateVT, RegisterVT;
    499   unsigned NumIntermediates;
    500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
    501                                                 IntermediateVT,
    502                                                 NumIntermediates, RegisterVT);
    503   unsigned NumElements = ValueVT.getVectorNumElements();
    504 
    505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    506   NumParts = NumRegs; // Silence a compiler warning.
    507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    508 
    509   // Split the vector into intermediate operands.
    510   SmallVector<SDValue, 8> Ops(NumIntermediates);
    511   for (unsigned i = 0; i != NumIntermediates; ++i) {
    512     if (IntermediateVT.isVector())
    513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
    514                            IntermediateVT, Val,
    515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
    516     else
    517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
    519   }
    520 
    521   // Split the intermediate operands into legal parts.
    522   if (NumParts == NumIntermediates) {
    523     // If the register was not expanded, promote or copy the value,
    524     // as appropriate.
    525     for (unsigned i = 0; i != NumParts; ++i)
    526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
    527   } else if (NumParts > 0) {
    528     // If the intermediate type was expanded, split each the value into
    529     // legal parts.
    530     assert(NumParts % NumIntermediates == 0 &&
    531            "Must expand into a divisible number of parts!");
    532     unsigned Factor = NumParts / NumIntermediates;
    533     for (unsigned i = 0; i != NumIntermediates; ++i)
    534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
    535   }
    536 }
    537 
    538 
    539 
    540 
    541 namespace {
    542   /// RegsForValue - This struct represents the registers (physical or virtual)
    543   /// that a particular set of values is assigned, and the type information
    544   /// about the value. The most common situation is to represent one value at a
    545   /// time, but struct or array values are handled element-wise as multiple
    546   /// values.  The splitting of aggregates is performed recursively, so that we
    547   /// never have aggregate-typed registers. The values at this point do not
    548   /// necessarily have legal types, so each value may require one or more
    549   /// registers of some legal type.
    550   ///
    551   struct RegsForValue {
    552     /// ValueVTs - The value types of the values, which may not be legal, and
    553     /// may need be promoted or synthesized from one or more registers.
    554     ///
    555     SmallVector<EVT, 4> ValueVTs;
    556 
    557     /// RegVTs - The value types of the registers. This is the same size as
    558     /// ValueVTs and it records, for each value, what the type of the assigned
    559     /// register or registers are. (Individual values are never synthesized
    560     /// from more than one type of register.)
    561     ///
    562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
    563     /// getRegisterType member function, however when with physical registers
    564     /// it is necessary to have a separate record of the types.
    565     ///
    566     SmallVector<EVT, 4> RegVTs;
    567 
    568     /// Regs - This list holds the registers assigned to the values.
    569     /// Each legal or promoted value requires one register, and each
    570     /// expanded value requires multiple registers.
    571     ///
    572     SmallVector<unsigned, 4> Regs;
    573 
    574     RegsForValue() {}
    575 
    576     RegsForValue(const SmallVector<unsigned, 4> &regs,
    577                  EVT regvt, EVT valuevt)
    578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
    579 
    580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
    581                  unsigned Reg, Type *Ty) {
    582       ComputeValueVTs(tli, Ty, ValueVTs);
    583 
    584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    585         EVT ValueVT = ValueVTs[Value];
    586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
    587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
    588         for (unsigned i = 0; i != NumRegs; ++i)
    589           Regs.push_back(Reg + i);
    590         RegVTs.push_back(RegisterVT);
    591         Reg += NumRegs;
    592       }
    593     }
    594 
    595     /// areValueTypesLegal - Return true if types of all the values are legal.
    596     bool areValueTypesLegal(const TargetLowering &TLI) {
    597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    598         EVT RegisterVT = RegVTs[Value];
    599         if (!TLI.isTypeLegal(RegisterVT))
    600           return false;
    601       }
    602       return true;
    603     }
    604 
    605     /// append - Add the specified values to this one.
    606     void append(const RegsForValue &RHS) {
    607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
    610     }
    611 
    612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    613     /// this value and returns the result as a ValueVTs value.  This uses
    614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    615     /// If the Flag pointer is NULL, no flag is used.
    616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
    617                             DebugLoc dl,
    618                             SDValue &Chain, SDValue *Flag) const;
    619 
    620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    621     /// specified value into the registers specified by this object.  This uses
    622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    623     /// If the Flag pointer is NULL, no flag is used.
    624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
    625                        SDValue &Chain, SDValue *Flag) const;
    626 
    627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    628     /// operand list.  This adds the code marker, matching input operand index
    629     /// (if applicable), and includes the number of values added into it.
    630     void AddInlineAsmOperands(unsigned Kind,
    631                               bool HasMatching, unsigned MatchingIdx,
    632                               SelectionDAG &DAG,
    633                               std::vector<SDValue> &Ops) const;
    634   };
    635 }
    636 
    637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    638 /// this value and returns the result as a ValueVT value.  This uses
    639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    640 /// If the Flag pointer is NULL, no flag is used.
    641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
    642                                       FunctionLoweringInfo &FuncInfo,
    643                                       DebugLoc dl,
    644                                       SDValue &Chain, SDValue *Flag) const {
    645   // A Value with type {} or [0 x %t] needs no registers.
    646   if (ValueVTs.empty())
    647     return SDValue();
    648 
    649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    650 
    651   // Assemble the legal parts into the final values.
    652   SmallVector<SDValue, 4> Values(ValueVTs.size());
    653   SmallVector<SDValue, 8> Parts;
    654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    655     // Copy the legal parts from the registers.
    656     EVT ValueVT = ValueVTs[Value];
    657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    658     EVT RegisterVT = RegVTs[Value];
    659 
    660     Parts.resize(NumRegs);
    661     for (unsigned i = 0; i != NumRegs; ++i) {
    662       SDValue P;
    663       if (Flag == 0) {
    664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
    665       } else {
    666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
    667         *Flag = P.getValue(2);
    668       }
    669 
    670       Chain = P.getValue(1);
    671       Parts[i] = P;
    672 
    673       // If the source register was virtual and if we know something about it,
    674       // add an assert node.
    675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
    676           !RegisterVT.isInteger() || RegisterVT.isVector())
    677         continue;
    678 
    679       const FunctionLoweringInfo::LiveOutInfo *LOI =
    680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
    681       if (!LOI)
    682         continue;
    683 
    684       unsigned RegSize = RegisterVT.getSizeInBits();
    685       unsigned NumSignBits = LOI->NumSignBits;
    686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
    687 
    688       // FIXME: We capture more information than the dag can represent.  For
    689       // now, just use the tightest assertzext/assertsext possible.
    690       bool isSExt = true;
    691       EVT FromVT(MVT::Other);
    692       if (NumSignBits == RegSize)
    693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
    694       else if (NumZeroBits >= RegSize-1)
    695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
    696       else if (NumSignBits > RegSize-8)
    697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
    698       else if (NumZeroBits >= RegSize-8)
    699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
    700       else if (NumSignBits > RegSize-16)
    701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
    702       else if (NumZeroBits >= RegSize-16)
    703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
    704       else if (NumSignBits > RegSize-32)
    705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
    706       else if (NumZeroBits >= RegSize-32)
    707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
    708       else
    709         continue;
    710 
    711       // Add an assertion node.
    712       assert(FromVT != MVT::Other);
    713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
    714                              RegisterVT, P, DAG.getValueType(FromVT));
    715     }
    716 
    717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
    718                                      NumRegs, RegisterVT, ValueVT);
    719     Part += NumRegs;
    720     Parts.clear();
    721   }
    722 
    723   return DAG.getNode(ISD::MERGE_VALUES, dl,
    724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
    725                      &Values[0], ValueVTs.size());
    726 }
    727 
    728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    729 /// specified value into the registers specified by this object.  This uses
    730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    731 /// If the Flag pointer is NULL, no flag is used.
    732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
    733                                  SDValue &Chain, SDValue *Flag) const {
    734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    735 
    736   // Get the list of the values's legal parts.
    737   unsigned NumRegs = Regs.size();
    738   SmallVector<SDValue, 8> Parts(NumRegs);
    739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    740     EVT ValueVT = ValueVTs[Value];
    741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    742     EVT RegisterVT = RegVTs[Value];
    743 
    744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
    745                    &Parts[Part], NumParts, RegisterVT);
    746     Part += NumParts;
    747   }
    748 
    749   // Copy the parts into the registers.
    750   SmallVector<SDValue, 8> Chains(NumRegs);
    751   for (unsigned i = 0; i != NumRegs; ++i) {
    752     SDValue Part;
    753     if (Flag == 0) {
    754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
    755     } else {
    756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
    757       *Flag = Part.getValue(1);
    758     }
    759 
    760     Chains[i] = Part.getValue(0);
    761   }
    762 
    763   if (NumRegs == 1 || Flag)
    764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
    765     // flagged to it. That is the CopyToReg nodes and the user are considered
    766     // a single scheduling unit. If we create a TokenFactor and return it as
    767     // chain, then the TokenFactor is both a predecessor (operand) of the
    768     // user as well as a successor (the TF operands are flagged to the user).
    769     // c1, f1 = CopyToReg
    770     // c2, f2 = CopyToReg
    771     // c3     = TokenFactor c1, c2
    772     // ...
    773     //        = op c3, ..., f2
    774     Chain = Chains[NumRegs-1];
    775   else
    776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
    777 }
    778 
    779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    780 /// operand list.  This adds the code marker and includes the number of
    781 /// values added into it.
    782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
    783                                         unsigned MatchingIdx,
    784                                         SelectionDAG &DAG,
    785                                         std::vector<SDValue> &Ops) const {
    786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    787 
    788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
    789   if (HasMatching)
    790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
    791   else if (!Regs.empty() &&
    792            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
    793     // Put the register class of the virtual registers in the flag word.  That
    794     // way, later passes can recompute register class constraints for inline
    795     // assembly as well as normal instructions.
    796     // Don't do this for tied operands that can use the regclass information
    797     // from the def.
    798     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
    799     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
    800     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
    801   }
    802 
    803   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
    804   Ops.push_back(Res);
    805 
    806   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
    807     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
    808     EVT RegisterVT = RegVTs[Value];
    809     for (unsigned i = 0; i != NumRegs; ++i) {
    810       assert(Reg < Regs.size() && "Mismatch in # registers expected");
    811       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
    812     }
    813   }
    814 }
    815 
    816 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
    817   AA = &aa;
    818   GFI = gfi;
    819   TD = DAG.getTarget().getTargetData();
    820   LPadToCallSiteMap.clear();
    821 }
    822 
    823 /// clear - Clear out the current SelectionDAG and the associated
    824 /// state and prepare this SelectionDAGBuilder object to be used
    825 /// for a new block. This doesn't clear out information about
    826 /// additional blocks that are needed to complete switch lowering
    827 /// or PHI node updating; that information is cleared out as it is
    828 /// consumed.
    829 void SelectionDAGBuilder::clear() {
    830   NodeMap.clear();
    831   UnusedArgNodeMap.clear();
    832   PendingLoads.clear();
    833   PendingExports.clear();
    834   CurDebugLoc = DebugLoc();
    835   HasTailCall = false;
    836 }
    837 
    838 /// clearDanglingDebugInfo - Clear the dangling debug information
    839 /// map. This function is seperated from the clear so that debug
    840 /// information that is dangling in a basic block can be properly
    841 /// resolved in a different basic block. This allows the
    842 /// SelectionDAG to resolve dangling debug information attached
    843 /// to PHI nodes.
    844 void SelectionDAGBuilder::clearDanglingDebugInfo() {
    845   DanglingDebugInfoMap.clear();
    846 }
    847 
    848 /// getRoot - Return the current virtual root of the Selection DAG,
    849 /// flushing any PendingLoad items. This must be done before emitting
    850 /// a store or any other node that may need to be ordered after any
    851 /// prior load instructions.
    852 ///
    853 SDValue SelectionDAGBuilder::getRoot() {
    854   if (PendingLoads.empty())
    855     return DAG.getRoot();
    856 
    857   if (PendingLoads.size() == 1) {
    858     SDValue Root = PendingLoads[0];
    859     DAG.setRoot(Root);
    860     PendingLoads.clear();
    861     return Root;
    862   }
    863 
    864   // Otherwise, we have to make a token factor node.
    865   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
    866                                &PendingLoads[0], PendingLoads.size());
    867   PendingLoads.clear();
    868   DAG.setRoot(Root);
    869   return Root;
    870 }
    871 
    872 /// getControlRoot - Similar to getRoot, but instead of flushing all the
    873 /// PendingLoad items, flush all the PendingExports items. It is necessary
    874 /// to do this before emitting a terminator instruction.
    875 ///
    876 SDValue SelectionDAGBuilder::getControlRoot() {
    877   SDValue Root = DAG.getRoot();
    878 
    879   if (PendingExports.empty())
    880     return Root;
    881 
    882   // Turn all of the CopyToReg chains into one factored node.
    883   if (Root.getOpcode() != ISD::EntryToken) {
    884     unsigned i = 0, e = PendingExports.size();
    885     for (; i != e; ++i) {
    886       assert(PendingExports[i].getNode()->getNumOperands() > 1);
    887       if (PendingExports[i].getNode()->getOperand(0) == Root)
    888         break;  // Don't add the root if we already indirectly depend on it.
    889     }
    890 
    891     if (i == e)
    892       PendingExports.push_back(Root);
    893   }
    894 
    895   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
    896                      &PendingExports[0],
    897                      PendingExports.size());
    898   PendingExports.clear();
    899   DAG.setRoot(Root);
    900   return Root;
    901 }
    902 
    903 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
    904   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
    905   DAG.AssignOrdering(Node, SDNodeOrder);
    906 
    907   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
    908     AssignOrderingToNode(Node->getOperand(I).getNode());
    909 }
    910 
    911 void SelectionDAGBuilder::visit(const Instruction &I) {
    912   // Set up outgoing PHI node register values before emitting the terminator.
    913   if (isa<TerminatorInst>(&I))
    914     HandlePHINodesInSuccessorBlocks(I.getParent());
    915 
    916   CurDebugLoc = I.getDebugLoc();
    917 
    918   visit(I.getOpcode(), I);
    919 
    920   if (!isa<TerminatorInst>(&I) && !HasTailCall)
    921     CopyToExportRegsIfNeeded(&I);
    922 
    923   CurDebugLoc = DebugLoc();
    924 }
    925 
    926 void SelectionDAGBuilder::visitPHI(const PHINode &) {
    927   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
    928 }
    929 
    930 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
    931   // Note: this doesn't use InstVisitor, because it has to work with
    932   // ConstantExpr's in addition to instructions.
    933   switch (Opcode) {
    934   default: llvm_unreachable("Unknown instruction type encountered!");
    935     // Build the switch statement using the Instruction.def file.
    936 #define HANDLE_INST(NUM, OPCODE, CLASS) \
    937     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
    938 #include "llvm/Instruction.def"
    939   }
    940 
    941   // Assign the ordering to the freshly created DAG nodes.
    942   if (NodeMap.count(&I)) {
    943     ++SDNodeOrder;
    944     AssignOrderingToNode(getValue(&I).getNode());
    945   }
    946 }
    947 
    948 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    949 // generate the debug data structures now that we've seen its definition.
    950 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
    951                                                    SDValue Val) {
    952   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
    953   if (DDI.getDI()) {
    954     const DbgValueInst *DI = DDI.getDI();
    955     DebugLoc dl = DDI.getdl();
    956     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
    957     MDNode *Variable = DI->getVariable();
    958     uint64_t Offset = DI->getOffset();
    959     SDDbgValue *SDV;
    960     if (Val.getNode()) {
    961       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
    962         SDV = DAG.getDbgValue(Variable, Val.getNode(),
    963                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
    964         DAG.AddDbgValue(SDV, Val.getNode(), false);
    965       }
    966     } else
    967       DEBUG(dbgs() << "Dropping debug info for " << DI);
    968     DanglingDebugInfoMap[V] = DanglingDebugInfo();
    969   }
    970 }
    971 
    972 /// getValue - Return an SDValue for the given Value.
    973 SDValue SelectionDAGBuilder::getValue(const Value *V) {
    974   // If we already have an SDValue for this value, use it. It's important
    975   // to do this first, so that we don't create a CopyFromReg if we already
    976   // have a regular SDValue.
    977   SDValue &N = NodeMap[V];
    978   if (N.getNode()) return N;
    979 
    980   // If there's a virtual register allocated and initialized for this
    981   // value, use it.
    982   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
    983   if (It != FuncInfo.ValueMap.end()) {
    984     unsigned InReg = It->second;
    985     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
    986     SDValue Chain = DAG.getEntryNode();
    987     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
    988     resolveDanglingDebugInfo(V, N);
    989     return N;
    990   }
    991 
    992   // Otherwise create a new SDValue and remember it.
    993   SDValue Val = getValueImpl(V);
    994   NodeMap[V] = Val;
    995   resolveDanglingDebugInfo(V, Val);
    996   return Val;
    997 }
    998 
    999 /// getNonRegisterValue - Return an SDValue for the given Value, but
   1000 /// don't look in FuncInfo.ValueMap for a virtual register.
   1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
   1002   // If we already have an SDValue for this value, use it.
   1003   SDValue &N = NodeMap[V];
   1004   if (N.getNode()) return N;
   1005 
   1006   // Otherwise create a new SDValue and remember it.
   1007   SDValue Val = getValueImpl(V);
   1008   NodeMap[V] = Val;
   1009   resolveDanglingDebugInfo(V, Val);
   1010   return Val;
   1011 }
   1012 
   1013 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
   1014 /// Create an SDValue for the given value.
   1015 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
   1016   if (const Constant *C = dyn_cast<Constant>(V)) {
   1017     EVT VT = TLI.getValueType(V->getType(), true);
   1018 
   1019     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1020       return DAG.getConstant(*CI, VT);
   1021 
   1022     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
   1023       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
   1024 
   1025     if (isa<ConstantPointerNull>(C))
   1026       return DAG.getConstant(0, TLI.getPointerTy());
   1027 
   1028     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
   1029       return DAG.getConstantFP(*CFP, VT);
   1030 
   1031     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
   1032       return DAG.getUNDEF(VT);
   1033 
   1034     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1035       visit(CE->getOpcode(), *CE);
   1036       SDValue N1 = NodeMap[V];
   1037       assert(N1.getNode() && "visit didn't populate the NodeMap!");
   1038       return N1;
   1039     }
   1040 
   1041     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
   1042       SmallVector<SDValue, 4> Constants;
   1043       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
   1044            OI != OE; ++OI) {
   1045         SDNode *Val = getValue(*OI).getNode();
   1046         // If the operand is an empty aggregate, there are no values.
   1047         if (!Val) continue;
   1048         // Add each leaf value from the operand to the Constants list
   1049         // to form a flattened list of all the values.
   1050         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1051           Constants.push_back(SDValue(Val, i));
   1052       }
   1053 
   1054       return DAG.getMergeValues(&Constants[0], Constants.size(),
   1055                                 getCurDebugLoc());
   1056     }
   1057 
   1058     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
   1059       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
   1060              "Unknown struct or array constant!");
   1061 
   1062       SmallVector<EVT, 4> ValueVTs;
   1063       ComputeValueVTs(TLI, C->getType(), ValueVTs);
   1064       unsigned NumElts = ValueVTs.size();
   1065       if (NumElts == 0)
   1066         return SDValue(); // empty struct
   1067       SmallVector<SDValue, 4> Constants(NumElts);
   1068       for (unsigned i = 0; i != NumElts; ++i) {
   1069         EVT EltVT = ValueVTs[i];
   1070         if (isa<UndefValue>(C))
   1071           Constants[i] = DAG.getUNDEF(EltVT);
   1072         else if (EltVT.isFloatingPoint())
   1073           Constants[i] = DAG.getConstantFP(0, EltVT);
   1074         else
   1075           Constants[i] = DAG.getConstant(0, EltVT);
   1076       }
   1077 
   1078       return DAG.getMergeValues(&Constants[0], NumElts,
   1079                                 getCurDebugLoc());
   1080     }
   1081 
   1082     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
   1083       return DAG.getBlockAddress(BA, VT);
   1084 
   1085     VectorType *VecTy = cast<VectorType>(V->getType());
   1086     unsigned NumElements = VecTy->getNumElements();
   1087 
   1088     // Now that we know the number and type of the elements, get that number of
   1089     // elements into the Ops array based on what kind of constant it is.
   1090     SmallVector<SDValue, 16> Ops;
   1091     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
   1092       for (unsigned i = 0; i != NumElements; ++i)
   1093         Ops.push_back(getValue(CP->getOperand(i)));
   1094     } else {
   1095       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
   1096       EVT EltVT = TLI.getValueType(VecTy->getElementType());
   1097 
   1098       SDValue Op;
   1099       if (EltVT.isFloatingPoint())
   1100         Op = DAG.getConstantFP(0, EltVT);
   1101       else
   1102         Op = DAG.getConstant(0, EltVT);
   1103       Ops.assign(NumElements, Op);
   1104     }
   1105 
   1106     // Create a BUILD_VECTOR node.
   1107     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
   1108                                     VT, &Ops[0], Ops.size());
   1109   }
   1110 
   1111   // If this is a static alloca, generate it as the frameindex instead of
   1112   // computation.
   1113   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
   1114     DenseMap<const AllocaInst*, int>::iterator SI =
   1115       FuncInfo.StaticAllocaMap.find(AI);
   1116     if (SI != FuncInfo.StaticAllocaMap.end())
   1117       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
   1118   }
   1119 
   1120   // If this is an instruction which fast-isel has deferred, select it now.
   1121   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   1122     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
   1123     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
   1124     SDValue Chain = DAG.getEntryNode();
   1125     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
   1126   }
   1127 
   1128   llvm_unreachable("Can't get register for value!");
   1129   return SDValue();
   1130 }
   1131 
   1132 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
   1133   SDValue Chain = getControlRoot();
   1134   SmallVector<ISD::OutputArg, 8> Outs;
   1135   SmallVector<SDValue, 8> OutVals;
   1136 
   1137   if (!FuncInfo.CanLowerReturn) {
   1138     unsigned DemoteReg = FuncInfo.DemoteRegister;
   1139     const Function *F = I.getParent()->getParent();
   1140 
   1141     // Emit a store of the return value through the virtual register.
   1142     // Leave Outs empty so that LowerReturn won't try to load return
   1143     // registers the usual way.
   1144     SmallVector<EVT, 1> PtrValueVTs;
   1145     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
   1146                     PtrValueVTs);
   1147 
   1148     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
   1149     SDValue RetOp = getValue(I.getOperand(0));
   1150 
   1151     SmallVector<EVT, 4> ValueVTs;
   1152     SmallVector<uint64_t, 4> Offsets;
   1153     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
   1154     unsigned NumValues = ValueVTs.size();
   1155 
   1156     SmallVector<SDValue, 4> Chains(NumValues);
   1157     for (unsigned i = 0; i != NumValues; ++i) {
   1158       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   1159                                 RetPtr.getValueType(), RetPtr,
   1160                                 DAG.getIntPtrConstant(Offsets[i]));
   1161       Chains[i] =
   1162         DAG.getStore(Chain, getCurDebugLoc(),
   1163                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
   1164                      // FIXME: better loc info would be nice.
   1165                      Add, MachinePointerInfo(), false, false, 0);
   1166     }
   1167 
   1168     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   1169                         MVT::Other, &Chains[0], NumValues);
   1170   } else if (I.getNumOperands() != 0) {
   1171     SmallVector<EVT, 4> ValueVTs;
   1172     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
   1173     unsigned NumValues = ValueVTs.size();
   1174     if (NumValues) {
   1175       SDValue RetOp = getValue(I.getOperand(0));
   1176       for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1177         EVT VT = ValueVTs[j];
   1178 
   1179         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1180 
   1181         const Function *F = I.getParent()->getParent();
   1182         if (F->paramHasAttr(0, Attribute::SExt))
   1183           ExtendKind = ISD::SIGN_EXTEND;
   1184         else if (F->paramHasAttr(0, Attribute::ZExt))
   1185           ExtendKind = ISD::ZERO_EXTEND;
   1186 
   1187         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
   1188           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
   1189 
   1190         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
   1191         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
   1192         SmallVector<SDValue, 4> Parts(NumParts);
   1193         getCopyToParts(DAG, getCurDebugLoc(),
   1194                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
   1195                        &Parts[0], NumParts, PartVT, ExtendKind);
   1196 
   1197         // 'inreg' on function refers to return value
   1198         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1199         if (F->paramHasAttr(0, Attribute::InReg))
   1200           Flags.setInReg();
   1201 
   1202         // Propagate extension type if any
   1203         if (ExtendKind == ISD::SIGN_EXTEND)
   1204           Flags.setSExt();
   1205         else if (ExtendKind == ISD::ZERO_EXTEND)
   1206           Flags.setZExt();
   1207 
   1208         for (unsigned i = 0; i < NumParts; ++i) {
   1209           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
   1210                                         /*isfixed=*/true));
   1211           OutVals.push_back(Parts[i]);
   1212         }
   1213       }
   1214     }
   1215   }
   1216 
   1217   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
   1218   CallingConv::ID CallConv =
   1219     DAG.getMachineFunction().getFunction()->getCallingConv();
   1220   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
   1221                           Outs, OutVals, getCurDebugLoc(), DAG);
   1222 
   1223   // Verify that the target's LowerReturn behaved as expected.
   1224   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
   1225          "LowerReturn didn't return a valid chain!");
   1226 
   1227   // Update the DAG with the new chain value resulting from return lowering.
   1228   DAG.setRoot(Chain);
   1229 }
   1230 
   1231 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
   1232 /// created for it, emit nodes to copy the value into the virtual
   1233 /// registers.
   1234 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
   1235   // Skip empty types
   1236   if (V->getType()->isEmptyTy())
   1237     return;
   1238 
   1239   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   1240   if (VMI != FuncInfo.ValueMap.end()) {
   1241     assert(!V->use_empty() && "Unused value assigned virtual registers!");
   1242     CopyValueToVirtualRegister(V, VMI->second);
   1243   }
   1244 }
   1245 
   1246 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
   1247 /// the current basic block, add it to ValueMap now so that we'll get a
   1248 /// CopyTo/FromReg.
   1249 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
   1250   // No need to export constants.
   1251   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
   1252 
   1253   // Already exported?
   1254   if (FuncInfo.isExportedInst(V)) return;
   1255 
   1256   unsigned Reg = FuncInfo.InitializeRegForValue(V);
   1257   CopyValueToVirtualRegister(V, Reg);
   1258 }
   1259 
   1260 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
   1261                                                      const BasicBlock *FromBB) {
   1262   // The operands of the setcc have to be in this block.  We don't know
   1263   // how to export them from some other block.
   1264   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
   1265     // Can export from current BB.
   1266     if (VI->getParent() == FromBB)
   1267       return true;
   1268 
   1269     // Is already exported, noop.
   1270     return FuncInfo.isExportedInst(V);
   1271   }
   1272 
   1273   // If this is an argument, we can export it if the BB is the entry block or
   1274   // if it is already exported.
   1275   if (isa<Argument>(V)) {
   1276     if (FromBB == &FromBB->getParent()->getEntryBlock())
   1277       return true;
   1278 
   1279     // Otherwise, can only export this if it is already exported.
   1280     return FuncInfo.isExportedInst(V);
   1281   }
   1282 
   1283   // Otherwise, constants can always be exported.
