Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86ISelLowering.h"
     19 #include "X86TargetMachine.h"
     20 #include "X86TargetObjectFile.h"
     21 #include "Utils/X86ShuffleDecode.h"
     22 #include "llvm/CallingConv.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/GlobalAlias.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/Intrinsics.h"
     30 #include "llvm/LLVMContext.h"
     31 #include "llvm/CodeGen/IntrinsicLowering.h"
     32 #include "llvm/CodeGen/MachineFrameInfo.h"
     33 #include "llvm/CodeGen/MachineFunction.h"
     34 #include "llvm/CodeGen/MachineInstrBuilder.h"
     35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     36 #include "llvm/CodeGen/MachineModuleInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/PseudoSourceValue.h"
     39 #include "llvm/MC/MCAsmInfo.h"
     40 #include "llvm/MC/MCContext.h"
     41 #include "llvm/MC/MCExpr.h"
     42 #include "llvm/MC/MCSymbol.h"
     43 #include "llvm/ADT/BitVector.h"
     44 #include "llvm/ADT/SmallSet.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/ADT/StringExtras.h"
     47 #include "llvm/ADT/VectorExtras.h"
     48 #include "llvm/Support/CallSite.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/Dwarf.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/MathExtras.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 using namespace llvm;
     55 using namespace dwarf;
     56 
     57 STATISTIC(NumTailCalls, "Number of tail calls");
     58 
     59 // Forward declarations.
     60 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
     61                        SDValue V2);
     62 
     63 static SDValue Insert128BitVector(SDValue Result,
     64                                   SDValue Vec,
     65                                   SDValue Idx,
     66                                   SelectionDAG &DAG,
     67                                   DebugLoc dl);
     68 
     69 static SDValue Extract128BitVector(SDValue Vec,
     70                                    SDValue Idx,
     71                                    SelectionDAG &DAG,
     72                                    DebugLoc dl);
     73 
     74 static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
     75 
     76 
     77 /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
     78 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
     79 /// simple subregister reference.  Idx is an index in the 128 bits we
     80 /// want.  It need not be aligned to a 128-bit bounday.  That makes
     81 /// lowering EXTRACT_VECTOR_ELT operations easier.
     82 static SDValue Extract128BitVector(SDValue Vec,
     83                                    SDValue Idx,
     84                                    SelectionDAG &DAG,
     85                                    DebugLoc dl) {
     86   EVT VT = Vec.getValueType();
     87   assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
     88 
     89   EVT ElVT = VT.getVectorElementType();
     90 
     91   int Factor = VT.getSizeInBits() / 128;
     92 
     93   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
     94                                   ElVT,
     95                                   VT.getVectorNumElements() / Factor);
     96 
     97   // Extract from UNDEF is UNDEF.
     98   if (Vec.getOpcode() == ISD::UNDEF)
     99     return DAG.getNode(ISD::UNDEF, dl, ResultVT);
    100 
    101   if (isa<ConstantSDNode>(Idx)) {
    102     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
    103 
    104     // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
    105     // we can match to VEXTRACTF128.
    106     unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
    107 
    108     // This is the index of the first element of the 128-bit chunk
    109     // we want.
    110     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
    111                                  * ElemsPerChunk);
    112 
    113     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
    114 
    115     SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
    116                                  VecIdx);
    117 
    118     return Result;
    119   }
    120 
    121   return SDValue();
    122 }
    123 
    124 /// Generate a DAG to put 128-bits into a vector > 128 bits.  This
    125 /// sets things up to match to an AVX VINSERTF128 instruction or a
    126 /// simple superregister reference.  Idx is an index in the 128 bits
    127 /// we want.  It need not be aligned to a 128-bit bounday.  That makes
    128 /// lowering INSERT_VECTOR_ELT operations easier.
    129 static SDValue Insert128BitVector(SDValue Result,
    130                                   SDValue Vec,
    131                                   SDValue Idx,
    132                                   SelectionDAG &DAG,
    133                                   DebugLoc dl) {
    134   if (isa<ConstantSDNode>(Idx)) {
    135     EVT VT = Vec.getValueType();
    136     assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
    137 
    138     EVT ElVT = VT.getVectorElementType();
    139 
    140     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
    141 
    142     EVT ResultVT = Result.getValueType();
    143 
    144     // Insert the relevant 128 bits.
    145     unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
    146 
    147     // This is the index of the first element of the 128-bit chunk
    148     // we want.
    149     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
    150                                  * ElemsPerChunk);
    151 
    152     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
    153 
    154     Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
    155                          VecIdx);
    156     return Result;
    157   }
    158 
    159   return SDValue();
    160 }
    161 
    162 /// Given two vectors, concat them.
    163 static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
    164   DebugLoc dl = Lower.getDebugLoc();
    165 
    166   assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
    167 
    168   EVT VT = EVT::getVectorVT(*DAG.getContext(),
    169                             Lower.getValueType().getVectorElementType(),
    170                             Lower.getValueType().getVectorNumElements() * 2);
    171 
    172   // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
    173   assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
    174 
    175   // Insert the upper subvector.
    176   SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
    177                                    DAG.getConstant(
    178                                      // This is half the length of the result
    179                                      // vector.  Start inserting the upper 128
    180                                      // bits here.
    181                                      Lower.getValueType().getVectorNumElements(),
    182                                      MVT::i32),
    183                                    DAG, dl);
    184 
    185   // Insert the lower subvector.
    186   Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
    187   return Vec;
    188 }
    189 
    190 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
    191   const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
    192   bool is64Bit = Subtarget->is64Bit();
    193 
    194   if (Subtarget->isTargetEnvMacho()) {
    195     if (is64Bit)
    196       return new X8664_MachoTargetObjectFile();
    197     return new TargetLoweringObjectFileMachO();
    198   }
    199 
    200   if (Subtarget->isTargetELF()) {
    201     if (is64Bit)
    202       return new X8664_ELFTargetObjectFile(TM);
    203     return new X8632_ELFTargetObjectFile(TM);
    204   }
    205   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    206     return new TargetLoweringObjectFileCOFF();
    207   llvm_unreachable("unknown subtarget type");
    208 }
    209 
    210 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
    211   : TargetLowering(TM, createTLOF(TM)) {
    212   Subtarget = &TM.getSubtarget<X86Subtarget>();
    213   X86ScalarSSEf64 = Subtarget->hasXMMInt();
    214   X86ScalarSSEf32 = Subtarget->hasXMM();
    215   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
    216 
    217   RegInfo = TM.getRegisterInfo();
    218   TD = getTargetData();
    219 
    220   // Set up the TargetLowering object.
    221   static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
    222 
    223   // X86 is weird, it always uses i8 for shift amounts and setcc results.
    224   setBooleanContents(ZeroOrOneBooleanContent);
    225 
    226   // For 64-bit since we have so many registers use the ILP scheduler, for
    227   // 32-bit code use the register pressure specific scheduling.
    228   if (Subtarget->is64Bit())
    229     setSchedulingPreference(Sched::ILP);
    230   else
    231     setSchedulingPreference(Sched::RegPressure);
    232   setStackPointerRegisterToSaveRestore(X86StackPtr);
    233 
    234   if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
    235     // Setup Windows compiler runtime calls.
    236     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
    237     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
    238     setLibcallName(RTLIB::SREM_I64, "_allrem");
    239     setLibcallName(RTLIB::UREM_I64, "_aullrem");
    240     setLibcallName(RTLIB::MUL_I64, "_allmul");
    241     setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
    242     setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
    243     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
    244     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
    245     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
    246     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
    247     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
    248     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
    249     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
    250   }
    251 
    252   if (Subtarget->isTargetDarwin()) {
    253     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
    254     setUseUnderscoreSetJmp(false);
    255     setUseUnderscoreLongJmp(false);
    256   } else if (Subtarget->isTargetMingw()) {
    257     // MS runtime is weird: it exports _setjmp, but longjmp!
    258     setUseUnderscoreSetJmp(true);
    259     setUseUnderscoreLongJmp(false);
    260   } else {
    261     setUseUnderscoreSetJmp(true);
    262     setUseUnderscoreLongJmp(true);
    263   }
    264 
    265   // Set up the register classes.
    266   addRegisterClass(MVT::i8, X86::GR8RegisterClass);
    267   addRegisterClass(MVT::i16, X86::GR16RegisterClass);
    268   addRegisterClass(MVT::i32, X86::GR32RegisterClass);
    269   if (Subtarget->is64Bit())
    270     addRegisterClass(MVT::i64, X86::GR64RegisterClass);
    271 
    272   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    273 
    274   // We don't accept any truncstore of integer registers.
    275   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
    276   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    277   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
    278   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
    279   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
    280   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
    281 
    282   // SETOEQ and SETUNE require checking two conditions.
    283   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
    284   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
    285   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
    286   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
    287   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
    288   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
    289 
    290   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
    291   // operation.
    292   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
    293   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
    294   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
    295 
    296   if (Subtarget->is64Bit()) {
    297     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
    298     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
    299   } else if (!UseSoftFloat) {
    300     // We have an algorithm for SSE2->double, and we turn this into a
    301     // 64-bit FILD followed by conditional FADD for other targets.
    302     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
    303     // We have an algorithm for SSE2, and we turn this into a 64-bit
    304     // FILD for other targets.
    305     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
    306   }
    307 
    308   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
    309   // this operation.
    310   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
    311   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
    312 
    313   if (!UseSoftFloat) {
    314     // SSE has no i16 to fp conversion, only i32
    315     if (X86ScalarSSEf32) {
    316       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    317       // f32 and f64 cases are Legal, f80 case is not
    318       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    319     } else {
    320       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
    321       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    322     }
    323   } else {
    324     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    325     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
    326   }
    327 
    328   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
    329   // are Legal, f80 is custom lowered.
    330   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
    331   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
    332 
    333   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
    334   // this operation.
    335   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
    336   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
    337 
    338   if (X86ScalarSSEf32) {
    339     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
    340     // f32 and f64 cases are Legal, f80 case is not
    341     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    342   } else {
    343     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
    344     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    345   }
    346 
    347   // Handle FP_TO_UINT by promoting the destination to a larger signed
    348   // conversion.
    349   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
    350   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
    351   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
    352 
    353   if (Subtarget->is64Bit()) {
    354     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
    355     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
    356   } else if (!UseSoftFloat) {
    357     if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
    358       // Expand FP_TO_UINT into a select.
    359       // FIXME: We would like to use a Custom expander here eventually to do
    360       // the optimal thing for SSE vs. the default expansion in the legalizer.
    361       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
    362     else
    363       // With SSE3 we can use fisttpll to convert to a signed i64; without
    364       // SSE, we're stuck with a fistpll.
    365       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
    366   }
    367 
    368   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
    369   if (!X86ScalarSSEf64) {
    370     setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
    371     setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
    372     if (Subtarget->is64Bit()) {
    373       setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
    374       // Without SSE, i64->f64 goes through memory.
    375       setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
    376     }
    377   }
    378 
    379   // Scalar integer divide and remainder are lowered to use operations that
    380   // produce two results, to match the available instructions. This exposes
    381   // the two-result form to trivial CSE, which is able to combine x/y and x%y
    382   // into a single instruction.
    383   //
    384   // Scalar integer multiply-high is also lowered to use two-result
    385   // operations, to match the available instructions. However, plain multiply
    386   // (low) operations are left as Legal, as there are single-result
    387   // instructions for this in x86. Using the two-result multiply instructions
    388   // when both high and low results are needed must be arranged by dagcombine.
    389   for (unsigned i = 0, e = 4; i != e; ++i) {
    390     MVT VT = IntVTs[i];
    391     setOperationAction(ISD::MULHS, VT, Expand);
    392     setOperationAction(ISD::MULHU, VT, Expand);
    393     setOperationAction(ISD::SDIV, VT, Expand);
    394     setOperationAction(ISD::UDIV, VT, Expand);
    395     setOperationAction(ISD::SREM, VT, Expand);
    396     setOperationAction(ISD::UREM, VT, Expand);
    397 
    398     // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
    399     setOperationAction(ISD::ADDC, VT, Custom);
    400     setOperationAction(ISD::ADDE, VT, Custom);
    401     setOperationAction(ISD::SUBC, VT, Custom);
    402     setOperationAction(ISD::SUBE, VT, Custom);
    403   }
    404 
    405   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
    406   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
    407   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
    408   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
    409   if (Subtarget->is64Bit())
    410     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
    411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
    412   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
    413   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
    414   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
    415   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
    416   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
    417   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
    418   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
    419 
    420   setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
    421   setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
    422   setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
    423   setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
    424   setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
    425   setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
    426   if (Subtarget->is64Bit()) {
    427     setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
    428     setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
    429   }
    430 
    431   if (Subtarget->hasPOPCNT()) {
    432     setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
    433   } else {
    434     setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
    435     setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
    436     setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
    437     if (Subtarget->is64Bit())
    438       setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
    439   }
    440 
    441   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
    442   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
    443 
    444   // These should be promoted to a larger select which is supported.
    445   setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
    446   // X86 wants to expand cmov itself.
    447   setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
    448   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
    449   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
    450   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
    451   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
    452   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
    453   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
    454   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
    455   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
    456   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
    457   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
    458   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
    459   if (Subtarget->is64Bit()) {
    460     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
    461     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
    462   }
    463   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
    464 
    465   // Darwin ABI issue.
    466   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
    467   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
    468   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
    469   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
    470   if (Subtarget->is64Bit())
    471     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    472   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
    473   setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
    474   if (Subtarget->is64Bit()) {
    475     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
    476     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
    477     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
    478     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
    479     setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
    480   }
    481   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
    482   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
    483   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
    484   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
    485   if (Subtarget->is64Bit()) {
    486     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
    487     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
    488     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
    489   }
    490 
    491   if (Subtarget->hasXMM())
    492     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
    493 
    494   // We may not have a libcall for MEMBARRIER so we should lower this.
    495   setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
    496 
    497   // On X86 and X86-64, atomic operations are lowered to locked instructions.
    498   // Locked instructions, in turn, have implicit fence semantics (all memory
    499   // operations are flushed before issuing the locked instruction, and they
    500   // are not buffered), so we can fold away the common pattern of
    501   // fence-atomic-fence.
    502   setShouldFoldAtomicFences(true);
    503 
    504   // Expand certain atomics
    505   for (unsigned i = 0, e = 4; i != e; ++i) {
    506     MVT VT = IntVTs[i];
    507     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
    508     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    509   }
    510 
    511   if (!Subtarget->is64Bit()) {
    512     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
    513     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
    514     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
    515     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
    516     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
    517     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
    518     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
    519   }
    520 
    521   // FIXME - use subtarget debug flags
    522   if (!Subtarget->isTargetDarwin() &&
    523       !Subtarget->isTargetELF() &&
    524       !Subtarget->isTargetCygMing()) {
    525     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
    526   }
    527 
    528   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    529   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    530   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    531   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
    532   if (Subtarget->is64Bit()) {
    533     setExceptionPointerRegister(X86::RAX);
    534     setExceptionSelectorRegister(X86::RDX);
    535   } else {
    536     setExceptionPointerRegister(X86::EAX);
    537     setExceptionSelectorRegister(X86::EDX);
    538   }
    539   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    540   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
    541 
    542   setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
    543 
    544   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    545 
    546   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    547   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    548   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    549   if (Subtarget->is64Bit()) {
    550     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
    551     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
    552   } else {
    553     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
    554     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
    555   }
    556 
    557   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    558   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    559   setOperationAction(ISD::DYNAMIC_STACKALLOC,
    560                      (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
    561                      (Subtarget->isTargetCOFF()
    562                       && !Subtarget->isTargetEnvMacho()
    563                       ? Custom : Expand));
    564 
    565   if (!UseSoftFloat && X86ScalarSSEf64) {
    566     // f32 and f64 use SSE.
    567     // Set up the FP register classes.
    568     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    569     addRegisterClass(MVT::f64, X86::FR64RegisterClass);
    570 
    571     // Use ANDPD to simulate FABS.
    572     setOperationAction(ISD::FABS , MVT::f64, Custom);
    573     setOperationAction(ISD::FABS , MVT::f32, Custom);
    574 
    575     // Use XORP to simulate FNEG.
    576     setOperationAction(ISD::FNEG , MVT::f64, Custom);
    577     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    578 
    579     // Use ANDPD and ORPD to simulate FCOPYSIGN.
    580     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    581     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    582 
    583     // Lower this to FGETSIGNx86 plus an AND.
    584     setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
    585     setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
    586 
    587     // We don't support sin/cos/fmod
    588     setOperationAction(ISD::FSIN , MVT::f64, Expand);
    589     setOperationAction(ISD::FCOS , MVT::f64, Expand);
    590     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    591     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    592 
    593     // Expand FP immediates into loads from the stack, except for the special
    594     // cases we handle.
    595     addLegalFPImmediate(APFloat(+0.0)); // xorpd
    596     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    597   } else if (!UseSoftFloat && X86ScalarSSEf32) {
    598     // Use SSE for f32, x87 for f64.
    599     // Set up the FP register classes.
    600     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    601     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
    602 
    603     // Use ANDPS to simulate FABS.
    604     setOperationAction(ISD::FABS , MVT::f32, Custom);
    605 
    606     // Use XORP to simulate FNEG.
    607     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    608 
    609     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    610 
    611     // Use ANDPS and ORPS to simulate FCOPYSIGN.
    612     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    613     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    614 
    615     // We don't support sin/cos/fmod
    616     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    617     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    618 
    619     // Special cases we handle for FP constants.
    620     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    621     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    622     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    623     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    624     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    625 
    626     if (!UnsafeFPMath) {
    627       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    628       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    629     }
    630   } else if (!UseSoftFloat) {
    631     // f32 and f64 in x87.
    632     // Set up the FP register classes.
    633     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
    634     addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
    635 
    636     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    637     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
    638     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    639     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    640 
    641     if (!UnsafeFPMath) {
    642       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    643       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    644     }
    645     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    646     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    647     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    648     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    649     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
    650     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
    651     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
    652     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
    653   }
    654 
    655   // We don't support FMA.
    656   setOperationAction(ISD::FMA, MVT::f64, Expand);
    657   setOperationAction(ISD::FMA, MVT::f32, Expand);
    658 
    659   // Long double always uses X87.
    660   if (!UseSoftFloat) {
    661     addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
    662     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
    663     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
    664     {
    665       APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
    666       addLegalFPImmediate(TmpFlt);  // FLD0
    667       TmpFlt.changeSign();
    668       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
    669 
    670       bool ignored;
    671       APFloat TmpFlt2(+1.0);
    672       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
    673                       &ignored);
    674       addLegalFPImmediate(TmpFlt2);  // FLD1
    675       TmpFlt2.changeSign();
    676       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
    677     }
    678 
    679     if (!UnsafeFPMath) {
    680       setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
    681       setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
    682     }
    683 
    684     setOperationAction(ISD::FMA, MVT::f80, Expand);
    685   }
    686 
    687   // Always use a library call for pow.
    688   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
    689   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
    690   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
    691 
    692   setOperationAction(ISD::FLOG, MVT::f80, Expand);
    693   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
    694   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
    695   setOperationAction(ISD::FEXP, MVT::f80, Expand);
    696   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
    697 
    698   // First set operation action for all vector types to either promote
    699   // (for widening) or expand (for scalarization). Then we will selectively
    700   // turn on ones that can be effectively codegen'd.
    701   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    702        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    703     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
    704     setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
    705     setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
    706     setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
    707     setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
    708     setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
    709     setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
    710     setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
    711     setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
    712     setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
    713     setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
    714     setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
    715     setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
    716     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
    717     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
    718     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
    719     setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    720     setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    721     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
    722     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
    723     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
    724     setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
    725     setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
    726     setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
    727     setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
    728     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    729     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    730     setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
    731     setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
    732     setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
    733     setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
    734     setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
    735     setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
    736     setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
    737     setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
    738     setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
    739     setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
    740     setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
    741     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
    742     setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
    743     setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
    744     setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
    745     setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
    746     setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
    747     setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
    748     setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
    749     setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
    750     setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    751     setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    752     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
    753     setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
    754     setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    755     setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    756     setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    757     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    758          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    759       setTruncStoreAction((MVT::SimpleValueType)VT,
    760                           (MVT::SimpleValueType)InnerVT, Expand);
    761     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    762     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    763     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
    764   }
    765 
    766   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
    767   // with -msoft-float, disable use of MMX as well.
    768   if (!UseSoftFloat && Subtarget->hasMMX()) {
    769     addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
    770     // No operations on x86mmx supported, everything uses intrinsics.
    771   }
    772 
    773   // MMX-sized vectors (other than x86mmx) are expected to be expanded
    774   // into smaller operations.
    775   setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
    776   setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
    777   setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
    778   setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
    779   setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
    780   setOperationAction(ISD::AND,                MVT::v4i16, Expand);
    781   setOperationAction(ISD::AND,                MVT::v2i32, Expand);
    782   setOperationAction(ISD::AND,                MVT::v1i64, Expand);
    783   setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
    784   setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
    785   setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
    786   setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
    787   setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
    788   setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
    789   setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
    790   setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
    791   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
    792   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
    793   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
    794   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
    795   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
    796   setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
    797   setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
    798   setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
    799   setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
    800   setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
    801   setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
    802   setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
    803   setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
    804 
    805   if (!UseSoftFloat && Subtarget->hasXMM()) {
    806     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
    807 
    808     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
    809     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
    810     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
    811     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
    812     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
    813     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
    814     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
    815     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
    816     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
    817     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    818     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
    819     setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
    820   }
    821 
    822   if (!UseSoftFloat && Subtarget->hasXMMInt()) {
    823     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
    824 
    825     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
    826     // registers cannot be used even for integer operations.
    827     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
    828     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
    829     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
    830     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
    831 
    832     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
    833     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
    834     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
    835     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
    836     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
    837     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
    838     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
    839     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
    840     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
    841     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
    842     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
    843     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
    844     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
    845     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
    846     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
    847     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
    848 
    849     setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
    850     setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
    851     setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
    852     setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
    853 
    854     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
    855     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
    856     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    857     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    858     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    859 
    860     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
    861     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
    862     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
    863     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
    864     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
    865 
    866     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
    867     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
    868       EVT VT = (MVT::SimpleValueType)i;
    869       // Do not attempt to custom lower non-power-of-2 vectors
    870       if (!isPowerOf2_32(VT.getVectorNumElements()))
    871         continue;
    872       // Do not attempt to custom lower non-128-bit vectors
    873       if (!VT.is128BitVector())
    874         continue;
    875       setOperationAction(ISD::BUILD_VECTOR,
    876                          VT.getSimpleVT().SimpleTy, Custom);
    877       setOperationAction(ISD::VECTOR_SHUFFLE,
    878                          VT.getSimpleVT().SimpleTy, Custom);
    879       setOperationAction(ISD::EXTRACT_VECTOR_ELT,
    880                          VT.getSimpleVT().SimpleTy, Custom);
    881     }
    882 
    883     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
    884     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
    885     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
    886     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
    887     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
    888     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    889 
    890     if (Subtarget->is64Bit()) {
    891       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
    892       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
    893     }
    894 
    895     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
    896     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
    897       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
    898       EVT VT = SVT;
    899 
    900       // Do not attempt to promote non-128-bit vectors
    901       if (!VT.is128BitVector())
    902         continue;
    903 
    904       setOperationAction(ISD::AND,    SVT, Promote);
    905       AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
    906       setOperationAction(ISD::OR,     SVT, Promote);
    907       AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
    908       setOperationAction(ISD::XOR,    SVT, Promote);
    909       AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
    910       setOperationAction(ISD::LOAD,   SVT, Promote);
    911       AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
    912       setOperationAction(ISD::SELECT, SVT, Promote);
    913       AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
    914     }
    915 
    916     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    917 
    918     // Custom lower v2i64 and v2f64 selects.
    919     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
    920     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
    921     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
    922     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
    923 
    924     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
    925     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
    926   }
    927 
    928   if (Subtarget->hasSSE41()) {
    929     setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
    930     setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
    931     setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
    932     setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
    933     setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
    934     setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
    935     setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
    936     setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
    937     setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
    938     setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
    939 
    940     // FIXME: Do we need to handle scalar-to-vector here?
    941     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
    942 
    943     // Can turn SHL into an integer multiply.
    944     setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
    945     setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
    946 
    947     // i8 and i16 vectors are custom , because the source register and source
    948     // source memory operand types are not the same width.  f32 vectors are
    949     // custom since the immediate controlling the insert encodes additional
    950     // information.
    951     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
    952     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    953     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    954     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    955 
    956     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
    957     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
    958     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
    959     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    960 
    961     if (Subtarget->is64Bit()) {
    962       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
    963       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    964     }
    965   }
    966 
    967   if (Subtarget->hasSSE2()) {
    968     setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
    969     setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
    970     setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
    971 
    972     setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
    973     setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
    974     setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
    975 
    976     setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
    977     setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
    978   }
    979 
    980   if (Subtarget->hasSSE42())
    981     setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
    982 
    983   if (!UseSoftFloat && Subtarget->hasAVX()) {
    984     addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
    985     addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
    986     addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
    987     addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
    988     addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
    989 
    990     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
    991     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
    992     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
    993 
    994     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
    995     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
    996     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
    997     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
    998     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
    999     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
   1000 
   1001     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
   1002     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
   1003     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
   1004     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
   1005     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
   1006     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
   1007 
   1008     // Custom lower several nodes for 256-bit types.
   1009     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
   1010                   i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1011       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
   1012       EVT VT = SVT;
   1013 
   1014       // Extract subvector is special because the value type
   1015       // (result) is 128-bit but the source is 256-bit wide.
   1016       if (VT.is128BitVector())
   1017         setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
   1018 
   1019       // Do not attempt to custom lower other non-256-bit vectors
   1020       if (!VT.is256BitVector())
   1021         continue;
   1022 
   1023       setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
   1024       setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
   1025       setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
   1026       setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
   1027       setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
   1028       setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
   1029     }
   1030 
   1031     // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
   1032     for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
   1033       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
   1034       EVT VT = SVT;
   1035 
   1036       // Do not attempt to promote non-256-bit vectors
   1037       if (!VT.is256BitVector())
   1038         continue;
   1039 
   1040       setOperationAction(ISD::AND,    SVT, Promote);
   1041       AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
   1042       setOperationAction(ISD::OR,     SVT, Promote);
   1043       AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
   1044       setOperationAction(ISD::XOR,    SVT, Promote);
   1045       AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
   1046       setOperationAction(ISD::LOAD,   SVT, Promote);
   1047       AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
   1048       setOperationAction(ISD::SELECT, SVT, Promote);
   1049       AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
   1050     }
   1051   }
   1052 
   1053   // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
   1054   // of this type with custom code.
   1055   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
   1056          VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
   1057     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
   1058   }
   1059 
   1060   // We want to custom lower some of our intrinsics.
   1061   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
   1062 
   1063 
   1064   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
   1065   // handle type legalization for these operations here.
   1066   //
   1067   // FIXME: We really should do custom legalization for addition and
   1068   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
   1069   // than generic legalization for 64-bit multiplication-with-overflow, though.
   1070   for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
   1071     // Add/Sub/Mul with overflow operations are custom lowered.
   1072     MVT VT = IntVTs[i];
   1073     setOperationAction(ISD::SADDO, VT, Custom);
   1074     setOperationAction(ISD::UADDO, VT, Custom);
   1075     setOperationAction(ISD::SSUBO, VT, Custom);
   1076     setOperationAction(ISD::USUBO, VT, Custom);
   1077     setOperationAction(ISD::SMULO, VT, Custom);
   1078     setOperationAction(ISD::UMULO, VT, Custom);
   1079   }
   1080 
   1081   // There are no 8-bit 3-address imul/mul instructions
   1082   setOperationAction(ISD::SMULO, MVT::i8, Expand);
   1083   setOperationAction(ISD::UMULO, MVT::i8, Expand);
   1084 
   1085   if (!Subtarget->is64Bit()) {
   1086     // These libcalls are not available in 32-bit.
   1087     setLibcallName(RTLIB::SHL_I128, 0);
   1088     setLibcallName(RTLIB::SRL_I128, 0);
   1089     setLibcallName(RTLIB::SRA_I128, 0);
   1090   }
   1091 
   1092   // We have target-specific dag combine patterns for the following nodes:
   1093   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
   1094   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
   1095   setTargetDAGCombine(ISD::BUILD_VECTOR);
   1096   setTargetDAGCombine(ISD::SELECT);
   1097   setTargetDAGCombine(ISD::SHL);
   1098   setTargetDAGCombine(ISD::SRA);
   1099   setTargetDAGCombine(ISD::SRL);
   1100   setTargetDAGCombine(ISD::OR);
   1101   setTargetDAGCombine(ISD::AND);
   1102   setTargetDAGCombine(ISD::ADD);
   1103   setTargetDAGCombine(ISD::SUB);
   1104   setTargetDAGCombine(ISD::STORE);
   1105   setTargetDAGCombine(ISD::ZERO_EXTEND);
   1106   setTargetDAGCombine(ISD::SINT_TO_FP);
   1107   if (Subtarget->is64Bit())
   1108     setTargetDAGCombine(ISD::MUL);
   1109 
   1110   computeRegisterProperties();
   1111 
   1112   // On Darwin, -Os means optimize for size without hurting performance,
   1113   // do not reduce the limit.
   1114   maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
   1115   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
   1116   maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
   1117   maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1118   maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
   1119   maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1120   setPrefLoopAlignment(16);
   1121   benefitFromCodePlacementOpt = true;
   1122 
   1123   setPrefFunctionAlignment(4);
   1124 }
   1125 
   1126 
   1127 MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
   1128   return MVT::i8;
   1129 }
   1130 
   1131 
   1132 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
   1133 /// the desired ByVal argument alignment.
   1134 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
   1135   if (MaxAlign == 16)
   1136     return;
   1137   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
   1138     if (VTy->getBitWidth() == 128)
   1139       MaxAlign = 16;
   1140   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1141     unsigned EltAlign = 0;
   1142     getMaxByValAlign(ATy->getElementType(), EltAlign);
   1143     if (EltAlign > MaxAlign)
   1144       MaxAlign = EltAlign;
   1145   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1146     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1147       unsigned EltAlign = 0;
   1148       getMaxByValAlign(STy->getElementType(i), EltAlign);
   1149       if (EltAlign > MaxAlign)
   1150         MaxAlign = EltAlign;
   1151       if (MaxAlign == 16)
   1152         break;
   1153     }
   1154   }
   1155   return;
   1156 }
   1157 
   1158 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1159 /// function arguments in the caller parameter area. For X86, aggregates
   1160 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
   1161 /// are at 4-byte boundaries.
   1162 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1163   if (Subtarget->is64Bit()) {
   1164     // Max of 8 and alignment of type.
   1165     unsigned TyAlign = TD->getABITypeAlignment(Ty);
   1166     if (TyAlign > 8)
   1167       return TyAlign;
   1168     return 8;
   1169   }
   1170 
   1171   unsigned Align = 4;
   1172   if (Subtarget->hasXMM())
   1173     getMaxByValAlign(Ty, Align);
   1174   return Align;
   1175 }
   1176 
   1177 /// getOptimalMemOpType - Returns the target specific optimal type for load
   1178 /// and store operations as a result of memset, memcpy, and memmove
   1179 /// lowering. If DstAlign is zero that means it's safe to destination
   1180 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   1181 /// means there isn't a need to check it against alignment requirement,
   1182 /// probably because the source does not need to be loaded. If
   1183 /// 'NonScalarIntSafe' is true, that means it's safe to return a
   1184 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
   1185 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
   1186 /// constant so it does not need to be loaded.
   1187 /// It returns EVT::Other if the type should be determined using generic
   1188 /// target-independent logic.
   1189 EVT
   1190 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
   1191                                        unsigned DstAlign, unsigned SrcAlign,
   1192                                        bool NonScalarIntSafe,
   1193                                        bool MemcpyStrSrc,
   1194                                        MachineFunction &MF) const {
   1195   // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
   1196   // linux.  This is because the stack realignment code can't handle certain
   1197   // cases like PR2962.  This should be removed when PR2962 is fixed.
   1198   const Function *F = MF.getFunction();
   1199   if (NonScalarIntSafe &&
   1200       !F->hasFnAttr(Attribute::NoImplicitFloat)) {
   1201     if (Size >= 16 &&
   1202         (Subtarget->isUnalignedMemAccessFast() ||
   1203          ((DstAlign == 0 || DstAlign >= 16) &&
   1204           (SrcAlign == 0 || SrcAlign >= 16))) &&
   1205         Subtarget->getStackAlignment() >= 16) {
   1206       if (Subtarget->hasSSE2())
   1207         return MVT::v4i32;
   1208       if (Subtarget->hasSSE1())
   1209         return MVT::v4f32;
   1210     } else if (!MemcpyStrSrc && Size >= 8 &&
   1211                !Subtarget->is64Bit() &&
   1212                Subtarget->getStackAlignment() >= 8 &&
   1213                Subtarget->hasXMMInt()) {
   1214       // Do not use f64 to lower memcpy if source is string constant. It's
   1215       // better to use i32 to avoid the loads.
   1216       return MVT::f64;
   1217     }
   1218   }
   1219   if (Subtarget->is64Bit() && Size >= 8)
   1220     return MVT::i64;
   1221   return MVT::i32;
   1222 }
   1223 
   1224 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1225 /// current function.  The returned value is a member of the
   1226 /// MachineJumpTableInfo::JTEntryKind enum.
   1227 unsigned X86TargetLowering::getJumpTableEncoding() const {
   1228   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
   1229   // symbol.
   1230   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1231       Subtarget->isPICStyleGOT())
   1232     return MachineJumpTableInfo::EK_Custom32;
   1233 
   1234   // Otherwise, use the normal jump table encoding heuristics.
   1235   return TargetLowering::getJumpTableEncoding();
   1236 }
   1237 
   1238 const MCExpr *
   1239 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1240                                              const MachineBasicBlock *MBB,
   1241                                              unsigned uid,MCContext &Ctx) const{
   1242   assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1243          Subtarget->isPICStyleGOT());
   1244   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
   1245   // entries.
   1246   return MCSymbolRefExpr::Create(MBB->getSymbol(),
   1247                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
   1248 }
   1249 
   1250 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
   1251 /// jumptable.
   1252 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1253                                                     SelectionDAG &DAG) const {
   1254   if (!Subtarget->is64Bit())
   1255     // This doesn't have DebugLoc associated with it, but is not really the
   1256     // same as a Register.
   1257     return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
   1258   return Table;
   1259 }
   1260 
   1261 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1262 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1263 /// MCExpr.
   1264 const MCExpr *X86TargetLowering::
   1265 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
   1266                              MCContext &Ctx) const {
   1267   // X86-64 uses RIP relative addressing based on the jump table label.
   1268   if (Subtarget->isPICStyleRIPRel())
   1269     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
   1270 
   1271   // Otherwise, the reference is relative to the PIC base.
   1272   return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
   1273 }
   1274 
   1275 // FIXME: Why this routine is here? Move to RegInfo!
   1276 std::pair<const TargetRegisterClass*, uint8_t>
   1277 X86TargetLowering::findRepresentativeClass(EVT VT) const{
   1278   const TargetRegisterClass *RRC = 0;
   1279   uint8_t Cost = 1;
   1280   switch (VT.getSimpleVT().SimpleTy) {
   1281   default:
   1282     return TargetLowering::findRepresentativeClass(VT);
   1283   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
   1284     RRC = (Subtarget->is64Bit()
   1285            ? X86::GR64RegisterClass : X86::GR32RegisterClass);
   1286     break;
   1287   case MVT::x86mmx:
   1288     RRC = X86::VR64RegisterClass;
   1289     break;
   1290   case MVT::f32: case MVT::f64:
   1291   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1292   case MVT::v4f32: case MVT::v2f64:
   1293   case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
   1294   case MVT::v4f64:
   1295     RRC = X86::VR128RegisterClass;
   1296     break;
   1297   }
   1298   return std::make_pair(RRC, Cost);
   1299 }
   1300 
   1301 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
   1302                                                unsigned &Offset) const {
   1303   if (!Subtarget->isTargetLinux())
   1304     return false;
   1305 
   1306   if (Subtarget->is64Bit()) {
   1307     // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
   1308     Offset = 0x28;
   1309     if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
   1310       AddressSpace = 256;
   1311     else
   1312       AddressSpace = 257;
   1313   } else {
   1314     // %gs:0x14 on i386
   1315     Offset = 0x14;
   1316     AddressSpace = 256;
   1317   }
   1318   return true;
   1319 }
   1320 
   1321 
   1322 //===----------------------------------------------------------------------===//
   1323 //               Return Value Calling Convention Implementation
   1324 //===----------------------------------------------------------------------===//
   1325 
   1326 #include "X86GenCallingConv.inc"
   1327 
   1328 bool
   1329 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   1330 				  MachineFunction &MF, bool isVarArg,
   1331                         const SmallVectorImpl<ISD::OutputArg> &Outs,
   1332                         LLVMContext &Context) const {
   1333   SmallVector<CCValAssign, 16> RVLocs;
   1334   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1335                  RVLocs, Context);
   1336   return CCInfo.CheckReturn(Outs, RetCC_X86);
   1337 }
   1338 
   1339 SDValue
   1340 X86TargetLowering::LowerReturn(SDValue Chain,
   1341                                CallingConv::ID CallConv, bool isVarArg,
   1342                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1343                                const SmallVectorImpl<SDValue> &OutVals,
   1344                                DebugLoc dl, SelectionDAG &DAG) const {
   1345   MachineFunction &MF = DAG.getMachineFunction();
   1346   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1347 
   1348   SmallVector<CCValAssign, 16> RVLocs;
   1349   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1350                  RVLocs, *DAG.getContext());
   1351   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
   1352 
   1353   // Add the regs to the liveout set for the function.
   1354   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
   1355   for (unsigned i = 0; i != RVLocs.size(); ++i)
   1356     if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
   1357       MRI.addLiveOut(RVLocs[i].getLocReg());
   1358 
   1359   SDValue Flag;
   1360 
   1361   SmallVector<SDValue, 6> RetOps;
   1362   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   1363   // Operand #1 = Bytes To Pop
   1364   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
   1365                    MVT::i16));
   1366 
   1367   // Copy the result values into the output registers.
   1368   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1369     CCValAssign &VA = RVLocs[i];
   1370     assert(VA.isRegLoc() && "Can only return in registers!");
   1371     SDValue ValToCopy = OutVals[i];
   1372     EVT ValVT = ValToCopy.getValueType();
   1373 
   1374     // If this is x86-64, and we disabled SSE, we can't return FP values,
   1375     // or SSE or MMX vectors.
   1376     if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
   1377          VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
   1378           (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
   1379       report_fatal_error("SSE register return with SSE disabled");
   1380     }
   1381     // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
   1382     // llvm-gcc has never done it right and no one has noticed, so this
   1383     // should be OK for now.
   1384     if (ValVT == MVT::f64 &&
   1385         (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
   1386       report_fatal_error("SSE2 register return with SSE2 disabled");
   1387 
   1388     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
   1389     // the RET instruction and handled by the FP Stackifier.
   1390     if (VA.getLocReg() == X86::ST0 ||
   1391         VA.getLocReg() == X86::ST1) {
   1392       // If this is a copy from an xmm register to ST(0), use an FPExtend to
   1393       // change the value to the FP stack register class.
   1394       if (isScalarFPTypeInSSEReg(VA.getValVT()))
   1395         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
   1396       RetOps.push_back(ValToCopy);
   1397       // Don't emit a copytoreg.
   1398       continue;
   1399     }
   1400 
   1401     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
   1402     // which is returned in RAX / RDX.
   1403     if (Subtarget->is64Bit()) {
   1404       if (ValVT == MVT::x86mmx) {
   1405         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
   1406           ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
   1407           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
   1408                                   ValToCopy);
   1409           // If we don't have SSE2 available, convert to v4f32 so the generated
   1410           // register is legal.
   1411           if (!Subtarget->hasSSE2())
   1412             ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
   1413         }
   1414       }
   1415     }
   1416 
   1417     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
   1418     Flag = Chain.getValue(1);
   1419   }
   1420 
   1421   // The x86-64 ABI for returning structs by value requires that we copy
   1422   // the sret argument into %rax for the return. We saved the argument into
   1423   // a virtual register in the entry block, so now we copy the value out
   1424   // and into %rax.
   1425   if (Subtarget->is64Bit() &&
   1426       DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
   1427     MachineFunction &MF = DAG.getMachineFunction();
   1428     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1429     unsigned Reg = FuncInfo->getSRetReturnReg();
   1430     assert(Reg &&
   1431            "SRetReturnReg should have been set in LowerFormalArguments().");
   1432     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
   1433 
   1434     Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
   1435     Flag = Chain.getValue(1);
   1436 
   1437     // RAX now acts like a return value.
   1438     MRI.addLiveOut(X86::RAX);
   1439   }
   1440 
   1441   RetOps[0] = Chain;  // Update chain.
   1442 
   1443   // Add the flag if we have it.
   1444   if (Flag.getNode())
   1445     RetOps.push_back(Flag);
   1446 
   1447   return DAG.getNode(X86ISD::RET_FLAG, dl,
   1448                      MVT::Other, &RetOps[0], RetOps.size());
   1449 }
   1450 
   1451 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
   1452   if (N->getNumValues() != 1)
   1453     return false;
   1454   if (!N->hasNUsesOfValue(1, 0))
   1455     return false;
   1456 
   1457   SDNode *Copy = *N->use_begin();
   1458   if (Copy->getOpcode() != ISD::CopyToReg &&
   1459       Copy->getOpcode() != ISD::FP_EXTEND)
   1460     return false;
   1461 
   1462   bool HasRet = false;
   1463   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   1464        UI != UE; ++UI) {
   1465     if (UI->getOpcode() != X86ISD::RET_FLAG)
   1466       return false;
   1467     HasRet = true;
   1468   }
   1469 
   1470   return HasRet;
   1471 }
   1472 
   1473 EVT
   1474 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1475                                             ISD::NodeType ExtendKind) const {
   1476   MVT ReturnMVT;
   1477   // TODO: Is this also valid on 32-bit?
   1478   if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
   1479     ReturnMVT = MVT::i8;
   1480   else
   1481     ReturnMVT = MVT::i32;
   1482 
   1483   EVT MinVT = getRegisterType(Context, ReturnMVT);
   1484   return VT.bitsLT(MinVT) ? MinVT : VT;
   1485 }
   1486 
   1487 /// LowerCallResult - Lower the result values of a call into the
   1488 /// appropriate copies out of appropriate physical registers.
   1489 ///
   1490 SDValue
   1491 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1492                                    CallingConv::ID CallConv, bool isVarArg,
   1493                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1494                                    DebugLoc dl, SelectionDAG &DAG,
   1495                                    SmallVectorImpl<SDValue> &InVals) const {
   1496 
   1497   // Assign locations to each value returned by this call.
   1498   SmallVector<CCValAssign, 16> RVLocs;
   1499   bool Is64Bit = Subtarget->is64Bit();
   1500   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1501 		 getTargetMachine(), RVLocs, *DAG.getContext());
   1502   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   1503 
   1504   // Copy all of the result registers out of their specified physreg.
   1505   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1506     CCValAssign &VA = RVLocs[i];
   1507     EVT CopyVT = VA.getValVT();
   1508 
   1509     // If this is x86-64, and we disabled SSE, we can't return FP values
   1510     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
   1511         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
   1512       report_fatal_error("SSE register return with SSE disabled");
   1513     }
   1514 
   1515     SDValue Val;
   1516 
   1517     // If this is a call to a function that returns an fp value on the floating
   1518     // point stack, we must guarantee the the value is popped from the stack, so
   1519     // a CopyFromReg is not good enough - the copy instruction may be eliminated
   1520     // if the return value is not used. We use the FpPOP_RETVAL instruction
   1521     // instead.
   1522     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
   1523       // If we prefer to use the value in xmm registers, copy it out as f80 and
   1524       // use a truncate to move it from fp stack reg to xmm reg.
   1525       if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
   1526       SDValue Ops[] = { Chain, InFlag };
   1527       Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
   1528                                          MVT::Other, MVT::Glue, Ops, 2), 1);
   1529       Val = Chain.getValue(0);
   1530 
   1531       // Round the f80 to the right size, which also moves it to the appropriate
   1532       // xmm register.
   1533       if (CopyVT != VA.getValVT())
   1534         Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
   1535                           // This truncation won't change the value.
   1536                           DAG.getIntPtrConstant(1));
   1537     } else {
   1538       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
   1539                                  CopyVT, InFlag).getValue(1);
   1540       Val = Chain.getValue(0);
   1541     }
   1542     InFlag = Chain.getValue(2);
   1543     InVals.push_back(Val);
   1544   }
   1545 
   1546   return Chain;
   1547 }
   1548 
   1549 
   1550 //===----------------------------------------------------------------------===//
   1551 //                C & StdCall & Fast Calling Convention implementation
   1552 //===----------------------------------------------------------------------===//
   1553 //  StdCall calling convention seems to be standard for many Windows' API
   1554 //  routines and around. It differs from C calling convention just a little:
   1555 //  callee should clean up the stack, not caller. Symbols should be also
   1556 //  decorated in some fancy way :) It doesn't support any vector arguments.
   1557 //  For info on fast calling convention see Fast Calling Convention (tail call)
   1558 //  implementation LowerX86_32FastCCCallTo.
   1559 
   1560 /// CallIsStructReturn - Determines whether a call uses struct return
   1561 /// semantics.
   1562 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
   1563   if (Outs.empty())
   1564     return false;
   1565 
   1566   return Outs[0].Flags.isSRet();
   1567 }
   1568 
   1569 /// ArgsAreStructReturn - Determines whether a function uses struct
   1570 /// return semantics.
   1571 static bool
   1572 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
   1573   if (Ins.empty())
   1574     return false;
   1575 
   1576   return Ins[0].Flags.isSRet();
   1577 }
   1578 
   1579 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   1580 /// by "Src" to address "Dst" with size and alignment information specified by
   1581 /// the specific parameter attribute. The copy will be passed as a byval
   1582 /// function parameter.
   1583 static SDValue
   1584 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   1585                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   1586                           DebugLoc dl) {
   1587   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   1588 
   1589   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   1590                        /*isVolatile*/false, /*AlwaysInline=*/true,
   1591                        MachinePointerInfo(), MachinePointerInfo());
   1592 }
   1593 
   1594 /// IsTailCallConvention - Return true if the calling convention is one that
   1595 /// supports tail call optimization.
   1596 static bool IsTailCallConvention(CallingConv::ID CC) {
   1597   return (CC == CallingConv::Fast || CC == CallingConv::GHC);
   1598 }
   1599 
   1600 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   1601   if (!CI->isTailCall())
   1602     return false;
   1603 
   1604   CallSite CS(CI);
   1605   CallingConv::ID CalleeCC = CS.getCallingConv();
   1606   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
   1607     return false;
   1608 
   1609   return true;
   1610 }
   1611 
   1612 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
   1613 /// a tailcall target by changing its ABI.
   1614 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
   1615   return GuaranteedTailCallOpt && IsTailCallConvention(CC);
   1616 }
   1617 
   1618 SDValue
   1619 X86TargetLowering::LowerMemArgument(SDValue Chain,
   1620                                     CallingConv::ID CallConv,
   1621                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1622                                     DebugLoc dl, SelectionDAG &DAG,
   1623                                     const CCValAssign &VA,
   1624                                     MachineFrameInfo *MFI,
   1625                                     unsigned i) const {
   1626   // Create the nodes corresponding to a load from this parameter slot.
   1627   ISD::ArgFlagsTy Flags = Ins[i].Flags;
   1628   bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
   1629   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
   1630   EVT ValVT;
   1631 
   1632   // If value is passed by pointer we have address passed instead of the value
   1633   // itself.
   1634   if (VA.getLocInfo() == CCValAssign::Indirect)
   1635     ValVT = VA.getLocVT();
   1636   else
   1637     ValVT = VA.getValVT();
   1638 
   1639   // FIXME: For now, all byval parameter objects are marked mutable. This can be
   1640   // changed with more analysis.
   1641   // In case of tail call optimization mark all arguments mutable. Since they
   1642   // could be overwritten by lowering of arguments in case of a tail call.
   1643   if (Flags.isByVal()) {
   1644     unsigned Bytes = Flags.getByValSize();
   1645     if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   1646     int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
   1647     return DAG.getFrameIndex(FI, getPointerTy());
   1648   } else {
   1649     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
   1650                                     VA.getLocMemOffset(), isImmutable);
   1651     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   1652     return DAG.getLoad(ValVT, dl, Chain, FIN,
   1653                        MachinePointerInfo::getFixedStack(FI),
   1654                        false, false, 0);
   1655   }
   1656 }
   1657 
   1658 SDValue
   1659 X86TargetLowering::LowerFormalArguments(SDValue Chain,
   1660                                         CallingConv::ID CallConv,
   1661                                         bool isVarArg,
   1662                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   1663                                         DebugLoc dl,
   1664                                         SelectionDAG &DAG,
   1665                                         SmallVectorImpl<SDValue> &InVals)
   1666                                           const {
   1667   MachineFunction &MF = DAG.getMachineFunction();
   1668   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1669 
   1670   const Function* Fn = MF.getFunction();
   1671   if (Fn->hasExternalLinkage() &&
   1672       Subtarget->isTargetCygMing() &&
   1673       Fn->getName() == "main")
   1674     FuncInfo->setForceFramePointer(true);
   1675 
   1676   MachineFrameInfo *MFI = MF.getFrameInfo();
   1677   bool Is64Bit = Subtarget->is64Bit();
   1678   bool IsWin64 = Subtarget->isTargetWin64();
   1679 
   1680   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   1681          "Var args not supported with calling convention fastcc or ghc");
   1682 
   1683   // Assign locations to all of the incoming arguments.
   1684   SmallVector<CCValAssign, 16> ArgLocs;
   1685   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1686                  ArgLocs, *DAG.getContext());
   1687 
   1688   // Allocate shadow area for Win64
   1689   if (IsWin64) {
   1690     CCInfo.AllocateStack(32, 8);
   1691   }
   1692 
   1693   CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
   1694 
   1695   unsigned LastVal = ~0U;
   1696   SDValue ArgValue;
   1697   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1698     CCValAssign &VA = ArgLocs[i];
   1699     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
   1700     // places.
   1701     assert(VA.getValNo() != LastVal &&
   1702            "Don't support value assigned to multiple locs yet");
   1703     LastVal = VA.getValNo();
   1704 
   1705     if (VA.isRegLoc()) {
   1706       EVT RegVT = VA.getLocVT();
   1707       TargetRegisterClass *RC = NULL;
   1708       if (RegVT == MVT::i32)
   1709         RC = X86::GR32RegisterClass;
   1710       else if (Is64Bit && RegVT == MVT::i64)
   1711         RC = X86::GR64RegisterClass;
   1712       else if (RegVT == MVT::f32)
   1713         RC = X86::FR32RegisterClass;
   1714       else if (RegVT == MVT::f64)
   1715         RC = X86::FR64RegisterClass;
   1716       else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
   1717         RC = X86::VR256RegisterClass;
   1718       else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
   1719         RC = X86::VR128RegisterClass;
   1720       else if (RegVT == MVT::x86mmx)
   1721         RC = X86::VR64RegisterClass;
   1722       else
   1723         llvm_unreachable("Unknown argument type!");
   1724 
   1725       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   1726       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   1727 
   1728       // If this is an 8 or 16-bit value, it is really passed promoted to 32
   1729       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
   1730       // right size.
   1731       if (VA.getLocInfo() == CCValAssign::SExt)
   1732         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   1733                                DAG.getValueType(VA.getValVT()));
   1734       else if (VA.getLocInfo() == CCValAssign::ZExt)
   1735         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   1736                                DAG.getValueType(VA.getValVT()));
   1737       else if (VA.getLocInfo() == CCValAssign::BCvt)
   1738         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   1739 
   1740       if (VA.isExtInLoc()) {
   1741         // Handle MMX values passed in XMM regs.
   1742         if (RegVT.isVector()) {
   1743           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
   1744                                  ArgValue);
   1745         } else
   1746           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   1747       }
   1748     } else {
   1749       assert(VA.isMemLoc());
   1750       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
   1751     }
   1752 
   1753     // If value is passed via pointer - do a load.
   1754     if (VA.getLocInfo() == CCValAssign::Indirect)
   1755       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
   1756                              MachinePointerInfo(), false, false, 0);
   1757 
   1758     InVals.push_back(ArgValue);
   1759   }
   1760 
   1761   // The x86-64 ABI for returning structs by value requires that we copy
   1762   // the sret argument into %rax for the return. Save the argument into
   1763   // a virtual register so that we can access it from the return points.
   1764   if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
   1765     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1766     unsigned Reg = FuncInfo->getSRetReturnReg();
   1767     if (!Reg) {
   1768       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
   1769       FuncInfo->setSRetReturnReg(Reg);
   1770     }
   1771     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
   1772     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
   1773   }
   1774 
   1775   unsigned StackSize = CCInfo.getNextStackOffset();
   1776   // Align stack specially for tail calls.
   1777   if (FuncIsMadeTailCallSafe(CallConv))
   1778     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
   1779 
   1780   // If the function takes variable number of arguments, make a frame index for
   1781   // the start of the first vararg value... for expansion of llvm.va_start.
   1782   if (isVarArg) {
   1783     if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
   1784                     CallConv != CallingConv::X86_ThisCall)) {
   1785       FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
   1786     }
   1787     if (Is64Bit) {
   1788       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
   1789 
   1790       // FIXME: We should really autogenerate these arrays
   1791       static const unsigned GPR64ArgRegsWin64[] = {
   1792         X86::RCX, X86::RDX, X86::R8,  X86::R9
   1793       };
   1794       static const unsigned GPR64ArgRegs64Bit[] = {
   1795         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
   1796       };
   1797       static const unsigned XMMArgRegs64Bit[] = {
   1798         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   1799         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   1800       };
   1801       const unsigned *GPR64ArgRegs;
   1802       unsigned NumXMMRegs = 0;
   1803 
   1804       if (IsWin64) {
   1805         // The XMM registers which might contain var arg parameters are shadowed
   1806         // in their paired GPR.  So we only need to save the GPR to their home
   1807         // slots.
   1808         TotalNumIntRegs = 4;
   1809         GPR64ArgRegs = GPR64ArgRegsWin64;
   1810       } else {
   1811         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
   1812         GPR64ArgRegs = GPR64ArgRegs64Bit;
   1813 
   1814         NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
   1815       }
   1816       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
   1817                                                        TotalNumIntRegs);
   1818 
   1819       bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
   1820       assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
   1821              "SSE register cannot be used when SSE is disabled!");
   1822       assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
   1823              "SSE register cannot be used when SSE is disabled!");
   1824       if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
   1825         // Kernel mode asks for SSE to be disabled, so don't push them
   1826         // on the stack.
   1827         TotalNumXMMRegs = 0;
   1828 
   1829       if (IsWin64) {
   1830         const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
   1831         // Get to the caller-allocated home save location.  Add 8 to account
   1832         // for the return address.
   1833         int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
   1834         FuncInfo->setRegSaveFrameIndex(
   1835           MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
   1836         // Fixup to set vararg frame on shadow area (4 x i64).
   1837         if (NumIntRegs < 4)
   1838           FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
   1839       } else {
   1840         // For X86-64, if there are vararg parameters that are passed via
   1841         // registers, then we must store them to their spots on the stack so they
   1842         // may be loaded by deferencing the result of va_next.
   1843         FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
   1844         FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
   1845         FuncInfo->setRegSaveFrameIndex(
   1846           MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
   1847                                false));
   1848       }
   1849 
   1850       // Store the integer parameter registers.
   1851       SmallVector<SDValue, 8> MemOps;
   1852       SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   1853                                         getPointerTy());
   1854       unsigned Offset = FuncInfo->getVarArgsGPOffset();
   1855       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
   1856         SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
   1857                                   DAG.getIntPtrConstant(Offset));
   1858         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
   1859                                      X86::GR64RegisterClass);
   1860         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   1861         SDValue Store =
   1862           DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1863                        MachinePointerInfo::getFixedStack(
   1864                          FuncInfo->getRegSaveFrameIndex(), Offset),
   1865                        false, false, 0);
   1866         MemOps.push_back(Store);
   1867         Offset += 8;
   1868       }
   1869 
   1870       if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
   1871         // Now store the XMM (fp + vector) parameter registers.
