Home | History | Annotate | Download | only in AsmParser
      1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "ARMFeatures.h"
     11 #include "MCTargetDesc/ARMAddressingModes.h"
     12 #include "MCTargetDesc/ARMBaseInfo.h"
     13 #include "MCTargetDesc/ARMMCExpr.h"
     14 #include "llvm/ADT/STLExtras.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/ADT/StringExtras.h"
     17 #include "llvm/ADT/StringSwitch.h"
     18 #include "llvm/ADT/Triple.h"
     19 #include "llvm/ADT/Twine.h"
     20 #include "llvm/MC/MCAsmInfo.h"
     21 #include "llvm/MC/MCAssembler.h"
     22 #include "llvm/MC/MCContext.h"
     23 #include "llvm/MC/MCDisassembler.h"
     24 #include "llvm/MC/MCELFStreamer.h"
     25 #include "llvm/MC/MCExpr.h"
     26 #include "llvm/MC/MCInst.h"
     27 #include "llvm/MC/MCInstrDesc.h"
     28 #include "llvm/MC/MCInstrInfo.h"
     29 #include "llvm/MC/MCObjectFileInfo.h"
     30 #include "llvm/MC/MCParser/MCAsmLexer.h"
     31 #include "llvm/MC/MCParser/MCAsmParser.h"
     32 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
     33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
     34 #include "llvm/MC/MCRegisterInfo.h"
     35 #include "llvm/MC/MCSection.h"
     36 #include "llvm/MC/MCStreamer.h"
     37 #include "llvm/MC/MCSubtargetInfo.h"
     38 #include "llvm/MC/MCSymbol.h"
     39 #include "llvm/MC/MCTargetAsmParser.h"
     40 #include "llvm/Support/ARMBuildAttributes.h"
     41 #include "llvm/Support/ARMEHABI.h"
     42 #include "llvm/Support/TargetParser.h"
     43 #include "llvm/Support/COFF.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/ELF.h"
     46 #include "llvm/Support/MathExtras.h"
     47 #include "llvm/Support/SourceMgr.h"
     48 #include "llvm/Support/TargetRegistry.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 
     51 using namespace llvm;
     52 
     53 namespace {
     54 
     55 class ARMOperand;
     56 
     57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
     58 
     59 class UnwindContext {
     60   MCAsmParser &Parser;
     61 
     62   typedef SmallVector<SMLoc, 4> Locs;
     63 
     64   Locs FnStartLocs;
     65   Locs CantUnwindLocs;
     66   Locs PersonalityLocs;
     67   Locs PersonalityIndexLocs;
     68   Locs HandlerDataLocs;
     69   int FPReg;
     70 
     71 public:
     72   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
     73 
     74   bool hasFnStart() const { return !FnStartLocs.empty(); }
     75   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
     76   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
     77   bool hasPersonality() const {
     78     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
     79   }
     80 
     81   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
     82   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
     83   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
     84   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
     85   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
     86 
     87   void saveFPReg(int Reg) { FPReg = Reg; }
     88   int getFPReg() const { return FPReg; }
     89 
     90   void emitFnStartLocNotes() const {
     91     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
     92          FI != FE; ++FI)
     93       Parser.Note(*FI, ".fnstart was specified here");
     94   }
     95   void emitCantUnwindLocNotes() const {
     96     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
     97                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
     98       Parser.Note(*UI, ".cantunwind was specified here");
     99   }
    100   void emitHandlerDataLocNotes() const {
    101     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
    102                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
    103       Parser.Note(*HI, ".handlerdata was specified here");
    104   }
    105   void emitPersonalityLocNotes() const {
    106     for (Locs::const_iterator PI = PersonalityLocs.begin(),
    107                               PE = PersonalityLocs.end(),
    108                               PII = PersonalityIndexLocs.begin(),
    109                               PIE = PersonalityIndexLocs.end();
    110          PI != PE || PII != PIE;) {
    111       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
    112         Parser.Note(*PI++, ".personality was specified here");
    113       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
    114         Parser.Note(*PII++, ".personalityindex was specified here");
    115       else
    116         llvm_unreachable(".personality and .personalityindex cannot be "
    117                          "at the same location");
    118     }
    119   }
    120 
    121   void reset() {
    122     FnStartLocs = Locs();
    123     CantUnwindLocs = Locs();
    124     PersonalityLocs = Locs();
    125     HandlerDataLocs = Locs();
    126     PersonalityIndexLocs = Locs();
    127     FPReg = ARM::SP;
    128   }
    129 };
    130 
    131 class ARMAsmParser : public MCTargetAsmParser {
    132   const MCInstrInfo &MII;
    133   const MCRegisterInfo *MRI;
    134   UnwindContext UC;
    135 
    136   ARMTargetStreamer &getTargetStreamer() {
    137     assert(getParser().getStreamer().getTargetStreamer() &&
    138            "do not have a target streamer");
    139     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
    140     return static_cast<ARMTargetStreamer &>(TS);
    141   }
    142 
    143   // Map of register aliases registers via the .req directive.