   1284   return true;
   1285 }
   1286 
   1287 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
   1288 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
   1289                                             MachineBasicBlock *Dst) {
   1290   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1291   if (!BPI)
   1292     return 0;
   1293   const BasicBlock *SrcBB = Src->getBasicBlock();
   1294   const BasicBlock *DstBB = Dst->getBasicBlock();
   1295   return BPI->getEdgeWeight(SrcBB, DstBB);
   1296 }
   1297 
   1298 void SelectionDAGBuilder::
   1299 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
   1300                        uint32_t Weight /* = 0 */) {
   1301   if (!Weight)
   1302     Weight = getEdgeWeight(Src, Dst);
   1303   Src->addSuccessor(Dst, Weight);
   1304 }
   1305 
   1306 
   1307 static bool InBlock(const Value *V, const BasicBlock *BB) {
   1308   if (const Instruction *I = dyn_cast<Instruction>(V))
   1309     return I->getParent() == BB;
   1310   return true;
   1311 }
   1312 
   1313 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
   1314 /// This function emits a branch and is used at the leaves of an OR or an
   1315 /// AND operator tree.
   1316 ///
   1317 void
   1318 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
   1319                                                   MachineBasicBlock *TBB,
   1320                                                   MachineBasicBlock *FBB,
   1321                                                   MachineBasicBlock *CurBB,
   1322                                                   MachineBasicBlock *SwitchBB) {
   1323   const BasicBlock *BB = CurBB->getBasicBlock();
   1324 
   1325   // If the leaf of the tree is a comparison, merge the condition into
   1326   // the caseblock.
   1327   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
   1328     // The operands of the cmp have to be in this block.  We don't know
   1329     // how to export them from some other block.  If this is the first block
   1330     // of the sequence, no exporting is needed.
   1331     if (CurBB == SwitchBB ||
   1332         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
   1333          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
   1334       ISD::CondCode Condition;
   1335       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
   1336         Condition = getICmpCondCode(IC->getPredicate());
   1337       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
   1338         Condition = getFCmpCondCode(FC->getPredicate());
   1339       } else {
   1340         Condition = ISD::SETEQ; // silence warning.
   1341         llvm_unreachable("Unknown compare instruction");
   1342       }
   1343 
   1344       CaseBlock CB(Condition, BOp->getOperand(0),
   1345                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
   1346       SwitchCases.push_back(CB);
   1347       return;
   1348     }
   1349   }
   1350 
   1351   // Create a CaseBlock record representing this branch.
   1352   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
   1353                NULL, TBB, FBB, CurBB);
   1354   SwitchCases.push_back(CB);
   1355 }
   1356 
   1357 /// FindMergedConditions - If Cond is an expression like
   1358 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
   1359                                                MachineBasicBlock *TBB,
   1360                                                MachineBasicBlock *FBB,
   1361                                                MachineBasicBlock *CurBB,
   1362                                                MachineBasicBlock *SwitchBB,
   1363                                                unsigned Opc) {
   1364   // If this node is not part of the or/and tree, emit it as a branch.
   1365   const Instruction *BOp = dyn_cast<Instruction>(Cond);
   1366   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
   1367       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
   1368       BOp->getParent() != CurBB->getBasicBlock() ||
   1369       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
   1370       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
   1371     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
   1372     return;
   1373   }
   1374 
   1375   //  Create TmpBB after CurBB.
   1376   MachineFunction::iterator BBI = CurBB;
   1377   MachineFunction &MF = DAG.getMachineFunction();
   1378   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
   1379   CurBB->getParent()->insert(++BBI, TmpBB);
   1380 
   1381   if (Opc == Instruction::Or) {
   1382     // Codegen X | Y as:
   1383     //   jmp_if_X TBB
   1384     //   jmp TmpBB
   1385     // TmpBB:
   1386     //   jmp_if_Y TBB
   1387     //   jmp FBB
   1388     //
   1389 
   1390     // Emit the LHS condition.
   1391     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
   1392 
   1393     // Emit the RHS condition into TmpBB.
   1394     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
   1395   } else {
   1396     assert(Opc == Instruction::And && "Unknown merge op!");
   1397     // Codegen X & Y as:
   1398     //   jmp_if_X TmpBB
   1399     //   jmp FBB
   1400     // TmpBB:
   1401     //   jmp_if_Y TBB
   1402     //   jmp FBB
   1403     //
   1404     //  This requires creation of TmpBB after CurBB.
   1405 
   1406     // Emit the LHS condition.
   1407     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
   1408 
   1409     // Emit the RHS condition into TmpBB.
   1410     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
   1411   }
   1412 }
   1413 
   1414 /// If the set of cases should be emitted as a series of branches, return true.
   1415 /// If we should emit this as a bunch of and/or'd together conditions, return
   1416 /// false.
   1417 bool
   1418 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
   1419   if (Cases.size() != 2) return true;
   1420 
   1421   // If this is two comparisons of the same values or'd or and'd together, they
   1422   // will get folded into a single comparison, so don't emit two blocks.
   1423   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
   1424        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
   1425       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
   1426        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
   1427     return false;
   1428   }
   1429 
   1430   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
   1431   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
   1432   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
   1433       Cases[0].CC == Cases[1].CC &&
   1434       isa<Constant>(Cases[0].CmpRHS) &&
   1435       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
   1436     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
   1437       return false;
   1438     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
   1439       return false;
   1440   }
   1441 
   1442   return true;
   1443 }
   1444 
   1445 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
   1446   MachineBasicBlock *BrMBB = FuncInfo.MBB;
   1447 
   1448   // Update machine-CFG edges.
   1449   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
   1450 
   1451   // Figure out which block is immediately after the current one.
   1452   MachineBasicBlock *NextBlock = 0;
   1453   MachineFunction::iterator BBI = BrMBB;
   1454   if (++BBI != FuncInfo.MF->end())
   1455     NextBlock = BBI;
   1456 
   1457   if (I.isUnconditional()) {
   1458     // Update machine-CFG edges.
   1459     BrMBB->addSuccessor(Succ0MBB);
   1460 
   1461     // If this is not a fall-through branch, emit the branch.
   1462     if (Succ0MBB != NextBlock)
   1463       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   1464                               MVT::Other, getControlRoot(),
   1465                               DAG.getBasicBlock(Succ0MBB)));
   1466 
   1467     return;
   1468   }
   1469 
   1470   // If this condition is one of the special cases we handle, do special stuff
   1471   // now.
   1472   const Value *CondVal = I.getCondition();
   1473   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
   1474 
   1475   // If this is a series of conditions that are or'd or and'd together, emit
   1476   // this as a sequence of branches instead of setcc's with and/or operations.
   1477   // As long as jumps are not expensive, this should improve performance.
   1478   // For example, instead of something like:
   1479   //     cmp A, B
   1480   //     C = seteq
   1481   //     cmp D, E
   1482   //     F = setle
   1483   //     or C, F
   1484   //     jnz foo
   1485   // Emit:
   1486   //     cmp A, B
   1487   //     je foo
   1488   //     cmp D, E
   1489   //     jle foo
   1490   //
   1491   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
   1492     if (!TLI.isJumpExpensive() &&
   1493         BOp->hasOneUse() &&
   1494         (BOp->getOpcode() == Instruction::And ||
   1495          BOp->getOpcode() == Instruction::Or)) {
   1496       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
   1497                            BOp->getOpcode());
   1498       // If the compares in later blocks need to use values not currently
   1499       // exported from this block, export them now.  This block should always
   1500       // be the first entry.
   1501       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
   1502 
   1503       // Allow some cases to be rejected.
   1504       if (ShouldEmitAsBranches(SwitchCases)) {
   1505         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
   1506           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
   1507           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
   1508         }
   1509 
   1510         // Emit the branch for this block.
   1511         visitSwitchCase(SwitchCases[0], BrMBB);
   1512         SwitchCases.erase(SwitchCases.begin());
   1513         return;
   1514       }
   1515 
   1516       // Okay, we decided not to do this, remove any inserted MBB's and clear
   1517       // SwitchCases.
   1518       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
   1519         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
   1520 
   1521       SwitchCases.clear();
   1522     }
   1523   }
   1524 
   1525   // Create a CaseBlock record representing this branch.
   1526   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
   1527                NULL, Succ0MBB, Succ1MBB, BrMBB);
   1528 
   1529   // Use visitSwitchCase to actually insert the fast branch sequence for this
   1530   // cond branch.
   1531   visitSwitchCase(CB, BrMBB);
   1532 }
   1533 
   1534 /// visitSwitchCase - Emits the necessary code to represent a single node in
   1535 /// the binary search tree resulting from lowering a switch instruction.
   1536 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
   1537                                           MachineBasicBlock *SwitchBB) {
   1538   SDValue Cond;
   1539   SDValue CondLHS = getValue(CB.CmpLHS);
   1540   DebugLoc dl = getCurDebugLoc();
   1541 
   1542   // Build the setcc now.
   1543   if (CB.CmpMHS == NULL) {
   1544     // Fold "(X == true)" to X and "(X == false)" to !X to
   1545     // handle common cases produced by branch lowering.
   1546     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
   1547         CB.CC == ISD::SETEQ)
   1548       Cond = CondLHS;
   1549     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
   1550              CB.CC == ISD::SETEQ) {
   1551       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
   1552       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
   1553     } else
   1554       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
   1555   } else {
   1556     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
   1557 
   1558     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
   1559     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
   1560 
   1561     SDValue CmpOp = getValue(CB.CmpMHS);
   1562     EVT VT = CmpOp.getValueType();
   1563 
   1564     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
   1565       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
   1566                           ISD::SETLE);
   1567     } else {
   1568       SDValue SUB = DAG.getNode(ISD::SUB, dl,
   1569                                 VT, CmpOp, DAG.getConstant(Low, VT));
   1570       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
   1571                           DAG.getConstant(High-Low, VT), ISD::SETULE);
   1572     }
   1573   }
   1574 
   1575   // Update successor info
   1576   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
   1577   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
   1578 
   1579   // Set NextBlock to be the MBB immediately after the current one, if any.
   1580   // This is used to avoid emitting unnecessary branches to the next block.
   1581   MachineBasicBlock *NextBlock = 0;
   1582   MachineFunction::iterator BBI = SwitchBB;
   1583   if (++BBI != FuncInfo.MF->end())
   1584     NextBlock = BBI;
   1585 
   1586   // If the lhs block is the next block, invert the condition so that we can
   1587   // fall through to the lhs instead of the rhs block.
   1588   if (CB.TrueBB == NextBlock) {
   1589     std::swap(CB.TrueBB, CB.FalseBB);
   1590     SDValue True = DAG.getConstant(1, Cond.getValueType());
   1591     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
   1592   }
   1593 
   1594   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
   1595                                MVT::Other, getControlRoot(), Cond,
   1596                                DAG.getBasicBlock(CB.TrueBB));
   1597 
   1598   // Insert the false branch. Do this even if it's a fall through branch,
   1599   // this makes it easier to do DAG optimizations which require inverting
   1600   // the branch condition.
   1601   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
   1602                        DAG.getBasicBlock(CB.FalseBB));
   1603 
   1604   DAG.setRoot(BrCond);
   1605 }
   1606 
   1607 /// visitJumpTable - Emit JumpTable node in the current MBB
   1608 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
   1609   // Emit the code for the jump table
   1610   assert(JT.Reg != -1U && "Should lower JT Header first!");
   1611   EVT PTy = TLI.getPointerTy();
   1612   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
   1613                                      JT.Reg, PTy);
   1614   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
   1615   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
   1616                                     MVT::Other, Index.getValue(1),
   1617                                     Table, Index);
   1618   DAG.setRoot(BrJumpTable);
   1619 }
   1620 
   1621 /// visitJumpTableHeader - This function emits necessary code to produce index
   1622 /// in the JumpTable from switch case.
   1623 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
   1624                                                JumpTableHeader &JTH,
   1625                                                MachineBasicBlock *SwitchBB) {
   1626   // Subtract the lowest switch case value from the value being switched on and
   1627   // conditional branch to default mbb if the result is greater than the
   1628   // difference between smallest and largest cases.
   1629   SDValue SwitchOp = getValue(JTH.SValue);
   1630   EVT VT = SwitchOp.getValueType();
   1631   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
   1632                             DAG.getConstant(JTH.First, VT));
   1633 
   1634   // The SDNode we just created, which holds the value being switched on minus
   1635   // the smallest case value, needs to be copied to a virtual register so it
   1636   // can be used as an index into the jump table in a subsequent basic block.
   1637   // This value may be smaller or larger than the target's pointer type, and
   1638   // therefore require extension or truncating.
   1639   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
   1640 
   1641   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
   1642   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
   1643                                     JumpTableReg, SwitchOp);
   1644   JT.Reg = JumpTableReg;
   1645 
   1646   // Emit the range check for the jump table, and branch to the default block
   1647   // for the switch statement if the value being switched on exceeds the largest
   1648   // case in the switch.
   1649   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
   1650                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
   1651                              DAG.getConstant(JTH.Last-JTH.First,VT),
   1652                              ISD::SETUGT);
   1653 
   1654   // Set NextBlock to be the MBB immediately after the current one, if any.
   1655   // This is used to avoid emitting unnecessary branches to the next block.
   1656   MachineBasicBlock *NextBlock = 0;
   1657   MachineFunction::iterator BBI = SwitchBB;
   1658 
   1659   if (++BBI != FuncInfo.MF->end())
   1660     NextBlock = BBI;
   1661 
   1662   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1663                                MVT::Other, CopyTo, CMP,
   1664                                DAG.getBasicBlock(JT.Default));
   1665 
   1666   if (JT.MBB != NextBlock)
   1667     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
   1668                          DAG.getBasicBlock(JT.MBB));
   1669 
   1670   DAG.setRoot(BrCond);
   1671 }
   1672 
   1673 /// visitBitTestHeader - This function emits necessary code to produce value
   1674 /// suitable for "bit tests"
   1675 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
   1676                                              MachineBasicBlock *SwitchBB) {
   1677   // Subtract the minimum value
   1678   SDValue SwitchOp = getValue(B.SValue);
   1679   EVT VT = SwitchOp.getValueType();
   1680   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
   1681                             DAG.getConstant(B.First, VT));
   1682 
   1683   // Check range
   1684   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
   1685                                   TLI.getSetCCResultType(Sub.getValueType()),
   1686                                   Sub, DAG.getConstant(B.Range, VT),
   1687                                   ISD::SETUGT);
   1688 
   1689   // Determine the type of the test operands.
   1690   bool UsePtrType = false;
   1691   if (!TLI.isTypeLegal(VT))
   1692     UsePtrType = true;
   1693   else {
   1694     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
   1695       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
   1696         // Switch table case range are encoded into series of masks.
   1697         // Just use pointer type, it's guaranteed to fit.
   1698         UsePtrType = true;
   1699         break;
   1700       }
   1701   }
   1702   if (UsePtrType) {
   1703     VT = TLI.getPointerTy();
   1704     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
   1705   }
   1706 
   1707   B.RegVT = VT;
   1708   B.Reg = FuncInfo.CreateReg(VT);
   1709   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
   1710                                     B.Reg, Sub);
   1711 
   1712   // Set NextBlock to be the MBB immediately after the current one, if any.
   1713   // This is used to avoid emitting unnecessary branches to the next block.
   1714   MachineBasicBlock *NextBlock = 0;
   1715   MachineFunction::iterator BBI = SwitchBB;
   1716   if (++BBI != FuncInfo.MF->end())
   1717     NextBlock = BBI;
   1718 
   1719   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
   1720 
   1721   addSuccessorWithWeight(SwitchBB, B.Default);
   1722   addSuccessorWithWeight(SwitchBB, MBB);
   1723 
   1724   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1725                                 MVT::Other, CopyTo, RangeCmp,
   1726                                 DAG.getBasicBlock(B.Default));
   1727 
   1728   if (MBB != NextBlock)
   1729     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
   1730                           DAG.getBasicBlock(MBB));
   1731 
   1732   DAG.setRoot(BrRange);
   1733 }
   1734 
   1735 /// visitBitTestCase - this function produces one "bit test"
   1736 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
   1737                                            MachineBasicBlock* NextMBB,
   1738                                            unsigned Reg,
   1739                                            BitTestCase &B,
   1740                                            MachineBasicBlock *SwitchBB) {
   1741   EVT VT = BB.RegVT;
   1742   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
   1743                                        Reg, VT);
   1744   SDValue Cmp;
   1745   unsigned PopCount = CountPopulation_64(B.Mask);
   1746   if (PopCount == 1) {
   1747     // Testing for a single bit; just compare the shift count with what it
   1748     // would need to be to shift a 1 bit in that position.
   1749     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1750                        TLI.getSetCCResultType(VT),
   1751                        ShiftOp,
   1752                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
   1753                        ISD::SETEQ);
   1754   } else if (PopCount == BB.Range) {
   1755     // There is only one zero bit in the range, test for it directly.
   1756     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1757                        TLI.getSetCCResultType(VT),
   1758                        ShiftOp,
   1759                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
   1760                        ISD::SETNE);
   1761   } else {
   1762     // Make desired shift
   1763     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
   1764                                     DAG.getConstant(1, VT), ShiftOp);
   1765 
   1766     // Emit bit tests and jumps
   1767     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
   1768                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
   1769     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1770                        TLI.getSetCCResultType(VT),
   1771                        AndOp, DAG.getConstant(0, VT),
   1772                        ISD::SETNE);
   1773   }
   1774 
   1775   addSuccessorWithWeight(SwitchBB, B.TargetBB);
   1776   addSuccessorWithWeight(SwitchBB, NextMBB);
   1777 
   1778   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1779                               MVT::Other, getControlRoot(),
   1780                               Cmp, DAG.getBasicBlock(B.TargetBB));
   1781 
   1782   // Set NextBlock to be the MBB immediately after the current one, if any.
   1783   // This is used to avoid emitting unnecessary branches to the next block.
   1784   MachineBasicBlock *NextBlock = 0;
   1785   MachineFunction::iterator BBI = SwitchBB;
   1786   if (++BBI != FuncInfo.MF->end())
   1787     NextBlock = BBI;
   1788 
   1789   if (NextMBB != NextBlock)
   1790     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
   1791                         DAG.getBasicBlock(NextMBB));
   1792 
   1793   DAG.setRoot(BrAnd);
   1794 }
   1795 
   1796 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
   1797   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
   1798 
   1799   // Retrieve successors.
   1800   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
   1801   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
   1802 
   1803   const Value *Callee(I.getCalledValue());
   1804   if (isa<InlineAsm>(Callee))
   1805     visitInlineAsm(&I);
   1806   else
   1807     LowerCallTo(&I, getValue(Callee), false, LandingPad);
   1808 
   1809   // If the value of the invoke is used outside of its defining block, make it
   1810   // available as a virtual register.
   1811   CopyToExportRegsIfNeeded(&I);
   1812 
   1813   // Update successor info
   1814   InvokeMBB->addSuccessor(Return);
   1815   InvokeMBB->addSuccessor(LandingPad);
   1816 
   1817   // Drop into normal successor.
   1818   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   1819                           MVT::Other, getControlRoot(),
   1820                           DAG.getBasicBlock(Return)));
   1821 }
   1822 
   1823 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
   1824 }
   1825 
   1826 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
   1827   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
   1828 }
   1829 
   1830 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
   1831   assert(FuncInfo.MBB->isLandingPad() &&
   1832          "Call to landingpad not in landing pad!");
   1833 
   1834   MachineBasicBlock *MBB = FuncInfo.MBB;
   1835   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   1836   AddLandingPadInfo(LP, MMI, MBB);
   1837 
   1838   SmallVector<EVT, 2> ValueVTs;
   1839   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
   1840 
   1841   // Insert the EXCEPTIONADDR instruction.
   1842   assert(FuncInfo.MBB->isLandingPad() &&
   1843          "Call to eh.exception not in landing pad!");
   1844   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   1845   SDValue Ops[2];
   1846   Ops[0] = DAG.getRoot();
   1847   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
   1848   SDValue Chain = Op1.getValue(1);
   1849 
   1850   // Insert the EHSELECTION instruction.
   1851   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   1852   Ops[0] = Op1;
   1853   Ops[1] = Chain;
   1854   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
   1855   Chain = Op2.getValue(1);
   1856   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
   1857 
   1858   Ops[0] = Op1;
   1859   Ops[1] = Op2;
   1860   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   1861                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
   1862                             &Ops[0], 2);
   1863 
   1864   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
   1865   setValue(&LP, RetPair.first);
   1866   DAG.setRoot(RetPair.second);
   1867 }
   1868 
   1869 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
   1870 /// small case ranges).
   1871 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
   1872                                                  CaseRecVector& WorkList,
   1873                                                  const Value* SV,
   1874                                                  MachineBasicBlock *Default,
   1875                                                  MachineBasicBlock *SwitchBB) {
   1876   Case& BackCase  = *(CR.Range.second-1);
   1877 
   1878   // Size is the number of Cases represented by this range.
   1879   size_t Size = CR.Range.second - CR.Range.first;
   1880   if (Size > 3)
   1881     return false;
   1882 
   1883   // Get the MachineFunction which holds the current MBB.  This is used when
   1884   // inserting any additional MBBs necessary to represent the switch.
   1885   MachineFunction *CurMF = FuncInfo.MF;
   1886 
   1887   // Figure out which block is immediately after the current one.
   1888   MachineBasicBlock *NextBlock = 0;
   1889   MachineFunction::iterator BBI = CR.CaseBB;
   1890 
   1891   if (++BBI != FuncInfo.MF->end())
   1892     NextBlock = BBI;
   1893 
   1894   // If any two of the cases has the same destination, and if one value
   1895   // is the same as the other, but has one bit unset that the other has set,
   1896   // use bit manipulation to do two compares at once.  For example:
   1897   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
   1898   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
   1899   // TODO: Handle cases where CR.CaseBB != SwitchBB.
   1900   if (Size == 2 && CR.CaseBB == SwitchBB) {
   1901     Case &Small = *CR.Range.first;
   1902     Case &Big = *(CR.Range.second-1);
   1903 
   1904     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
   1905       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
   1906       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
   1907 
   1908       // Check that there is only one bit different.
   1909       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
   1910           (SmallValue | BigValue) == BigValue) {
   1911         // Isolate the common bit.
   1912         APInt CommonBit = BigValue & ~SmallValue;
   1913         assert((SmallValue | CommonBit) == BigValue &&
   1914                CommonBit.countPopulation() == 1 && "Not a common bit?");
   1915 
   1916         SDValue CondLHS = getValue(SV);
   1917         EVT VT = CondLHS.getValueType();
   1918         DebugLoc DL = getCurDebugLoc();
   1919 
   1920         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
   1921                                  DAG.getConstant(CommonBit, VT));
   1922         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
   1923                                     Or, DAG.getConstant(BigValue, VT),
   1924                                     ISD::SETEQ);
   1925 
   1926         // Update successor info.
   1927         addSuccessorWithWeight(SwitchBB, Small.BB);
   1928         addSuccessorWithWeight(SwitchBB, Default);
   1929 
   1930         // Insert the true branch.
   1931         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
   1932                                      getControlRoot(), Cond,
   1933                                      DAG.getBasicBlock(Small.BB));
   1934 
   1935         // Insert the false branch.
   1936         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
   1937                              DAG.getBasicBlock(Default));
   1938 
   1939         DAG.setRoot(BrCond);
   1940         return true;
   1941       }
   1942     }
   1943   }
   1944 
   1945   // Rearrange the case blocks so that the last one falls through if possible.
   1946   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
   1947     // The last case block won't fall through into 'NextBlock' if we emit the
   1948     // branches in this order.  See if rearranging a case value would help.
   1949     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
   1950       if (I->BB == NextBlock) {
   1951         std::swap(*I, BackCase);
   1952         break;
   1953       }
   1954     }
   1955   }
   1956 
   1957   // Create a CaseBlock record representing a conditional branch to
   1958   // the Case's target mbb if the value being switched on SV is equal
   1959   // to C.
   1960   MachineBasicBlock *CurBlock = CR.CaseBB;
   1961   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
   1962     MachineBasicBlock *FallThrough;
   1963     if (I != E-1) {
   1964       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
   1965       CurMF->insert(BBI, FallThrough);
   1966 
   1967       // Put SV in a virtual register to make it available from the new blocks.
   1968       ExportFromCurrentBlock(SV);
   1969     } else {
   1970       // If the last case doesn't match, go to the default block.
   1971       FallThrough = Default;
   1972     }
   1973 
   1974     const Value *RHS, *LHS, *MHS;
   1975     ISD::CondCode CC;
   1976     if (I->High == I->Low) {
   1977       // This is just small small case range :) containing exactly 1 case
   1978       CC = ISD::SETEQ;
   1979       LHS = SV; RHS = I->High; MHS = NULL;
   1980     } else {
   1981       CC = ISD::SETLE;
   1982       LHS = I->Low; MHS = SV; RHS = I->High;
   1983     }
   1984 
   1985     uint32_t ExtraWeight = I->ExtraWeight;
   1986     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
   1987                  /* me */ CurBlock,
   1988                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
   1989 
   1990     // If emitting the first comparison, just call visitSwitchCase to emit the
   1991     // code into the current block.  Otherwise, push the CaseBlock onto the
   1992     // vector to be later processed by SDISel, and insert the node's MBB
   1993     // before the next MBB.
   1994     if (CurBlock == SwitchBB)
   1995       visitSwitchCase(CB, SwitchBB);
   1996     else
   1997       SwitchCases.push_back(CB);
   1998 
   1999     CurBlock = FallThrough;
   2000   }
   2001 
   2002   return true;
   2003 }
   2004 
   2005 static inline bool areJTsAllowed(const TargetLowering &TLI) {
   2006   return !DisableJumpTables &&
   2007           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
   2008            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
   2009 }
   2010 
   2011 static APInt ComputeRange(const APInt &First, const APInt &Last) {
   2012   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
   2013   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
   2014   return (LastExt - FirstExt + 1ULL);
   2015 }
   2016 
   2017 /// handleJTSwitchCase - Emit jumptable for current switch case range
   2018 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
   2019                                              CaseRecVector &WorkList,
   2020                                              const Value *SV,
   2021                                              MachineBasicBlock *Default,
   2022                                              MachineBasicBlock *SwitchBB) {
   2023   Case& FrontCase = *CR.Range.first;
   2024   Case& BackCase  = *(CR.Range.second-1);
   2025 
   2026   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   2027   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   2028 
   2029   APInt TSize(First.getBitWidth(), 0);
   2030   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
   2031     TSize += I->size();
   2032 
   2033   if (!areJTsAllowed(TLI) || TSize.ult(4))
   2034     return false;
   2035 
   2036   APInt Range = ComputeRange(First, Last);
   2037   // The density is TSize / Range. Require at least 40%.
   2038   // It should not be possible for IntTSize to saturate for sane code, but make
   2039   // sure we handle Range saturation correctly.
   2040   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
   2041   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
   2042   if (IntTSize * 10 < IntRange * 4)
   2043     return false;
   2044 
   2045   DEBUG(dbgs() << "Lowering jump table\n"
   2046                << "First entry: " << First << ". Last entry: " << Last << '\n'
   2047                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
   2048 
   2049   // Get the MachineFunction which holds the current MBB.  This is used when
   2050   // inserting any additional MBBs necessary to represent the switch.
   2051   MachineFunction *CurMF = FuncInfo.MF;
   2052 
   2053   // Figure out which block is immediately after the current one.
   2054   MachineFunction::iterator BBI = CR.CaseBB;
   2055   ++BBI;
   2056 
   2057   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2058 
   2059   // Create a new basic block to hold the code for loading the address
   2060   // of the jump table, and jumping to it.  Update successor information;
   2061   // we will either branch to the default case for the switch, or the jump
   2062   // table.
   2063   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2064   CurMF->insert(BBI, JumpTableBB);
   2065 
   2066   addSuccessorWithWeight(CR.CaseBB, Default);
   2067   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
   2068 
   2069   // Build a vector of destination BBs, corresponding to each target
   2070   // of the jump table. If the value of the jump table slot corresponds to
   2071   // a case statement, push the case's BB onto the vector, otherwise, push
   2072   // the default BB.