   1872         SmallVector<SDValue, 11> SaveXMMOps;
   1873         SaveXMMOps.push_back(Chain);
   1874 
   1875         unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
   1876         SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
   1877         SaveXMMOps.push_back(ALVal);
   1878 
   1879         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   1880                                FuncInfo->getRegSaveFrameIndex()));
   1881         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   1882                                FuncInfo->getVarArgsFPOffset()));
   1883 
   1884         for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
   1885           unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
   1886                                        X86::VR128RegisterClass);
   1887           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
   1888           SaveXMMOps.push_back(Val);
   1889         }
   1890         MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
   1891                                      MVT::Other,
   1892                                      &SaveXMMOps[0], SaveXMMOps.size()));
   1893       }
   1894 
   1895       if (!MemOps.empty())
   1896         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1897                             &MemOps[0], MemOps.size());
   1898     }
   1899   }
   1900 
   1901   // Some CCs need callee pop.
   1902   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
   1903     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
   1904   } else {
   1905     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
   1906     // If this is an sret function, the return should pop the hidden pointer.
   1907     if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
   1908       FuncInfo->setBytesToPopOnReturn(4);
   1909   }
   1910 
   1911   if (!Is64Bit) {
   1912     // RegSaveFrameIndex is X86-64 only.
   1913     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
   1914     if (CallConv == CallingConv::X86_FastCall ||
   1915         CallConv == CallingConv::X86_ThisCall)
   1916       // fastcc functions can't have varargs.
   1917       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
   1918   }
   1919 
   1920   return Chain;
   1921 }
   1922 
   1923 SDValue
   1924 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
   1925                                     SDValue StackPtr, SDValue Arg,
   1926                                     DebugLoc dl, SelectionDAG &DAG,
   1927                                     const CCValAssign &VA,
   1928                                     ISD::ArgFlagsTy Flags) const {
   1929   unsigned LocMemOffset = VA.getLocMemOffset();
   1930   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1931   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1932   if (Flags.isByVal())
   1933     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
   1934 
   1935   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1936                       MachinePointerInfo::getStack(LocMemOffset),
   1937                       false, false, 0);
   1938 }
   1939 
   1940 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
   1941 /// optimization is performed and it is required.
   1942 SDValue
   1943 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
   1944                                            SDValue &OutRetAddr, SDValue Chain,
   1945                                            bool IsTailCall, bool Is64Bit,
   1946                                            int FPDiff, DebugLoc dl) const {
   1947   // Adjust the Return address stack slot.
   1948   EVT VT = getPointerTy();
   1949   OutRetAddr = getReturnAddressFrameIndex(DAG);
   1950 
   1951   // Load the "old" Return address.
   1952   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
   1953                            false, false, 0);
   1954   return SDValue(OutRetAddr.getNode(), 1);
   1955 }
   1956 
   1957 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
   1958 /// optimization is performed and it is required (FPDiff!=0).
   1959 static SDValue
   1960 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
   1961                          SDValue Chain, SDValue RetAddrFrIdx,
   1962                          bool Is64Bit, int FPDiff, DebugLoc dl) {
   1963   // Store the return address to the appropriate stack slot.
   1964   if (!FPDiff) return Chain;
   1965   // Calculate the new stack slot for the return address.
   1966   int SlotSize = Is64Bit ? 8 : 4;
   1967   int NewReturnAddrFI =
   1968     MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
   1969   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   1970   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
   1971   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
   1972                        MachinePointerInfo::getFixedStack(NewReturnAddrFI),
   1973                        false, false, 0);
   1974   return Chain;
   1975 }
   1976 
   1977 SDValue
   1978 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
   1979                              CallingConv::ID CallConv, bool isVarArg,
   1980                              bool &isTailCall,
   1981                              const SmallVectorImpl<ISD::OutputArg> &Outs,
   1982                              const SmallVectorImpl<SDValue> &OutVals,
   1983                              const SmallVectorImpl<ISD::InputArg> &Ins,
   1984                              DebugLoc dl, SelectionDAG &DAG,
   1985                              SmallVectorImpl<SDValue> &InVals) const {
   1986   MachineFunction &MF = DAG.getMachineFunction();
   1987   bool Is64Bit        = Subtarget->is64Bit();
   1988   bool IsWin64        = Subtarget->isTargetWin64();
   1989   bool IsStructRet    = CallIsStructReturn(Outs);
   1990   bool IsSibcall      = false;
   1991 
   1992   if (isTailCall) {
   1993     // Check if it's really possible to do a tail call.
   1994     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1995                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
   1996                                                    Outs, OutVals, Ins, DAG);
   1997 
   1998     // Sibcalls are automatically detected tailcalls which do not require
   1999     // ABI changes.
   2000     if (!GuaranteedTailCallOpt && isTailCall)
   2001       IsSibcall = true;
   2002 
   2003     if (isTailCall)
   2004       ++NumTailCalls;
   2005   }
   2006 
   2007   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   2008          "Var args not supported with calling convention fastcc or ghc");
   2009 
   2010   // Analyze operands of the call, assigning locations to each operand.
   2011   SmallVector<CCValAssign, 16> ArgLocs;
   2012   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   2013                  ArgLocs, *DAG.getContext());
   2014 
   2015   // Allocate shadow area for Win64
   2016   if (IsWin64) {
   2017     CCInfo.AllocateStack(32, 8);
   2018   }
   2019 
   2020   CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2021 
   2022   // Get a count of how many bytes are to be pushed on the stack.
   2023   unsigned NumBytes = CCInfo.getNextStackOffset();
   2024   if (IsSibcall)
   2025     // This is a sibcall. The memory operands are available in caller's
   2026     // own caller's stack.
   2027     NumBytes = 0;
   2028   else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
   2029     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
   2030 
   2031   int FPDiff = 0;
   2032   if (isTailCall && !IsSibcall) {
   2033     // Lower arguments at fp - stackoffset + fpdiff.
   2034     unsigned NumBytesCallerPushed =
   2035       MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
   2036     FPDiff = NumBytesCallerPushed - NumBytes;
   2037 
   2038     // Set the delta of movement of the returnaddr stackslot.
   2039     // But only set if delta is greater than previous delta.
   2040     if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
   2041       MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
   2042   }
   2043 
   2044   if (!IsSibcall)
   2045     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   2046 
   2047   SDValue RetAddrFrIdx;
   2048   // Load return address for tail calls.
   2049   if (isTailCall && FPDiff)
   2050     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
   2051                                     Is64Bit, FPDiff, dl);
   2052 
   2053   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2054   SmallVector<SDValue, 8> MemOpChains;
   2055   SDValue StackPtr;
   2056 
   2057   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   2058   // of tail call optimization arguments are handle later.
   2059   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2060     CCValAssign &VA = ArgLocs[i];
   2061     EVT RegVT = VA.getLocVT();
   2062     SDValue Arg = OutVals[i];
   2063     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2064     bool isByVal = Flags.isByVal();
   2065 
   2066     // Promote the value if needed.
   2067     switch (VA.getLocInfo()) {
   2068     default: llvm_unreachable("Unknown loc info!");
   2069     case CCValAssign::Full: break;
   2070     case CCValAssign::SExt:
   2071       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
   2072       break;
   2073     case CCValAssign::ZExt:
   2074       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
   2075       break;
   2076     case CCValAssign::AExt:
   2077       if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
   2078         // Special case: passing MMX values in XMM registers.
   2079         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   2080         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
   2081         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
   2082       } else
   2083         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
   2084       break;
   2085     case CCValAssign::BCvt:
   2086       Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
   2087       break;
   2088     case CCValAssign::Indirect: {
   2089       // Store the argument.
   2090       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
   2091       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   2092       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
   2093                            MachinePointerInfo::getFixedStack(FI),
   2094                            false, false, 0);
   2095       Arg = SpillSlot;
   2096       break;
   2097     }
   2098     }
   2099 
   2100     if (VA.isRegLoc()) {
   2101       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2102       if (isVarArg && IsWin64) {
   2103         // Win64 ABI requires argument XMM reg to be copied to the corresponding
   2104         // shadow reg if callee is a varargs function.
   2105         unsigned ShadowReg = 0;
   2106         switch (VA.getLocReg()) {
   2107         case X86::XMM0: ShadowReg = X86::RCX; break;
   2108         case X86::XMM1: ShadowReg = X86::RDX; break;
   2109         case X86::XMM2: ShadowReg = X86::R8; break;
   2110         case X86::XMM3: ShadowReg = X86::R9; break;
   2111         }
   2112         if (ShadowReg)
   2113           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
   2114       }
   2115     } else if (!IsSibcall && (!isTailCall || isByVal)) {
   2116       assert(VA.isMemLoc());
   2117       if (StackPtr.getNode() == 0)
   2118         StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
   2119       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   2120                                              dl, DAG, VA, Flags));
   2121     }
   2122   }
   2123 
   2124   if (!MemOpChains.empty())
   2125     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2126                         &MemOpChains[0], MemOpChains.size());
   2127 
   2128   // Build a sequence of copy-to-reg nodes chained together with token chain
   2129   // and flag operands which copy the outgoing args into registers.
   2130   SDValue InFlag;
   2131   // Tail call byval lowering might overwrite argument registers so in case of
   2132   // tail call optimization the copies to registers are lowered later.
   2133   if (!isTailCall)
   2134     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2135       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2136                                RegsToPass[i].second, InFlag);
   2137       InFlag = Chain.getValue(1);
   2138     }
   2139 
   2140   if (Subtarget->isPICStyleGOT()) {
   2141     // ELF / PIC requires GOT in the EBX register before function calls via PLT
   2142     // GOT pointer.
   2143     if (!isTailCall) {
   2144       Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
   2145                                DAG.getNode(X86ISD::GlobalBaseReg,
   2146                                            DebugLoc(), getPointerTy()),
   2147                                InFlag);
   2148       InFlag = Chain.getValue(1);
   2149     } else {
   2150       // If we are tail calling and generating PIC/GOT style code load the
   2151       // address of the callee into ECX. The value in ecx is used as target of
   2152       // the tail jump. This is done to circumvent the ebx/callee-saved problem
   2153       // for tail calls on PIC/GOT architectures. Normally we would just put the
   2154       // address of GOT into ebx and then call target@PLT. But for tail calls
   2155       // ebx would be restored (since ebx is callee saved) before jumping to the
   2156       // target@PLT.
   2157 
   2158       // Note: The actual moving to ECX is done further down.
   2159       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
   2160       if (G && !G->getGlobal()->hasHiddenVisibility() &&
   2161           !G->getGlobal()->hasProtectedVisibility())
   2162         Callee = LowerGlobalAddress(Callee, DAG);
   2163       else if (isa<ExternalSymbolSDNode>(Callee))
   2164         Callee = LowerExternalSymbol(Callee, DAG);
   2165     }
   2166   }
   2167 
   2168   if (Is64Bit && isVarArg && !IsWin64) {
   2169     // From AMD64 ABI document:
   2170     // For calls that may call functions that use varargs or stdargs
   2171     // (prototype-less calls or calls to functions containing ellipsis (...) in
   2172     // the declaration) %al is used as hidden argument to specify the number
   2173     // of SSE registers used. The contents of %al do not need to match exactly
   2174     // the number of registers, but must be an ubound on the number of SSE
   2175     // registers used and is in the range 0 - 8 inclusive.
   2176 
   2177     // Count the number of XMM registers allocated.
   2178     static const unsigned XMMArgRegs[] = {
   2179       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2180       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2181     };
   2182     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   2183     assert((Subtarget->hasXMM() || !NumXMMRegs)
   2184            && "SSE registers cannot be used when SSE is disabled");
   2185 
   2186     Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
   2187                              DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
   2188     InFlag = Chain.getValue(1);
   2189   }
   2190 
   2191 
   2192   // For tail calls lower the arguments to the 'real' stack slot.
   2193   if (isTailCall) {
   2194     // Force all the incoming stack arguments to be loaded from the stack
   2195     // before any new outgoing arguments are stored to the stack, because the
   2196     // outgoing stack slots may alias the incoming argument stack slots, and
   2197     // the alias isn't otherwise explicit. This is slightly more conservative
   2198     // than necessary, because it means that each store effectively depends
   2199     // on every argument instead of just those arguments it would clobber.
   2200     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
   2201 
   2202     SmallVector<SDValue, 8> MemOpChains2;
   2203     SDValue FIN;
   2204     int FI = 0;
   2205     // Do not flag preceding copytoreg stuff together with the following stuff.
   2206     InFlag = SDValue();
   2207     if (GuaranteedTailCallOpt) {
   2208       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2209         CCValAssign &VA = ArgLocs[i];
   2210         if (VA.isRegLoc())
   2211           continue;
   2212         assert(VA.isMemLoc());
   2213         SDValue Arg = OutVals[i];
   2214         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2215         // Create frame index.
   2216         int32_t Offset = VA.getLocMemOffset()+FPDiff;
   2217         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
   2218         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2219         FIN = DAG.getFrameIndex(FI, getPointerTy());
   2220 
   2221         if (Flags.isByVal()) {
   2222           // Copy relative to framepointer.
   2223           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
   2224           if (StackPtr.getNode() == 0)
   2225             StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
   2226                                           getPointerTy());
   2227           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
   2228 
   2229           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
   2230                                                            ArgChain,
   2231                                                            Flags, DAG, dl));
   2232         } else {
   2233           // Store relative to framepointer.
   2234           MemOpChains2.push_back(
   2235             DAG.getStore(ArgChain, dl, Arg, FIN,
   2236                          MachinePointerInfo::getFixedStack(FI),
   2237                          false, false, 0));
   2238         }
   2239       }
   2240     }
   2241 
   2242     if (!MemOpChains2.empty())
   2243       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2244                           &MemOpChains2[0], MemOpChains2.size());
   2245 
   2246     // Copy arguments to their registers.
   2247     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2248       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2249                                RegsToPass[i].second, InFlag);
   2250       InFlag = Chain.getValue(1);
   2251     }
   2252     InFlag =SDValue();
   2253 
   2254     // Store the return address to the appropriate stack slot.
   2255     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
   2256                                      FPDiff, dl);
   2257   }
   2258 
   2259   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
   2260     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
   2261     // In the 64-bit large code model, we have to make all calls
   2262     // through a register, since the call instruction's 32-bit
   2263     // pc-relative offset may not be large enough to hold the whole
   2264     // address.
   2265   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2266     // If the callee is a GlobalAddress node (quite common, every direct call
   2267     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
   2268     // it.
   2269 
   2270     // We should use extra load for direct calls to dllimported functions in
   2271     // non-JIT mode.
   2272     const GlobalValue *GV = G->getGlobal();
   2273     if (!GV->hasDLLImportLinkage()) {
   2274       unsigned char OpFlags = 0;
   2275       bool ExtraLoad = false;
   2276       unsigned WrapperKind = ISD::DELETED_NODE;
   2277 
   2278       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   2279       // external symbols most go through the PLT in PIC mode.  If the symbol
   2280       // has hidden or protected visibility, or if it is static or local, then
   2281       // we don't need to use the PLT - we can directly call it.
   2282       if (Subtarget->isTargetELF() &&
   2283           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   2284           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   2285         OpFlags = X86II::MO_PLT;
   2286       } else if (Subtarget->isPICStyleStubAny() &&
   2287                  (GV->isDeclaration() || GV->isWeakForLinker()) &&
   2288                  (!Subtarget->getTargetTriple().isMacOSX() ||
   2289                   Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2290         // PC-relative references to external symbols should go through $stub,
   2291         // unless we're building with the leopard linker or later, which
   2292         // automatically synthesizes these stubs.
   2293         OpFlags = X86II::MO_DARWIN_STUB;
   2294       } else if (Subtarget->isPICStyleRIPRel() &&
   2295                  isa<Function>(GV) &&
   2296                  cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
   2297         // If the function is marked as non-lazy, generate an indirect call
   2298         // which loads from the GOT directly. This avoids runtime overhead
   2299         // at the cost of eager binding (and one extra byte of encoding).
   2300         OpFlags = X86II::MO_GOTPCREL;
   2301         WrapperKind = X86ISD::WrapperRIP;
   2302         ExtraLoad = true;
   2303       }
   2304 
   2305       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
   2306                                           G->getOffset(), OpFlags);
   2307 
   2308       // Add a wrapper if needed.
   2309       if (WrapperKind != ISD::DELETED_NODE)
   2310         Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
   2311       // Add extra indirection if needed.
   2312       if (ExtraLoad)
   2313         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
   2314                              MachinePointerInfo::getGOT(),
   2315                              false, false, 0);
   2316     }
   2317   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2318     unsigned char OpFlags = 0;
   2319 
   2320     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
   2321     // external symbols should go through the PLT.
   2322     if (Subtarget->isTargetELF() &&
   2323         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2324       OpFlags = X86II::MO_PLT;
   2325     } else if (Subtarget->isPICStyleStubAny() &&
   2326                (!Subtarget->getTargetTriple().isMacOSX() ||
   2327                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2328       // PC-relative references to external symbols should go through $stub,
   2329       // unless we're building with the leopard linker or later, which
   2330       // automatically synthesizes these stubs.
   2331       OpFlags = X86II::MO_DARWIN_STUB;
   2332     }
   2333 
   2334     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
   2335                                          OpFlags);
   2336   }
   2337 
   2338   // Returns a chain & a flag for retval copy to use.
   2339   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2340   SmallVector<SDValue, 8> Ops;
   2341 
   2342   if (!IsSibcall && isTailCall) {
   2343     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2344                            DAG.getIntPtrConstant(0, true), InFlag);
   2345     InFlag = Chain.getValue(1);
   2346   }
   2347 
   2348   Ops.push_back(Chain);
   2349   Ops.push_back(Callee);
   2350 
   2351   if (isTailCall)
   2352     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
   2353 
   2354   // Add argument registers to the end of the list so that they are known live
   2355   // into the call.
   2356   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2357     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2358                                   RegsToPass[i].second.getValueType()));
   2359 
   2360   // Add an implicit use GOT pointer in EBX.
   2361   if (!isTailCall && Subtarget->isPICStyleGOT())
   2362     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
   2363 
   2364   // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
   2365   if (Is64Bit && isVarArg && !IsWin64)
   2366     Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
   2367 
   2368   if (InFlag.getNode())
   2369     Ops.push_back(InFlag);
   2370 
   2371   if (isTailCall) {
   2372     // We used to do:
   2373     //// If this is the first return lowered for this function, add the regs
   2374     //// to the liveout set for the function.
   2375     // This isn't right, although it's probably harmless on x86; liveouts
   2376     // should be computed from returns not tail calls.  Consider a void
   2377     // function making a tail call to a function returning int.
   2378     return DAG.getNode(X86ISD::TC_RETURN, dl,
   2379                        NodeTys, &Ops[0], Ops.size());
   2380   }
   2381 
   2382   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
   2383   InFlag = Chain.getValue(1);
   2384 
   2385   // Create the CALLSEQ_END node.
   2386   unsigned NumBytesForCalleeToPush;
   2387   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
   2388     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
   2389   else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
   2390     // If this is a call to a struct-return function, the callee
   2391     // pops the hidden struct pointer, so we have to push it back.
   2392     // This is common for Darwin/X86, Linux & Mingw32 targets.
   2393     NumBytesForCalleeToPush = 4;
   2394   else
   2395     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
   2396 
   2397   // Returns a flag for retval copy to use.
   2398   if (!IsSibcall) {
   2399     Chain = DAG.getCALLSEQ_END(Chain,
   2400                                DAG.getIntPtrConstant(NumBytes, true),
   2401                                DAG.getIntPtrConstant(NumBytesForCalleeToPush,
   2402                                                      true),
   2403                                InFlag);
   2404     InFlag = Chain.getValue(1);
   2405   }
   2406 
   2407   // Handle result values, copying them out of physregs into vregs that we
   2408   // return.
   2409   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   2410                          Ins, dl, DAG, InVals);
   2411 }
   2412 
   2413 
   2414 //===----------------------------------------------------------------------===//
   2415 //                Fast Calling Convention (tail call) implementation
   2416 //===----------------------------------------------------------------------===//
   2417 
   2418 //  Like std call, callee cleans arguments, convention except that ECX is
   2419 //  reserved for storing the tail called function address. Only 2 registers are
   2420 //  free for argument passing (inreg). Tail call optimization is performed
   2421 //  provided:
   2422 //                * tailcallopt is enabled
   2423 //                * caller/callee are fastcc
   2424 //  On X86_64 architecture with GOT-style position independent code only local
   2425 //  (within module) calls are supported at the moment.
   2426 //  To keep the stack aligned according to platform abi the function
   2427 //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
   2428 //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
   2429 //  If a tail called function callee has more arguments than the caller the
   2430 //  caller needs to make sure that there is room to move the RETADDR to. This is
   2431 //  achieved by reserving an area the size of the argument delta right after the
   2432 //  original REtADDR, but before the saved framepointer or the spilled registers
   2433 //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
   2434 //  stack layout:
   2435 //    arg1
   2436 //    arg2
   2437 //    RETADDR
   2438 //    [ new RETADDR
   2439 //      move area ]
   2440 //    (possible EBP)
   2441 //    ESI
   2442 //    EDI
   2443 //    local1 ..
   2444 
   2445 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
   2446 /// for a 16 byte align requirement.
   2447 unsigned
   2448 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
   2449                                                SelectionDAG& DAG) const {
   2450   MachineFunction &MF = DAG.getMachineFunction();
   2451   const TargetMachine &TM = MF.getTarget();
   2452   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   2453   unsigned StackAlignment = TFI.getStackAlignment();
   2454   uint64_t AlignMask = StackAlignment - 1;
   2455   int64_t Offset = StackSize;
   2456   uint64_t SlotSize = TD->getPointerSize();
   2457   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
   2458     // Number smaller than 12 so just add the difference.
   2459     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
   2460   } else {
   2461     // Mask out lower bits, add stackalignment once plus the 12 bytes.
   2462     Offset = ((~AlignMask) & Offset) + StackAlignment +
   2463       (StackAlignment-SlotSize);
   2464   }
   2465   return Offset;
   2466 }
   2467 
   2468 /// MatchingStackOffset - Return true if the given stack call argument is
   2469 /// already available in the same position (relatively) of the caller's
   2470 /// incoming argument stack.
   2471 static
   2472 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2473                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   2474                          const X86InstrInfo *TII) {
   2475   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   2476   int FI = INT_MAX;
   2477   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2478     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2479     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2480       return false;
   2481     MachineInstr *Def = MRI->getVRegDef(VR);
   2482     if (!Def)
   2483       return false;
   2484     if (!Flags.isByVal()) {
   2485       if (!TII->isLoadFromStackSlot(Def, FI))
   2486         return false;
   2487     } else {
   2488       unsigned Opcode = Def->getOpcode();
   2489       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
   2490           Def->getOperand(1).isFI()) {
   2491         FI = Def->getOperand(1).getIndex();
   2492         Bytes = Flags.getByValSize();
   2493       } else
   2494         return false;
   2495     }
   2496   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2497     if (Flags.isByVal())
   2498       // ByVal argument is passed in as a pointer but it's now being
   2499       // dereferenced. e.g.
   2500       // define @foo(%struct.X* %A) {
   2501       //   tail call @bar(%struct.X* byval %A)
   2502       // }
   2503       return false;
   2504     SDValue Ptr = Ld->getBasePtr();
   2505     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2506     if (!FINode)
   2507       return false;
   2508     FI = FINode->getIndex();
   2509   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
   2510     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
   2511     FI = FINode->getIndex();
   2512     Bytes = Flags.getByValSize();
   2513   } else
   2514     return false;
   2515 
   2516   assert(FI != INT_MAX);
   2517   if (!MFI->isFixedObjectIndex(FI))
   2518     return false;
   2519   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   2520 }
   2521 
   2522 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2523 /// for tail call optimization. Targets which want to do tail call
   2524 /// optimization should implement this function.
   2525 bool
   2526 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2527                                                      CallingConv::ID CalleeCC,
   2528                                                      bool isVarArg,
   2529                                                      bool isCalleeStructRet,
   2530                                                      bool isCallerStructRet,
   2531                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2532                                     const SmallVectorImpl<SDValue> &OutVals,
   2533                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2534                                                      SelectionDAG& DAG) const {
   2535   if (!IsTailCallConvention(CalleeCC) &&
   2536       CalleeCC != CallingConv::C)
   2537     return false;
   2538 
   2539   // If -tailcallopt is specified, make fastcc functions tail-callable.
   2540   const MachineFunction &MF = DAG.getMachineFunction();
   2541   const Function *CallerF = DAG.getMachineFunction().getFunction();
   2542   CallingConv::ID CallerCC = CallerF->getCallingConv();
   2543   bool CCMatch = CallerCC == CalleeCC;
   2544 
   2545   if (GuaranteedTailCallOpt) {
   2546     if (IsTailCallConvention(CalleeCC) && CCMatch)
   2547       return true;
   2548     return false;
   2549   }
   2550 
   2551   // Look for obvious safe cases to perform tail call optimization that do not
   2552   // require ABI changes. This is what gcc calls sibcall.
   2553 
   2554   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
   2555   // emit a special epilogue.
   2556   if (RegInfo->needsStackRealignment(MF))
   2557     return false;
   2558 
   2559   // Also avoid sibcall optimization if either caller or callee uses struct
   2560   // return semantics.
   2561   if (isCalleeStructRet || isCallerStructRet)
   2562     return false;
   2563 
   2564   // An stdcall caller is expected to clean up its arguments; the callee
   2565   // isn't going to do that.
   2566   if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
   2567     return false;
   2568 
   2569   // Do not sibcall optimize vararg calls unless all arguments are passed via
   2570   // registers.
   2571   if (isVarArg && !Outs.empty()) {
   2572 
   2573     // Optimizing for varargs on Win64 is unlikely to be safe without
   2574     // additional testing.
   2575     if (Subtarget->isTargetWin64())
   2576       return false;
   2577 
   2578     SmallVector<CCValAssign, 16> ArgLocs;
   2579     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2580 		   getTargetMachine(), ArgLocs, *DAG.getContext());
   2581 
   2582     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2583     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
   2584       if (!ArgLocs[i].isRegLoc())
   2585         return false;
   2586   }
   2587 
   2588   // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
   2589   // Therefore if it's not used by the call it is not safe to optimize this into
   2590   // a sibcall.
   2591   bool Unused = false;
   2592   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   2593     if (!Ins[i].Used) {
   2594       Unused = true;
   2595       break;
   2596     }
   2597   }
   2598   if (Unused) {
   2599     SmallVector<CCValAssign, 16> RVLocs;
   2600     CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
   2601 		   getTargetMachine(), RVLocs, *DAG.getContext());
   2602     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   2603     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   2604       CCValAssign &VA = RVLocs[i];
   2605       if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
   2606         return false;
   2607     }
   2608   }
   2609 
   2610   // If the calling conventions do not match, then we'd better make sure the
   2611   // results are returned in the same way as what the caller expects.
   2612   if (!CCMatch) {
   2613     SmallVector<CCValAssign, 16> RVLocs1;
   2614     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   2615 		    getTargetMachine(), RVLocs1, *DAG.getContext());
   2616     CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
   2617 
   2618     SmallVector<CCValAssign, 16> RVLocs2;
   2619     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   2620 		    getTargetMachine(), RVLocs2, *DAG.getContext());
   2621     CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
   2622 
   2623     if (RVLocs1.size() != RVLocs2.size())
   2624       return false;
   2625     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   2626       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   2627         return false;
   2628       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   2629         return false;
   2630       if (RVLocs1[i].isRegLoc()) {
   2631         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   2632           return false;
   2633       } else {
   2634         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   2635           return false;
   2636       }
   2637     }
   2638   }
   2639 
   2640   // If the callee takes no arguments then go on to check the results of the
   2641   // call.
   2642   if (!Outs.empty()) {
   2643     // Check if stack adjustment is needed. For now, do not do this if any
   2644     // argument is passed on the stack.
   2645     SmallVector<CCValAssign, 16> ArgLocs;
   2646     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2647 		   getTargetMachine(), ArgLocs, *DAG.getContext());
   2648 
   2649     // Allocate shadow area for Win64
   2650     if (Subtarget->isTargetWin64()) {
   2651       CCInfo.AllocateStack(32, 8);
   2652     }
   2653 
   2654     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2655     if (CCInfo.getNextStackOffset()) {
   2656       MachineFunction &MF = DAG.getMachineFunction();
   2657       if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
   2658         return false;
   2659 
   2660       // Check if the arguments are already laid out in the right way as
   2661       // the caller's fixed stack objects.
   2662       MachineFrameInfo *MFI = MF.getFrameInfo();
   2663       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2664       const X86InstrInfo *TII =
   2665         ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
   2666       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2667         CCValAssign &VA = ArgLocs[i];
   2668         SDValue Arg = OutVals[i];
   2669         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2670         if (VA.getLocInfo() == CCValAssign::Indirect)
   2671           return false;
   2672         if (!VA.isRegLoc()) {
   2673           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2674                                    MFI, MRI, TII))
   2675             return false;
   2676         }
   2677       }
   2678     }
   2679 
   2680     // If the tailcall address may be in a register, then make sure it's
   2681     // possible to register allocate for it. In 32-bit, the call address can
   2682     // only target EAX, EDX, or ECX since the tail call must be scheduled after
   2683     // callee-saved registers are restored. These happen to be the same
   2684     // registers used to pass 'inreg' arguments so watch out for those.
   2685     if (!Subtarget->is64Bit() &&
   2686         !isa<GlobalAddressSDNode>(Callee) &&
   2687         !isa<ExternalSymbolSDNode>(Callee)) {
   2688       unsigned NumInRegs = 0;
   2689       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2690         CCValAssign &VA = ArgLocs[i];
   2691         if (!VA.isRegLoc())
   2692           continue;
   2693         unsigned Reg = VA.getLocReg();
   2694         switch (Reg) {
   2695         default: break;
   2696         case X86::EAX: case X86::EDX: case X86::ECX:
   2697           if (++NumInRegs == 3)
   2698             return false;
   2699           break;
   2700         }
   2701       }
   2702     }
   2703   }
   2704 
   2705   return true;
   2706 }
   2707 
   2708 FastISel *
   2709 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
   2710   return X86::createFastISel(funcInfo);
   2711 }
   2712 
   2713 
   2714 //===----------------------------------------------------------------------===//
   2715 //                           Other Lowering Hooks
   2716 //===----------------------------------------------------------------------===//
   2717 
   2718 static bool MayFoldLoad(SDValue Op) {
   2719   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
   2720 }
   2721 
   2722 static bool MayFoldIntoStore(SDValue Op) {
   2723   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
   2724 }
   2725 
   2726 static bool isTargetShuffle(unsigned Opcode) {
   2727   switch(Opcode) {
   2728   default: return false;
   2729   case X86ISD::PSHUFD:
   2730   case X86ISD::PSHUFHW:
   2731   case X86ISD::PSHUFLW:
   2732   case X86ISD::SHUFPD:
   2733   case X86ISD::PALIGN:
   2734   case X86ISD::SHUFPS:
   2735   case X86ISD::MOVLHPS:
   2736   case X86ISD::MOVLHPD:
   2737   case X86ISD::MOVHLPS:
   2738   case X86ISD::MOVLPS:
   2739   case X86ISD::MOVLPD:
   2740   case X86ISD::MOVSHDUP:
   2741   case X86ISD::MOVSLDUP:
   2742   case X86ISD::MOVDDUP:
   2743   case X86ISD::MOVSS:
   2744   case X86ISD::MOVSD:
   2745   case X86ISD::UNPCKLPS:
   2746   case X86ISD::UNPCKLPD:
   2747   case X86ISD::VUNPCKLPS:
   2748   case X86ISD::VUNPCKLPD:
   2749   case X86ISD::VUNPCKLPSY:
   2750   case X86ISD::VUNPCKLPDY:
   2751   case X86ISD::PUNPCKLWD:
   2752   case X86ISD::PUNPCKLBW:
   2753   case X86ISD::PUNPCKLDQ:
   2754   case X86ISD::PUNPCKLQDQ:
   2755   case X86ISD::UNPCKHPS:
   2756   case X86ISD::UNPCKHPD:
   2757   case X86ISD::PUNPCKHWD:
   2758   case X86ISD::PUNPCKHBW:
   2759   case X86ISD::PUNPCKHDQ:
   2760   case X86ISD::PUNPCKHQDQ:
   2761     return true;
   2762   }
   2763   return false;
   2764 }
   2765 
   2766 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2767                                                SDValue V1, SelectionDAG &DAG) {
   2768   switch(Opc) {
   2769   default: llvm_unreachable("Unknown x86 shuffle node");
   2770   case X86ISD::MOVSHDUP:
   2771   case X86ISD::MOVSLDUP:
   2772   case X86ISD::MOVDDUP:
   2773     return DAG.getNode(Opc, dl, VT, V1);
   2774   }
   2775 
   2776   return SDValue();
   2777 }
   2778 
   2779 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2780                           SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
   2781   switch(Opc) {
   2782   default: llvm_unreachable("Unknown x86 shuffle node");
   2783   case X86ISD::PSHUFD:
   2784   case X86ISD::PSHUFHW:
   2785   case X86ISD::PSHUFLW:
   2786     return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
   2787   }
   2788 
   2789   return SDValue();
   2790 }
   2791 
   2792 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2793                SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
   2794   switch(Opc) {
   2795   default: llvm_unreachable("Unknown x86 shuffle node");
   2796   case X86ISD::PALIGN:
   2797   case X86ISD::SHUFPD:
   2798   case X86ISD::SHUFPS:
   2799     return DAG.getNode(Opc, dl, VT, V1, V2,
   2800                        DAG.getConstant(TargetMask, MVT::i8));
   2801   }
   2802   return SDValue();
   2803 }
   2804 
   2805 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2806                                     SDValue V1, SDValue V2, SelectionDAG &DAG) {
   2807   switch(Opc) {
   2808   default: llvm_unreachable("Unknown x86 shuffle node");
   2809   case X86ISD::MOVLHPS:
   2810   case X86ISD::MOVLHPD:
   2811   case X86ISD::MOVHLPS:
   2812   case X86ISD::MOVLPS:
   2813   case X86ISD::MOVLPD:
   2814   case X86ISD::MOVSS:
   2815   case X86ISD::MOVSD:
   2816   case X86ISD::UNPCKLPS:
   2817   case X86ISD::UNPCKLPD:
   2818   case X86ISD::VUNPCKLPS:
   2819   case X86ISD::VUNPCKLPD:
   2820   case X86ISD::VUNPCKLPSY:
   2821   case X86ISD::VUNPCKLPDY:
   2822   case X86ISD::PUNPCKLWD:
   2823   case X86ISD::PUNPCKLBW:
   2824   case X86ISD::PUNPCKLDQ:
   2825   case X86ISD::PUNPCKLQDQ:
   2826   case X86ISD::UNPCKHPS:
   2827   case X86ISD::UNPCKHPD:
   2828   case X86ISD::PUNPCKHWD:
   2829   case X86ISD::PUNPCKHBW:
   2830   case X86ISD::PUNPCKHDQ:
   2831   case X86ISD::PUNPCKHQDQ:
   2832     return DAG.getNode(Opc, dl, VT, V1, V2);
   2833   }
   2834   return SDValue();
   2835 }
   2836 
   2837 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   2838   MachineFunction &MF = DAG.getMachineFunction();
   2839   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   2840   int ReturnAddrIndex = FuncInfo->getRAIndex();
   2841 
   2842   if (ReturnAddrIndex == 0) {
   2843     // Set up a frame object for the return address.
   2844     uint64_t SlotSize = TD->getPointerSize();
   2845     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
   2846                                                            false);
   2847     FuncInfo->setRAIndex(ReturnAddrIndex);
   2848   }
   2849 
   2850   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
   2851 }
   2852 
   2853 
   2854 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
   2855                                        bool hasSymbolicDisplacement) {
   2856   // Offset should fit into 32 bit immediate field.
   2857   if (!isInt<32>(Offset))
   2858     return false;
   2859 
   2860   // If we don't have a symbolic displacement - we don't have any extra
   2861   // restrictions.
   2862   if (!hasSymbolicDisplacement)
   2863     return true;
   2864 
   2865   // FIXME: Some tweaks might be needed for medium code model.
   2866   if (M != CodeModel::Small && M != CodeModel::Kernel)
   2867     return false;
   2868 
   2869   // For small code model we assume that latest object is 16MB before end of 31
   2870   // bits boundary. We may also accept pretty large negative constants knowing
   2871   // that all objects are in the positive half of address space.
   2872   if (M == CodeModel::Small && Offset < 16*1024*1024)
   2873     return true;
   2874 
   2875   // For kernel code model we know that all object resist in the negative half
   2876   // of 32bits address space. We may not accept negative offsets, since they may
   2877   // be just off and we may accept pretty large positive ones.
   2878   if (M == CodeModel::Kernel && Offset > 0)
   2879     return true;
   2880 
   2881   return false;
   2882 }
   2883 
   2884 /// isCalleePop - Determines whether the callee is required to pop its
   2885 /// own arguments. Callee pop is necessary to support tail calls.
   2886 bool X86::isCalleePop(CallingConv::ID CallingConv,
   2887                       bool is64Bit, bool IsVarArg, bool TailCallOpt) {
   2888   if (IsVarArg)
   2889     return false;
   2890 
   2891   switch (CallingConv) {
   2892   default:
   2893     return false;
   2894   case CallingConv::X86_StdCall:
   2895     return !is64Bit;
   2896   case CallingConv::X86_FastCall:
   2897     return !is64Bit;
   2898   case CallingConv::X86_ThisCall:
   2899     return !is64Bit;
   2900   case CallingConv::Fast:
   2901     return TailCallOpt;
   2902   case CallingConv::GHC:
   2903     return TailCallOpt;
   2904   }
   2905 }
   2906 
   2907 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
   2908 /// specific condition code, returning the condition code and the LHS/RHS of the
   2909 /// comparison to make.
   2910 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
   2911                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
   2912   if (!isFP) {
   2913     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   2914       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
   2915         // X > -1   -> X == 0, jump !sign.
   2916         RHS = DAG.getConstant(0, RHS.getValueType());
   2917         return X86::COND_NS;
   2918       } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
   2919         // X < 0   -> X == 0, jump on sign.
   2920         return X86::COND_S;
   2921       } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
   2922         // X < 1   -> X <= 0
   2923         RHS = DAG.getConstant(0, RHS.getValueType());
   2924         return X86::COND_LE;
   2925       }
   2926     }
   2927 
   2928     switch (SetCCOpcode) {
   2929     default: llvm_unreachable("Invalid integer condition!");
   2930     case ISD::SETEQ:  return X86::COND_E;
   2931     case ISD::SETGT:  return X86::COND_G;
   2932     case ISD::SETGE:  return X86::COND_GE;
   2933     case ISD::SETLT:  return X86::COND_L;
   2934     case ISD::SETLE:  return X86::COND_LE;
   2935     case ISD::SETNE:  return X86::COND_NE;
   2936     case ISD::SETULT: return X86::COND_B;
   2937     case ISD::SETUGT: return X86::COND_A;
   2938     case ISD::SETULE: return X86::COND_BE;
   2939     case ISD::SETUGE: return X86::COND_AE;
   2940     }
   2941   }
   2942 
   2943   // First determine if it is required or is profitable to flip the operands.
   2944 
   2945   // If LHS is a foldable load, but RHS is not, flip the condition.
   2946   if (ISD::isNON_EXTLoad(LHS.getNode()) &&
   2947       !ISD::isNON_EXTLoad(RHS.getNode())) {
   2948     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
   2949     std::swap(LHS, RHS);
   2950   }
   2951 
   2952   switch (SetCCOpcode) {
   2953   default: break;
   2954   case ISD::SETOLT:
   2955   case ISD::SETOLE:
   2956   case ISD::SETUGT:
   2957   case ISD::SETUGE:
   2958     std::swap(LHS, RHS);
   2959     break;
   2960   }
   2961 
   2962   // On a floating point condition, the flags are set as follows:
   2963   // ZF  PF  CF   op
   2964   //  0 | 0 | 0 | X > Y
   2965   //  0 | 0 | 1 | X < Y
   2966   //  1 | 0 | 0 | X == Y
   2967   //  1 | 1 | 1 | unordered
   2968   switch (SetCCOpcode) {
   2969   default: llvm_unreachable("Condcode should be pre-legalized away");
   2970   case ISD::SETUEQ:
   2971   case ISD::SETEQ:   return X86::COND_E;
   2972   case ISD::SETOLT:              // flipped
   2973   case ISD::SETOGT:
   2974   case ISD::SETGT:   return X86::COND_A;
   2975   case ISD::SETOLE:              // flipped
   2976   case ISD::SETOGE:
   2977   case ISD::SETGE:   return X86::COND_AE;
   2978   case ISD::SETUGT:              // flipped
   2979   case ISD::SETULT:
   2980   case ISD::SETLT:   return X86::COND_B;
   2981   case ISD::SETUGE:              // flipped
   2982   case ISD::SETULE:
   2983   case ISD::SETLE:   return X86::COND_BE;
   2984   case ISD::SETONE:
   2985   case ISD::SETNE:   return X86::COND_NE;
   2986   case ISD::SETUO:   return X86::COND_P;
   2987   case ISD::SETO:    return X86::COND_NP;
   2988   case ISD::SETOEQ:
   2989   case ISD::SETUNE:  return X86::COND_INVALID;
   2990   }
   2991 }
   2992 
   2993 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
   2994 /// code. Current x86 isa includes the following FP cmov instructions:
   2995 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
   2996 static bool hasFPCMov(unsigned X86CC) {
   2997   switch (X86CC) {
   2998   default:
   2999     return false;
   3000   case X86::COND_B:
   3001   case X86::COND_BE:
   3002   case X86::COND_E:
   3003   case X86::COND_P:
   3004   case X86::COND_A:
   3005   case X86::COND_AE:
   3006   case X86::COND_NE:
   3007   case X86::COND_NP:
   3008     return true;
   3009   }
   3010 }
   3011 
   3012 /// isFPImmLegal - Returns true if the target can instruction select the
   3013 /// specified FP immediate natively. If false, the legalizer will
   3014 /// materialize the FP immediate as a load from a constant pool.
   3015 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3016   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
   3017     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
   3018       return true;
   3019   }
   3020   return false;
   3021 }
   3022 
   3023 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
   3024 /// the specified range (L, H].
   3025 static bool isUndefOrInRange(int Val, int Low, int Hi) {
   3026   return (Val < 0) || (Val >= Low && Val < Hi);
   3027 }
   3028 
   3029 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
   3030 /// specified value.
   3031 static bool isUndefOrEqual(int Val, int CmpVal) {
   3032   if (Val < 0 || Val == CmpVal)
   3033     return true;
   3034   return false;
   3035 }
   3036 
   3037 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
   3038 /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
   3039 /// the second operand.
   3040 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3041   if (VT == MVT::v4f32 || VT == MVT::v4i32 )
   3042     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
   3043   if (VT == MVT::v2f64 || VT == MVT::v2i64)
   3044     return (Mask[0] < 2 && Mask[1] < 2);
   3045   return false;
   3046 }
   3047 
   3048 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
   3049   SmallVector<int, 8> M;
   3050   N->getMask(M);
   3051   return ::isPSHUFDMask(M, N->getValueType(0));
   3052 }
   3053 
   3054 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
   3055 /// is suitable for input to PSHUFHW.
   3056 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3057   if (VT != MVT::v8i16)
   3058     return false;
   3059 
   3060   // Lower quadword copied in order or undef.
   3061   for (int i = 0; i != 4; ++i)
   3062     if (Mask[i] >= 0 && Mask[i] != i)
   3063       return false;
   3064 
   3065   // Upper quadword shuffled.
   3066   for (int i = 4; i != 8; ++i)
   3067     if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
   3068       return false;
   3069 
   3070   return true;
   3071 }
   3072 
   3073 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
   3074   SmallVector<int, 8> M;
   3075   N->getMask(M);
   3076   return ::isPSHUFHWMask(M, N->getValueType(0));
   3077 }
   3078 
   3079 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
   3080 /// is suitable for input to PSHUFLW.
   3081 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3082   if (VT != MVT::v8i16)
   3083     return false;
   3084 
   3085   // Upper quadword copied in order.
   3086   for (int i = 4; i != 8; ++i)
   3087     if (Mask[i] >= 0 && Mask[i] != i)
   3088       return false;
   3089 
   3090   // Lower quadword shuffled.
   3091   for (int i = 0; i != 4; ++i)
   3092     if (Mask[i] >= 4)
   3093       return false;
   3094 
   3095   return true;
   3096 }
   3097 
   3098 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
   3099   SmallVector<int, 8> M;
   3100   N->getMask(M);
   3101   return ::isPSHUFLWMask(M, N->getValueType(0));
   3102 }
   3103 
   3104 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
   3105 /// is suitable for input to PALIGNR.
   3106 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3107                           bool hasSSSE3) {
   3108   int i, e = VT.getVectorNumElements();
   3109 
   3110   // Do not handle v2i64 / v2f64 shuffles with palignr.
   3111   if (e < 4 || !hasSSSE3)
   3112     return false;
   3113 
   3114   for (i = 0; i != e; ++i)
   3115     if (Mask[i] >= 0)
   3116       break;
   3117 
   3118   // All undef, not a palignr.
   3119   if (i == e)
   3120     return false;
   3121 
   3122   // Determine if it's ok to perform a palignr with only the LHS, since we
   3123   // don't have access to the actual shuffle elements to see if RHS is undef.
   3124   bool Unary = Mask[i] < (int)e;
   3125   bool NeedsUnary = false;
   3126 
   3127   int s = Mask[i] - i;
   3128 
   3129   // Check the rest of the elements to see if they are consecutive.
   3130   for (++i; i != e; ++i) {
   3131     int m = Mask[i];
   3132     if (m < 0)
   3133       continue;
   3134 
   3135     Unary = Unary && (m < (int)e);
   3136     NeedsUnary = NeedsUnary || (m < s);
   3137 
   3138     if (NeedsUnary && !Unary)
   3139       return false;
   3140     if (Unary && m != ((s+i) & (e-1)))
   3141       return false;
   3142     if (!Unary && m != (s+i))
   3143       return false;
   3144   }
   3145   return true;
   3146 }
   3147 
   3148 bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
   3149   SmallVector<int, 8> M;
   3150   N->getMask(M);
   3151   return ::isPALIGNRMask(M, N->getValueType(0), true);
   3152 }
   3153 
   3154 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
   3155 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
   3156 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3157   int NumElems = VT.getVectorNumElements();
   3158   if (NumElems != 2 && NumElems != 4)
   3159     return false;
   3160 
   3161   int Half = NumElems / 2;
   3162   for (int i = 0; i < Half; ++i)
   3163     if (!isUndefOrInRange(Mask[i], 0, NumElems))
   3164       return false;
   3165   for (int i = Half; i < NumElems; ++i)
   3166     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
   3167       return false;
   3168 
   3169   return true;
   3170 }
   3171 
   3172 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
   3173   SmallVector<int, 8> M;
   3174   N->getMask(M);
   3175   return ::isSHUFPMask(M, N->getValueType(0));
   3176 }
   3177 
   3178 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
   3179 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
   3180 /// half elements to come from vector 1 (which would equal the dest.) and
   3181 /// the upper half to come from vector 2.
   3182 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3183   int NumElems = VT.getVectorNumElements();
   3184 
   3185   if (NumElems != 2 && NumElems != 4)
   3186     return false;
   3187 
   3188   int Half = NumElems / 2;
   3189   for (int i = 0; i < Half; ++i)
   3190     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
   3191       return false;
   3192   for (int i = Half; i < NumElems; ++i)
   3193     if (!isUndefOrInRange(Mask[i], 0, NumElems))
   3194       return false;
   3195   return true;
   3196 }
   3197 
   3198 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
   3199   SmallVector<int, 8> M;
   3200   N->getMask(M);
   3201   return isCommutedSHUFPMask(M, N->getValueType(0));
   3202 }
   3203 
   3204 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3205 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
   3206 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
   3207   if (N->getValueType(0).getVectorNumElements() != 4)
   3208     return false;
   3209 
   3210   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
   3211   return isUndefOrEqual(N->getMaskElt(0), 6) &&
   3212          isUndefOrEqual(N->getMaskElt(1), 7) &&
   3213          isUndefOrEqual(N->getMaskElt(2), 2) &&
   3214          isUndefOrEqual(N->getMaskElt(3), 3);
   3215 }
   3216 
   3217 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
   3218 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
   3219 /// <2, 3, 2, 3>
   3220 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
   3221   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3222 
   3223   if (NumElems != 4)
   3224     return false;
   3225 
   3226   return isUndefOrEqual(N->getMaskElt(0), 2) &&
   3227   isUndefOrEqual(N->getMaskElt(1), 3) &&
   3228   isUndefOrEqual(N->getMaskElt(2), 2) &&
   3229   isUndefOrEqual(N->getMaskElt(3), 3);
   3230 }
   3231 
   3232 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
   3233 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
   3234 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
   3235   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3236 
   3237   if (NumElems != 2 && NumElems != 4)
   3238     return false;
   3239 
   3240   for (unsigned i = 0; i < NumElems/2; ++i)
   3241     if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
   3242       return false;
   3243 
   3244   for (unsigned i = NumElems/2; i < NumElems; ++i)
   3245     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3246       return false;
   3247 
   3248   return true;
   3249 }
   3250 
   3251 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3252 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
   3253 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
   3254   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3255 
   3256   if ((NumElems != 2 && NumElems != 4)
   3257       || N->getValueType(0).getSizeInBits() > 128)
   3258     return false;
   3259 
   3260   for (unsigned i = 0; i < NumElems/2; ++i)
   3261     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3262       return false;
   3263 
   3264   for (unsigned i = 0; i < NumElems/2; ++i)
   3265     if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
   3266       return false;
   3267 
   3268   return true;
   3269 }
   3270 
   3271 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
   3272 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
   3273 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3274                          bool V2IsSplat = false) {
   3275   int NumElts = VT.getVectorNumElements();
   3276   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
   3277     return false;
   3278 
   3279   // Handle vector lengths > 128 bits.  Define a "section" as a set of
   3280   // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
   3281   // sections.
   3282   unsigned NumSections = VT.getSizeInBits() / 128;
   3283   if (NumSections == 0 ) NumSections = 1;  // Handle MMX
   3284   unsigned NumSectionElts = NumElts / NumSections;
   3285 
   3286   unsigned Start = 0;
   3287   unsigned End = NumSectionElts;
   3288   for (unsigned s = 0; s < NumSections; ++s) {
   3289     for (unsigned i = Start, j = s * NumSectionElts;
   3290          i != End;
   3291          i += 2, ++j) {
   3292       int BitI  = Mask[i];
   3293       int BitI1 = Mask[i+1];
   3294       if (!isUndefOrEqual(BitI, j))
   3295         return false;
   3296       if (V2IsSplat) {
   3297         if (!isUndefOrEqual(BitI1, NumElts))
   3298           return false;
   3299       } else {
   3300         if (!isUndefOrEqual(BitI1, j + NumElts))
   3301           return false;
   3302       }
   3303     }
   3304     // Process the next 128 bits.
   3305     Start += NumSectionElts;
   3306     End += NumSectionElts;
   3307   }
   3308 
   3309   return true;
   3310 }
   3311 
   3312 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
   3313   SmallVector<int, 8> M;
   3314   N->getMask(M);
   3315   return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
   3316 }
   3317 
   3318 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
   3319 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
   3320 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3321                          bool V2IsSplat = false) {
   3322   int NumElts = VT.getVectorNumElements();
   3323   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
   3324     return false;
   3325 
   3326   for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
   3327     int BitI  = Mask[i];
   3328     int BitI1 = Mask[i+1];
   3329     if (!isUndefOrEqual(BitI, j + NumElts/2))
   3330       return false;
   3331     if (V2IsSplat) {
   3332       if (isUndefOrEqual(BitI1, NumElts))
   3333         return false;
   3334     } else {
   3335       if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
   3336         return false;
   3337     }
   3338   }
   3339   return true;
   3340 }
   3341 
   3342 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
   3343   SmallVector<int, 8> M;
   3344   N->getMask(M);
   3345   return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
   3346 }
   3347 
   3348 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
   3349 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
   3350 /// <0, 0, 1, 1>
   3351 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3352   int NumElems = VT.getVectorNumElements();
   3353   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
   3354     return false;
   3355 
   3356   // Handle vector lengths > 128 bits.  Define a "section" as a set of
   3357   // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
   3358   // sections.
   3359   unsigned NumSections = VT.getSizeInBits() / 128;
   3360   if (NumSections == 0 ) NumSections = 1;  // Handle MMX
   3361   unsigned NumSectionElts = NumElems / NumSections;
   3362 
   3363   for (unsigned s = 0; s < NumSections; ++s) {
   3364     for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
   3365          i != NumSectionElts * (s + 1);
   3366          i += 2, ++j) {
   3367       int BitI  = Mask[i];
   3368       int BitI1 = Mask[i+1];
   3369 
   3370       if (!isUndefOrEqual(BitI, j))
   3371         return false;
   3372       if (!isUndefOrEqual(BitI1, j))
   3373         return false;
   3374     }
   3375   }
   3376 
   3377   return true;
   3378 }
   3379 
   3380 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
   3381   SmallVector<int, 8> M;
   3382   N->getMask(M);
   3383   return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
   3384 }
   3385 
   3386 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
   3387 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
   3388 /// <2, 2, 3, 3>
   3389 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3390   int NumElems = VT.getVectorNumElements();
   3391   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
   3392     return false;
   3393 
   3394   for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
   3395     int BitI  = Mask[i];
   3396     int BitI1 = Mask[i+1];
   3397     if (!isUndefOrEqual(BitI, j))
   3398       return false;
   3399     if (!isUndefOrEqual(BitI1, j))
   3400       return false;
   3401   }
   3402   return true;
   3403 }
   3404 
   3405 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
   3406   SmallVector<int, 8> M;
   3407   N->getMask(M);
   3408   return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
   3409 }
   3410 
   3411 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
   3412 /// specifies a shuffle of elements that is suitable for input to MOVSS,
   3413 /// MOVSD, and MOVD, i.e. setting the lowest element.
   3414 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3415   if (VT.getVectorElementType().getSizeInBits() < 32)
   3416     return false;
   3417 
   3418   int NumElts = VT.getVectorNumElements();
   3419 
   3420   if (!isUndefOrEqual(Mask[0], NumElts))
   3421     return false;
   3422 
   3423   for (int i = 1; i < NumElts; ++i)
   3424     if (!isUndefOrEqual(Mask[i], i))
   3425       return false;
   3426 
   3427   return true;
   3428 }
   3429 
   3430 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
   3431   SmallVector<int, 8> M;
   3432   N->getMask(M);
   3433   return ::isMOVLMask(M, N->getValueType(0));
   3434 }
   3435 
   3436 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
   3437 /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
   3438 /// element of vector 2 and the other elements to come from vector 1 in order.
   3439 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3440                                bool V2IsSplat = false, bool V2IsUndef = false) {
   3441   int NumOps = VT.getVectorNumElements();
   3442   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
   3443     return false;
   3444 
   3445   if (!isUndefOrEqual(Mask[0], 0))
   3446     return false;
   3447 
   3448   for (int i = 1; i < NumOps; ++i)
   3449     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
   3450           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
   3451           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
   3452       return false;
   3453 
   3454   return true;
   3455 }
   3456 
   3457 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
   3458                            bool V2IsUndef = false) {
   3459   SmallVector<int, 8> M;
   3460   N->getMask(M);
   3461   return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
   3462 }
   3463 
   3464 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3465 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
   3466 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
   3467   if (N->getValueType(0).getVectorNumElements() != 4)
   3468     return false;
   3469 
   3470   // Expect 1, 1, 3, 3
   3471   for (unsigned i = 0; i < 2; ++i) {
   3472     int Elt = N->getMaskElt(i);
   3473     if (Elt >= 0 && Elt != 1)
   3474       return false;
   3475   }
   3476 
   3477   bool HasHi = false;
   3478   for (unsigned i = 2; i < 4; ++i) {
   3479     int Elt = N->getMaskElt(i);
   3480     if (Elt >= 0 && Elt != 3)
   3481       return false;
   3482     if (Elt == 3)
   3483       HasHi = true;
   3484   }
   3485   // Don't use movshdup if it can be done with a shufps.
   3486   // FIXME: verify that matching u, u, 3, 3 is what we want.