    144   StringMap<unsigned> RegisterReqs;
    145 
    146   bool NextSymbolIsThumb;
    147 
    148   struct {
    149     ARMCC::CondCodes Cond;    // Condition for IT block.
    150     unsigned Mask:4;          // Condition mask for instructions.
    151                               // Starting at first 1 (from lsb).
    152                               //   '1'  condition as indicated in IT.
    153                               //   '0'  inverse of condition (else).
    154                               // Count of instructions in IT block is
    155                               // 4 - trailingzeroes(mask)
    156 
    157     bool FirstCond;           // Explicit flag for when we're parsing the
    158                               // First instruction in the IT block. It's
    159                               // implied in the mask, so needs special
    160                               // handling.
    161 
    162     unsigned CurPosition;     // Current position in parsing of IT
    163                               // block. In range [0,3]. Initialized
    164                               // according to count of instructions in block.
    165                               // ~0U if no active IT block.
    166   } ITState;
    167   bool inITBlock() { return ITState.CurPosition != ~0U; }
    168   bool lastInITBlock() {
    169     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
    170   }
    171   void forwardITPosition() {
    172     if (!inITBlock()) return;
    173     // Move to the next instruction in the IT block, if there is one. If not,
    174     // mark the block as done.
    175     unsigned TZ = countTrailingZeros(ITState.Mask);
    176     if (++ITState.CurPosition == 5 - TZ)
    177       ITState.CurPosition = ~0U; // Done with the IT block after this.
    178   }
    179 
    180   void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) {
    181     return getParser().Note(L, Msg, Ranges);
    182   }
    183   bool Warning(SMLoc L, const Twine &Msg,
    184                ArrayRef<SMRange> Ranges = None) {
    185     return getParser().Warning(L, Msg, Ranges);
    186   }
    187   bool Error(SMLoc L, const Twine &Msg,
    188              ArrayRef<SMRange> Ranges = None) {
    189     return getParser().Error(L, Msg, Ranges);
    190   }
    191 
    192   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
    193                            unsigned ListNo, bool IsARPop = false);
    194   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
    195                            unsigned ListNo);
    196 
    197   int tryParseRegister();
    198   bool tryParseRegisterWithWriteBack(OperandVector &);
    199   int tryParseShiftRegister(OperandVector &);
    200   bool parseRegisterList(OperandVector &);
    201   bool parseMemory(OperandVector &);
    202   bool parseOperand(OperandVector &, StringRef Mnemonic);
    203   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
    204   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
    205                               unsigned &ShiftAmount);
    206   bool parseLiteralValues(unsigned Size, SMLoc L);
    207   bool parseDirectiveThumb(SMLoc L);
    208   bool parseDirectiveARM(SMLoc L);
    209   bool parseDirectiveThumbFunc(SMLoc L);
    210   bool parseDirectiveCode(SMLoc L);
    211   bool parseDirectiveSyntax(SMLoc L);
    212   bool parseDirectiveReq(StringRef Name, SMLoc L);
    213   bool parseDirectiveUnreq(SMLoc L);
    214   bool parseDirectiveArch(SMLoc L);
    215   bool parseDirectiveEabiAttr(SMLoc L);
    216   bool parseDirectiveCPU(SMLoc L);
    217   bool parseDirectiveFPU(SMLoc L);
    218   bool parseDirectiveFnStart(SMLoc L);
    219   bool parseDirectiveFnEnd(SMLoc L);
    220   bool parseDirectiveCantUnwind(SMLoc L);
    221   bool parseDirectivePersonality(SMLoc L);
    222   bool parseDirectiveHandlerData(SMLoc L);
    223   bool parseDirectiveSetFP(SMLoc L);
    224   bool parseDirectivePad(SMLoc L);
    225   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
    226   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
    227   bool parseDirectiveLtorg(SMLoc L);