   2073   std::vector<MachineBasicBlock*> DestBBs;
   2074   APInt TEI = First;
   2075   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
   2076     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
   2077     const APInt &High = cast<ConstantInt>(I->High)->getValue();
   2078 
   2079     if (Low.sle(TEI) && TEI.sle(High)) {
   2080       DestBBs.push_back(I->BB);
   2081       if (TEI==High)
   2082         ++I;
   2083     } else {
   2084       DestBBs.push_back(Default);
   2085     }
   2086   }
   2087 
   2088   // Update successor info. Add one edge to each unique successor.
   2089   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
   2090   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
   2091          E = DestBBs.end(); I != E; ++I) {
   2092     if (!SuccsHandled[(*I)->getNumber()]) {
   2093       SuccsHandled[(*I)->getNumber()] = true;
   2094       addSuccessorWithWeight(JumpTableBB, *I);
   2095     }
   2096   }
   2097 
   2098   // Create a jump table index for this jump table.
   2099   unsigned JTEncoding = TLI.getJumpTableEncoding();
   2100   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
   2101                        ->createJumpTableIndex(DestBBs);
   2102 
   2103   // Set the jump table information so that we can codegen it as a second
   2104   // MachineBasicBlock
   2105   JumpTable JT(-1U, JTI, JumpTableBB, Default);
   2106   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
   2107   if (CR.CaseBB == SwitchBB)
   2108     visitJumpTableHeader(JT, JTH, SwitchBB);
   2109 
   2110   JTCases.push_back(JumpTableBlock(JTH, JT));
   2111   return true;
   2112 }
   2113 
   2114 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
   2115 /// 2 subtrees.
   2116 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
   2117                                                   CaseRecVector& WorkList,
   2118                                                   const Value* SV,
   2119                                                   MachineBasicBlock *Default,
   2120                                                   MachineBasicBlock *SwitchBB) {
   2121   // Get the MachineFunction which holds the current MBB.  This is used when
   2122   // inserting any additional MBBs necessary to represent the switch.
   2123   MachineFunction *CurMF = FuncInfo.MF;
   2124 
   2125   // Figure out which block is immediately after the current one.
   2126   MachineFunction::iterator BBI = CR.CaseBB;
   2127   ++BBI;
   2128 
   2129   Case& FrontCase = *CR.Range.first;
   2130   Case& BackCase  = *(CR.Range.second-1);
   2131   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2132 
   2133   // Size is the number of Cases represented by this range.
   2134   unsigned Size = CR.Range.second - CR.Range.first;
   2135 
   2136   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   2137   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   2138   double FMetric = 0;
   2139   CaseItr Pivot = CR.Range.first + Size/2;
   2140 
   2141   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
   2142   // (heuristically) allow us to emit JumpTable's later.
   2143   APInt TSize(First.getBitWidth(), 0);
   2144   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2145        I!=E; ++I)
   2146     TSize += I->size();
   2147 
   2148   APInt LSize = FrontCase.size();
   2149   APInt RSize = TSize-LSize;
   2150   DEBUG(dbgs() << "Selecting best pivot: \n"
   2151                << "First: " << First << ", Last: " << Last <<'\n'
   2152                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
   2153   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
   2154        J!=E; ++I, ++J) {
   2155     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
   2156     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
   2157     APInt Range = ComputeRange(LEnd, RBegin);
   2158     assert((Range - 2ULL).isNonNegative() &&
   2159            "Invalid case distance");
   2160     // Use volatile double here to avoid excess precision issues on some hosts,
   2161     // e.g. that use 80-bit X87 registers.
   2162     volatile double LDensity =
   2163        (double)LSize.roundToDouble() /
   2164                            (LEnd - First + 1ULL).roundToDouble();
   2165     volatile double RDensity =
   2166       (double)RSize.roundToDouble() /
   2167                            (Last - RBegin + 1ULL).roundToDouble();
   2168     double Metric = Range.logBase2()*(LDensity+RDensity);
   2169     // Should always split in some non-trivial place
   2170     DEBUG(dbgs() <<"=>Step\n"
   2171                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
   2172                  << "LDensity: " << LDensity
   2173                  << ", RDensity: " << RDensity << '\n'
   2174                  << "Metric: " << Metric << '\n');
   2175     if (FMetric < Metric) {
   2176       Pivot = J;
   2177       FMetric = Metric;
   2178       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
   2179     }
   2180 
   2181     LSize += J->size();
   2182     RSize -= J->size();
   2183   }
   2184   if (areJTsAllowed(TLI)) {
   2185     // If our case is dense we *really* should handle it earlier!
   2186     assert((FMetric > 0) && "Should handle dense range earlier!");
   2187   } else {
   2188     Pivot = CR.Range.first + Size/2;
   2189   }
   2190 
   2191   CaseRange LHSR(CR.Range.first, Pivot);
   2192   CaseRange RHSR(Pivot, CR.Range.second);
   2193   Constant *C = Pivot->Low;
   2194   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
   2195 
   2196   // We know that we branch to the LHS if the Value being switched on is
   2197   // less than the Pivot value, C.  We use this to optimize our binary
   2198   // tree a bit, by recognizing that if SV is greater than or equal to the
   2199   // LHS's Case Value, and that Case Value is exactly one less than the
   2200   // Pivot's Value, then we can branch directly to the LHS's Target,
   2201   // rather than creating a leaf node for it.
   2202   if ((LHSR.second - LHSR.first) == 1 &&
   2203       LHSR.first->High == CR.GE &&
   2204       cast<ConstantInt>(C)->getValue() ==
   2205       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
   2206     TrueBB = LHSR.first->BB;
   2207   } else {
   2208     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2209     CurMF->insert(BBI, TrueBB);
   2210     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
   2211 
   2212     // Put SV in a virtual register to make it available from the new blocks.
   2213     ExportFromCurrentBlock(SV);
   2214   }
   2215 
   2216   // Similar to the optimization above, if the Value being switched on is
   2217   // known to be less than the Constant CR.LT, and the current Case Value
   2218   // is CR.LT - 1, then we can branch directly to the target block for
   2219   // the current Case Value, rather than emitting a RHS leaf node for it.
   2220   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
   2221       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
   2222       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
   2223     FalseBB = RHSR.first->BB;
   2224   } else {
   2225     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2226     CurMF->insert(BBI, FalseBB);
   2227     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
   2228 
   2229     // Put SV in a virtual register to make it available from the new blocks.
   2230     ExportFromCurrentBlock(SV);
   2231   }
   2232 
   2233   // Create a CaseBlock record representing a conditional branch to
   2234   // the LHS node if the value being switched on SV is less than C.
   2235   // Otherwise, branch to LHS.
   2236   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
   2237 
   2238   if (CR.CaseBB == SwitchBB)
   2239     visitSwitchCase(CB, SwitchBB);
   2240   else
   2241     SwitchCases.push_back(CB);
   2242 
   2243   return true;
   2244 }
   2245 
   2246 /// handleBitTestsSwitchCase - if current case range has few destination and
   2247 /// range span less, than machine word bitwidth, encode case range into series
   2248 /// of masks and emit bit tests with these masks.
   2249 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
   2250                                                    CaseRecVector& WorkList,
   2251                                                    const Value* SV,
   2252                                                    MachineBasicBlock* Default,
   2253                                                    MachineBasicBlock *SwitchBB){
   2254   EVT PTy = TLI.getPointerTy();
   2255   unsigned IntPtrBits = PTy.getSizeInBits();
   2256 
   2257   Case& FrontCase = *CR.Range.first;
   2258   Case& BackCase  = *(CR.Range.second-1);
   2259 
   2260   // Get the MachineFunction which holds the current MBB.  This is used when
   2261   // inserting any additional MBBs necessary to represent the switch.
   2262   MachineFunction *CurMF = FuncInfo.MF;
   2263 
   2264   // If target does not have legal shift left, do not emit bit tests at all.
   2265   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
   2266     return false;
   2267 
   2268   size_t numCmps = 0;
   2269   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2270        I!=E; ++I) {
   2271     // Single case counts one, case range - two.
   2272     numCmps += (I->Low == I->High ? 1 : 2);
   2273   }
   2274 
   2275   // Count unique destinations
   2276   SmallSet<MachineBasicBlock*, 4> Dests;
   2277   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2278     Dests.insert(I->BB);
   2279     if (Dests.size() > 3)
   2280       // Don't bother the code below, if there are too much unique destinations
   2281       return false;
   2282   }
   2283   DEBUG(dbgs() << "Total number of unique destinations: "
   2284         << Dests.size() << '\n'
   2285         << "Total number of comparisons: " << numCmps << '\n');
   2286 
   2287   // Compute span of values.
   2288   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
   2289   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
   2290   APInt cmpRange = maxValue - minValue;
   2291 
   2292   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
   2293                << "Low bound: " << minValue << '\n'
   2294                << "High bound: " << maxValue << '\n');
   2295 
   2296   if (cmpRange.uge(IntPtrBits) ||
   2297       (!(Dests.size() == 1 && numCmps >= 3) &&
   2298        !(Dests.size() == 2 && numCmps >= 5) &&
   2299        !(Dests.size() >= 3 && numCmps >= 6)))
   2300     return false;
   2301 
   2302   DEBUG(dbgs() << "Emitting bit tests\n");
   2303   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
   2304 
   2305   // Optimize the case where all the case values fit in a
   2306   // word without having to subtract minValue. In this case,
   2307   // we can optimize away the subtraction.
   2308   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
   2309     cmpRange = maxValue;
   2310   } else {
   2311     lowBound = minValue;
   2312   }
   2313 
   2314   CaseBitsVector CasesBits;
   2315   unsigned i, count = 0;
   2316 
   2317   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2318     MachineBasicBlock* Dest = I->BB;
   2319     for (i = 0; i < count; ++i)
   2320       if (Dest == CasesBits[i].BB)
   2321         break;
   2322 
   2323     if (i == count) {
   2324       assert((count < 3) && "Too much destinations to test!");
   2325       CasesBits.push_back(CaseBits(0, Dest, 0));
   2326       count++;
   2327     }
   2328 
   2329     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
   2330     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
   2331 
   2332     uint64_t lo = (lowValue - lowBound).getZExtValue();
   2333     uint64_t hi = (highValue - lowBound).getZExtValue();
   2334 
   2335     for (uint64_t j = lo; j <= hi; j++) {
   2336       CasesBits[i].Mask |=  1ULL << j;
   2337       CasesBits[i].Bits++;
   2338     }
   2339 
   2340   }
   2341   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
   2342 
   2343   BitTestInfo BTC;
   2344 
   2345   // Figure out which block is immediately after the current one.
   2346   MachineFunction::iterator BBI = CR.CaseBB;
   2347   ++BBI;
   2348 
   2349   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2350 
   2351   DEBUG(dbgs() << "Cases:\n");
   2352   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
   2353     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
   2354                  << ", Bits: " << CasesBits[i].Bits
   2355                  << ", BB: " << CasesBits[i].BB << '\n');
   2356 
   2357     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2358     CurMF->insert(BBI, CaseBB);
   2359     BTC.push_back(BitTestCase(CasesBits[i].Mask,
   2360                               CaseBB,
   2361                               CasesBits[i].BB));
   2362 
   2363     // Put SV in a virtual register to make it available from the new blocks.
   2364     ExportFromCurrentBlock(SV);
   2365   }
   2366 
   2367   BitTestBlock BTB(lowBound, cmpRange, SV,
   2368                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
   2369                    CR.CaseBB, Default, BTC);
   2370 
   2371   if (CR.CaseBB == SwitchBB)
   2372     visitBitTestHeader(BTB, SwitchBB);
   2373 
   2374   BitTestCases.push_back(BTB);
   2375 
   2376   return true;
   2377 }
   2378 
   2379 /// Clusterify - Transform simple list of Cases into list of CaseRange's
   2380 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
   2381                                        const SwitchInst& SI) {
   2382   size_t numCmps = 0;
   2383 
   2384   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   2385   // Start with "simple" cases
   2386   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
   2387     BasicBlock *SuccBB = SI.getSuccessor(i);
   2388     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
   2389 
   2390     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
   2391 
   2392     Cases.push_back(Case(SI.getSuccessorValue(i),
   2393                          SI.getSuccessorValue(i),
   2394                          SMBB, ExtraWeight));
   2395   }
   2396   std::sort(Cases.begin(), Cases.end(), CaseCmp());
   2397 
   2398   // Merge case into clusters
   2399   if (Cases.size() >= 2)
   2400     // Must recompute end() each iteration because it may be
   2401     // invalidated by erase if we hold on to it
   2402     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
   2403          J != Cases.end(); ) {
   2404       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
   2405       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
   2406       MachineBasicBlock* nextBB = J->BB;
   2407       MachineBasicBlock* currentBB = I->BB;
   2408 
   2409       // If the two neighboring cases go to the same destination, merge them
   2410       // into a single case.
   2411       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
   2412         I->High = J->High;
   2413         J = Cases.erase(J);
   2414 
   2415         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
   2416           uint32_t CurWeight = currentBB->getBasicBlock() ?
   2417             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
   2418           uint32_t NextWeight = nextBB->getBasicBlock() ?
   2419             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
   2420 
   2421           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
   2422                              CurWeight + NextWeight);
   2423         }
   2424       } else {
   2425         I = J++;
   2426       }
   2427     }
   2428 
   2429   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
   2430     if (I->Low != I->High)
   2431       // A range counts double, since it requires two compares.
   2432       ++numCmps;
   2433   }
   2434 
   2435   return numCmps;
   2436 }
   2437 
   2438 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
   2439                                            MachineBasicBlock *Last) {
   2440   // Update JTCases.
   2441   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
   2442     if (JTCases[i].first.HeaderBB == First)
   2443       JTCases[i].first.HeaderBB = Last;
   2444 
   2445   // Update BitTestCases.
   2446   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
   2447     if (BitTestCases[i].Parent == First)
   2448       BitTestCases[i].Parent = Last;
   2449 }
   2450 
   2451 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
   2452   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
   2453 
   2454   // Figure out which block is immediately after the current one.
   2455   MachineBasicBlock *NextBlock = 0;
   2456   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
   2457 
   2458   // If there is only the default destination, branch to it if it is not the
   2459   // next basic block.  Otherwise, just fall through.
   2460   if (SI.getNumCases() == 1) {
   2461     // Update machine-CFG edges.
   2462 
   2463     // If this is not a fall-through branch, emit the branch.
   2464     SwitchMBB->addSuccessor(Default);
   2465     if (Default != NextBlock)
   2466       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   2467                               MVT::Other, getControlRoot(),
   2468                               DAG.getBasicBlock(Default)));
   2469 
   2470     return;
   2471   }
   2472 
   2473   // If there are any non-default case statements, create a vector of Cases
   2474   // representing each one, and sort the vector so that we can efficiently
   2475   // create a binary search tree from them.
   2476   CaseVector Cases;
   2477   size_t numCmps = Clusterify(Cases, SI);
   2478   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
   2479                << ". Total compares: " << numCmps << '\n');
   2480   (void)numCmps;
   2481 
   2482   // Get the Value to be switched on and default basic blocks, which will be
   2483   // inserted into CaseBlock records, representing basic blocks in the binary
   2484   // search tree.
   2485   const Value *SV = SI.getCondition();
   2486 
   2487   // Push the initial CaseRec onto the worklist
   2488   CaseRecVector WorkList;
   2489   WorkList.push_back(CaseRec(SwitchMBB,0,0,
   2490                              CaseRange(Cases.begin(),Cases.end())));
   2491 
   2492   while (!WorkList.empty()) {
   2493     // Grab a record representing a case range to process off the worklist
   2494     CaseRec CR = WorkList.back();
   2495     WorkList.pop_back();
   2496 
   2497     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2498       continue;
   2499 
   2500     // If the range has few cases (two or less) emit a series of specific
   2501     // tests.
   2502     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
   2503       continue;
   2504 
   2505     // If the switch has more than 5 blocks, and at least 40% dense, and the
   2506     // target supports indirect branches, then emit a jump table rather than
   2507     // lowering the switch to a binary tree of conditional branches.
   2508     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2509       continue;
   2510 
   2511     // Emit binary tree. We need to pick a pivot, and push left and right ranges
   2512     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
   2513     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
   2514   }
   2515 }
   2516 
   2517 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
   2518   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
   2519 
   2520   // Update machine-CFG edges with unique successors.
   2521   SmallVector<BasicBlock*, 32> succs;
   2522   succs.reserve(I.getNumSuccessors());
   2523   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
   2524     succs.push_back(I.getSuccessor(i));
   2525   array_pod_sort(succs.begin(), succs.end());
   2526   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
   2527   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
   2528     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
   2529     addSuccessorWithWeight(IndirectBrMBB, Succ);
   2530   }
   2531 
   2532   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
   2533                           MVT::Other, getControlRoot(),
   2534                           getValue(I.getAddress())));
   2535 }
   2536 
   2537 void SelectionDAGBuilder::visitFSub(const User &I) {
   2538   // -0.0 - X --> fneg
   2539   Type *Ty = I.getType();
   2540   if (isa<Constant>(I.getOperand(0)) &&
   2541       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
   2542     SDValue Op2 = getValue(I.getOperand(1));
   2543     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
   2544                              Op2.getValueType(), Op2));
   2545     return;
   2546   }
   2547 
   2548   visitBinary(I, ISD::FSUB);
   2549 }
   2550 
   2551 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
   2552   SDValue Op1 = getValue(I.getOperand(0));
   2553   SDValue Op2 = getValue(I.getOperand(1));
   2554   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
   2555                            Op1.getValueType(), Op1, Op2));
   2556 }
   2557 
   2558 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
   2559   SDValue Op1 = getValue(I.getOperand(0));
   2560   SDValue Op2 = getValue(I.getOperand(1));
   2561 
   2562   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
   2563 
   2564   // Coerce the shift amount to the right type if we can.
   2565   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
   2566     unsigned ShiftSize = ShiftTy.getSizeInBits();
   2567     unsigned Op2Size = Op2.getValueType().getSizeInBits();
   2568     DebugLoc DL = getCurDebugLoc();
   2569 
   2570     // If the operand is smaller than the shift count type, promote it.
   2571     if (ShiftSize > Op2Size)
   2572       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
   2573 
   2574     // If the operand is larger than the shift count type but the shift
   2575     // count type has enough bits to represent any shift value, truncate
   2576     // it now. This is a common case and it exposes the truncate to
   2577     // optimization early.
   2578     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
   2579       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
   2580     // Otherwise we'll need to temporarily settle for some other convenient
   2581     // type.  Type legalization will make adjustments once the shiftee is split.
   2582     else
   2583       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
   2584   }
   2585 
   2586   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
   2587                            Op1.getValueType(), Op1, Op2));
   2588 }
   2589 
   2590 void SelectionDAGBuilder::visitSDiv(const User &I) {
   2591   SDValue Op1 = getValue(I.getOperand(0));
   2592   SDValue Op2 = getValue(I.getOperand(1));
   2593 
   2594   // Turn exact SDivs into multiplications.
   2595   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
   2596   // exact bit.
   2597   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
   2598       !isa<ConstantSDNode>(Op1) &&
   2599       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
   2600     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
   2601   else
   2602     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
   2603                              Op1, Op2));
   2604 }
   2605 
   2606 void SelectionDAGBuilder::visitICmp(const User &I) {
   2607   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
   2608   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
   2609     predicate = IC->getPredicate();
   2610   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
   2611     predicate = ICmpInst::Predicate(IC->getPredicate());
   2612   SDValue Op1 = getValue(I.getOperand(0));
   2613   SDValue Op2 = getValue(I.getOperand(1));
   2614   ISD::CondCode Opcode = getICmpCondCode(predicate);
   2615 
   2616   EVT DestVT = TLI.getValueType(I.getType());
   2617   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
   2618 }
   2619 
   2620 void SelectionDAGBuilder::visitFCmp(const User &I) {
   2621   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
   2622   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
   2623     predicate = FC->getPredicate();
   2624   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
   2625     predicate = FCmpInst::Predicate(FC->getPredicate());
   2626   SDValue Op1 = getValue(I.getOperand(0));
   2627   SDValue Op2 = getValue(I.getOperand(1));
   2628   ISD::CondCode Condition = getFCmpCondCode(predicate);
   2629   EVT DestVT = TLI.getValueType(I.getType());
   2630   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
   2631 }
   2632 
   2633 void SelectionDAGBuilder::visitSelect(const User &I) {
   2634   SmallVector<EVT, 4> ValueVTs;
   2635   ComputeValueVTs(TLI, I.getType(), ValueVTs);
   2636   unsigned NumValues = ValueVTs.size();
   2637   if (NumValues == 0) return;
   2638 
   2639   SmallVector<SDValue, 4> Values(NumValues);
   2640   SDValue Cond     = getValue(I.getOperand(0));
   2641   SDValue TrueVal  = getValue(I.getOperand(1));
   2642   SDValue FalseVal = getValue(I.getOperand(2));
   2643   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
   2644     ISD::VSELECT : ISD::SELECT;
   2645 
   2646   for (unsigned i = 0; i != NumValues; ++i)
   2647     Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
   2648                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
   2649                             Cond,
   2650                             SDValue(TrueVal.getNode(),
   2651                                     TrueVal.getResNo() + i),
   2652                             SDValue(FalseVal.getNode(),
   2653                                     FalseVal.getResNo() + i));
   2654 
   2655   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   2656                            DAG.getVTList(&ValueVTs[0], NumValues),
   2657                            &Values[0], NumValues));
   2658 }
   2659 
   2660 void SelectionDAGBuilder::visitTrunc(const User &I) {
   2661   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
   2662   SDValue N = getValue(I.getOperand(0));
   2663   EVT DestVT = TLI.getValueType(I.getType());
   2664   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
   2665 }
   2666 
   2667 void SelectionDAGBuilder::visitZExt(const User &I) {
   2668   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2669   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
   2670   SDValue N = getValue(I.getOperand(0));
   2671   EVT DestVT = TLI.getValueType(I.getType());
   2672   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
   2673 }
   2674 
   2675 void SelectionDAGBuilder::visitSExt(const User &I) {
   2676   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2677   // SExt also can't be a cast to bool for same reason. So, nothing much to do
   2678   SDValue N = getValue(I.getOperand(0));
   2679   EVT DestVT = TLI.getValueType(I.getType());
   2680   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
   2681 }
   2682 
   2683 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
   2684   // FPTrunc is never a no-op cast, no need to check
   2685   SDValue N = getValue(I.getOperand(0));
   2686   EVT DestVT = TLI.getValueType(I.getType());
   2687   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
   2688                            DestVT, N, DAG.getIntPtrConstant(0)));
   2689 }
   2690 
   2691 void SelectionDAGBuilder::visitFPExt(const User &I){
   2692   // FPTrunc is never a no-op cast, no need to check
   2693   SDValue N = getValue(I.getOperand(0));
   2694   EVT DestVT = TLI.getValueType(I.getType());
   2695   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
   2696 }
   2697 
   2698 void SelectionDAGBuilder::visitFPToUI(const User &I) {
   2699   // FPToUI is never a no-op cast, no need to check
   2700   SDValue N = getValue(I.getOperand(0));
   2701   EVT DestVT = TLI.getValueType(I.getType());
   2702   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
   2703 }
   2704 
   2705 void SelectionDAGBuilder::visitFPToSI(const User &I) {
   2706   // FPToSI is never a no-op cast, no need to check
   2707   SDValue N = getValue(I.getOperand(0));
   2708   EVT DestVT = TLI.getValueType(I.getType());
   2709   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
   2710 }
   2711 
   2712 void SelectionDAGBuilder::visitUIToFP(const User &I) {
   2713   // UIToFP is never a no-op cast, no need to check
   2714   SDValue N = getValue(I.getOperand(0));
   2715   EVT DestVT = TLI.getValueType(I.getType());
   2716   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
   2717 }
   2718 
   2719 void SelectionDAGBuilder::visitSIToFP(const User &I){
   2720   // SIToFP is never a no-op cast, no need to check
   2721   SDValue N = getValue(I.getOperand(0));
   2722   EVT DestVT = TLI.getValueType(I.getType());
   2723   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
   2724 }
   2725 
   2726 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
   2727   // What to do depends on the size of the integer and the size of the pointer.
   2728   // We can either truncate, zero extend, or no-op, accordingly.
   2729   SDValue N = getValue(I.getOperand(0));
   2730   EVT DestVT = TLI.getValueType(I.getType());
   2731   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
   2732 }
   2733 
   2734 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
   2735   // What to do depends on the size of the integer and the size of the pointer.
   2736   // We can either truncate, zero extend, or no-op, accordingly.
   2737   SDValue N = getValue(I.getOperand(0));
   2738   EVT DestVT = TLI.getValueType(I.getType());
   2739   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
   2740 }
   2741 
   2742 void SelectionDAGBuilder::visitBitCast(const User &I) {
   2743   SDValue N = getValue(I.getOperand(0));
   2744   EVT DestVT = TLI.getValueType(I.getType());
   2745 
   2746   // BitCast assures us that source and destination are the same size so this is
   2747   // either a BITCAST or a no-op.
   2748   if (DestVT != N.getValueType())
   2749     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
   2750                              DestVT, N)); // convert types.
   2751   else
   2752     setValue(&I, N);            // noop cast.
   2753 }
   2754 
   2755 void SelectionDAGBuilder::visitInsertElement(const User &I) {
   2756   SDValue InVec = getValue(I.getOperand(0));
   2757   SDValue InVal = getValue(I.getOperand(1));
   2758   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
   2759                               TLI.getPointerTy(),
   2760                               getValue(I.getOperand(2)));
   2761   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
   2762                            TLI.getValueType(I.getType()),
   2763                            InVec, InVal, InIdx));
   2764 }
   2765 
   2766 void SelectionDAGBuilder::visitExtractElement(const User &I) {
   2767   SDValue InVec = getValue(I.getOperand(0));
   2768   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
   2769                               TLI.getPointerTy(),
   2770                               getValue(I.getOperand(1)));
   2771   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   2772                            TLI.getValueType(I.getType()), InVec, InIdx));
   2773 }
   2774 
   2775 // Utility for visitShuffleVector - Returns true if the mask is mask starting
   2776 // from SIndx and increasing to the element length (undefs are allowed).
   2777 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
   2778   unsigned MaskNumElts = Mask.size();
   2779   for (unsigned i = 0; i != MaskNumElts; ++i)
   2780     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
   2781       return false;
   2782   return true;
   2783 }
   2784 
   2785 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
   2786   SmallVector<int, 8> Mask;
   2787   SDValue Src1 = getValue(I.getOperand(0));
   2788   SDValue Src2 = getValue(I.getOperand(1));
   2789 
   2790   // Convert the ConstantVector mask operand into an array of ints, with -1
   2791   // representing undef values.
   2792   SmallVector<Constant*, 8> MaskElts;
   2793   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
   2794   unsigned MaskNumElts = MaskElts.size();
   2795   for (unsigned i = 0; i != MaskNumElts; ++i) {
   2796     if (isa<UndefValue>(MaskElts[i]))
   2797       Mask.push_back(-1);
   2798     else
   2799       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
   2800   }
   2801 
   2802   EVT VT = TLI.getValueType(I.getType());
   2803   EVT SrcVT = Src1.getValueType();
   2804   unsigned SrcNumElts = SrcVT.getVectorNumElements();
   2805 
   2806   if (SrcNumElts == MaskNumElts) {
   2807     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2808                                       &Mask[0]));
   2809     return;
   2810   }
   2811 
   2812   // Normalize the shuffle vector since mask and vector length don't match.
   2813   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
   2814     // Mask is longer than the source vectors and is a multiple of the source
   2815     // vectors.  We can use concatenate vector to make the mask and vectors
   2816     // lengths match.
   2817     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
   2818       // The shuffle is concatenating two vectors together.
   2819       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
   2820                                VT, Src1, Src2));
   2821       return;
   2822     }
   2823 
   2824     // Pad both vectors with undefs to make them the same length as the mask.