   3487   return HasHi;
   3488 }
   3489 
   3490 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3491 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
   3492 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
   3493   if (N->getValueType(0).getVectorNumElements() != 4)
   3494     return false;
   3495 
   3496   // Expect 0, 0, 2, 2
   3497   for (unsigned i = 0; i < 2; ++i)
   3498     if (N->getMaskElt(i) > 0)
   3499       return false;
   3500 
   3501   bool HasHi = false;
   3502   for (unsigned i = 2; i < 4; ++i) {
   3503     int Elt = N->getMaskElt(i);
   3504     if (Elt >= 0 && Elt != 2)
   3505       return false;
   3506     if (Elt == 2)
   3507       HasHi = true;
   3508   }
   3509   // Don't use movsldup if it can be done with a shufps.
   3510   return HasHi;
   3511 }
   3512 
   3513 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3514 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
   3515 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
   3516   int e = N->getValueType(0).getVectorNumElements() / 2;
   3517 
   3518   for (int i = 0; i < e; ++i)
   3519     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3520       return false;
   3521   for (int i = 0; i < e; ++i)
   3522     if (!isUndefOrEqual(N->getMaskElt(e+i), i))
   3523       return false;
   3524   return true;
   3525 }
   3526 
   3527 /// isVEXTRACTF128Index - Return true if the specified
   3528 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
   3529 /// suitable for input to VEXTRACTF128.
   3530 bool X86::isVEXTRACTF128Index(SDNode *N) {
   3531   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   3532     return false;
   3533 
   3534   // The index should be aligned on a 128-bit boundary.
   3535   uint64_t Index =
   3536     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   3537 
   3538   unsigned VL = N->getValueType(0).getVectorNumElements();
   3539   unsigned VBits = N->getValueType(0).getSizeInBits();
   3540   unsigned ElSize = VBits / VL;
   3541   bool Result = (Index * ElSize) % 128 == 0;
   3542 
   3543   return Result;
   3544 }
   3545 
   3546 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
   3547 /// operand specifies a subvector insert that is suitable for input to
   3548 /// VINSERTF128.
   3549 bool X86::isVINSERTF128Index(SDNode *N) {
   3550   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   3551     return false;
   3552 
   3553   // The index should be aligned on a 128-bit boundary.
   3554   uint64_t Index =
   3555     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   3556 
   3557   unsigned VL = N->getValueType(0).getVectorNumElements();
   3558   unsigned VBits = N->getValueType(0).getSizeInBits();
   3559   unsigned ElSize = VBits / VL;
   3560   bool Result = (Index * ElSize) % 128 == 0;
   3561 
   3562   return Result;
   3563 }
   3564 
   3565 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
   3566 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
   3567 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
   3568   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3569   int NumOperands = SVOp->getValueType(0).getVectorNumElements();
   3570 
   3571   unsigned Shift = (NumOperands == 4) ? 2 : 1;
   3572   unsigned Mask = 0;
   3573   for (int i = 0; i < NumOperands; ++i) {
   3574     int Val = SVOp->getMaskElt(NumOperands-i-1);
   3575     if (Val < 0) Val = 0;
   3576     if (Val >= NumOperands) Val -= NumOperands;
   3577     Mask |= Val;
   3578     if (i != NumOperands - 1)
   3579       Mask <<= Shift;
   3580   }
   3581   return Mask;
   3582 }
   3583 
   3584 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
   3585 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
   3586 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
   3587   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3588   unsigned Mask = 0;
   3589   // 8 nodes, but we only care about the last 4.
   3590   for (unsigned i = 7; i >= 4; --i) {
   3591     int Val = SVOp->getMaskElt(i);
   3592     if (Val >= 0)
   3593       Mask |= (Val - 4);
   3594     if (i != 4)
   3595       Mask <<= 2;
   3596   }
   3597   return Mask;
   3598 }
   3599 
   3600 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
   3601 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
   3602 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
   3603   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3604   unsigned Mask = 0;
   3605   // 8 nodes, but we only care about the first 4.
   3606   for (int i = 3; i >= 0; --i) {
   3607     int Val = SVOp->getMaskElt(i);
   3608     if (Val >= 0)
   3609       Mask |= Val;
   3610     if (i != 0)
   3611       Mask <<= 2;
   3612   }
   3613   return Mask;
   3614 }
   3615 
   3616 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
   3617 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
   3618 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
   3619   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3620   EVT VVT = N->getValueType(0);
   3621   unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
   3622   int Val = 0;
   3623 
   3624   unsigned i, e;
   3625   for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
   3626     Val = SVOp->getMaskElt(i);
   3627     if (Val >= 0)
   3628       break;
   3629   }
   3630   return (Val - i) * EltSize;
   3631 }
   3632 
   3633 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
   3634 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
   3635 /// instructions.
   3636 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
   3637   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   3638     llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
   3639 
   3640   uint64_t Index =
   3641     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   3642 
   3643   EVT VecVT = N->getOperand(0).getValueType();
   3644   EVT ElVT = VecVT.getVectorElementType();
   3645 
   3646   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   3647 
   3648   return Index / NumElemsPerChunk;
   3649 }
   3650 
   3651 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
   3652 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
   3653 /// instructions.
   3654 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
   3655   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   3656     llvm_unreachable("Illegal insert subvector for VINSERTF128");
   3657 
   3658   uint64_t Index =
   3659     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   3660 
   3661   EVT VecVT = N->getValueType(0);
   3662   EVT ElVT = VecVT.getVectorElementType();
   3663 
   3664   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   3665 
   3666   return Index / NumElemsPerChunk;
   3667 }
   3668 
   3669 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
   3670 /// constant +0.0.
   3671 bool X86::isZeroNode(SDValue Elt) {
   3672   return ((isa<ConstantSDNode>(Elt) &&
   3673            cast<ConstantSDNode>(Elt)->isNullValue()) ||
   3674           (isa<ConstantFPSDNode>(Elt) &&
   3675            cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
   3676 }
   3677 
   3678 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
   3679 /// their permute mask.
   3680 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
   3681                                     SelectionDAG &DAG) {
   3682   EVT VT = SVOp->getValueType(0);
   3683   unsigned NumElems = VT.getVectorNumElements();
   3684   SmallVector<int, 8> MaskVec;
   3685 
   3686   for (unsigned i = 0; i != NumElems; ++i) {
   3687     int idx = SVOp->getMaskElt(i);
   3688     if (idx < 0)
   3689       MaskVec.push_back(idx);
   3690     else if (idx < (int)NumElems)
   3691       MaskVec.push_back(idx + NumElems);
   3692     else
   3693       MaskVec.push_back(idx - NumElems);
   3694   }
   3695   return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
   3696                               SVOp->getOperand(0), &MaskVec[0]);
   3697 }
   3698 
   3699 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
   3700 /// the two vector operands have swapped position.
   3701 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
   3702   unsigned NumElems = VT.getVectorNumElements();
   3703   for (unsigned i = 0; i != NumElems; ++i) {
   3704     int idx = Mask[i];
   3705     if (idx < 0)
   3706       continue;
   3707     else if (idx < (int)NumElems)
   3708       Mask[i] = idx + NumElems;
   3709     else
   3710       Mask[i] = idx - NumElems;
   3711   }
   3712 }
   3713 
   3714 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
   3715 /// match movhlps. The lower half elements should come from upper half of
   3716 /// V1 (and in order), and the upper half elements should come from the upper
   3717 /// half of V2 (and in order).
   3718 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
   3719   if (Op->getValueType(0).getVectorNumElements() != 4)
   3720     return false;
   3721   for (unsigned i = 0, e = 2; i != e; ++i)
   3722     if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
   3723       return false;
   3724   for (unsigned i = 2; i != 4; ++i)
   3725     if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
   3726       return false;
   3727   return true;
   3728 }
   3729 
   3730 /// isScalarLoadToVector - Returns true if the node is a scalar load that
   3731 /// is promoted to a vector. It also returns the LoadSDNode by reference if
   3732 /// required.
   3733 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
   3734   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
   3735     return false;
   3736   N = N->getOperand(0).getNode();
   3737   if (!ISD::isNON_EXTLoad(N))
   3738     return false;
   3739   if (LD)
   3740     *LD = cast<LoadSDNode>(N);
   3741   return true;
   3742 }
   3743 
   3744 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
   3745 /// match movlp{s|d}. The lower half elements should come from lower half of
   3746 /// V1 (and in order), and the upper half elements should come from the upper
   3747 /// half of V2 (and in order). And since V1 will become the source of the
   3748 /// MOVLP, it must be either a vector load or a scalar load to vector.
   3749 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
   3750                                ShuffleVectorSDNode *Op) {
   3751   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
   3752     return false;
   3753   // Is V2 is a vector load, don't do this transformation. We will try to use
   3754   // load folding shufps op.
   3755   if (ISD::isNON_EXTLoad(V2))
   3756     return false;
   3757 
   3758   unsigned NumElems = Op->getValueType(0).getVectorNumElements();
   3759 
   3760   if (NumElems != 2 && NumElems != 4)
   3761     return false;
   3762   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   3763     if (!isUndefOrEqual(Op->getMaskElt(i), i))
   3764       return false;
   3765   for (unsigned i = NumElems/2; i != NumElems; ++i)
   3766     if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
   3767       return false;
   3768   return true;
   3769 }
   3770 
   3771 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
   3772 /// all the same.
   3773 static bool isSplatVector(SDNode *N) {
   3774   if (N->getOpcode() != ISD::BUILD_VECTOR)
   3775     return false;
   3776 
   3777   SDValue SplatValue = N->getOperand(0);
   3778   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
   3779     if (N->getOperand(i) != SplatValue)
   3780       return false;
   3781   return true;
   3782 }
   3783 
   3784 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
   3785 /// to an zero vector.
   3786 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
   3787 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
   3788   SDValue V1 = N->getOperand(0);
   3789   SDValue V2 = N->getOperand(1);
   3790   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3791   for (unsigned i = 0; i != NumElems; ++i) {
   3792     int Idx = N->getMaskElt(i);
   3793     if (Idx >= (int)NumElems) {
   3794       unsigned Opc = V2.getOpcode();
   3795       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
   3796         continue;
   3797       if (Opc != ISD::BUILD_VECTOR ||
   3798           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
   3799         return false;
   3800     } else if (Idx >= 0) {
   3801       unsigned Opc = V1.getOpcode();
   3802       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
   3803         continue;
   3804       if (Opc != ISD::BUILD_VECTOR ||
   3805           !X86::isZeroNode(V1.getOperand(Idx)))
   3806         return false;
   3807     }
   3808   }
   3809   return true;
   3810 }
   3811 
   3812 /// getZeroVector - Returns a vector of specified type with all zero elements.
   3813 ///
   3814 static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
   3815                              DebugLoc dl) {
   3816   assert(VT.isVector() && "Expected a vector type");
   3817 
   3818   // Always build SSE zero vectors as <4 x i32> bitcasted
   3819   // to their dest type. This ensures they get CSE'd.
   3820   SDValue Vec;
   3821   if (VT.getSizeInBits() == 128) {  // SSE
   3822     if (HasSSE2) {  // SSE2
   3823       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
   3824       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   3825     } else { // SSE1
   3826       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   3827       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
   3828     }
   3829   } else if (VT.getSizeInBits() == 256) { // AVX
   3830     // 256-bit logic and arithmetic instructions in AVX are
   3831     // all floating-point, no support for integer ops. Default
   3832     // to emitting fp zeroed vectors then.
   3833     SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   3834     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   3835     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
   3836   }
   3837   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   3838 }
   3839 
   3840 /// getOnesVector - Returns a vector of specified type with all bits set.
   3841 /// Always build ones vectors as <4 x i32> or <8 x i32> bitcasted to
   3842 /// their original type, ensuring they get CSE'd.
   3843 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   3844   assert(VT.isVector() && "Expected a vector type");
   3845   assert((VT.is128BitVector() || VT.is256BitVector())
   3846          && "Expected a 128-bit or 256-bit vector type");
   3847 
   3848   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
   3849 
   3850   SDValue Vec;
   3851   if (VT.is256BitVector()) {
   3852     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   3853     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
   3854   } else
   3855     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   3856   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   3857 }
   3858 
   3859 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
   3860 /// that point to V2 points to its first element.
   3861 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   3862   EVT VT = SVOp->getValueType(0);
   3863   unsigned NumElems = VT.getVectorNumElements();
   3864 
   3865   bool Changed = false;
   3866   SmallVector<int, 8> MaskVec;
   3867   SVOp->getMask(MaskVec);
   3868 
   3869   for (unsigned i = 0; i != NumElems; ++i) {
   3870     if (MaskVec[i] > (int)NumElems) {
   3871       MaskVec[i] = NumElems;
   3872       Changed = true;
   3873     }
   3874   }
   3875   if (Changed)
   3876     return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
   3877                                 SVOp->getOperand(1), &MaskVec[0]);
   3878   return SDValue(SVOp, 0);
   3879 }
   3880 
   3881 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
   3882 /// operation of specified width.
   3883 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   3884                        SDValue V2) {
   3885   unsigned NumElems = VT.getVectorNumElements();
   3886   SmallVector<int, 8> Mask;
   3887   Mask.push_back(NumElems);
   3888   for (unsigned i = 1; i != NumElems; ++i)
   3889     Mask.push_back(i);
   3890   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   3891 }
   3892 
   3893 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
   3894 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   3895                           SDValue V2) {
   3896   unsigned NumElems = VT.getVectorNumElements();
   3897   SmallVector<int, 8> Mask;
   3898   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
   3899     Mask.push_back(i);
   3900     Mask.push_back(i + NumElems);
   3901   }
   3902   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   3903 }
   3904 
   3905 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
   3906 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   3907                           SDValue V2) {
   3908   unsigned NumElems = VT.getVectorNumElements();
   3909   unsigned Half = NumElems/2;
   3910   SmallVector<int, 8> Mask;
   3911   for (unsigned i = 0; i != Half; ++i) {
   3912     Mask.push_back(i + Half);
   3913     Mask.push_back(i + NumElems + Half);
   3914   }
   3915   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   3916 }
   3917 
   3918 /// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
   3919 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
   3920   EVT PVT = MVT::v4f32;
   3921   EVT VT = SV->getValueType(0);
   3922   DebugLoc dl = SV->getDebugLoc();
   3923   SDValue V1 = SV->getOperand(0);
   3924   int NumElems = VT.getVectorNumElements();
   3925   int EltNo = SV->getSplatIndex();
   3926 
   3927   // unpack elements to the correct location
   3928   while (NumElems > 4) {
   3929     if (EltNo < NumElems/2) {
   3930       V1 = getUnpackl(DAG, dl, VT, V1, V1);
   3931     } else {
   3932       V1 = getUnpackh(DAG, dl, VT, V1, V1);
   3933       EltNo -= NumElems/2;
   3934     }
   3935     NumElems >>= 1;
   3936   }
   3937 
   3938   // Perform the splat.
   3939   int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
   3940   V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
   3941   V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
   3942   return DAG.getNode(ISD::BITCAST, dl, VT, V1);
   3943 }
   3944 
   3945 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
   3946 /// vector of zero or undef vector.  This produces a shuffle where the low
   3947 /// element of V2 is swizzled into the zero/undef vector, landing at element
   3948 /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
   3949 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
   3950                                              bool isZero, bool HasSSE2,
   3951                                              SelectionDAG &DAG) {
   3952   EVT VT = V2.getValueType();
   3953   SDValue V1 = isZero
   3954     ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
   3955   unsigned NumElems = VT.getVectorNumElements();
   3956   SmallVector<int, 16> MaskVec;
   3957   for (unsigned i = 0; i != NumElems; ++i)
   3958     // If this is the insertion idx, put the low elt of V2 here.
   3959     MaskVec.push_back(i == Idx ? NumElems : i);
   3960   return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
   3961 }
   3962 
   3963 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
   3964 /// element of the result of the vector shuffle.
   3965 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
   3966                                    unsigned Depth) {
   3967   if (Depth == 6)
   3968     return SDValue();  // Limit search depth.
   3969 
   3970   SDValue V = SDValue(N, 0);
   3971   EVT VT = V.getValueType();
   3972   unsigned Opcode = V.getOpcode();
   3973 
   3974   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
   3975   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
   3976     Index = SV->getMaskElt(Index);
   3977 
   3978     if (Index < 0)
   3979       return DAG.getUNDEF(VT.getVectorElementType());
   3980 
   3981     int NumElems = VT.getVectorNumElements();
   3982     SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
   3983     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
   3984   }
   3985 
   3986   // Recurse into target specific vector shuffles to find scalars.
   3987   if (isTargetShuffle(Opcode)) {
   3988     int NumElems = VT.getVectorNumElements();
   3989     SmallVector<unsigned, 16> ShuffleMask;
   3990     SDValue ImmN;
   3991 
   3992     switch(Opcode) {
   3993     case X86ISD::SHUFPS:
   3994     case X86ISD::SHUFPD:
   3995       ImmN = N->getOperand(N->getNumOperands()-1);
   3996       DecodeSHUFPSMask(NumElems,
   3997                        cast<ConstantSDNode>(ImmN)->getZExtValue(),
   3998                        ShuffleMask);
   3999       break;
   4000     case X86ISD::PUNPCKHBW:
   4001     case X86ISD::PUNPCKHWD:
   4002     case X86ISD::PUNPCKHDQ:
   4003     case X86ISD::PUNPCKHQDQ:
   4004       DecodePUNPCKHMask(NumElems, ShuffleMask);
   4005       break;
   4006     case X86ISD::UNPCKHPS:
   4007     case X86ISD::UNPCKHPD:
   4008       DecodeUNPCKHPMask(NumElems, ShuffleMask);
   4009       break;
   4010     case X86ISD::PUNPCKLBW:
   4011     case X86ISD::PUNPCKLWD:
   4012     case X86ISD::PUNPCKLDQ:
   4013     case X86ISD::PUNPCKLQDQ:
   4014       DecodePUNPCKLMask(VT, ShuffleMask);
   4015       break;
   4016     case X86ISD::UNPCKLPS:
   4017     case X86ISD::UNPCKLPD:
   4018     case X86ISD::VUNPCKLPS:
   4019     case X86ISD::VUNPCKLPD:
   4020     case X86ISD::VUNPCKLPSY:
   4021     case X86ISD::VUNPCKLPDY:
   4022       DecodeUNPCKLPMask(VT, ShuffleMask);
   4023       break;
   4024     case X86ISD::MOVHLPS:
   4025       DecodeMOVHLPSMask(NumElems, ShuffleMask);
   4026       break;
   4027     case X86ISD::MOVLHPS:
   4028       DecodeMOVLHPSMask(NumElems, ShuffleMask);
   4029       break;
   4030     case X86ISD::PSHUFD:
   4031       ImmN = N->getOperand(N->getNumOperands()-1);
   4032       DecodePSHUFMask(NumElems,
   4033                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4034                       ShuffleMask);
   4035       break;
   4036     case X86ISD::PSHUFHW:
   4037       ImmN = N->getOperand(N->getNumOperands()-1);
   4038       DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4039                         ShuffleMask);
   4040       break;
   4041     case X86ISD::PSHUFLW:
   4042       ImmN = N->getOperand(N->getNumOperands()-1);
   4043       DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4044                         ShuffleMask);
   4045       break;
   4046     case X86ISD::MOVSS:
   4047     case X86ISD::MOVSD: {
   4048       // The index 0 always comes from the first element of the second source,
   4049       // this is why MOVSS and MOVSD are used in the first place. The other
   4050       // elements come from the other positions of the first source vector.
   4051       unsigned OpNum = (Index == 0) ? 1 : 0;
   4052       return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
   4053                                  Depth+1);
   4054     }
   4055     default:
   4056       assert("not implemented for target shuffle node");
   4057       return SDValue();
   4058     }
   4059 
   4060     Index = ShuffleMask[Index];
   4061     if (Index < 0)
   4062       return DAG.getUNDEF(VT.getVectorElementType());
   4063 
   4064     SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
   4065     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
   4066                                Depth+1);
   4067   }
   4068 
   4069   // Actual nodes that may contain scalar elements
   4070   if (Opcode == ISD::BITCAST) {
   4071     V = V.getOperand(0);
   4072     EVT SrcVT = V.getValueType();
   4073     unsigned NumElems = VT.getVectorNumElements();
   4074 
   4075     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
   4076       return SDValue();
   4077   }
   4078 
   4079   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   4080     return (Index == 0) ? V.getOperand(0)
   4081                           : DAG.getUNDEF(VT.getVectorElementType());
   4082 
   4083   if (V.getOpcode() == ISD::BUILD_VECTOR)
   4084     return V.getOperand(Index);
   4085 
   4086   return SDValue();
   4087 }
   4088 
   4089 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
   4090 /// shuffle operation which come from a consecutively from a zero. The
   4091 /// search can start in two different directions, from left or right.
   4092 static
   4093 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
   4094                                   bool ZerosFromLeft, SelectionDAG &DAG) {
   4095   int i = 0;
   4096 
   4097   while (i < NumElems) {
   4098     unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
   4099     SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
   4100     if (!(Elt.getNode() &&
   4101          (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
   4102       break;
   4103     ++i;
   4104   }
   4105 
   4106   return i;
   4107 }
   4108 
   4109 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
   4110 /// MaskE correspond consecutively to elements from one of the vector operands,
   4111 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
   4112 static
   4113 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
   4114                               int OpIdx, int NumElems, unsigned &OpNum) {
   4115   bool SeenV1 = false;
   4116   bool SeenV2 = false;
   4117 
   4118   for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
   4119     int Idx = SVOp->getMaskElt(i);
   4120     // Ignore undef indicies
   4121     if (Idx < 0)
   4122       continue;
   4123 
   4124     if (Idx < NumElems)
   4125       SeenV1 = true;
   4126     else
   4127       SeenV2 = true;
   4128 
   4129     // Only accept consecutive elements from the same vector
   4130     if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
   4131       return false;
   4132   }
   4133 
   4134   OpNum = SeenV1 ? 0 : 1;
   4135   return true;
   4136 }
   4137 
   4138 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
   4139 /// logical left shift of a vector.
   4140 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4141                                bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4142   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4143   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4144               false /* check zeros from right */, DAG);
   4145   unsigned OpSrc;
   4146 
   4147   if (!NumZeros)
   4148     return false;
   4149 
   4150   // Considering the elements in the mask that are not consecutive zeros,
   4151   // check if they consecutively come from only one of the source vectors.
   4152   //
   4153   //               V1 = {X, A, B, C}     0
   4154   //                         \  \  \    /
   4155   //   vector_shuffle V1, V2 <1, 2, 3, X>
   4156   //
   4157   if (!isShuffleMaskConsecutive(SVOp,
   4158             0,                   // Mask Start Index
   4159             NumElems-NumZeros-1, // Mask End Index
   4160             NumZeros,            // Where to start looking in the src vector
   4161             NumElems,            // Number of elements in vector
   4162             OpSrc))              // Which source operand ?
   4163     return false;
   4164 
   4165   isLeft = false;
   4166   ShAmt = NumZeros;
   4167   ShVal = SVOp->getOperand(OpSrc);
   4168   return true;
   4169 }
   4170 
   4171 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
   4172 /// logical left shift of a vector.
   4173 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4174                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4175   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4176   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4177               true /* check zeros from left */, DAG);
   4178   unsigned OpSrc;
   4179 
   4180   if (!NumZeros)
   4181     return false;
   4182 
   4183   // Considering the elements in the mask that are not consecutive zeros,
   4184   // check if they consecutively come from only one of the source vectors.
   4185   //
   4186   //                           0    { A, B, X, X } = V2
   4187   //                          / \    /  /
   4188   //   vector_shuffle V1, V2 <X, X, 4, 5>
   4189   //
   4190   if (!isShuffleMaskConsecutive(SVOp,
   4191             NumZeros,     // Mask Start Index
   4192             NumElems-1,   // Mask End Index
   4193             0,            // Where to start looking in the src vector
   4194             NumElems,     // Number of elements in vector
   4195             OpSrc))       // Which source operand ?
   4196     return false;
   4197 
   4198   isLeft = true;
   4199   ShAmt = NumZeros;
   4200   ShVal = SVOp->getOperand(OpSrc);
   4201   return true;
   4202 }
   4203 
   4204 /// isVectorShift - Returns true if the shuffle can be implemented as a
   4205 /// logical left or right shift of a vector.
   4206 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4207                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4208   if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
   4209       isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
   4210     return true;
   4211 
   4212   return false;
   4213 }
   4214 
   4215 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
   4216 ///
   4217 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
   4218                                        unsigned NumNonZero, unsigned NumZero,
   4219                                        SelectionDAG &DAG,
   4220                                        const TargetLowering &TLI) {
   4221   if (NumNonZero > 8)
   4222     return SDValue();
   4223 
   4224   DebugLoc dl = Op.getDebugLoc();
   4225   SDValue V(0, 0);
   4226   bool First = true;
   4227   for (unsigned i = 0; i < 16; ++i) {
   4228     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
   4229     if (ThisIsNonZero && First) {
   4230       if (NumZero)
   4231         V = getZeroVector(MVT::v8i16, true, DAG, dl);
   4232       else
   4233         V = DAG.getUNDEF(MVT::v8i16);
   4234       First = false;
   4235     }
   4236 
   4237     if ((i & 1) != 0) {
   4238       SDValue ThisElt(0, 0), LastElt(0, 0);
   4239       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
   4240       if (LastIsNonZero) {
   4241         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
   4242                               MVT::i16, Op.getOperand(i-1));
   4243       }
   4244       if (ThisIsNonZero) {
   4245         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
   4246         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
   4247                               ThisElt, DAG.getConstant(8, MVT::i8));
   4248         if (LastIsNonZero)
   4249           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
   4250       } else
   4251         ThisElt = LastElt;
   4252 
   4253       if (ThisElt.getNode())
   4254         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
   4255                         DAG.getIntPtrConstant(i/2));
   4256     }
   4257   }
   4258 
   4259   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
   4260 }
   4261 
   4262 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
   4263 ///
   4264 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
   4265                                      unsigned NumNonZero, unsigned NumZero,
   4266                                      SelectionDAG &DAG,
   4267                                      const TargetLowering &TLI) {
   4268   if (NumNonZero > 4)
   4269     return SDValue();
   4270 
   4271   DebugLoc dl = Op.getDebugLoc();
   4272   SDValue V(0, 0);
   4273   bool First = true;
   4274   for (unsigned i = 0; i < 8; ++i) {
   4275     bool isNonZero = (NonZeros & (1 << i)) != 0;
   4276     if (isNonZero) {
   4277       if (First) {
   4278         if (NumZero)
   4279           V = getZeroVector(MVT::v8i16, true, DAG, dl);
   4280         else
   4281           V = DAG.getUNDEF(MVT::v8i16);
   4282         First = false;
   4283       }
   4284       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
   4285                       MVT::v8i16, V, Op.getOperand(i),
   4286                       DAG.getIntPtrConstant(i));
   4287     }
   4288   }
   4289 
   4290   return V;
   4291 }
   4292 
   4293 /// getVShift - Return a vector logical shift node.
   4294 ///
   4295 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
   4296                          unsigned NumBits, SelectionDAG &DAG,
   4297                          const TargetLowering &TLI, DebugLoc dl) {
   4298   EVT ShVT = MVT::v2i64;
   4299   unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
   4300   SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
   4301   return DAG.getNode(ISD::BITCAST, dl, VT,
   4302                      DAG.getNode(Opc, dl, ShVT, SrcOp,
   4303                              DAG.getConstant(NumBits,
   4304                                   TLI.getShiftAmountTy(SrcOp.getValueType()))));
   4305 }
   4306 
   4307 SDValue
   4308 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
   4309                                           SelectionDAG &DAG) const {
   4310 
   4311   // Check if the scalar load can be widened into a vector load. And if
   4312   // the address is "base + cst" see if the cst can be "absorbed" into
   4313   // the shuffle mask.
   4314   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
   4315     SDValue Ptr = LD->getBasePtr();
   4316     if (!ISD::isNormalLoad(LD) || LD->isVolatile())
   4317       return SDValue();
   4318     EVT PVT = LD->getValueType(0);
   4319     if (PVT != MVT::i32 && PVT != MVT::f32)
   4320       return SDValue();
   4321 
   4322     int FI = -1;
   4323     int64_t Offset = 0;
   4324     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
   4325       FI = FINode->getIndex();
   4326       Offset = 0;
   4327     } else if (DAG.isBaseWithConstantOffset(Ptr) &&
   4328                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
   4329       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   4330       Offset = Ptr.getConstantOperandVal(1);
   4331       Ptr = Ptr.getOperand(0);
   4332     } else {
   4333       return SDValue();
   4334     }
   4335 
   4336     SDValue Chain = LD->getChain();
   4337     // Make sure the stack object alignment is at least 16.
   4338     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4339     if (DAG.InferPtrAlignment(Ptr) < 16) {
   4340       if (MFI->isFixedObjectIndex(FI)) {
   4341         // Can't change the alignment. FIXME: It's possible to compute
   4342         // the exact stack offset and reference FI + adjust offset instead.
   4343         // If someone *really* cares about this. That's the way to implement it.
   4344         return SDValue();
   4345       } else {
   4346         MFI->setObjectAlignment(FI, 16);
   4347       }
   4348     }
   4349 
   4350     // (Offset % 16) must be multiple of 4. Then address is then
   4351     // Ptr + (Offset & ~15).
   4352     if (Offset < 0)
   4353       return SDValue();
   4354     if ((Offset % 16) & 3)
   4355       return SDValue();
   4356     int64_t StartOffset = Offset & ~15;
   4357     if (StartOffset)
   4358       Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
   4359                         Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
   4360 
   4361     int EltNo = (Offset - StartOffset) >> 2;
   4362     int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
   4363     EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
   4364     SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
   4365                              LD->getPointerInfo().getWithOffset(StartOffset),
   4366                              false, false, 0);
   4367     // Canonicalize it to a v4i32 shuffle.
   4368     V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
   4369     return DAG.getNode(ISD::BITCAST, dl, VT,
   4370                        DAG.getVectorShuffle(MVT::v4i32, dl, V1,
   4371                                             DAG.getUNDEF(MVT::v4i32),&Mask[0]));
   4372   }
   4373 
   4374   return SDValue();
   4375 }
   4376 
   4377 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
   4378 /// vector of type 'VT', see if the elements can be replaced by a single large
   4379 /// load which has the same value as a build_vector whose operands are 'elts'.
   4380 ///
   4381 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
   4382 ///
   4383 /// FIXME: we'd also like to handle the case where the last elements are zero
   4384 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
   4385 /// There's even a handy isZeroNode for that purpose.
   4386 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
   4387                                         DebugLoc &DL, SelectionDAG &DAG) {
   4388   EVT EltVT = VT.getVectorElementType();
   4389   unsigned NumElems = Elts.size();
   4390 
   4391   LoadSDNode *LDBase = NULL;
   4392   unsigned LastLoadedElt = -1U;
   4393 
   4394   // For each element in the initializer, see if we've found a load or an undef.
   4395   // If we don't find an initial load element, or later load elements are
   4396   // non-consecutive, bail out.
   4397   for (unsigned i = 0; i < NumElems; ++i) {
   4398     SDValue Elt = Elts[i];
   4399 
   4400     if (!Elt.getNode() ||
   4401         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
   4402       return SDValue();
   4403     if (!LDBase) {
   4404       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
   4405         return SDValue();
   4406       LDBase = cast<LoadSDNode>(Elt.getNode());
   4407       LastLoadedElt = i;
   4408       continue;
   4409     }
   4410     if (Elt.getOpcode() == ISD::UNDEF)
   4411       continue;
   4412 
   4413     LoadSDNode *LD = cast<LoadSDNode>(Elt);
   4414     if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
   4415       return SDValue();
   4416     LastLoadedElt = i;
   4417   }
   4418 
   4419   // If we have found an entire vector of loads and undefs, then return a large
   4420   // load of the entire vector width starting at the base pointer.  If we found
   4421   // consecutive loads for the low half, generate a vzext_load node.
   4422   if (LastLoadedElt == NumElems - 1) {
   4423     if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
   4424       return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   4425                          LDBase->getPointerInfo(),
   4426                          LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
   4427     return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   4428                        LDBase->getPointerInfo(),
   4429                        LDBase->isVolatile(), LDBase->isNonTemporal(),
   4430                        LDBase->getAlignment());
   4431   } else if (NumElems == 4 && LastLoadedElt == 1) {
   4432     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
   4433     SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
   4434     SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
   4435                                               Ops, 2, MVT::i32,
   4436                                               LDBase->getMemOperand());
   4437     return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
   4438   }
   4439   return SDValue();
   4440 }
   4441 
   4442 SDValue
   4443 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   4444   DebugLoc dl = Op.getDebugLoc();
   4445 
   4446   EVT VT = Op.getValueType();
   4447   EVT ExtVT = VT.getVectorElementType();
   4448 
   4449   unsigned NumElems = Op.getNumOperands();
   4450 
   4451   // For AVX-length vectors, build the individual 128-bit pieces and
   4452   // use shuffles to put them in place.
   4453   if (VT.getSizeInBits() > 256 &&
   4454       Subtarget->hasAVX() &&
   4455       !ISD::isBuildVectorAllZeros(Op.getNode())) {
   4456     SmallVector<SDValue, 8> V;
   4457     V.resize(NumElems);
   4458     for (unsigned i = 0; i < NumElems; ++i) {
   4459       V[i] = Op.getOperand(i);
   4460     }
   4461 
   4462     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
   4463 
   4464     // Build the lower subvector.
   4465     SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
   4466     // Build the upper subvector.
   4467     SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
   4468                                 NumElems/2);
   4469 
   4470     return ConcatVectors(Lower, Upper, DAG);
   4471   }
   4472 
   4473   // All zero's:
   4474   //  - pxor (SSE2), xorps (SSE1), vpxor (128 AVX), xorp[s|d] (256 AVX)
   4475   // All one's:
   4476   //  - pcmpeqd (SSE2 and 128 AVX), fallback to constant pools (256 AVX)
   4477   if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
   4478       ISD::isBuildVectorAllOnes(Op.getNode())) {
   4479     // Canonicalize this to <4 x i32> or <8 x 32> (SSE) to
   4480     // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
   4481     // eliminated on x86-32 hosts.
   4482     if (Op.getValueType() == MVT::v4i32 ||
   4483         Op.getValueType() == MVT::v8i32)
   4484       return Op;
   4485 
   4486     if (ISD::isBuildVectorAllOnes(Op.getNode()))
   4487       return getOnesVector(Op.getValueType(), DAG, dl);
   4488     return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
   4489   }
   4490 
   4491   unsigned EVTBits = ExtVT.getSizeInBits();
   4492 
   4493   unsigned NumZero  = 0;
   4494   unsigned NumNonZero = 0;
   4495   unsigned NonZeros = 0;
   4496   bool IsAllConstants = true;
   4497   SmallSet<SDValue, 8> Values;
   4498   for (unsigned i = 0; i < NumElems; ++i) {
   4499     SDValue Elt = Op.getOperand(i);
   4500     if (Elt.getOpcode() == ISD::UNDEF)
   4501       continue;
   4502     Values.insert(Elt);
   4503     if (Elt.getOpcode() != ISD::Constant &&
   4504         Elt.getOpcode() != ISD::ConstantFP)
   4505       IsAllConstants = false;
   4506     if (X86::isZeroNode(Elt))
   4507       NumZero++;
   4508     else {
   4509       NonZeros |= (1 << i);
   4510       NumNonZero++;
   4511     }
   4512   }
   4513 
   4514   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
   4515   if (NumNonZero == 0)
   4516     return DAG.getUNDEF(VT);
   4517 
   4518   // Special case for single non-zero, non-undef, element.
   4519   if (NumNonZero == 1) {
   4520     unsigned Idx = CountTrailingZeros_32(NonZeros);
   4521     SDValue Item = Op.getOperand(Idx);
   4522 
   4523     // If this is an insertion of an i64 value on x86-32, and if the top bits of
   4524     // the value are obviously zero, truncate the value to i32 and do the
   4525     // insertion that way.  Only do this if the value is non-constant or if the
   4526     // value is a constant being inserted into element 0.  It is cheaper to do
   4527     // a constant pool load than it is to do a movd + shuffle.
   4528     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
   4529         (!IsAllConstants || Idx == 0)) {
   4530       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
   4531         // Handle SSE only.
   4532         assert(VT == MVT::v2i64 && "Expected an SSE value type!");
   4533         EVT VecVT = MVT::v4i32;
   4534         unsigned VecElts = 4;
   4535 
   4536         // Truncate the value (which may itself be a constant) to i32, and
   4537         // convert it to a vector with movd (S2V+shuffle to zero extend).
   4538         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
   4539         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
   4540         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
   4541                                            Subtarget->hasSSE2(), DAG);
   4542 
   4543         // Now we have our 32-bit value zero extended in the low element of
   4544         // a vector.  If Idx != 0, swizzle it into place.
   4545         if (Idx != 0) {
   4546           SmallVector<int, 4> Mask;
   4547           Mask.push_back(Idx);
   4548           for (unsigned i = 1; i != VecElts; ++i)
   4549             Mask.push_back(i);
   4550           Item = DAG.getVectorShuffle(VecVT, dl, Item,
   4551                                       DAG.getUNDEF(Item.getValueType()),
   4552                                       &Mask[0]);
   4553         }
   4554         return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
   4555       }
   4556     }
   4557 
   4558     // If we have a constant or non-constant insertion into the low element of
   4559     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
   4560     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
   4561     // depending on what the source datatype is.
   4562     if (Idx == 0) {
   4563       if (NumZero == 0) {
   4564         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   4565       } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
   4566           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
   4567         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   4568         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
   4569         return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
   4570                                            DAG);
   4571       } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
   4572         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
   4573         assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
   4574         EVT MiddleVT = MVT::v4i32;
   4575         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
   4576         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
   4577                                            Subtarget->hasSSE2(), DAG);
   4578         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
   4579       }
   4580     }
   4581 
   4582     // Is it a vector logical left shift?
   4583     if (NumElems == 2 && Idx == 1 &&
   4584         X86::isZeroNode(Op.getOperand(0)) &&
   4585         !X86::isZeroNode(Op.getOperand(1))) {
   4586       unsigned NumBits = VT.getSizeInBits();
   4587       return getVShift(true, VT,
   4588                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   4589                                    VT, Op.getOperand(1)),
   4590                        NumBits/2, DAG, *this, dl);
   4591     }
   4592 
   4593     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
   4594       return SDValue();
   4595 
   4596     // Otherwise, if this is a vector with i32 or f32 elements, and the element
   4597     // is a non-constant being inserted into an element other than the low one,
   4598     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
   4599     // movd/movss) to move this into the low element, then shuffle it into
   4600     // place.
   4601     if (EVTBits == 32) {
   4602       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   4603 
   4604       // Turn it into a shuffle of zero and zero-extended scalar to vector.
   4605       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
   4606                                          Subtarget->hasSSE2(), DAG);
   4607       SmallVector<int, 8> MaskVec;
   4608       for (unsigned i = 0; i < NumElems; i++)
   4609         MaskVec.push_back(i == Idx ? 0 : 1);
   4610       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
   4611     }
   4612   }
   4613 
   4614   // Splat is obviously ok. Let legalizer expand it to a shuffle.
   4615   if (Values.size() == 1) {
   4616     if (EVTBits == 32) {
   4617       // Instead of a shuffle like this:
   4618       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
   4619       // Check if it's possible to issue this instead.
   4620       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
   4621       unsigned Idx = CountTrailingZeros_32(NonZeros);
   4622       SDValue Item = Op.getOperand(Idx);
   4623       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
   4624         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
   4625     }
   4626     return SDValue();
   4627   }
   4628 
   4629   // A vector full of immediates; various special cases are already
   4630   // handled, so this is best done with a single constant-pool load.
   4631   if (IsAllConstants)
   4632     return SDValue();
   4633 
   4634   // Let legalizer expand 2-wide build_vectors.
   4635   if (EVTBits == 64) {
   4636     if (NumNonZero == 1) {
   4637       // One half is zero or undef.
   4638       unsigned Idx = CountTrailingZeros_32(NonZeros);
   4639       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
   4640                                  Op.getOperand(Idx));
   4641       return getShuffleVectorZeroOrUndef(V2, Idx, true,
   4642                                          Subtarget->hasSSE2(), DAG);
   4643     }
   4644     return SDValue();
   4645   }
   4646 
   4647   // If element VT is < 32 bits, convert it to inserts into a zero vector.
   4648   if (EVTBits == 8 && NumElems == 16) {
   4649     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
   4650                                         *this);
   4651     if (V.getNode()) return V;
   4652   }
   4653 
   4654   if (EVTBits == 16 && NumElems == 8) {
   4655     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
   4656                                       *this);
   4657     if (V.getNode()) return V;
   4658   }
   4659 
   4660   // If element VT is == 32 bits, turn it into a number of shuffles.
   4661   SmallVector<SDValue, 8> V;
   4662   V.resize(NumElems);
   4663   if (NumElems == 4 && NumZero > 0) {
   4664     for (unsigned i = 0; i < 4; ++i) {
   4665       bool isZero = !(NonZeros & (1 << i));
   4666       if (isZero)
   4667         V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
   4668       else
   4669         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   4670     }
   4671 
   4672     for (unsigned i = 0; i < 2; ++i) {
   4673       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
   4674         default: break;
   4675         case 0:
   4676           V[i] = V[i*2];  // Must be a zero vector.
   4677           break;
   4678         case 1:
   4679           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
   4680           break;
   4681         case 2:
   4682           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
   4683           break;
   4684         case 3:
   4685           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
   4686           break;
   4687       }
   4688     }
   4689 
   4690     SmallVector<int, 8> MaskVec;
   4691     bool Reverse = (NonZeros & 0x3) == 2;
   4692     for (unsigned i = 0; i < 2; ++i)
   4693       MaskVec.push_back(Reverse ? 1-i : i);
   4694     Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
   4695     for (unsigned i = 0; i < 2; ++i)
   4696       MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
   4697     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
   4698   }
   4699 
   4700   if (Values.size() > 1 && VT.getSizeInBits() == 128) {
   4701     // Check for a build vector of consecutive loads.
   4702     for (unsigned i = 0; i < NumElems; ++i)
   4703       V[i] = Op.getOperand(i);
   4704 
   4705     // Check for elements which are consecutive loads.
   4706     SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
   4707     if (LD.getNode())
   4708       return LD;
   4709 
   4710     // For SSE 4.1, use insertps to put the high elements into the low element.
   4711     if (getSubtarget()->hasSSE41()) {
   4712       SDValue Result;
   4713       if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
   4714         Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
   4715       else
   4716         Result = DAG.getUNDEF(VT);
   4717 
   4718       for (unsigned i = 1; i < NumElems; ++i) {
   4719         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
   4720         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
   4721                              Op.getOperand(i), DAG.getIntPtrConstant(i));
   4722       }
   4723       return Result;
   4724     }
   4725 
   4726     // Otherwise, expand into a number of unpckl*, start by extending each of
   4727     // our (non-undef) elements to the full vector width with the element in the
   4728     // bottom slot of the vector (which generates no code for SSE).
   4729     for (unsigned i = 0; i < NumElems; ++i) {
   4730       if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
   4731         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   4732       else
   4733         V[i] = DAG.getUNDEF(VT);
   4734     }
   4735 
   4736     // Next, we iteratively mix elements, e.g. for v4f32:
   4737     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
   4738     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
   4739     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
   4740     unsigned EltStride = NumElems >> 1;
   4741     while (EltStride != 0) {
   4742       for (unsigned i = 0; i < EltStride; ++i) {
   4743         // If V[i+EltStride] is undef and this is the first round of mixing,
   4744         // then it is safe to just drop this shuffle: V[i] is already in the
   4745         // right place, the one element (since it's the first round) being
   4746         // inserted as undef can be dropped.  This isn't safe for successive
   4747         // rounds because they will permute elements within both vectors.
   4748         if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
   4749             EltStride == NumElems/2)
   4750           continue;
   4751 
   4752         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
   4753       }
   4754       EltStride >>= 1;
   4755     }
   4756     return V[0];
   4757   }
   4758   return SDValue();
   4759 }
   4760 
   4761 SDValue
   4762 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
   4763   // We support concatenate two MMX registers and place them in a MMX
   4764   // register.  This is better than doing a stack convert.
   4765   DebugLoc dl = Op.getDebugLoc();
   4766   EVT ResVT = Op.getValueType();
   4767   assert(Op.getNumOperands() == 2);
   4768   assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
   4769          ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
   4770   int Mask[2];
   4771   SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
   4772   SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
   4773   InVec = Op.getOperand(1);
   4774   if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   4775     unsigned NumElts = ResVT.getVectorNumElements();
   4776     VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
   4777     VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
   4778                        InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
   4779   } else {
   4780     InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
   4781     SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
   4782     Mask[0] = 0; Mask[1] = 2;
   4783     VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
   4784   }
   4785   return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
   4786 }
   4787 
   4788 // v8i16 shuffles - Prefer shuffles in the following order:
   4789 // 1. [all]   pshuflw, pshufhw, optional move
   4790 // 2. [ssse3] 1 x pshufb
   4791 // 3. [ssse3] 2 x pshufb + 1 x por
   4792 // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
   4793 SDValue
   4794 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
   4795                                             SelectionDAG &DAG) const {
   4796   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   4797   SDValue V1 = SVOp->getOperand(0);
   4798   SDValue V2 = SVOp->getOperand(1);
   4799   DebugLoc dl = SVOp->getDebugLoc();
   4800   SmallVector<int, 8> MaskVals;
   4801 
   4802   // Determine if more than 1 of the words in each of the low and high quadwords
   4803   // of the result come from the same quadword of one of the two inputs.  Undef
   4804   // mask values count as coming from any quadword, for better codegen.
   4805   SmallVector<unsigned, 4> LoQuad(4);
   4806   SmallVector<unsigned, 4> HiQuad(4);
   4807   BitVector InputQuads(4);
   4808   for (unsigned i = 0; i < 8; ++i) {
   4809     SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
   4810     int EltIdx = SVOp->getMaskElt(i);
   4811     MaskVals.push_back(EltIdx);
   4812     if (EltIdx < 0) {
   4813       ++Quad[0];
   4814       ++Quad[1];
   4815       ++Quad[2];
   4816       ++Quad[3];
   4817       continue;
   4818     }
   4819     ++Quad[EltIdx / 4];
   4820     InputQuads.set(EltIdx / 4);
   4821   }
   4822 
   4823   int BestLoQuad = -1;
   4824   unsigned MaxQuad = 1;
   4825   for (unsigned i = 0; i < 4; ++i) {
   4826     if (LoQuad[i] > MaxQuad) {
   4827       BestLoQuad = i;
   4828       MaxQuad = LoQuad[i];
   4829     }
   4830   }
   4831 
   4832   int BestHiQuad = -1;
   4833   MaxQuad = 1;
   4834   for (unsigned i = 0; i < 4; ++i) {
   4835     if (HiQuad[i] > MaxQuad) {
   4836       BestHiQuad = i;
   4837       MaxQuad = HiQuad[i];
   4838     }
   4839   }
   4840 
   4841   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
   4842   // of the two input vectors, shuffle them into one input vector so only a
   4843   // single pshufb instruction is necessary. If There are more than 2 input
   4844   // quads, disable the next transformation since it does not help SSSE3.
   4845   bool V1Used = InputQuads[0] || InputQuads[1];
   4846   bool V2Used = InputQuads[2] || InputQuads[3];
   4847   if (Subtarget->hasSSSE3()) {
   4848     if (InputQuads.count() == 2 && V1Used && V2Used) {
   4849       BestLoQuad = InputQuads.find_first();
   4850       BestHiQuad = InputQuads.find_next(BestLoQuad);
   4851     }
   4852     if (InputQuads.count() > 2) {
   4853       BestLoQuad = -1;
   4854       BestHiQuad = -1;
   4855     }
   4856   }
   4857 
   4858   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
   4859   // the shuffle mask.  If a quad is scored as -1, that means that it contains
   4860   // words from all 4 input quadwords.
   4861   SDValue NewV;
   4862   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
   4863     SmallVector<int, 8> MaskV;
   4864     MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
   4865     MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
   4866     NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
   4867                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
   4868                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
   4869     NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
   4870 
   4871     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
   4872     // source words for the shuffle, to aid later transformations.
   4873     bool AllWordsInNewV = true;
   4874     bool InOrder[2] = { true, true };
   4875     for (unsigned i = 0; i != 8; ++i) {
   4876       int idx = MaskVals[i];
   4877       if (idx != (int)i)
   4878         InOrder[i/4] = false;
   4879       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
   4880         continue;
   4881       AllWordsInNewV = false;
   4882       break;
   4883     }
   4884 
   4885     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
   4886     if (AllWordsInNewV) {
   4887       for (int i = 0; i != 8; ++i) {
   4888         int idx = MaskVals[i];
   4889         if (idx < 0)
   4890           continue;
   4891         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
   4892         if ((idx != i) && idx < 4)
   4893           pshufhw = false;
   4894         if ((idx != i) && idx > 3)
   4895           pshuflw = false;
   4896       }
   4897       V1 = NewV;
   4898       V2Used = false;
   4899       BestLoQuad = 0;
   4900       BestHiQuad = 1;
   4901     }
   4902 
   4903     // If we've eliminated the use of V2, and the new mask is a pshuflw or
   4904     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
   4905     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
   4906       unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
   4907       unsigned TargetMask = 0;
   4908       NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
   4909                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
   4910       TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
   4911                              X86::getShufflePSHUFLWImmediate(NewV.getNode());
   4912       V1 = NewV.getOperand(0);
   4913       return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
   4914     }
   4915   }
   4916 
   4917   // If we have SSSE3, and all words of the result are from 1 input vector,
   4918   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
   4919   // is present, fall back to case 4.
   4920   if (Subtarget->hasSSSE3()) {
   4921     SmallVector<SDValue,16> pshufbMask;
   4922 
   4923     // If we have elements from both input vectors, set the high bit of the
   4924     // shuffle mask element to zero out elements that come from V2 in the V1
   4925     // mask, and elements that come from V1 in the V2 mask, so that the two
   4926     // results can be OR'd together.
   4927     bool TwoInputs = V1Used && V2Used;
   4928     for (unsigned i = 0; i != 8; ++i) {
   4929       int EltIdx = MaskVals[i] * 2;
   4930       if (TwoInputs && (EltIdx >= 16)) {
   4931         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   4932         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   4933         continue;
   4934       }
   4935       pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
   4936       pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
   4937     }
   4938     V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
   4939     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   4940                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   4941                                  MVT::v16i8, &pshufbMask[0], 16));
   4942     if (!TwoInputs)
   4943       return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   4944 
   4945     // Calculate the shuffle mask for the second input, shuffle it, and
   4946     // OR it with the first shuffled input.
   4947     pshufbMask.clear();
   4948     for (unsigned i = 0; i != 8; ++i) {
   4949       int EltIdx = MaskVals[i] * 2;
   4950       if (EltIdx < 16) {
   4951         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   4952         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   4953         continue;
   4954       }
   4955       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
   4956       pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
   4957     }
   4958     V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
   4959     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   4960                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   4961                                  MVT::v16i8, &pshufbMask[0], 16));
   4962     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   4963     return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   4964   }
   4965 
   4966   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
   4967   // and update MaskVals with new element order.
   4968   BitVector InOrder(8);
   4969   if (BestLoQuad >= 0) {
   4970     SmallVector<int, 8> MaskV;
   4971     for (int i = 0; i != 4; ++i) {
   4972       int idx = MaskVals[i];
   4973       if (idx < 0) {
   4974         MaskV.push_back(-1);
   4975         InOrder.set(i);
   4976       } else if ((idx / 4) == BestLoQuad) {
   4977         MaskV.push_back(idx & 3);
   4978         InOrder.set(i);
   4979       } else {
   4980         MaskV.push_back(-1);
   4981       }
   4982     }
   4983     for (unsigned i = 4; i != 8; ++i)
   4984       MaskV.push_back(i);
   4985     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   4986                                 &MaskV[0]);
   4987 
   4988     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
   4989       NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
   4990                                NewV.getOperand(0),
   4991                                X86::getShufflePSHUFLWImmediate(NewV.getNode()),
   4992                                DAG);
   4993   }
   4994 
   4995   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
   4996   // and update MaskVals with the new element order.
   4997   if (BestHiQuad >= 0) {
   4998     SmallVector<int, 8> MaskV;
   4999     for (unsigned i = 0; i != 4; ++i)
   5000       MaskV.push_back(i);
   5001     for (unsigned i = 4; i != 8; ++i) {
   5002       int idx = MaskVals[i];
   5003       if (idx < 0) {
   5004         MaskV.push_back(-1);
   5005         InOrder.set(i);
   5006       } else if ((idx / 4) == BestHiQuad) {
   5007         MaskV.push_back((idx & 3) + 4);
   5008         InOrder.set(i);
   5009       } else {
   5010         MaskV.push_back(-1);
   5011       }
   5012     }
   5013     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   5014                                 &MaskV[0]);
   5015 
   5016     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
   5017       NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
   5018                               NewV.getOperand(0),
   5019                               X86::getShufflePSHUFHWImmediate(NewV.getNode()),
   5020                               DAG);
   5021   }
   5022 
   5023   // In case BestHi & BestLo were both -1, which means each quadword has a word
   5024   // from each of the four input quadwords, calculate the InOrder bitvector now
   5025   // before falling through to the insert/extract cleanup.
   5026   if (BestLoQuad == -1 && BestHiQuad == -1) {
   5027     NewV = V1;
   5028     for (int i = 0; i != 8; ++i)
   5029       if (MaskVals[i] < 0 || MaskVals[i] == i)
   5030         InOrder.set(i);
   5031   }
   5032 
   5033   // The other elements are put in the right place using pextrw and pinsrw.
   5034   for (unsigned i = 0; i != 8; ++i) {
   5035     if (InOrder[i])
   5036       continue;
   5037     int EltIdx = MaskVals[i];
   5038     if (EltIdx < 0)
   5039       continue;
   5040     SDValue ExtOp = (EltIdx < 8)
   5041     ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
   5042                   DAG.getIntPtrConstant(EltIdx))
   5043     : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
   5044                   DAG.getIntPtrConstant(EltIdx - 8));
   5045     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
   5046                        DAG.getIntPtrConstant(i));
   5047   }
   5048   return NewV;
   5049 }
   5050 
   5051 // v16i8 shuffles - Prefer shuffles in the following order:
   5052 // 1. [ssse3] 1 x pshufb
   5053 // 2. [ssse3] 2 x pshufb + 1 x por
   5054 // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
   5055 static
   5056 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
   5057                                  SelectionDAG &DAG,
   5058                                  const X86TargetLowering &TLI) {
   5059   SDValue V1 = SVOp->getOperand(0);
   5060   SDValue V2 = SVOp->getOperand(1);
   5061   DebugLoc dl = SVOp->getDebugLoc();
   5062   SmallVector<int, 16> MaskVals;
   5063   SVOp->getMask(MaskVals);
   5064 
   5065   // If we have SSSE3, case 1 is generated when all result bytes come from
   5066   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
   5067   // present, fall back to case 3.
   5068   // FIXME: kill V2Only once shuffles are canonizalized by getNode.
   5069   bool V1Only = true;
   5070   bool V2Only = true;
   5071   for (unsigned i = 0; i < 16; ++i) {
   5072     int EltIdx = MaskVals[i];
   5073     if (EltIdx < 0)
   5074       continue;
   5075     if (EltIdx < 16)
   5076       V2Only = false;
   5077     else
   5078       V1Only = false;
   5079   }
   5080 
   5081   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
   5082   if (TLI.getSubtarget()->hasSSSE3()) {
   5083     SmallVector<SDValue,16> pshufbMask;
   5084 
   5085     // If all result elements are from one input vector, then only translate
   5086     // undef mask values to 0x80 (zero out result) in the pshufb mask.
   5087     //
   5088     // Otherwise, we have elements from both input vectors, and must zero out
   5089     // elements that come from V2 in the first mask, and V1 in the second mask
   5090     // so that we can OR them together.
   5091     bool TwoInputs = !(V1Only || V2Only);
   5092     for (unsigned i = 0; i != 16; ++i) {
   5093       int EltIdx = MaskVals[i];
   5094       if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
   5095         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5096         continue;
   5097       }
   5098       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   5099     }
   5100     // If all the elements are from V2, assign it to V1 and return after
   5101     // building the first pshufb.
   5102     if (V2Only)
   5103       V1 = V2;
   5104     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   5105                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5106                                  MVT::v16i8, &pshufbMask[0], 16));
   5107     if (!TwoInputs)
   5108       return V1;
   5109 
   5110     // Calculate the shuffle mask for the second input, shuffle it, and
   5111     // OR it with the first shuffled input.