    228   bool parseDirectiveEven(SMLoc L);
    229   bool parseDirectivePersonalityIndex(SMLoc L);
    230   bool parseDirectiveUnwindRaw(SMLoc L);
    231   bool parseDirectiveTLSDescSeq(SMLoc L);
    232   bool parseDirectiveMovSP(SMLoc L);
    233   bool parseDirectiveObjectArch(SMLoc L);
    234   bool parseDirectiveArchExtension(SMLoc L);
    235   bool parseDirectiveAlign(SMLoc L);
    236   bool parseDirectiveThumbSet(SMLoc L);
    237 
    238   StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
    239                           bool &CarrySetting, unsigned &ProcessorIMod,
    240                           StringRef &ITMask);
    241   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
    242                              bool &CanAcceptCarrySet,
    243                              bool &CanAcceptPredicationCode);
    244 
    245   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
    246                                      OperandVector &Operands);
    247   bool isThumb() const {
    248     // FIXME: Can tablegen auto-generate this?
    249     return getSTI().getFeatureBits()[ARM::ModeThumb];
    250   }
    251   bool isThumbOne() const {
    252     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
    253   }
    254   bool isThumbTwo() const {
    255     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
    256   }
    257   bool hasThumb() const {
    258     return getSTI().getFeatureBits()[ARM::HasV4TOps];
    259   }
    260   bool hasV6Ops() const {
    261     return getSTI().getFeatureBits()[ARM::HasV6Ops];
    262   }
    263   bool hasV6MOps() const {
    264     return getSTI().getFeatureBits()[ARM::HasV6MOps];
    265   }
    266   bool hasV7Ops() const {
    267     return getSTI().getFeatureBits()[ARM::HasV7Ops];
    268   }
    269   bool hasV8Ops() const {
    270     return getSTI().getFeatureBits()[ARM::HasV8Ops];
    271   }
    272   bool hasARM() const {
    273     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
    274   }
    275   bool hasDSP() const {
    276     return getSTI().getFeatureBits()[ARM::FeatureDSP];
    277   }
    278   bool hasD16() const {
    279     return getSTI().getFeatureBits()[ARM::FeatureD16];
    280   }
    281   bool hasV8_1aOps() const {
    282     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
    283   }
    284 
    285   void SwitchMode() {
    286     MCSubtargetInfo &STI = copySTI();
    287     uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
    288     setAvailableFeatures(FB);
    289   }
    290   bool isMClass() const {
    291     return getSTI().getFeatureBits()[ARM::FeatureMClass];
    292   }
    293 
    294   /// @name Auto-generated Match Functions
    295   /// {
    296 
    297 #define GET_ASSEMBLER_HEADER
    298 #include "ARMGenAsmMatcher.inc"
    299 
    300   /// }
    301 
    302   OperandMatchResultTy parseITCondCode(OperandVector &);
    303   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
    304   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
    305   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
    306   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
    307   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
    308   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
    309   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
    310   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
    311   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
    312                                    int High);
    313   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
    314     return parsePKHImm(O, "lsl", 0, 31);
    315   }
    316   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
    317     return parsePKHImm(O, "asr", 1, 32);
    318   }
    319   OperandMatchResultTy parseSetEndImm(OperandVector &);
    320   OperandMatchResultTy parseShifterImm(OperandVector &);
    321   OperandMatchResultTy parseRotImm(OperandVector &);
    322   OperandMatchResultTy parseModImm(OperandVector &);
    323   OperandMatchResultTy parseBitfield(OperandVector &);
    324   OperandMatchResultTy parsePostIdxReg(OperandVector &);