   2825     unsigned NumConcat = MaskNumElts / SrcNumElts;
   2826     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
   2827     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
   2828     SDValue UndefVal = DAG.getUNDEF(SrcVT);
   2829 
   2830     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
   2831     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
   2832     MOps1[0] = Src1;
   2833     MOps2[0] = Src2;
   2834 
   2835     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2836                                                   getCurDebugLoc(), VT,
   2837                                                   &MOps1[0], NumConcat);
   2838     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2839                                                   getCurDebugLoc(), VT,
   2840                                                   &MOps2[0], NumConcat);
   2841 
   2842     // Readjust mask for new input vector length.
   2843     SmallVector<int, 8> MappedOps;
   2844     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2845       int Idx = Mask[i];
   2846       if (Idx < (int)SrcNumElts)
   2847         MappedOps.push_back(Idx);
   2848       else
   2849         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
   2850     }
   2851 
   2852     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2853                                       &MappedOps[0]));
   2854     return;
   2855   }
   2856 
   2857   if (SrcNumElts > MaskNumElts) {
   2858     // Analyze the access pattern of the vector to see if we can extract
   2859     // two subvectors and do the shuffle. The analysis is done by calculating
   2860     // the range of elements the mask access on both vectors.
   2861     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
   2862                         static_cast<int>(SrcNumElts+1)};
   2863     int MaxRange[2] = {-1, -1};
   2864 
   2865     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2866       int Idx = Mask[i];
   2867       int Input = 0;
   2868       if (Idx < 0)
   2869         continue;
   2870 
   2871       if (Idx >= (int)SrcNumElts) {
   2872         Input = 1;
   2873         Idx -= SrcNumElts;
   2874       }
   2875       if (Idx > MaxRange[Input])
   2876         MaxRange[Input] = Idx;
   2877       if (Idx < MinRange[Input])
   2878         MinRange[Input] = Idx;
   2879     }
   2880 
   2881     // Check if the access is smaller than the vector size and can we find
   2882     // a reasonable extract index.
   2883     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
   2884                                  // Extract.
   2885     int StartIdx[2];  // StartIdx to extract from
   2886     for (int Input=0; Input < 2; ++Input) {
   2887       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
   2888         RangeUse[Input] = 0; // Unused
   2889         StartIdx[Input] = 0;
   2890       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
   2891         // Fits within range but we should see if we can find a good
   2892         // start index that is a multiple of the mask length.
   2893         if (MaxRange[Input] < (int)MaskNumElts) {
   2894           RangeUse[Input] = 1; // Extract from beginning of the vector
   2895           StartIdx[Input] = 0;
   2896         } else {
   2897           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
   2898           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
   2899               StartIdx[Input] + MaskNumElts <= SrcNumElts)
   2900             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
   2901         }
   2902       }
   2903     }
   2904 
   2905     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
   2906       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
   2907       return;
   2908     }
   2909     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
   2910       // Extract appropriate subvector and generate a vector shuffle
   2911       for (int Input=0; Input < 2; ++Input) {
   2912         SDValue &Src = Input == 0 ? Src1 : Src2;
   2913         if (RangeUse[Input] == 0)
   2914           Src = DAG.getUNDEF(VT);
   2915         else
   2916           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
   2917                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
   2918       }
   2919 
   2920       // Calculate new mask.
   2921       SmallVector<int, 8> MappedOps;
   2922       for (unsigned i = 0; i != MaskNumElts; ++i) {
   2923         int Idx = Mask[i];
   2924         if (Idx < 0)
   2925           MappedOps.push_back(Idx);
   2926         else if (Idx < (int)SrcNumElts)
   2927           MappedOps.push_back(Idx - StartIdx[0]);
   2928         else
   2929           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
   2930       }
   2931 
   2932       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2933                                         &MappedOps[0]));
   2934       return;
   2935     }
   2936   }
   2937 
   2938   // We can't use either concat vectors or extract subvectors so fall back to
   2939   // replacing the shuffle with extract and build vector.
   2940   // to insert and build vector.
   2941   EVT EltVT = VT.getVectorElementType();
   2942   EVT PtrVT = TLI.getPointerTy();
   2943   SmallVector<SDValue,8> Ops;
   2944   for (unsigned i = 0; i != MaskNumElts; ++i) {
   2945     if (Mask[i] < 0) {
   2946       Ops.push_back(DAG.getUNDEF(EltVT));
   2947     } else {
   2948       int Idx = Mask[i];
   2949       SDValue Res;
   2950 
   2951       if (Idx < (int)SrcNumElts)
   2952         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   2953                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
   2954       else
   2955         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   2956                           EltVT, Src2,
   2957                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
   2958 
   2959       Ops.push_back(Res);
   2960     }
   2961   }
   2962 
   2963   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
   2964                            VT, &Ops[0], Ops.size()));
   2965 }
   2966 
   2967 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
   2968   const Value *Op0 = I.getOperand(0);
   2969   const Value *Op1 = I.getOperand(1);
   2970   Type *AggTy = I.getType();
   2971   Type *ValTy = Op1->getType();
   2972   bool IntoUndef = isa<UndefValue>(Op0);
   2973   bool FromUndef = isa<UndefValue>(Op1);
   2974 
   2975   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   2976 
   2977   SmallVector<EVT, 4> AggValueVTs;
   2978   ComputeValueVTs(TLI, AggTy, AggValueVTs);
   2979   SmallVector<EVT, 4> ValValueVTs;
   2980   ComputeValueVTs(TLI, ValTy, ValValueVTs);
   2981 
   2982   unsigned NumAggValues = AggValueVTs.size();
   2983   unsigned NumValValues = ValValueVTs.size();
   2984   SmallVector<SDValue, 4> Values(NumAggValues);
   2985 
   2986   SDValue Agg = getValue(Op0);
   2987   unsigned i = 0;
   2988   // Copy the beginning value(s) from the original aggregate.
   2989   for (; i != LinearIndex; ++i)
   2990     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2991                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   2992   // Copy values from the inserted value(s).
   2993   if (NumValValues) {
   2994     SDValue Val = getValue(Op1);
   2995     for (; i != LinearIndex + NumValValues; ++i)
   2996       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2997                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
   2998   }
   2999   // Copy remaining value(s) from the original aggregate.
   3000   for (; i != NumAggValues; ++i)
   3001     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   3002                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   3003 
   3004   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   3005                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
   3006                            &Values[0], NumAggValues));
   3007 }
   3008 
   3009 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
   3010   const Value *Op0 = I.getOperand(0);
   3011   Type *AggTy = Op0->getType();
   3012   Type *ValTy = I.getType();
   3013   bool OutOfUndef = isa<UndefValue>(Op0);
   3014 
   3015   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   3016 
   3017   SmallVector<EVT, 4> ValValueVTs;
   3018   ComputeValueVTs(TLI, ValTy, ValValueVTs);
   3019 
   3020   unsigned NumValValues = ValValueVTs.size();
   3021 
   3022   // Ignore a extractvalue that produces an empty object
   3023   if (!NumValValues) {
   3024     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
   3025     return;
   3026   }
   3027 
   3028   SmallVector<SDValue, 4> Values(NumValValues);
   3029 
   3030   SDValue Agg = getValue(Op0);
   3031   // Copy out the selected value(s).
   3032   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
   3033     Values[i - LinearIndex] =
   3034       OutOfUndef ?
   3035         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
   3036         SDValue(Agg.getNode(), Agg.getResNo() + i);
   3037 
   3038   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   3039                            DAG.getVTList(&ValValueVTs[0], NumValValues),
   3040                            &Values[0], NumValValues));
   3041 }
   3042 
   3043 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
   3044   SDValue N = getValue(I.getOperand(0));
   3045   Type *Ty = I.getOperand(0)->getType();
   3046 
   3047   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
   3048        OI != E; ++OI) {
   3049     const Value *Idx = *OI;
   3050     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
   3051       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
   3052       if (Field) {
   3053         // N = N + Offset
   3054         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
   3055         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
   3056                         DAG.getIntPtrConstant(Offset));
   3057       }
   3058 
   3059       Ty = StTy->getElementType(Field);
   3060     } else {
   3061       Ty = cast<SequentialType>(Ty)->getElementType();
   3062 
   3063       // If this is a constant subscript, handle it quickly.
   3064       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
   3065         if (CI->isZero()) continue;
   3066         uint64_t Offs =
   3067             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
   3068         SDValue OffsVal;
   3069         EVT PTy = TLI.getPointerTy();
   3070         unsigned PtrBits = PTy.getSizeInBits();
   3071         if (PtrBits < 64)
   3072           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
   3073                                 TLI.getPointerTy(),
   3074                                 DAG.getConstant(Offs, MVT::i64));
   3075         else
   3076           OffsVal = DAG.getIntPtrConstant(Offs);
   3077 
   3078         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
   3079                         OffsVal);
   3080         continue;
   3081       }
   3082 
   3083       // N = N + Idx * ElementSize;
   3084       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
   3085                                 TD->getTypeAllocSize(Ty));
   3086       SDValue IdxN = getValue(Idx);
   3087 
   3088       // If the index is smaller or larger than intptr_t, truncate or extend
   3089       // it.
   3090       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
   3091 
   3092       // If this is a multiply by a power of two, turn it into a shl
   3093       // immediately.  This is a very common case.
   3094       if (ElementSize != 1) {
   3095         if (ElementSize.isPowerOf2()) {
   3096           unsigned Amt = ElementSize.logBase2();
   3097           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
   3098                              N.getValueType(), IdxN,
   3099                              DAG.getConstant(Amt, TLI.getPointerTy()));
   3100         } else {
   3101           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
   3102           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
   3103                              N.getValueType(), IdxN, Scale);
   3104         }
   3105       }
   3106 
   3107       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3108                       N.getValueType(), N, IdxN);
   3109     }
   3110   }
   3111 
   3112   setValue(&I, N);
   3113 }
   3114 
   3115 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
   3116   // If this is a fixed sized alloca in the entry block of the function,
   3117   // allocate it statically on the stack.
   3118   if (FuncInfo.StaticAllocaMap.count(&I))
   3119     return;   // getValue will auto-populate this.
   3120 
   3121   Type *Ty = I.getAllocatedType();
   3122   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
   3123   unsigned Align =
   3124     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
   3125              I.getAlignment());
   3126 
   3127   SDValue AllocSize = getValue(I.getArraySize());
   3128 
   3129   EVT IntPtr = TLI.getPointerTy();
   3130   if (AllocSize.getValueType() != IntPtr)
   3131     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
   3132 
   3133   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
   3134                           AllocSize,
   3135                           DAG.getConstant(TySize, IntPtr));
   3136 
   3137   // Handle alignment.  If the requested alignment is less than or equal to
   3138   // the stack alignment, ignore it.  If the size is greater than or equal to
   3139   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
   3140   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   3141   if (Align <= StackAlign)
   3142     Align = 0;
   3143 
   3144   // Round the size of the allocation up to the stack alignment size
   3145   // by add SA-1 to the size.
   3146   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3147                           AllocSize.getValueType(), AllocSize,
   3148                           DAG.getIntPtrConstant(StackAlign-1));
   3149 
   3150   // Mask out the low bits for alignment purposes.
   3151   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
   3152                           AllocSize.getValueType(), AllocSize,
   3153                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
   3154 
   3155   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
   3156   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
   3157   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
   3158                             VTs, Ops, 3);
   3159   setValue(&I, DSA);
   3160   DAG.setRoot(DSA.getValue(1));
   3161 
   3162   // Inform the Frame Information that we have just allocated a variable-sized
   3163   // object.
   3164   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
   3165 }
   3166 
   3167 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
   3168   if (I.isAtomic())
   3169     return visitAtomicLoad(I);
   3170 
   3171   const Value *SV = I.getOperand(0);
   3172   SDValue Ptr = getValue(SV);
   3173 
   3174   Type *Ty = I.getType();
   3175 
   3176   bool isVolatile = I.isVolatile();
   3177   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
   3178   unsigned Alignment = I.getAlignment();
   3179   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3180 
   3181   SmallVector<EVT, 4> ValueVTs;
   3182   SmallVector<uint64_t, 4> Offsets;
   3183   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
   3184   unsigned NumValues = ValueVTs.size();
   3185   if (NumValues == 0)
   3186     return;
   3187 
   3188   SDValue Root;
   3189   bool ConstantMemory = false;
   3190   if (I.isVolatile() || NumValues > MaxParallelChains)
   3191     // Serialize volatile loads with other side effects.
   3192     Root = getRoot();
   3193   else if (AA->pointsToConstantMemory(
   3194              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
   3195     // Do not serialize (non-volatile) loads of constant memory with anything.
   3196     Root = DAG.getEntryNode();
   3197     ConstantMemory = true;
   3198   } else {
   3199     // Do not serialize non-volatile loads against each other.
   3200     Root = DAG.getRoot();
   3201   }
   3202 
   3203   SmallVector<SDValue, 4> Values(NumValues);
   3204   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3205                                           NumValues));
   3206   EVT PtrVT = Ptr.getValueType();
   3207   unsigned ChainI = 0;
   3208   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3209     // Serializing loads here may result in excessive register pressure, and
   3210     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
   3211     // could recover a bit by hoisting nodes upward in the chain by recognizing
   3212     // they are side-effect free or do not alias. The optimizer should really
   3213     // avoid this case by converting large object/array copies to llvm.memcpy
   3214     // (MaxParallelChains should always remain as failsafe).
   3215     if (ChainI == MaxParallelChains) {
   3216       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
   3217       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3218                                   MVT::Other, &Chains[0], ChainI);
   3219       Root = Chain;
   3220       ChainI = 0;
   3221     }
   3222     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3223                             PtrVT, Ptr,
   3224                             DAG.getConstant(Offsets[i], PtrVT));
   3225     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
   3226                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
   3227                             isNonTemporal, Alignment, TBAAInfo);
   3228 
   3229     Values[i] = L;
   3230     Chains[ChainI] = L.getValue(1);
   3231   }
   3232 
   3233   if (!ConstantMemory) {
   3234     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3235                                 MVT::Other, &Chains[0], ChainI);
   3236     if (isVolatile)
   3237       DAG.setRoot(Chain);
   3238     else
   3239       PendingLoads.push_back(Chain);
   3240   }
   3241 
   3242   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   3243                            DAG.getVTList(&ValueVTs[0], NumValues),
   3244                            &Values[0], NumValues));
   3245 }
   3246 
   3247 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
   3248   if (I.isAtomic())
   3249     return visitAtomicStore(I);
   3250 
   3251   const Value *SrcV = I.getOperand(0);
   3252   const Value *PtrV = I.getOperand(1);
   3253 
   3254   SmallVector<EVT, 4> ValueVTs;
   3255   SmallVector<uint64_t, 4> Offsets;
   3256   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
   3257   unsigned NumValues = ValueVTs.size();
   3258   if (NumValues == 0)
   3259     return;
   3260 
   3261   // Get the lowered operands. Note that we do this after
   3262   // checking if NumResults is zero, because with zero results
   3263   // the operands won't have values in the map.
   3264   SDValue Src = getValue(SrcV);
   3265   SDValue Ptr = getValue(PtrV);
   3266 
   3267   SDValue Root = getRoot();
   3268   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3269                                           NumValues));
   3270   EVT PtrVT = Ptr.getValueType();
   3271   bool isVolatile = I.isVolatile();
   3272   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
   3273   unsigned Alignment = I.getAlignment();
   3274   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3275 
   3276   unsigned ChainI = 0;
   3277   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3278     // See visitLoad comments.
   3279     if (ChainI == MaxParallelChains) {
   3280       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3281                                   MVT::Other, &Chains[0], ChainI);
   3282       Root = Chain;
   3283       ChainI = 0;
   3284     }
   3285     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
   3286                               DAG.getConstant(Offsets[i], PtrVT));
   3287     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
   3288                               SDValue(Src.getNode(), Src.getResNo() + i),
   3289                               Add, MachinePointerInfo(PtrV, Offsets[i]),
   3290                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
   3291     Chains[ChainI] = St;
   3292   }
   3293 
   3294   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3295                                   MVT::Other, &Chains[0], ChainI);
   3296   ++SDNodeOrder;
   3297   AssignOrderingToNode(StoreNode.getNode());
   3298   DAG.setRoot(StoreNode);
   3299 }
   3300 
   3301 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
   3302                                     SynchronizationScope Scope,
   3303                                     bool Before, DebugLoc dl,
   3304                                     SelectionDAG &DAG,
   3305                                     const TargetLowering &TLI) {
   3306   // Fence, if necessary
   3307   if (Before) {
   3308     if (Order == AcquireRelease || Order == SequentiallyConsistent)
   3309       Order = Release;
   3310     else if (Order == Acquire || Order == Monotonic)
   3311       return Chain;
   3312   } else {
   3313     if (Order == AcquireRelease)
   3314       Order = Acquire;
   3315     else if (Order == Release || Order == Monotonic)
   3316       return Chain;
   3317   }
   3318   SDValue Ops[3];
   3319   Ops[0] = Chain;
   3320   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
   3321   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
   3322   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
   3323 }
   3324 
   3325 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
   3326   DebugLoc dl = getCurDebugLoc();
   3327   AtomicOrdering Order = I.getOrdering();
   3328   SynchronizationScope Scope = I.getSynchScope();
   3329 
   3330   SDValue InChain = getRoot();
   3331 
   3332   if (TLI.getInsertFencesForAtomic())
   3333     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3334                                    DAG, TLI);
   3335 
   3336   SDValue L =
   3337     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
   3338                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
   3339                   InChain,
   3340                   getValue(I.getPointerOperand()),
   3341                   getValue(I.getCompareOperand()),
   3342                   getValue(I.getNewValOperand()),
   3343                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
   3344                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3345                   Scope);
   3346 
   3347   SDValue OutChain = L.getValue(1);
   3348 
   3349   if (TLI.getInsertFencesForAtomic())
   3350     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3351                                     DAG, TLI);
   3352 
   3353   setValue(&I, L);
   3354   DAG.setRoot(OutChain);
   3355 }
   3356 
   3357 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
   3358   DebugLoc dl = getCurDebugLoc();
   3359   ISD::NodeType NT;
   3360   switch (I.getOperation()) {
   3361   default: llvm_unreachable("Unknown atomicrmw operation"); return;
   3362   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
   3363   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
   3364   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
   3365   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
   3366   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
   3367   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
   3368   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
   3369   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
   3370   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
   3371   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
   3372   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
   3373   }
   3374   AtomicOrdering Order = I.getOrdering();
   3375   SynchronizationScope Scope = I.getSynchScope();
   3376 
   3377   SDValue InChain = getRoot();
   3378 
   3379   if (TLI.getInsertFencesForAtomic())
   3380     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3381                                    DAG, TLI);
   3382 
   3383   SDValue L =
   3384     DAG.getAtomic(NT, dl,
   3385                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
   3386                   InChain,
   3387                   getValue(I.getPointerOperand()),
   3388                   getValue(I.getValOperand()),
   3389                   I.getPointerOperand(), 0 /* Alignment */,
   3390                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3391                   Scope);
   3392 
   3393   SDValue OutChain = L.getValue(1);
   3394 
   3395   if (TLI.getInsertFencesForAtomic())
   3396     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3397                                     DAG, TLI);
   3398 
   3399   setValue(&I, L);
   3400   DAG.setRoot(OutChain);
   3401 }
   3402 
   3403 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
   3404   DebugLoc dl = getCurDebugLoc();
   3405   SDValue Ops[3];
   3406   Ops[0] = getRoot();
   3407   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
   3408   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
   3409   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
   3410 }
   3411 
   3412 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
   3413   DebugLoc dl = getCurDebugLoc();
   3414   AtomicOrdering Order = I.getOrdering();
   3415   SynchronizationScope Scope = I.getSynchScope();
   3416 
   3417   SDValue InChain = getRoot();
   3418 
   3419   EVT VT = EVT::getEVT(I.getType());
   3420 
   3421   if (I.getAlignment() * 8 < VT.getSizeInBits())
   3422     report_fatal_error("Cannot generate unaligned atomic load");
   3423 
   3424   SDValue L =
   3425     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
   3426                   getValue(I.getPointerOperand()),
   3427                   I.getPointerOperand(), I.getAlignment(),
   3428                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3429                   Scope);
   3430 
   3431   SDValue OutChain = L.getValue(1);
   3432 
   3433   if (TLI.getInsertFencesForAtomic())
   3434     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3435                                     DAG, TLI);
   3436 
   3437   setValue(&I, L);
   3438   DAG.setRoot(OutChain);
   3439 }
   3440 
   3441 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
   3442   DebugLoc dl = getCurDebugLoc();
   3443 
   3444   AtomicOrdering Order = I.getOrdering();
   3445   SynchronizationScope Scope = I.getSynchScope();
   3446 
   3447   SDValue InChain = getRoot();
   3448 
   3449   EVT VT = EVT::getEVT(I.getValueOperand()->getType());
   3450 
   3451   if (I.getAlignment() * 8 < VT.getSizeInBits())
   3452     report_fatal_error("Cannot generate unaligned atomic store");
   3453 
   3454   if (TLI.getInsertFencesForAtomic())
   3455     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3456                                    DAG, TLI);
   3457 
   3458   SDValue OutChain =
   3459     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
   3460                   InChain,
   3461                   getValue(I.getPointerOperand()),
   3462                   getValue(I.getValueOperand()),
   3463                   I.getPointerOperand(), I.getAlignment(),
   3464                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3465                   Scope);
   3466 
   3467   if (TLI.getInsertFencesForAtomic())
   3468     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3469                                     DAG, TLI);
   3470 
   3471   DAG.setRoot(OutChain);
   3472 }
   3473 
   3474 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
   3475 /// node.
   3476 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
   3477                                                unsigned Intrinsic) {
   3478   bool HasChain = !I.doesNotAccessMemory();
   3479   bool OnlyLoad = HasChain && I.onlyReadsMemory();
   3480 
   3481   // Build the operand list.
   3482   SmallVector<SDValue, 8> Ops;
   3483   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
   3484     if (OnlyLoad) {
   3485       // We don't need to serialize loads against other loads.
   3486       Ops.push_back(DAG.getRoot());
   3487     } else {
   3488       Ops.push_back(getRoot());
   3489     }
   3490   }
   3491 
   3492   // Info is set by getTgtMemInstrinsic
   3493   TargetLowering::IntrinsicInfo Info;
   3494   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
   3495 
   3496   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
   3497   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
   3498       Info.opc == ISD::INTRINSIC_W_CHAIN)
   3499     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
   3500 
   3501   // Add all operands of the call to the operand list.
   3502   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
   3503     SDValue Op = getValue(I.getArgOperand(i));
   3504     assert(TLI.isTypeLegal(Op.getValueType()) &&
   3505            "Intrinsic uses a non-legal type?");
   3506     Ops.push_back(Op);
   3507   }
   3508 
   3509   SmallVector<EVT, 4> ValueVTs;
   3510   ComputeValueVTs(TLI, I.getType(), ValueVTs);
   3511 #ifndef NDEBUG
   3512   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
   3513     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
   3514            "Intrinsic uses a non-legal type?");
   3515   }
   3516 #endif // NDEBUG
   3517 
   3518   if (HasChain)
   3519     ValueVTs.push_back(MVT::Other);
   3520 
   3521   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
   3522 
   3523   // Create the node.
   3524   SDValue Result;
   3525   if (IsTgtIntrinsic) {
   3526     // This is target intrinsic that touches memory
   3527     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
   3528                                      VTs, &Ops[0], Ops.size(),
   3529                                      Info.memVT,
   3530                                    MachinePointerInfo(Info.ptrVal, Info.offset),
   3531                                      Info.align, Info.vol,
   3532                                      Info.readMem, Info.writeMem);
   3533   } else if (!HasChain) {
   3534     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
   3535                          VTs, &Ops[0], Ops.size());
   3536   } else if (!I.getType()->isVoidTy()) {
   3537     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
   3538                          VTs, &Ops[0], Ops.size());
   3539   } else {
   3540     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
   3541                          VTs, &Ops[0], Ops.size());
   3542   }
   3543 
   3544   if (HasChain) {
   3545     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
   3546     if (OnlyLoad)
   3547       PendingLoads.push_back(Chain);
   3548     else
   3549       DAG.setRoot(Chain);
   3550   }
   3551 
   3552   if (!I.getType()->isVoidTy()) {
   3553     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
   3554       EVT VT = TLI.getValueType(PTy);
   3555       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
   3556     }
   3557 
   3558     setValue(&I, Result);
   3559   }
   3560 }
   3561 
   3562 /// GetSignificand - Get the significand and build it into a floating-point
   3563 /// number with exponent of 1:
   3564 ///
   3565 ///   Op = (Op & 0x007fffff) | 0x3f800000;
   3566 ///
   3567 /// where Op is the hexidecimal representation of floating point value.
   3568 static SDValue
   3569 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
   3570   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3571                            DAG.getConstant(0x007fffff, MVT::i32));
   3572   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
   3573                            DAG.getConstant(0x3f800000, MVT::i32));
   3574   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
   3575 }
   3576 
   3577 /// GetExponent - Get the exponent:
   3578 ///
   3579 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
   3580 ///
   3581 /// where Op is the hexidecimal representation of floating point value.
   3582 static SDValue
   3583 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
   3584             DebugLoc dl) {
   3585   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3586                            DAG.getConstant(0x7f800000, MVT::i32));
   3587   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
   3588                            DAG.getConstant(23, TLI.getPointerTy()));
   3589   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
   3590                            DAG.getConstant(127, MVT::i32));
   3591   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
   3592 }
   3593 
   3594 /// getF32Constant - Get 32-bit floating point constant.
   3595 static SDValue
   3596 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
   3597   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
   3598 }
   3599 
   3600 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
   3601 const char *
   3602 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
   3603   SDValue Op1 = getValue(I.getArgOperand(0));
   3604   SDValue Op2 = getValue(I.getArgOperand(1));
   3605 
   3606   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
   3607   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
   3608   return 0;
   3609 }
   3610 
   3611 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
   3612 /// limited-precision mode.
   3613 void
   3614 SelectionDAGBuilder::visitExp(const CallInst &I) {
   3615   SDValue result;
   3616   DebugLoc dl = getCurDebugLoc();
   3617 
   3618   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3619       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3620     SDValue Op = getValue(I.getArgOperand(0));
   3621 
   3622     // Put the exponent in the right bit position for later addition to the
   3623     // final result:
   3624     //
   3625     //   #define LOG2OFe 1.4426950f
   3626     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
   3627     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   3628                              getF32Constant(DAG, 0x3fb8aa3b));
   3629     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   3630 
   3631     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
   3632     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   3633     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   3634 
   3635     //   IntegerPartOfX <<= 23;
   3636     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   3637                                  DAG.getConstant(23, TLI.getPointerTy()));
   3638 
   3639     if (LimitFloatPrecision <= 6) {
   3640       // For floating-point precision of 6:
   3641       //
   3642       //   TwoToFractionalPartOfX =
   3643       //     0.997535578f +
   3644       //       (0.735607626f + 0.252464424f * x) * x;
   3645       //
   3646       // error 0.0144103317, which is 6 bits
   3647       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3648                                getF32Constant(DAG, 0x3e814304));
   3649       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3650                                getF32Constant(DAG, 0x3f3c50c8));
   3651       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3652       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3653                                getF32Constant(DAG, 0x3f7f5e7e));
   3654       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
   3655 
   3656       // Add the exponent into the result in integer domain.
   3657       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3658                                TwoToFracPartOfX, IntegerPartOfX);
   3659 
   3660       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
   3661     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3662       // For floating-point precision of 12:
   3663       //
   3664       //   TwoToFractionalPartOfX =
   3665       //     0.999892986f +
   3666       //       (0.696457318f +
   3667       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   3668       //
   3669       // 0.000107046256 error, which is 13 to 14 bits
   3670       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3671                                getF32Constant(DAG, 0x3da235e3));
   3672       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3673                                getF32Constant(DAG, 0x3e65b8f3));
   3674       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3675       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3676                                getF32Constant(DAG, 0x3f324b07));
   3677       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3678       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3679                                getF32Constant(DAG, 0x3f7ff8fd));
   3680       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
   3681 
   3682       // Add the exponent into the result in integer domain.