   5112     pshufbMask.clear();
   5113     for (unsigned i = 0; i != 16; ++i) {
   5114       int EltIdx = MaskVals[i];
   5115       if (EltIdx < 16) {
   5116         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5117         continue;
   5118       }
   5119       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
   5120     }
   5121     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   5122                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5123                                  MVT::v16i8, &pshufbMask[0], 16));
   5124     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   5125   }
   5126 
   5127   // No SSSE3 - Calculate in place words and then fix all out of place words
   5128   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
   5129   // the 16 different words that comprise the two doublequadword input vectors.
   5130   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5131   V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
   5132   SDValue NewV = V2Only ? V2 : V1;
   5133   for (int i = 0; i != 8; ++i) {
   5134     int Elt0 = MaskVals[i*2];
   5135     int Elt1 = MaskVals[i*2+1];
   5136 
   5137     // This word of the result is all undef, skip it.
   5138     if (Elt0 < 0 && Elt1 < 0)
   5139       continue;
   5140 
   5141     // This word of the result is already in the correct place, skip it.
   5142     if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
   5143       continue;
   5144     if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
   5145       continue;
   5146 
   5147     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
   5148     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
   5149     SDValue InsElt;
   5150 
   5151     // If Elt0 and Elt1 are defined, are consecutive, and can be load
   5152     // using a single extract together, load it and store it.
   5153     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
   5154       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5155                            DAG.getIntPtrConstant(Elt1 / 2));
   5156       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   5157                         DAG.getIntPtrConstant(i));
   5158       continue;
   5159     }
   5160 
   5161     // If Elt1 is defined, extract it from the appropriate source.  If the
   5162     // source byte is not also odd, shift the extracted word left 8 bits
   5163     // otherwise clear the bottom 8 bits if we need to do an or.
   5164     if (Elt1 >= 0) {
   5165       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5166                            DAG.getIntPtrConstant(Elt1 / 2));
   5167       if ((Elt1 & 1) == 0)
   5168         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
   5169                              DAG.getConstant(8,
   5170                                   TLI.getShiftAmountTy(InsElt.getValueType())));
   5171       else if (Elt0 >= 0)
   5172         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
   5173                              DAG.getConstant(0xFF00, MVT::i16));
   5174     }
   5175     // If Elt0 is defined, extract it from the appropriate source.  If the
   5176     // source byte is not also even, shift the extracted word right 8 bits. If
   5177     // Elt1 was also defined, OR the extracted values together before
   5178     // inserting them in the result.
   5179     if (Elt0 >= 0) {
   5180       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
   5181                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
   5182       if ((Elt0 & 1) != 0)
   5183         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
   5184                               DAG.getConstant(8,
   5185                                  TLI.getShiftAmountTy(InsElt0.getValueType())));
   5186       else if (Elt1 >= 0)
   5187         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
   5188                              DAG.getConstant(0x00FF, MVT::i16));
   5189       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
   5190                          : InsElt0;
   5191     }
   5192     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   5193                        DAG.getIntPtrConstant(i));
   5194   }
   5195   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
   5196 }
   5197 
   5198 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
   5199 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
   5200 /// done when every pair / quad of shuffle mask elements point to elements in
   5201 /// the right sequence. e.g.
   5202 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
   5203 static
   5204 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
   5205                                  SelectionDAG &DAG, DebugLoc dl) {
   5206   EVT VT = SVOp->getValueType(0);
   5207   SDValue V1 = SVOp->getOperand(0);
   5208   SDValue V2 = SVOp->getOperand(1);
   5209   unsigned NumElems = VT.getVectorNumElements();
   5210   unsigned NewWidth = (NumElems == 4) ? 2 : 4;
   5211   EVT NewVT;
   5212   switch (VT.getSimpleVT().SimpleTy) {
   5213   default: assert(false && "Unexpected!");
   5214   case MVT::v4f32: NewVT = MVT::v2f64; break;
   5215   case MVT::v4i32: NewVT = MVT::v2i64; break;
   5216   case MVT::v8i16: NewVT = MVT::v4i32; break;
   5217   case MVT::v16i8: NewVT = MVT::v4i32; break;
   5218   }
   5219 
   5220   int Scale = NumElems / NewWidth;
   5221   SmallVector<int, 8> MaskVec;
   5222   for (unsigned i = 0; i < NumElems; i += Scale) {
   5223     int StartIdx = -1;
   5224     for (int j = 0; j < Scale; ++j) {
   5225       int EltIdx = SVOp->getMaskElt(i+j);
   5226       if (EltIdx < 0)
   5227         continue;
   5228       if (StartIdx == -1)
   5229         StartIdx = EltIdx - (EltIdx % Scale);
   5230       if (EltIdx != StartIdx + j)
   5231         return SDValue();
   5232     }
   5233     if (StartIdx == -1)
   5234       MaskVec.push_back(-1);
   5235     else
   5236       MaskVec.push_back(StartIdx / Scale);
   5237   }
   5238 
   5239   V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
   5240   V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
   5241   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
   5242 }
   5243 
   5244 /// getVZextMovL - Return a zero-extending vector move low node.
   5245 ///
   5246 static SDValue getVZextMovL(EVT VT, EVT OpVT,
   5247                             SDValue SrcOp, SelectionDAG &DAG,
   5248                             const X86Subtarget *Subtarget, DebugLoc dl) {
   5249   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
   5250     LoadSDNode *LD = NULL;
   5251     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
   5252       LD = dyn_cast<LoadSDNode>(SrcOp);
   5253     if (!LD) {
   5254       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
   5255       // instead.
   5256       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
   5257       if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
   5258           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   5259           SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
   5260           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
   5261         // PR2108
   5262         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
   5263         return DAG.getNode(ISD::BITCAST, dl, VT,
   5264                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   5265                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   5266                                                    OpVT,
   5267                                                    SrcOp.getOperand(0)
   5268                                                           .getOperand(0))));
   5269       }
   5270     }
   5271   }
   5272 
   5273   return DAG.getNode(ISD::BITCAST, dl, VT,
   5274                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   5275                                  DAG.getNode(ISD::BITCAST, dl,
   5276                                              OpVT, SrcOp)));
   5277 }
   5278 
   5279 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
   5280 /// shuffles.
   5281 static SDValue
   5282 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   5283   SDValue V1 = SVOp->getOperand(0);
   5284   SDValue V2 = SVOp->getOperand(1);
   5285   DebugLoc dl = SVOp->getDebugLoc();
   5286   EVT VT = SVOp->getValueType(0);
   5287 
   5288   SmallVector<std::pair<int, int>, 8> Locs;
   5289   Locs.resize(4);
   5290   SmallVector<int, 8> Mask1(4U, -1);
   5291   SmallVector<int, 8> PermMask;
   5292   SVOp->getMask(PermMask);
   5293 
   5294   unsigned NumHi = 0;
   5295   unsigned NumLo = 0;
   5296   for (unsigned i = 0; i != 4; ++i) {
   5297     int Idx = PermMask[i];
   5298     if (Idx < 0) {
   5299       Locs[i] = std::make_pair(-1, -1);
   5300     } else {
   5301       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
   5302       if (Idx < 4) {
   5303         Locs[i] = std::make_pair(0, NumLo);
   5304         Mask1[NumLo] = Idx;
   5305         NumLo++;
   5306       } else {
   5307         Locs[i] = std::make_pair(1, NumHi);
   5308         if (2+NumHi < 4)
   5309           Mask1[2+NumHi] = Idx;
   5310         NumHi++;
   5311       }
   5312     }
   5313   }
   5314 
   5315   if (NumLo <= 2 && NumHi <= 2) {
   5316     // If no more than two elements come from either vector. This can be
   5317     // implemented with two shuffles. First shuffle gather the elements.
   5318     // The second shuffle, which takes the first shuffle as both of its
   5319     // vector operands, put the elements into the right order.
   5320     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   5321 
   5322     SmallVector<int, 8> Mask2(4U, -1);
   5323 
   5324     for (unsigned i = 0; i != 4; ++i) {
   5325       if (Locs[i].first == -1)
   5326         continue;
   5327       else {
   5328         unsigned Idx = (i < 2) ? 0 : 4;
   5329         Idx += Locs[i].first * 2 + Locs[i].second;
   5330         Mask2[i] = Idx;
   5331       }
   5332     }
   5333 
   5334     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
   5335   } else if (NumLo == 3 || NumHi == 3) {
   5336     // Otherwise, we must have three elements from one vector, call it X, and
   5337     // one element from the other, call it Y.  First, use a shufps to build an
   5338     // intermediate vector with the one element from Y and the element from X
   5339     // that will be in the same half in the final destination (the indexes don't
   5340     // matter). Then, use a shufps to build the final vector, taking the half
   5341     // containing the element from Y from the intermediate, and the other half
   5342     // from X.
   5343     if (NumHi == 3) {
   5344       // Normalize it so the 3 elements come from V1.
   5345       CommuteVectorShuffleMask(PermMask, VT);
   5346       std::swap(V1, V2);
   5347     }
   5348 
   5349     // Find the element from V2.
   5350     unsigned HiIndex;
   5351     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
   5352       int Val = PermMask[HiIndex];
   5353       if (Val < 0)
   5354         continue;
   5355       if (Val >= 4)
   5356         break;
   5357     }
   5358 
   5359     Mask1[0] = PermMask[HiIndex];
   5360     Mask1[1] = -1;
   5361     Mask1[2] = PermMask[HiIndex^1];
   5362     Mask1[3] = -1;
   5363     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   5364 
   5365     if (HiIndex >= 2) {
   5366       Mask1[0] = PermMask[0];
   5367       Mask1[1] = PermMask[1];
   5368       Mask1[2] = HiIndex & 1 ? 6 : 4;
   5369       Mask1[3] = HiIndex & 1 ? 4 : 6;
   5370       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   5371     } else {
   5372       Mask1[0] = HiIndex & 1 ? 2 : 0;
   5373       Mask1[1] = HiIndex & 1 ? 0 : 2;
   5374       Mask1[2] = PermMask[2];
   5375       Mask1[3] = PermMask[3];
   5376       if (Mask1[2] >= 0)
   5377         Mask1[2] += 4;
   5378       if (Mask1[3] >= 0)
   5379         Mask1[3] += 4;
   5380       return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
   5381     }
   5382   }
   5383 
   5384   // Break it into (shuffle shuffle_hi, shuffle_lo).
   5385   Locs.clear();
   5386   Locs.resize(4);
   5387   SmallVector<int,8> LoMask(4U, -1);
   5388   SmallVector<int,8> HiMask(4U, -1);
   5389 
   5390   SmallVector<int,8> *MaskPtr = &LoMask;
   5391   unsigned MaskIdx = 0;
   5392   unsigned LoIdx = 0;
   5393   unsigned HiIdx = 2;
   5394   for (unsigned i = 0; i != 4; ++i) {
   5395     if (i == 2) {
   5396       MaskPtr = &HiMask;
   5397       MaskIdx = 1;
   5398       LoIdx = 0;
   5399       HiIdx = 2;
   5400     }
   5401     int Idx = PermMask[i];
   5402     if (Idx < 0) {
   5403       Locs[i] = std::make_pair(-1, -1);
   5404     } else if (Idx < 4) {
   5405       Locs[i] = std::make_pair(MaskIdx, LoIdx);
   5406       (*MaskPtr)[LoIdx] = Idx;
   5407       LoIdx++;
   5408     } else {
   5409       Locs[i] = std::make_pair(MaskIdx, HiIdx);
   5410       (*MaskPtr)[HiIdx] = Idx;
   5411       HiIdx++;
   5412     }
   5413   }
   5414 
   5415   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
   5416   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
   5417   SmallVector<int, 8> MaskOps;
   5418   for (unsigned i = 0; i != 4; ++i) {
   5419     if (Locs[i].first == -1) {
   5420       MaskOps.push_back(-1);
   5421     } else {
   5422       unsigned Idx = Locs[i].first * 4 + Locs[i].second;
   5423       MaskOps.push_back(Idx);
   5424     }
   5425   }
   5426   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
   5427 }
   5428 
   5429 static bool MayFoldVectorLoad(SDValue V) {
   5430   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   5431     V = V.getOperand(0);
   5432   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   5433     V = V.getOperand(0);
   5434   if (MayFoldLoad(V))
   5435     return true;
   5436   return false;
   5437 }
   5438 
   5439 // FIXME: the version above should always be used. Since there's
   5440 // a bug where several vector shuffles can't be folded because the
   5441 // DAG is not updated during lowering and a node claims to have two
   5442 // uses while it only has one, use this version, and let isel match
   5443 // another instruction if the load really happens to have more than
   5444 // one use. Remove this version after this bug get fixed.
   5445 // rdar://8434668, PR8156
   5446 static bool RelaxedMayFoldVectorLoad(SDValue V) {
   5447   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   5448     V = V.getOperand(0);
   5449   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   5450     V = V.getOperand(0);
   5451   if (ISD::isNormalLoad(V.getNode()))
   5452     return true;
   5453   return false;
   5454 }
   5455 
   5456 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
   5457 /// a vector extract, and if both can be later optimized into a single load.
   5458 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
   5459 /// here because otherwise a target specific shuffle node is going to be
   5460 /// emitted for this shuffle, and the optimization not done.
   5461 /// FIXME: This is probably not the best approach, but fix the problem
   5462 /// until the right path is decided.
   5463 static
   5464 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
   5465                                          const TargetLowering &TLI) {
   5466   EVT VT = V.getValueType();
   5467   ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
   5468 
   5469   // Be sure that the vector shuffle is present in a pattern like this:
   5470   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
   5471   if (!V.hasOneUse())
   5472     return false;
   5473 
   5474   SDNode *N = *V.getNode()->use_begin();
   5475   if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   5476     return false;
   5477 
   5478   SDValue EltNo = N->getOperand(1);
   5479   if (!isa<ConstantSDNode>(EltNo))
   5480     return false;
   5481 
   5482   // If the bit convert changed the number of elements, it is unsafe
   5483   // to examine the mask.
   5484   bool HasShuffleIntoBitcast = false;
   5485   if (V.getOpcode() == ISD::BITCAST) {
   5486     EVT SrcVT = V.getOperand(0).getValueType();
   5487     if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
   5488       return false;
   5489     V = V.getOperand(0);
   5490     HasShuffleIntoBitcast = true;
   5491   }
   5492 
   5493   // Select the input vector, guarding against out of range extract vector.
   5494   unsigned NumElems = VT.getVectorNumElements();
   5495   unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
   5496   int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
   5497   V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
   5498 
   5499   // Skip one more bit_convert if necessary
   5500   if (V.getOpcode() == ISD::BITCAST)
   5501     V = V.getOperand(0);
   5502 
   5503   if (ISD::isNormalLoad(V.getNode())) {
   5504     // Is the original load suitable?
   5505     LoadSDNode *LN0 = cast<LoadSDNode>(V);
   5506 
   5507     // FIXME: avoid the multi-use bug that is preventing lots of
   5508     // of foldings to be detected, this is still wrong of course, but
   5509     // give the temporary desired behavior, and if it happens that
   5510     // the load has real more uses, during isel it will not fold, and
   5511     // will generate poor code.
   5512     if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
   5513       return false;
   5514 
   5515     if (!HasShuffleIntoBitcast)
   5516       return true;
   5517 
   5518     // If there's a bitcast before the shuffle, check if the load type and
   5519     // alignment is valid.
   5520     unsigned Align = LN0->getAlignment();
   5521     unsigned NewAlign =
   5522       TLI.getTargetData()->getABITypeAlignment(
   5523                                     VT.getTypeForEVT(*DAG.getContext()));
   5524 
   5525     if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
   5526       return false;
   5527   }
   5528 
   5529   return true;
   5530 }
   5531 
   5532 static
   5533 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
   5534   EVT VT = Op.getValueType();
   5535 
   5536   // Canonizalize to v2f64.
   5537   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
   5538   return DAG.getNode(ISD::BITCAST, dl, VT,
   5539                      getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
   5540                                           V1, DAG));
   5541 }
   5542 
   5543 static
   5544 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
   5545                         bool HasSSE2) {
   5546   SDValue V1 = Op.getOperand(0);
   5547   SDValue V2 = Op.getOperand(1);
   5548   EVT VT = Op.getValueType();
   5549 
   5550   assert(VT != MVT::v2i64 && "unsupported shuffle type");
   5551 
   5552   if (HasSSE2 && VT == MVT::v2f64)
   5553     return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
   5554 
   5555   // v4f32 or v4i32
   5556   return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
   5557 }
   5558 
   5559 static
   5560 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
   5561   SDValue V1 = Op.getOperand(0);
   5562   SDValue V2 = Op.getOperand(1);
   5563   EVT VT = Op.getValueType();
   5564 
   5565   assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
   5566          "unsupported shuffle type");
   5567 
   5568   if (V2.getOpcode() == ISD::UNDEF)
   5569     V2 = V1;
   5570 
   5571   // v4i32 or v4f32
   5572   return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
   5573 }
   5574 
   5575 static
   5576 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
   5577   SDValue V1 = Op.getOperand(0);
   5578   SDValue V2 = Op.getOperand(1);
   5579   EVT VT = Op.getValueType();
   5580   unsigned NumElems = VT.getVectorNumElements();
   5581 
   5582   // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
   5583   // operand of these instructions is only memory, so check if there's a
   5584   // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
   5585   // same masks.
   5586   bool CanFoldLoad = false;
   5587 
   5588   // Trivial case, when V2 comes from a load.
   5589   if (MayFoldVectorLoad(V2))
   5590     CanFoldLoad = true;
   5591 
   5592   // When V1 is a load, it can be folded later into a store in isel, example:
   5593   //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
   5594   //    turns into:
   5595   //  (MOVLPSmr addr:$src1, VR128:$src2)
   5596   // So, recognize this potential and also use MOVLPS or MOVLPD
   5597   if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
   5598     CanFoldLoad = true;
   5599 
   5600   // Both of them can't be memory operations though.
   5601   if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
   5602     CanFoldLoad = false;
   5603 
   5604   if (CanFoldLoad) {
   5605     if (HasSSE2 && NumElems == 2)
   5606       return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
   5607 
   5608     if (NumElems == 4)
   5609       return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
   5610   }
   5611 
   5612   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5613   // movl and movlp will both match v2i64, but v2i64 is never matched by
   5614   // movl earlier because we make it strict to avoid messing with the movlp load
   5615   // folding logic (see the code above getMOVLP call). Match it here then,
   5616   // this is horrible, but will stay like this until we move all shuffle
   5617   // matching to x86 specific nodes. Note that for the 1st condition all
   5618   // types are matched with movsd.
   5619   if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
   5620     return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   5621   else if (HasSSE2)
   5622     return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   5623 
   5624 
   5625   assert(VT != MVT::v4i32 && "unsupported shuffle type");
   5626 
   5627   // Invert the operand order and use SHUFPS to match it.
   5628   return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
   5629                               X86::getShuffleSHUFImmediate(SVOp), DAG);
   5630 }
   5631 
   5632 static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
   5633   switch(VT.getSimpleVT().SimpleTy) {
   5634   case MVT::v4i32: return X86ISD::PUNPCKLDQ;
   5635   case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
   5636   case MVT::v4f32:
   5637     return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
   5638   case MVT::v2f64:
   5639     return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
   5640   case MVT::v8f32: return X86ISD::VUNPCKLPSY;
   5641   case MVT::v4f64: return X86ISD::VUNPCKLPDY;
   5642   case MVT::v16i8: return X86ISD::PUNPCKLBW;
   5643   case MVT::v8i16: return X86ISD::PUNPCKLWD;
   5644   default:
   5645     llvm_unreachable("Unknown type for unpckl");
   5646   }
   5647   return 0;
   5648 }
   5649 
   5650 static inline unsigned getUNPCKHOpcode(EVT VT) {
   5651   switch(VT.getSimpleVT().SimpleTy) {
   5652   case MVT::v4i32: return X86ISD::PUNPCKHDQ;
   5653   case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
   5654   case MVT::v4f32: return X86ISD::UNPCKHPS;
   5655   case MVT::v2f64: return X86ISD::UNPCKHPD;
   5656   case MVT::v16i8: return X86ISD::PUNPCKHBW;
   5657   case MVT::v8i16: return X86ISD::PUNPCKHWD;
   5658   default:
   5659     llvm_unreachable("Unknown type for unpckh");
   5660   }
   5661   return 0;
   5662 }
   5663 
   5664 static
   5665 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
   5666                                const TargetLowering &TLI,
   5667                                const X86Subtarget *Subtarget) {
   5668   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5669   EVT VT = Op.getValueType();
   5670   DebugLoc dl = Op.getDebugLoc();
   5671   SDValue V1 = Op.getOperand(0);
   5672   SDValue V2 = Op.getOperand(1);
   5673 
   5674   if (isZeroShuffle(SVOp))
   5675     return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
   5676 
   5677   // Handle splat operations
   5678   if (SVOp->isSplat()) {
   5679     // Special case, this is the only place now where it's
   5680     // allowed to return a vector_shuffle operation without
   5681     // using a target specific node, because *hopefully* it
   5682     // will be optimized away by the dag combiner.
   5683     if (VT.getVectorNumElements() <= 4 &&
   5684         CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
   5685       return Op;
   5686 
   5687     // Handle splats by matching through known masks
   5688     if (VT.getVectorNumElements() <= 4)
   5689       return SDValue();
   5690 
   5691     // Canonicalize all of the remaining to v4f32.
   5692     return PromoteSplat(SVOp, DAG);
   5693   }
   5694 
   5695   // If the shuffle can be profitably rewritten as a narrower shuffle, then
   5696   // do it!
   5697   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
   5698     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   5699     if (NewOp.getNode())
   5700       return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
   5701   } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
   5702     // FIXME: Figure out a cleaner way to do this.
   5703     // Try to make use of movq to zero out the top part.
   5704     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
   5705       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   5706       if (NewOp.getNode()) {
   5707         if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
   5708           return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
   5709                               DAG, Subtarget, dl);
   5710       }
   5711     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
   5712       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   5713       if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
   5714         return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
   5715                             DAG, Subtarget, dl);
   5716     }
   5717   }
   5718   return SDValue();
   5719 }
   5720 
   5721 SDValue
   5722 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
   5723   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5724   SDValue V1 = Op.getOperand(0);
   5725   SDValue V2 = Op.getOperand(1);
   5726   EVT VT = Op.getValueType();
   5727   DebugLoc dl = Op.getDebugLoc();
   5728   unsigned NumElems = VT.getVectorNumElements();
   5729   bool isMMX = VT.getSizeInBits() == 64;
   5730   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
   5731   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
   5732   bool V1IsSplat = false;
   5733   bool V2IsSplat = false;
   5734   bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
   5735   bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
   5736   bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
   5737   MachineFunction &MF = DAG.getMachineFunction();
   5738   bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
   5739 
   5740   // Shuffle operations on MMX not supported.
   5741   if (isMMX)
   5742     return Op;
   5743 
   5744   // Vector shuffle lowering takes 3 steps:
   5745   //
   5746   // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
   5747   //    narrowing and commutation of operands should be handled.
   5748   // 2) Matching of shuffles with known shuffle masks to x86 target specific
   5749   //    shuffle nodes.
   5750   // 3) Rewriting of unmatched masks into new generic shuffle operations,
   5751   //    so the shuffle can be broken into other shuffles and the legalizer can
   5752   //    try the lowering again.
   5753   //
   5754   // The general ideia is that no vector_shuffle operation should be left to
   5755   // be matched during isel, all of them must be converted to a target specific
   5756   // node here.
   5757 
   5758   // Normalize the input vectors. Here splats, zeroed vectors, profitable
   5759   // narrowing and commutation of operands should be handled. The actual code
   5760   // doesn't include all of those, work in progress...
   5761   SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
   5762   if (NewOp.getNode())
   5763     return NewOp;
   5764 
   5765   // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
   5766   // unpckh_undef). Only use pshufd if speed is more important than size.
   5767   if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
   5768     if (VT != MVT::v2i64 && VT != MVT::v2f64)
   5769       return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
   5770   if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
   5771     if (VT != MVT::v2i64 && VT != MVT::v2f64)
   5772       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   5773 
   5774   if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
   5775       RelaxedMayFoldVectorLoad(V1))
   5776     return getMOVDDup(Op, dl, V1, DAG);
   5777 
   5778   if (X86::isMOVHLPS_v_undef_Mask(SVOp))
   5779     return getMOVHighToLow(Op, dl, DAG);
   5780 
   5781   // Use to match splats
   5782   if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
   5783       (VT == MVT::v2f64 || VT == MVT::v2i64))
   5784     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   5785 
   5786   if (X86::isPSHUFDMask(SVOp)) {
   5787     // The actual implementation will match the mask in the if above and then
   5788     // during isel it can match several different instructions, not only pshufd
   5789     // as its name says, sad but true, emulate the behavior for now...
   5790     if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
   5791         return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
   5792 
   5793     unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
   5794 
   5795     if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
   5796       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
   5797 
   5798     if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
   5799       return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
   5800                                   TargetMask, DAG);
   5801 
   5802     if (VT == MVT::v4f32)
   5803       return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
   5804                                   TargetMask, DAG);
   5805   }
   5806 
   5807   // Check if this can be converted into a logical shift.
   5808   bool isLeft = false;
   5809   unsigned ShAmt = 0;
   5810   SDValue ShVal;
   5811   bool isShift = getSubtarget()->hasSSE2() &&
   5812     isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
   5813   if (isShift && ShVal.hasOneUse()) {
   5814     // If the shifted value has multiple uses, it may be cheaper to use
   5815     // v_set0 + movlhps or movhlps, etc.
   5816     EVT EltVT = VT.getVectorElementType();
   5817     ShAmt *= EltVT.getSizeInBits();
   5818     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   5819   }
   5820 
   5821   if (X86::isMOVLMask(SVOp)) {
   5822     if (V1IsUndef)
   5823       return V2;
   5824     if (ISD::isBuildVectorAllZeros(V1.getNode()))
   5825       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
   5826     if (!X86::isMOVLPMask(SVOp)) {
   5827       if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
   5828         return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   5829 
   5830       if (VT == MVT::v4i32 || VT == MVT::v4f32)
   5831         return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   5832     }
   5833   }
   5834 
   5835   // FIXME: fold these into legal mask.
   5836   if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
   5837     return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
   5838 
   5839   if (X86::isMOVHLPSMask(SVOp))
   5840     return getMOVHighToLow(Op, dl, DAG);
   5841 
   5842   if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
   5843     return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
   5844 
   5845   if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
   5846     return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
   5847 
   5848   if (X86::isMOVLPMask(SVOp))
   5849     return getMOVLP(Op, dl, DAG, HasSSE2);
   5850 
   5851   if (ShouldXformToMOVHLPS(SVOp) ||
   5852       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
   5853     return CommuteVectorShuffle(SVOp, DAG);
   5854 
   5855   if (isShift) {
   5856     // No better options. Use a vshl / vsrl.
   5857     EVT EltVT = VT.getVectorElementType();
   5858     ShAmt *= EltVT.getSizeInBits();
   5859     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   5860   }
   5861 
   5862   bool Commuted = false;
   5863   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
   5864   // 1,1,1,1 -> v8i16 though.
   5865   V1IsSplat = isSplatVector(V1.getNode());
   5866   V2IsSplat = isSplatVector(V2.getNode());
   5867 
   5868   // Canonicalize the splat or undef, if present, to be on the RHS.
   5869   if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
   5870     Op = CommuteVectorShuffle(SVOp, DAG);
   5871     SVOp = cast<ShuffleVectorSDNode>(Op);
   5872     V1 = SVOp->getOperand(0);
   5873     V2 = SVOp->getOperand(1);
   5874     std::swap(V1IsSplat, V2IsSplat);
   5875     std::swap(V1IsUndef, V2IsUndef);
   5876     Commuted = true;
   5877   }
   5878 
   5879   if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
   5880     // Shuffling low element of v1 into undef, just return v1.
   5881     if (V2IsUndef)
   5882       return V1;
   5883     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
   5884     // the instruction selector will not match, so get a canonical MOVL with
   5885     // swapped operands to undo the commute.
   5886     return getMOVL(DAG, dl, VT, V2, V1);
   5887   }
   5888 
   5889   if (X86::isUNPCKLMask(SVOp))
   5890     return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
   5891                                 dl, VT, V1, V2, DAG);
   5892 
   5893   if (X86::isUNPCKHMask(SVOp))
   5894     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
   5895 
   5896   if (V2IsSplat) {
   5897     // Normalize mask so all entries that point to V2 points to its first
   5898     // element then try to match unpck{h|l} again. If match, return a
   5899     // new vector_shuffle with the corrected mask.
   5900     SDValue NewMask = NormalizeMask(SVOp, DAG);
   5901     ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
   5902     if (NSVOp != SVOp) {
   5903       if (X86::isUNPCKLMask(NSVOp, true)) {
   5904         return NewMask;
   5905       } else if (X86::isUNPCKHMask(NSVOp, true)) {
   5906         return NewMask;
   5907       }
   5908     }
   5909   }
   5910 
   5911   if (Commuted) {
   5912     // Commute is back and try unpck* again.
   5913     // FIXME: this seems wrong.
   5914     SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
   5915     ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
   5916 
   5917     if (X86::isUNPCKLMask(NewSVOp))
   5918       return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
   5919                                   dl, VT, V2, V1, DAG);
   5920 
   5921     if (X86::isUNPCKHMask(NewSVOp))
   5922       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
   5923   }
   5924 
   5925   // Normalize the node to match x86 shuffle ops if needed
   5926   if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
   5927     return CommuteVectorShuffle(SVOp, DAG);
   5928 
   5929   // The checks below are all present in isShuffleMaskLegal, but they are
   5930   // inlined here right now to enable us to directly emit target specific
   5931   // nodes, and remove one by one until they don't return Op anymore.
   5932   SmallVector<int, 16> M;
   5933   SVOp->getMask(M);
   5934 
   5935   if (isPALIGNRMask(M, VT, HasSSSE3))
   5936     return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
   5937                                 X86::getShufflePALIGNRImmediate(SVOp),
   5938                                 DAG);
   5939 
   5940   if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
   5941       SVOp->getSplatIndex() == 0 && V2IsUndef) {
   5942     if (VT == MVT::v2f64) {
   5943       X86ISD::NodeType Opcode =
   5944         getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
   5945       return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
   5946     }
   5947     if (VT == MVT::v2i64)
   5948       return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
   5949   }
   5950 
   5951   if (isPSHUFHWMask(M, VT))
   5952     return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
   5953                                 X86::getShufflePSHUFHWImmediate(SVOp),
   5954                                 DAG);
   5955 
   5956   if (isPSHUFLWMask(M, VT))
   5957     return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
   5958                                 X86::getShufflePSHUFLWImmediate(SVOp),
   5959                                 DAG);
   5960 
   5961   if (isSHUFPMask(M, VT)) {
   5962     unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
   5963     if (VT == MVT::v4f32 || VT == MVT::v4i32)
   5964       return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
   5965                                   TargetMask, DAG);
   5966     if (VT == MVT::v2f64 || VT == MVT::v2i64)
   5967       return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
   5968                                   TargetMask, DAG);
   5969   }
   5970 
   5971   if (X86::isUNPCKL_v_undef_Mask(SVOp))
   5972     if (VT != MVT::v2i64 && VT != MVT::v2f64)
   5973       return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
   5974                                   dl, VT, V1, V1, DAG);
   5975   if (X86::isUNPCKH_v_undef_Mask(SVOp))
   5976     if (VT != MVT::v2i64 && VT != MVT::v2f64)
   5977       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   5978 
   5979   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
   5980   if (VT == MVT::v8i16) {
   5981     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
   5982     if (NewOp.getNode())
   5983       return NewOp;
   5984   }
   5985 
   5986   if (VT == MVT::v16i8) {
   5987     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
   5988     if (NewOp.getNode())
   5989       return NewOp;
   5990   }
   5991 
   5992   // Handle all 4 wide cases with a number of shuffles.
   5993   if (NumElems == 4)
   5994     return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
   5995 
   5996   return SDValue();
   5997 }
   5998 
   5999 SDValue
   6000 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
   6001                                                 SelectionDAG &DAG) const {
   6002   EVT VT = Op.getValueType();
   6003   DebugLoc dl = Op.getDebugLoc();
   6004   if (VT.getSizeInBits() == 8) {
   6005     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
   6006                                     Op.getOperand(0), Op.getOperand(1));
   6007     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6008                                     DAG.getValueType(VT));
   6009     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6010   } else if (VT.getSizeInBits() == 16) {
   6011     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6012     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
   6013     if (Idx == 0)
   6014       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   6015                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6016                                      DAG.getNode(ISD::BITCAST, dl,
   6017                                                  MVT::v4i32,
   6018                                                  Op.getOperand(0)),
   6019                                      Op.getOperand(1)));
   6020     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
   6021                                     Op.getOperand(0), Op.getOperand(1));
   6022     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6023                                     DAG.getValueType(VT));
   6024     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6025   } else if (VT == MVT::f32) {
   6026     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
   6027     // the result back to FR32 register. It's only worth matching if the
   6028     // result has a single use which is a store or a bitcast to i32.  And in
   6029     // the case of a store, it's not worth it if the index is a constant 0,
   6030     // because a MOVSSmr can be used instead, which is smaller and faster.
   6031     if (!Op.hasOneUse())
   6032       return SDValue();
   6033     SDNode *User = *Op.getNode()->use_begin();
   6034     if ((User->getOpcode() != ISD::STORE ||
   6035          (isa<ConstantSDNode>(Op.getOperand(1)) &&
   6036           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
   6037         (User->getOpcode() != ISD::BITCAST ||
   6038          User->getValueType(0) != MVT::i32))
   6039       return SDValue();
   6040     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6041                                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
   6042                                               Op.getOperand(0)),
   6043                                               Op.getOperand(1));
   6044     return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
   6045   } else if (VT == MVT::i32) {
   6046     // ExtractPS works with constant index.
   6047     if (isa<ConstantSDNode>(Op.getOperand(1)))
   6048       return Op;
   6049   }
   6050   return SDValue();
   6051 }
   6052 
   6053 
   6054 SDValue
   6055 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   6056                                            SelectionDAG &DAG) const {
   6057   if (!isa<ConstantSDNode>(Op.getOperand(1)))
   6058     return SDValue();
   6059 
   6060   SDValue Vec = Op.getOperand(0);
   6061   EVT VecVT = Vec.getValueType();
   6062 
   6063   // If this is a 256-bit vector result, first extract the 128-bit
   6064   // vector and then extract from the 128-bit vector.
   6065   if (VecVT.getSizeInBits() > 128) {
   6066     DebugLoc dl = Op.getNode()->getDebugLoc();
   6067     unsigned NumElems = VecVT.getVectorNumElements();
   6068     SDValue Idx = Op.getOperand(1);
   6069 
   6070     if (!isa<ConstantSDNode>(Idx))
   6071       return SDValue();
   6072 
   6073     unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
   6074     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   6075 
   6076     // Get the 128-bit vector.
   6077     bool Upper = IdxVal >= ExtractNumElems;
   6078     Vec = Extract128BitVector(Vec, Idx, DAG, dl);
   6079 
   6080     // Extract from it.
   6081     SDValue ScaledIdx = Idx;
   6082     if (Upper)
   6083       ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
   6084                               DAG.getConstant(ExtractNumElems,
   6085                                               Idx.getValueType()));
   6086     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
   6087                        ScaledIdx);
   6088   }
   6089 
   6090   assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
   6091 
   6092   if (Subtarget->hasSSE41()) {
   6093     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
   6094     if (Res.getNode())
   6095       return Res;
   6096   }
   6097 
   6098   EVT VT = Op.getValueType();
   6099   DebugLoc dl = Op.getDebugLoc();
   6100   // TODO: handle v16i8.
   6101   if (VT.getSizeInBits() == 16) {
   6102     SDValue Vec = Op.getOperand(0);
   6103     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6104     if (Idx == 0)
   6105       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   6106                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6107                                      DAG.getNode(ISD::BITCAST, dl,
   6108                                                  MVT::v4i32, Vec),
   6109                                      Op.getOperand(1)));
   6110     // Transform it so it match pextrw which produces a 32-bit result.
   6111     EVT EltVT = MVT::i32;
   6112     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
   6113                                     Op.getOperand(0), Op.getOperand(1));
   6114     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
   6115                                     DAG.getValueType(VT));
   6116     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6117   } else if (VT.getSizeInBits() == 32) {
   6118     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6119     if (Idx == 0)
   6120       return Op;
   6121 
   6122     // SHUFPS the element to the lowest double word, then movss.
   6123     int Mask[4] = { Idx, -1, -1, -1 };
   6124     EVT VVT = Op.getOperand(0).getValueType();
   6125     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   6126                                        DAG.getUNDEF(VVT), Mask);
   6127     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   6128                        DAG.getIntPtrConstant(0));
   6129   } else if (VT.getSizeInBits() == 64) {
   6130     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
   6131     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
   6132     //        to match extract_elt for f64.
   6133     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6134     if (Idx == 0)
   6135       return Op;
   6136 
   6137     // UNPCKHPD the element to the lowest double word, then movsd.
   6138     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
   6139     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
   6140     int Mask[2] = { 1, -1 };
   6141     EVT VVT = Op.getOperand(0).getValueType();
   6142     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   6143                                        DAG.getUNDEF(VVT), Mask);
   6144     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   6145                        DAG.getIntPtrConstant(0));
   6146   }
   6147 
   6148   return SDValue();
   6149 }
   6150 
   6151 SDValue
   6152 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
   6153                                                SelectionDAG &DAG) const {
   6154   EVT VT = Op.getValueType();
   6155   EVT EltVT = VT.getVectorElementType();
   6156   DebugLoc dl = Op.getDebugLoc();
   6157 
   6158   SDValue N0 = Op.getOperand(0);
   6159   SDValue N1 = Op.getOperand(1);
   6160   SDValue N2 = Op.getOperand(2);
   6161 
   6162   if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
   6163       isa<ConstantSDNode>(N2)) {
   6164     unsigned Opc;
   6165     if (VT == MVT::v8i16)
   6166       Opc = X86ISD::PINSRW;
   6167     else if (VT == MVT::v16i8)
   6168       Opc = X86ISD::PINSRB;
   6169     else
   6170       Opc = X86ISD::PINSRB;
   6171 
   6172     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
   6173     // argument.
   6174     if (N1.getValueType() != MVT::i32)
   6175       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   6176     if (N2.getValueType() != MVT::i32)
   6177       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   6178     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
   6179   } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
   6180     // Bits [7:6] of the constant are the source select.  This will always be
   6181     //  zero here.  The DAG Combiner may combine an extract_elt index into these
   6182     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
   6183     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
   6184     // Bits [5:4] of the constant are the destination select.  This is the
   6185     //  value of the incoming immediate.
   6186     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
   6187     //   combine either bitwise AND or insert of float 0.0 to set these bits.
   6188     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
   6189     // Create this as a scalar to vector..
   6190     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
   6191     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
   6192   } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
   6193     // PINSR* works with constant index.
   6194     return Op;
   6195   }
   6196   return SDValue();
   6197 }
   6198 
   6199 SDValue
   6200 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   6201   EVT VT = Op.getValueType();
   6202   EVT EltVT = VT.getVectorElementType();
   6203 
   6204   DebugLoc dl = Op.getDebugLoc();
   6205   SDValue N0 = Op.getOperand(0);
   6206   SDValue N1 = Op.getOperand(1);
   6207   SDValue N2 = Op.getOperand(2);
   6208 
   6209   // If this is a 256-bit vector result, first insert into a 128-bit
   6210   // vector and then insert into the 256-bit vector.
   6211   if (VT.getSizeInBits() > 128) {
   6212     if (!isa<ConstantSDNode>(N2))
   6213       return SDValue();
   6214 
   6215     // Get the 128-bit vector.
   6216     unsigned NumElems = VT.getVectorNumElements();
   6217     unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
   6218     bool Upper = IdxVal >= NumElems / 2;
   6219 
   6220     SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
   6221 
   6222     // Insert into it.
   6223     SDValue ScaledN2 = N2;
   6224     if (Upper)
   6225       ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
   6226                              DAG.getConstant(NumElems /
   6227                                              (VT.getSizeInBits() / 128),
   6228                                              N2.getValueType()));
   6229     Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
   6230                      N1, ScaledN2);
   6231 
   6232     // Insert the 128-bit vector
   6233     // FIXME: Why UNDEF?
   6234     return Insert128BitVector(N0, Op, N2, DAG, dl);
   6235   }
   6236 
   6237   if (Subtarget->hasSSE41())
   6238     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
   6239 
   6240   if (EltVT == MVT::i8)
   6241     return SDValue();
   6242 
   6243   if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
   6244     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
   6245     // as its second argument.
   6246     if (N1.getValueType() != MVT::i32)
   6247       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   6248     if (N2.getValueType() != MVT::i32)
   6249       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   6250     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
   6251   }
   6252   return SDValue();
   6253 }
   6254 
   6255 SDValue
   6256 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   6257   LLVMContext *Context = DAG.getContext();
   6258   DebugLoc dl = Op.getDebugLoc();
   6259   EVT OpVT = Op.getValueType();
   6260 
   6261   // If this is a 256-bit vector result, first insert into a 128-bit
   6262   // vector and then insert into the 256-bit vector.
   6263   if (OpVT.getSizeInBits() > 128) {
   6264     // Insert into a 128-bit vector.
   6265     EVT VT128 = EVT::getVectorVT(*Context,
   6266                                  OpVT.getVectorElementType(),
   6267                                  OpVT.getVectorNumElements() / 2);
   6268 
   6269     Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
   6270 
   6271     // Insert the 128-bit vector.
   6272     return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
   6273                               DAG.getConstant(0, MVT::i32),
   6274                               DAG, dl);
   6275   }
   6276 
   6277   if (Op.getValueType() == MVT::v1i64 &&
   6278       Op.getOperand(0).getValueType() == MVT::i64)
   6279     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
   6280 
   6281   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
   6282   assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
   6283          "Expected an SSE type!");
   6284   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
   6285                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
   6286 }
   6287 
   6288 // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
   6289 // a simple subregister reference or explicit instructions to grab
   6290 // upper bits of a vector.
   6291 SDValue
   6292 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   6293   if (Subtarget->hasAVX()) {
   6294     DebugLoc dl = Op.getNode()->getDebugLoc();
   6295     SDValue Vec = Op.getNode()->getOperand(0);
   6296     SDValue Idx = Op.getNode()->getOperand(1);
   6297 
   6298     if (Op.getNode()->getValueType(0).getSizeInBits() == 128
   6299         && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
   6300         return Extract128BitVector(Vec, Idx, DAG, dl);
   6301     }
   6302   }
   6303   return SDValue();
   6304 }
   6305 
   6306 // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
   6307 // simple superregister reference or explicit instructions to insert
   6308 // the upper bits of a vector.
   6309 SDValue
   6310 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   6311   if (Subtarget->hasAVX()) {
   6312     DebugLoc dl = Op.getNode()->getDebugLoc();
   6313     SDValue Vec = Op.getNode()->getOperand(0);
   6314     SDValue SubVec = Op.getNode()->getOperand(1);
   6315     SDValue Idx = Op.getNode()->getOperand(2);
   6316 
   6317     if (Op.getNode()->getValueType(0).getSizeInBits() == 256
   6318         && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
   6319       return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
   6320     }
   6321   }
   6322   return SDValue();
   6323 }
   6324 
   6325 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   6326 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
   6327 // one of the above mentioned nodes. It has to be wrapped because otherwise
   6328 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   6329 // be used to form addressing mode. These wrapped nodes will be selected
   6330 // into MOV32ri.
   6331 SDValue
   6332 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
   6333   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   6334 
   6335   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   6336   // global base reg.
   6337   unsigned char OpFlag = 0;
   6338   unsigned WrapperKind = X86ISD::Wrapper;
   6339   CodeModel::Model M = getTargetMachine().getCodeModel();
   6340 
   6341   if (Subtarget->isPICStyleRIPRel() &&
   6342       (M == CodeModel::Small || M == CodeModel::Kernel))
   6343     WrapperKind = X86ISD::WrapperRIP;
   6344   else if (Subtarget->isPICStyleGOT())
   6345     OpFlag = X86II::MO_GOTOFF;
   6346   else if (Subtarget->isPICStyleStubPIC())
   6347     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   6348 
   6349   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
   6350                                              CP->getAlignment(),
   6351                                              CP->getOffset(), OpFlag);
   6352   DebugLoc DL = CP->getDebugLoc();
   6353   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   6354   // With PIC, the address is actually $g + Offset.
   6355   if (OpFlag) {
   6356     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   6357                          DAG.getNode(X86ISD::GlobalBaseReg,
   6358                                      DebugLoc(), getPointerTy()),
   6359                          Result);
   6360   }
   6361 
   6362   return Result;
   6363 }
   6364 
   6365 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   6366   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   6367 
   6368   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   6369   // global base reg.
   6370   unsigned char OpFlag = 0;
   6371   unsigned WrapperKind = X86ISD::Wrapper;
   6372   CodeModel::Model M = getTargetMachine().getCodeModel();
   6373 
   6374   if (Subtarget->isPICStyleRIPRel() &&
   6375       (M == CodeModel::Small || M == CodeModel::Kernel))
   6376     WrapperKind = X86ISD::WrapperRIP;
   6377   else if (Subtarget->isPICStyleGOT())
   6378     OpFlag = X86II::MO_GOTOFF;
   6379   else if (Subtarget->isPICStyleStubPIC())
   6380     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   6381 
   6382   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
   6383                                           OpFlag);
   6384   DebugLoc DL = JT->getDebugLoc();
   6385   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   6386 
   6387   // With PIC, the address is actually $g + Offset.
   6388   if (OpFlag)
   6389     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   6390                          DAG.getNode(X86ISD::GlobalBaseReg,
   6391                                      DebugLoc(), getPointerTy()),
   6392                          Result);
   6393 
   6394   return Result;
   6395 }
   6396 
   6397 SDValue
   6398 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
   6399   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
   6400 
   6401   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   6402   // global base reg.
   6403   unsigned char OpFlag = 0;
   6404   unsigned WrapperKind = X86ISD::Wrapper;
   6405   CodeModel::Model M = getTargetMachine().getCodeModel();
   6406 
   6407   if (Subtarget->isPICStyleRIPRel() &&
   6408       (M == CodeModel::Small || M == CodeModel::Kernel))
   6409     WrapperKind = X86ISD::WrapperRIP;
   6410   else if (Subtarget->isPICStyleGOT())
   6411     OpFlag = X86II::MO_GOTOFF;
   6412   else if (Subtarget->isPICStyleStubPIC())
   6413     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   6414 
   6415   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
   6416 
   6417   DebugLoc DL = Op.getDebugLoc();
   6418   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   6419 
   6420 
   6421   // With PIC, the address is actually $g + Offset.
   6422   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   6423       !Subtarget->is64Bit()) {
   6424     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   6425                          DAG.getNode(X86ISD::GlobalBaseReg,
   6426                                      DebugLoc(), getPointerTy()),
   6427                          Result);
   6428   }
   6429 
   6430   return Result;
   6431 }
   6432 
   6433 SDValue
   6434 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
   6435   // Create the TargetBlockAddressAddress node.
   6436   unsigned char OpFlags =
   6437     Subtarget->ClassifyBlockAddressReference();
   6438   CodeModel::Model M = getTargetMachine().getCodeModel();
   6439   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   6440   DebugLoc dl = Op.getDebugLoc();
   6441   SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
   6442                                        /*isTarget=*/true, OpFlags);
   6443 
   6444   if (Subtarget->isPICStyleRIPRel() &&
   6445       (M == CodeModel::Small || M == CodeModel::Kernel))
   6446     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   6447   else
   6448     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   6449 
   6450   // With PIC, the address is actually $g + Offset.
   6451   if (isGlobalRelativeToPICBase(OpFlags)) {
   6452     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   6453                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   6454                          Result);
   6455   }
   6456 
   6457   return Result;
   6458 }
   6459 
   6460 SDValue
   6461 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
   6462                                       int64_t Offset,
   6463                                       SelectionDAG &DAG) const {
   6464   // Create the TargetGlobalAddress node, folding in the constant
   6465   // offset if it is legal.
   6466   unsigned char OpFlags =
   6467     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
   6468   CodeModel::Model M = getTargetMachine().getCodeModel();
   6469   SDValue Result;
   6470   if (OpFlags == X86II::MO_NO_FLAG &&
   6471       X86::isOffsetSuitableForCodeModel(Offset, M)) {
   6472     // A direct static reference to a global.
   6473     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
   6474     Offset = 0;
   6475   } else {
   6476     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   6477   }
   6478 
   6479   if (Subtarget->isPICStyleRIPRel() &&
   6480       (M == CodeModel::Small || M == CodeModel::Kernel))
   6481     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   6482   else
   6483     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   6484 
   6485   // With PIC, the address is actually $g + Offset.
   6486   if (isGlobalRelativeToPICBase(OpFlags)) {
   6487     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   6488                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   6489                          Result);
   6490   }
   6491 
   6492   // For globals that require a load from a stub to get the address, emit the
   6493   // load.
   6494   if (isGlobalStubReference(OpFlags))
   6495     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
   6496                          MachinePointerInfo::getGOT(), false, false, 0);
   6497 
   6498   // If there was a non-zero offset that we didn't fold, create an explicit
   6499   // addition for it.
   6500   if (Offset != 0)
   6501     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
   6502                          DAG.getConstant(Offset, getPointerTy()));
   6503 
   6504   return Result;
   6505 }
   6506 
   6507 SDValue
   6508 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
   6509   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   6510   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
   6511   return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
   6512 }
   6513 
   6514 static SDValue
   6515 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
   6516            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
   6517            unsigned char OperandFlags) {
   6518   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   6519   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   6520   DebugLoc dl = GA->getDebugLoc();
   6521   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   6522                                            GA->getValueType(0),
   6523                                            GA->getOffset(),
   6524                                            OperandFlags);
   6525   if (InFlag) {
   6526     SDValue Ops[] = { Chain,  TGA, *InFlag };
   6527     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
   6528   } else {
   6529     SDValue Ops[]  = { Chain, TGA };
   6530     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
   6531   }
   6532 
   6533   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   6534   MFI->setAdjustsStack(true);
   6535 
   6536   SDValue Flag = Chain.getValue(1);
   6537   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
   6538 }
   6539 
   6540 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
   6541 static SDValue
   6542 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   6543                                 const EVT PtrVT) {
   6544   SDValue InFlag;
   6545   DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
   6546   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
   6547                                      DAG.getNode(X86ISD::GlobalBaseReg,
   6548                                                  DebugLoc(), PtrVT), InFlag);
   6549   InFlag = Chain.getValue(1);
   6550 
   6551   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
   6552 }
   6553 
   6554 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
   6555 static SDValue
   6556 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   6557                                 const EVT PtrVT) {
   6558   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
   6559                     X86::RAX, X86II::MO_TLSGD);
   6560 }
   6561 
   6562 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
   6563 // "local exec" model.
   6564 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   6565                                    const EVT PtrVT, TLSModel::Model model,
   6566                                    bool is64Bit) {
   6567   DebugLoc dl = GA->getDebugLoc();
   6568 
   6569   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
   6570   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
   6571                                                          is64Bit ? 257 : 256));
   6572 
   6573   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   6574                                       DAG.getIntPtrConstant(0),
   6575                                       MachinePointerInfo(Ptr), false, false, 0);
   6576 
   6577   unsigned char OperandFlags = 0;
   6578   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
   6579   // initialexec.
   6580   unsigned WrapperKind = X86ISD::Wrapper;
   6581   if (model == TLSModel::LocalExec) {
   6582     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
   6583   } else if (is64Bit) {
   6584     assert(model == TLSModel::InitialExec);
   6585     OperandFlags = X86II::MO_GOTTPOFF;
   6586     WrapperKind = X86ISD::WrapperRIP;
   6587   } else {
   6588     assert(model == TLSModel::InitialExec);
   6589     OperandFlags = X86II::MO_INDNTPOFF;
   6590   }
   6591 
   6592   // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
   6593   // exec)
   6594   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   6595                                            GA->getValueType(0),
   6596                                            GA->getOffset(), OperandFlags);
   6597   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
   6598 
   6599   if (model == TLSModel::InitialExec)
   6600     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
   6601                          MachinePointerInfo::getGOT(), false, false, 0);
   6602 
   6603   // The address of the thread local variable is the add of the thread
   6604   // pointer with the offset of the variable.
   6605   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   6606 }
   6607 
   6608 SDValue
   6609 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   6610 
   6611   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   6612   const GlobalValue *GV = GA->getGlobal();
   6613 
   6614   if (Subtarget->isTargetELF()) {
   6615     // TODO: implement the "local dynamic" model
   6616     // TODO: implement the "initial exec"model for pic executables
   6617 
   6618     // If GV is an alias then use the aliasee for determining
   6619     // thread-localness.
   6620     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
   6621       GV = GA->resolveAliasedGlobal(false);
   6622 
   6623     TLSModel::Model model
   6624       = getTLSModel(GV, getTargetMachine().getRelocationModel());
   6625 
   6626     switch (model) {
   6627       case TLSModel::GeneralDynamic:
   6628       case TLSModel::LocalDynamic: // not implemented
   6629         if (Subtarget->is64Bit())
   6630           return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
   6631         return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
   6632 
   6633       case TLSModel::InitialExec:
   6634       case TLSModel::LocalExec:
   6635         return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
   6636                                    Subtarget->is64Bit());
   6637     }
   6638   } else if (Subtarget->isTargetDarwin()) {
   6639     // Darwin only has one model of TLS.  Lower to that.
   6640     unsigned char OpFlag = 0;
   6641     unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
   6642                            X86ISD::WrapperRIP : X86ISD::Wrapper;
   6643 
   6644     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   6645     // global base reg.
   6646     bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
   6647                   !Subtarget->is64Bit();
   6648     if (PIC32)
   6649       OpFlag = X86II::MO_TLVP_PIC_BASE;
   6650     else
   6651       OpFlag = X86II::MO_TLVP;
   6652     DebugLoc DL = Op.getDebugLoc();
   6653     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
   6654                                                 GA->getValueType(0),
   6655                                                 GA->getOffset(), OpFlag);
   6656     SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   6657 
   6658     // With PIC32, the address is actually $g + Offset.
   6659     if (PIC32)
   6660       Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   6661                            DAG.getNode(X86ISD::GlobalBaseReg,
   6662                                        DebugLoc(), getPointerTy()),
   6663                            Offset);
   6664 
   6665     // Lowering the machine isd will make sure everything is in the right
   6666     // location.
   6667     SDValue Chain = DAG.getEntryNode();
   6668     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   6669     SDValue Args[] = { Chain, Offset };
   6670     Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
   6671 
   6672     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
   6673     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   6674     MFI->setAdjustsStack(true);
   6675 
   6676     // And our return value (tls address) is in the standard call return value
   6677     // location.
   6678     unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   6679     return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
   6680   }
   6681 
   6682   assert(false &&
   6683          "TLS not implemented for this target.");
   6684 
   6685   llvm_unreachable("Unreachable");
   6686   return SDValue();
   6687 }
   6688 
   6689 
   6690 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
   6691 /// take a 2 x i32 value to shift plus a shift amount.
   6692 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
   6693   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   6694   EVT VT = Op.getValueType();
   6695   unsigned VTBits = VT.getSizeInBits();
   6696   DebugLoc dl = Op.getDebugLoc();
   6697   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
   6698   SDValue ShOpLo = Op.getOperand(0);
   6699   SDValue ShOpHi = Op.getOperand(1);
   6700   SDValue ShAmt  = Op.getOperand(2);
   6701   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
   6702                                      DAG.getConstant(VTBits - 1, MVT::i8))
   6703                        : DAG.getConstant(0, VT);
   6704 
   6705   SDValue Tmp2, Tmp3;
   6706   if (Op.getOpcode() == ISD::SHL_PARTS) {
   6707     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
   6708     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   6709   } else {
   6710     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
   6711     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
   6712   }
   6713 
   6714   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
   6715                                 DAG.getConstant(VTBits, MVT::i8));
   6716   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   6717                              AndNode, DAG.getConstant(0, MVT::i8));
   6718 
   6719   SDValue Hi, Lo;
   6720   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   6721   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
   6722   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
   6723 
   6724   if (Op.getOpcode() == ISD::SHL_PARTS) {
   6725     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   6726     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   6727   } else {
   6728     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   6729     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   6730   }
   6731 
   6732   SDValue Ops[2] = { Lo, Hi };
   6733   return DAG.getMergeValues(Ops, 2, dl);
   6734 }
   6735 
   6736 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
   6737                                            SelectionDAG &DAG) const {
   6738   EVT SrcVT = Op.getOperand(0).getValueType();
   6739 
   6740   if (SrcVT.isVector())
   6741     return SDValue();
   6742 
   6743   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
   6744          "Unknown SINT_TO_FP to lower!");
   6745 
   6746   // These are really Legal; return the operand so the caller accepts it as
   6747   // Legal.