   3683       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3684                                TwoToFracPartOfX, IntegerPartOfX);
   3685 
   3686       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
   3687     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3688       // For floating-point precision of 18:
   3689       //
   3690       //   TwoToFractionalPartOfX =
   3691       //     0.999999982f +
   3692       //       (0.693148872f +
   3693       //         (0.240227044f +
   3694       //           (0.554906021e-1f +
   3695       //             (0.961591928e-2f +
   3696       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   3697       //
   3698       // error 2.47208000*10^(-7), which is better than 18 bits
   3699       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3700                                getF32Constant(DAG, 0x3924b03e));
   3701       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3702                                getF32Constant(DAG, 0x3ab24b87));
   3703       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3704       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3705                                getF32Constant(DAG, 0x3c1d8c17));
   3706       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3707       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3708                                getF32Constant(DAG, 0x3d634a1d));
   3709       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3710       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3711                                getF32Constant(DAG, 0x3e75fe14));
   3712       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3713       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   3714                                 getF32Constant(DAG, 0x3f317234));
   3715       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   3716       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   3717                                 getF32Constant(DAG, 0x3f800000));
   3718       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
   3719                                              MVT::i32, t13);
   3720 
   3721       // Add the exponent into the result in integer domain.
   3722       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3723                                 TwoToFracPartOfX, IntegerPartOfX);
   3724 
   3725       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
   3726     }
   3727   } else {
   3728     // No special expansion.
   3729     result = DAG.getNode(ISD::FEXP, dl,
   3730                          getValue(I.getArgOperand(0)).getValueType(),
   3731                          getValue(I.getArgOperand(0)));
   3732   }
   3733 
   3734   setValue(&I, result);
   3735 }
   3736 
   3737 /// visitLog - Lower a log intrinsic. Handles the special sequences for
   3738 /// limited-precision mode.
   3739 void
   3740 SelectionDAGBuilder::visitLog(const CallInst &I) {
   3741   SDValue result;
   3742   DebugLoc dl = getCurDebugLoc();
   3743 
   3744   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3745       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3746     SDValue Op = getValue(I.getArgOperand(0));
   3747     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3748 
   3749     // Scale the exponent by log(2) [0.69314718f].
   3750     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   3751     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   3752                                         getF32Constant(DAG, 0x3f317218));
   3753 
   3754     // Get the significand and build it into a floating-point number with
   3755     // exponent of 1.
   3756     SDValue X = GetSignificand(DAG, Op1, dl);
   3757 
   3758     if (LimitFloatPrecision <= 6) {
   3759       // For floating-point precision of 6:
   3760       //
   3761       //   LogofMantissa =
   3762       //     -1.1609546f +
   3763       //       (1.4034025f - 0.23903021f * x) * x;
   3764       //
   3765       // error 0.0034276066, which is better than 8 bits
   3766       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3767                                getF32Constant(DAG, 0xbe74c456));
   3768       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3769                                getF32Constant(DAG, 0x3fb3a2b1));
   3770       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3771       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3772                                           getF32Constant(DAG, 0x3f949a29));
   3773 
   3774       result = DAG.getNode(ISD::FADD, dl,
   3775                            MVT::f32, LogOfExponent, LogOfMantissa);
   3776     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3777       // For floating-point precision of 12:
   3778       //
   3779       //   LogOfMantissa =
   3780       //     -1.7417939f +
   3781       //       (2.8212026f +
   3782       //         (-1.4699568f +
   3783       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
   3784       //
   3785       // error 0.000061011436, which is 14 bits
   3786       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3787                                getF32Constant(DAG, 0xbd67b6d6));
   3788       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3789                                getF32Constant(DAG, 0x3ee4f4b8));
   3790       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3791       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3792                                getF32Constant(DAG, 0x3fbc278b));
   3793       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3794       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3795                                getF32Constant(DAG, 0x40348e95));
   3796       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3797       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3798                                           getF32Constant(DAG, 0x3fdef31a));
   3799 
   3800       result = DAG.getNode(ISD::FADD, dl,
   3801                            MVT::f32, LogOfExponent, LogOfMantissa);
   3802     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3803       // For floating-point precision of 18:
   3804       //
   3805       //   LogOfMantissa =
   3806       //     -2.1072184f +
   3807       //       (4.2372794f +
   3808       //         (-3.7029485f +
   3809       //           (2.2781945f +
   3810       //             (-0.87823314f +
   3811       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
   3812       //
   3813       // error 0.0000023660568, which is better than 18 bits
   3814       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3815                                getF32Constant(DAG, 0xbc91e5ac));
   3816       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3817                                getF32Constant(DAG, 0x3e4350aa));
   3818       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3819       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3820                                getF32Constant(DAG, 0x3f60d3e3));
   3821       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3822       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3823                                getF32Constant(DAG, 0x4011cdf0));
   3824       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3825       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3826                                getF32Constant(DAG, 0x406cfd1c));
   3827       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3828       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3829                                getF32Constant(DAG, 0x408797cb));
   3830       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3831       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   3832                                           getF32Constant(DAG, 0x4006dcab));
   3833 
   3834       result = DAG.getNode(ISD::FADD, dl,
   3835                            MVT::f32, LogOfExponent, LogOfMantissa);
   3836     }
   3837   } else {
   3838     // No special expansion.
   3839     result = DAG.getNode(ISD::FLOG, dl,
   3840                          getValue(I.getArgOperand(0)).getValueType(),
   3841                          getValue(I.getArgOperand(0)));
   3842   }
   3843 
   3844   setValue(&I, result);
   3845 }
   3846 
   3847 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
   3848 /// limited-precision mode.
   3849 void
   3850 SelectionDAGBuilder::visitLog2(const CallInst &I) {
   3851   SDValue result;
   3852   DebugLoc dl = getCurDebugLoc();
   3853 
   3854   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3855       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3856     SDValue Op = getValue(I.getArgOperand(0));
   3857     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3858 
   3859     // Get the exponent.
   3860     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
   3861 
   3862     // Get the significand and build it into a floating-point number with
   3863     // exponent of 1.
   3864     SDValue X = GetSignificand(DAG, Op1, dl);
   3865 
   3866     // Different possible minimax approximations of significand in
   3867     // floating-point for various degrees of accuracy over [1,2].
   3868     if (LimitFloatPrecision <= 6) {
   3869       // For floating-point precision of 6:
   3870       //
   3871       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
   3872       //
   3873       // error 0.0049451742, which is more than 7 bits
   3874       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3875                                getF32Constant(DAG, 0xbeb08fe0));
   3876       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3877                                getF32Constant(DAG, 0x40019463));
   3878       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3879       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3880                                            getF32Constant(DAG, 0x3fd6633d));
   3881 
   3882       result = DAG.getNode(ISD::FADD, dl,
   3883                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3884     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3885       // For floating-point precision of 12:
   3886       //
   3887       //   Log2ofMantissa =
   3888       //     -2.51285454f +
   3889       //       (4.07009056f +
   3890       //         (-2.12067489f +
   3891       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
   3892       //
   3893       // error 0.0000876136000, which is better than 13 bits
   3894       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3895                                getF32Constant(DAG, 0xbda7262e));
   3896       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3897                                getF32Constant(DAG, 0x3f25280b));
   3898       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3899       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3900                                getF32Constant(DAG, 0x4007b923));
   3901       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3902       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3903                                getF32Constant(DAG, 0x40823e2f));
   3904       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3905       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3906                                            getF32Constant(DAG, 0x4020d29c));
   3907 
   3908       result = DAG.getNode(ISD::FADD, dl,
   3909                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3910     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3911       // For floating-point precision of 18:
   3912       //
   3913       //   Log2ofMantissa =
   3914       //     -3.0400495f +
   3915       //       (6.1129976f +
   3916       //         (-5.3420409f +
   3917       //           (3.2865683f +
   3918       //             (-1.2669343f +
   3919       //               (0.27515199f -
   3920       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
   3921       //
   3922       // error 0.0000018516, which is better than 18 bits
   3923       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3924                                getF32Constant(DAG, 0xbcd2769e));
   3925       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3926                                getF32Constant(DAG, 0x3e8ce0b9));
   3927       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3928       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3929                                getF32Constant(DAG, 0x3fa22ae7));
   3930       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3931       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3932                                getF32Constant(DAG, 0x40525723));
   3933       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3934       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3935                                getF32Constant(DAG, 0x40aaf200));
   3936       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3937       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3938                                getF32Constant(DAG, 0x40c39dad));
   3939       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3940       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   3941                                            getF32Constant(DAG, 0x4042902c));
   3942 
   3943       result = DAG.getNode(ISD::FADD, dl,
   3944                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3945     }
   3946   } else {
   3947     // No special expansion.
   3948     result = DAG.getNode(ISD::FLOG2, dl,
   3949                          getValue(I.getArgOperand(0)).getValueType(),
   3950                          getValue(I.getArgOperand(0)));
   3951   }
   3952 
   3953   setValue(&I, result);
   3954 }
   3955 
   3956 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
   3957 /// limited-precision mode.
   3958 void
   3959 SelectionDAGBuilder::visitLog10(const CallInst &I) {
   3960   SDValue result;
   3961   DebugLoc dl = getCurDebugLoc();
   3962 
   3963   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3964       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3965     SDValue Op = getValue(I.getArgOperand(0));
   3966     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3967 
   3968     // Scale the exponent by log10(2) [0.30102999f].
   3969     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   3970     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   3971                                         getF32Constant(DAG, 0x3e9a209a));
   3972 
   3973     // Get the significand and build it into a floating-point number with
   3974     // exponent of 1.
   3975     SDValue X = GetSignificand(DAG, Op1, dl);
   3976 
   3977     if (LimitFloatPrecision <= 6) {
   3978       // For floating-point precision of 6:
   3979       //
   3980       //   Log10ofMantissa =
   3981       //     -0.50419619f +
   3982       //       (0.60948995f - 0.10380950f * x) * x;
   3983       //
   3984       // error 0.0014886165, which is 6 bits
   3985       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3986                                getF32Constant(DAG, 0xbdd49a13));
   3987       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3988                                getF32Constant(DAG, 0x3f1c0789));
   3989       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3990       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3991                                             getF32Constant(DAG, 0x3f011300));
   3992 
   3993       result = DAG.getNode(ISD::FADD, dl,
   3994                            MVT::f32, LogOfExponent, Log10ofMantissa);
   3995     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3996       // For floating-point precision of 12:
   3997       //
   3998       //   Log10ofMantissa =
   3999       //     -0.64831180f +
   4000       //       (0.91751397f +
   4001       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
   4002       //
   4003       // error 0.00019228036, which is better than 12 bits
   4004       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4005                                getF32Constant(DAG, 0x3d431f31));
   4006       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4007                                getF32Constant(DAG, 0x3ea21fb2));
   4008       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4009       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4010                                getF32Constant(DAG, 0x3f6ae232));
   4011       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4012       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4013                                             getF32Constant(DAG, 0x3f25f7c3));
   4014 
   4015       result = DAG.getNode(ISD::FADD, dl,
   4016                            MVT::f32, LogOfExponent, Log10ofMantissa);
   4017     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   4018       // For floating-point precision of 18:
   4019       //
   4020       //   Log10ofMantissa =
   4021       //     -0.84299375f +
   4022       //       (1.5327582f +
   4023       //         (-1.0688956f +
   4024       //           (0.49102474f +
   4025       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
   4026       //
   4027       // error 0.0000037995730, which is better than 18 bits
   4028       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4029                                getF32Constant(DAG, 0x3c5d51ce));
   4030       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4031                                getF32Constant(DAG, 0x3e00685a));
   4032       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4033       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4034                                getF32Constant(DAG, 0x3efb6798));
   4035       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4036       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4037                                getF32Constant(DAG, 0x3f88d192));
   4038       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4039       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4040                                getF32Constant(DAG, 0x3fc4316c));
   4041       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4042       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
   4043                                             getF32Constant(DAG, 0x3f57ce70));
   4044 
   4045       result = DAG.getNode(ISD::FADD, dl,
   4046                            MVT::f32, LogOfExponent, Log10ofMantissa);
   4047     }
   4048   } else {
   4049     // No special expansion.
   4050     result = DAG.getNode(ISD::FLOG10, dl,
   4051                          getValue(I.getArgOperand(0)).getValueType(),
   4052                          getValue(I.getArgOperand(0)));
   4053   }
   4054 
   4055   setValue(&I, result);
   4056 }
   4057 
   4058 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
   4059 /// limited-precision mode.
   4060 void
   4061 SelectionDAGBuilder::visitExp2(const CallInst &I) {
   4062   SDValue result;
   4063   DebugLoc dl = getCurDebugLoc();
   4064 
   4065   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   4066       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4067     SDValue Op = getValue(I.getArgOperand(0));
   4068 
   4069     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
   4070 
   4071     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   4072     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   4073     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
   4074 
   4075     //   IntegerPartOfX <<= 23;
   4076     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   4077                                  DAG.getConstant(23, TLI.getPointerTy()));
   4078 
   4079     if (LimitFloatPrecision <= 6) {
   4080       // For floating-point precision of 6:
   4081       //
   4082       //   TwoToFractionalPartOfX =
   4083       //     0.997535578f +
   4084       //       (0.735607626f + 0.252464424f * x) * x;
   4085       //
   4086       // error 0.0144103317, which is 6 bits
   4087       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4088                                getF32Constant(DAG, 0x3e814304));
   4089       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4090                                getF32Constant(DAG, 0x3f3c50c8));
   4091       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4092       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4093                                getF32Constant(DAG, 0x3f7f5e7e));
   4094       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
   4095       SDValue TwoToFractionalPartOfX =
   4096         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
   4097 
   4098       result = DAG.getNode(ISD::BITCAST, dl,
   4099                            MVT::f32, TwoToFractionalPartOfX);
   4100     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   4101       // For floating-point precision of 12:
   4102       //
   4103       //   TwoToFractionalPartOfX =
   4104       //     0.999892986f +
   4105       //       (0.696457318f +
   4106       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   4107       //
   4108       // error 0.000107046256, which is 13 to 14 bits
   4109       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4110                                getF32Constant(DAG, 0x3da235e3));
   4111       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4112                                getF32Constant(DAG, 0x3e65b8f3));
   4113       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4114       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4115                                getF32Constant(DAG, 0x3f324b07));
   4116       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4117       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4118                                getF32Constant(DAG, 0x3f7ff8fd));
   4119       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
   4120       SDValue TwoToFractionalPartOfX =
   4121         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
   4122 
   4123       result = DAG.getNode(ISD::BITCAST, dl,
   4124                            MVT::f32, TwoToFractionalPartOfX);
   4125     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   4126       // For floating-point precision of 18:
   4127       //
   4128       //   TwoToFractionalPartOfX =
   4129       //     0.999999982f +
   4130       //       (0.693148872f +
   4131       //         (0.240227044f +
   4132       //           (0.554906021e-1f +
   4133       //             (0.961591928e-2f +
   4134       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   4135       // error 2.47208000*10^(-7), which is better than 18 bits
   4136       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4137                                getF32Constant(DAG, 0x3924b03e));
   4138       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4139                                getF32Constant(DAG, 0x3ab24b87));
   4140       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4141       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4142                                getF32Constant(DAG, 0x3c1d8c17));
   4143       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4144       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4145                                getF32Constant(DAG, 0x3d634a1d));
   4146       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4147       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4148                                getF32Constant(DAG, 0x3e75fe14));
   4149       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4150       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   4151                                 getF32Constant(DAG, 0x3f317234));
   4152       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   4153       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   4154                                 getF32Constant(DAG, 0x3f800000));
   4155       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
   4156       SDValue TwoToFractionalPartOfX =
   4157         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
   4158 
   4159       result = DAG.getNode(ISD::BITCAST, dl,
   4160                            MVT::f32, TwoToFractionalPartOfX);
   4161     }
   4162   } else {
   4163     // No special expansion.
   4164     result = DAG.getNode(ISD::FEXP2, dl,
   4165                          getValue(I.getArgOperand(0)).getValueType(),
   4166                          getValue(I.getArgOperand(0)));
   4167   }
   4168 
   4169   setValue(&I, result);
   4170 }
   4171 
   4172 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
   4173 /// limited-precision mode with x == 10.0f.
   4174 void
   4175 SelectionDAGBuilder::visitPow(const CallInst &I) {
   4176   SDValue result;
   4177   const Value *Val = I.getArgOperand(0);
   4178   DebugLoc dl = getCurDebugLoc();
   4179   bool IsExp10 = false;
   4180 
   4181   if (getValue(Val).getValueType() == MVT::f32 &&
   4182       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
   4183       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4184     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
   4185       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
   4186         APFloat Ten(10.0f);
   4187         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
   4188       }
   4189     }
   4190   }
   4191 
   4192   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4193     SDValue Op = getValue(I.getArgOperand(1));
   4194 
   4195     // Put the exponent in the right bit position for later addition to the
   4196     // final result:
   4197     //
   4198     //   #define LOG2OF10 3.3219281f
   4199     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
   4200     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   4201                              getF32Constant(DAG, 0x40549a78));
   4202     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   4203 
   4204     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   4205     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   4206     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   4207 
   4208     //   IntegerPartOfX <<= 23;
   4209     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   4210                                  DAG.getConstant(23, TLI.getPointerTy()));
   4211 
   4212     if (LimitFloatPrecision <= 6) {
   4213       // For floating-point precision of 6:
   4214       //
   4215       //   twoToFractionalPartOfX =
   4216       //     0.997535578f +
   4217       //       (0.735607626f + 0.252464424f * x) * x;
   4218       //
   4219       // error 0.0144103317, which is 6 bits
   4220       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4221                                getF32Constant(DAG, 0x3e814304));
   4222       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4223                                getF32Constant(DAG, 0x3f3c50c8));
   4224       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4225       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4226                                getF32Constant(DAG, 0x3f7f5e7e));
   4227       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
   4228       SDValue TwoToFractionalPartOfX =
   4229         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
   4230 
   4231       result = DAG.getNode(ISD::BITCAST, dl,
   4232                            MVT::f32, TwoToFractionalPartOfX);
   4233     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   4234       // For floating-point precision of 12:
   4235       //
   4236       //   TwoToFractionalPartOfX =
   4237       //     0.999892986f +
   4238       //       (0.696457318f +
   4239       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   4240       //
   4241       // error 0.000107046256, which is 13 to 14 bits
   4242       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4243                                getF32Constant(DAG, 0x3da235e3));
   4244       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4245                                getF32Constant(DAG, 0x3e65b8f3));
   4246       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4247       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4248                                getF32Constant(DAG, 0x3f324b07));
   4249       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4250       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4251                                getF32Constant(DAG, 0x3f7ff8fd));
   4252       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
   4253       SDValue TwoToFractionalPartOfX =
   4254         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
   4255 
   4256       result = DAG.getNode(ISD::BITCAST, dl,
   4257                            MVT::f32, TwoToFractionalPartOfX);
   4258     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   4259       // For floating-point precision of 18:
   4260       //
   4261       //   TwoToFractionalPartOfX =
   4262       //     0.999999982f +
   4263       //       (0.693148872f +
   4264       //         (0.240227044f +
   4265       //           (0.554906021e-1f +
   4266       //             (0.961591928e-2f +
   4267       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   4268       // error 2.47208000*10^(-7), which is better than 18 bits
   4269       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4270                                getF32Constant(DAG, 0x3924b03e));
   4271       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4272                                getF32Constant(DAG, 0x3ab24b87));
   4273       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4274       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4275                                getF32Constant(DAG, 0x3c1d8c17));
   4276       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4277       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4278                                getF32Constant(DAG, 0x3d634a1d));
   4279       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4280       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4281                                getF32Constant(DAG, 0x3e75fe14));
   4282       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4283       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   4284                                 getF32Constant(DAG, 0x3f317234));
   4285       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   4286       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   4287                                 getF32Constant(DAG, 0x3f800000));
   4288       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
   4289       SDValue TwoToFractionalPartOfX =
   4290         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
   4291 
   4292       result = DAG.getNode(ISD::BITCAST, dl,
   4293                            MVT::f32, TwoToFractionalPartOfX);
   4294     }
   4295   } else {
   4296     // No special expansion.
   4297     result = DAG.getNode(ISD::FPOW, dl,
   4298                          getValue(I.getArgOperand(0)).getValueType(),
   4299                          getValue(I.getArgOperand(0)),
   4300                          getValue(I.getArgOperand(1)));
   4301   }
   4302 
   4303   setValue(&I, result);
   4304 }
   4305 
   4306 
   4307 /// ExpandPowI - Expand a llvm.powi intrinsic.
   4308 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
   4309                           SelectionDAG &DAG) {
   4310   // If RHS is a constant, we can expand this out to a multiplication tree,
   4311   // otherwise we end up lowering to a call to __powidf2 (for example).  When
   4312   // optimizing for size, we only want to do this if the expansion would produce
   4313   // a small number of multiplies, otherwise we do the full expansion.
   4314   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   4315     // Get the exponent as a positive value.
   4316     unsigned Val = RHSC->getSExtValue();
   4317     if ((int)Val < 0) Val = -Val;
   4318 
   4319     // powi(x, 0) -> 1.0
   4320     if (Val == 0)
   4321       return DAG.getConstantFP(1.0, LHS.getValueType());
   4322 
   4323     const Function *F = DAG.getMachineFunction().getFunction();
   4324     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
   4325         // If optimizing for size, don't insert too many multiplies.  This
   4326         // inserts up to 5 multiplies.
   4327         CountPopulation_32(Val)+Log2_32(Val) < 7) {
   4328       // We use the simple binary decomposition method to generate the multiply
   4329       // sequence.  There are more optimal ways to do this (for example,
   4330       // powi(x,15) generates one more multiply than it should), but this has
   4331       // the benefit of being both really simple and much better than a libcall.
   4332       SDValue Res;  // Logically starts equal to 1.0
   4333       SDValue CurSquare = LHS;
   4334       while (Val) {
   4335         if (Val & 1) {
   4336           if (Res.getNode())
   4337             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
   4338           else
   4339             Res = CurSquare;  // 1.0*CurSquare.
   4340         }
   4341 
   4342         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
   4343                                 CurSquare, CurSquare);
   4344         Val >>= 1;
   4345       }
   4346 
   4347       // If the original was negative, invert the result, producing 1/(x*x*x).
   4348       if (RHSC->getSExtValue() < 0)
   4349         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
   4350                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
   4351       return Res;
   4352     }
   4353   }
   4354 
   4355   // Otherwise, expand to a libcall.
   4356   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
   4357 }
   4358 
   4359 // getTruncatedArgReg - Find underlying register used for an truncated
   4360 // argument.
   4361 static unsigned getTruncatedArgReg(const SDValue &N) {
   4362   if (N.getOpcode() != ISD::TRUNCATE)
   4363     return 0;
   4364 
   4365   const SDValue &Ext = N.getOperand(0);
   4366   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
   4367     const SDValue &CFR = Ext.getOperand(0);
   4368     if (CFR.getOpcode() == ISD::CopyFromReg)
   4369       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
   4370     else
   4371       if (CFR.getOpcode() == ISD::TRUNCATE)
   4372         return getTruncatedArgReg(CFR);
   4373   }
   4374   return 0;
   4375 }
   4376 
   4377 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
   4378 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
   4379 /// At the end of instruction selection, they will be inserted to the entry BB.
   4380 bool
   4381 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
   4382                                               int64_t Offset,
   4383                                               const SDValue &N) {
   4384   const Argument *Arg = dyn_cast<Argument>(V);
   4385   if (!Arg)
   4386     return false;
   4387 
   4388   MachineFunction &MF = DAG.getMachineFunction();
   4389   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
   4390   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
   4391 
   4392   // Ignore inlined function arguments here.
   4393   DIVariable DV(Variable);
   4394   if (DV.isInlinedFnArgument(MF.getFunction()))
   4395     return false;
   4396 
   4397   unsigned Reg = 0;
   4398   // Some arguments' frame index is recorded during argument lowering.
   4399   Offset = FuncInfo.getArgumentFrameIndex(Arg);
   4400   if (Offset)
   4401       Reg = TRI->getFrameRegister(MF);
   4402 
   4403   if (!Reg && N.getNode()) {
   4404     if (N.getOpcode() == ISD::CopyFromReg)
   4405       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
   4406     else
   4407       Reg = getTruncatedArgReg(N);
   4408     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
   4409       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   4410       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
   4411       if (PR)
   4412         Reg = PR;
   4413     }
   4414   }
   4415 
   4416   if (!Reg) {
   4417     // Check if ValueMap has reg number.
   4418     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   4419     if (VMI != FuncInfo.ValueMap.end())
   4420       Reg = VMI->second;
   4421   }
   4422 
   4423   if (!Reg && N.getNode()) {
   4424     // Check if frame index is available.
   4425     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
   4426       if (FrameIndexSDNode *FINode =
   4427           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
   4428         Reg = TRI->getFrameRegister(MF);
   4429         Offset = FINode->getIndex();
   4430       }
   4431   }
   4432 
   4433   if (!Reg)
   4434     return false;
   4435 
   4436   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
   4437                                     TII->get(TargetOpcode::DBG_VALUE))
   4438     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
   4439   FuncInfo.ArgDbgValues.push_back(&*MIB);
   4440   return true;
   4441 }
   4442 
   4443 // VisualStudio defines setjmp as _setjmp
   4444 #if defined(_MSC_VER) && defined(setjmp) && \
   4445                          !defined(setjmp_undefined_for_msvc)
   4446 #  pragma push_macro("setjmp")
   4447 #  undef setjmp
   4448 #  define setjmp_undefined_for_msvc
   4449 #endif
   4450 
   4451 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
   4452 /// we want to emit this as a call to a named external function, return the name
   4453 /// otherwise lower it and return null.
   4454 const char *
   4455 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
   4456   DebugLoc dl = getCurDebugLoc();
   4457   SDValue Res;
   4458 
   4459   switch (Intrinsic) {
   4460   default:
   4461     // By default, turn this into a target intrinsic node.
   4462     visitTargetIntrinsic(I, Intrinsic);
   4463     return 0;
   4464   case Intrinsic::vastart:  visitVAStart(I); return 0;
   4465   case Intrinsic::vaend:    visitVAEnd(I); return 0;
   4466   case Intrinsic::vacopy:   visitVACopy(I); return 0;
   4467   case Intrinsic::returnaddress:
   4468     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
   4469                              getValue(I.getArgOperand(0))));
   4470     return 0;
   4471   case Intrinsic::frameaddress:
   4472     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
   4473                              getValue(I.getArgOperand(0))));
   4474     return 0;
   4475   case Intrinsic::setjmp:
   4476     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
   4477   case Intrinsic::longjmp:
   4478     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
   4479   case Intrinsic::memcpy: {
   4480     // Assert for address < 256 since we support only user defined address
   4481     // spaces.
   4482     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4483            < 256 &&
   4484            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4485            < 256 &&
   4486            "Unknown address space");
   4487     SDValue Op1 = getValue(I.getArgOperand(0));
   4488     SDValue Op2 = getValue(I.getArgOperand(1));
   4489     SDValue Op3 = getValue(I.getArgOperand(2));
   4490     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4491     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4492     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
   4493                               MachinePointerInfo(I.getArgOperand(0)),
   4494                               MachinePointerInfo(I.getArgOperand(1))));
   4495     return 0;
   4496   }
   4497   case Intrinsic::memset: {
   4498     // Assert for address < 256 since we support only user defined address
   4499     // spaces.
   4500     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4501            < 256 &&
   4502            "Unknown address space");
   4503     SDValue Op1 = getValue(I.getArgOperand(0));
   4504     SDValue Op2 = getValue(I.getArgOperand(1));
   4505     SDValue Op3 = getValue(I.getArgOperand(2));
   4506     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4507     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4508     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
   4509                               MachinePointerInfo(I.getArgOperand(0))));
   4510     return 0;
   4511   }
   4512   case Intrinsic::memmove: {
   4513     // Assert for address < 256 since we support only user defined address
   4514     // spaces.
   4515     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4516            < 256 &&
   4517            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4518            < 256 &&
   4519            "Unknown address space");
   4520     SDValue Op1 = getValue(I.getArgOperand(0));
   4521     SDValue Op2 = getValue(I.getArgOperand(1));
   4522     SDValue Op3 = getValue(I.getArgOperand(2));
   4523     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4524     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4525     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
   4526                                MachinePointerInfo(I.getArgOperand(0)),
   4527                                MachinePointerInfo(I.getArgOperand(1))));
   4528     return 0;
   4529   }
   4530   case Intrinsic::dbg_declare: {
   4531     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
   4532     MDNode *Variable = DI.getVariable();
   4533     const Value *Address = DI.getAddress();
   4534     if (!Address || !DIVariable(Variable).Verify())
   4535       return 0;
   4536 
   4537     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
   4538     // but do not always have a corresponding SDNode built.  The SDNodeOrder
   4539     // absolute, but not relative, values are different depending on whether
   4540     // debug info exists.
   4541     ++SDNodeOrder;
   4542 
   4543     // Check if address has undef value.
   4544     if (isa<UndefValue>(Address) ||
   4545         (Address->use_empty() && !isa<Argument>(Address))) {
   4546       DEBUG(dbgs() << "Dropping debug info for " << DI);
   4547       return 0;
   4548     }
   4549 
   4550     SDValue &N = NodeMap[Address];
   4551     if (!N.getNode() && isa<Argument>(Address))
   4552       // Check unused arguments map.
   4553       N = UnusedArgNodeMap[Address];
   4554     SDDbgValue *SDV;
   4555     if (N.getNode()) {
   4556       // Parameters are handled specially.
   4557       bool isParameter =
   4558         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
   4559       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
   4560         Address = BCI->getOperand(0);
   4561       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
   4562 
   4563       if (isParameter && !AI) {
   4564         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
   4565         if (FINode)
   4566           // Byval parameter.  We have a frame index at this point.
   4567           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
   4568                                 0, dl, SDNodeOrder);
   4569         else {
   4570           // Address is an argument, so try to emit its dbg value using
   4571           // virtual register info from the FuncInfo.ValueMap.
   4572           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
   4573           return 0;
   4574         }
   4575       } else if (AI)
   4576         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
   4577                               0, dl, SDNodeOrder);
   4578       else {
   4579         // Can't do anything with other non-AI cases yet.
   4580         DEBUG(dbgs() << "Dropping debug info for " << DI);
   4581         return 0;
   4582       }
   4583       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
   4584     } else {
   4585       // If Address is an argument then try to emit its dbg value using
   4586       // virtual register info from the FuncInfo.ValueMap.
   4587       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
   4588         // If variable is pinned by a alloca in dominating bb then
   4589         // use StaticAllocaMap.
   4590         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
   4591           if (AI->getParent() != DI.getParent()) {
   4592             DenseMap<const AllocaInst*, int>::iterator SI =
   4593               FuncInfo.StaticAllocaMap.find(AI);
   4594             if (SI != FuncInfo.StaticAllocaMap.end()) {
   4595               SDV = DAG.getDbgValue(Variable, SI->second,
   4596                                     0, dl, SDNodeOrder);
   4597               DAG.AddDbgValue(SDV, 0, false);
   4598               return 0;
   4599             }
   4600           }
   4601         }
   4602         DEBUG(dbgs() << "Dropping debug info for " << DI);
   4603       }
   4604     }
   4605     return 0;
   4606   }
   4607   case Intrinsic::dbg_value: {
   4608     const DbgValueInst &DI = cast<DbgValueInst>(I);
   4609     if (!DIVariable(DI.getVariable()).Verify())
   4610       return 0;
   4611 
   4612     MDNode *Variable = DI.getVariable();
   4613     uint64_t Offset = DI.getOffset();
   4614     const Value *V = DI.getValue();
   4615     if (!V)
   4616       return 0;
   4617 
   4618     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
   4619     // but do not always have a corresponding SDNode built.  The SDNodeOrder
   4620     // absolute, but not relative, values are different depending on whether
   4621     // debug info exists.
   4622     ++SDNodeOrder;
   4623     SDDbgValue *SDV;
   4624     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
   4625       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
   4626       DAG.AddDbgValue(SDV, 0, false);
   4627     } else {
   4628       // Do not use getValue() in here; we don't want to generate code at
   4629       // this point if it hasn't been done yet.
   4630       SDValue N = NodeMap[V];
   4631       if (!N.getNode() && isa<Argument>(V))
   4632         // Check unused arguments map.
   4633         N = UnusedArgNodeMap[V];
   4634       if (N.getNode()) {
   4635         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
   4636           SDV = DAG.getDbgValue(Variable, N.getNode(),
   4637                                 N.getResNo(), Offset, dl, SDNodeOrder);
   4638           DAG.AddDbgValue(SDV, N.getNode(), false);
   4639         }
   4640       } else if (!V->use_empty() ) {
   4641         // Do not call getValue(V) yet, as we don't want to generate code.
   4642         // Remember it for later.
   4643         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
   4644         DanglingDebugInfoMap[V] = DDI;
   4645       } else {
   4646         // We may expand this to cover more cases.  One case where we have no
   4647         // data available is an unreferenced parameter.
   4648         DEBUG(dbgs() << "Dropping debug info for " << DI);
   4649       }
   4650     }
   4651 
   4652     // Build a debug info table entry.
   4653     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
   4654       V = BCI->getOperand(0);
   4655     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
   4656     // Don't handle byval struct arguments or VLAs, for example.
   4657     if (!AI)
   4658       return 0;
   4659     DenseMap<const AllocaInst*, int>::iterator SI =
   4660       FuncInfo.StaticAllocaMap.find(AI);
   4661     if (SI == FuncInfo.StaticAllocaMap.end())
   4662       return 0; // VLAs.
   4663     int FI = SI->second;
   4664 
   4665     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4666     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
   4667       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
   4668     return 0;
   4669   }
   4670   case Intrinsic::eh_exception: {
   4671     // Insert the EXCEPTIONADDR instruction.
   4672     assert(FuncInfo.MBB->isLandingPad() &&
   4673            "Call to eh.exception not in landing pad!");
   4674     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   4675     SDValue Ops[1];
   4676     Ops[0] = DAG.getRoot();
   4677     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
   4678     setValue(&I, Op);
   4679     DAG.setRoot(Op.getValue(1));
   4680     return 0;
   4681   }
   4682 
   4683   case Intrinsic::eh_selector: {
   4684     MachineBasicBlock *CallMBB = FuncInfo.MBB;
   4685     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4686     if (CallMBB->isLandingPad())
   4687       AddCatchInfo(I, &MMI, CallMBB);
   4688     else {
   4689 #ifndef NDEBUG
   4690       FuncInfo.CatchInfoLost.insert(&I);
   4691 #endif
   4692       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
   4693       unsigned Reg = TLI.getExceptionSelectorRegister();
   4694       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
   4695     }
   4696 
   4697     // Insert the EHSELECTION instruction.
   4698     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   4699     SDValue Ops[2];
   4700     Ops[0] = getValue(I.getArgOperand(0));
   4701     Ops[1] = getRoot();
   4702     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
   4703     DAG.setRoot(Op.getValue(1));
   4704     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
   4705     return 0;
   4706   }
   4707 
   4708   case Intrinsic::eh_typeid_for: {
   4709     // Find the type id for the given typeinfo.
   4710     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
   4711     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
   4712     Res = DAG.getConstant(TypeID, MVT::i32);
   4713     setValue(&I, Res);
   4714     return 0;
   4715   }
   4716 
   4717   case Intrinsic::eh_return_i32:
   4718   case Intrinsic::eh_return_i64:
   4719     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
   4720     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
   4721                             MVT::Other,
   4722                             getControlRoot(),
   4723                             getValue(I.getArgOperand(0)),
   4724                             getValue(I.getArgOperand(1))));
   4725     return 0;
   4726   case Intrinsic::eh_unwind_init:
   4727     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
   4728     return 0;
   4729   case Intrinsic::eh_dwarf_cfa: {
   4730     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
   4731                                         TLI.getPointerTy());
   4732     SDValue Offset = DAG.getNode(ISD::ADD, dl,
   4733                                  TLI.getPointerTy(),
   4734                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
   4735                                              TLI.getPointerTy()),
   4736                                  CfaArg);
   4737     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
   4738                              TLI.getPointerTy(),
   4739                              DAG.getConstant(0, TLI.getPointerTy()));
   4740     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   4741                              FA, Offset));
   4742     return 0;
   4743   }
   4744   case Intrinsic::eh_sjlj_callsite: {
   4745     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4746     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
   4747     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
   4748     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
   4749 
   4750     MMI.setCurrentCallSite(CI->getZExtValue());
   4751     return 0;
   4752   }
   4753   case Intrinsic::eh_sjlj_functioncontext: {
   4754     // Get and store the index of the function context.
   4755     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4756     AllocaInst *FnCtx =
   4757       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
   4758     int FI = FuncInfo.StaticAllocaMap[FnCtx];
   4759     MFI->setFunctionContextIndex(FI);
   4760     return 0;
   4761   }
   4762   case Intrinsic::eh_sjlj_setjmp: {
   4763     SDValue Ops[2];
   4764     Ops[0] = getRoot();
   4765     Ops[1] = getValue(I.getArgOperand(0));
   4766     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
   4767                              DAG.getVTList(MVT::i32, MVT::Other),
   4768                              Ops, 2);
   4769     setValue(&I, Op.getValue(0));
   4770     DAG.setRoot(Op.getValue(1));
   4771     return 0;
   4772   }
   4773   case Intrinsic::eh_sjlj_longjmp: {
   4774     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
   4775                             getRoot(), getValue(I.getArgOperand(0))));
   4776     return 0;
   4777   }
   4778   case Intrinsic::eh_sjlj_dispatch_setup: {
   4779     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
   4780                             getRoot(), getValue(I.getArgOperand(0))));
   4781     return 0;
   4782   }
   4783 
   4784   case Intrinsic::x86_mmx_pslli_w:
   4785   case Intrinsic::x86_mmx_pslli_d:
   4786   case Intrinsic::x86_mmx_pslli_q:
   4787   case Intrinsic::x86_mmx_psrli_w:
   4788   case Intrinsic::x86_mmx_psrli_d:
   4789   case Intrinsic::x86_mmx_psrli_q:
   4790   case Intrinsic::x86_mmx_psrai_w:
   4791   case Intrinsic::x86_mmx_psrai_d: {
   4792     SDValue ShAmt = getValue(I.getArgOperand(1));
   4793     if (isa<ConstantSDNode>(ShAmt)) {
   4794       visitTargetIntrinsic(I, Intrinsic);
   4795       return 0;
   4796     }
   4797     unsigned NewIntrinsic = 0;
   4798     EVT ShAmtVT = MVT::v2i32;
   4799     switch (Intrinsic) {
   4800     case Intrinsic::x86_mmx_pslli_w:
   4801       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
   4802       break;
   4803     case Intrinsic::x86_mmx_pslli_d:
   4804       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
   4805       break;
   4806     case Intrinsic::x86_mmx_pslli_q:
   4807       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
   4808       break;
   4809     case Intrinsic::x86_mmx_psrli_w:
   4810       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
   4811       break;
   4812     case Intrinsic::x86_mmx_psrli_d:
   4813       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
   4814       break;
   4815     case Intrinsic::x86_mmx_psrli_q:
   4816       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
   4817       break;
   4818     case Intrinsic::x86_mmx_psrai_w:
   4819       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
   4820       break;
   4821     case Intrinsic::x86_mmx_psrai_d:
   4822       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
   4823       break;
   4824     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4825     }
   4826 
   4827     // The vector shift intrinsics with scalars uses 32b shift amounts but
   4828     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   4829     // to be zero.
   4830     // We must do this early because v2i32 is not a legal type.
   4831     DebugLoc dl = getCurDebugLoc();
   4832     SDValue ShOps[2];
   4833     ShOps[0] = ShAmt;
   4834     ShOps[1] = DAG.getConstant(0, MVT::i32);
   4835     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
   4836     EVT DestVT = TLI.getValueType(I.getType());
   4837     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
   4838     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   4839                        DAG.getConstant(NewIntrinsic, MVT::i32),
   4840                        getValue(I.getArgOperand(0)), ShAmt);
   4841     setValue(&I, Res);
   4842     return 0;
   4843   }
   4844   case Intrinsic::convertff:
   4845   case Intrinsic::convertfsi:
   4846   case Intrinsic::convertfui:
   4847   case Intrinsic::convertsif:
   4848   case Intrinsic::convertuif:
   4849   case Intrinsic::convertss:
   4850   case Intrinsic::convertsu:
   4851   case Intrinsic::convertus:
   4852   case Intrinsic::convertuu: {
   4853     ISD::CvtCode Code = ISD::CVT_INVALID;
   4854     switch (Intrinsic) {
   4855     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
   4856     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
   4857     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
   4858     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
   4859     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
   4860     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
   4861     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
   4862     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
   4863     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
   4864     }
   4865     EVT DestVT = TLI.getValueType(I.getType());
   4866     const Value *Op1 = I.getArgOperand(0);
   4867     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
   4868                                DAG.getValueType(DestVT),
   4869                                DAG.getValueType(getValue(Op1).getValueType()),
   4870                                getValue(I.getArgOperand(1)),
   4871                                getValue(I.getArgOperand(2)),
   4872                                Code);
   4873     setValue(&I, Res);
   4874     return 0;
   4875   }
   4876   case Intrinsic::sqrt:
   4877     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
   4878                              getValue(I.getArgOperand(0)).getValueType(),
   4879                              getValue(I.getArgOperand(0))));
   4880     return 0;
   4881   case Intrinsic::powi:
   4882     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
   4883                             getValue(I.getArgOperand(1)), DAG));
   4884     return 0;
   4885   case Intrinsic::sin:
   4886     setValue(&I, DAG.getNode(ISD::FSIN, dl,
   4887                              getValue(I.getArgOperand(0)).getValueType(),
   4888                              getValue(I.getArgOperand(0))));
   4889     return 0;
   4890   case Intrinsic::cos:
   4891     setValue(&I, DAG.getNode(ISD::FCOS, dl,
   4892                              getValue(I.getArgOperand(0)).getValueType(),
   4893                              getValue(I.getArgOperand(0))));
   4894     return 0;
   4895   case Intrinsic::log:
   4896     visitLog(I);
   4897     return 0;
   4898   case Intrinsic::log2:
   4899     visitLog2(I);
   4900     return 0;
   4901   case Intrinsic::log10:
   4902     visitLog10(I);
   4903     return 0;
   4904   case Intrinsic::exp:
   4905     visitExp(I);
   4906     return 0;
   4907   case Intrinsic::exp2:
   4908     visitExp2(I);
   4909     return 0;
   4910   case Intrinsic::pow:
   4911     visitPow(I);
   4912     return 0;
   4913   case Intrinsic::fma:
   4914     setValue(&I, DAG.getNode(ISD::FMA, dl,
   4915                              getValue(I.getArgOperand(0)).getValueType(),
   4916                              getValue(I.getArgOperand(0)),
   4917                              getValue(I.getArgOperand(1)),
   4918                              getValue(I.getArgOperand(2))));
   4919     return 0;
   4920   case Intrinsic::convert_to_fp16:
   4921     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
   4922                              MVT::i16, getValue(I.getArgOperand(0))));
   4923     return 0;
   4924   case Intrinsic::convert_from_fp16:
   4925     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
   4926                              MVT::f32, getValue(I.getArgOperand(0))));
   4927     return 0;
   4928   case Intrinsic::pcmarker: {
   4929     SDValue Tmp = getValue(I.getArgOperand(0));
   4930     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
   4931     return 0;
   4932   }
   4933   case Intrinsic::readcyclecounter: {
   4934     SDValue Op = getRoot();
   4935     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
   4936                       DAG.getVTList(MVT::i64, MVT::Other),
   4937                       &Op, 1);
   4938     setValue(&I, Res);
   4939     DAG.setRoot(Res.getValue(1));
   4940     return 0;
   4941   }
   4942   case Intrinsic::bswap:
   4943     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
   4944                              getValue(I.getArgOperand(0)).getValueType(),
   4945                              getValue(I.getArgOperand(0))));
   4946     return 0;
   4947   case Intrinsic::cttz: {
   4948     SDValue Arg = getValue(I.getArgOperand(0));
   4949     EVT Ty = Arg.getValueType();
   4950     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
   4951     return 0;
   4952   }
   4953   case Intrinsic::ctlz: {
   4954     SDValue Arg = getValue(I.getArgOperand(0));
   4955     EVT Ty = Arg.getValueType();
   4956     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
   4957     return 0;
   4958   }
   4959   case Intrinsic::ctpop: {
   4960     SDValue Arg = getValue(I.getArgOperand(0));
   4961     EVT Ty = Arg.getValueType();
   4962     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
   4963     return 0;
   4964   }
   4965   case Intrinsic::stacksave: {
   4966     SDValue Op = getRoot();
   4967     Res = DAG.getNode(ISD::STACKSAVE, dl,
   4968                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
   4969     setValue(&I, Res);
   4970     DAG.setRoot(Res.getValue(1));
   4971     return 0;
   4972   }
   4973   case Intrinsic::stackrestore: {
   4974     Res = getValue(I.getArgOperand(0));
   4975     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
   4976     return 0;
   4977   }
   4978   case Intrinsic::stackprotector: {
   4979     // Emit code into the DAG to store the stack guard onto the stack.
   4980     MachineFunction &MF = DAG.getMachineFunction();
   4981     MachineFrameInfo *MFI = MF.getFrameInfo();
   4982     EVT PtrTy = TLI.getPointerTy();
   4983 
   4984     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
   4985     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   4986 
   4987     int FI = FuncInfo.StaticAllocaMap[Slot];
   4988     MFI->setStackProtectorIndex(FI);
   4989 
   4990     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   4991 
   4992     // Store the stack protector onto the stack.
   4993     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
   4994                        MachinePointerInfo::getFixedStack(FI),
   4995                        true, false, 0);
   4996     setValue(&I, Res);
   4997     DAG.setRoot(Res);
   4998     return 0;
   4999   }
   5000   case Intrinsic::objectsize: {
   5001     // If we don't know by now, we're never going to know.
   5002     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
   5003 
   5004     assert(CI && "Non-constant type in __builtin_object_size?");
   5005 
   5006     SDValue Arg = getValue(I.getCalledValue());
   5007     EVT Ty = Arg.getValueType();
   5008 
   5009     if (CI->isZero())
   5010       Res = DAG.getConstant(-1ULL, Ty);
   5011     else
   5012       Res = DAG.getConstant(0, Ty);
   5013 
   5014     setValue(&I, Res);
   5015     return 0;
   5016   }
   5017   case Intrinsic::var_annotation:
   5018     // Discard annotate attributes
   5019     return 0;
   5020 
   5021   case Intrinsic::init_trampoline: {
   5022     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
   5023 
   5024     SDValue Ops[6];
   5025     Ops[0] = getRoot();
   5026     Ops[1] = getValue(I.getArgOperand(0));
   5027     Ops[2] = getValue(I.getArgOperand(1));
   5028     Ops[3] = getValue(I.getArgOperand(2));
   5029     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
   5030     Ops[5] = DAG.getSrcValue(F);
   5031 
   5032     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
   5033 
   5034     DAG.setRoot(Res);
   5035     return 0;
   5036   }
   5037   case Intrinsic::adjust_trampoline: {
   5038     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
   5039                              TLI.getPointerTy(),
   5040                              getValue(I.getArgOperand(0))));
   5041     return 0;
   5042   }
   5043   case Intrinsic::gcroot:
   5044     if (GFI) {
   5045       const Value *Alloca = I.getArgOperand(0);
   5046       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
   5047 
   5048       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
   5049       GFI->addStackRoot(FI->getIndex(), TypeMap);
   5050     }
   5051     return 0;
   5052   case Intrinsic::gcread:
   5053   case Intrinsic::gcwrite:
   5054     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
   5055     return 0;
   5056   case Intrinsic::flt_rounds:
   5057     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
   5058     return 0;
   5059 
   5060   case Intrinsic::expect: {
   5061     // Just replace __builtin_expect(exp, c) with EXP.
   5062     setValue(&I, getValue(I.getArgOperand(0)));
   5063     return 0;
   5064   }
   5065 
   5066   case Intrinsic::trap: {
   5067     StringRef TrapFuncName = getTrapFunctionName();
   5068     if (TrapFuncName.empty()) {
   5069       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
   5070       return 0;
   5071     }
   5072     TargetLowering::ArgListTy Args;
   5073     std::pair<SDValue, SDValue> Result =
   5074       TLI.LowerCallTo(getRoot(), I.getType(),
   5075                  false, false, false, false, 0, CallingConv::C,
   5076                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
   5077                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
   5078                  Args, DAG, getCurDebugLoc());
   5079     DAG.setRoot(Result.second);
   5080     return 0;
   5081   }
   5082   case Intrinsic::uadd_with_overflow:
   5083     return implVisitAluOverflow(I, ISD::UADDO);
   5084   case Intrinsic::sadd_with_overflow:
   5085     return implVisitAluOverflow(I, ISD::SADDO);
   5086   case Intrinsic::usub_with_overflow:
   5087     return implVisitAluOverflow(I, ISD::USUBO);
   5088   case Intrinsic::ssub_with_overflow:
   5089     return implVisitAluOverflow(I, ISD::SSUBO);
   5090   case Intrinsic::umul_with_overflow:
   5091     return implVisitAluOverflow(I, ISD::UMULO);
   5092   case Intrinsic::smul_with_overflow:
   5093     return implVisitAluOverflow(I, ISD::SMULO);
   5094 
   5095   case Intrinsic::prefetch: {
   5096     SDValue Ops[5];
   5097     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
   5098     Ops[0] = getRoot();
   5099     Ops[1] = getValue(I.getArgOperand(0));
   5100     Ops[2] = getValue(I.getArgOperand(1));
   5101     Ops[3] = getValue(I.getArgOperand(2));
   5102     Ops[4] = getValue(I.getArgOperand(3));
   5103     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
   5104                                         DAG.getVTList(MVT::Other),
   5105                                         &Ops[0], 5,
   5106                                         EVT::getIntegerVT(*Context, 8),
   5107                                         MachinePointerInfo(I.getArgOperand(0)),
   5108                                         0, /* align */
   5109                                         false, /* volatile */
   5110                                         rw==0, /* read */
   5111                                         rw==1)); /* write */
   5112     return 0;
   5113   }
   5114 
   5115   case Intrinsic::invariant_start:
   5116   case Intrinsic::lifetime_start:
   5117     // Discard region information.
   5118     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
   5119     return 0;
   5120   case Intrinsic::invariant_end:
   5121   case Intrinsic::lifetime_end:
   5122     // Discard region information.
   5123     return 0;
   5124   }
   5125 }
   5126 
   5127 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
   5128                                       bool isTailCall,
   5129                                       MachineBasicBlock *LandingPad) {
   5130   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   5131   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   5132   Type *RetTy = FTy->getReturnType();
   5133   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5134   MCSymbol *BeginLabel = 0;
   5135 
   5136   TargetLowering::ArgListTy Args;
   5137   TargetLowering::ArgListEntry Entry;
   5138   Args.reserve(CS.arg_size());
   5139 
   5140   // Check whether the function can return without sret-demotion.
   5141   SmallVector<ISD::OutputArg, 4> Outs;
   5142   SmallVector<uint64_t, 4> Offsets;
   5143   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
   5144                 Outs, TLI, &Offsets);
   5145 
   5146   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
   5147 					   DAG.getMachineFunction(),
   5148 					   FTy->isVarArg(), Outs,
   5149 					   FTy->getContext());
   5150 
   5151   SDValue DemoteStackSlot;
   5152   int DemoteStackIdx = -100;
   5153 
   5154   if (!CanLowerReturn) {
   5155     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
   5156                       FTy->getReturnType());
   5157     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
   5158                       FTy->getReturnType());
   5159     MachineFunction &MF = DAG.getMachineFunction();
   5160     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   5161     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
   5162 
   5163     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
   5164     Entry.Node = DemoteStackSlot;
   5165     Entry.Ty = StackSlotPtrType;
   5166     Entry.isSExt = false;
   5167     Entry.isZExt = false;
   5168     Entry.isInReg = false;
   5169     Entry.isSRet = true;
   5170     Entry.isNest = false;
   5171     Entry.isByVal = false;
   5172     Entry.Alignment = Align;
   5173     Args.push_back(Entry);
   5174     RetTy = Type::getVoidTy(FTy->getContext());
   5175   }
   5176 
   5177   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   5178        i != e; ++i) {
   5179     const Value *V = *i;
   5180 
   5181     // Skip empty types
   5182     if (V->getType()->isEmptyTy())
   5183       continue;
   5184 
   5185     SDValue ArgNode = getValue(V);
   5186     Entry.Node = ArgNode; Entry.Ty = V->getType();
   5187 
   5188     unsigned attrInd = i - CS.arg_begin() + 1;
   5189     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
   5190     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
   5191     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
   5192     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
   5193     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
   5194     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
   5195     Entry.Alignment = CS.getParamAlignment(attrInd);
   5196     Args.push_back(Entry);
   5197   }
   5198 
   5199   if (LandingPad) {
   5200     // Insert a label before the invoke call to mark the try range.  This can be
   5201     // used to detect deletion of the invoke via the MachineModuleInfo.
   5202     BeginLabel = MMI.getContext().CreateTempSymbol();
   5203 
   5204     // For SjLj, keep track of which landing pads go with which invokes
   5205     // so as to maintain the ordering of pads in the LSDA.
   5206     unsigned CallSiteIndex = MMI.getCurrentCallSite();
   5207     if (CallSiteIndex) {
   5208       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
   5209       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
   5210 
   5211       // Now that the call site is handled, stop tracking it.
   5212       MMI.setCurrentCallSite(0);
   5213     }
   5214 
   5215     // Both PendingLoads and PendingExports must be flushed here;
   5216     // this call might not return.
   5217     (void)getRoot();
   5218     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
   5219   }
   5220 
   5221   // Check if target-independent constraints permit a tail call here.
   5222   // Target-dependent constraints are checked within TLI.LowerCallTo.
   5223   if (isTailCall &&
   5224       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
   5225     isTailCall = false;
   5226 
   5227   // If there's a possibility that fast-isel has already selected some amount
   5228   // of the current basic block, don't emit a tail call.
   5229   if (isTailCall && EnableFastISel)
   5230     isTailCall = false;
   5231 
   5232   std::pair<SDValue,SDValue> Result =
   5233     TLI.LowerCallTo(getRoot(), RetTy,
   5234                     CS.paramHasAttr(0, Attribute::SExt),
   5235                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
   5236                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
   5237                     CS.getCallingConv(),
   5238                     isTailCall,
   5239                     !CS.getInstruction()->use_empty(),
   5240                     Callee, Args, DAG, getCurDebugLoc());
   5241   assert((isTailCall || Result.second.getNode()) &&
   5242          "Non-null chain expected with non-tail call!");
   5243   assert((Result.second.getNode() || !Result.first.getNode()) &&
   5244          "Null value expected with tail call!");
   5245   if (Result.first.getNode()) {
   5246     setValue(CS.getInstruction(), Result.first);
   5247   } else if (!CanLowerReturn && Result.second.getNode()) {
   5248     // The instruction result is the result of loading from the
   5249     // hidden sret parameter.