   6748   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
   6749     return Op;
   6750   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
   6751       Subtarget->is64Bit()) {
   6752     return Op;
   6753   }
   6754 
   6755   DebugLoc dl = Op.getDebugLoc();
   6756   unsigned Size = SrcVT.getSizeInBits()/8;
   6757   MachineFunction &MF = DAG.getMachineFunction();
   6758   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
   6759   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   6760   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   6761                                StackSlot,
   6762                                MachinePointerInfo::getFixedStack(SSFI),
   6763                                false, false, 0);
   6764   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
   6765 }
   6766 
   6767 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
   6768                                      SDValue StackSlot,
   6769                                      SelectionDAG &DAG) const {
   6770   // Build the FILD
   6771   DebugLoc DL = Op.getDebugLoc();
   6772   SDVTList Tys;
   6773   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
   6774   if (useSSE)
   6775     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
   6776   else
   6777     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
   6778 
   6779   unsigned ByteSize = SrcVT.getSizeInBits()/8;
   6780 
   6781   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
   6782   MachineMemOperand *MMO;
   6783   if (FI) {
   6784     int SSFI = FI->getIndex();
   6785     MMO =
   6786       DAG.getMachineFunction()
   6787       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   6788                             MachineMemOperand::MOLoad, ByteSize, ByteSize);
   6789   } else {
   6790     MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
   6791     StackSlot = StackSlot.getOperand(1);
   6792   }
   6793   SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
   6794   SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
   6795                                            X86ISD::FILD, DL,
   6796                                            Tys, Ops, array_lengthof(Ops),
   6797                                            SrcVT, MMO);
   6798 
   6799   if (useSSE) {
   6800     Chain = Result.getValue(1);
   6801     SDValue InFlag = Result.getValue(2);
   6802 
   6803     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
   6804     // shouldn't be necessary except that RFP cannot be live across
   6805     // multiple blocks. When stackifier is fixed, they can be uncoupled.
   6806     MachineFunction &MF = DAG.getMachineFunction();
   6807     unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
   6808     int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
   6809     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   6810     Tys = DAG.getVTList(MVT::Other);
   6811     SDValue Ops[] = {
   6812       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
   6813     };
   6814     MachineMemOperand *MMO =
   6815       DAG.getMachineFunction()
   6816       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   6817                             MachineMemOperand::MOStore, SSFISize, SSFISize);
   6818 
   6819     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
   6820                                     Ops, array_lengthof(Ops),
   6821                                     Op.getValueType(), MMO);
   6822     Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
   6823                          MachinePointerInfo::getFixedStack(SSFI),
   6824                          false, false, 0);
   6825   }
   6826 
   6827   return Result;
   6828 }
   6829 
   6830 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
   6831 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
   6832                                                SelectionDAG &DAG) const {
   6833   // This algorithm is not obvious. Here it is in C code, more or less:
   6834   /*
   6835     double uint64_to_double( uint32_t hi, uint32_t lo ) {
   6836       static const __m128i exp = { 0x4330000045300000ULL, 0 };
   6837       static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
   6838 
   6839       // Copy ints to xmm registers.
   6840       __m128i xh = _mm_cvtsi32_si128( hi );
   6841       __m128i xl = _mm_cvtsi32_si128( lo );
   6842 
   6843       // Combine into low half of a single xmm register.
   6844       __m128i x = _mm_unpacklo_epi32( xh, xl );
   6845       __m128d d;
   6846       double sd;
   6847 
   6848       // Merge in appropriate exponents to give the integer bits the right
   6849       // magnitude.
   6850       x = _mm_unpacklo_epi32( x, exp );
   6851 
   6852       // Subtract away the biases to deal with the IEEE-754 double precision
   6853       // implicit 1.
   6854       d = _mm_sub_pd( (__m128d) x, bias );
   6855 
   6856       // All conversions up to here are exact. The correctly rounded result is
   6857       // calculated using the current rounding mode using the following
   6858       // horizontal add.
   6859       d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
   6860       _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
   6861                                 // store doesn't really need to be here (except
   6862                                 // maybe to zero the other double)
   6863       return sd;
   6864     }
   6865   */
   6866 
   6867   DebugLoc dl = Op.getDebugLoc();
   6868   LLVMContext *Context = DAG.getContext();
   6869 
   6870   // Build some magic constants.
   6871   std::vector<Constant*> CV0;
   6872   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
   6873   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
   6874   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
   6875   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
   6876   Constant *C0 = ConstantVector::get(CV0);
   6877   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
   6878 
   6879   std::vector<Constant*> CV1;
   6880   CV1.push_back(
   6881     ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
   6882   CV1.push_back(
   6883     ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
   6884   Constant *C1 = ConstantVector::get(CV1);
   6885   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
   6886 
   6887   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   6888                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   6889                                         Op.getOperand(0),
   6890                                         DAG.getIntPtrConstant(1)));
   6891   SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   6892                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   6893                                         Op.getOperand(0),
   6894                                         DAG.getIntPtrConstant(0)));
   6895   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
   6896   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
   6897                               MachinePointerInfo::getConstantPool(),
   6898                               false, false, 16);
   6899   SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
   6900   SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
   6901   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
   6902                               MachinePointerInfo::getConstantPool(),
   6903                               false, false, 16);
   6904   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
   6905 
   6906   // Add the halves; easiest way is to swap them into another reg first.
   6907   int ShufMask[2] = { 1, -1 };
   6908   SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
   6909                                       DAG.getUNDEF(MVT::v2f64), ShufMask);
   6910   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
   6911   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
   6912                      DAG.getIntPtrConstant(0));
   6913 }
   6914 
   6915 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
   6916 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
   6917                                                SelectionDAG &DAG) const {
   6918   DebugLoc dl = Op.getDebugLoc();
   6919   // FP constant to bias correct the final result.
   6920   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
   6921                                    MVT::f64);
   6922 
   6923   // Load the 32-bit value into an XMM register.
   6924   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   6925                              DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   6926                                          Op.getOperand(0),
   6927                                          DAG.getIntPtrConstant(0)));
   6928 
   6929   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   6930                      DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
   6931                      DAG.getIntPtrConstant(0));
   6932 
   6933   // Or the load with the bias.
   6934   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
   6935                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   6936                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   6937                                                    MVT::v2f64, Load)),
   6938                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   6939                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   6940                                                    MVT::v2f64, Bias)));
   6941   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   6942                    DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
   6943                    DAG.getIntPtrConstant(0));
   6944 
   6945   // Subtract the bias.
   6946   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
   6947 
   6948   // Handle final rounding.
   6949   EVT DestVT = Op.getValueType();
   6950 
   6951   if (DestVT.bitsLT(MVT::f64)) {
   6952     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
   6953                        DAG.getIntPtrConstant(0));
   6954   } else if (DestVT.bitsGT(MVT::f64)) {
   6955     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
   6956   }
   6957 
   6958   // Handle final rounding.
   6959   return Sub;
   6960 }
   6961 
   6962 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   6963                                            SelectionDAG &DAG) const {
   6964   SDValue N0 = Op.getOperand(0);
   6965   DebugLoc dl = Op.getDebugLoc();
   6966 
   6967   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
   6968   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
   6969   // the optimization here.
   6970   if (DAG.SignBitIsZero(N0))
   6971     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
   6972 
   6973   EVT SrcVT = N0.getValueType();
   6974   EVT DstVT = Op.getValueType();
   6975   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
   6976     return LowerUINT_TO_FP_i64(Op, DAG);
   6977   else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
   6978     return LowerUINT_TO_FP_i32(Op, DAG);
   6979 
   6980   // Make a 64-bit buffer, and use it to build an FILD.
   6981   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
   6982   if (SrcVT == MVT::i32) {
   6983     SDValue WordOff = DAG.getConstant(4, getPointerTy());
   6984     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
   6985                                      getPointerTy(), StackSlot, WordOff);
   6986     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   6987                                   StackSlot, MachinePointerInfo(),
   6988                                   false, false, 0);
   6989     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
   6990                                   OffsetSlot, MachinePointerInfo(),
   6991                                   false, false, 0);
   6992     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
   6993     return Fild;
   6994   }
   6995 
   6996   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
   6997   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   6998                                 StackSlot, MachinePointerInfo(),
   6999                                false, false, 0);
   7000   // For i64 source, we need to add the appropriate power of 2 if the input
   7001   // was negative.  This is the same as the optimization in
   7002   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
   7003   // we must be careful to do the computation in x87 extended precision, not
   7004   // in SSE. (The generic code can't know it's OK to do this, or how to.)
   7005   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
   7006   MachineMemOperand *MMO =
   7007     DAG.getMachineFunction()
   7008     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7009                           MachineMemOperand::MOLoad, 8, 8);
   7010 
   7011   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
   7012   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
   7013   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
   7014                                          MVT::i64, MMO);
   7015 
   7016   APInt FF(32, 0x5F800000ULL);
   7017 
   7018   // Check whether the sign bit is set.
   7019   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
   7020                                  Op.getOperand(0), DAG.getConstant(0, MVT::i64),
   7021                                  ISD::SETLT);
   7022 
   7023   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
   7024   SDValue FudgePtr = DAG.getConstantPool(
   7025                              ConstantInt::get(*DAG.getContext(), FF.zext(64)),
   7026                                          getPointerTy());
   7027 
   7028   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
   7029   SDValue Zero = DAG.getIntPtrConstant(0);
   7030   SDValue Four = DAG.getIntPtrConstant(4);
   7031   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
   7032                                Zero, Four);
   7033   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
   7034 
   7035   // Load the value out, extending it from f32 to f80.
   7036   // FIXME: Avoid the extend by constructing the right constant pool?
   7037   SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
   7038                                  FudgePtr, MachinePointerInfo::getConstantPool(),
   7039                                  MVT::f32, false, false, 4);
   7040   // Extend everything to 80 bits to force it to be done on x87.
   7041   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
   7042   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
   7043 }
   7044 
   7045 std::pair<SDValue,SDValue> X86TargetLowering::
   7046 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
   7047   DebugLoc DL = Op.getDebugLoc();
   7048 
   7049   EVT DstTy = Op.getValueType();
   7050 
   7051   if (!IsSigned) {
   7052     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
   7053     DstTy = MVT::i64;
   7054   }
   7055 
   7056   assert(DstTy.getSimpleVT() <= MVT::i64 &&
   7057          DstTy.getSimpleVT() >= MVT::i16 &&
   7058          "Unknown FP_TO_SINT to lower!");
   7059 
   7060   // These are really Legal.
   7061   if (DstTy == MVT::i32 &&
   7062       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   7063     return std::make_pair(SDValue(), SDValue());
   7064   if (Subtarget->is64Bit() &&
   7065       DstTy == MVT::i64 &&
   7066       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   7067     return std::make_pair(SDValue(), SDValue());
   7068 
   7069   // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
   7070   // stack slot.
   7071   MachineFunction &MF = DAG.getMachineFunction();
   7072   unsigned MemSize = DstTy.getSizeInBits()/8;
   7073   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   7074   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7075 
   7076 
   7077 
   7078   unsigned Opc;
   7079   switch (DstTy.getSimpleVT().SimpleTy) {
   7080   default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
   7081   case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
   7082   case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
   7083   case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
   7084   }
   7085 
   7086   SDValue Chain = DAG.getEntryNode();
   7087   SDValue Value = Op.getOperand(0);
   7088   EVT TheVT = Op.getOperand(0).getValueType();
   7089   if (isScalarFPTypeInSSEReg(TheVT)) {
   7090     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
   7091     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
   7092                          MachinePointerInfo::getFixedStack(SSFI),
   7093                          false, false, 0);
   7094     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
   7095     SDValue Ops[] = {
   7096       Chain, StackSlot, DAG.getValueType(TheVT)
   7097     };
   7098 
   7099     MachineMemOperand *MMO =
   7100       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7101                               MachineMemOperand::MOLoad, MemSize, MemSize);
   7102     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
   7103                                     DstTy, MMO);
   7104     Chain = Value.getValue(1);
   7105     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   7106     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7107   }
   7108 
   7109   MachineMemOperand *MMO =
   7110     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7111                             MachineMemOperand::MOStore, MemSize, MemSize);
   7112 
   7113   // Build the FP_TO_INT*_IN_MEM
   7114   SDValue Ops[] = { Chain, Value, StackSlot };
   7115   SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
   7116                                          Ops, 3, DstTy, MMO);
   7117 
   7118   return std::make_pair(FIST, StackSlot);
   7119 }
   7120 
   7121 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
   7122                                            SelectionDAG &DAG) const {
   7123   if (Op.getValueType().isVector())
   7124     return SDValue();
   7125 
   7126   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
   7127   SDValue FIST = Vals.first, StackSlot = Vals.second;
   7128   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
   7129   if (FIST.getNode() == 0) return Op;
   7130 
   7131   // Load the result.
   7132   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   7133                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
   7134 }
   7135 
   7136 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
   7137                                            SelectionDAG &DAG) const {
   7138   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
   7139   SDValue FIST = Vals.first, StackSlot = Vals.second;
   7140   assert(FIST.getNode() && "Unexpected failure");
   7141 
   7142   // Load the result.
   7143   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   7144                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
   7145 }
   7146 
   7147 SDValue X86TargetLowering::LowerFABS(SDValue Op,
   7148                                      SelectionDAG &DAG) const {
   7149   LLVMContext *Context = DAG.getContext();
   7150   DebugLoc dl = Op.getDebugLoc();
   7151   EVT VT = Op.getValueType();
   7152   EVT EltVT = VT;
   7153   if (VT.isVector())
   7154     EltVT = VT.getVectorElementType();
   7155   std::vector<Constant*> CV;
   7156   if (EltVT == MVT::f64) {
   7157     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
   7158     CV.push_back(C);
   7159     CV.push_back(C);
   7160   } else {
   7161     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
   7162     CV.push_back(C);
   7163     CV.push_back(C);
   7164     CV.push_back(C);
   7165     CV.push_back(C);
   7166   }
   7167   Constant *C = ConstantVector::get(CV);
   7168   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   7169   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   7170                              MachinePointerInfo::getConstantPool(),
   7171                              false, false, 16);
   7172   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
   7173 }
   7174 
   7175 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
   7176   LLVMContext *Context = DAG.getContext();
   7177   DebugLoc dl = Op.getDebugLoc();
   7178   EVT VT = Op.getValueType();
   7179   EVT EltVT = VT;
   7180   if (VT.isVector())
   7181     EltVT = VT.getVectorElementType();
   7182   std::vector<Constant*> CV;
   7183   if (EltVT == MVT::f64) {
   7184     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
   7185     CV.push_back(C);
   7186     CV.push_back(C);
   7187   } else {
   7188     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
   7189     CV.push_back(C);
   7190     CV.push_back(C);
   7191     CV.push_back(C);
   7192     CV.push_back(C);
   7193   }
   7194   Constant *C = ConstantVector::get(CV);
   7195   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   7196   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   7197                              MachinePointerInfo::getConstantPool(),
   7198                              false, false, 16);
   7199   if (VT.isVector()) {
   7200     return DAG.getNode(ISD::BITCAST, dl, VT,
   7201                        DAG.getNode(ISD::XOR, dl, MVT::v2i64,
   7202                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   7203                                 Op.getOperand(0)),
   7204                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
   7205   } else {
   7206     return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
   7207   }
   7208 }
   7209 
   7210 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   7211   LLVMContext *Context = DAG.getContext();
   7212   SDValue Op0 = Op.getOperand(0);
   7213   SDValue Op1 = Op.getOperand(1);
   7214   DebugLoc dl = Op.getDebugLoc();
   7215   EVT VT = Op.getValueType();
   7216   EVT SrcVT = Op1.getValueType();
   7217 
   7218   // If second operand is smaller, extend it first.
   7219   if (SrcVT.bitsLT(VT)) {
   7220     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
   7221     SrcVT = VT;
   7222   }
   7223   // And if it is bigger, shrink it first.
   7224   if (SrcVT.bitsGT(VT)) {
   7225     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
   7226     SrcVT = VT;
   7227   }
   7228 
   7229   // At this point the operands and the result should have the same
   7230   // type, and that won't be f80 since that is not custom lowered.
   7231 
   7232   // First get the sign bit of second operand.
   7233   std::vector<Constant*> CV;
   7234   if (SrcVT == MVT::f64) {
   7235     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
   7236     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   7237   } else {
   7238     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
   7239     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   7240     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   7241     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   7242   }
   7243   Constant *C = ConstantVector::get(CV);
   7244   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   7245   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
   7246                               MachinePointerInfo::getConstantPool(),
   7247                               false, false, 16);
   7248   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
   7249 
   7250   // Shift sign bit right or left if the two operands have different types.
   7251   if (SrcVT.bitsGT(VT)) {
   7252     // Op0 is MVT::f32, Op1 is MVT::f64.
   7253     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
   7254     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
   7255                           DAG.getConstant(32, MVT::i32));
   7256     SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
   7257     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
   7258                           DAG.getIntPtrConstant(0));
   7259   }
   7260 
   7261   // Clear first operand sign bit.
   7262   CV.clear();
   7263   if (VT == MVT::f64) {
   7264     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
   7265     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   7266   } else {
   7267     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
   7268     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   7269     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   7270     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   7271   }
   7272   C = ConstantVector::get(CV);
   7273   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   7274   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   7275                               MachinePointerInfo::getConstantPool(),
   7276                               false, false, 16);
   7277   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
   7278 
   7279   // Or the value with the sign bit.
   7280   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
   7281 }
   7282 
   7283 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
   7284   SDValue N0 = Op.getOperand(0);
   7285   DebugLoc dl = Op.getDebugLoc();
   7286   EVT VT = Op.getValueType();
   7287 
   7288   // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
   7289   SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
   7290                                   DAG.getConstant(1, VT));
   7291   return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
   7292 }
   7293 
   7294 /// Emit nodes that will be selected as "test Op0,Op0", or something
   7295 /// equivalent.
   7296 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
   7297                                     SelectionDAG &DAG) const {
   7298   DebugLoc dl = Op.getDebugLoc();
   7299 
   7300   // CF and OF aren't always set the way we want. Determine which
   7301   // of these we need.
   7302   bool NeedCF = false;
   7303   bool NeedOF = false;
   7304   switch (X86CC) {
   7305   default: break;
   7306   case X86::COND_A: case X86::COND_AE:
   7307   case X86::COND_B: case X86::COND_BE:
   7308     NeedCF = true;
   7309     break;
   7310   case X86::COND_G: case X86::COND_GE:
   7311   case X86::COND_L: case X86::COND_LE:
   7312   case X86::COND_O: case X86::COND_NO:
   7313     NeedOF = true;
   7314     break;
   7315   }
   7316 
   7317   // See if we can use the EFLAGS value from the operand instead of
   7318   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
   7319   // we prove that the arithmetic won't overflow, we can't use OF or CF.
   7320   if (Op.getResNo() != 0 || NeedOF || NeedCF)
   7321     // Emit a CMP with 0, which is the TEST pattern.
   7322     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   7323                        DAG.getConstant(0, Op.getValueType()));
   7324 
   7325   unsigned Opcode = 0;
   7326   unsigned NumOperands = 0;
   7327   switch (Op.getNode()->getOpcode()) {
   7328   case ISD::ADD:
   7329     // Due to an isel shortcoming, be conservative if this add is likely to be
   7330     // selected as part of a load-modify-store instruction. When the root node
   7331     // in a match is a store, isel doesn't know how to remap non-chain non-flag
   7332     // uses of other nodes in the match, such as the ADD in this case. This
   7333     // leads to the ADD being left around and reselected, with the result being
   7334     // two adds in the output.  Alas, even if none our users are stores, that
   7335     // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
   7336     // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
   7337     // climbing the DAG back to the root, and it doesn't seem to be worth the
   7338     // effort.
   7339     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   7340            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   7341       if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
   7342         goto default_case;
   7343 
   7344     if (ConstantSDNode *C =
   7345         dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
   7346       // An add of one will be selected as an INC.
   7347       if (C->getAPIntValue() == 1) {
   7348         Opcode = X86ISD::INC;
   7349         NumOperands = 1;
   7350         break;
   7351       }
   7352 
   7353       // An add of negative one (subtract of one) will be selected as a DEC.
   7354       if (C->getAPIntValue().isAllOnesValue()) {
   7355         Opcode = X86ISD::DEC;
   7356         NumOperands = 1;
   7357         break;
   7358       }
   7359     }
   7360 
   7361     // Otherwise use a regular EFLAGS-setting add.
   7362     Opcode = X86ISD::ADD;
   7363     NumOperands = 2;
   7364     break;
   7365   case ISD::AND: {
   7366     // If the primary and result isn't used, don't bother using X86ISD::AND,
   7367     // because a TEST instruction will be better.
   7368     bool NonFlagUse = false;
   7369     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   7370            UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   7371       SDNode *User = *UI;
   7372       unsigned UOpNo = UI.getOperandNo();
   7373       if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
   7374         // Look pass truncate.
   7375         UOpNo = User->use_begin().getOperandNo();
   7376         User = *User->use_begin();
   7377       }
   7378 
   7379       if (User->getOpcode() != ISD::BRCOND &&
   7380           User->getOpcode() != ISD::SETCC &&
   7381           (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
   7382         NonFlagUse = true;
   7383         break;
   7384       }
   7385     }
   7386 
   7387     if (!NonFlagUse)
   7388       break;
   7389   }
   7390     // FALL THROUGH
   7391   case ISD::SUB:
   7392   case ISD::OR:
   7393   case ISD::XOR:
   7394     // Due to the ISEL shortcoming noted above, be conservative if this op is
   7395     // likely to be selected as part of a load-modify-store instruction.
   7396     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   7397            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   7398       if (UI->getOpcode() == ISD::STORE)
   7399         goto default_case;
   7400 
   7401     // Otherwise use a regular EFLAGS-setting instruction.
   7402     switch (Op.getNode()->getOpcode()) {
   7403     default: llvm_unreachable("unexpected operator!");
   7404     case ISD::SUB: Opcode = X86ISD::SUB; break;
   7405     case ISD::OR:  Opcode = X86ISD::OR;  break;
   7406     case ISD::XOR: Opcode = X86ISD::XOR; break;
   7407     case ISD::AND: Opcode = X86ISD::AND; break;
   7408     }
   7409 
   7410     NumOperands = 2;
   7411     break;
   7412   case X86ISD::ADD:
   7413   case X86ISD::SUB:
   7414   case X86ISD::INC:
   7415   case X86ISD::DEC:
   7416   case X86ISD::OR:
   7417   case X86ISD::XOR:
   7418   case X86ISD::AND:
   7419     return SDValue(Op.getNode(), 1);
   7420   default:
   7421   default_case:
   7422     break;
   7423   }
   7424 
   7425   if (Opcode == 0)
   7426     // Emit a CMP with 0, which is the TEST pattern.
   7427     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   7428                        DAG.getConstant(0, Op.getValueType()));
   7429 
   7430   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   7431   SmallVector<SDValue, 4> Ops;
   7432   for (unsigned i = 0; i != NumOperands; ++i)
   7433     Ops.push_back(Op.getOperand(i));
   7434 
   7435   SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
   7436   DAG.ReplaceAllUsesWith(Op, New);
   7437   return SDValue(New.getNode(), 1);
   7438 }
   7439 
   7440 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
   7441 /// equivalent.
   7442 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
   7443                                    SelectionDAG &DAG) const {
   7444   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
   7445     if (C->getAPIntValue() == 0)
   7446       return EmitTest(Op0, X86CC, DAG);
   7447 
   7448   DebugLoc dl = Op0.getDebugLoc();
   7449   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
   7450 }
   7451 
   7452 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
   7453 /// if it's possible.
   7454 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
   7455                                      DebugLoc dl, SelectionDAG &DAG) const {
   7456   SDValue Op0 = And.getOperand(0);
   7457   SDValue Op1 = And.getOperand(1);
   7458   if (Op0.getOpcode() == ISD::TRUNCATE)
   7459     Op0 = Op0.getOperand(0);
   7460   if (Op1.getOpcode() == ISD::TRUNCATE)
   7461     Op1 = Op1.getOperand(0);
   7462 
   7463   SDValue LHS, RHS;
   7464   if (Op1.getOpcode() == ISD::SHL)
   7465     std::swap(Op0, Op1);
   7466   if (Op0.getOpcode() == ISD::SHL) {
   7467     if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
   7468       if (And00C->getZExtValue() == 1) {
   7469         // If we looked past a truncate, check that it's only truncating away
   7470         // known zeros.
   7471         unsigned BitWidth = Op0.getValueSizeInBits();
   7472         unsigned AndBitWidth = And.getValueSizeInBits();
   7473         if (BitWidth > AndBitWidth) {
   7474           APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
   7475           DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
   7476           if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
   7477             return SDValue();
   7478         }
   7479         LHS = Op1;
   7480         RHS = Op0.getOperand(1);
   7481       }
   7482   } else if (Op1.getOpcode() == ISD::Constant) {
   7483     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
   7484     SDValue AndLHS = Op0;
   7485     if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
   7486       LHS = AndLHS.getOperand(0);
   7487       RHS = AndLHS.getOperand(1);
   7488     }
   7489   }
   7490 
   7491   if (LHS.getNode()) {
   7492     // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
   7493     // instruction.  Since the shift amount is in-range-or-undefined, we know
   7494     // that doing a bittest on the i32 value is ok.  We extend to i32 because
   7495     // the encoding for the i16 version is larger than the i32 version.
   7496     // Also promote i16 to i32 for performance / code size reason.
   7497     if (LHS.getValueType() == MVT::i8 ||
   7498         LHS.getValueType() == MVT::i16)
   7499       LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
   7500 
   7501     // If the operand types disagree, extend the shift amount to match.  Since
   7502     // BT ignores high bits (like shifts) we can use anyextend.
   7503     if (LHS.getValueType() != RHS.getValueType())
   7504       RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
   7505 
   7506     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
   7507     unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
   7508     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   7509                        DAG.getConstant(Cond, MVT::i8), BT);
   7510   }
   7511 
   7512   return SDValue();
   7513 }
   7514 
   7515 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   7516   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
   7517   SDValue Op0 = Op.getOperand(0);
   7518   SDValue Op1 = Op.getOperand(1);
   7519   DebugLoc dl = Op.getDebugLoc();
   7520   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   7521 
   7522   // Optimize to BT if possible.
   7523   // Lower (X & (1 << N)) == 0 to BT(X, N).
   7524   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
   7525   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
   7526   if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
   7527       Op1.getOpcode() == ISD::Constant &&
   7528       cast<ConstantSDNode>(Op1)->isNullValue() &&
   7529       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   7530     SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
   7531     if (NewSetCC.getNode())
   7532       return NewSetCC;
   7533   }
   7534 
   7535   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
   7536   // these.
   7537   if (Op1.getOpcode() == ISD::Constant &&
   7538       (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
   7539        cast<ConstantSDNode>(Op1)->isNullValue()) &&
   7540       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   7541 
   7542     // If the input is a setcc, then reuse the input setcc or use a new one with
   7543     // the inverted condition.
   7544     if (Op0.getOpcode() == X86ISD::SETCC) {
   7545       X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
   7546       bool Invert = (CC == ISD::SETNE) ^
   7547         cast<ConstantSDNode>(Op1)->isNullValue();
   7548       if (!Invert) return Op0;
   7549 
   7550       CCode = X86::GetOppositeBranchCondition(CCode);
   7551       return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   7552                          DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
   7553     }
   7554   }
   7555 
   7556   bool isFP = Op1.getValueType().isFloatingPoint();
   7557   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
   7558   if (X86CC == X86::COND_INVALID)
   7559     return SDValue();
   7560 
   7561   SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
   7562   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   7563                      DAG.getConstant(X86CC, MVT::i8), EFLAGS);
   7564 }
   7565 
   7566 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
   7567   SDValue Cond;
   7568   SDValue Op0 = Op.getOperand(0);
   7569   SDValue Op1 = Op.getOperand(1);
   7570   SDValue CC = Op.getOperand(2);
   7571   EVT VT = Op.getValueType();
   7572   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   7573   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
   7574   DebugLoc dl = Op.getDebugLoc();
   7575 
   7576   if (isFP) {
   7577     unsigned SSECC = 8;
   7578     EVT VT0 = Op0.getValueType();
   7579     assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
   7580     unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
   7581     bool Swap = false;
   7582 
   7583     switch (SetCCOpcode) {
   7584     default: break;
   7585     case ISD::SETOEQ:
   7586     case ISD::SETEQ:  SSECC = 0; break;
   7587     case ISD::SETOGT:
   7588     case ISD::SETGT: Swap = true; // Fallthrough
   7589     case ISD::SETLT:
   7590     case ISD::SETOLT: SSECC = 1; break;
   7591     case ISD::SETOGE:
   7592     case ISD::SETGE: Swap = true; // Fallthrough
   7593     case ISD::SETLE:
   7594     case ISD::SETOLE: SSECC = 2; break;
   7595     case ISD::SETUO:  SSECC = 3; break;
   7596     case ISD::SETUNE:
   7597     case ISD::SETNE:  SSECC = 4; break;
   7598     case ISD::SETULE: Swap = true;
   7599     case ISD::SETUGE: SSECC = 5; break;
   7600     case ISD::SETULT: Swap = true;
   7601     case ISD::SETUGT: SSECC = 6; break;
   7602     case ISD::SETO:   SSECC = 7; break;
   7603     }
   7604     if (Swap)
   7605       std::swap(Op0, Op1);
   7606 
   7607     // In the two special cases we can't handle, emit two comparisons.
   7608     if (SSECC == 8) {
   7609       if (SetCCOpcode == ISD::SETUEQ) {
   7610         SDValue UNORD, EQ;
   7611         UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
   7612         EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
   7613         return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
   7614       }
   7615       else if (SetCCOpcode == ISD::SETONE) {
   7616         SDValue ORD, NEQ;
   7617         ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
   7618         NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
   7619         return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
   7620       }
   7621       llvm_unreachable("Illegal FP comparison");
   7622     }
   7623     // Handle all other FP comparisons here.
   7624     return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
   7625   }
   7626 
   7627   // We are handling one of the integer comparisons here.  Since SSE only has
   7628   // GT and EQ comparisons for integer, swapping operands and multiple
   7629   // operations may be required for some comparisons.
   7630   unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
   7631   bool Swap = false, Invert = false, FlipSigns = false;
   7632 
   7633   switch (VT.getSimpleVT().SimpleTy) {
   7634   default: break;
   7635   case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
   7636   case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
   7637   case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
   7638   case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
   7639   }
   7640 
   7641   switch (SetCCOpcode) {
   7642   default: break;
   7643   case ISD::SETNE:  Invert = true;
   7644   case ISD::SETEQ:  Opc = EQOpc; break;
   7645   case ISD::SETLT:  Swap = true;
   7646   case ISD::SETGT:  Opc = GTOpc; break;
   7647   case ISD::SETGE:  Swap = true;
   7648   case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
   7649   case ISD::SETULT: Swap = true;
   7650   case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
   7651   case ISD::SETUGE: Swap = true;
   7652   case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
   7653   }
   7654   if (Swap)
   7655     std::swap(Op0, Op1);
   7656 
   7657   // Since SSE has no unsigned integer comparisons, we need to flip  the sign
   7658   // bits of the inputs before performing those operations.
   7659   if (FlipSigns) {
   7660     EVT EltVT = VT.getVectorElementType();
   7661     SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
   7662                                       EltVT);
   7663     std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
   7664     SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
   7665                                     SignBits.size());
   7666     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
   7667     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
   7668   }
   7669 
   7670   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   7671 
   7672   // If the logical-not of the result is required, perform that now.
   7673   if (Invert)
   7674     Result = DAG.getNOT(dl, Result, VT);
   7675 
   7676   return Result;
   7677 }
   7678 
   7679 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
   7680 static bool isX86LogicalCmp(SDValue Op) {
   7681   unsigned Opc = Op.getNode()->getOpcode();
   7682   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
   7683     return true;
   7684   if (Op.getResNo() == 1 &&
   7685       (Opc == X86ISD::ADD ||
   7686        Opc == X86ISD::SUB ||
   7687        Opc == X86ISD::ADC ||
   7688        Opc == X86ISD::SBB ||
   7689        Opc == X86ISD::SMUL ||
   7690        Opc == X86ISD::UMUL ||
   7691        Opc == X86ISD::INC ||
   7692        Opc == X86ISD::DEC ||
   7693        Opc == X86ISD::OR ||
   7694        Opc == X86ISD::XOR ||
   7695        Opc == X86ISD::AND))
   7696     return true;
   7697 
   7698   if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
   7699     return true;
   7700 
   7701   return false;
   7702 }
   7703 
   7704 static bool isZero(SDValue V) {
   7705   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   7706   return C && C->isNullValue();
   7707 }
   7708 
   7709 static bool isAllOnes(SDValue V) {
   7710   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   7711   return C && C->isAllOnesValue();
   7712 }
   7713 
   7714 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   7715   bool addTest = true;
   7716   SDValue Cond  = Op.getOperand(0);
   7717   SDValue Op1 = Op.getOperand(1);
   7718   SDValue Op2 = Op.getOperand(2);
   7719   DebugLoc DL = Op.getDebugLoc();
   7720   SDValue CC;
   7721 
   7722   if (Cond.getOpcode() == ISD::SETCC) {
   7723     SDValue NewCond = LowerSETCC(Cond, DAG);
   7724     if (NewCond.getNode())
   7725       Cond = NewCond;
   7726   }
   7727 
   7728   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
   7729   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
   7730   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
   7731   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
   7732   if (Cond.getOpcode() == X86ISD::SETCC &&
   7733       Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
   7734       isZero(Cond.getOperand(1).getOperand(1))) {
   7735     SDValue Cmp = Cond.getOperand(1);
   7736 
   7737     unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
   7738 
   7739     if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
   7740         (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
   7741       SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
   7742 
   7743       SDValue CmpOp0 = Cmp.getOperand(0);
   7744       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
   7745                         CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
   7746 
   7747       SDValue Res =   // Res = 0 or -1.
   7748         DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   7749                     DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
   7750 
   7751       if (isAllOnes(Op1) != (CondCode == X86::COND_E))
   7752         Res = DAG.getNOT(DL, Res, Res.getValueType());
   7753 
   7754       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
   7755       if (N2C == 0 || !N2C->isNullValue())
   7756         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
   7757       return Res;
   7758     }
   7759   }
   7760 
   7761   // Look past (and (setcc_carry (cmp ...)), 1).
   7762   if (Cond.getOpcode() == ISD::AND &&
   7763       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   7764     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   7765     if (C && C->getAPIntValue() == 1)
   7766       Cond = Cond.getOperand(0);
   7767   }
   7768 
   7769   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   7770   // setting operand in place of the X86ISD::SETCC.
   7771   if (Cond.getOpcode() == X86ISD::SETCC ||
   7772       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
   7773     CC = Cond.getOperand(0);
   7774 
   7775     SDValue Cmp = Cond.getOperand(1);
   7776     unsigned Opc = Cmp.getOpcode();
   7777     EVT VT = Op.getValueType();
   7778 
   7779     bool IllegalFPCMov = false;
   7780     if (VT.isFloatingPoint() && !VT.isVector() &&
   7781         !isScalarFPTypeInSSEReg(VT))  // FPStack?
   7782       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
   7783 
   7784     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
   7785         Opc == X86ISD::BT) { // FIXME
   7786       Cond = Cmp;
   7787       addTest = false;
   7788     }
   7789   }
   7790 
   7791   if (addTest) {
   7792     // Look pass the truncate.
   7793     if (Cond.getOpcode() == ISD::TRUNCATE)
   7794       Cond = Cond.getOperand(0);
   7795 
   7796     // We know the result of AND is compared against zero. Try to match
   7797     // it to BT.
   7798     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   7799       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
   7800       if (NewSetCC.getNode()) {
   7801         CC = NewSetCC.getOperand(0);
   7802         Cond = NewSetCC.getOperand(1);
   7803         addTest = false;
   7804       }
   7805     }
   7806   }
   7807 
   7808   if (addTest) {
   7809     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   7810     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   7811   }
   7812 
   7813   // a <  b ? -1 :  0 -> RES = ~setcc_carry
   7814   // a <  b ?  0 : -1 -> RES = setcc_carry
   7815   // a >= b ? -1 :  0 -> RES = setcc_carry
   7816   // a >= b ?  0 : -1 -> RES = ~setcc_carry
   7817   if (Cond.getOpcode() == X86ISD::CMP) {
   7818     unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
   7819 
   7820     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
   7821         (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
   7822       SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   7823                                 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
   7824       if (isAllOnes(Op1) != (CondCode == X86::COND_B))
   7825         return DAG.getNOT(DL, Res, Res.getValueType());
   7826       return Res;
   7827     }
   7828   }
   7829 
   7830   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
   7831   // condition is true.
   7832   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   7833   SDValue Ops[] = { Op2, Op1, CC, Cond };
   7834   return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
   7835 }
   7836 
   7837 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
   7838 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
   7839 // from the AND / OR.
   7840 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
   7841   Opc = Op.getOpcode();
   7842   if (Opc != ISD::OR && Opc != ISD::AND)
   7843     return false;
   7844   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   7845           Op.getOperand(0).hasOneUse() &&
   7846           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
   7847           Op.getOperand(1).hasOneUse());
   7848 }
   7849 
   7850 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
   7851 // 1 and that the SETCC node has a single use.
   7852 static bool isXor1OfSetCC(SDValue Op) {
   7853   if (Op.getOpcode() != ISD::XOR)
   7854     return false;
   7855   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   7856   if (N1C && N1C->getAPIntValue() == 1) {
   7857     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   7858       Op.getOperand(0).hasOneUse();
   7859   }
   7860   return false;
   7861 }
   7862 
   7863 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   7864   bool addTest = true;
   7865   SDValue Chain = Op.getOperand(0);
   7866   SDValue Cond  = Op.getOperand(1);
   7867   SDValue Dest  = Op.getOperand(2);
   7868   DebugLoc dl = Op.getDebugLoc();
   7869   SDValue CC;
   7870 
   7871   if (Cond.getOpcode() == ISD::SETCC) {
   7872     SDValue NewCond = LowerSETCC(Cond, DAG);
   7873     if (NewCond.getNode())
   7874       Cond = NewCond;
   7875   }
   7876 #if 0
   7877   // FIXME: LowerXALUO doesn't handle these!!
   7878   else if (Cond.getOpcode() == X86ISD::ADD  ||
   7879            Cond.getOpcode() == X86ISD::SUB  ||
   7880            Cond.getOpcode() == X86ISD::SMUL ||
   7881            Cond.getOpcode() == X86ISD::UMUL)
   7882     Cond = LowerXALUO(Cond, DAG);
   7883 #endif
   7884 
   7885   // Look pass (and (setcc_carry (cmp ...)), 1).
   7886   if (Cond.getOpcode() == ISD::AND &&
   7887       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   7888     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   7889     if (C && C->getAPIntValue() == 1)
   7890       Cond = Cond.getOperand(0);
   7891   }
   7892 
   7893   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   7894   // setting operand in place of the X86ISD::SETCC.
   7895   if (Cond.getOpcode() == X86ISD::SETCC ||
   7896       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
   7897     CC = Cond.getOperand(0);
   7898 
   7899     SDValue Cmp = Cond.getOperand(1);
   7900     unsigned Opc = Cmp.getOpcode();
   7901     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
   7902     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
   7903       Cond = Cmp;
   7904       addTest = false;
   7905     } else {
   7906       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
   7907       default: break;
   7908       case X86::COND_O:
   7909       case X86::COND_B:
   7910         // These can only come from an arithmetic instruction with overflow,
   7911         // e.g. SADDO, UADDO.
   7912         Cond = Cond.getNode()->getOperand(1);
   7913         addTest = false;
   7914         break;
   7915       }
   7916     }
   7917   } else {
   7918     unsigned CondOpc;
   7919     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
   7920       SDValue Cmp = Cond.getOperand(0).getOperand(1);
   7921       if (CondOpc == ISD::OR) {
   7922         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
   7923         // two branches instead of an explicit OR instruction with a
   7924         // separate test.
   7925         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   7926             isX86LogicalCmp(Cmp)) {
   7927           CC = Cond.getOperand(0).getOperand(0);
   7928           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   7929                               Chain, Dest, CC, Cmp);
   7930           CC = Cond.getOperand(1).getOperand(0);
   7931           Cond = Cmp;
   7932           addTest = false;
   7933         }
   7934       } else { // ISD::AND
   7935         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
   7936         // two branches instead of an explicit AND instruction with a
   7937         // separate test. However, we only do this if this block doesn't
   7938         // have a fall-through edge, because this requires an explicit
   7939         // jmp when the condition is false.
   7940         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   7941             isX86LogicalCmp(Cmp) &&
   7942             Op.getNode()->hasOneUse()) {
   7943           X86::CondCode CCode =
   7944             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   7945           CCode = X86::GetOppositeBranchCondition(CCode);
   7946           CC = DAG.getConstant(CCode, MVT::i8);
   7947           SDNode *User = *Op.getNode()->use_begin();
   7948           // Look for an unconditional branch following this conditional branch.
   7949           // We need this because we need to reverse the successors in order
   7950           // to implement FCMP_OEQ.
   7951           if (User->getOpcode() == ISD::BR) {
   7952             SDValue FalseBB = User->getOperand(1);
   7953             SDNode *NewBR =
   7954               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   7955             assert(NewBR == User);
   7956             (void)NewBR;
   7957             Dest = FalseBB;
   7958 
   7959             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   7960                                 Chain, Dest, CC, Cmp);
   7961             X86::CondCode CCode =
   7962               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
   7963             CCode = X86::GetOppositeBranchCondition(CCode);
   7964             CC = DAG.getConstant(CCode, MVT::i8);
   7965             Cond = Cmp;
   7966             addTest = false;
   7967           }
   7968         }
   7969       }
   7970     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
   7971       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
   7972       // It should be transformed during dag combiner except when the condition
   7973       // is set by a arithmetics with overflow node.
   7974       X86::CondCode CCode =
   7975         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   7976       CCode = X86::GetOppositeBranchCondition(CCode);
   7977       CC = DAG.getConstant(CCode, MVT::i8);
   7978       Cond = Cond.getOperand(0).getOperand(1);
   7979       addTest = false;
   7980     }
   7981   }
   7982 
   7983   if (addTest) {
   7984     // Look pass the truncate.
   7985     if (Cond.getOpcode() == ISD::TRUNCATE)
   7986       Cond = Cond.getOperand(0);
   7987 
   7988     // We know the result of AND is compared against zero. Try to match
   7989     // it to BT.
   7990     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   7991       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
   7992       if (NewSetCC.getNode()) {
   7993         CC = NewSetCC.getOperand(0);
   7994         Cond = NewSetCC.getOperand(1);
   7995         addTest = false;
   7996       }
   7997     }
   7998   }
   7999 
   8000   if (addTest) {
   8001     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   8002     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   8003   }
   8004   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   8005                      Chain, Dest, CC, Cond);
   8006 }
   8007 
   8008 
   8009 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
   8010 // Calls to _alloca is needed to probe the stack when allocating more than 4k
   8011 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
   8012 // that the guard pages used by the OS virtual memory manager are allocated in
   8013 // correct sequence.
   8014 SDValue
   8015 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   8016                                            SelectionDAG &DAG) const {
   8017   assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
   8018          "This should be used only on Windows targets");
   8019   assert(!Subtarget->isTargetEnvMacho());
   8020   DebugLoc dl = Op.getDebugLoc();
   8021 
   8022   // Get the inputs.
   8023   SDValue Chain = Op.getOperand(0);
   8024   SDValue Size  = Op.getOperand(1);
   8025   // FIXME: Ensure alignment here
   8026 
   8027   SDValue Flag;
   8028 
   8029   EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
   8030   unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
   8031 
   8032   Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
   8033   Flag = Chain.getValue(1);
   8034 
   8035   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   8036 
   8037   Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
   8038   Flag = Chain.getValue(1);
   8039 
   8040   Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
   8041 
   8042   SDValue Ops1[2] = { Chain.getValue(0), Chain };
   8043   return DAG.getMergeValues(Ops1, 2, dl);
   8044 }
   8045 
   8046 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   8047   MachineFunction &MF = DAG.getMachineFunction();
   8048   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   8049 
   8050   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   8051   DebugLoc DL = Op.getDebugLoc();
   8052 
   8053   if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
   8054     // vastart just stores the address of the VarArgsFrameIndex slot into the
   8055     // memory location argument.
   8056     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   8057                                    getPointerTy());
   8058     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
   8059                         MachinePointerInfo(SV), false, false, 0);
   8060   }
   8061 
   8062   // __va_list_tag:
   8063   //   gp_offset         (0 - 6 * 8)
   8064   //   fp_offset         (48 - 48 + 8 * 16)
   8065   //   overflow_arg_area (point to parameters coming in memory).
   8066   //   reg_save_area
   8067   SmallVector<SDValue, 8> MemOps;
   8068   SDValue FIN = Op.getOperand(1);
   8069   // Store gp_offset
   8070   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
   8071                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
   8072                                                MVT::i32),
   8073                                FIN, MachinePointerInfo(SV), false, false, 0);
   8074   MemOps.push_back(Store);
   8075 
   8076   // Store fp_offset
   8077   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   8078                     FIN, DAG.getIntPtrConstant(4));
   8079   Store = DAG.getStore(Op.getOperand(0), DL,
   8080                        DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
   8081                                        MVT::i32),
   8082                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
   8083   MemOps.push_back(Store);
   8084 
   8085   // Store ptr to overflow_arg_area
   8086   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   8087                     FIN, DAG.getIntPtrConstant(4));
   8088   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   8089                                     getPointerTy());
   8090   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
   8091                        MachinePointerInfo(SV, 8),
   8092                        false, false, 0);
   8093   MemOps.push_back(Store);
   8094 
   8095   // Store ptr to reg_save_area.
   8096   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   8097                     FIN, DAG.getIntPtrConstant(8));
   8098   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   8099                                     getPointerTy());
   8100   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
   8101                        MachinePointerInfo(SV, 16), false, false, 0);
   8102   MemOps.push_back(Store);
   8103   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   8104                      &MemOps[0], MemOps.size());
   8105 }
   8106 
   8107 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   8108   assert(Subtarget->is64Bit() &&
   8109          "LowerVAARG only handles 64-bit va_arg!");
   8110   assert((Subtarget->isTargetLinux() ||
   8111           Subtarget->isTargetDarwin()) &&
   8112           "Unhandled target in LowerVAARG");
   8113   assert(Op.getNode()->getNumOperands() == 4);
   8114   SDValue Chain = Op.getOperand(0);
   8115   SDValue SrcPtr = Op.getOperand(1);
   8116   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   8117   unsigned Align = Op.getConstantOperandVal(3);
   8118   DebugLoc dl = Op.getDebugLoc();
   8119 
   8120   EVT ArgVT = Op.getNode()->getValueType(0);
   8121   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   8122   uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
   8123   uint8_t ArgMode;
   8124 
   8125   // Decide which area this value should be read from.
   8126   // TODO: Implement the AMD64 ABI in its entirety. This simple
   8127   // selection mechanism works only for the basic types.
   8128   if (ArgVT == MVT::f80) {
   8129     llvm_unreachable("va_arg for f80 not yet implemented");
   8130   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
   8131     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
   8132   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
   8133     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
   8134   } else {
   8135     llvm_unreachable("Unhandled argument type in LowerVAARG");
   8136   }
   8137 
   8138   if (ArgMode == 2) {
   8139     // Sanity Check: Make sure using fp_offset makes sense.
   8140     assert(!UseSoftFloat &&
   8141            !(DAG.getMachineFunction()
   8142                 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
   8143            Subtarget->hasXMM());
   8144   }
   8145 
   8146   // Insert VAARG_64 node into the DAG
   8147   // VAARG_64 returns two values: Variable Argument Address, Chain
   8148   SmallVector<SDValue, 11> InstOps;
   8149   InstOps.push_back(Chain);
   8150   InstOps.push_back(SrcPtr);
   8151   InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
   8152   InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
   8153   InstOps.push_back(DAG.getConstant(Align, MVT::i32));
   8154   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
   8155   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
   8156                                           VTs, &InstOps[0], InstOps.size(),
   8157                                           MVT::i64,
   8158                                           MachinePointerInfo(SV),
   8159                                           /*Align=*/0,
   8160                                           /*Volatile=*/false,
   8161                                           /*ReadMem=*/true,
   8162                                           /*WriteMem=*/true);
   8163   Chain = VAARG.getValue(1);
   8164 
   8165   // Load the next argument and return it
   8166   return DAG.getLoad(ArgVT, dl,
   8167                      Chain,
   8168                      VAARG,
   8169                      MachinePointerInfo(),
   8170                      false, false, 0);
   8171 }
   8172 
   8173 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
   8174   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
   8175   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
   8176   SDValue Chain = Op.getOperand(0);
   8177   SDValue DstPtr = Op.getOperand(1);
   8178   SDValue SrcPtr = Op.getOperand(2);
   8179   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   8180   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   8181   DebugLoc DL = Op.getDebugLoc();
   8182 
   8183   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
   8184                        DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
   8185                        false,
   8186                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   8187 }
   8188 
   8189 SDValue
   8190 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
   8191   DebugLoc dl = Op.getDebugLoc();
   8192   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   8193   switch (IntNo) {
   8194   default: return SDValue();    // Don't custom lower most intrinsics.
   8195   // Comparison intrinsics.
   8196   case Intrinsic::x86_sse_comieq_ss:
   8197   case Intrinsic::x86_sse_comilt_ss:
   8198   case Intrinsic::x86_sse_comile_ss:
   8199   case Intrinsic::x86_sse_comigt_ss:
   8200   case Intrinsic::x86_sse_comige_ss:
   8201   case Intrinsic::x86_sse_comineq_ss:
   8202   case Intrinsic::x86_sse_ucomieq_ss:
   8203   case Intrinsic::x86_sse_ucomilt_ss:
   8204   case Intrinsic::x86_sse_ucomile_ss:
   8205   case Intrinsic::x86_sse_ucomigt_ss:
   8206   case Intrinsic::x86_sse_ucomige_ss:
   8207   case Intrinsic::x86_sse_ucomineq_ss:
   8208   case Intrinsic::x86_sse2_comieq_sd:
   8209   case Intrinsic::x86_sse2_comilt_sd:
   8210   case Intrinsic::x86_sse2_comile_sd:
   8211   case Intrinsic::x86_sse2_comigt_sd:
   8212   case Intrinsic::x86_sse2_comige_sd:
   8213   case Intrinsic::x86_sse2_comineq_sd:
   8214   case Intrinsic::x86_sse2_ucomieq_sd:
   8215   case Intrinsic::x86_sse2_ucomilt_sd:
   8216   case Intrinsic::x86_sse2_ucomile_sd:
   8217   case Intrinsic::x86_sse2_ucomigt_sd:
   8218   case Intrinsic::x86_sse2_ucomige_sd:
   8219   case Intrinsic::x86_sse2_ucomineq_sd: {
   8220     unsigned Opc = 0;
   8221     ISD::CondCode CC = ISD::SETCC_INVALID;
   8222     switch (IntNo) {
   8223     default: break;
   8224     case Intrinsic::x86_sse_comieq_ss:
   8225     case Intrinsic::x86_sse2_comieq_sd:
   8226       Opc = X86ISD::COMI;
   8227       CC = ISD::SETEQ;
   8228       break;
   8229     case Intrinsic::x86_sse_comilt_ss:
   8230     case Intrinsic::x86_sse2_comilt_sd:
   8231       Opc = X86ISD::COMI;
   8232       CC = ISD::SETLT;
   8233       break;
   8234     case Intrinsic::x86_sse_comile_ss:
   8235     case Intrinsic::x86_sse2_comile_sd:
   8236       Opc = X86ISD::COMI;
   8237       CC = ISD::SETLE;
   8238       break;
   8239     case Intrinsic::x86_sse_comigt_ss:
   8240     case Intrinsic::x86_sse2_comigt_sd:
   8241       Opc = X86ISD::COMI;
   8242       CC = ISD::SETGT;
   8243       break;
   8244     case Intrinsic::x86_sse_comige_ss:
   8245     case Intrinsic::x86_sse2_comige_sd:
   8246       Opc = X86ISD::COMI;
   8247       CC = ISD::SETGE;
   8248       break;
   8249     case Intrinsic::x86_sse_comineq_ss:
   8250     case Intrinsic::x86_sse2_comineq_sd:
   8251       Opc = X86ISD::COMI;
   8252       CC = ISD::SETNE;
   8253       break;
   8254     case Intrinsic::x86_sse_ucomieq_ss:
   8255     case Intrinsic::x86_sse2_ucomieq_sd:
   8256       Opc = X86ISD::UCOMI;
   8257       CC = ISD::SETEQ;
   8258       break;
   8259     case Intrinsic::x86_sse_ucomilt_ss:
   8260     case Intrinsic::x86_sse2_ucomilt_sd:
   8261       Opc = X86ISD::UCOMI;
   8262       CC = ISD::SETLT;
   8263       break;
   8264     case Intrinsic::x86_sse_ucomile_ss:
   8265     case Intrinsic::x86_sse2_ucomile_sd:
   8266       Opc = X86ISD::UCOMI;
   8267       CC = ISD::SETLE;
   8268       break;
   8269     case Intrinsic::x86_sse_ucomigt_ss:
   8270     case Intrinsic::x86_sse2_ucomigt_sd:
   8271       Opc = X86ISD::UCOMI;
   8272       CC = ISD::SETGT;
   8273       break;
   8274     case Intrinsic::x86_sse_ucomige_ss:
   8275     case Intrinsic::x86_sse2_ucomige_sd:
   8276       Opc = X86ISD::UCOMI;
   8277       CC = ISD::SETGE;
   8278       break;
   8279     case Intrinsic::x86_sse_ucomineq_ss:
   8280     case Intrinsic::x86_sse2_ucomineq_sd:
   8281       Opc = X86ISD::UCOMI;
   8282       CC = ISD::SETNE;
   8283       break;
   8284     }
   8285 
   8286     SDValue LHS = Op.getOperand(1);
   8287     SDValue RHS = Op.getOperand(2);
   8288     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
   8289     assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
   8290     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
   8291     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8292                                 DAG.getConstant(X86CC, MVT::i8), Cond);
   8293     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   8294   }
   8295   // ptest and testp intrinsics. The intrinsic these come from are designed to
   8296   // return an integer value, not just an instruction so lower it to the ptest
   8297   // or testp pattern and a setcc for the result.
   8298   case Intrinsic::x86_sse41_ptestz:
   8299   case Intrinsic::x86_sse41_ptestc:
   8300   case Intrinsic::x86_sse41_ptestnzc:
   8301   case Intrinsic::x86_avx_ptestz_256:
   8302   case Intrinsic::x86_avx_ptestc_256:
   8303   case Intrinsic::x86_avx_ptestnzc_256:
   8304   case Intrinsic::x86_avx_vtestz_ps:
   8305   case Intrinsic::x86_avx_vtestc_ps:
   8306   case Intrinsic::x86_avx_vtestnzc_ps:
   8307   case Intrinsic::x86_avx_vtestz_pd:
   8308   case Intrinsic::x86_avx_vtestc_pd:
   8309   case Intrinsic::x86_avx_vtestnzc_pd:
   8310   case Intrinsic::x86_avx_vtestz_ps_256:
   8311   case Intrinsic::x86_avx_vtestc_ps_256:
   8312   case Intrinsic::x86_avx_vtestnzc_ps_256:
   8313   case Intrinsic::x86_avx_vtestz_pd_256:
   8314   case Intrinsic::x86_avx_vtestc_pd_256:
   8315   case Intrinsic::x86_avx_vtestnzc_pd_256: {
   8316     bool IsTestPacked = false;
   8317     unsigned X86CC = 0;
   8318     switch (IntNo) {
   8319     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
   8320     case Intrinsic::x86_avx_vtestz_ps:
   8321     case Intrinsic::x86_avx_vtestz_pd:
   8322     case Intrinsic::x86_avx_vtestz_ps_256:
   8323     case Intrinsic::x86_avx_vtestz_pd_256:
   8324       IsTestPacked = true; // Fallthrough
   8325     case Intrinsic::x86_sse41_ptestz:
   8326     case Intrinsic::x86_avx_ptestz_256:
   8327       // ZF = 1
   8328       X86CC = X86::COND_E;
   8329       break;
   8330     case Intrinsic::x86_avx_vtestc_ps:
   8331     case Intrinsic::x86_avx_vtestc_pd:
   8332     case Intrinsic::x86_avx_vtestc_ps_256:
   8333     case Intrinsic::x86_avx_vtestc_pd_256:
   8334       IsTestPacked = true; // Fallthrough
   8335     case Intrinsic::x86_sse41_ptestc:
   8336     case Intrinsic::x86_avx_ptestc_256:
   8337       // CF = 1
   8338       X86CC = X86::COND_B;
   8339       break;
   8340     case Intrinsic::x86_avx_vtestnzc_ps:
   8341     case Intrinsic::x86_avx_vtestnzc_pd:
   8342     case Intrinsic::x86_avx_vtestnzc_ps_256:
   8343     case Intrinsic::x86_avx_vtestnzc_pd_256:
   8344       IsTestPacked = true; // Fallthrough
   8345     case Intrinsic::x86_sse41_ptestnzc:
   8346     case Intrinsic::x86_avx_ptestnzc_256:
   8347       // ZF and CF = 0
   8348       X86CC = X86::COND_A;
   8349       break;
   8350     }
   8351 
   8352     SDValue LHS = Op.getOperand(1);
   8353     SDValue RHS = Op.getOperand(2);
   8354     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
   8355     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
   8356     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
   8357     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
   8358     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   8359   }
   8360 
   8361   // Fix vector shift instructions where the last operand is a non-immediate
   8362   // i32 value.
   8363   case Intrinsic::x86_sse2_pslli_w:
   8364   case Intrinsic::x86_sse2_pslli_d:
   8365   case Intrinsic::x86_sse2_pslli_q:
   8366   case Intrinsic::x86_sse2_psrli_w:
   8367   case Intrinsic::x86_sse2_psrli_d:
   8368   case Intrinsic::x86_sse2_psrli_q:
   8369   case Intrinsic::x86_sse2_psrai_w:
   8370   case Intrinsic::x86_sse2_psrai_d:
   8371   case Intrinsic::x86_mmx_pslli_w:
   8372   case Intrinsic::x86_mmx_pslli_d:
   8373   case Intrinsic::x86_mmx_pslli_q:
   8374   case Intrinsic::x86_mmx_psrli_w:
   8375   case Intrinsic::x86_mmx_psrli_d:
   8376   case Intrinsic::x86_mmx_psrli_q:
   8377   case Intrinsic::x86_mmx_psrai_w:
   8378   case Intrinsic::x86_mmx_psrai_d: {
   8379     SDValue ShAmt = Op.getOperand(2);
   8380     if (isa<ConstantSDNode>(ShAmt))
   8381       return SDValue();
   8382 
   8383     unsigned NewIntNo = 0;
   8384     EVT ShAmtVT = MVT::v4i32;
   8385     switch (IntNo) {
   8386     case Intrinsic::x86_sse2_pslli_w:
   8387       NewIntNo = Intrinsic::x86_sse2_psll_w;
   8388       break;
   8389     case Intrinsic::x86_sse2_pslli_d:
   8390       NewIntNo = Intrinsic::x86_sse2_psll_d;
   8391       break;
   8392     case Intrinsic::x86_sse2_pslli_q:
   8393       NewIntNo = Intrinsic::x86_sse2_psll_q;
   8394       break;
   8395     case Intrinsic::x86_sse2_psrli_w:
   8396       NewIntNo = Intrinsic::x86_sse2_psrl_w;
   8397       break;
   8398     case Intrinsic::x86_sse2_psrli_d:
   8399       NewIntNo = Intrinsic::x86_sse2_psrl_d;
   8400       break;
   8401     case Intrinsic::x86_sse2_psrli_q:
   8402       NewIntNo = Intrinsic::x86_sse2_psrl_q;
   8403       break;
   8404     case Intrinsic::x86_sse2_psrai_w:
   8405       NewIntNo = Intrinsic::x86_sse2_psra_w;
   8406       break;
   8407     case Intrinsic::x86_sse2_psrai_d:
   8408       NewIntNo = Intrinsic::x86_sse2_psra_d;
   8409       break;
   8410     default: {
   8411       ShAmtVT = MVT::v2i32;
   8412       switch (IntNo) {
   8413       case Intrinsic::x86_mmx_pslli_w:
   8414         NewIntNo = Intrinsic::x86_mmx_psll_w;
   8415         break;
   8416       case Intrinsic::x86_mmx_pslli_d:
   8417         NewIntNo = Intrinsic::x86_mmx_psll_d;
   8418         break;
   8419       case Intrinsic::x86_mmx_pslli_q:
   8420         NewIntNo = Intrinsic::x86_mmx_psll_q;
   8421         break;
   8422       case Intrinsic::x86_mmx_psrli_w:
   8423         NewIntNo = Intrinsic::x86_mmx_psrl_w;
   8424         break;
   8425       case Intrinsic::x86_mmx_psrli_d:
   8426         NewIntNo = Intrinsic::x86_mmx_psrl_d;
   8427         break;
   8428       case Intrinsic::x86_mmx_psrli_q:
   8429         NewIntNo = Intrinsic::x86_mmx_psrl_q;
   8430         break;
   8431       case Intrinsic::x86_mmx_psrai_w:
   8432         NewIntNo = Intrinsic::x86_mmx_psra_w;
   8433         break;
   8434       case Intrinsic::x86_mmx_psrai_d:
   8435         NewIntNo = Intrinsic::x86_mmx_psra_d;
   8436         break;
   8437       default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   8438       }
   8439       break;
   8440     }
   8441     }
   8442 
   8443     // The vector shift intrinsics with scalars uses 32b shift amounts but
   8444     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   8445     // to be zero.
   8446     SDValue ShOps[4];
   8447     ShOps[0] = ShAmt;
   8448     ShOps[1] = DAG.getConstant(0, MVT::i32);
   8449     if (ShAmtVT == MVT::v4i32) {
   8450       ShOps[2] = DAG.getUNDEF(MVT::i32);
   8451       ShOps[3] = DAG.getUNDEF(MVT::i32);
   8452       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
   8453     } else {
   8454       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
   8455 // FIXME this must be lowered to get rid of the invalid type.
   8456     }
   8457 
   8458     EVT VT = Op.getValueType();
   8459     ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
   8460     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8461                        DAG.getConstant(NewIntNo, MVT::i32),
   8462                        Op.getOperand(1), ShAmt);
   8463   }
   8464   }
   8465 }
   8466 
   8467 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
   8468                                            SelectionDAG &DAG) const {
   8469   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   8470   MFI->setReturnAddressIsTaken(true);
   8471 
   8472   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   8473   DebugLoc dl = Op.getDebugLoc();
   8474 
   8475   if (Depth > 0) {
   8476     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   8477     SDValue Offset =
   8478       DAG.getConstant(TD->getPointerSize(),
   8479                       Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
   8480     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   8481                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   8482                                    FrameAddr, Offset),
   8483                        MachinePointerInfo(), false, false, 0);
   8484   }
   8485 
   8486   // Just load the return address.
   8487   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   8488   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   8489                      RetAddrFI, MachinePointerInfo(), false, false, 0);
   8490 }
   8491 
   8492 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   8493   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   8494   MFI->setFrameAddressIsTaken(true);
   8495 
   8496   EVT VT = Op.getValueType();
   8497   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
   8498   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   8499   unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
   8500   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   8501   while (Depth--)
   8502     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   8503                             MachinePointerInfo(),
   8504                             false, false, 0);
   8505   return FrameAddr;
   8506 }
   8507 
   8508 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
   8509                                                      SelectionDAG &DAG) const {
   8510   return DAG.getIntPtrConstant(2*TD->getPointerSize());
   8511 }
   8512 
   8513 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
   8514   MachineFunction &MF = DAG.getMachineFunction();
   8515   SDValue Chain     = Op.getOperand(0);
   8516   SDValue Offset    = Op.getOperand(1);
   8517   SDValue Handler   = Op.getOperand(2);
   8518   DebugLoc dl       = Op.getDebugLoc();
   8519 
   8520   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   8521                                      Subtarget->is64Bit() ? X86::RBP : X86::EBP,
   8522                                      getPointerTy());
   8523   unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
   8524 
   8525   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
   8526                                   DAG.getIntPtrConstant(TD->getPointerSize()));
   8527   StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
   8528   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
   8529                        false, false, 0);
   8530   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
   8531   MF.getRegInfo().addLiveOut(StoreAddrReg);
   8532 
   8533   return DAG.getNode(X86ISD::EH_RETURN, dl,
   8534                      MVT::Other,
   8535                      Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
   8536 }
   8537 
   8538 SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
   8539                                              SelectionDAG &DAG) const {
   8540   SDValue Root = Op.getOperand(0);
   8541   SDValue Trmp = Op.getOperand(1); // trampoline
   8542   SDValue FPtr = Op.getOperand(2); // nested function
   8543   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   8544   DebugLoc dl  = Op.getDebugLoc();
   8545 
   8546   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   8547 
   8548   if (Subtarget->is64Bit()) {
   8549     SDValue OutChains[6];
   8550 
   8551     // Large code-model.
   8552     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
   8553     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
   8554 
   8555     const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
   8556     const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
   8557 
   8558     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
   8559 
   8560     // Load the pointer to the nested function into R11.
   8561     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
   8562     SDValue Addr = Trmp;
   8563     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   8564                                 Addr, MachinePointerInfo(TrmpAddr),
   8565                                 false, false, 0);
   8566 
   8567     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   8568                        DAG.getConstant(2, MVT::i64));
   8569     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
   8570                                 MachinePointerInfo(TrmpAddr, 2),
   8571                                 false, false, 2);
   8572 
   8573     // Load the 'nest' parameter value into R10.
   8574     // R10 is specified in X86CallingConv.td
   8575     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
   8576     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   8577                        DAG.getConstant(10, MVT::i64));
   8578     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   8579                                 Addr, MachinePointerInfo(TrmpAddr, 10),
   8580                                 false, false, 0);
   8581 
   8582     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   8583                        DAG.getConstant(12, MVT::i64));
   8584     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
   8585                                 MachinePointerInfo(TrmpAddr, 12),
   8586                                 false, false, 2);
   8587 
   8588     // Jump to the nested function.
   8589     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
   8590     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   8591                        DAG.getConstant(20, MVT::i64));
   8592     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   8593                                 Addr, MachinePointerInfo(TrmpAddr, 20),
   8594                                 false, false, 0);
   8595 
   8596     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
   8597     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   8598                        DAG.getConstant(22, MVT::i64));
   8599     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
   8600                                 MachinePointerInfo(TrmpAddr, 22),
   8601                                 false, false, 0);
   8602 
   8603     SDValue Ops[] =
   8604       { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
   8605     return DAG.getMergeValues(Ops, 2, dl);
   8606   } else {
   8607     const Function *Func =
   8608       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
   8609     CallingConv::ID CC = Func->getCallingConv();
   8610     unsigned NestReg;
   8611 
   8612     switch (CC) {
   8613     default:
   8614       llvm_unreachable("Unsupported calling convention");
   8615     case CallingConv::C:
   8616     case CallingConv::X86_StdCall: {
   8617       // Pass 'nest' parameter in ECX.
   8618       // Must be kept in sync with X86CallingConv.td
   8619       NestReg = X86::ECX;
   8620 
   8621       // Check that ECX wasn't needed by an 'inreg' parameter.
   8622       FunctionType *FTy = Func->getFunctionType();
   8623       const AttrListPtr &Attrs = Func->getAttributes();
   8624 
   8625       if (!Attrs.isEmpty() && !Func->isVarArg()) {
   8626         unsigned InRegCount = 0;
   8627         unsigned Idx = 1;
   8628 
   8629         for (FunctionType::param_iterator I = FTy->param_begin(),
   8630              E = FTy->param_end(); I != E; ++I, ++Idx)
   8631           if (Attrs.paramHasAttr(Idx, Attribute::InReg))
   8632             // FIXME: should only count parameters that are lowered to integers.
   8633             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
   8634 
   8635         if (InRegCount > 2) {
   8636           report_fatal_error("Nest register in use - reduce number of inreg"
   8637                              " parameters!");
   8638         }
   8639       }
   8640       break;
   8641     }
   8642     case CallingConv::X86_FastCall:
   8643     case CallingConv::X86_ThisCall:
   8644     case CallingConv::Fast:
   8645       // Pass 'nest' parameter in EAX.
   8646       // Must be kept in sync with X86CallingConv.td
   8647       NestReg = X86::EAX;
   8648       break;
   8649     }
   8650 
   8651     SDValue OutChains[4];
   8652     SDValue Addr, Disp;
   8653 
   8654     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   8655                        DAG.getConstant(10, MVT::i32));
   8656     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
   8657 
   8658     // This is storing the opcode for MOV32ri.
   8659     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
   8660     const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
   8661     OutChains[0] = DAG.getStore(Root, dl,
   8662                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
   8663                                 Trmp, MachinePointerInfo(TrmpAddr),
   8664                                 false, false, 0);
   8665 
   8666     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   8667                        DAG.getConstant(1, MVT::i32));
   8668     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
   8669                                 MachinePointerInfo(TrmpAddr, 1),
   8670                                 false, false, 1);
   8671 
   8672     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
   8673     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   8674                        DAG.getConstant(5, MVT::i32));
   8675     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
   8676                                 MachinePointerInfo(TrmpAddr, 5),
   8677                                 false, false, 1);
   8678 
   8679     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   8680                        DAG.getConstant(6, MVT::i32));
   8681     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
   8682                                 MachinePointerInfo(TrmpAddr, 6),
   8683                                 false, false, 1);
   8684 
   8685     SDValue Ops[] =
   8686       { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
   8687     return DAG.getMergeValues(Ops, 2, dl);
   8688   }
   8689 }
   8690 
   8691 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   8692                                             SelectionDAG &DAG) const {
   8693   /*
   8694    The rounding mode is in bits 11:10 of FPSR, and has the following
   8695    settings:
   8696      00 Round to nearest
   8697      01 Round to -inf
   8698      10 Round to +inf
   8699      11 Round to 0
   8700 
   8701   FLT_ROUNDS, on the other hand, expects the following:
   8702     -1 Undefined
   8703      0 Round to 0
   8704      1 Round to nearest
   8705      2 Round to +inf
   8706      3 Round to -inf
   8707 
   8708   To perform the conversion, we do:
   8709     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
   8710   */
   8711 
   8712   MachineFunction &MF = DAG.getMachineFunction();
   8713   const TargetMachine &TM = MF.getTarget();
   8714   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   8715   unsigned StackAlignment = TFI.getStackAlignment();
   8716   EVT VT = Op.getValueType();
   8717   DebugLoc DL = Op.getDebugLoc();
   8718 
   8719   // Save FP Control Word to stack slot
   8720   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
   8721   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   8722 
   8723 
   8724   MachineMemOperand *MMO =
   8725    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8726                            MachineMemOperand::MOStore, 2, 2);
   8727 
   8728   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
   8729   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
   8730                                           DAG.getVTList(MVT::Other),
   8731                                           Ops, 2, MVT::i16, MMO);
   8732 
   8733   // Load FP Control Word from stack slot
   8734   SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
   8735                             MachinePointerInfo(), false, false, 0);
   8736 
   8737   // Transform as necessary
   8738   SDValue CWD1 =
   8739     DAG.getNode(ISD::SRL, DL, MVT::i16,
   8740                 DAG.getNode(ISD::AND, DL, MVT::i16,
   8741                             CWD, DAG.getConstant(0x800, MVT::i16)),
   8742                 DAG.getConstant(11, MVT::i8));
   8743   SDValue CWD2 =
   8744     DAG.getNode(ISD::SRL, DL, MVT::i16,
   8745                 DAG.getNode(ISD::AND, DL, MVT::i16,
   8746                             CWD, DAG.getConstant(0x400, MVT::i16)),
   8747                 DAG.getConstant(9, MVT::i8));
   8748 
   8749   SDValue RetVal =
   8750     DAG.getNode(ISD::AND, DL, MVT::i16,
   8751                 DAG.getNode(ISD::ADD, DL, MVT::i16,
   8752                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
   8753                             DAG.getConstant(1, MVT::i16)),
   8754                 DAG.getConstant(3, MVT::i16));
   8755 
   8756 
   8757   return DAG.getNode((VT.getSizeInBits() < 16 ?
   8758                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
   8759 }
   8760 
   8761 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
   8762   EVT VT = Op.getValueType();
   8763   EVT OpVT = VT;
   8764   unsigned NumBits = VT.getSizeInBits();
   8765   DebugLoc dl = Op.getDebugLoc();
   8766 
   8767   Op = Op.getOperand(0);
   8768   if (VT == MVT::i8) {
   8769     // Zero extend to i32 since there is not an i8 bsr.
   8770     OpVT = MVT::i32;
   8771     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   8772   }
   8773 
   8774   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
   8775   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   8776   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
   8777 
   8778   // If src is zero (i.e. bsr sets ZF), returns NumBits.
   8779   SDValue Ops[] = {
   8780     Op,
   8781     DAG.getConstant(NumBits+NumBits-1, OpVT),
   8782     DAG.getConstant(X86::COND_E, MVT::i8),
   8783     Op.getValue(1)
   8784   };
   8785   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   8786 
   8787   // Finally xor with NumBits-1.
   8788   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
   8789 
   8790   if (VT == MVT::i8)
   8791     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   8792   return Op;
   8793 }
   8794 
   8795 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
   8796   EVT VT = Op.getValueType();
   8797   EVT OpVT = VT;
   8798   unsigned NumBits = VT.getSizeInBits();
   8799   DebugLoc dl = Op.getDebugLoc();
   8800 
   8801   Op = Op.getOperand(0);
   8802   if (VT == MVT::i8) {
   8803     OpVT = MVT::i32;
   8804     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   8805   }
   8806 
   8807   // Issue a bsf (scan bits forward) which also sets EFLAGS.
   8808   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   8809   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
   8810 
   8811   // If src is zero (i.e. bsf sets ZF), returns NumBits.
   8812   SDValue Ops[] = {
   8813     Op,
   8814     DAG.getConstant(NumBits, OpVT),
   8815     DAG.getConstant(X86::COND_E, MVT::i8),
   8816     Op.getValue(1)
   8817   };
   8818   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   8819 
   8820   if (VT == MVT::i8)
   8821     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   8822   return Op;
   8823 }
   8824 
   8825 SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
   8826   EVT VT = Op.getValueType();
   8827   assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
   8828   DebugLoc dl = Op.getDebugLoc();
   8829 
   8830   //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
   8831   //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
   8832   //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
   8833   //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
   8834   //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
   8835   //
   8836   //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
   8837   //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
   8838   //  return AloBlo + AloBhi + AhiBlo;
   8839 
   8840   SDValue A = Op.getOperand(0);
   8841   SDValue B = Op.getOperand(1);
   8842 
   8843   SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8844                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   8845                        A, DAG.getConstant(32, MVT::i32));
   8846   SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8847                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   8848                        B, DAG.getConstant(32, MVT::i32));
   8849   SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8850                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   8851                        A, B);
   8852   SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8853                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   8854                        A, Bhi);
   8855   SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8856                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   8857                        Ahi, B);
   8858   AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8859                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   8860                        AloBhi, DAG.getConstant(32, MVT::i32));
   8861   AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8862                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   8863                        AhiBlo, DAG.getConstant(32, MVT::i32));
   8864   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
   8865   Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
   8866   return Res;
   8867 }
   8868 
   8869 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
   8870 
   8871   EVT VT = Op.getValueType();
   8872   DebugLoc dl = Op.getDebugLoc();
   8873   SDValue R = Op.getOperand(0);
   8874   SDValue Amt = Op.getOperand(1);
   8875 
   8876   LLVMContext *Context = DAG.getContext();
   8877 
   8878   // Must have SSE2.
   8879   if (!Subtarget->hasSSE2()) return SDValue();
   8880 
   8881   // Optimize shl/srl/sra with constant shift amount.
   8882   if (isSplatVector(Amt.getNode())) {
   8883     SDValue SclrAmt = Amt->getOperand(0);
   8884     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
   8885       uint64_t ShiftAmt = C->getZExtValue();
   8886 
   8887       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
   8888        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8889                      DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   8890                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8891 
   8892       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
   8893        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8894                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   8895                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8896 
   8897       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
   8898        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8899                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   8900                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8901 
   8902       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
   8903        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8904                      DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   8905                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8906 
   8907       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
   8908        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8909                      DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
   8910                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8911 
   8912       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
   8913        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8914                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
   8915                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8916 
   8917       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
   8918        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8919                      DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
   8920                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8921 
   8922       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
   8923        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8924                      DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
   8925                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   8926     }
   8927   }
   8928 
   8929   // Lower SHL with variable shift amount.
   8930   // Cannot lower SHL without SSE2 or later.
   8931   if (!Subtarget->hasSSE2()) return SDValue();
   8932 
   8933   if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
   8934     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8935                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   8936                      Op.getOperand(1), DAG.getConstant(23, MVT::i32));
   8937 
   8938     ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
   8939 
   8940     std::vector<Constant*> CV(4, CI);
   8941     Constant *C = ConstantVector::get(CV);
   8942     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8943     SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8944                                  MachinePointerInfo::getConstantPool(),
   8945                                  false, false, 16);
   8946 
   8947     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
   8948     Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
   8949     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
   8950     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
   8951   }
   8952   if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
   8953     // a = a << 5;
   8954     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8955                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   8956                      Op.getOperand(1), DAG.getConstant(5, MVT::i32));
   8957 
   8958     ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
   8959     ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
   8960 
   8961     std::vector<Constant*> CVM1(16, CM1);
   8962     std::vector<Constant*> CVM2(16, CM2);
   8963     Constant *C = ConstantVector::get(CVM1);
   8964     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8965     SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8966                             MachinePointerInfo::getConstantPool(),
   8967                             false, false, 16);
   8968 
   8969     // r = pblendv(r, psllw(r & (char16)15, 4), a);
   8970     M = DAG.getNode(ISD::AND, dl, VT, R, M);
   8971     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8972                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
   8973                     DAG.getConstant(4, MVT::i32));
   8974     R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
   8975     // a += a
   8976     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   8977 
   8978     C = ConstantVector::get(CVM2);
   8979     CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8980     M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8981                     MachinePointerInfo::getConstantPool(),
   8982                     false, false, 16);
   8983 
   8984     // r = pblendv(r, psllw(r & (char16)63, 2), a);
   8985     M = DAG.getNode(ISD::AND, dl, VT, R, M);
   8986     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   8987                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
   8988                     DAG.getConstant(2, MVT::i32));
   8989     R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
   8990     // a += a
   8991     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   8992 
   8993     // return pblendv(r, r+r, a);
   8994     R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
   8995                     R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
   8996     return R;
   8997   }
   8998   return SDValue();
   8999 }
   9000 
   9001 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   9002   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
   9003   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
   9004   // looks for this combo and may remove the "setcc" instruction if the "setcc"
   9005   // has only one use.
   9006   SDNode *N = Op.getNode();
   9007   SDValue LHS = N->getOperand(0);
   9008   SDValue RHS = N->getOperand(1);
   9009   unsigned BaseOp = 0;
   9010   unsigned Cond = 0;
   9011   DebugLoc DL = Op.getDebugLoc();
   9012   switch (Op.getOpcode()) {
   9013   default: llvm_unreachable("Unknown ovf instruction!");
   9014   case ISD::SADDO:
   9015     // A subtract of one will be selected as a INC. Note that INC doesn't
   9016     // set CF, so we can't do this for UADDO.
   9017     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   9018       if (C->isOne()) {
   9019         BaseOp = X86ISD::INC;
   9020         Cond = X86::COND_O;
   9021         break;
   9022       }
   9023     BaseOp = X86ISD::ADD;
   9024     Cond = X86::COND_O;
   9025     break;
   9026   case ISD::UADDO:
   9027     BaseOp = X86ISD::ADD;
   9028     Cond = X86::COND_B;
   9029     break;
   9030   case ISD::SSUBO:
   9031     // A subtract of one will be selected as a DEC. Note that DEC doesn't
   9032     // set CF, so we can't do this for USUBO.
   9033     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   9034       if (C->isOne()) {
   9035         BaseOp = X86ISD::DEC;
   9036         Cond = X86::COND_O;
   9037         break;
   9038       }
   9039     BaseOp = X86ISD::SUB;
   9040     Cond = X86::COND_O;
   9041     break;
   9042   case ISD::USUBO:
   9043     BaseOp = X86ISD::SUB;
   9044     Cond = X86::COND_B;
   9045     break;
   9046   case ISD::SMULO:
   9047     BaseOp = X86ISD::SMUL;
   9048     Cond = X86::COND_O;
   9049     break;
   9050   case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
   9051     SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
   9052                                  MVT::i32);
   9053     SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
   9054 
   9055     SDValue SetCC =
   9056       DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   9057                   DAG.getConstant(X86::COND_O, MVT::i32),
   9058                   SDValue(Sum.getNode(), 2));
   9059 
   9060     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
   9061     return Sum;
   9062   }
   9063   }
   9064 
   9065   // Also sets EFLAGS.
   9066   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
   9067   SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
   9068 
   9069   SDValue SetCC =
   9070     DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
   9071                 DAG.getConstant(Cond, MVT::i32),
   9072                 SDValue(Sum.getNode(), 1));
   9073 
   9074   DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
   9075   return Sum;
   9076 }
   9077 
   9078 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
   9079   DebugLoc dl = Op.getDebugLoc();
   9080   SDNode* Node = Op.getNode();
   9081   EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
   9082   EVT VT = Node->getValueType(0);
   9083 
   9084   if (Subtarget->hasSSE2() && VT.isVector()) {
   9085     unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
   9086                         ExtraVT.getScalarType().getSizeInBits();
   9087     SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
   9088 
   9089     unsigned SHLIntrinsicsID = 0;
   9090     unsigned SRAIntrinsicsID = 0;
   9091     switch (VT.getSimpleVT().SimpleTy) {
   9092       default:
   9093         return SDValue();
   9094       case MVT::v2i64: {
   9095         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
   9096         SRAIntrinsicsID = 0;
   9097         break;
   9098       }
   9099       case MVT::v4i32: {
   9100         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
   9101         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
   9102         break;
   9103       }
   9104       case MVT::v8i16: {
   9105         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
   9106         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
   9107         break;
   9108       }
   9109     }
   9110 
   9111     SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9112                          DAG.getConstant(SHLIntrinsicsID, MVT::i32),
   9113                          Node->getOperand(0), ShAmt);
   9114 
   9115     // In case of 1 bit sext, no need to shr
   9116     if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
   9117 
   9118     if (SRAIntrinsicsID) {
   9119       Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9120                          DAG.getConstant(SRAIntrinsicsID, MVT::i32),
   9121                          Tmp1, ShAmt);
   9122     }
   9123     return Tmp1;
   9124   }
   9125 
   9126   return SDValue();
   9127 }
   9128 
   9129 
   9130 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
   9131   DebugLoc dl = Op.getDebugLoc();
   9132 
   9133   // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
   9134   // There isn't any reason to disable it if the target processor supports it.
   9135   if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
   9136     SDValue Chain = Op.getOperand(0);
   9137     SDValue Zero = DAG.getConstant(0, MVT::i32);
   9138     SDValue Ops[] = {
   9139       DAG.getRegister(X86::ESP, MVT::i32), // Base
   9140       DAG.getTargetConstant(1, MVT::i8),   // Scale
   9141       DAG.getRegister(0, MVT::i32),        // Index
   9142       DAG.getTargetConstant(0, MVT::i32),  // Disp
   9143       DAG.getRegister(0, MVT::i32),        // Segment.
   9144       Zero,
   9145       Chain
   9146     };
   9147     SDNode *Res =
   9148       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
   9149                           array_lengthof(Ops));
   9150     return SDValue(Res, 0);
   9151   }
   9152 
   9153   unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
   9154   if (!isDev)
   9155     return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   9156 
   9157   unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   9158   unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   9159   unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
   9160   unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   9161 
   9162   // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
   9163   if (!Op1 && !Op2 && !Op3 && Op4)
   9164     return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
   9165 
   9166   // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
   9167   if (Op1 && !Op2 && !Op3 && !Op4)
   9168     return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
   9169 
   9170   // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
   9171   //           (MFENCE)>;
   9172   return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   9173 }
   9174 
   9175 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
   9176   EVT T = Op.getValueType();
   9177   DebugLoc DL = Op.getDebugLoc();
   9178   unsigned Reg = 0;
   9179   unsigned size = 0;
   9180   switch(T.getSimpleVT().SimpleTy) {
   9181   default:
   9182     assert(false && "Invalid value type!");
   9183   case MVT::i8:  Reg = X86::AL;  size = 1; break;
   9184   case MVT::i16: Reg = X86::AX;  size = 2; break;
   9185   case MVT::i32: Reg = X86::EAX; size = 4; break;
   9186   case MVT::i64:
   9187     assert(Subtarget->is64Bit() && "Node not type legal!");
   9188     Reg = X86::RAX; size = 8;
   9189     break;
   9190   }
   9191   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
   9192                                     Op.getOperand(2), SDValue());
   9193   SDValue Ops[] = { cpIn.getValue(0),
   9194                     Op.getOperand(1),
   9195                     Op.getOperand(3),
   9196                     DAG.getTargetConstant(size, MVT::i8),
   9197                     cpIn.getValue(1) };
   9198   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   9199   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
   9200   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
   9201                                            Ops, 5, T, MMO);
   9202   SDValue cpOut =
   9203     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
   9204   return cpOut;
   9205 }
   9206 
   9207 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
   9208                                                  SelectionDAG &DAG) const {
   9209   assert(Subtarget->is64Bit() && "Result not type legalized?");
   9210   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   9211   SDValue TheChain = Op.getOperand(0);
   9212   DebugLoc dl = Op.getDebugLoc();
   9213   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   9214   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
   9215   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
   9216                                    rax.getValue(2));
   9217   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
   9218                             DAG.getConstant(32, MVT::i8));
   9219   SDValue Ops[] = {
   9220     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
   9221     rdx.getValue(1)
   9222   };
   9223   return DAG.getMergeValues(Ops, 2, dl);
   9224 }
   9225 
   9226 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
   9227                                             SelectionDAG &DAG) const {
   9228   EVT SrcVT = Op.getOperand(0).getValueType();
   9229   EVT DstVT = Op.getValueType();
   9230   assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
   9231          Subtarget->hasMMX() && "Unexpected custom BITCAST");
   9232   assert((DstVT == MVT::i64 ||
   9233           (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
   9234          "Unexpected custom BITCAST");
   9235   // i64 <=> MMX conversions are Legal.
   9236   if (SrcVT==MVT::i64 && DstVT.isVector())
   9237     return Op;
   9238   if (DstVT==MVT::i64 && SrcVT.isVector())
   9239     return Op;
   9240   // MMX <=> MMX conversions are Legal.
   9241   if (SrcVT.isVector() && DstVT.isVector())
   9242     return Op;
   9243   // All other conversions need to be expanded.
   9244   return SDValue();
   9245 }
   9246 
   9247 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
   9248   SDNode *Node = Op.getNode();
   9249   DebugLoc dl = Node->getDebugLoc();
   9250   EVT T = Node->getValueType(0);
   9251   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
   9252                               DAG.getConstant(0, T), Node->getOperand(2));
   9253   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
   9254                        cast<AtomicSDNode>(Node)->getMemoryVT(),
   9255                        Node->getOperand(0),
   9256                        Node->getOperand(1), negOp,
   9257                        cast<AtomicSDNode>(Node)->getSrcValue(),
   9258                        cast<AtomicSDNode>(Node)->getAlignment());
   9259 }
   9260 
   9261 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   9262   EVT VT = Op.getNode()->getValueType(0);
   9263 
   9264   // Let legalize expand this if it isn't a legal type yet.
   9265   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9266     return SDValue();
   9267 
   9268   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   9269 
   9270   unsigned Opc;
   9271   bool ExtraOp = false;
   9272   switch (Op.getOpcode()) {
   9273   default: assert(0 && "Invalid code");
   9274   case ISD::ADDC: Opc = X86ISD::ADD; break;
   9275   case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
   9276   case ISD::SUBC: Opc = X86ISD::SUB; break;
   9277   case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
   9278   }
   9279 
   9280   if (!ExtraOp)
   9281     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   9282                        Op.getOperand(1));
   9283   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   9284                      Op.getOperand(1), Op.getOperand(2));
   9285 }
   9286 
   9287 /// LowerOperation - Provide custom lowering hooks for some operations.
   9288 ///
   9289 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   9290   switch (Op.getOpcode()) {
   9291   default: llvm_unreachable("Should not custom lower this!");
   9292   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
   9293   case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
   9294   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
   9295   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
   9296   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   9297   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
   9298   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   9299   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   9300   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
   9301   case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
   9302   case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
   9303   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   9304   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   9305   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   9306   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   9307   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
   9308   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   9309   case ISD::SHL_PARTS:
   9310   case ISD::SRA_PARTS:
   9311   case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
   9312   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   9313   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
   9314   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
   9315   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
   9316   case ISD::FABS:               return LowerFABS(Op, DAG);
   9317   case ISD::FNEG:               return LowerFNEG(Op, DAG);
   9318   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
   9319   case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
   9320   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   9321   case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
   9322   case ISD::SELECT:             return LowerSELECT(Op, DAG);
   9323   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
   9324   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   9325   case ISD::VASTART:            return LowerVASTART(Op, DAG);
   9326   case ISD::VAARG:              return LowerVAARG(Op, DAG);
   9327   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
   9328   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   9329   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   9330   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   9331   case ISD::FRAME_TO_ARGS_OFFSET:
   9332                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
   9333   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   9334   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
   9335   case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
   9336   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   9337   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
   9338   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
   9339   case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
   9340   case ISD::SRA:
   9341   case ISD::SRL:
   9342   case ISD::SHL:                return LowerShift(Op, DAG);
   9343   case ISD::SADDO:
   9344   case ISD::UADDO:
   9345   case ISD::SSUBO:
   9346   case ISD::USUBO:
   9347   case ISD::SMULO:
   9348   case ISD::UMULO:              return LowerXALUO(Op, DAG);
   9349   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
   9350   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
   9351   case ISD::ADDC:
   9352   case ISD::ADDE:
   9353   case ISD::SUBC:
   9354   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   9355   }
   9356 }
   9357 
   9358 void X86TargetLowering::
   9359 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
   9360                         SelectionDAG &DAG, unsigned NewOp) const {
   9361   EVT T = Node->getValueType(0);
   9362   DebugLoc dl = Node->getDebugLoc();
   9363   assert (T == MVT::i64 && "Only know how to expand i64 atomics");
   9364 
   9365   SDValue Chain = Node->getOperand(0);
   9366   SDValue In1 = Node->getOperand(1);
   9367   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   9368                              Node->getOperand(2), DAG.getIntPtrConstant(0));
   9369   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   9370                              Node->getOperand(2), DAG.getIntPtrConstant(1));
   9371   SDValue Ops[] = { Chain, In1, In2L, In2H };
   9372   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   9373   SDValue Result =
   9374     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
   9375                             cast<MemSDNode>(Node)->getMemOperand());
   9376   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
   9377   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   9378   Results.push_back(Result.getValue(2));
   9379 }
   9380 
   9381 /// ReplaceNodeResults - Replace a node with an illegal result type
   9382 /// with a new node built out of custom code.
   9383 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
   9384                                            SmallVectorImpl<SDValue>&Results,
   9385                                            SelectionDAG &DAG) const {
   9386   DebugLoc dl = N->getDebugLoc();
   9387   switch (N->getOpcode()) {
   9388   default:
   9389     assert(false && "Do not know how to custom type legalize this operation!");
   9390     return;
   9391   case ISD::SIGN_EXTEND_INREG:
   9392   case ISD::ADDC:
   9393   case ISD::ADDE:
   9394   case ISD::SUBC:
   9395   case ISD::SUBE:
   9396     // We don't want to expand or promote these.
   9397     return;
   9398   case ISD::FP_TO_SINT: {
   9399     std::pair<SDValue,SDValue> Vals =
   9400         FP_TO_INTHelper(SDValue(N, 0), DAG, true);
   9401     SDValue FIST = Vals.first, StackSlot = Vals.second;
   9402     if (FIST.getNode() != 0) {
   9403       EVT VT = N->getValueType(0);
   9404       // Return a load from the stack slot.
   9405       Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
   9406                                     MachinePointerInfo(), false, false, 0));
   9407     }
   9408     return;
   9409   }
   9410   case ISD::READCYCLECOUNTER: {
   9411     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   9412     SDValue TheChain = N->getOperand(0);
   9413     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   9414     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
   9415                                      rd.getValue(1));
   9416     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
   9417                                      eax.getValue(2));
   9418     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
   9419     SDValue Ops[] = { eax, edx };
   9420     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
   9421     Results.push_back(edx.getValue(1));
   9422     return;
   9423   }
   9424   case ISD::ATOMIC_CMP_SWAP: {
   9425     EVT T = N->getValueType(0);
   9426     assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
   9427     SDValue cpInL, cpInH;
   9428     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
   9429                         DAG.getConstant(0, MVT::i32));
   9430     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
   9431                         DAG.getConstant(1, MVT::i32));
   9432     cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
   9433     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
   9434                              cpInL.getValue(1));
   9435     SDValue swapInL, swapInH;
   9436     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
   9437                           DAG.getConstant(0, MVT::i32));
   9438     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
   9439                           DAG.getConstant(1, MVT::i32));
   9440     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
   9441                                cpInH.getValue(1));
   9442     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
   9443                                swapInL.getValue(1));
   9444     SDValue Ops[] = { swapInH.getValue(0),
   9445                       N->getOperand(1),
   9446                       swapInH.getValue(1) };
   9447     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   9448     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
   9449     SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
   9450                                              Ops, 3, T, MMO);
   9451     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
   9452                                         MVT::i32, Result.getValue(1));
   9453     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
   9454                                         MVT::i32, cpOutL.getValue(2));
   9455     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
   9456     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   9457     Results.push_back(cpOutH.getValue(1));
   9458     return;
   9459   }
   9460   case ISD::ATOMIC_LOAD_ADD:
   9461     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
   9462     return;
   9463   case ISD::ATOMIC_LOAD_AND:
   9464     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
   9465     return;
   9466   case ISD::ATOMIC_LOAD_NAND:
   9467     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
   9468     return;
   9469   case ISD::ATOMIC_LOAD_OR:
   9470     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
   9471     return;
   9472   case ISD::ATOMIC_LOAD_SUB:
   9473     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
   9474     return;
   9475   case ISD::ATOMIC_LOAD_XOR:
   9476     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
   9477     return;
   9478   case ISD::ATOMIC_SWAP:
   9479     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
   9480     return;
   9481   }
   9482 }
   9483 
   9484 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   9485   switch (Opcode) {
   9486   default: return NULL;
   9487   case X86ISD::BSF:                return "X86ISD::BSF";
   9488   case X86ISD::BSR:                return "X86ISD::BSR";
   9489   case X86ISD::SHLD:               return "X86ISD::SHLD";
   9490   case X86ISD::SHRD:               return "X86ISD::SHRD";
   9491   case X86ISD::FAND:               return "X86ISD::FAND";
   9492   case X86ISD::FOR:                return "X86ISD::FOR";
   9493   case X86ISD::FXOR:               return "X86ISD::FXOR";
   9494   case X86ISD::FSRL:               return "X86ISD::FSRL";
   9495   case X86ISD::FILD:               return "X86ISD::FILD";
   9496   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
   9497   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
   9498   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
   9499   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
   9500   case X86ISD::FLD:                return "X86ISD::FLD";
   9501   case X86ISD::FST:                return "X86ISD::FST";
   9502   case X86ISD::CALL:               return "X86ISD::CALL";
   9503   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
   9504   case X86ISD::BT:                 return "X86ISD::BT";
   9505   case X86ISD::CMP:                return "X86ISD::CMP";
   9506   case X86ISD::COMI:               return "X86ISD::COMI";
   9507   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
   9508   case X86ISD::SETCC:              return "X86ISD::SETCC";
   9509   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
   9510   case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
   9511   case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
   9512   case X86ISD::CMOV:               return "X86ISD::CMOV";
   9513   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
   9514   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
   9515   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
   9516   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
   9517   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
   9518   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
   9519   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
   9520   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
   9521   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
   9522   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
   9523   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
   9524   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
   9525   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
   9526   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
   9527   case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
   9528   case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
   9529   case X86ISD::PSIGND:             return "X86ISD::PSIGND";
   9530   case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
   9531   case X86ISD::FMAX:               return "X86ISD::FMAX";
   9532   case X86ISD::FMIN:               return "X86ISD::FMIN";
   9533   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
   9534   case X86ISD::FRCP:               return "X86ISD::FRCP";
   9535   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
   9536   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
   9537   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
   9538   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
   9539   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
   9540   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
   9541   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
   9542   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
   9543   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
   9544   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
   9545   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
   9546   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
   9547   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
   9548   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
   9549   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
   9550   case X86ISD::VSHL:               return "X86ISD::VSHL";
   9551   case X86ISD::VSRL:               return "X86ISD::VSRL";
   9552   case X86ISD::CMPPD:              return "X86ISD::CMPPD";
   9553   case X86ISD::CMPPS:              return "X86ISD::CMPPS";
   9554   case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
   9555   case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
   9556   case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
   9557   case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
   9558   case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
   9559   case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
   9560   case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
   9561   case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
   9562   case X86ISD::ADD:                return "X86ISD::ADD";
   9563   case X86ISD::SUB:                return "X86ISD::SUB";
   9564   case X86ISD::ADC:                return "X86ISD::ADC";
   9565   case X86ISD::SBB:                return "X86ISD::SBB";
   9566   case X86ISD::SMUL:               return "X86ISD::SMUL";
   9567   case X86ISD::UMUL:               return "X86ISD::UMUL";
   9568   case X86ISD::INC:                return "X86ISD::INC";
   9569   case X86ISD::DEC:                return "X86ISD::DEC";
   9570   case X86ISD::OR:                 return "X86ISD::OR";
   9571   case X86ISD::XOR:                return "X86ISD::XOR";
   9572   case X86ISD::AND:                return "X86ISD::AND";
   9573   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
   9574   case X86ISD::PTEST:              return "X86ISD::PTEST";
   9575   case X86ISD::TESTP:              return "X86ISD::TESTP";
   9576   case X86ISD::PALIGN:             return "X86ISD::PALIGN";
   9577   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
   9578   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
   9579   case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
   9580   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
   9581   case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
   9582   case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
   9583   case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
   9584   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
   9585   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
   9586   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
   9587   case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
   9588   case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
   9589   case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
   9590   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
   9591   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
   9592   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
   9593   case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
   9594   case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
   9595   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
   9596   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
   9597   case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
   9598   case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
   9599   case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
   9600   case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
   9601   case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
   9602   case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
   9603   case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
   9604   case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
   9605   case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
   9606   case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
   9607   case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
   9608   case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
   9609   case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
   9610   case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
   9611   case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
   9612   case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
   9613   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
   9614   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
   9615   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
   9616   }
   9617 }
   9618 
   9619 // isLegalAddressingMode - Return true if the addressing mode represented
   9620 // by AM is legal for this target, for a load/store of the specified type.
   9621 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   9622                                               Type *Ty) const {
   9623   // X86 supports extremely general addressing modes.
   9624   CodeModel::Model M = getTargetMachine().getCodeModel();
   9625   Reloc::Model R = getTargetMachine().getRelocationModel();
   9626 
   9627   // X86 allows a sign-extended 32-bit immediate field as a displacement.
   9628   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
   9629     return false;
   9630 
   9631   if (AM.BaseGV) {
   9632     unsigned GVFlags =
   9633       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
   9634 
   9635     // If a reference to this global requires an extra load, we can't fold it.
   9636     if (isGlobalStubReference(GVFlags))
   9637       return false;
   9638 
   9639     // If BaseGV requires a register for the PIC base, we cannot also have a
   9640     // BaseReg specified.
   9641     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
   9642       return false;
   9643 
   9644     // If lower 4G is not available, then we must use rip-relative addressing.
   9645     if ((M != CodeModel::Small || R != Reloc::Static) &&
   9646         Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
   9647       return false;
   9648   }
   9649 
   9650   switch (AM.Scale) {
   9651   case 0:
   9652   case 1:
   9653   case 2:
   9654   case 4:
   9655   case 8:
   9656     // These scales always work.
   9657     break;
   9658   case 3:
   9659   case 5:
   9660   case 9:
   9661     // These scales are formed with basereg+scalereg.  Only accept if there is
   9662     // no basereg yet.
   9663     if (AM.HasBaseReg)
   9664       return false;
   9665     break;
   9666   default:  // Other stuff never works.
   9667     return false;
   9668   }
   9669 
   9670   return true;
   9671 }
   9672 
   9673 
   9674 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   9675   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   9676     return false;
   9677   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   9678   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   9679   if (NumBits1 <= NumBits2)
   9680     return false;
   9681   return true;
   9682 }
   9683 
   9684 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   9685   if (!VT1.isInteger() || !VT2.isInteger())
   9686     return false;
   9687   unsigned NumBits1 = VT1.getSizeInBits();
   9688   unsigned NumBits2 = VT2.getSizeInBits();
   9689   if (NumBits1 <= NumBits2)
   9690     return false;
   9691   return true;
   9692 }
   9693 
   9694 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   9695   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   9696   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
   9697 }
   9698 
   9699 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   9700   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   9701   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
   9702 }
   9703 
   9704 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
   9705   // i16 instructions are longer (0x66 prefix) and potentially slower.
   9706   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
   9707 }
   9708 
   9709 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   9710 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   9711 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   9712 /// are assumed to be legal.
   9713 bool
   9714 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   9715                                       EVT VT) const {
   9716   // Very little shuffling can be done for 64-bit vectors right now.
   9717   if (VT.getSizeInBits() == 64)
   9718     return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
   9719 
   9720   // FIXME: pshufb, blends, shifts.
   9721   return (VT.getVectorNumElements() == 2 ||
   9722           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   9723           isMOVLMask(M, VT) ||
   9724           isSHUFPMask(M, VT) ||
   9725           isPSHUFDMask(M, VT) ||
   9726           isPSHUFHWMask(M, VT) ||
   9727           isPSHUFLWMask(M, VT) ||
   9728           isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
   9729           isUNPCKLMask(M, VT) ||
   9730           isUNPCKHMask(M, VT) ||
   9731           isUNPCKL_v_undef_Mask(M, VT) ||
   9732           isUNPCKH_v_undef_Mask(M, VT));
   9733 }
   9734 
   9735 bool
   9736 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
   9737                                           EVT VT) const {
   9738   unsigned NumElts = VT.getVectorNumElements();
   9739   // FIXME: This collection of masks seems suspect.
   9740   if (NumElts == 2)
   9741     return true;
   9742   if (NumElts == 4 && VT.getSizeInBits() == 128) {
   9743     return (isMOVLMask(Mask, VT)  ||
   9744             isCommutedMOVLMask(Mask, VT, true) ||
   9745             isSHUFPMask(Mask, VT) ||
   9746             isCommutedSHUFPMask(Mask, VT));
   9747   }
   9748   return false;
   9749 }
   9750 
   9751 //===----------------------------------------------------------------------===//
   9752 //                           X86 Scheduler Hooks
   9753 //===----------------------------------------------------------------------===//
   9754 
   9755 // private utility function
   9756 MachineBasicBlock *
   9757 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
   9758                                                        MachineBasicBlock *MBB,
   9759                                                        unsigned regOpc,
   9760                                                        unsigned immOpc,
   9761                                                        unsigned LoadOpc,
   9762                                                        unsigned CXchgOpc,
   9763                                                        unsigned notOpc,
   9764                                                        unsigned EAXreg,
   9765                                                        TargetRegisterClass *RC,
   9766                                                        bool invSrc) const {
   9767   // For the atomic bitwise operator, we generate
   9768   //   thisMBB:
   9769   //   newMBB:
   9770   //     ld  t1 = [bitinstr.addr]
   9771   //     op  t2 = t1, [bitinstr.val]
   9772   //     mov EAX = t1
   9773   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
   9774   //     bz  newMBB
   9775   //     fallthrough -->nextMBB
   9776   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   9777   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   9778   MachineFunction::iterator MBBIter = MBB;
   9779   ++MBBIter;
   9780 
   9781   /// First build the CFG
   9782   MachineFunction *F = MBB->getParent();
   9783   MachineBasicBlock *thisMBB = MBB;
   9784   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9785   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9786   F->insert(MBBIter, newMBB);
   9787   F->insert(MBBIter, nextMBB);
   9788 
   9789   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   9790   nextMBB->splice(nextMBB->begin(), thisMBB,
   9791                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   9792                   thisMBB->end());
   9793   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   9794 
   9795   // Update thisMBB to fall through to newMBB
   9796   thisMBB->addSuccessor(newMBB);
   9797 
   9798   // newMBB jumps to itself and fall through to nextMBB
   9799   newMBB->addSuccessor(nextMBB);
   9800   newMBB->addSuccessor(newMBB);
   9801 
   9802   // Insert instructions into newMBB based on incoming instruction
   9803   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   9804          "unexpected number of operands");
   9805   DebugLoc dl = bInstr->getDebugLoc();
   9806   MachineOperand& destOper = bInstr->getOperand(0);
   9807   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   9808   int numArgs = bInstr->getNumOperands() - 1;
   9809   for (int i=0; i < numArgs; ++i)
   9810     argOpers[i] = &bInstr->getOperand(i+1);
   9811 
   9812   // x86 address has 4 operands: base, index, scale, and displacement
   9813   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   9814   int valArgIndx = lastAddrIndx + 1;
   9815 
   9816   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   9817   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
   9818   for (int i=0; i <= lastAddrIndx; ++i)
   9819     (*MIB).addOperand(*argOpers[i]);
   9820 
   9821   unsigned tt = F->getRegInfo().createVirtualRegister(RC);
   9822   if (invSrc) {
   9823     MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
   9824   }
   9825   else
   9826     tt = t1;
   9827 
   9828   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   9829   assert((argOpers[valArgIndx]->isReg() ||
   9830           argOpers[valArgIndx]->isImm()) &&
   9831          "invalid operand");
   9832   if (argOpers[valArgIndx]->isReg())
   9833     MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
   9834   else
   9835     MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
   9836   MIB.addReg(tt);
   9837   (*MIB).addOperand(*argOpers[valArgIndx]);
   9838 
   9839   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
   9840   MIB.addReg(t1);
   9841 
   9842   MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
   9843   for (int i=0; i <= lastAddrIndx; ++i)
   9844     (*MIB).addOperand(*argOpers[i]);
   9845   MIB.addReg(t2);
   9846   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   9847   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   9848                     bInstr->memoperands_end());
   9849 
   9850   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   9851   MIB.addReg(EAXreg);
   9852 
   9853   // insert branch
   9854   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   9855 
   9856   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   9857   return nextMBB;
   9858 }
   9859 
   9860 // private utility function:  64 bit atomics on 32 bit host.
   9861 MachineBasicBlock *
   9862 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
   9863                                                        MachineBasicBlock *MBB,
   9864                                                        unsigned regOpcL,
   9865                                                        unsigned regOpcH,
   9866                                                        unsigned immOpcL,
   9867                                                        unsigned immOpcH,
   9868                                                        bool invSrc) const {
   9869   // For the atomic bitwise operator, we generate
   9870   //   thisMBB (instructions are in pairs, except cmpxchg8b)
   9871   //     ld t1,t2 = [bitinstr.addr]
   9872   //   newMBB:
   9873   //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
   9874   //     op  t5, t6 <- out1, out2, [bitinstr.val]
   9875   //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
   9876   //     mov ECX, EBX <- t5, t6
   9877   //     mov EAX, EDX <- t1, t2
   9878   //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
   9879   //     mov t3, t4 <- EAX, EDX
   9880   //     bz  newMBB
   9881   //     result in out1, out2
   9882   //     fallthrough -->nextMBB
   9883 
   9884   const TargetRegisterClass *RC = X86::GR32RegisterClass;
   9885   const unsigned LoadOpc = X86::MOV32rm;
   9886   const unsigned NotOpc = X86::NOT32r;
   9887   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   9888   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   9889   MachineFunction::iterator MBBIter = MBB;
   9890   ++MBBIter;
   9891 
   9892   /// First build the CFG
   9893   MachineFunction *F = MBB->getParent();
   9894   MachineBasicBlock *thisMBB = MBB;
   9895   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9896   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9897   F->insert(MBBIter, newMBB);
   9898   F->insert(MBBIter, nextMBB);
   9899 
   9900   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   9901   nextMBB->splice(nextMBB->begin(), thisMBB,
   9902                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   9903                   thisMBB->end());
   9904   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   9905 
   9906   // Update thisMBB to fall through to newMBB
   9907   thisMBB->addSuccessor(newMBB);
   9908 
   9909   // newMBB jumps to itself and fall through to nextMBB
   9910   newMBB->addSuccessor(nextMBB);
   9911   newMBB->addSuccessor(newMBB);
   9912 
   9913   DebugLoc dl = bInstr->getDebugLoc();
   9914   // Insert instructions into newMBB based on incoming instruction
   9915   // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
   9916   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
   9917          "unexpected number of operands");
   9918   MachineOperand& dest1Oper = bInstr->getOperand(0);
   9919   MachineOperand& dest2Oper = bInstr->getOperand(1);
   9920   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   9921   for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
   9922     argOpers[i] = &bInstr->getOperand(i+2);
   9923 
   9924     // We use some of the operands multiple times, so conservatively just
   9925     // clear any kill flags that might be present.
   9926     if (argOpers[i]->isReg() && argOpers[i]->isUse())
   9927       argOpers[i]->setIsKill(false);
   9928   }
   9929 
   9930   // x86 address has 5 operands: base, index, scale, displacement, and segment.
   9931   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   9932 
   9933   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   9934   MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
   9935   for (int i=0; i <= lastAddrIndx; ++i)
   9936     (*MIB).addOperand(*argOpers[i]);
   9937   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   9938   MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
   9939   // add 4 to displacement.
   9940   for (int i=0; i <= lastAddrIndx-2; ++i)
   9941     (*MIB).addOperand(*argOpers[i]);
   9942   MachineOperand newOp3 = *(argOpers[3]);
   9943   if (newOp3.isImm())
   9944     newOp3.setImm(newOp3.getImm()+4);
   9945   else
   9946     newOp3.setOffset(newOp3.getOffset()+4);
   9947   (*MIB).addOperand(newOp3);
   9948   (*MIB).addOperand(*argOpers[lastAddrIndx]);
   9949 
   9950   // t3/4 are defined later, at the bottom of the loop
   9951   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
   9952   unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
   9953   BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
   9954     .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
   9955   BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
   9956     .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
   9957 
   9958   // The subsequent operations should be using the destination registers of
   9959   //the PHI instructions.