   5250     SmallVector<EVT, 1> PVTs;
   5251     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
   5252 
   5253     ComputeValueVTs(TLI, PtrRetTy, PVTs);
   5254     assert(PVTs.size() == 1 && "Pointers should fit in one register");
   5255     EVT PtrVT = PVTs[0];
   5256     unsigned NumValues = Outs.size();
   5257     SmallVector<SDValue, 4> Values(NumValues);
   5258     SmallVector<SDValue, 4> Chains(NumValues);
   5259 
   5260     for (unsigned i = 0; i < NumValues; ++i) {
   5261       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
   5262                                 DemoteStackSlot,
   5263                                 DAG.getConstant(Offsets[i], PtrVT));
   5264       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
   5265                               Add,
   5266                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
   5267                               false, false, 1);
   5268       Values[i] = L;
   5269       Chains[i] = L.getValue(1);
   5270     }
   5271 
   5272     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   5273                                 MVT::Other, &Chains[0], NumValues);
   5274     PendingLoads.push_back(Chain);
   5275 
   5276     // Collect the legal value parts into potentially illegal values
   5277     // that correspond to the original function's return values.
   5278     SmallVector<EVT, 4> RetTys;
   5279     RetTy = FTy->getReturnType();
   5280     ComputeValueVTs(TLI, RetTy, RetTys);
   5281     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   5282     SmallVector<SDValue, 4> ReturnValues;
   5283     unsigned CurReg = 0;
   5284     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   5285       EVT VT = RetTys[I];
   5286       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
   5287       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
   5288 
   5289       SDValue ReturnValue =
   5290         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
   5291                          RegisterVT, VT, AssertOp);
   5292       ReturnValues.push_back(ReturnValue);
   5293       CurReg += NumRegs;
   5294     }
   5295 
   5296     setValue(CS.getInstruction(),
   5297              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   5298                          DAG.getVTList(&RetTys[0], RetTys.size()),
   5299                          &ReturnValues[0], ReturnValues.size()));
   5300   }
   5301 
   5302   // Assign order to nodes here. If the call does not produce a result, it won't
   5303   // be mapped to a SDNode and visit() will not assign it an order number.
   5304   if (!Result.second.getNode()) {
   5305     // As a special case, a null chain means that a tail call has been emitted and
   5306     // the DAG root is already updated.
   5307     HasTailCall = true;
   5308     ++SDNodeOrder;
   5309     AssignOrderingToNode(DAG.getRoot().getNode());
   5310   } else {
   5311     DAG.setRoot(Result.second);
   5312     ++SDNodeOrder;
   5313     AssignOrderingToNode(Result.second.getNode());
   5314   }
   5315 
   5316   if (LandingPad) {
   5317     // Insert a label at the end of the invoke call to mark the try range.  This
   5318     // can be used to detect deletion of the invoke via the MachineModuleInfo.
   5319     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
   5320     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
   5321 
   5322     // Inform MachineModuleInfo of range.
   5323     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
   5324   }
   5325 }
   5326 
   5327 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
   5328 /// value is equal or not-equal to zero.
   5329 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
   5330   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
   5331        UI != E; ++UI) {
   5332     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
   5333       if (IC->isEquality())
   5334         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
   5335           if (C->isNullValue())
   5336             continue;
   5337     // Unknown instruction.
   5338     return false;
   5339   }
   5340   return true;
   5341 }
   5342 
   5343 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
   5344                              Type *LoadTy,
   5345                              SelectionDAGBuilder &Builder) {
   5346 
   5347   // Check to see if this load can be trivially constant folded, e.g. if the
   5348   // input is from a string literal.
   5349   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
   5350     // Cast pointer to the type we really want to load.
   5351     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
   5352                                          PointerType::getUnqual(LoadTy));
   5353 
   5354     if (const Constant *LoadCst =
   5355           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
   5356                                        Builder.TD))
   5357       return Builder.getValue(LoadCst);
   5358   }
   5359 
   5360   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
   5361   // still constant memory, the input chain can be the entry node.
   5362   SDValue Root;
   5363   bool ConstantMemory = false;
   5364 
   5365   // Do not serialize (non-volatile) loads of constant memory with anything.
   5366   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
   5367     Root = Builder.DAG.getEntryNode();
   5368     ConstantMemory = true;
   5369   } else {
   5370     // Do not serialize non-volatile loads against each other.
   5371     Root = Builder.DAG.getRoot();
   5372   }
   5373 
   5374   SDValue Ptr = Builder.getValue(PtrVal);
   5375   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
   5376                                         Ptr, MachinePointerInfo(PtrVal),
   5377                                         false /*volatile*/,
   5378                                         false /*nontemporal*/, 1 /* align=1 */);
   5379 
   5380   if (!ConstantMemory)
   5381     Builder.PendingLoads.push_back(LoadVal.getValue(1));
   5382   return LoadVal;
   5383 }
   5384 
   5385 
   5386 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
   5387 /// If so, return true and lower it, otherwise return false and it will be
   5388 /// lowered like a normal call.
   5389 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
   5390   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
   5391   if (I.getNumArgOperands() != 3)
   5392     return false;
   5393 
   5394   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
   5395   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
   5396       !I.getArgOperand(2)->getType()->isIntegerTy() ||
   5397       !I.getType()->isIntegerTy())
   5398     return false;
   5399 
   5400   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
   5401 
   5402   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
   5403   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
   5404   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
   5405     bool ActuallyDoIt = true;
   5406     MVT LoadVT;
   5407     Type *LoadTy;
   5408     switch (Size->getZExtValue()) {
   5409     default:
   5410       LoadVT = MVT::Other;
   5411       LoadTy = 0;
   5412       ActuallyDoIt = false;
   5413       break;
   5414     case 2:
   5415       LoadVT = MVT::i16;
   5416       LoadTy = Type::getInt16Ty(Size->getContext());
   5417       break;
   5418     case 4:
   5419       LoadVT = MVT::i32;
   5420       LoadTy = Type::getInt32Ty(Size->getContext());
   5421       break;
   5422     case 8:
   5423       LoadVT = MVT::i64;
   5424       LoadTy = Type::getInt64Ty(Size->getContext());
   5425       break;
   5426         /*
   5427     case 16:
   5428       LoadVT = MVT::v4i32;
   5429       LoadTy = Type::getInt32Ty(Size->getContext());
   5430       LoadTy = VectorType::get(LoadTy, 4);
   5431       break;
   5432          */
   5433     }
   5434 
   5435     // This turns into unaligned loads.  We only do this if the target natively
   5436     // supports the MVT we'll be loading or if it is small enough (<= 4) that
   5437     // we'll only produce a small number of byte loads.
   5438 
   5439     // Require that we can find a legal MVT, and only do this if the target
   5440     // supports unaligned loads of that type.  Expanding into byte loads would
   5441     // bloat the code.
   5442     if (ActuallyDoIt && Size->getZExtValue() > 4) {
   5443       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
   5444       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
   5445       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
   5446         ActuallyDoIt = false;
   5447     }
   5448 
   5449     if (ActuallyDoIt) {
   5450       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
   5451       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
   5452 
   5453       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
   5454                                  ISD::SETNE);
   5455       EVT CallVT = TLI.getValueType(I.getType(), true);
   5456       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
   5457       return true;
   5458     }
   5459   }
   5460 
   5461 
   5462   return false;
   5463 }
   5464 
   5465 
   5466 void SelectionDAGBuilder::visitCall(const CallInst &I) {
   5467   // Handle inline assembly differently.
   5468   if (isa<InlineAsm>(I.getCalledValue())) {
   5469     visitInlineAsm(&I);
   5470     return;
   5471   }
   5472 
   5473   // See if any floating point values are being passed to this function. This is
   5474   // used to emit an undefined reference to fltused on Windows.
   5475   FunctionType *FT =
   5476     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
   5477   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5478   if (FT->isVarArg() &&
   5479       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
   5480     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
   5481       Type* T = I.getArgOperand(i)->getType();
   5482       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
   5483            i != e; ++i) {
   5484         if (!i->isFloatingPointTy()) continue;
   5485         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
   5486         break;
   5487       }
   5488     }
   5489   }
   5490 
   5491   const char *RenameFn = 0;
   5492   if (Function *F = I.getCalledFunction()) {
   5493     if (F->isDeclaration()) {
   5494       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
   5495         if (unsigned IID = II->getIntrinsicID(F)) {
   5496           RenameFn = visitIntrinsicCall(I, IID);
   5497           if (!RenameFn)
   5498             return;
   5499         }
   5500       }
   5501       if (unsigned IID = F->getIntrinsicID()) {
   5502         RenameFn = visitIntrinsicCall(I, IID);
   5503         if (!RenameFn)
   5504           return;
   5505       }
   5506     }
   5507 
   5508     // Check for well-known libc/libm calls.  If the function is internal, it
   5509     // can't be a library call.
   5510     if (!F->hasLocalLinkage() && F->hasName()) {
   5511       StringRef Name = F->getName();
   5512       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
   5513         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
   5514             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5515             I.getType() == I.getArgOperand(0)->getType() &&
   5516             I.getType() == I.getArgOperand(1)->getType()) {
   5517           SDValue LHS = getValue(I.getArgOperand(0));
   5518           SDValue RHS = getValue(I.getArgOperand(1));
   5519           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
   5520                                    LHS.getValueType(), LHS, RHS));
   5521           return;
   5522         }
   5523       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
   5524         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5525             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5526             I.getType() == I.getArgOperand(0)->getType()) {
   5527           SDValue Tmp = getValue(I.getArgOperand(0));
   5528           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
   5529                                    Tmp.getValueType(), Tmp));
   5530           return;
   5531         }
   5532       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
   5533         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5534             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5535             I.getType() == I.getArgOperand(0)->getType() &&
   5536             I.onlyReadsMemory()) {
   5537           SDValue Tmp = getValue(I.getArgOperand(0));
   5538           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
   5539                                    Tmp.getValueType(), Tmp));
   5540           return;
   5541         }
   5542       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
   5543         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5544             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5545             I.getType() == I.getArgOperand(0)->getType() &&
   5546             I.onlyReadsMemory()) {
   5547           SDValue Tmp = getValue(I.getArgOperand(0));
   5548           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
   5549                                    Tmp.getValueType(), Tmp));
   5550           return;
   5551         }
   5552       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
   5553         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5554             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5555             I.getType() == I.getArgOperand(0)->getType() &&
   5556             I.onlyReadsMemory()) {
   5557           SDValue Tmp = getValue(I.getArgOperand(0));
   5558           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
   5559                                    Tmp.getValueType(), Tmp));
   5560           return;
   5561         }
   5562       } else if (Name == "memcmp") {
   5563         if (visitMemCmpCall(I))
   5564           return;
   5565       }
   5566     }
   5567   }
   5568 
   5569   SDValue Callee;
   5570   if (!RenameFn)
   5571     Callee = getValue(I.getCalledValue());
   5572   else
   5573     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
   5574 
   5575   // Check if we can potentially perform a tail call. More detailed checking is
   5576   // be done within LowerCallTo, after more information about the call is known.
   5577   LowerCallTo(&I, Callee, I.isTailCall());
   5578 }
   5579 
   5580 namespace {
   5581 
   5582 /// AsmOperandInfo - This contains information for each constraint that we are
   5583 /// lowering.
   5584 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
   5585 public:
   5586   /// CallOperand - If this is the result output operand or a clobber
   5587   /// this is null, otherwise it is the incoming operand to the CallInst.
   5588   /// This gets modified as the asm is processed.
   5589   SDValue CallOperand;
   5590 
   5591   /// AssignedRegs - If this is a register or register class operand, this
   5592   /// contains the set of register corresponding to the operand.
   5593   RegsForValue AssignedRegs;
   5594 
   5595   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
   5596     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
   5597   }
   5598 
   5599   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
   5600   /// busy in OutputRegs/InputRegs.
   5601   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
   5602                          std::set<unsigned> &OutputRegs,
   5603                          std::set<unsigned> &InputRegs,
   5604                          const TargetRegisterInfo &TRI) const {
   5605     if (isOutReg) {
   5606       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
   5607         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
   5608     }
   5609     if (isInReg) {
   5610       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
   5611         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
   5612     }
   5613   }
   5614 
   5615   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
   5616   /// corresponds to.  If there is no Value* for this operand, it returns
   5617   /// MVT::Other.
   5618   EVT getCallOperandValEVT(LLVMContext &Context,
   5619                            const TargetLowering &TLI,
   5620                            const TargetData *TD) const {
   5621     if (CallOperandVal == 0) return MVT::Other;
   5622 
   5623     if (isa<BasicBlock>(CallOperandVal))
   5624       return TLI.getPointerTy();
   5625 
   5626     llvm::Type *OpTy = CallOperandVal->getType();
   5627 
   5628     // FIXME: code duplicated from TargetLowering::ParseConstraints().
   5629     // If this is an indirect operand, the operand is a pointer to the
   5630     // accessed type.
   5631     if (isIndirect) {
   5632       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   5633       if (!PtrTy)
   5634         report_fatal_error("Indirect operand for inline asm not a pointer!");
   5635       OpTy = PtrTy->getElementType();
   5636     }
   5637 
   5638     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   5639     if (StructType *STy = dyn_cast<StructType>(OpTy))
   5640       if (STy->getNumElements() == 1)
   5641         OpTy = STy->getElementType(0);
   5642 
   5643     // If OpTy is not a single value, it may be a struct/union that we
   5644     // can tile with integers.
   5645     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   5646       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
   5647       switch (BitSize) {
   5648       default: break;
   5649       case 1:
   5650       case 8:
   5651       case 16:
   5652       case 32:
   5653       case 64:
   5654       case 128:
   5655         OpTy = IntegerType::get(Context, BitSize);
   5656         break;
   5657       }
   5658     }
   5659 
   5660     return TLI.getValueType(OpTy, true);
   5661   }
   5662 
   5663 private:
   5664   /// MarkRegAndAliases - Mark the specified register and all aliases in the
   5665   /// specified set.
   5666   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
   5667                                 const TargetRegisterInfo &TRI) {
   5668     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
   5669     Regs.insert(Reg);
   5670     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
   5671       for (; *Aliases; ++Aliases)
   5672         Regs.insert(*Aliases);
   5673   }
   5674 };
   5675 
   5676 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
   5677 
   5678 } // end anonymous namespace
   5679 
   5680 /// GetRegistersForValue - Assign registers (virtual or physical) for the
   5681 /// specified operand.  We prefer to assign virtual registers, to allow the
   5682 /// register allocator to handle the assignment process.  However, if the asm
   5683 /// uses features that we can't model on machineinstrs, we have SDISel do the
   5684 /// allocation.  This produces generally horrible, but correct, code.
   5685 ///
   5686 ///   OpInfo describes the operand.
   5687 ///   Input and OutputRegs are the set of already allocated physical registers.
   5688 ///
   5689 static void GetRegistersForValue(SelectionDAG &DAG,
   5690                                  const TargetLowering &TLI,
   5691                                  DebugLoc DL,
   5692                                  SDISelAsmOperandInfo &OpInfo,
   5693                                  std::set<unsigned> &OutputRegs,
   5694                                  std::set<unsigned> &InputRegs) {
   5695   LLVMContext &Context = *DAG.getContext();
   5696 
   5697   // Compute whether this value requires an input register, an output register,
   5698   // or both.
   5699   bool isOutReg = false;
   5700   bool isInReg = false;
   5701   switch (OpInfo.Type) {
   5702   case InlineAsm::isOutput:
   5703     isOutReg = true;
   5704 
   5705     // If there is an input constraint that matches this, we need to reserve
   5706     // the input register so no other inputs allocate to it.
   5707     isInReg = OpInfo.hasMatchingInput();
   5708     break;
   5709   case InlineAsm::isInput:
   5710     isInReg = true;
   5711     isOutReg = false;
   5712     break;
   5713   case InlineAsm::isClobber:
   5714     isOutReg = true;
   5715     isInReg = true;
   5716     break;
   5717   }
   5718 
   5719 
   5720   MachineFunction &MF = DAG.getMachineFunction();
   5721   SmallVector<unsigned, 4> Regs;
   5722 
   5723   // If this is a constraint for a single physreg, or a constraint for a
   5724   // register class, find it.
   5725   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
   5726     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   5727                                      OpInfo.ConstraintVT);
   5728 
   5729   unsigned NumRegs = 1;
   5730   if (OpInfo.ConstraintVT != MVT::Other) {
   5731     // If this is a FP input in an integer register (or visa versa) insert a bit
   5732     // cast of the input value.  More generally, handle any case where the input
   5733     // value disagrees with the register class we plan to stick this in.
   5734     if (OpInfo.Type == InlineAsm::isInput &&
   5735         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
   5736       // Try to convert to the first EVT that the reg class contains.  If the
   5737       // types are identical size, use a bitcast to convert (e.g. two differing
   5738       // vector types).
   5739       EVT RegVT = *PhysReg.second->vt_begin();
   5740       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
   5741         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   5742                                          RegVT, OpInfo.CallOperand);
   5743         OpInfo.ConstraintVT = RegVT;
   5744       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
   5745         // If the input is a FP value and we want it in FP registers, do a
   5746         // bitcast to the corresponding integer type.  This turns an f64 value
   5747         // into i64, which can be passed with two i32 values on a 32-bit
   5748         // machine.
   5749         RegVT = EVT::getIntegerVT(Context,
   5750                                   OpInfo.ConstraintVT.getSizeInBits());
   5751         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   5752                                          RegVT, OpInfo.CallOperand);
   5753         OpInfo.ConstraintVT = RegVT;
   5754       }
   5755     }
   5756 
   5757     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
   5758   }
   5759 
   5760   EVT RegVT;
   5761   EVT ValueVT = OpInfo.ConstraintVT;
   5762 
   5763   // If this is a constraint for a specific physical register, like {r17},
   5764   // assign it now.
   5765   if (unsigned AssignedReg = PhysReg.first) {
   5766     const TargetRegisterClass *RC = PhysReg.second;
   5767     if (OpInfo.ConstraintVT == MVT::Other)
   5768       ValueVT = *RC->vt_begin();
   5769 
   5770     // Get the actual register value type.  This is important, because the user
   5771     // may have asked for (e.g.) the AX register in i32 type.  We need to
   5772     // remember that AX is actually i16 to get the right extension.
   5773     RegVT = *RC->vt_begin();
   5774 
   5775     // This is a explicit reference to a physical register.
   5776     Regs.push_back(AssignedReg);
   5777 
   5778     // If this is an expanded reference, add the rest of the regs to Regs.
   5779     if (NumRegs != 1) {
   5780       TargetRegisterClass::iterator I = RC->begin();
   5781       for (; *I != AssignedReg; ++I)
   5782         assert(I != RC->end() && "Didn't find reg!");
   5783 
   5784       // Already added the first reg.
   5785       --NumRegs; ++I;
   5786       for (; NumRegs; --NumRegs, ++I) {
   5787         assert(I != RC->end() && "Ran out of registers to allocate!");
   5788         Regs.push_back(*I);
   5789       }
   5790     }
   5791 
   5792     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   5793     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
   5794     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
   5795     return;
   5796   }
   5797 
   5798   // Otherwise, if this was a reference to an LLVM register class, create vregs
   5799   // for this reference.
   5800   if (const TargetRegisterClass *RC = PhysReg.second) {
   5801     RegVT = *RC->vt_begin();
   5802     if (OpInfo.ConstraintVT == MVT::Other)
   5803       ValueVT = RegVT;
   5804 
   5805     // Create the appropriate number of virtual registers.
   5806     MachineRegisterInfo &RegInfo = MF.getRegInfo();
   5807     for (; NumRegs; --NumRegs)
   5808       Regs.push_back(RegInfo.createVirtualRegister(RC));
   5809 
   5810     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   5811     return;
   5812   }
   5813 
   5814   // Otherwise, we couldn't allocate enough registers for this.
   5815 }
   5816 
   5817 /// visitInlineAsm - Handle a call to an InlineAsm object.
   5818 ///
   5819 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
   5820   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   5821 
   5822   /// ConstraintOperands - Information about all of the constraints.
   5823   SDISelAsmOperandInfoVector ConstraintOperands;
   5824 
   5825   std::set<unsigned> OutputRegs, InputRegs;
   5826 
   5827   TargetLowering::AsmOperandInfoVector
   5828     TargetConstraints = TLI.ParseConstraints(CS);
   5829 
   5830   bool hasMemory = false;
   5831 
   5832   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   5833   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   5834   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   5835     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
   5836     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
   5837 
   5838     EVT OpVT = MVT::Other;
   5839 
   5840     // Compute the value type for each operand.
   5841     switch (OpInfo.Type) {
   5842     case InlineAsm::isOutput:
   5843       // Indirect outputs just consume an argument.
   5844       if (OpInfo.isIndirect) {
   5845         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   5846         break;
   5847       }
   5848 
   5849       // The return value of the call is this value.  As such, there is no
   5850       // corresponding argument.
   5851       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   5852       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   5853         OpVT = TLI.getValueType(STy->getElementType(ResNo));
   5854       } else {
   5855         assert(ResNo == 0 && "Asm only has one result!");
   5856         OpVT = TLI.getValueType(CS.getType());
   5857       }
   5858       ++ResNo;
   5859       break;
   5860     case InlineAsm::isInput:
   5861       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   5862       break;
   5863     case InlineAsm::isClobber:
   5864       // Nothing to do.
   5865       break;
   5866     }
   5867 
   5868     // If this is an input or an indirect output, process the call argument.
   5869     // BasicBlocks are labels, currently appearing only in asm's.
   5870     if (OpInfo.CallOperandVal) {
   5871       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
   5872         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
   5873       } else {
   5874         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
   5875       }
   5876 
   5877       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
   5878     }
   5879 
   5880     OpInfo.ConstraintVT = OpVT;
   5881 
   5882     // Indirect operand accesses access memory.
   5883     if (OpInfo.isIndirect)
   5884       hasMemory = true;
   5885     else {
   5886       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
   5887         TargetLowering::ConstraintType
   5888           CType = TLI.getConstraintType(OpInfo.Codes[j]);
   5889         if (CType == TargetLowering::C_Memory) {
   5890           hasMemory = true;
   5891           break;
   5892         }
   5893       }
   5894     }
   5895   }
   5896 
   5897   SDValue Chain, Flag;
   5898 
   5899   // We won't need to flush pending loads if this asm doesn't touch
   5900   // memory and is nonvolatile.
   5901   if (hasMemory || IA->hasSideEffects())
   5902     Chain = getRoot();
   5903   else
   5904     Chain = DAG.getRoot();
   5905 
   5906   // Second pass over the constraints: compute which constraint option to use
   5907   // and assign registers to constraints that want a specific physreg.
   5908   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   5909     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   5910 
   5911     // If this is an output operand with a matching input operand, look up the
   5912     // matching input. If their types mismatch, e.g. one is an integer, the
   5913     // other is floating point, or their sizes are different, flag it as an
   5914     // error.
   5915     if (OpInfo.hasMatchingInput()) {
   5916       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   5917 
   5918       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   5919 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   5920 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   5921                                            OpInfo.ConstraintVT);
   5922 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
   5923 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
   5924                                            Input.ConstraintVT);
   5925         if ((OpInfo.ConstraintVT.isInteger() !=
   5926              Input.ConstraintVT.isInteger()) ||
   5927             (MatchRC.second != InputRC.second)) {
   5928           report_fatal_error("Unsupported asm: input constraint"
   5929                              " with a matching output constraint of"
   5930                              " incompatible type!");
   5931         }
   5932         Input.ConstraintVT = OpInfo.ConstraintVT;
   5933       }
   5934     }
   5935 
   5936     // Compute the constraint code and ConstraintType to use.
   5937     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
   5938 
   5939     // If this is a memory input, and if the operand is not indirect, do what we
   5940     // need to to provide an address for the memory input.
   5941     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   5942         !OpInfo.isIndirect) {
   5943       assert((OpInfo.isMultipleAlternative ||
   5944               (OpInfo.Type == InlineAsm::isInput)) &&
   5945              "Can only indirectify direct input operands!");
   5946 
   5947       // Memory operands really want the address of the value.  If we don't have
   5948       // an indirect input, put it in the constpool if we can, otherwise spill
   5949       // it to a stack slot.
   5950       // TODO: This isn't quite right. We need to handle these according to
   5951       // the addressing mode that the constraint wants. Also, this may take
   5952       // an additional register for the computation and we don't want that
   5953       // either.
   5954 
   5955       // If the operand is a float, integer, or vector constant, spill to a
   5956       // constant pool entry to get its address.
   5957       const Value *OpVal = OpInfo.CallOperandVal;
   5958       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
   5959           isa<ConstantVector>(OpVal)) {
   5960         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
   5961                                                  TLI.getPointerTy());
   5962       } else {
   5963         // Otherwise, create a stack slot and emit a store to it before the
   5964         // asm.
   5965         Type *Ty = OpVal->getType();
   5966         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
   5967         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
   5968         MachineFunction &MF = DAG.getMachineFunction();
   5969         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   5970         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
   5971         Chain = DAG.getStore(Chain, getCurDebugLoc(),
   5972                              OpInfo.CallOperand, StackSlot,
   5973                              MachinePointerInfo::getFixedStack(SSFI),
   5974                              false, false, 0);
   5975         OpInfo.CallOperand = StackSlot;
   5976       }
   5977 
   5978       // There is no longer a Value* corresponding to this operand.
   5979       OpInfo.CallOperandVal = 0;
   5980 
   5981       // It is now an indirect operand.
   5982       OpInfo.isIndirect = true;
   5983     }
   5984 
   5985     // If this constraint is for a specific register, allocate it before
   5986     // anything else.
   5987     if (OpInfo.ConstraintType == TargetLowering::C_Register)
   5988       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
   5989                            InputRegs);
   5990   }
   5991 
   5992   // Second pass - Loop over all of the operands, assigning virtual or physregs
   5993   // to register class operands.
   5994   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   5995     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   5996 
   5997     // C_Register operands have already been allocated, Other/Memory don't need
   5998     // to be.
   5999     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
   6000       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
   6001                            InputRegs);
   6002   }
   6003 
   6004   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
   6005   std::vector<SDValue> AsmNodeOperands;
   6006   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
   6007   AsmNodeOperands.push_back(
   6008           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
   6009                                       TLI.getPointerTy()));
   6010 
   6011   // If we have a !srcloc metadata node associated with it, we want to attach
   6012   // this to the ultimately generated inline asm machineinstr.  To do this, we
   6013   // pass in the third operand as this (potentially null) inline asm MDNode.
   6014   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
   6015   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
   6016 
   6017   // Remember the HasSideEffect and AlignStack bits as operand 3.
   6018   unsigned ExtraInfo = 0;
   6019   if (IA->hasSideEffects())
   6020     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
   6021   if (IA->isAlignStack())
   6022     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
   6023   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
   6024                                                   TLI.getPointerTy()));
   6025 
   6026   // Loop over all of the inputs, copying the operand values into the
   6027   // appropriate registers and processing the output regs.
   6028   RegsForValue RetValRegs;
   6029 
   6030   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
   6031   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
   6032 
   6033   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6034     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6035 
   6036     switch (OpInfo.Type) {
   6037     case InlineAsm::isOutput: {
   6038       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
   6039           OpInfo.ConstraintType != TargetLowering::C_Register) {
   6040         // Memory output, or 'other' output (e.g. 'X' constraint).
   6041         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
   6042 
   6043         // Add information to the INLINEASM node to know about this output.
   6044         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6045         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
   6046                                                         TLI.getPointerTy()));
   6047         AsmNodeOperands.push_back(OpInfo.CallOperand);
   6048         break;
   6049       }
   6050 
   6051       // Otherwise, this is a register or register class output.
   6052 
   6053       // Copy the output from the appropriate register.  Find a register that
   6054       // we can use.
   6055       if (OpInfo.AssignedRegs.Regs.empty())
   6056         report_fatal_error("Couldn't allocate output reg for constraint '" +
   6057                            Twine(OpInfo.ConstraintCode) + "'!");
   6058 
   6059       // If this is an indirect operand, store through the pointer after the
   6060       // asm.