   9960   if (invSrc) {
   9961     t1 = F->getRegInfo().createVirtualRegister(RC);
   9962     t2 = F->getRegInfo().createVirtualRegister(RC);
   9963     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
   9964     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
   9965   } else {
   9966     t1 = dest1Oper.getReg();
   9967     t2 = dest2Oper.getReg();
   9968   }
   9969 
   9970   int valArgIndx = lastAddrIndx + 1;
   9971   assert((argOpers[valArgIndx]->isReg() ||
   9972           argOpers[valArgIndx]->isImm()) &&
   9973          "invalid operand");
   9974   unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
   9975   unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
   9976   if (argOpers[valArgIndx]->isReg())
   9977     MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
   9978   else
   9979     MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
   9980   if (regOpcL != X86::MOV32rr)
   9981     MIB.addReg(t1);
   9982   (*MIB).addOperand(*argOpers[valArgIndx]);
   9983   assert(argOpers[valArgIndx + 1]->isReg() ==
   9984          argOpers[valArgIndx]->isReg());
   9985   assert(argOpers[valArgIndx + 1]->isImm() ==
   9986          argOpers[valArgIndx]->isImm());
   9987   if (argOpers[valArgIndx + 1]->isReg())
   9988     MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
   9989   else
   9990     MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
   9991   if (regOpcH != X86::MOV32rr)
   9992     MIB.addReg(t2);
   9993   (*MIB).addOperand(*argOpers[valArgIndx + 1]);
   9994 
   9995   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   9996   MIB.addReg(t1);
   9997   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
   9998   MIB.addReg(t2);
   9999 
   10000   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
   10001   MIB.addReg(t5);
   10002   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
   10003   MIB.addReg(t6);
   10004 
   10005   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
   10006   for (int i=0; i <= lastAddrIndx; ++i)
   10007     (*MIB).addOperand(*argOpers[i]);
   10008 
   10009   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   10010   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   10011                     bInstr->memoperands_end());
   10012 
   10013   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
   10014   MIB.addReg(X86::EAX);
   10015   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
   10016   MIB.addReg(X86::EDX);
   10017 
   10018   // insert branch
   10019   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   10020 
   10021   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   10022   return nextMBB;
   10023 }
   10024 
   10025 // private utility function
   10026 MachineBasicBlock *
   10027 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
   10028                                                       MachineBasicBlock *MBB,
   10029                                                       unsigned cmovOpc) const {
   10030   // For the atomic min/max operator, we generate
   10031   //   thisMBB:
   10032   //   newMBB:
   10033   //     ld t1 = [min/max.addr]
   10034   //     mov t2 = [min/max.val]
   10035   //     cmp  t1, t2
   10036   //     cmov[cond] t2 = t1
   10037   //     mov EAX = t1
   10038   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
   10039   //     bz   newMBB
   10040   //     fallthrough -->nextMBB
   10041   //
   10042   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10043   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   10044   MachineFunction::iterator MBBIter = MBB;
   10045   ++MBBIter;
   10046 
   10047   /// First build the CFG
   10048   MachineFunction *F = MBB->getParent();
   10049   MachineBasicBlock *thisMBB = MBB;
   10050   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10051   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10052   F->insert(MBBIter, newMBB);
   10053   F->insert(MBBIter, nextMBB);
   10054 
   10055   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   10056   nextMBB->splice(nextMBB->begin(), thisMBB,
   10057                   llvm::next(MachineBasicBlock::iterator(mInstr)),
   10058                   thisMBB->end());
   10059   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   10060 
   10061   // Update thisMBB to fall through to newMBB
   10062   thisMBB->addSuccessor(newMBB);
   10063 
   10064   // newMBB jumps to newMBB and fall through to nextMBB
   10065   newMBB->addSuccessor(nextMBB);
   10066   newMBB->addSuccessor(newMBB);
   10067 
   10068   DebugLoc dl = mInstr->getDebugLoc();
   10069   // Insert instructions into newMBB based on incoming instruction
   10070   assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   10071          "unexpected number of operands");
   10072   MachineOperand& destOper = mInstr->getOperand(0);
   10073   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   10074   int numArgs = mInstr->getNumOperands() - 1;
   10075   for (int i=0; i < numArgs; ++i)
   10076     argOpers[i] = &mInstr->getOperand(i+1);
   10077 
   10078   // x86 address has 4 operands: base, index, scale, and displacement
   10079   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   10080   int valArgIndx = lastAddrIndx + 1;
   10081 
   10082   unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   10083   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
   10084   for (int i=0; i <= lastAddrIndx; ++i)
   10085     (*MIB).addOperand(*argOpers[i]);
   10086 
   10087   // We only support register and immediate values
   10088   assert((argOpers[valArgIndx]->isReg() ||
   10089           argOpers[valArgIndx]->isImm()) &&
   10090          "invalid operand");
   10091 
   10092   unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   10093   if (argOpers[valArgIndx]->isReg())
   10094     MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
   10095   else
   10096     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
   10097   (*MIB).addOperand(*argOpers[valArgIndx]);
   10098 
   10099   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   10100   MIB.addReg(t1);
   10101 
   10102   MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
   10103   MIB.addReg(t1);
   10104   MIB.addReg(t2);
   10105 
   10106   // Generate movc
   10107   unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   10108   MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
   10109   MIB.addReg(t2);
   10110   MIB.addReg(t1);
   10111 
   10112   // Cmp and exchange if none has modified the memory location
   10113   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
   10114   for (int i=0; i <= lastAddrIndx; ++i)
   10115     (*MIB).addOperand(*argOpers[i]);
   10116   MIB.addReg(t3);
   10117   assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   10118   (*MIB).setMemRefs(mInstr->memoperands_begin(),
   10119                     mInstr->memoperands_end());
   10120 
   10121   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   10122   MIB.addReg(X86::EAX);
   10123 
   10124   // insert branch
   10125   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   10126 
   10127   mInstr->eraseFromParent();   // The pseudo instruction is gone now.
   10128   return nextMBB;
   10129 }
   10130 
   10131 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
   10132 // or XMM0_V32I8 in AVX all of this code can be replaced with that
   10133 // in the .td file.
   10134 MachineBasicBlock *
   10135 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
   10136                             unsigned numArgs, bool memArg) const {
   10137   assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
   10138          "Target must have SSE4.2 or AVX features enabled");
   10139 
   10140   DebugLoc dl = MI->getDebugLoc();
   10141   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10142   unsigned Opc;
   10143   if (!Subtarget->hasAVX()) {
   10144     if (memArg)
   10145       Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
   10146     else
   10147       Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
   10148   } else {
   10149     if (memArg)
   10150       Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
   10151     else
   10152       Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
   10153   }
   10154 
   10155   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
   10156   for (unsigned i = 0; i < numArgs; ++i) {
   10157     MachineOperand &Op = MI->getOperand(i+1);
   10158     if (!(Op.isReg() && Op.isImplicit()))
   10159       MIB.addOperand(Op);
   10160   }
   10161   BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
   10162     .addReg(X86::XMM0);
   10163 
   10164   MI->eraseFromParent();
   10165   return BB;
   10166 }
   10167 
   10168 MachineBasicBlock *
   10169 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
   10170   DebugLoc dl = MI->getDebugLoc();
   10171   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10172 
   10173   // Address into RAX/EAX, other two args into ECX, EDX.
   10174   unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   10175   unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   10176   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
   10177   for (int i = 0; i < X86::AddrNumOperands; ++i)
   10178     MIB.addOperand(MI->getOperand(i));
   10179 
   10180   unsigned ValOps = X86::AddrNumOperands;
   10181   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   10182     .addReg(MI->getOperand(ValOps).getReg());
   10183   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
   10184     .addReg(MI->getOperand(ValOps+1).getReg());
   10185 
   10186   // The instruction doesn't actually take any operands though.
   10187   BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
   10188 
   10189   MI->eraseFromParent(); // The pseudo is gone now.
   10190   return BB;
   10191 }
   10192 
   10193 MachineBasicBlock *
   10194 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
   10195   DebugLoc dl = MI->getDebugLoc();
   10196   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10197 
   10198   // First arg in ECX, the second in EAX.
   10199   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   10200     .addReg(MI->getOperand(0).getReg());
   10201   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
   10202     .addReg(MI->getOperand(1).getReg());
   10203 
   10204   // The instruction doesn't actually take any operands though.
   10205   BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
   10206 
   10207   MI->eraseFromParent(); // The pseudo is gone now.
   10208   return BB;
   10209 }
   10210 
   10211 MachineBasicBlock *
   10212 X86TargetLowering::EmitVAARG64WithCustomInserter(
   10213                    MachineInstr *MI,
   10214                    MachineBasicBlock *MBB) const {
   10215   // Emit va_arg instruction on X86-64.
   10216 
   10217   // Operands to this pseudo-instruction:
   10218   // 0  ) Output        : destination address (reg)
   10219   // 1-5) Input         : va_list address (addr, i64mem)
   10220   // 6  ) ArgSize       : Size (in bytes) of vararg type
   10221   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
   10222   // 8  ) Align         : Alignment of type
   10223   // 9  ) EFLAGS (implicit-def)
   10224 
   10225   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
   10226   assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
   10227 
   10228   unsigned DestReg = MI->getOperand(0).getReg();
   10229   MachineOperand &Base = MI->getOperand(1);
   10230   MachineOperand &Scale = MI->getOperand(2);
   10231   MachineOperand &Index = MI->getOperand(3);
   10232   MachineOperand &Disp = MI->getOperand(4);
   10233   MachineOperand &Segment = MI->getOperand(5);
   10234   unsigned ArgSize = MI->getOperand(6).getImm();
   10235   unsigned ArgMode = MI->getOperand(7).getImm();
   10236   unsigned Align = MI->getOperand(8).getImm();
   10237 
   10238   // Memory Reference
   10239   assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
   10240   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   10241   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   10242 
   10243   // Machine Information
   10244   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10245   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   10246   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
   10247   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
   10248   DebugLoc DL = MI->getDebugLoc();
   10249 
   10250   // struct va_list {
   10251   //   i32   gp_offset
   10252   //   i32   fp_offset
   10253   //   i64   overflow_area (address)
   10254   //   i64   reg_save_area (address)
   10255   // }
   10256   // sizeof(va_list) = 24
   10257   // alignment(va_list) = 8
   10258 
   10259   unsigned TotalNumIntRegs = 6;
   10260   unsigned TotalNumXMMRegs = 8;
   10261   bool UseGPOffset = (ArgMode == 1);
   10262   bool UseFPOffset = (ArgMode == 2);
   10263   unsigned MaxOffset = TotalNumIntRegs * 8 +
   10264                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
   10265 
   10266   /* Align ArgSize to a multiple of 8 */
   10267   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
   10268   bool NeedsAlign = (Align > 8);
   10269 
   10270   MachineBasicBlock *thisMBB = MBB;
   10271   MachineBasicBlock *overflowMBB;
   10272   MachineBasicBlock *offsetMBB;
   10273   MachineBasicBlock *endMBB;
   10274 
   10275   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
   10276   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
   10277   unsigned OffsetReg = 0;
   10278 
   10279   if (!UseGPOffset && !UseFPOffset) {
   10280     // If we only pull from the overflow region, we don't create a branch.
   10281     // We don't need to alter control flow.
   10282     OffsetDestReg = 0; // unused
   10283     OverflowDestReg = DestReg;
   10284 
   10285     offsetMBB = NULL;
   10286     overflowMBB = thisMBB;
   10287     endMBB = thisMBB;
   10288   } else {
   10289     // First emit code to check if gp_offset (or fp_offset) is below the bound.
   10290     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
   10291     // If not, pull from overflow_area. (branch to overflowMBB)
   10292     //
   10293     //       thisMBB
   10294     //         |     .
   10295     //         |        .
   10296     //     offsetMBB   overflowMBB
   10297     //         |        .
   10298     //         |     .
   10299     //        endMBB
   10300 
   10301     // Registers for the PHI in endMBB
   10302     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
   10303     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
   10304 
   10305     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   10306     MachineFunction *MF = MBB->getParent();
   10307     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   10308     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   10309     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   10310 
   10311     MachineFunction::iterator MBBIter = MBB;
   10312     ++MBBIter;
   10313 
   10314     // Insert the new basic blocks
   10315     MF->insert(MBBIter, offsetMBB);
   10316     MF->insert(MBBIter, overflowMBB);
   10317     MF->insert(MBBIter, endMBB);
   10318 
   10319     // Transfer the remainder of MBB and its successor edges to endMBB.
   10320     endMBB->splice(endMBB->begin(), thisMBB,
   10321                     llvm::next(MachineBasicBlock::iterator(MI)),
   10322                     thisMBB->end());
   10323     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   10324 
   10325     // Make offsetMBB and overflowMBB successors of thisMBB
   10326     thisMBB->addSuccessor(offsetMBB);
   10327     thisMBB->addSuccessor(overflowMBB);
   10328 
   10329     // endMBB is a successor of both offsetMBB and overflowMBB
   10330     offsetMBB->addSuccessor(endMBB);
   10331     overflowMBB->addSuccessor(endMBB);
   10332 
   10333     // Load the offset value into a register
   10334     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   10335     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
   10336       .addOperand(Base)
   10337       .addOperand(Scale)
   10338       .addOperand(Index)
   10339       .addDisp(Disp, UseFPOffset ? 4 : 0)
   10340       .addOperand(Segment)
   10341       .setMemRefs(MMOBegin, MMOEnd);
   10342 
   10343     // Check if there is enough room left to pull this argument.
   10344     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
   10345       .addReg(OffsetReg)
   10346       .addImm(MaxOffset + 8 - ArgSizeA8);
   10347 
   10348     // Branch to "overflowMBB" if offset >= max
   10349     // Fall through to "offsetMBB" otherwise
   10350     BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
   10351       .addMBB(overflowMBB);
   10352   }
   10353 
   10354   // In offsetMBB, emit code to use the reg_save_area.
   10355   if (offsetMBB) {
   10356     assert(OffsetReg != 0);
   10357 
   10358     // Read the reg_save_area address.
   10359     unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
   10360     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
   10361       .addOperand(Base)
   10362       .addOperand(Scale)
   10363       .addOperand(Index)
   10364       .addDisp(Disp, 16)
   10365       .addOperand(Segment)
   10366       .setMemRefs(MMOBegin, MMOEnd);
   10367 
   10368     // Zero-extend the offset
   10369     unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
   10370       BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
   10371         .addImm(0)
   10372         .addReg(OffsetReg)
   10373         .addImm(X86::sub_32bit);
   10374 
   10375     // Add the offset to the reg_save_area to get the final address.
   10376     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
   10377       .addReg(OffsetReg64)
   10378       .addReg(RegSaveReg);
   10379 
   10380     // Compute the offset for the next argument
   10381     unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   10382     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
   10383       .addReg(OffsetReg)
   10384       .addImm(UseFPOffset ? 16 : 8);
   10385 
   10386     // Store it back into the va_list.
   10387     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
   10388       .addOperand(Base)
   10389       .addOperand(Scale)
   10390       .addOperand(Index)
   10391       .addDisp(Disp, UseFPOffset ? 4 : 0)
   10392       .addOperand(Segment)
   10393       .addReg(NextOffsetReg)
   10394       .setMemRefs(MMOBegin, MMOEnd);
   10395 
   10396     // Jump to endMBB
   10397     BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
   10398       .addMBB(endMBB);
   10399   }
   10400 
   10401   //
   10402   // Emit code to use overflow area
   10403   //
   10404 
   10405   // Load the overflow_area address into a register.
   10406   unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
   10407   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
   10408     .addOperand(Base)
   10409     .addOperand(Scale)
   10410     .addOperand(Index)
   10411     .addDisp(Disp, 8)
   10412     .addOperand(Segment)
   10413     .setMemRefs(MMOBegin, MMOEnd);
   10414 
   10415   // If we need to align it, do so. Otherwise, just copy the address
   10416   // to OverflowDestReg.
   10417   if (NeedsAlign) {
   10418     // Align the overflow address
   10419     assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
   10420     unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
   10421 
   10422     // aligned_addr = (addr + (align-1)) & ~(align-1)
   10423     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
   10424       .addReg(OverflowAddrReg)
   10425       .addImm(Align-1);
   10426 
   10427     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
   10428       .addReg(TmpReg)
   10429       .addImm(~(uint64_t)(Align-1));
   10430   } else {
   10431     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
   10432       .addReg(OverflowAddrReg);
   10433   }
   10434 
   10435   // Compute the next overflow address after this argument.
   10436   // (the overflow address should be kept 8-byte aligned)
   10437   unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
   10438   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
   10439     .addReg(OverflowDestReg)
   10440     .addImm(ArgSizeA8);
   10441 
   10442   // Store the new overflow address.
   10443   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
   10444     .addOperand(Base)
   10445     .addOperand(Scale)
   10446     .addOperand(Index)
   10447     .addDisp(Disp, 8)
   10448     .addOperand(Segment)
   10449     .addReg(NextAddrReg)
   10450     .setMemRefs(MMOBegin, MMOEnd);
   10451 
   10452   // If we branched, emit the PHI to the front of endMBB.
   10453   if (offsetMBB) {
   10454     BuildMI(*endMBB, endMBB->begin(), DL,
   10455             TII->get(X86::PHI), DestReg)
   10456       .addReg(OffsetDestReg).addMBB(offsetMBB)
   10457       .addReg(OverflowDestReg).addMBB(overflowMBB);
   10458   }
   10459 
   10460   // Erase the pseudo instruction
   10461   MI->eraseFromParent();
   10462 
   10463   return endMBB;
   10464 }
   10465 
   10466 MachineBasicBlock *
   10467 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
   10468                                                  MachineInstr *MI,
   10469                                                  MachineBasicBlock *MBB) const {
   10470   // Emit code to save XMM registers to the stack. The ABI says that the
   10471   // number of registers to save is given in %al, so it's theoretically
   10472   // possible to do an indirect jump trick to avoid saving all of them,
   10473   // however this code takes a simpler approach and just executes all
   10474   // of the stores if %al is non-zero. It's less code, and it's probably
   10475   // easier on the hardware branch predictor, and stores aren't all that
   10476   // expensive anyway.
   10477 
   10478   // Create the new basic blocks. One block contains all the XMM stores,
   10479   // and one block is the final destination regardless of whether any
   10480   // stores were performed.
   10481   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   10482   MachineFunction *F = MBB->getParent();
   10483   MachineFunction::iterator MBBIter = MBB;
   10484   ++MBBIter;
   10485   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10486   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10487   F->insert(MBBIter, XMMSaveMBB);
   10488   F->insert(MBBIter, EndMBB);
   10489 
   10490   // Transfer the remainder of MBB and its successor edges to EndMBB.
   10491   EndMBB->splice(EndMBB->begin(), MBB,
   10492                  llvm::next(MachineBasicBlock::iterator(MI)),
   10493                  MBB->end());
   10494   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
   10495 
   10496   // The original block will now fall through to the XMM save block.
   10497   MBB->addSuccessor(XMMSaveMBB);
   10498   // The XMMSaveMBB will fall through to the end block.
   10499   XMMSaveMBB->addSuccessor(EndMBB);
   10500 
   10501   // Now add the instructions.
   10502   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10503   DebugLoc DL = MI->getDebugLoc();
   10504 
   10505   unsigned CountReg = MI->getOperand(0).getReg();
   10506   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
   10507   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
   10508 
   10509   if (!Subtarget->isTargetWin64()) {
   10510     // If %al is 0, branch around the XMM save block.
   10511     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
   10512     BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
   10513     MBB->addSuccessor(EndMBB);
   10514   }
   10515 
   10516   // In the XMM save block, save all the XMM argument registers.
   10517   for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
   10518     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
   10519     MachineMemOperand *MMO =
   10520       F->getMachineMemOperand(
   10521           MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
   10522         MachineMemOperand::MOStore,
   10523         /*Size=*/16, /*Align=*/16);
   10524     BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
   10525       .addFrameIndex(RegSaveFrameIndex)
   10526       .addImm(/*Scale=*/1)
   10527       .addReg(/*IndexReg=*/0)
   10528       .addImm(/*Disp=*/Offset)
   10529       .addReg(/*Segment=*/0)
   10530       .addReg(MI->getOperand(i).getReg())
   10531       .addMemOperand(MMO);
   10532   }
   10533 
   10534   MI->eraseFromParent();   // The pseudo instruction is gone now.
   10535 
   10536   return EndMBB;
   10537 }
   10538 
   10539 MachineBasicBlock *
   10540 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   10541                                      MachineBasicBlock *BB) const {
   10542   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10543   DebugLoc DL = MI->getDebugLoc();
   10544 
   10545   // To "insert" a SELECT_CC instruction, we actually have to insert the
   10546   // diamond control-flow pattern.  The incoming instruction knows the
   10547   // destination vreg to set, the condition code register to branch on, the
   10548   // true/false values to select between, and a branch opcode to use.
   10549   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   10550   MachineFunction::iterator It = BB;
   10551   ++It;
   10552 
   10553   //  thisMBB:
   10554   //  ...
   10555   //   TrueVal = ...
   10556   //   cmpTY ccX, r1, r2
   10557   //   bCC copy1MBB
   10558   //   fallthrough --> copy0MBB
   10559   MachineBasicBlock *thisMBB = BB;
   10560   MachineFunction *F = BB->getParent();
   10561   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   10562   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10563   F->insert(It, copy0MBB);
   10564   F->insert(It, sinkMBB);
   10565 
   10566   // If the EFLAGS register isn't dead in the terminator, then claim that it's
   10567   // live into the sink and copy blocks.
   10568   const MachineFunction *MF = BB->getParent();
   10569   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
   10570   BitVector ReservedRegs = TRI->getReservedRegs(*MF);
   10571 
   10572   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
   10573     const MachineOperand &MO = MI->getOperand(I);
   10574     if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
   10575     unsigned Reg = MO.getReg();
   10576     if (Reg != X86::EFLAGS) continue;
   10577     copy0MBB->addLiveIn(Reg);
   10578     sinkMBB->addLiveIn(Reg);
   10579   }
   10580 
   10581   // Transfer the remainder of BB and its successor edges to sinkMBB.
   10582   sinkMBB->splice(sinkMBB->begin(), BB,
   10583                   llvm::next(MachineBasicBlock::iterator(MI)),
   10584                   BB->end());
   10585   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   10586 
   10587   // Add the true and fallthrough blocks as its successors.
   10588   BB->addSuccessor(copy0MBB);
   10589   BB->addSuccessor(sinkMBB);
   10590 
   10591   // Create the conditional branch instruction.
   10592   unsigned Opc =
   10593     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
   10594   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
   10595 
   10596   //  copy0MBB:
   10597   //   %FalseValue = ...
   10598   //   # fallthrough to sinkMBB
   10599   copy0MBB->addSuccessor(sinkMBB);
   10600 
   10601   //  sinkMBB:
   10602   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   10603   //  ...
   10604   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   10605           TII->get(X86::PHI), MI->getOperand(0).getReg())
   10606     .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   10607     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   10608 
   10609   MI->eraseFromParent();   // The pseudo instruction is gone now.
   10610   return sinkMBB;
   10611 }
   10612 
   10613 MachineBasicBlock *
   10614 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
   10615                                           MachineBasicBlock *BB) const {
   10616   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10617   DebugLoc DL = MI->getDebugLoc();
   10618 
   10619   assert(!Subtarget->isTargetEnvMacho());
   10620 
   10621   // The lowering is pretty easy: we're just emitting the call to _alloca.  The
   10622   // non-trivial part is impdef of ESP.
   10623 
   10624   if (Subtarget->isTargetWin64()) {
   10625     if (Subtarget->isTargetCygMing()) {
   10626       // ___chkstk(Mingw64):
   10627       // Clobbers R10, R11, RAX and EFLAGS.
   10628       // Updates RSP.
   10629       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   10630         .addExternalSymbol("___chkstk")
   10631         .addReg(X86::RAX, RegState::Implicit)
   10632         .addReg(X86::RSP, RegState::Implicit)
   10633         .addReg(X86::RAX, RegState::Define | RegState::Implicit)
   10634         .addReg(X86::RSP, RegState::Define | RegState::Implicit)
   10635         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   10636     } else {
   10637       // __chkstk(MSVCRT): does not update stack pointer.
   10638       // Clobbers R10, R11 and EFLAGS.
   10639       // FIXME: RAX(allocated size) might be reused and not killed.
   10640       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   10641         .addExternalSymbol("__chkstk")
   10642         .addReg(X86::RAX, RegState::Implicit)
   10643         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   10644       // RAX has the offset to subtracted from RSP.
   10645       BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
   10646         .addReg(X86::RSP)
   10647         .addReg(X86::RAX);
   10648     }
   10649   } else {
   10650     const char *StackProbeSymbol =
   10651       Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
   10652 
   10653     BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
   10654       .addExternalSymbol(StackProbeSymbol)
   10655       .addReg(X86::EAX, RegState::Implicit)
   10656       .addReg(X86::ESP, RegState::Implicit)
   10657       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   10658       .addReg(X86::ESP, RegState::Define | RegState::Implicit)
   10659       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   10660   }
   10661 
   10662   MI->eraseFromParent();   // The pseudo instruction is gone now.
   10663   return BB;
   10664 }
   10665 
   10666 MachineBasicBlock *
   10667 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
   10668                                       MachineBasicBlock *BB) const {
   10669   // This is pretty easy.  We're taking the value that we received from
   10670   // our load from the relocation, sticking it in either RDI (x86-64)
   10671   // or EAX and doing an indirect call.  The return value will then
   10672   // be in the normal return register.
   10673   const X86InstrInfo *TII
   10674     = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
   10675   DebugLoc DL = MI->getDebugLoc();
   10676   MachineFunction *F = BB->getParent();
   10677 
   10678   assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
   10679   assert(MI->getOperand(3).isGlobal() && "This should be a global");
   10680 
   10681   if (Subtarget->is64Bit()) {
   10682     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   10683                                       TII->get(X86::MOV64rm), X86::RDI)
   10684     .addReg(X86::RIP)
   10685     .addImm(0).addReg(0)
   10686     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   10687                       MI->getOperand(3).getTargetFlags())
   10688     .addReg(0);
   10689     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
   10690     addDirectMem(MIB, X86::RDI);
   10691   } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
   10692     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   10693                                       TII->get(X86::MOV32rm), X86::EAX)
   10694     .addReg(0)
   10695     .addImm(0).addReg(0)
   10696     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   10697                       MI->getOperand(3).getTargetFlags())
   10698     .addReg(0);
   10699     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   10700     addDirectMem(MIB, X86::EAX);
   10701   } else {
   10702     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   10703                                       TII->get(X86::MOV32rm), X86::EAX)
   10704     .addReg(TII->getGlobalBaseReg(F))
   10705     .addImm(0).addReg(0)
   10706     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   10707                       MI->getOperand(3).getTargetFlags())
   10708     .addReg(0);
   10709     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   10710     addDirectMem(MIB, X86::EAX);
   10711   }
   10712 
   10713   MI->eraseFromParent(); // The pseudo instruction is gone now.
   10714   return BB;
   10715 }
   10716 
   10717 MachineBasicBlock *
   10718 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   10719                                                MachineBasicBlock *BB) const {
   10720   switch (MI->getOpcode()) {
   10721   default: assert(false && "Unexpected instr type to insert");
   10722   case X86::TAILJMPd64:
   10723   case X86::TAILJMPr64:
   10724   case X86::TAILJMPm64:
   10725     assert(!"TAILJMP64 would not be touched here.");
   10726   case X86::TCRETURNdi64:
   10727   case X86::TCRETURNri64:
   10728   case X86::TCRETURNmi64:
   10729     // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
   10730     // On AMD64, additional defs should be added before register allocation.
   10731     if (!Subtarget->isTargetWin64()) {
   10732       MI->addRegisterDefined(X86::RSI);
   10733       MI->addRegisterDefined(X86::RDI);
   10734       MI->addRegisterDefined(X86::XMM6);
   10735       MI->addRegisterDefined(X86::XMM7);
   10736       MI->addRegisterDefined(X86::XMM8);
   10737       MI->addRegisterDefined(X86::XMM9);
   10738       MI->addRegisterDefined(X86::XMM10);
   10739       MI->addRegisterDefined(X86::XMM11);
   10740       MI->addRegisterDefined(X86::XMM12);
   10741       MI->addRegisterDefined(X86::XMM13);
   10742       MI->addRegisterDefined(X86::XMM14);
   10743       MI->addRegisterDefined(X86::XMM15);
   10744     }
   10745     return BB;
   10746   case X86::WIN_ALLOCA:
   10747     return EmitLoweredWinAlloca(MI, BB);
   10748   case X86::TLSCall_32:
   10749   case X86::TLSCall_64:
   10750     return EmitLoweredTLSCall(MI, BB);
   10751   case X86::CMOV_GR8:
   10752   case X86::CMOV_FR32:
   10753   case X86::CMOV_FR64:
   10754   case X86::CMOV_V4F32:
   10755   case X86::CMOV_V2F64:
   10756   case X86::CMOV_V2I64:
   10757   case X86::CMOV_GR16:
   10758   case X86::CMOV_GR32:
   10759   case X86::CMOV_RFP32:
   10760   case X86::CMOV_RFP64:
   10761   case X86::CMOV_RFP80:
   10762     return EmitLoweredSelect(MI, BB);
   10763 
   10764   case X86::FP32_TO_INT16_IN_MEM:
   10765   case X86::FP32_TO_INT32_IN_MEM:
   10766   case X86::FP32_TO_INT64_IN_MEM:
   10767   case X86::FP64_TO_INT16_IN_MEM:
   10768   case X86::FP64_TO_INT32_IN_MEM:
   10769   case X86::FP64_TO_INT64_IN_MEM:
   10770   case X86::FP80_TO_INT16_IN_MEM:
   10771   case X86::FP80_TO_INT32_IN_MEM:
   10772   case X86::FP80_TO_INT64_IN_MEM: {
   10773     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10774     DebugLoc DL = MI->getDebugLoc();
   10775 
   10776     // Change the floating point control register to use "round towards zero"
   10777     // mode when truncating to an integer value.
   10778     MachineFunction *F = BB->getParent();
   10779     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
   10780     addFrameReference(BuildMI(*BB, MI, DL,
   10781                               TII->get(X86::FNSTCW16m)), CWFrameIdx);
   10782 
   10783     // Load the old value of the high byte of the control word...
   10784     unsigned OldCW =
   10785       F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
   10786     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
   10787                       CWFrameIdx);
   10788 
   10789     // Set the high part to be round to zero...
   10790     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
   10791       .addImm(0xC7F);
   10792 
   10793     // Reload the modified control word now...
   10794     addFrameReference(BuildMI(*BB, MI, DL,
   10795                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   10796 
   10797     // Restore the memory image of control word to original value
   10798     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
   10799       .addReg(OldCW);
   10800 
   10801     // Get the X86 opcode to use.
   10802     unsigned Opc;
   10803     switch (MI->getOpcode()) {
   10804     default: llvm_unreachable("illegal opcode!");
   10805     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
   10806     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
   10807     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
   10808     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
   10809     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
   10810     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
   10811     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
   10812     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
   10813     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
   10814     }
   10815 
   10816     X86AddressMode AM;
   10817     MachineOperand &Op = MI->getOperand(0);
   10818     if (Op.isReg()) {
   10819       AM.BaseType = X86AddressMode::RegBase;
   10820       AM.Base.Reg = Op.getReg();
   10821     } else {
   10822       AM.BaseType = X86AddressMode::FrameIndexBase;
   10823       AM.Base.FrameIndex = Op.getIndex();
   10824     }
   10825     Op = MI->getOperand(1);
   10826     if (Op.isImm())
   10827       AM.Scale = Op.getImm();
   10828     Op = MI->getOperand(2);
   10829     if (Op.isImm())
   10830       AM.IndexReg = Op.getImm();
   10831     Op = MI->getOperand(3);
   10832     if (Op.isGlobal()) {
   10833       AM.GV = Op.getGlobal();
   10834     } else {
   10835       AM.Disp = Op.getImm();
   10836     }
   10837     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
   10838                       .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
   10839 
   10840     // Reload the original control word now.
   10841     addFrameReference(BuildMI(*BB, MI, DL,
   10842                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   10843 
   10844     MI->eraseFromParent();   // The pseudo instruction is gone now.
   10845     return BB;
   10846   }
   10847     // String/text processing lowering.
   10848   case X86::PCMPISTRM128REG:
   10849   case X86::VPCMPISTRM128REG:
   10850     return EmitPCMP(MI, BB, 3, false /* in-mem */);
   10851   case X86::PCMPISTRM128MEM:
   10852   case X86::VPCMPISTRM128MEM:
   10853     return EmitPCMP(MI, BB, 3, true /* in-mem */);
   10854   case X86::PCMPESTRM128REG:
   10855   case X86::VPCMPESTRM128REG:
   10856     return EmitPCMP(MI, BB, 5, false /* in mem */);
   10857   case X86::PCMPESTRM128MEM:
   10858   case X86::VPCMPESTRM128MEM:
   10859     return EmitPCMP(MI, BB, 5, true /* in mem */);
   10860 
   10861     // Thread synchronization.
   10862   case X86::MONITOR:
   10863     return EmitMonitor(MI, BB);
   10864   case X86::MWAIT:
   10865     return EmitMwait(MI, BB);
   10866 
   10867     // Atomic Lowering.
   10868   case X86::ATOMAND32:
   10869     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
   10870                                                X86::AND32ri, X86::MOV32rm,
   10871                                                X86::LCMPXCHG32,
   10872                                                X86::NOT32r, X86::EAX,
   10873                                                X86::GR32RegisterClass);
   10874   case X86::ATOMOR32:
   10875     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
   10876                                                X86::OR32ri, X86::MOV32rm,
   10877                                                X86::LCMPXCHG32,
   10878                                                X86::NOT32r, X86::EAX,
   10879                                                X86::GR32RegisterClass);
   10880   case X86::ATOMXOR32:
   10881     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
   10882                                                X86::XOR32ri, X86::MOV32rm,
   10883                                                X86::LCMPXCHG32,
   10884                                                X86::NOT32r, X86::EAX,
   10885                                                X86::GR32RegisterClass);
   10886   case X86::ATOMNAND32:
   10887     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
   10888                                                X86::AND32ri, X86::MOV32rm,
   10889                                                X86::LCMPXCHG32,
   10890                                                X86::NOT32r, X86::EAX,
   10891                                                X86::GR32RegisterClass, true);
   10892   case X86::ATOMMIN32:
   10893     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
   10894   case X86::ATOMMAX32:
   10895     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
   10896   case X86::ATOMUMIN32:
   10897     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
   10898   case X86::ATOMUMAX32:
   10899     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
   10900 
   10901   case X86::ATOMAND16:
   10902     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
   10903                                                X86::AND16ri, X86::MOV16rm,
   10904                                                X86::LCMPXCHG16,
   10905                                                X86::NOT16r, X86::AX,
   10906                                                X86::GR16RegisterClass);
   10907   case X86::ATOMOR16:
   10908     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
   10909                                                X86::OR16ri, X86::MOV16rm,
   10910                                                X86::LCMPXCHG16,
   10911                                                X86::NOT16r, X86::AX,
   10912                                                X86::GR16RegisterClass);
   10913   case X86::ATOMXOR16:
   10914     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
   10915                                                X86::XOR16ri, X86::MOV16rm,
   10916                                                X86::LCMPXCHG16,
   10917                                                X86::NOT16r, X86::AX,
   10918                                                X86::GR16RegisterClass);
   10919   case X86::ATOMNAND16:
   10920     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
   10921                                                X86::AND16ri, X86::MOV16rm,
   10922                                                X86::LCMPXCHG16,
   10923                                                X86::NOT16r, X86::AX,
   10924                                                X86::GR16RegisterClass, true);
   10925   case X86::ATOMMIN16:
   10926     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
   10927   case X86::ATOMMAX16:
   10928     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
   10929   case X86::ATOMUMIN16:
   10930     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
   10931   case X86::ATOMUMAX16:
   10932     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
   10933 
   10934   case X86::ATOMAND8:
   10935     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
   10936                                                X86::AND8ri, X86::MOV8rm,
   10937                                                X86::LCMPXCHG8,
   10938                                                X86::NOT8r, X86::AL,
   10939                                                X86::GR8RegisterClass);
   10940   case X86::ATOMOR8:
   10941     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
   10942                                                X86::OR8ri, X86::MOV8rm,
   10943                                                X86::LCMPXCHG8,
   10944                                                X86::NOT8r, X86::AL,
   10945                                                X86::GR8RegisterClass);
   10946   case X86::ATOMXOR8:
   10947     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
   10948                                                X86::XOR8ri, X86::MOV8rm,
   10949                                                X86::LCMPXCHG8,
   10950                                                X86::NOT8r, X86::AL,
   10951                                                X86::GR8RegisterClass);
   10952   case X86::ATOMNAND8:
   10953     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
   10954                                                X86::AND8ri, X86::MOV8rm,
   10955                                                X86::LCMPXCHG8,
   10956                                                X86::NOT8r, X86::AL,
   10957                                                X86::GR8RegisterClass, true);
   10958   // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
   10959   // This group is for 64-bit host.
   10960   case X86::ATOMAND64:
   10961     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
   10962                                                X86::AND64ri32, X86::MOV64rm,
   10963                                                X86::LCMPXCHG64,
   10964                                                X86::NOT64r, X86::RAX,
   10965                                                X86::GR64RegisterClass);
   10966   case X86::ATOMOR64:
   10967     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
   10968                                                X86::OR64ri32, X86::MOV64rm,
   10969                                                X86::LCMPXCHG64,
   10970                                                X86::NOT64r, X86::RAX,
   10971                                                X86::GR64RegisterClass);
   10972   case X86::ATOMXOR64:
   10973     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
   10974                                                X86::XOR64ri32, X86::MOV64rm,
   10975                                                X86::LCMPXCHG64,
   10976                                                X86::NOT64r, X86::RAX,
   10977                                                X86::GR64RegisterClass);
   10978   case X86::ATOMNAND64:
   10979     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
   10980                                                X86::AND64ri32, X86::MOV64rm,
   10981                                                X86::LCMPXCHG64,
   10982                                                X86::NOT64r, X86::RAX,
   10983                                                X86::GR64RegisterClass, true);
   10984   case X86::ATOMMIN64:
   10985     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
   10986   case X86::ATOMMAX64:
   10987     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
   10988   case X86::ATOMUMIN64:
   10989     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
   10990   case X86::ATOMUMAX64:
   10991     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
   10992 
   10993   // This group does 64-bit operations on a 32-bit host.
   10994   case X86::ATOMAND6432:
   10995     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   10996                                                X86::AND32rr, X86::AND32rr,
   10997                                                X86::AND32ri, X86::AND32ri,
   10998                                                false);
   10999   case X86::ATOMOR6432:
   11000     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   11001                                                X86::OR32rr, X86::OR32rr,
   11002                                                X86::OR32ri, X86::OR32ri,
   11003                                                false);
   11004   case X86::ATOMXOR6432:
   11005     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   11006                                                X86::XOR32rr, X86::XOR32rr,
   11007                                                X86::XOR32ri, X86::XOR32ri,
   11008                                                false);
   11009   case X86::ATOMNAND6432:
   11010     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   11011                                                X86::AND32rr, X86::AND32rr,
   11012                                                X86::AND32ri, X86::AND32ri,
   11013                                                true);
   11014   case X86::ATOMADD6432:
   11015     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   11016                                                X86::ADD32rr, X86::ADC32rr,
   11017                                                X86::ADD32ri, X86::ADC32ri,
   11018                                                false);
   11019   case X86::ATOMSUB6432:
   11020     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   11021                                                X86::SUB32rr, X86::SBB32rr,
   11022                                                X86::SUB32ri, X86::SBB32ri,
   11023                                                false);
   11024   case X86::ATOMSWAP6432:
   11025     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   11026                                                X86::MOV32rr, X86::MOV32rr,
   11027                                                X86::MOV32ri, X86::MOV32ri,
   11028                                                false);
   11029   case X86::VASTART_SAVE_XMM_REGS:
   11030     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
   11031 
   11032   case X86::VAARG_64:
   11033     return EmitVAARG64WithCustomInserter(MI, BB);
   11034   }
   11035 }
   11036 
   11037 //===----------------------------------------------------------------------===//
   11038 //                           X86 Optimization Hooks
   11039 //===----------------------------------------------------------------------===//
   11040 
   11041 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   11042                                                        const APInt &Mask,
   11043                                                        APInt &KnownZero,
   11044                                                        APInt &KnownOne,
   11045                                                        const SelectionDAG &DAG,
   11046                                                        unsigned Depth) const {
   11047   unsigned Opc = Op.getOpcode();
   11048   assert((Opc >= ISD::BUILTIN_OP_END ||
   11049           Opc == ISD::INTRINSIC_WO_CHAIN ||
   11050           Opc == ISD::INTRINSIC_W_CHAIN ||
   11051           Opc == ISD::INTRINSIC_VOID) &&
   11052          "Should use MaskedValueIsZero if you don't know whether Op"
   11053          " is a target node!");
   11054 
   11055   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
   11056   switch (Opc) {
   11057   default: break;
   11058   case X86ISD::ADD:
   11059   case X86ISD::SUB:
   11060   case X86ISD::ADC:
   11061   case X86ISD::SBB:
   11062   case X86ISD::SMUL:
   11063   case X86ISD::UMUL:
   11064   case X86ISD::INC:
   11065   case X86ISD::DEC:
   11066   case X86ISD::OR:
   11067   case X86ISD::XOR:
   11068   case X86ISD::AND:
   11069     // These nodes' second result is a boolean.
   11070     if (Op.getResNo() == 0)
   11071       break;
   11072     // Fallthrough
   11073   case X86ISD::SETCC:
   11074     KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
   11075                                        Mask.getBitWidth() - 1);
   11076     break;
   11077   }
   11078 }
   11079 
   11080 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   11081                                                          unsigned Depth) const {
   11082   // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
   11083   if (Op.getOpcode() == X86ISD::SETCC_CARRY)
   11084     return Op.getValueType().getScalarType().getSizeInBits();
   11085 
   11086   // Fallback case.
   11087   return 1;
   11088 }
   11089 
   11090 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   11091 /// node is a GlobalAddress + offset.
   11092 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
   11093                                        const GlobalValue* &GA,
   11094                                        int64_t &Offset) const {
   11095   if (N->getOpcode() == X86ISD::Wrapper) {
   11096     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
   11097       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
   11098       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
   11099       return true;
   11100     }
   11101   }
   11102   return TargetLowering::isGAPlusOffset(N, GA, Offset);
   11103 }
   11104 
   11105 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
   11106 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
   11107 /// if the load addresses are consecutive, non-overlapping, and in the right
   11108 /// order.
   11109 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
   11110                                      TargetLowering::DAGCombinerInfo &DCI) {
   11111   DebugLoc dl = N->getDebugLoc();
   11112   EVT VT = N->getValueType(0);
   11113 
   11114   if (VT.getSizeInBits() != 128)
   11115     return SDValue();
   11116 
   11117   // Don't create instructions with illegal types after legalize types has run.
   11118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   11119   if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
   11120     return SDValue();
   11121 
   11122   SmallVector<SDValue, 16> Elts;
   11123   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
   11124     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
   11125 
   11126   return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
   11127 }
   11128 
   11129 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
   11130 /// generation and convert it from being a bunch of shuffles and extracts
   11131 /// to a simple store and scalar loads to extract the elements.
   11132 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
   11133                                                 const TargetLowering &TLI) {
   11134   SDValue InputVector = N->getOperand(0);
   11135 
   11136   // Only operate on vectors of 4 elements, where the alternative shuffling
   11137   // gets to be more expensive.
   11138   if (InputVector.getValueType() != MVT::v4i32)
   11139     return SDValue();
   11140 
   11141   // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
   11142   // single use which is a sign-extend or zero-extend, and all elements are
   11143   // used.
   11144   SmallVector<SDNode *, 4> Uses;
   11145   unsigned ExtractedElements = 0;
   11146   for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
   11147        UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
   11148     if (UI.getUse().getResNo() != InputVector.getResNo())
   11149       return SDValue();
   11150 
   11151     SDNode *Extract = *UI;
   11152     if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   11153       return SDValue();
   11154 
   11155     if (Extract->getValueType(0) != MVT::i32)
   11156       return SDValue();
   11157     if (!Extract->hasOneUse())
   11158       return SDValue();
   11159     if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
   11160         Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
   11161       return SDValue();
   11162     if (!isa<ConstantSDNode>(Extract->getOperand(1)))
   11163       return SDValue();
   11164 
   11165     // Record which element was extracted.
   11166     ExtractedElements |=
   11167       1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
   11168 
   11169     Uses.push_back(Extract);
   11170   }
   11171 
   11172   // If not all the elements were used, this may not be worthwhile.
   11173   if (ExtractedElements != 15)
   11174     return SDValue();
   11175 
   11176   // Ok, we've now decided to do the transformation.
   11177   DebugLoc dl = InputVector.getDebugLoc();
   11178 
   11179   // Store the value to a temporary stack slot.
   11180   SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
   11181   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
   11182                             MachinePointerInfo(), false, false, 0);
   11183 
   11184   // Replace each use (extract) with a load of the appropriate element.
   11185   for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
   11186        UE = Uses.end(); UI != UE; ++UI) {
   11187     SDNode *Extract = *UI;
   11188 
   11189     // cOMpute the element's address.
   11190     SDValue Idx = Extract->getOperand(1);
   11191     unsigned EltSize =
   11192         InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
   11193     uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
   11194     SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
   11195 
   11196     SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   11197                                      StackPtr, OffsetVal);
   11198 
   11199     // Load the scalar.
   11200     SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
   11201                                      ScalarAddr, MachinePointerInfo(),
   11202                                      false, false, 0);
   11203 
   11204     // Replace the exact with the load.
   11205     DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
   11206   }
   11207 
   11208   // The replacement was made in place; don't return anything.
   11209   return SDValue();
   11210 }
   11211 
   11212 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
   11213 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
   11214                                     const X86Subtarget *Subtarget) {
   11215   DebugLoc DL = N->getDebugLoc();
   11216   SDValue Cond = N->getOperand(0);
   11217   // Get the LHS/RHS of the select.
   11218   SDValue LHS = N->getOperand(1);
   11219   SDValue RHS = N->getOperand(2);
   11220 
   11221   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
   11222   // instructions match the semantics of the common C idiom x<y?x:y but not
   11223   // x<=y?x:y, because of how they handle negative zero (which can be
   11224   // ignored in unsafe-math mode).
   11225   if (Subtarget->hasSSE2() &&
   11226       (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
   11227       Cond.getOpcode() == ISD::SETCC) {
   11228     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   11229 
   11230     unsigned Opcode = 0;
   11231     // Check for x CC y ? x : y.
   11232     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   11233         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   11234       switch (CC) {
   11235       default: break;
   11236       case ISD::SETULT:
   11237         // Converting this to a min would handle NaNs incorrectly, and swapping
   11238         // the operands would cause it to handle comparisons between positive
   11239         // and negative zero incorrectly.
   11240         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   11241           if (!UnsafeFPMath &&
   11242               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   11243             break;
   11244           std::swap(LHS, RHS);
   11245         }
   11246         Opcode = X86ISD::FMIN;
   11247         break;
   11248       case ISD::SETOLE:
   11249         // Converting this to a min would handle comparisons between positive
   11250         // and negative zero incorrectly.
   11251         if (!UnsafeFPMath &&
   11252             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   11253           break;
   11254         Opcode = X86ISD::FMIN;
   11255         break;
   11256       case ISD::SETULE:
   11257         // Converting this to a min would handle both negative zeros and NaNs
   11258         // incorrectly, but we can swap the operands to fix both.
   11259         std::swap(LHS, RHS);
   11260       case ISD::SETOLT:
   11261       case ISD::SETLT:
   11262       case ISD::SETLE:
   11263         Opcode = X86ISD::FMIN;
   11264         break;
   11265 
   11266       case ISD::SETOGE:
   11267         // Converting this to a max would handle comparisons between positive
   11268         // and negative zero incorrectly.
   11269         if (!UnsafeFPMath &&
   11270             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
   11271           break;
   11272         Opcode = X86ISD::FMAX;
   11273         break;
   11274       case ISD::SETUGT:
   11275         // Converting this to a max would handle NaNs incorrectly, and swapping
   11276         // the operands would cause it to handle comparisons between positive
   11277         // and negative zero incorrectly.
   11278         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   11279           if (!UnsafeFPMath &&
   11280               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   11281             break;
   11282           std::swap(LHS, RHS);
   11283         }
   11284         Opcode = X86ISD::FMAX;
   11285         break;
   11286       case ISD::SETUGE:
   11287         // Converting this to a max would handle both negative zeros and NaNs
   11288         // incorrectly, but we can swap the operands to fix both.
   11289         std::swap(LHS, RHS);
   11290       case ISD::SETOGT:
   11291       case ISD::SETGT:
   11292       case ISD::SETGE:
   11293         Opcode = X86ISD::FMAX;
   11294         break;
   11295       }
   11296     // Check for x CC y ? y : x -- a min/max with reversed arms.
   11297     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
   11298                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
   11299       switch (CC) {
   11300       default: break;
   11301       case ISD::SETOGE:
   11302         // Converting this to a min would handle comparisons between positive
   11303         // and negative zero incorrectly, and swapping the operands would
   11304         // cause it to handle NaNs incorrectly.
   11305         if (!UnsafeFPMath &&
   11306             !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
   11307           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   11308             break;
   11309           std::swap(LHS, RHS);
   11310         }
   11311         Opcode = X86ISD::FMIN;
   11312         break;
   11313       case ISD::SETUGT:
   11314         // Converting this to a min would handle NaNs incorrectly.
   11315         if (!UnsafeFPMath &&
   11316             (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
   11317           break;
   11318         Opcode = X86ISD::FMIN;
   11319         break;
   11320       case ISD::SETUGE:
   11321         // Converting this to a min would handle both negative zeros and NaNs
   11322         // incorrectly, but we can swap the operands to fix both.
   11323         std::swap(LHS, RHS);
   11324       case ISD::SETOGT:
   11325       case ISD::SETGT:
   11326       case ISD::SETGE:
   11327         Opcode = X86ISD::FMIN;
   11328         break;
   11329 
   11330       case ISD::SETULT:
   11331         // Converting this to a max would handle NaNs incorrectly.
   11332         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   11333           break;
   11334         Opcode = X86ISD::FMAX;
   11335         break;
   11336       case ISD::SETOLE:
   11337         // Converting this to a max would handle comparisons between positive
   11338         // and negative zero incorrectly, and swapping the operands would
   11339         // cause it to handle NaNs incorrectly.
   11340         if (!UnsafeFPMath &&
   11341             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
   11342           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   11343             break;
   11344           std::swap(LHS, RHS);
   11345         }
   11346         Opcode = X86ISD::FMAX;
   11347         break;
   11348       case ISD::SETULE:
   11349         // Converting this to a max would handle both negative zeros and NaNs
   11350         // incorrectly, but we can swap the operands to fix both.
   11351         std::swap(LHS, RHS);
   11352       case ISD::SETOLT:
   11353       case ISD::SETLT:
   11354       case ISD::SETLE:
   11355         Opcode = X86ISD::FMAX;
   11356         break;
   11357       }
   11358     }
   11359 
   11360     if (Opcode)
   11361       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
   11362   }
   11363 
   11364   // If this is a select between two integer constants, try to do some
   11365   // optimizations.
   11366   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
   11367     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
   11368       // Don't do this for crazy integer types.
   11369       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
   11370         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
   11371         // so that TrueC (the true value) is larger than FalseC.
   11372         bool NeedsCondInvert = false;
   11373 
   11374         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
   11375             // Efficiently invertible.
   11376             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
   11377              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
   11378               isa<ConstantSDNode>(Cond.getOperand(1))))) {
   11379           NeedsCondInvert = true;
   11380           std::swap(TrueC, FalseC);
   11381         }
   11382 
   11383         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
   11384         if (FalseC->getAPIntValue() == 0 &&
   11385             TrueC->getAPIntValue().isPowerOf2()) {
   11386           if (NeedsCondInvert) // Invert the condition if needed.
   11387             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   11388                                DAG.getConstant(1, Cond.getValueType()));
   11389 
   11390           // Zero extend the condition if needed.
   11391           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
   11392 
   11393           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   11394           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
   11395                              DAG.getConstant(ShAmt, MVT::i8));
   11396         }
   11397 
   11398         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
   11399         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   11400           if (NeedsCondInvert) // Invert the condition if needed.
   11401             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   11402                                DAG.getConstant(1, Cond.getValueType()));
   11403 
   11404           // Zero extend the condition if needed.
   11405           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   11406                              FalseC->getValueType(0), Cond);
   11407           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   11408                              SDValue(FalseC, 0));
   11409         }
   11410 
   11411         // Optimize cases that will turn into an LEA instruction.  This requires
   11412         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   11413         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   11414           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   11415           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   11416 
   11417           bool isFastMultiplier = false;
   11418           if (Diff < 10) {
   11419             switch ((unsigned char)Diff) {
   11420               default: break;
   11421               case 1:  // result = add base, cond
   11422               case 2:  // result = lea base(    , cond*2)
   11423               case 3:  // result = lea base(cond, cond*2)
   11424               case 4:  // result = lea base(    , cond*4)
   11425               case 5:  // result = lea base(cond, cond*4)
   11426               case 8:  // result = lea base(    , cond*8)
   11427               case 9:  // result = lea base(cond, cond*8)
   11428                 isFastMultiplier = true;
   11429                 break;
   11430             }
   11431           }
   11432 
   11433           if (isFastMultiplier) {
   11434             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   11435             if (NeedsCondInvert) // Invert the condition if needed.
   11436               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   11437                                  DAG.getConstant(1, Cond.getValueType()));
   11438 
   11439             // Zero extend the condition if needed.
   11440             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   11441                                Cond);
   11442             // Scale the condition by the difference.
   11443             if (Diff != 1)
   11444               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   11445                                  DAG.getConstant(Diff, Cond.getValueType()));
   11446 
   11447             // Add the base if non-zero.
   11448             if (FalseC->getAPIntValue() != 0)
   11449               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   11450                                  SDValue(FalseC, 0));
   11451             return Cond;
   11452           }
   11453         }
   11454       }
   11455   }
   11456 
   11457   return SDValue();
   11458 }
   11459 
   11460 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
   11461 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
   11462                                   TargetLowering::DAGCombinerInfo &DCI) {
   11463   DebugLoc DL = N->getDebugLoc();
   11464 
   11465   // If the flag operand isn't dead, don't touch this CMOV.
   11466   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
   11467     return SDValue();
   11468 
   11469   SDValue FalseOp = N->getOperand(0);
   11470   SDValue TrueOp = N->getOperand(1);
   11471   X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
   11472   SDValue Cond = N->getOperand(3);
   11473   if (CC == X86::COND_E || CC == X86::COND_NE) {
   11474     switch (Cond.getOpcode()) {
   11475     default: break;
   11476     case X86ISD::BSR:
   11477     case X86ISD::BSF:
   11478       // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
   11479       if (DAG.isKnownNeverZero(Cond.getOperand(0)))
   11480         return (CC == X86::COND_E) ? FalseOp : TrueOp;
   11481     }
   11482   }
   11483 
   11484   // If this is a select between two integer constants, try to do some
   11485   // optimizations.  Note that the operands are ordered the opposite of SELECT
   11486   // operands.
   11487   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
   11488     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
   11489       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
   11490       // larger than FalseC (the false value).
   11491       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
   11492         CC = X86::GetOppositeBranchCondition(CC);
   11493         std::swap(TrueC, FalseC);
   11494       }
   11495 
   11496       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
   11497       // This is efficient for any integer data type (including i8/i16) and
   11498       // shift amount.
   11499       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
   11500         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   11501                            DAG.getConstant(CC, MVT::i8), Cond);
   11502 
   11503         // Zero extend the condition if needed.
   11504         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
   11505 
   11506         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   11507         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
   11508                            DAG.getConstant(ShAmt, MVT::i8));
   11509         if (N->getNumValues() == 2)  // Dead flag value?
   11510           return DCI.CombineTo(N, Cond, SDValue());
   11511         return Cond;
   11512       }
   11513 
   11514       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
   11515       // for any integer data type, including i8/i16.
   11516       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   11517         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   11518                            DAG.getConstant(CC, MVT::i8), Cond);
   11519 
   11520         // Zero extend the condition if needed.
   11521         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   11522                            FalseC->getValueType(0), Cond);
   11523         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   11524                            SDValue(FalseC, 0));
   11525 
   11526         if (N->getNumValues() == 2)  // Dead flag value?
   11527           return DCI.CombineTo(N, Cond, SDValue());
   11528         return Cond;
   11529       }
   11530 
   11531       // Optimize cases that will turn into an LEA instruction.  This requires
   11532       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   11533       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   11534         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   11535         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   11536 
   11537         bool isFastMultiplier = false;
   11538         if (Diff < 10) {
   11539           switch ((unsigned char)Diff) {
   11540           default: break;
   11541           case 1:  // result = add base, cond
   11542           case 2:  // result = lea base(    , cond*2)
   11543           case 3:  // result = lea base(cond, cond*2)
   11544           case 4:  // result = lea base(    , cond*4)
   11545           case 5:  // result = lea base(cond, cond*4)
   11546           case 8:  // result = lea base(    , cond*8)
   11547           case 9:  // result = lea base(cond, cond*8)
   11548             isFastMultiplier = true;
   11549             break;
   11550           }
   11551         }
   11552 
   11553         if (isFastMultiplier) {
   11554           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   11555           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   11556                              DAG.getConstant(CC, MVT::i8), Cond);
   11557           // Zero extend the condition if needed.
   11558           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   11559                              Cond);
   11560           // Scale the condition by the difference.
   11561           if (Diff != 1)
   11562             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   11563                                DAG.getConstant(Diff, Cond.getValueType()));
   11564 
   11565           // Add the base if non-zero.
   11566           if (FalseC->getAPIntValue() != 0)
   11567             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   11568                                SDValue(FalseC, 0));
   11569           if (N->getNumValues() == 2)  // Dead flag value?
   11570             return DCI.CombineTo(N, Cond, SDValue());
   11571           return Cond;
   11572         }
   11573       }
   11574     }
   11575   }
   11576   return SDValue();
   11577 }
   11578 
   11579 
   11580 /// PerformMulCombine - Optimize a single multiply with constant into two
   11581 /// in order to implement it with two cheaper instructions, e.g.
   11582 /// LEA + SHL, LEA + LEA.
   11583 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
   11584                                  TargetLowering::DAGCombinerInfo &DCI) {
   11585   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   11586     return SDValue();
   11587 
   11588   EVT VT = N->getValueType(0);
   11589   if (VT != MVT::i64)
   11590     return SDValue();
   11591 
   11592   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   11593   if (!C)
   11594     return SDValue();
   11595   uint64_t MulAmt = C->getZExtValue();
   11596   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
   11597     return SDValue();
   11598 
   11599   uint64_t MulAmt1 = 0;
   11600   uint64_t MulAmt2 = 0;
   11601   if ((MulAmt % 9) == 0) {
   11602     MulAmt1 = 9;
   11603     MulAmt2 = MulAmt / 9;
   11604   } else if ((MulAmt % 5) == 0) {
   11605     MulAmt1 = 5;
   11606     MulAmt2 = MulAmt / 5;
   11607   } else if ((MulAmt % 3) == 0) {
   11608     MulAmt1 = 3;
   11609     MulAmt2 = MulAmt / 3;
   11610   }
   11611   if (MulAmt2 &&
   11612       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
   11613     DebugLoc DL = N->getDebugLoc();
   11614 
   11615     if (isPowerOf2_64(MulAmt2) &&
   11616         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
   11617       // If second multiplifer is pow2, issue it first. We want the multiply by
   11618       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
   11619       // is an add.
   11620       std::swap(MulAmt1, MulAmt2);
   11621 
   11622     SDValue NewMul;
   11623     if (isPowerOf2_64(MulAmt1))
   11624       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
   11625                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
   11626     else
   11627       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
   11628                            DAG.getConstant(MulAmt1, VT));
   11629 
   11630     if (isPowerOf2_64(MulAmt2))
   11631       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
   11632                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
   11633     else
   11634       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
   11635                            DAG.getConstant(MulAmt2, VT));
   11636 
   11637     // Do not add new nodes to DAG combiner worklist.
   11638     DCI.CombineTo(N, NewMul, false);
   11639   }
   11640   return SDValue();
   11641 }
   11642 
   11643 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
   11644   SDValue N0 = N->getOperand(0);
   11645   SDValue N1 = N->getOperand(1);
   11646   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   11647   EVT VT = N0.getValueType();
   11648 
   11649   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
   11650   // since the result of setcc_c is all zero's or all ones.
   11651   if (N1C && N0.getOpcode() == ISD::AND &&
   11652       N0.getOperand(1).getOpcode() == ISD::Constant) {
   11653     SDValue N00 = N0.getOperand(0);
   11654     if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
   11655         ((N00.getOpcode() == ISD::ANY_EXTEND ||
   11656           N00.getOpcode() == ISD::ZERO_EXTEND) &&
   11657          N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
   11658       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   11659       APInt ShAmt = N1C->getAPIntValue();
   11660       Mask = Mask.shl(ShAmt);
   11661       if (Mask != 0)
   11662         return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
   11663                            N00, DAG.getConstant(Mask, VT));
   11664     }
   11665   }
   11666 
   11667   return SDValue();
   11668 }
   11669 
   11670 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
   11671 ///                       when possible.
   11672 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
   11673                                    const X86Subtarget *Subtarget) {
   11674   EVT VT = N->getValueType(0);
   11675   if (!VT.isVector() && VT.isInteger() &&
   11676       N->getOpcode() == ISD::SHL)
   11677     return PerformSHLCombine(N, DAG);
   11678 
   11679   // On X86 with SSE2 support, we can transform this to a vector shift if
   11680   // all elements are shifted by the same amount.  We can't do this in legalize
   11681   // because the a constant vector is typically transformed to a constant pool
   11682   // so we have no knowledge of the shift amount.
   11683   if (!Subtarget->hasSSE2())
   11684     return SDValue();
   11685 
   11686   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
   11687     return SDValue();
   11688 
   11689   SDValue ShAmtOp = N->getOperand(1);
   11690   EVT EltVT = VT.getVectorElementType();
   11691   DebugLoc DL = N->getDebugLoc();
   11692   SDValue BaseShAmt = SDValue();
   11693   if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
   11694     unsigned NumElts = VT.getVectorNumElements();
   11695     unsigned i = 0;
   11696     for (; i != NumElts; ++i) {
   11697       SDValue Arg = ShAmtOp.getOperand(i);
   11698       if (Arg.getOpcode() == ISD::UNDEF) continue;
   11699       BaseShAmt = Arg;
   11700       break;
   11701     }
   11702     for (; i != NumElts; ++i) {
   11703       SDValue Arg = ShAmtOp.getOperand(i);
   11704       if (Arg.getOpcode() == ISD::UNDEF) continue;
   11705       if (Arg != BaseShAmt) {
   11706         return SDValue();
   11707       }
   11708     }
   11709   } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
   11710              cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
   11711     SDValue InVec = ShAmtOp.getOperand(0);
   11712     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
   11713       unsigned NumElts = InVec.getValueType().getVectorNumElements();
   11714       unsigned i = 0;
   11715       for (; i != NumElts; ++i) {
   11716         SDValue Arg = InVec.getOperand(i);
   11717         if (Arg.getOpcode() == ISD::UNDEF) continue;
   11718         BaseShAmt = Arg;
   11719         break;
   11720       }
   11721     } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
   11722        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
   11723          unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
   11724          if (C->getZExtValue() == SplatIdx)
   11725            BaseShAmt = InVec.getOperand(1);
   11726        }
   11727     }
   11728     if (BaseShAmt.getNode() == 0)
   11729       BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
   11730                               DAG.getIntPtrConstant(0));
   11731   } else
   11732     return SDValue();
   11733 
   11734   // The shift amount is an i32.
   11735   if (EltVT.bitsGT(MVT::i32))
   11736     BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
   11737   else if (EltVT.bitsLT(MVT::i32))
   11738     BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
   11739 
   11740   // The shift amount is identical so we can do a vector shift.
   11741   SDValue  ValOp = N->getOperand(0);
   11742   switch (N->getOpcode()) {
   11743   default:
   11744     llvm_unreachable("Unknown shift opcode!");
   11745     break;
   11746   case ISD::SHL:
   11747     if (VT == MVT::v2i64)
   11748       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11749                          DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   11750                          ValOp, BaseShAmt);
   11751     if (VT == MVT::v4i32)
   11752       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11753                          DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   11754                          ValOp, BaseShAmt);
   11755     if (VT == MVT::v8i16)
   11756       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11757                          DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   11758                          ValOp, BaseShAmt);
   11759     break;
   11760   case ISD::SRA:
   11761     if (VT == MVT::v4i32)
   11762       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11763                          DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
   11764                          ValOp, BaseShAmt);
   11765     if (VT == MVT::v8i16)
   11766       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11767                          DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
   11768                          ValOp, BaseShAmt);
   11769     break;
   11770   case ISD::SRL:
   11771     if (VT == MVT::v2i64)
   11772       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11773                          DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   11774                          ValOp, BaseShAmt);
   11775     if (VT == MVT::v4i32)
   11776       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11777                          DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
   11778                          ValOp, BaseShAmt);
   11779     if (VT ==  MVT::v8i16)
   11780       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   11781                          DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
   11782                          ValOp, BaseShAmt);
   11783     break;
   11784   }
   11785   return SDValue();
   11786 }
   11787 
   11788 
   11789 // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
   11790 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
   11791 // and friends.  Likewise for OR -> CMPNEQSS.
   11792 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
   11793                             TargetLowering::DAGCombinerInfo &DCI,
   11794                             const X86Subtarget *Subtarget) {
   11795   unsigned opcode;
   11796 
   11797   // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
   11798   // we're requiring SSE2 for both.
   11799   if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
   11800     SDValue N0 = N->getOperand(0);
   11801     SDValue N1 = N->getOperand(1);
   11802     SDValue CMP0 = N0->getOperand(1);
   11803     SDValue CMP1 = N1->getOperand(1);
   11804     DebugLoc DL = N->getDebugLoc();
   11805 
   11806     // The SETCCs should both refer to the same CMP.
   11807     if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
   11808       return SDValue();
   11809 
   11810     SDValue CMP00 = CMP0->getOperand(0);
   11811     SDValue CMP01 = CMP0->getOperand(1);
   11812     EVT     VT    = CMP00.getValueType();
   11813 
   11814     if (VT == MVT::f32 || VT == MVT::f64) {
   11815       bool ExpectingFlags = false;
   11816       // Check for any users that want flags:
   11817       for (SDNode::use_iterator UI = N->use_begin(),
   11818              UE = N->use_end();
   11819            !ExpectingFlags && UI != UE; ++UI)
   11820         switch (UI->getOpcode()) {
   11821         default:
   11822         case ISD::BR_CC:
   11823         case ISD::BRCOND:
   11824         case ISD::SELECT:
   11825           ExpectingFlags = true;
   11826           break;
   11827         case ISD::CopyToReg:
   11828         case ISD::SIGN_EXTEND:
   11829         case ISD::ZERO_EXTEND:
   11830         case ISD::ANY_EXTEND:
   11831           break;
   11832         }
   11833 
   11834       if (!ExpectingFlags) {
   11835         enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
   11836         enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
   11837 
   11838         if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
   11839           X86::CondCode tmp = cc0;
   11840           cc0 = cc1;
   11841           cc1 = tmp;
   11842         }
   11843 
   11844         if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
   11845             (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
   11846           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
   11847           X86ISD::NodeType NTOperator = is64BitFP ?
   11848             X86ISD::FSETCCsd : X86ISD::FSETCCss;
   11849           // FIXME: need symbolic constants for these magic numbers.
   11850           // See X86ATTInstPrinter.cpp:printSSECC().
   11851           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
   11852           SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
   11853                                               DAG.getConstant(x86cc, MVT::i8));
   11854           SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
   11855                                               OnesOrZeroesF);
   11856           SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
   11857                                       DAG.getConstant(1, MVT::i32));
   11858           SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
   11859           return OneBitOfTruth;
   11860         }
   11861       }
   11862     }
   11863   }
   11864   return SDValue();
   11865 }
   11866 
   11867 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
   11868                                  TargetLowering::DAGCombinerInfo &DCI,
   11869                                  const X86Subtarget *Subtarget) {
   11870   if (DCI.isBeforeLegalizeOps())
   11871     return SDValue();
   11872 
   11873   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   11874   if (R.getNode())
   11875     return R;
   11876 
   11877   // Want to form ANDNP nodes:
   11878   // 1) In the hopes of then easily combining them with OR and AND nodes
   11879   //    to form PBLEND/PSIGN.
   11880   // 2) To match ANDN packed intrinsics
   11881   EVT VT = N->getValueType(0);
   11882   if (VT != MVT::v2i64 && VT != MVT::v4i64)
   11883     return SDValue();
   11884 
   11885   SDValue N0 = N->getOperand(0);
   11886   SDValue N1 = N->getOperand(1);
   11887   DebugLoc DL = N->getDebugLoc();
   11888 
   11889   // Check LHS for vnot
   11890   if (N0.getOpcode() == ISD::XOR &&
   11891       ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
   11892     return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
   11893 
   11894   // Check RHS for vnot
   11895   if (N1.getOpcode() == ISD::XOR &&
   11896       ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
   11897     return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
   11898 
   11899   return SDValue();
   11900 }
   11901 
   11902 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
   11903                                 TargetLowering::DAGCombinerInfo &DCI,
   11904                                 const X86Subtarget *Subtarget) {
   11905   if (DCI.isBeforeLegalizeOps())
   11906     return SDValue();
   11907 
   11908   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   11909   if (R.getNode())
   11910     return R;
   11911 
   11912   EVT VT = N->getValueType(0);
   11913   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
   11914     return SDValue();
   11915 
   11916   SDValue N0 = N->getOperand(0);
   11917   SDValue N1 = N->getOperand(1);
   11918 
   11919   // look for psign/blend
   11920   if (Subtarget->hasSSSE3()) {
   11921     if (VT == MVT::v2i64) {
   11922       // Canonicalize pandn to RHS
   11923       if (N0.getOpcode() == X86ISD::ANDNP)
   11924         std::swap(N0, N1);
   11925       // or (and (m, x), (pandn m, y))
   11926       if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
   11927         SDValue Mask = N1.getOperand(0);
   11928         SDValue X    = N1.getOperand(1);
   11929         SDValue Y;
   11930         if (N0.getOperand(0) == Mask)
   11931           Y = N0.getOperand(1);
   11932         if (N0.getOperand(1) == Mask)
   11933           Y = N0.getOperand(0);
   11934 
   11935         // Check to see if the mask appeared in both the AND and ANDNP and
   11936         if (!Y.getNode())
   11937           return SDValue();
   11938 
   11939         // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
   11940         if (Mask.getOpcode() != ISD::BITCAST ||
   11941             X.getOpcode() != ISD::BITCAST ||
   11942             Y.getOpcode() != ISD::BITCAST)
   11943           return SDValue();
   11944 
   11945         // Look through mask bitcast.
   11946         Mask = Mask.getOperand(0);
   11947         EVT MaskVT = Mask.getValueType();
   11948 
   11949         // Validate that the Mask operand is a vector sra node.  The sra node
   11950         // will be an intrinsic.
   11951         if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
   11952           return SDValue();
   11953 
   11954         // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
   11955         // there is no psrai.b
   11956         switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
   11957         case Intrinsic::x86_sse2_psrai_w:
   11958         case Intrinsic::x86_sse2_psrai_d:
   11959           break;
   11960         default: return SDValue();
   11961         }
   11962 
   11963         // Check that the SRA is all signbits.
   11964         SDValue SraC = Mask.getOperand(2);
   11965         unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
   11966         unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
   11967         if ((SraAmt + 1) != EltBits)
   11968           return SDValue();
   11969 
   11970         DebugLoc DL = N->getDebugLoc();
   11971 
   11972         // Now we know we at least have a plendvb with the mask val.  See if
   11973         // we can form a psignb/w/d.
   11974         // psign = x.type == y.type == mask.type && y = sub(0, x);
   11975         X = X.getOperand(0);
   11976         Y = Y.getOperand(0);
   11977         if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
   11978             ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
   11979             X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
   11980           unsigned Opc = 0;
   11981           switch (EltBits) {
   11982           case 8: Opc = X86ISD::PSIGNB; break;
   11983           case 16: Opc = X86ISD::PSIGNW; break;
   11984           case 32: Opc = X86ISD::PSIGND; break;
   11985           default: break;
   11986           }
   11987           if (Opc) {
   11988             SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
   11989             return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
   11990           }
   11991         }
   11992         // PBLENDVB only available on SSE 4.1
   11993         if (!Subtarget->hasSSE41())
   11994           return SDValue();
   11995 
   11996         X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
   11997         Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
   11998         Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
   11999         Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
   12000         return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
   12001       }
   12002     }
   12003   }
   12004 
   12005   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
   12006   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
   12007     std::swap(N0, N1);
   12008   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
   12009     return SDValue();
   12010   if (!N0.hasOneUse() || !N1.hasOneUse())
   12011     return SDValue();
   12012 
   12013   SDValue ShAmt0 = N0.getOperand(1);
   12014   if (ShAmt0.getValueType() != MVT::i8)
   12015     return SDValue();
   12016   SDValue ShAmt1 = N1.getOperand(1);
   12017   if (ShAmt1.getValueType() != MVT::i8)
   12018     return SDValue();
   12019   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
   12020     ShAmt0 = ShAmt0.getOperand(0);
   12021   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
   12022     ShAmt1 = ShAmt1.getOperand(0);
   12023 
   12024   DebugLoc DL = N->getDebugLoc();
   12025   unsigned Opc = X86ISD::SHLD;
   12026   SDValue Op0 = N0.getOperand(0);
   12027   SDValue Op1 = N1.getOperand(0);
   12028   if (ShAmt0.getOpcode() == ISD::SUB) {
   12029     Opc = X86ISD::SHRD;
   12030     std::swap(Op0, Op1);
   12031     std::swap(ShAmt0, ShAmt1);
   12032   }
   12033 
   12034   unsigned Bits = VT.getSizeInBits();
   12035   if (ShAmt1.getOpcode() == ISD::SUB) {
   12036     SDValue Sum = ShAmt1.getOperand(0);
   12037     if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
   12038       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
   12039       if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
   12040         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
   12041       if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
   12042         return DAG.getNode(Opc, DL, VT,
   12043                            Op0, Op1,
   12044                            DAG.getNode(ISD::TRUNCATE, DL,
   12045                                        MVT::i8, ShAmt0));
   12046     }
   12047   } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
   12048     ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
   12049     if (ShAmt0C &&
   12050         ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
   12051       return DAG.getNode(Opc, DL, VT,
   12052                          N0.getOperand(0), N1.getOperand(0),
   12053                          DAG.getNode(ISD::TRUNCATE, DL,
   12054                                        MVT::i8, ShAmt0));
   12055   }
   12056 
   12057   return SDValue();
   12058 }
   12059 
   12060 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
   12061 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
   12062                                    const X86Subtarget *Subtarget) {
   12063   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
   12064   // the FP state in cases where an emms may be missing.
   12065   // A preferable solution to the general problem is to figure out the right
   12066   // places to insert EMMS.  This qualifies as a quick hack.
   12067 
   12068   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
   12069   StoreSDNode *St = cast<StoreSDNode>(N);
   12070   EVT VT = St->getValue().getValueType();
   12071   if (VT.getSizeInBits() != 64)
   12072     return SDValue();
   12073 
   12074   const Function *F = DAG.getMachineFunction().getFunction();
   12075   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
   12076   bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
   12077     && Subtarget->hasSSE2();
   12078   if ((VT.isVector() ||
   12079        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
   12080       isa<LoadSDNode>(St->getValue()) &&
   12081       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
   12082       St->getChain().hasOneUse() && !St->isVolatile()) {
   12083     SDNode* LdVal = St->getValue().getNode();
   12084     LoadSDNode *Ld = 0;
   12085     int TokenFactorIndex = -1;
   12086     SmallVector<SDValue, 8> Ops;
   12087     SDNode* ChainVal = St->getChain().getNode();
   12088     // Must be a store of a load.  We currently handle two cases:  the load
   12089     // is a direct child, and it's under an intervening TokenFactor.  It is
   12090     // possible to dig deeper under nested TokenFactors.
   12091     if (ChainVal == LdVal)
   12092       Ld = cast<LoadSDNode>(St->getChain());
   12093     else if (St->getValue().hasOneUse() &&
   12094              ChainVal->getOpcode() == ISD::TokenFactor) {
   12095       for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
   12096         if (ChainVal->getOperand(i).getNode() == LdVal) {
   12097           TokenFactorIndex = i;
   12098           Ld = cast<LoadSDNode>(St->getValue());
   12099         } else
   12100           Ops.push_back(ChainVal->getOperand(i));
   12101       }
   12102     }
   12103 
   12104     if (!Ld || !ISD::isNormalLoad(Ld))
   12105       return SDValue();
   12106 
   12107     // If this is not the MMX case, i.e. we are just turning i64 load/store
   12108     // into f64 load/store, avoid the transformation if there are multiple
   12109     // uses of the loaded value.
   12110     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
   12111       return SDValue();
   12112 
   12113     DebugLoc LdDL = Ld->getDebugLoc();
   12114     DebugLoc StDL = N->getDebugLoc();
   12115     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
   12116     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
   12117     // pair instead.
   12118     if (Subtarget->is64Bit() || F64IsLegal) {
   12119       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
   12120       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
   12121                                   Ld->getPointerInfo(), Ld->isVolatile(),
   12122                                   Ld->isNonTemporal(), Ld->getAlignment());
   12123       SDValue NewChain = NewLd.getValue(1);
   12124       if (TokenFactorIndex != -1) {
   12125         Ops.push_back(NewChain);
   12126         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   12127                                Ops.size());
   12128       }
   12129       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
   12130                           St->getPointerInfo(),
   12131                           St->isVolatile(), St->isNonTemporal(),
   12132                           St->getAlignment());
   12133     }
   12134 
   12135     // Otherwise, lower to two pairs of 32-bit loads / stores.
   12136     SDValue LoAddr = Ld->getBasePtr();
   12137     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
   12138                                  DAG.getConstant(4, MVT::i32));
   12139 
   12140     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
   12141                                Ld->getPointerInfo(),
   12142                                Ld->isVolatile(), Ld->isNonTemporal(),
   12143                                Ld->getAlignment());
   12144     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
   12145                                Ld->getPointerInfo().getWithOffset(4),
   12146                                Ld->isVolatile(), Ld->isNonTemporal(),
   12147                                MinAlign(Ld->getAlignment(), 4));
   12148 
   12149     SDValue NewChain = LoLd.getValue(1);
   12150     if (TokenFactorIndex != -1) {
   12151       Ops.push_back(LoLd);
   12152       Ops.push_back(HiLd);
   12153       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   12154                              Ops.size());
   12155     }
   12156 
   12157     LoAddr = St->getBasePtr();
   12158     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
   12159                          DAG.getConstant(4, MVT::i32));
   12160 
   12161     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
   12162                                 St->getPointerInfo(),
   12163                                 St->isVolatile(), St->isNonTemporal(),
   12164                                 St->getAlignment());
   12165     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
   12166                                 St->getPointerInfo().getWithOffset(4),
   12167                                 St->isVolatile(),
   12168                                 St->isNonTemporal(),
   12169                                 MinAlign(St->getAlignment(), 4));
   12170     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
   12171   }
   12172   return SDValue();
   12173 }
   12174 
   12175 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
   12176 /// X86ISD::FXOR nodes.
   12177 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
   12178   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
   12179   // F[X]OR(0.0, x) -> x
   12180   // F[X]OR(x, 0.0) -> x
   12181   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   12182     if (C->getValueAPF().isPosZero())
   12183       return N->getOperand(1);
   12184   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   12185     if (C->getValueAPF().isPosZero())
   12186       return N->getOperand(0);
   12187   return SDValue();
   12188 }
   12189 
   12190 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
   12191 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
   12192   // FAND(0.0, x) -> 0.0
   12193   // FAND(x, 0.0) -> 0.0
   12194   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   12195     if (C->getValueAPF().isPosZero())
   12196       return N->getOperand(0);
   12197   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   12198     if (C->getValueAPF().isPosZero())
   12199       return N->getOperand(1);
   12200   return SDValue();
   12201 }
   12202 
   12203 static SDValue PerformBTCombine(SDNode *N,
   12204                                 SelectionDAG &DAG,
   12205                                 TargetLowering::DAGCombinerInfo &DCI) {
   12206   // BT ignores high bits in the bit index operand.
   12207   SDValue Op1 = N->getOperand(1);
   12208   if (Op1.hasOneUse()) {
   12209     unsigned BitWidth = Op1.getValueSizeInBits();
   12210     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
   12211     APInt KnownZero, KnownOne;
   12212     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   12213                                           !DCI.isBeforeLegalizeOps());
   12214     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   12215     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
   12216         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
   12217       DCI.CommitTargetLoweringOpt(TLO);
   12218   }
   12219   return SDValue();
   12220 }
   12221 
   12222 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
   12223   SDValue Op = N->getOperand(0);
   12224   if (Op.getOpcode() == ISD::BITCAST)
   12225     Op = Op.getOperand(0);
   12226   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
   12227   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
   12228       VT.getVectorElementType().getSizeInBits() ==
   12229       OpVT.getVectorElementType().getSizeInBits()) {
   12230     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
   12231   }
   12232   return SDValue();
   12233 }
   12234 
   12235 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
   12236   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
   12237   //           (and (i32 x86isd::setcc_carry), 1)
   12238   // This eliminates the zext. This transformation is necessary because
   12239   // ISD::SETCC is always legalized to i8.
   12240   DebugLoc dl = N->getDebugLoc();
   12241   SDValue N0 = N->getOperand(0);
   12242   EVT VT = N->getValueType(0);
   12243   if (N0.getOpcode() == ISD::AND &&
   12244       N0.hasOneUse() &&
   12245       N0.getOperand(0).hasOneUse()) {
   12246     SDValue N00 = N0.getOperand(0);
   12247     if (N00.getOpcode() != X86ISD::SETCC_CARRY)
   12248       return SDValue();
   12249     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   12250     if (!C || C->getZExtValue() != 1)
   12251       return SDValue();
   12252     return DAG.getNode(ISD::AND, dl, VT,
   12253                        DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
   12254                                    N00.getOperand(0), N00.getOperand(1)),
   12255                        DAG.getConstant(1, VT));
   12256   }
   12257 
   12258   return SDValue();
   12259 }
   12260 
   12261 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
   12262 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
   12263   unsigned X86CC = N->getConstantOperandVal(0);
   12264   SDValue EFLAG = N->getOperand(1);
   12265   DebugLoc DL = N->getDebugLoc();
   12266 
   12267   // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
   12268   // a zext and produces an all-ones bit which is more useful than 0/1 in some
   12269   // cases.
   12270   if (X86CC == X86::COND_B)
   12271     return DAG.getNode(ISD::AND, DL, MVT::i8,
   12272                        DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
   12273                                    DAG.getConstant(X86CC, MVT::i8), EFLAG),
   12274                        DAG.getConstant(1, MVT::i8));
   12275 
   12276   return SDValue();
   12277 }
   12278 
   12279 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
   12280                                         const X86TargetLowering *XTLI) {
   12281   SDValue Op0 = N->getOperand(0);
   12282   // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
   12283   // a 32-bit target where SSE doesn't support i64->FP operations.
   12284   if (Op0.getOpcode() == ISD::LOAD) {
   12285     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
   12286     EVT VT = Ld->getValueType(0);
   12287     if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
   12288         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
   12289         !XTLI->getSubtarget()->is64Bit() &&
   12290         !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   12291       SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
   12292                                           Ld->getChain(), Op0, DAG);
   12293       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
   12294       return FILDChain;
   12295     }
   12296   }
   12297   return SDValue();
   12298 }
   12299 
   12300 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
   12301 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
   12302                                  X86TargetLowering::DAGCombinerInfo &DCI) {
   12303   // If the LHS and RHS of the ADC node are zero, then it can't overflow and
   12304   // the result is either zero or one (depending on the input carry bit).
   12305   // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
   12306   if (X86::isZeroNode(N->getOperand(0)) &&
   12307       X86::isZeroNode(N->getOperand(1)) &&
   12308       // We don't have a good way to replace an EFLAGS use, so only do this when
   12309       // dead right now.
   12310       SDValue(N, 1).use_empty()) {
   12311     DebugLoc DL = N->getDebugLoc();
   12312     EVT VT = N->getValueType(0);
   12313     SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
   12314     SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
   12315                                DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
   12316                                            DAG.getConstant(X86::COND_B,MVT::i8),
   12317                                            N->getOperand(2)),
   12318                                DAG.getConstant(1, VT));
   12319     return DCI.CombineTo(N, Res1, CarryOut);
   12320   }
   12321 
   12322   return SDValue();
   12323 }
   12324 
   12325 // fold (add Y, (sete  X, 0)) -> adc  0, Y
   12326 //      (add Y, (setne X, 0)) -> sbb -1, Y
   12327 //      (sub (sete  X, 0), Y) -> sbb  0, Y
   12328 //      (sub (setne X, 0), Y) -> adc -1, Y
   12329 static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
   12330   DebugLoc DL = N->getDebugLoc();
   12331 
   12332   // Look through ZExts.
   12333   SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
   12334   if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
   12335     return SDValue();
   12336 
   12337   SDValue SetCC = Ext.getOperand(0);
   12338   if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
   12339     return SDValue();
   12340 
   12341   X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
   12342   if (CC != X86::COND_E && CC != X86::COND_NE)
   12343     return SDValue();
   12344 
   12345   SDValue Cmp = SetCC.getOperand(1);
   12346   if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
   12347       !X86::isZeroNode(Cmp.getOperand(1)) ||
   12348       !Cmp.getOperand(0).getValueType().isInteger())
   12349     return SDValue();
   12350 
   12351   SDValue CmpOp0 = Cmp.getOperand(0);
   12352   SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
   12353                                DAG.getConstant(1, CmpOp0.getValueType()));
   12354 
   12355   SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
   12356   if (CC == X86::COND_NE)
   12357     return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
   12358                        DL, OtherVal.getValueType(), OtherVal,
   12359                        DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
   12360   return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
   12361                      DL, OtherVal.getValueType(), OtherVal,
   12362                      DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
   12363 }
   12364 
   12365 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
   12366                                              DAGCombinerInfo &DCI) const {
   12367   SelectionDAG &DAG = DCI.DAG;
   12368   switch (N->getOpcode()) {
   12369   default: break;
   12370   case ISD::EXTRACT_VECTOR_ELT:
   12371     return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
   12372   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
   12373   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
   12374   case ISD::ADD:
   12375   case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
   12376   case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
   12377   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
   12378   case ISD::SHL:
   12379   case ISD::SRA:
   12380   case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
   12381   case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
   12382   case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
   12383   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
   12384   case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
   12385   case X86ISD::FXOR:
   12386   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
   12387   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
   12388   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
   12389   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
   12390   case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
   12391   case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
   12392   case X86ISD::SHUFPS:      // Handle all target specific shuffles
   12393   case X86ISD::SHUFPD:
   12394   case X86ISD::PALIGN:
   12395   case X86ISD::PUNPCKHBW:
   12396   case X86ISD::PUNPCKHWD:
   12397   case X86ISD::PUNPCKHDQ:
   12398   case X86ISD::PUNPCKHQDQ:
   12399   case X86ISD::UNPCKHPS:
   12400   case X86ISD::UNPCKHPD:
   12401   case X86ISD::PUNPCKLBW:
   12402   case X86ISD::PUNPCKLWD:
   12403   case X86ISD::PUNPCKLDQ:
   12404   case X86ISD::PUNPCKLQDQ:
   12405   case X86ISD::UNPCKLPS:
   12406   case X86ISD::UNPCKLPD:
   12407   case X86ISD::VUNPCKLPS:
   12408   case X86ISD::VUNPCKLPD:
   12409   case X86ISD::VUNPCKLPSY:
   12410   case X86ISD::VUNPCKLPDY:
   12411   case X86ISD::MOVHLPS:
   12412   case X86ISD::MOVLHPS:
   12413   case X86ISD::PSHUFD:
   12414   case X86ISD::PSHUFHW:
   12415   case X86ISD::PSHUFLW:
   12416   case X86ISD::MOVSS:
   12417   case X86ISD::MOVSD:
   12418   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
   12419   }
   12420 
   12421   return SDValue();
   12422 }
   12423 
   12424 /// isTypeDesirableForOp - Return true if the target has native support for
   12425 /// the specified value type and it is 'desirable' to use the type for the
   12426 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
   12427 /// instruction encodings are longer and some i16 instructions are slow.
   12428 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
   12429   if (!isTypeLegal(VT))
   12430     return false;
   12431   if (VT != MVT::i16)
   12432     return true;
   12433 
   12434   switch (Opc) {
   12435   default:
   12436     return true;
   12437   case ISD::LOAD:
   12438   case ISD::SIGN_EXTEND:
   12439   case ISD::ZERO_EXTEND:
   12440   case ISD::ANY_EXTEND:
   12441   case ISD::SHL:
   12442   case ISD::SRL:
   12443   case ISD::SUB:
   12444   case ISD::ADD:
   12445   case ISD::MUL:
   12446   case ISD::AND:
   12447   case ISD::OR:
   12448   case ISD::XOR:
   12449     return false;
   12450   }
   12451 }
   12452 
   12453 /// IsDesirableToPromoteOp - This method query the target whether it is
   12454 /// beneficial for dag combiner to promote the specified node. If true, it
   12455 /// should return the desired promotion type by reference.
   12456 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
   12457   EVT VT = Op.getValueType();
   12458   if (VT != MVT::i16)
   12459     return false;
   12460 
   12461   bool Promote = false;
   12462   bool Commute = false;
   12463   switch (Op.getOpcode()) {
   12464   default: break;
   12465   case ISD::LOAD: {
   12466     LoadSDNode *LD = cast<LoadSDNode>(Op);
   12467     // If the non-extending load has a single use and it's not live out, then it
   12468     // might be folded.
   12469     if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
   12470                                                      Op.hasOneUse()*/) {
   12471       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   12472              UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   12473         // The only case where we'd want to promote LOAD (rather then it being
   12474         // promoted as an operand is when it's only use is liveout.
   12475         if (UI->getOpcode() != ISD::CopyToReg)
   12476           return false;
   12477       }
   12478     }
   12479     Promote = true;
   12480     break;
   12481   }
   12482   case ISD::SIGN_EXTEND:
   12483   case ISD::ZERO_EXTEND:
   12484   case ISD::ANY_EXTEND:
   12485     Promote = true;
   12486     break;
   12487   case ISD::SHL:
   12488   case ISD::SRL: {
   12489     SDValue N0 = Op.getOperand(0);
   12490     // Look out for (store (shl (load), x)).
   12491     if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
   12492       return false;
   12493     Promote = true;
   12494     break;
   12495   }
   12496   case ISD::ADD:
   12497   case ISD::MUL:
   12498   case ISD::AND:
   12499   case ISD::OR:
   12500   case ISD::XOR:
   12501     Commute = true;
   12502     // fallthrough
   12503   case ISD::SUB: {
   12504     SDValue N0 = Op.getOperand(0);
   12505     SDValue N1 = Op.getOperand(1);
   12506     if (!Commute && MayFoldLoad(N1))
   12507       return false;
   12508     // Avoid disabling potential load folding opportunities.
   12509     if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
   12510       return false;
   12511     if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
   12512       return false;
   12513     Promote = true;
   12514   }
   12515   }
   12516 
   12517   PVT = MVT::i32;
   12518   return Promote;
   12519 }
   12520 
   12521 //===----------------------------------------------------------------------===//
   12522 //                           X86 Inline Assembly Support
   12523 //===----------------------------------------------------------------------===//
   12524 
   12525 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
   12526   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   12527 
   12528   std::string AsmStr = IA->getAsmString();
   12529 
   12530   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
   12531   SmallVector<StringRef, 4> AsmPieces;
   12532   SplitString(AsmStr, AsmPieces, ";\n");
   12533 
   12534   switch (AsmPieces.size()) {
   12535   default: return false;
   12536   case 1:
   12537     AsmStr = AsmPieces[0];
   12538     AsmPieces.clear();
   12539     SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
   12540 
   12541     // FIXME: this should verify that we are targeting a 486 or better.  If not,
   12542     // we will turn this bswap into something that will be lowered to logical ops
   12543     // instead of emitting the bswap asm.  For now, we don't support 486 or lower
   12544     // so don't worry about this.
   12545     // bswap $0
   12546     if (AsmPieces.size() == 2 &&
   12547         (AsmPieces[0] == "bswap" ||
   12548          AsmPieces[0] == "bswapq" ||
   12549          AsmPieces[0] == "bswapl") &&
   12550         (AsmPieces[1] == "$0" ||
   12551          AsmPieces[1] == "${0:q}")) {
   12552       // No need to check constraints, nothing other than the equivalent of
   12553       // "=r,0" would be valid here.
   12554       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   12555       if (!Ty || Ty->getBitWidth() % 16 != 0)
   12556         return false;
   12557       return IntrinsicLowering::LowerToByteSwap(CI);
   12558     }
   12559     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
   12560     if (CI->getType()->isIntegerTy(16) &&
   12561         AsmPieces.size() == 3 &&
   12562         (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
   12563         AsmPieces[1] == "$$8," &&
   12564         AsmPieces[2] == "${0:w}" &&
   12565         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
   12566       AsmPieces.clear();
   12567       const std::string &ConstraintsStr = IA->getConstraintString();
   12568       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   12569       std::sort(AsmPieces.begin(), AsmPieces.end());
   12570       if (AsmPieces.size() == 4 &&
   12571           AsmPieces[0] == "~{cc}" &&
   12572           AsmPieces[1] == "~{dirflag}" &&
   12573           AsmPieces[2] == "~{flags}" &&
   12574           AsmPieces[3] == "~{fpsr}") {
   12575         IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   12576         if (!Ty || Ty->getBitWidth() % 16 != 0)
   12577           return false;
   12578         return IntrinsicLowering::LowerToByteSwap(CI);
   12579       }
   12580     }
   12581     break;
   12582   case 3:
   12583     if (CI->getType()->isIntegerTy(32) &&
   12584         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
   12585       SmallVector<StringRef, 4> Words;
   12586       SplitString(AsmPieces[0], Words, " \t,");
   12587       if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
   12588           Words[2] == "${0:w}") {
   12589         Words.clear();
   12590         SplitString(AsmPieces[1], Words, " \t,");
   12591         if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
   12592             Words[2] == "$0") {
   12593           Words.clear();
   12594           SplitString(AsmPieces[2], Words, " \t,");
   12595           if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
   12596               Words[2] == "${0:w}") {
   12597             AsmPieces.clear();
   12598             const std::string &ConstraintsStr = IA->getConstraintString();
   12599             SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   12600             std::sort(AsmPieces.begin(), AsmPieces.end());
   12601             if (AsmPieces.size() == 4 &&
   12602                 AsmPieces[0] == "~{cc}" &&
   12603                 AsmPieces[1] == "~{dirflag}" &&
   12604                 AsmPieces[2] == "~{flags}" &&
   12605                 AsmPieces[3] == "~{fpsr}") {
   12606               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   12607               if (!Ty || Ty->getBitWidth() % 16 != 0)
   12608                 return false;
   12609               return IntrinsicLowering::LowerToByteSwap(CI);
   12610             }
   12611           }
   12612         }
   12613       }
   12614     }
   12615 
   12616     if (CI->getType()->isIntegerTy(64)) {
   12617       InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
   12618       if (Constraints.size() >= 2 &&
   12619           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
   12620           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
   12621         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
   12622         SmallVector<StringRef, 4> Words;
   12623         SplitString(AsmPieces[0], Words, " \t");
   12624         if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
   12625           Words.clear();
   12626           SplitString(AsmPieces[1], Words, " \t");
   12627           if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
   12628             Words.clear();
   12629             SplitString(AsmPieces[2], Words, " \t,");
   12630             if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
   12631                 Words[2] == "%edx") {
   12632               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   12633               if (!Ty || Ty->getBitWidth() % 16 != 0)
   12634                 return false;
   12635               return IntrinsicLowering::LowerToByteSwap(CI);
   12636             }
   12637           }
   12638         }
   12639       }
   12640     }
   12641     break;
   12642   }
   12643   return false;
   12644 }
   12645 
   12646 
   12647 
   12648 /// getConstraintType - Given a constraint letter, return the type of
   12649 /// constraint it is for this target.
   12650 X86TargetLowering::ConstraintType
   12651 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
   12652   if (Constraint.size() == 1) {
   12653     switch (Constraint[0]) {
   12654     case 'R':
   12655     case 'q':
   12656     case 'Q':
   12657     case 'f':
   12658     case 't':
   12659     case 'u':
   12660     case 'y':
   12661     case 'x':
   12662     case 'Y':
   12663     case 'l':
   12664       return C_RegisterClass;
   12665     case 'a':
   12666     case 'b':
   12667     case 'c':
   12668     case 'd':
   12669     case 'S':
   12670     case 'D':
   12671     case 'A':
   12672       return C_Register;
   12673     case 'I':
   12674     case 'J':
   12675     case 'K':
   12676     case 'L':
   12677     case 'M':
   12678     case 'N':
   12679     case 'G':
   12680     case 'C':
   12681     case 'e':
   12682     case 'Z':
   12683       return C_Other;
   12684     default:
   12685       break;
   12686     }
   12687   }
   12688   return TargetLowering::getConstraintType(Constraint);
   12689 }
   12690 
   12691 /// Examine constraint type and operand type and determine a weight value.
   12692 /// This object must already have been set up with the operand type
   12693 /// and the current alternative constraint selected.
   12694 TargetLowering::ConstraintWeight
   12695   X86TargetLowering::getSingleConstraintMatchWeight(
   12696     AsmOperandInfo &info, const char *constraint) const {
   12697   ConstraintWeight weight = CW_Invalid;
   12698   Value *CallOperandVal = info.CallOperandVal;
   12699     // If we don't have a value, we can't do a match,
   12700     // but allow it at the lowest weight.
   12701   if (CallOperandVal == NULL)
   12702     return CW_Default;
   12703   Type *type = CallOperandVal->getType();
   12704   // Look at the constraint type.
   12705   switch (*constraint) {
   12706   default:
   12707     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   12708   case 'R':
   12709   case 'q':
   12710   case 'Q':
   12711   case 'a':
   12712   case 'b':
   12713   case 'c':
   12714   case 'd':
   12715   case 'S':
   12716   case 'D':
   12717   case 'A':
   12718     if (CallOperandVal->getType()->isIntegerTy())
   12719       weight = CW_SpecificReg;
   12720     break;
   12721   case 'f':
   12722   case 't':
   12723   case 'u':
   12724       if (type->isFloatingPointTy())
   12725         weight = CW_SpecificReg;
   12726       break;
   12727   case 'y':
   12728       if (type->isX86_MMXTy() && Subtarget->hasMMX())
   12729         weight = CW_SpecificReg;
   12730       break;
   12731   case 'x':
   12732   case 'Y':
   12733     if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
   12734       weight = CW_Register;
   12735     break;
   12736   case 'I':
   12737     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
   12738       if (C->getZExtValue() <= 31)
   12739         weight = CW_Constant;
   12740     }
   12741     break;
   12742   case 'J':
   12743     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   12744       if (C->getZExtValue() <= 63)
   12745         weight = CW_Constant;
   12746     }
   12747     break;
   12748   case 'K':
   12749     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   12750       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
   12751         weight = CW_Constant;
   12752     }
   12753     break;
   12754   case 'L':
   12755     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   12756       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
   12757         weight = CW_Constant;
   12758     }
   12759     break;
   12760   case 'M':
   12761     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   12762       if (C->getZExtValue() <= 3)
   12763         weight = CW_Constant;
   12764     }
   12765     break;
   12766   case 'N':
   12767     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   12768       if (C->getZExtValue() <= 0xff)
   12769         weight = CW_Constant;
   12770     }
   12771     break;
   12772   case 'G':
   12773   case 'C':
   12774     if (dyn_cast<ConstantFP>(CallOperandVal)) {
   12775       weight = CW_Constant;
   12776     }
   12777     break;
   12778   case 'e':
   12779     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   12780       if ((C->getSExtValue() >= -0x80000000LL) &&
   12781           (C->getSExtValue() <= 0x7fffffffLL))
   12782         weight = CW_Constant;
   12783     }
   12784     break;
   12785   case 'Z':
   12786     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   12787       if (C->getZExtValue() <= 0xffffffff)
   12788         weight = CW_Constant;
   12789     }
   12790     break;
   12791   }
   12792   return weight;
   12793 }
   12794 
   12795 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   12796 /// with another that has more specific requirements based on the type of the
   12797 /// corresponding operand.
   12798 const char *X86TargetLowering::
   12799 LowerXConstraint(EVT ConstraintVT) const {
   12800   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
   12801   // 'f' like normal targets.
   12802   if (ConstraintVT.isFloatingPoint()) {
   12803     if (Subtarget->hasXMMInt())
   12804       return "Y";
   12805     if (Subtarget->hasXMM())
   12806       return "x";
   12807   }
   12808 
   12809   return TargetLowering::LowerXConstraint(ConstraintVT);
   12810 }
   12811 
   12812 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   12813 /// vector.  If it is invalid, don't add anything to Ops.
   12814 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   12815                                                      std::string &Constraint,
   12816                                                      std::vector<SDValue>&Ops,
   12817                                                      SelectionDAG &DAG) const {
   12818   SDValue Result(0, 0);
   12819 
   12820   // Only support length 1 constraints for now.
   12821   if (Constraint.length() > 1) return;
   12822 
   12823   char ConstraintLetter = Constraint[0];
   12824   switch (ConstraintLetter) {
   12825   default: break;
   12826   case 'I':
   12827     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   12828       if (C->getZExtValue() <= 31) {
   12829         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   12830         break;
   12831       }
   12832     }
   12833     return;
   12834   case 'J':
   12835     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   12836       if (C->getZExtValue() <= 63) {
   12837         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   12838         break;
   12839       }
   12840     }
   12841     return;
   12842   case 'K':
   12843     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   12844       if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
   12845         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   12846         break;
   12847       }
   12848     }
   12849     return;
   12850   case 'N':
   12851     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   12852       if (C->getZExtValue() <= 255) {
   12853         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   12854         break;
   12855       }
   12856     }
   12857     return;
   12858   case 'e': {
   12859     // 32-bit signed value
   12860     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   12861       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   12862                                            C->getSExtValue())) {
   12863         // Widen to 64 bits here to get it sign extended.
   12864         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
   12865         break;
   12866       }
   12867     // FIXME gcc accepts some relocatable values here too, but only in certain
   12868     // memory models; it's complicated.
   12869     }
   12870     return;
   12871   }
   12872   case 'Z': {
   12873     // 32-bit unsigned value
   12874     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   12875       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   12876                                            C->getZExtValue())) {
   12877         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   12878         break;
   12879       }
   12880     }
   12881     // FIXME gcc accepts some relocatable values here too, but only in certain
   12882     // memory models; it's complicated.
   12883     return;
   12884   }
   12885   case 'i': {
   12886     // Literal immediates are always ok.
   12887     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
   12888       // Widen to 64 bits here to get it sign extended.
   12889       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
   12890       break;
   12891     }
   12892 
   12893     // In any sort of PIC mode addresses need to be computed at runtime by
   12894     // adding in a register or some sort of table lookup.  These can't
   12895     // be used as immediates.
   12896     if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
   12897       return;
   12898 
   12899     // If we are in non-pic codegen mode, we allow the address of a global (with
   12900     // an optional displacement) to be used with 'i'.
   12901     GlobalAddressSDNode *GA = 0;
   12902     int64_t Offset = 0;
   12903 
   12904     // Match either (GA), (GA+C), (GA+C1+C2), etc.
   12905     while (1) {
   12906       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
   12907         Offset += GA->getOffset();
   12908         break;
   12909       } else if (Op.getOpcode() == ISD::ADD) {
   12910         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   12911           Offset += C->getZExtValue();
   12912           Op = Op.getOperand(0);
   12913           continue;
   12914         }
   12915       } else if (Op.getOpcode() == ISD::SUB) {
   12916         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   12917           Offset += -C->getZExtValue();
   12918           Op = Op.getOperand(0);
   12919           continue;
   12920         }
   12921       }
   12922 
   12923       // Otherwise, this isn't something we can handle, reject it.
   12924       return;
   12925     }
   12926 
   12927     const GlobalValue *GV = GA->getGlobal();
   12928     // If we require an extra load to get this address, as in PIC mode, we
   12929     // can't accept it.
   12930     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
   12931                                                         getTargetMachine())))
   12932       return;
   12933 
   12934     Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
   12935                                         GA->getValueType(0), Offset);
   12936     break;
   12937   }
   12938   }
   12939 
   12940   if (Result.getNode()) {
   12941     Ops.push_back(Result);
   12942     return;
   12943   }
   12944   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   12945 }
   12946 
   12947 std::pair<unsigned, const TargetRegisterClass*>
   12948 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   12949                                                 EVT VT) const {
   12950   // First, see if this is a constraint that directly corresponds to an LLVM
   12951   // register class.
   12952   if (Constraint.size() == 1) {
   12953     // GCC Constraint Letters
   12954     switch (Constraint[0]) {
   12955     default: break;
   12956       // TODO: Slight differences here in allocation order and leaving
   12957       // RIP in the class. Do they matter any more here than they do
   12958       // in the normal allocation?
   12959     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
   12960       if (Subtarget->is64Bit()) {
   12961 	if (VT == MVT::i32 || VT == MVT::f32)
   12962 	  return std::make_pair(0U, X86::GR32RegisterClass);
   12963 	else if (VT == MVT::i16)
   12964 	  return std::make_pair(0U, X86::GR16RegisterClass);
   12965 	else if (VT == MVT::i8 || VT == MVT::i1)
   12966 	  return std::make_pair(0U, X86::GR8RegisterClass);
   12967 	else if (VT == MVT::i64 || VT == MVT::f64)
   12968 	  return std::make_pair(0U, X86::GR64RegisterClass);
   12969 	break;
   12970       }
   12971       // 32-bit fallthrough
   12972     case 'Q':   // Q_REGS
   12973       if (VT == MVT::i32 || VT == MVT::f32)
   12974 	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
   12975       else if (VT == MVT::i16)
   12976 	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
   12977       else if (VT == MVT::i8 || VT == MVT::i1)
   12978 	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
   12979       else if (VT == MVT::i64)
   12980 	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
   12981       break;
   12982     case 'r':   // GENERAL_REGS
   12983     case 'l':   // INDEX_REGS
   12984       if (VT == MVT::i8 || VT == MVT::i1)
   12985         return std::make_pair(0U, X86::GR8RegisterClass);
   12986       if (VT == MVT::i16)
   12987         return std::make_pair(0U, X86::GR16RegisterClass);
   12988       if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
   12989         return std::make_pair(0U, X86::GR32RegisterClass);
   12990       return std::make_pair(0U, X86::GR64RegisterClass);
   12991     case 'R':   // LEGACY_REGS
   12992       if (VT == MVT::i8 || VT == MVT::i1)
   12993         return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
   12994       if (VT == MVT::i16)
   12995         return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
   12996       if (VT == MVT::i32 || !Subtarget->is64Bit())
   12997         return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
   12998       return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
   12999     case 'f':  // FP Stack registers.
   13000       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
   13001       // value to the correct fpstack register class.
   13002       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
   13003         return std::make_pair(0U, X86::RFP32RegisterClass);
   13004       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
   13005         return std::make_pair(0U, X86::RFP64RegisterClass);
   13006       return std::make_pair(0U, X86::RFP80RegisterClass);
   13007     case 'y':   // MMX_REGS if MMX allowed.
   13008       if (!Subtarget->hasMMX()) break;
   13009       return std::make_pair(0U, X86::VR64RegisterClass);
   13010     case 'Y':   // SSE_REGS if SSE2 allowed
   13011       if (!Subtarget->hasXMMInt()) break;
   13012       // FALL THROUGH.
   13013     case 'x':   // SSE_REGS if SSE1 allowed
   13014       if (!Subtarget->hasXMM()) break;
   13015 
   13016       switch (VT.getSimpleVT().SimpleTy) {
   13017       default: break;
   13018       // Scalar SSE types.
   13019       case MVT::f32:
   13020       case MVT::i32:
   13021         return std::make_pair(0U, X86::FR32RegisterClass);
   13022       case MVT::f64:
   13023       case MVT::i64:
   13024         return std::make_pair(0U, X86::FR64RegisterClass);
   13025       // Vector types.
   13026       case MVT::v16i8:
   13027       case MVT::v8i16:
   13028       case MVT::v4i32:
   13029       case MVT::v2i64:
   13030       case MVT::v4f32:
   13031       case MVT::v2f64:
   13032         return std::make_pair(0U, X86::VR128RegisterClass);
   13033       }
   13034       break;
   13035     }
   13036   }
   13037 
   13038   // Use the default implementation in TargetLowering to convert the register
   13039   // constraint into a member of a register class.
   13040   std::pair<unsigned, const TargetRegisterClass*> Res;
   13041   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   13042 
   13043   // Not found as a standard register?
   13044   if (Res.second == 0) {
   13045     // Map st(0) -> st(7) -> ST0
   13046     if (Constraint.size() == 7 && Constraint[0] == '{' &&
   13047         tolower(Constraint[1]) == 's' &&
   13048         tolower(Constraint[2]) == 't' &&
   13049         Constraint[3] == '(' &&
   13050         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
   13051         Constraint[5] == ')' &&
   13052         Constraint[6] == '}') {
   13053 
   13054       Res.first = X86::ST0+Constraint[4]-'0';
   13055       Res.second = X86::RFP80RegisterClass;
   13056       return Res;
   13057     }
   13058 
   13059     // GCC allows "st(0)" to be called just plain "st".
   13060     if (StringRef("{st}").equals_lower(Constraint)) {
   13061       Res.first = X86::ST0;
   13062       Res.second = X86::RFP80RegisterClass;
   13063       return Res;
   13064     }
   13065 
   13066     // flags -> EFLAGS
   13067     if (StringRef("{flags}").equals_lower(Constraint)) {
   13068       Res.first = X86::EFLAGS;
   13069       Res.second = X86::CCRRegisterClass;
   13070       return Res;
   13071     }
   13072 
   13073     // 'A' means EAX + EDX.
   13074     if (Constraint == "A") {
   13075       Res.first = X86::EAX;
   13076       Res.second = X86::GR32_ADRegisterClass;
   13077       return Res;
   13078     }
   13079     return Res;
   13080   }
   13081 
   13082   // Otherwise, check to see if this is a register class of the wrong value
   13083   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
   13084   // turn into {ax},{dx}.
   13085   if (Res.second->hasType(VT))
   13086     return Res;   // Correct type already, nothing to do.
   13087 
   13088   // All of the single-register GCC register classes map their values onto
   13089   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
   13090   // really want an 8-bit or 32-bit register, map to the appropriate register
   13091   // class and return the appropriate register.
   13092   if (Res.second == X86::GR16RegisterClass) {
   13093     if (VT == MVT::i8) {
   13094       unsigned DestReg = 0;
   13095       switch (Res.first) {
   13096       default: break;
   13097       case X86::AX: DestReg = X86::AL; break;
   13098       case X86::DX: DestReg = X86::DL; break;
   13099       case X86::CX: DestReg = X86::CL; break;
   13100       case X86::BX: DestReg = X86::BL; break;
   13101       }
   13102       if (DestReg) {
   13103         Res.first = DestReg;
   13104         Res.second = X86::GR8RegisterClass;
   13105       }
   13106     } else if (VT == MVT::i32) {
   13107       unsigned DestReg = 0;
   13108       switch (Res.first) {
   13109       default: break;
   13110       case X86::AX: DestReg = X86::EAX; break;
   13111       case X86::DX: DestReg = X86::EDX; break;
   13112       case X86::CX: DestReg = X86::ECX; break;
   13113       case X86::BX: DestReg = X86::EBX; break;
   13114       case X86::SI: DestReg = X86::ESI; break;
   13115       case X86::DI: DestReg = X86::EDI; break;
   13116       case X86::BP: DestReg = X86::EBP; break;
   13117       case X86::SP: DestReg = X86::ESP; break;
   13118       }
   13119       if (DestReg) {
   13120         Res.first = DestReg;
   13121         Res.second = X86::GR32RegisterClass;
   13122       }
   13123     } else if (VT == MVT::i64) {
   13124       unsigned DestReg = 0;
   13125       switch (Res.first) {
   13126       default: break;
   13127       case X86::AX: DestReg = X86::RAX; break;
   13128       case X86::DX: DestReg = X86::RDX; break;
   13129       case X86::CX: DestReg = X86::RCX; break;
   13130       case X86::BX: DestReg = X86::RBX; break;
   13131       case X86::SI: DestReg = X86::RSI; break;
   13132       case X86::DI: DestReg = X86::RDI; break;
   13133       case X86::BP: DestReg = X86::RBP; break;
   13134       case X86::SP: DestReg = X86::RSP; break;
   13135       }
   13136       if (DestReg) {
   13137         Res.first = DestReg;
   13138         Res.second = X86::GR64RegisterClass;
   13139       }
   13140     }
   13141   } else if (Res.second == X86::FR32RegisterClass ||
   13142              Res.second == X86::FR64RegisterClass ||
   13143              Res.second == X86::VR128RegisterClass) {
   13144     // Handle references to XMM physical registers that got mapped into the
   13145     // wrong class.  This can happen with constraints like {xmm0} where the
   13146     // target independent register mapper will just pick the first match it can
   13147     // find, ignoring the required type.
   13148     if (VT == MVT::f32)
   13149       Res.second = X86::FR32RegisterClass;
   13150     else if (VT == MVT::f64)
   13151       Res.second = X86::FR64RegisterClass;
   13152     else if (X86::VR128RegisterClass->hasType(VT))
   13153       Res.second = X86::VR128RegisterClass;
   13154   }
   13155 
   13156   return Res;
   13157 }
   13158