   6061       if (OpInfo.isIndirect) {
   6062         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
   6063                                                       OpInfo.CallOperandVal));
   6064       } else {
   6065         // This is the result value of the call.
   6066         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   6067         // Concatenate this output onto the outputs list.
   6068         RetValRegs.append(OpInfo.AssignedRegs);
   6069       }
   6070 
   6071       // Add information to the INLINEASM node to know that this register is
   6072       // set.
   6073       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
   6074                                            InlineAsm::Kind_RegDefEarlyClobber :
   6075                                                InlineAsm::Kind_RegDef,
   6076                                                false,
   6077                                                0,
   6078                                                DAG,
   6079                                                AsmNodeOperands);
   6080       break;
   6081     }
   6082     case InlineAsm::isInput: {
   6083       SDValue InOperandVal = OpInfo.CallOperand;
   6084 
   6085       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
   6086         // If this is required to match an output register we have already set,
   6087         // just use its register.
   6088         unsigned OperandNo = OpInfo.getMatchedOperand();
   6089 
   6090         // Scan until we find the definition we already emitted of this operand.
   6091         // When we find it, create a RegsForValue operand.
   6092         unsigned CurOp = InlineAsm::Op_FirstOperand;
   6093         for (; OperandNo; --OperandNo) {
   6094           // Advance to the next operand.
   6095           unsigned OpFlag =
   6096             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6097           assert((InlineAsm::isRegDefKind(OpFlag) ||
   6098                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
   6099                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
   6100           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
   6101         }
   6102 
   6103         unsigned OpFlag =
   6104           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6105         if (InlineAsm::isRegDefKind(OpFlag) ||
   6106             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
   6107           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
   6108           if (OpInfo.isIndirect) {
   6109             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
   6110             LLVMContext &Ctx = *DAG.getContext();
   6111             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
   6112                           " don't know how to handle tied "
   6113                           "indirect register inputs");
   6114           }
   6115 
   6116           RegsForValue MatchedRegs;
   6117           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
   6118           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
   6119           MatchedRegs.RegVTs.push_back(RegVT);
   6120           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
   6121           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
   6122                i != e; ++i)
   6123             MatchedRegs.Regs.push_back
   6124               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
   6125 
   6126           // Use the produced MatchedRegs object to
   6127           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
   6128                                     Chain, &Flag);
   6129           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
   6130                                            true, OpInfo.getMatchedOperand(),
   6131                                            DAG, AsmNodeOperands);
   6132           break;
   6133         }
   6134 
   6135         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
   6136         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
   6137                "Unexpected number of operands");
   6138         // Add information to the INLINEASM node to know about this input.
   6139         // See InlineAsm.h isUseOperandTiedToDef.
   6140         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
   6141                                                     OpInfo.getMatchedOperand());
   6142         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
   6143                                                         TLI.getPointerTy()));
   6144         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
   6145         break;
   6146       }
   6147 
   6148       // Treat indirect 'X' constraint as memory.
   6149       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
   6150           OpInfo.isIndirect)
   6151         OpInfo.ConstraintType = TargetLowering::C_Memory;
   6152 
   6153       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
   6154         std::vector<SDValue> Ops;
   6155         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
   6156                                          Ops, DAG);
   6157         if (Ops.empty())
   6158           report_fatal_error("Invalid operand for inline asm constraint '" +
   6159                              Twine(OpInfo.ConstraintCode) + "'!");
   6160 
   6161         // Add information to the INLINEASM node to know about this input.
   6162         unsigned ResOpType =
   6163           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
   6164         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   6165                                                         TLI.getPointerTy()));
   6166         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
   6167         break;
   6168       }
   6169 
   6170       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
   6171         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
   6172         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
   6173                "Memory operands expect pointer values");
   6174 
   6175         // Add information to the INLINEASM node to know about this input.
   6176         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6177         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   6178                                                         TLI.getPointerTy()));
   6179         AsmNodeOperands.push_back(InOperandVal);
   6180         break;
   6181       }
   6182 
   6183       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
   6184               OpInfo.ConstraintType == TargetLowering::C_Register) &&
   6185              "Unknown constraint type!");
   6186       assert(!OpInfo.isIndirect &&
   6187              "Don't know how to handle indirect register inputs yet!");
   6188 
   6189       // Copy the input into the appropriate registers.
   6190       if (OpInfo.AssignedRegs.Regs.empty())
   6191         report_fatal_error("Couldn't allocate input reg for constraint '" +
   6192                            Twine(OpInfo.ConstraintCode) + "'!");
   6193 
   6194       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
   6195                                         Chain, &Flag);
   6196 
   6197       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
   6198                                                DAG, AsmNodeOperands);
   6199       break;
   6200     }
   6201     case InlineAsm::isClobber: {
   6202       // Add the clobbered value to the operand list, so that the register
   6203       // allocator is aware that the physreg got clobbered.
   6204       if (!OpInfo.AssignedRegs.Regs.empty())
   6205         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
   6206                                                  false, 0, DAG,
   6207                                                  AsmNodeOperands);
   6208       break;
   6209     }
   6210     }
   6211   }
   6212 
   6213   // Finish up input operands.  Set the input chain and add the flag last.
   6214   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
   6215   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
   6216 
   6217   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
   6218                       DAG.getVTList(MVT::Other, MVT::Glue),
   6219                       &AsmNodeOperands[0], AsmNodeOperands.size());
   6220   Flag = Chain.getValue(1);
   6221 
   6222   // If this asm returns a register value, copy the result from that register
   6223   // and set it as the value of the call.
   6224   if (!RetValRegs.Regs.empty()) {
   6225     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
   6226                                              Chain, &Flag);
   6227 
   6228     // FIXME: Why don't we do this for inline asms with MRVs?
   6229     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
   6230       EVT ResultType = TLI.getValueType(CS.getType());
   6231 
   6232       // If any of the results of the inline asm is a vector, it may have the
   6233       // wrong width/num elts.  This can happen for register classes that can
   6234       // contain multiple different value types.  The preg or vreg allocated may
   6235       // not have the same VT as was expected.  Convert it to the right type
   6236       // with bit_convert.
   6237       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
   6238         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
   6239                           ResultType, Val);
   6240 
   6241       } else if (ResultType != Val.getValueType() &&
   6242                  ResultType.isInteger() && Val.getValueType().isInteger()) {
   6243         // If a result value was tied to an input value, the computed result may
   6244         // have a wider width than the expected result.  Extract the relevant
   6245         // portion.
   6246         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
   6247       }
   6248 
   6249       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
   6250     }
   6251 
   6252     setValue(CS.getInstruction(), Val);
   6253     // Don't need to use this as a chain in this case.
   6254     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
   6255       return;
   6256   }
   6257 
   6258   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
   6259 
   6260   // Process indirect outputs, first output all of the flagged copies out of
   6261   // physregs.
   6262   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
   6263     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
   6264     const Value *Ptr = IndirectStoresToEmit[i].second;
   6265     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
   6266                                              Chain, &Flag);
   6267     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
   6268   }
   6269 
   6270   // Emit the non-flagged stores from the physregs.
   6271   SmallVector<SDValue, 8> OutChains;
   6272   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
   6273     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
   6274                                StoresToEmit[i].first,
   6275                                getValue(StoresToEmit[i].second),
   6276                                MachinePointerInfo(StoresToEmit[i].second),
   6277                                false, false, 0);
   6278     OutChains.push_back(Val);
   6279   }
   6280 
   6281   if (!OutChains.empty())
   6282     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
   6283                         &OutChains[0], OutChains.size());
   6284 
   6285   DAG.setRoot(Chain);
   6286 }
   6287 
   6288 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
   6289   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
   6290                           MVT::Other, getRoot(),
   6291                           getValue(I.getArgOperand(0)),
   6292                           DAG.getSrcValue(I.getArgOperand(0))));
   6293 }
   6294 
   6295 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
   6296   const TargetData &TD = *TLI.getTargetData();
   6297   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
   6298                            getRoot(), getValue(I.getOperand(0)),
   6299                            DAG.getSrcValue(I.getOperand(0)),
   6300                            TD.getABITypeAlignment(I.getType()));
   6301   setValue(&I, V);
   6302   DAG.setRoot(V.getValue(1));
   6303 }
   6304 
   6305 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
   6306   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
   6307                           MVT::Other, getRoot(),
   6308                           getValue(I.getArgOperand(0)),
   6309                           DAG.getSrcValue(I.getArgOperand(0))));
   6310 }
   6311 
   6312 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
   6313   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
   6314                           MVT::Other, getRoot(),
   6315                           getValue(I.getArgOperand(0)),
   6316                           getValue(I.getArgOperand(1)),
   6317                           DAG.getSrcValue(I.getArgOperand(0)),
   6318                           DAG.getSrcValue(I.getArgOperand(1))));
   6319 }
   6320 
   6321 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
   6322 /// implementation, which just calls LowerCall.
   6323 /// FIXME: When all targets are
   6324 /// migrated to using LowerCall, this hook should be integrated into SDISel.
   6325 std::pair<SDValue, SDValue>
   6326 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
   6327                             bool RetSExt, bool RetZExt, bool isVarArg,
   6328                             bool isInreg, unsigned NumFixedArgs,
   6329                             CallingConv::ID CallConv, bool isTailCall,
   6330                             bool isReturnValueUsed,
   6331                             SDValue Callee,
   6332                             ArgListTy &Args, SelectionDAG &DAG,
   6333                             DebugLoc dl) const {
   6334   // Handle all of the outgoing arguments.
   6335   SmallVector<ISD::OutputArg, 32> Outs;
   6336   SmallVector<SDValue, 32> OutVals;
   6337   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   6338     SmallVector<EVT, 4> ValueVTs;
   6339     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
   6340     for (unsigned Value = 0, NumValues = ValueVTs.size();
   6341          Value != NumValues; ++Value) {
   6342       EVT VT = ValueVTs[Value];
   6343       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
   6344       SDValue Op = SDValue(Args[i].Node.getNode(),
   6345                            Args[i].Node.getResNo() + Value);
   6346       ISD::ArgFlagsTy Flags;
   6347       unsigned OriginalAlignment =
   6348         getTargetData()->getABITypeAlignment(ArgTy);
   6349 
   6350       if (Args[i].isZExt)
   6351         Flags.setZExt();
   6352       if (Args[i].isSExt)
   6353         Flags.setSExt();
   6354       if (Args[i].isInReg)
   6355         Flags.setInReg();
   6356       if (Args[i].isSRet)
   6357         Flags.setSRet();
   6358       if (Args[i].isByVal) {
   6359         Flags.setByVal();
   6360         PointerType *Ty = cast<PointerType>(Args[i].Ty);
   6361         Type *ElementTy = Ty->getElementType();
   6362         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
   6363         // For ByVal, alignment should come from FE.  BE will guess if this
   6364         // info is not there but there are cases it cannot get right.
   6365         unsigned FrameAlign;
   6366         if (Args[i].Alignment)
   6367           FrameAlign = Args[i].Alignment;
   6368         else
   6369           FrameAlign = getByValTypeAlignment(ElementTy);
   6370         Flags.setByValAlign(FrameAlign);
   6371       }
   6372       if (Args[i].isNest)
   6373         Flags.setNest();
   6374       Flags.setOrigAlign(OriginalAlignment);
   6375 
   6376       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
   6377       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
   6378       SmallVector<SDValue, 4> Parts(NumParts);
   6379       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   6380 
   6381       if (Args[i].isSExt)
   6382         ExtendKind = ISD::SIGN_EXTEND;
   6383       else if (Args[i].isZExt)
   6384         ExtendKind = ISD::ZERO_EXTEND;
   6385 
   6386       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
   6387                      PartVT, ExtendKind);
   6388 
   6389       for (unsigned j = 0; j != NumParts; ++j) {
   6390         // if it isn't first piece, alignment must be 1
   6391         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
   6392                                i < NumFixedArgs);
   6393         if (NumParts > 1 && j == 0)
   6394           MyFlags.Flags.setSplit();
   6395         else if (j != 0)
   6396           MyFlags.Flags.setOrigAlign(1);
   6397 
   6398         Outs.push_back(MyFlags);
   6399         OutVals.push_back(Parts[j]);
   6400       }
   6401     }
   6402   }
   6403 
   6404   // Handle the incoming return values from the call.
   6405   SmallVector<ISD::InputArg, 32> Ins;
   6406   SmallVector<EVT, 4> RetTys;
   6407   ComputeValueVTs(*this, RetTy, RetTys);
   6408   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   6409     EVT VT = RetTys[I];
   6410     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
   6411     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
   6412     for (unsigned i = 0; i != NumRegs; ++i) {
   6413       ISD::InputArg MyFlags;
   6414       MyFlags.VT = RegisterVT.getSimpleVT();
   6415       MyFlags.Used = isReturnValueUsed;
   6416       if (RetSExt)
   6417         MyFlags.Flags.setSExt();
   6418       if (RetZExt)
   6419         MyFlags.Flags.setZExt();
   6420       if (isInreg)
   6421         MyFlags.Flags.setInReg();
   6422       Ins.push_back(MyFlags);
   6423     }
   6424   }
   6425 
   6426   SmallVector<SDValue, 4> InVals;
   6427   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
   6428                     Outs, OutVals, Ins, dl, DAG, InVals);
   6429 
   6430   // Verify that the target's LowerCall behaved as expected.
   6431   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
   6432          "LowerCall didn't return a valid chain!");
   6433   assert((!isTailCall || InVals.empty()) &&
   6434          "LowerCall emitted a return value for a tail call!");
   6435   assert((isTailCall || InVals.size() == Ins.size()) &&
   6436          "LowerCall didn't emit the correct number of values!");
   6437 
   6438   // For a tail call, the return value is merely live-out and there aren't
   6439   // any nodes in the DAG representing it. Return a special value to
   6440   // indicate that a tail call has been emitted and no more Instructions
   6441   // should be processed in the current block.
   6442   if (isTailCall) {
   6443     DAG.setRoot(Chain);
   6444     return std::make_pair(SDValue(), SDValue());
   6445   }
   6446 
   6447   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   6448           assert(InVals[i].getNode() &&
   6449                  "LowerCall emitted a null value!");
   6450           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
   6451                  "LowerCall emitted a value with the wrong type!");
   6452         });
   6453 
   6454   // Collect the legal value parts into potentially illegal values
   6455   // that correspond to the original function's return values.
   6456   ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6457   if (RetSExt)
   6458     AssertOp = ISD::AssertSext;
   6459   else if (RetZExt)
   6460     AssertOp = ISD::AssertZext;
   6461   SmallVector<SDValue, 4> ReturnValues;
   6462   unsigned CurReg = 0;
   6463   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   6464     EVT VT = RetTys[I];
   6465     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
   6466     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
   6467 
   6468     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
   6469                                             NumRegs, RegisterVT, VT,
   6470                                             AssertOp));
   6471     CurReg += NumRegs;
   6472   }
   6473 
   6474   // For a function returning void, there is no return value. We can't create
   6475   // such a node, so we just return a null return value in that case. In
   6476   // that case, nothing will actually look at the value.
   6477   if (ReturnValues.empty())
   6478     return std::make_pair(SDValue(), Chain);
   6479 
   6480   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
   6481                             DAG.getVTList(&RetTys[0], RetTys.size()),
   6482                             &ReturnValues[0], ReturnValues.size());
   6483   return std::make_pair(Res, Chain);
   6484 }
   6485 
   6486 void TargetLowering::LowerOperationWrapper(SDNode *N,
   6487                                            SmallVectorImpl<SDValue> &Results,
   6488                                            SelectionDAG &DAG) const {
   6489   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
   6490   if (Res.getNode())
   6491     Results.push_back(Res);
   6492 }
   6493 
   6494 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   6495   llvm_unreachable("LowerOperation not implemented for this target!");
   6496   return SDValue();
   6497 }
   6498 
   6499 void
   6500 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
   6501   SDValue Op = getNonRegisterValue(V);
   6502   assert((Op.getOpcode() != ISD::CopyFromReg ||
   6503           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
   6504          "Copy from a reg to the same reg!");
   6505   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
   6506 
   6507   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
   6508   SDValue Chain = DAG.getEntryNode();
   6509   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
   6510   PendingExports.push_back(Chain);
   6511 }
   6512 
   6513 #include "llvm/CodeGen/SelectionDAGISel.h"
   6514 
   6515 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
   6516 /// entry block, return true.  This includes arguments used by switches, since
   6517 /// the switch may expand into multiple basic blocks.
   6518 static bool isOnlyUsedInEntryBlock(const Argument *A) {
   6519   // With FastISel active, we may be splitting blocks, so force creation
   6520   // of virtual registers for all non-dead arguments.
   6521   if (EnableFastISel)
   6522     return A->use_empty();
   6523 
   6524   const BasicBlock *Entry = A->getParent()->begin();
   6525   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
   6526        UI != E; ++UI) {
   6527     const User *U = *UI;
   6528     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
   6529       return false;  // Use not in entry block.
   6530   }
   6531   return true;
   6532 }
   6533 
   6534 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
   6535   // If this is the entry block, emit arguments.
   6536   const Function &F = *LLVMBB->getParent();
   6537   SelectionDAG &DAG = SDB->DAG;
   6538   DebugLoc dl = SDB->getCurDebugLoc();
   6539   const TargetData *TD = TLI.getTargetData();
   6540   SmallVector<ISD::InputArg, 16> Ins;
   6541 
   6542   // Check whether the function can return without sret-demotion.
   6543   SmallVector<ISD::OutputArg, 4> Outs;
   6544   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
   6545                 Outs, TLI);
   6546 
   6547   if (!FuncInfo->CanLowerReturn) {
   6548     // Put in an sret pointer parameter before all the other parameters.
   6549     SmallVector<EVT, 1> ValueVTs;
   6550     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
   6551 
   6552     // NOTE: Assuming that a pointer will never break down to more than one VT
   6553     // or one register.
   6554     ISD::ArgFlagsTy Flags;
   6555     Flags.setSRet();
   6556     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
   6557     ISD::InputArg RetArg(Flags, RegisterVT, true);
   6558     Ins.push_back(RetArg);
   6559   }
   6560 
   6561   // Set up the incoming argument description vector.
   6562   unsigned Idx = 1;
   6563   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
   6564        I != E; ++I, ++Idx) {
   6565     SmallVector<EVT, 4> ValueVTs;
   6566     ComputeValueVTs(TLI, I->getType(), ValueVTs);
   6567     bool isArgValueUsed = !I->use_empty();
   6568     for (unsigned Value = 0, NumValues = ValueVTs.size();
   6569          Value != NumValues; ++Value) {
   6570       EVT VT = ValueVTs[Value];
   6571       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
   6572       ISD::ArgFlagsTy Flags;
   6573       unsigned OriginalAlignment =
   6574         TD->getABITypeAlignment(ArgTy);
   6575 
   6576       if (F.paramHasAttr(Idx, Attribute::ZExt))
   6577         Flags.setZExt();
   6578       if (F.paramHasAttr(Idx, Attribute::SExt))
   6579         Flags.setSExt();
   6580       if (F.paramHasAttr(Idx, Attribute::InReg))
   6581         Flags.setInReg();
   6582       if (F.paramHasAttr(Idx, Attribute::StructRet))
   6583         Flags.setSRet();
   6584       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
   6585         Flags.setByVal();
   6586         PointerType *Ty = cast<PointerType>(I->getType());
   6587         Type *ElementTy = Ty->getElementType();
   6588         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
   6589         // For ByVal, alignment should be passed from FE.  BE will guess if
   6590         // this info is not there but there are cases it cannot get right.
   6591         unsigned FrameAlign;
   6592         if (F.getParamAlignment(Idx))
   6593           FrameAlign = F.getParamAlignment(Idx);
   6594         else
   6595           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
   6596         Flags.setByValAlign(FrameAlign);
   6597       }
   6598       if (F.paramHasAttr(Idx, Attribute::Nest))
   6599         Flags.setNest();
   6600       Flags.setOrigAlign(OriginalAlignment);
   6601 
   6602       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6603       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
   6604       for (unsigned i = 0; i != NumRegs; ++i) {
   6605         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
   6606         if (NumRegs > 1 && i == 0)
   6607           MyFlags.Flags.setSplit();
   6608         // if it isn't first piece, alignment must be 1
   6609         else if (i > 0)
   6610           MyFlags.Flags.setOrigAlign(1);
   6611         Ins.push_back(MyFlags);
   6612       }
   6613     }
   6614   }
   6615 
   6616   // Call the target to set up the argument values.
   6617   SmallVector<SDValue, 8> InVals;
   6618   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
   6619                                              F.isVarArg(), Ins,
   6620                                              dl, DAG, InVals);
   6621 
   6622   // Verify that the target's LowerFormalArguments behaved as expected.
   6623   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
   6624          "LowerFormalArguments didn't return a valid chain!");
   6625   assert(InVals.size() == Ins.size() &&
   6626          "LowerFormalArguments didn't emit the correct number of values!");
   6627   DEBUG({
   6628       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   6629         assert(InVals[i].getNode() &&
   6630                "LowerFormalArguments emitted a null value!");
   6631         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
   6632                "LowerFormalArguments emitted a value with the wrong type!");
   6633       }
   6634     });
   6635 
   6636   // Update the DAG with the new chain value resulting from argument lowering.
   6637   DAG.setRoot(NewRoot);
   6638 
   6639   // Set up the argument values.
   6640   unsigned i = 0;
   6641   Idx = 1;
   6642   if (!FuncInfo->CanLowerReturn) {
   6643     // Create a virtual register for the sret pointer, and put in a copy
   6644     // from the sret argument into it.
   6645     SmallVector<EVT, 1> ValueVTs;
   6646     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
   6647     EVT VT = ValueVTs[0];
   6648     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6649     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6650     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
   6651                                         RegVT, VT, AssertOp);
   6652 
   6653     MachineFunction& MF = SDB->DAG.getMachineFunction();
   6654     MachineRegisterInfo& RegInfo = MF.getRegInfo();
   6655     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
   6656     FuncInfo->DemoteRegister = SRetReg;
   6657     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
   6658                                     SRetReg, ArgValue);
   6659     DAG.setRoot(NewRoot);
   6660 
   6661     // i indexes lowered arguments.  Bump it past the hidden sret argument.
   6662     // Idx indexes LLVM arguments.  Don't touch it.
   6663     ++i;
   6664   }
   6665 
   6666   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
   6667       ++I, ++Idx) {
   6668     SmallVector<SDValue, 4> ArgValues;
   6669     SmallVector<EVT, 4> ValueVTs;
   6670     ComputeValueVTs(TLI, I->getType(), ValueVTs);
   6671     unsigned NumValues = ValueVTs.size();
   6672 
   6673     // If this argument is unused then remember its value. It is used to generate
   6674     // debugging information.
   6675     if (I->use_empty() && NumValues)
   6676       SDB->setUnusedArgValue(I, InVals[i]);
   6677 
   6678     for (unsigned Val = 0; Val != NumValues; ++Val) {
   6679       EVT VT = ValueVTs[Val];
   6680       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6681       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
   6682 
   6683       if (!I->use_empty()) {
   6684         ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6685         if (F.paramHasAttr(Idx, Attribute::SExt))
   6686           AssertOp = ISD::AssertSext;
   6687         else if (F.paramHasAttr(Idx, Attribute::ZExt))
   6688           AssertOp = ISD::AssertZext;
   6689 
   6690         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
   6691                                              NumParts, PartVT, VT,
   6692                                              AssertOp));
   6693       }
   6694 
   6695       i += NumParts;
   6696     }
   6697 
   6698     // We don't need to do anything else for unused arguments.
   6699     if (ArgValues.empty())
   6700       continue;
   6701 
   6702     // Note down frame index.
   6703     if (FrameIndexSDNode *FI =
   6704 	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
   6705       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
   6706 
   6707     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
   6708                                      SDB->getCurDebugLoc());
   6709 
   6710     SDB->setValue(I, Res);
   6711     if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
   6712       if (LoadSDNode *LNode =
   6713           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
   6714         if (FrameIndexSDNode *FI =
   6715             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
   6716         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
   6717     }
   6718 
   6719     // If this argument is live outside of the entry block, insert a copy from
   6720     // wherever we got it to the vreg that other BB's will reference it as.
   6721     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
   6722       // If we can, though, try to skip creating an unnecessary vreg.
   6723       // FIXME: This isn't very clean... it would be nice to make this more
   6724       // general.  It's also subtly incompatible with the hacks FastISel
   6725       // uses with vregs.
   6726       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
   6727       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   6728         FuncInfo->ValueMap[I] = Reg;
   6729         continue;
   6730       }
   6731     }
   6732     if (!isOnlyUsedInEntryBlock(I)) {
   6733       FuncInfo->InitializeRegForValue(I);
   6734       SDB->CopyToExportRegsIfNeeded(I);
   6735     }
   6736   }
   6737 
   6738   assert(i == InVals.size() && "Argument register count mismatch!");
   6739 
   6740   // Finally, if the target has anything special to do, allow it to do so.
   6741   // FIXME: this should insert code into the DAG!
   6742   EmitFunctionEntryCode();
   6743 }
   6744 
   6745 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
   6746 /// ensure constants are generated when needed.  Remember the virtual registers
   6747 /// that need to be added to the Machine PHI nodes as input.  We cannot just
   6748 /// directly add them, because expansion might result in multiple MBB's for one
   6749 /// BB.  As such, the start of the BB might correspond to a different MBB than
   6750 /// the end.
   6751 ///
   6752 void
   6753 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   6754   const TerminatorInst *TI = LLVMBB->getTerminator();
   6755 
   6756   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   6757 
   6758   // Check successor nodes' PHI nodes that expect a constant to be available
   6759   // from this block.
   6760   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   6761     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   6762     if (!isa<PHINode>(SuccBB->begin())) continue;
   6763     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   6764 
   6765     // If this terminator has multiple identical successors (common for
   6766     // switches), only handle each succ once.
   6767     if (!SuccsHandled.insert(SuccMBB)) continue;
   6768 
   6769     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   6770 
   6771     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   6772     // nodes and Machine PHI nodes, but the incoming operands have not been
   6773     // emitted yet.
   6774     for (BasicBlock::const_iterator I = SuccBB->begin();
   6775          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   6776       // Ignore dead phi's.
   6777       if (PN->use_empty()) continue;
   6778 
   6779       // Skip empty types
   6780       if (PN->getType()->isEmptyTy())
   6781         continue;
   6782 
   6783       unsigned Reg;
   6784       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   6785 
   6786       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
   6787         unsigned &RegOut = ConstantsOut[C];
   6788         if (RegOut == 0) {
   6789           RegOut = FuncInfo.CreateRegs(C->getType());
   6790           CopyValueToVirtualRegister(C, RegOut);
   6791         }
   6792         Reg = RegOut;
   6793       } else {
   6794         DenseMap<const Value *, unsigned>::iterator I =
   6795           FuncInfo.ValueMap.find(PHIOp);
   6796         if (I != FuncInfo.ValueMap.end())
   6797           Reg = I->second;
   6798         else {
   6799           assert(isa<AllocaInst>(PHIOp) &&
   6800                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
   6801                  "Didn't codegen value into a register!??");
   6802           Reg = FuncInfo.CreateRegs(PHIOp->getType());
   6803           CopyValueToVirtualRegister(PHIOp, Reg);
   6804         }
   6805       }
   6806 
   6807       // Remember that this register needs to added to the machine PHI node as
   6808       // the input for this MBB.
   6809       SmallVector<EVT, 4> ValueVTs;
   6810       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
   6811       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
   6812         EVT VT = ValueVTs[vti];
   6813         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
   6814         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
   6815           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
   6816         Reg += NumRegisters;
   6817       }
   6818     }
   6819   }
   6820   ConstantsOut.clear();
   6821 }
   6822