    325   OperandMatchResultTy parseAM3Offset(OperandVector &);
    326   OperandMatchResultTy parseFPImm(OperandVector &);
    327   OperandMatchResultTy parseVectorList(OperandVector &);
    328   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
    329                                        SMLoc &EndLoc);
    330 
    331   // Asm Match Converter Methods
    332   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
    333   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
    334 
    335   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
    336   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
    337   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
    338   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
    339 
    340 public:
    341   enum ARMMatchResultTy {
    342     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
    343     Match_RequiresNotITBlock,
    344     Match_RequiresV6,
    345     Match_RequiresThumb2,
    346     Match_RequiresV8,
    347 #define GET_OPERAND_DIAGNOSTIC_TYPES
    348 #include "ARMGenAsmMatcher.inc"
    349 
    350   };
    351 
    352   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
    353                const MCInstrInfo &MII, const MCTargetOptions &Options)
    354     : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) {
    355     MCAsmParserExtension::Initialize(Parser);
    356 
    357     // Cache the MCRegisterInfo.
    358     MRI = getContext().getRegisterInfo();
    359 
    360     // Initialize the set of available features.
    361     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
    362 
    363     // Not in an ITBlock to start with.
    364     ITState.CurPosition = ~0U;
    365 
    366     NextSymbolIsThumb = false;
    367   }
    368 
    369   // Implementation of the MCTargetAsmParser interface:
    370   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
    371   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
    372                         SMLoc NameLoc, OperandVector &Operands) override;
    373   bool ParseDirective(AsmToken DirectiveID) override;
    374 
    375   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
    376                                       unsigned Kind) override;
    377   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
    378 
    379   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
    380                                OperandVector &Operands, MCStreamer &Out,
    381                                uint64_t &ErrorInfo,
    382                                bool MatchingInlineAsm) override;
    383   void onLabelParsed(MCSymbol *Symbol) override;
    384 };
    385 } // end anonymous namespace
    386 
    387 namespace {
    388 
    389 /// ARMOperand - Instances of this class represent a parsed ARM machine
    390 /// operand.
    391 class ARMOperand : public MCParsedAsmOperand {
    392   enum KindTy {
    393     k_CondCode,
    394     k_CCOut,
    395     k_ITCondMask,
    396     k_CoprocNum,
    397     k_CoprocReg,
    398     k_CoprocOption,
    399     k_Immediate,
    400     k_MemBarrierOpt,
    401     k_InstSyncBarrierOpt,
    402     k_Memory,
    403     k_PostIndexRegister,
    404     k_MSRMask,
    405     k_BankedReg,
    406     k_ProcIFlags,
    407     k_VectorIndex,
    408     k_Register,
    409     k_RegisterList,
    410     k_DPRRegisterList,
    411     k_SPRRegisterList,
    412     k_VectorList,
    413     k_VectorListAllLanes,
    414     k_VectorListIndexed,
    415     k_ShiftedRegister,
    416     k_ShiftedImmediate,
    417     k_ShifterImmediate,
    418     k_RotateImmediate,
    419     k_ModifiedImmediate,
    420     k_BitfieldDescriptor,
    421     k_Token
    422   } Kind;
    423 
    424   SMLoc StartLoc, EndLoc, AlignmentLoc;
    425   SmallVector<unsigned, 8> Registers;
    426 
    427   struct CCOp {
    428     ARMCC::CondCodes Val;
    429   };
    430 
    431   struct CopOp {
    432     unsigned Val;
    433   };
    434 
    435   struct CoprocOptionOp {
    436     unsigned Val;
    437   };
    438 
    439   struct ITMaskOp {
    440     unsigned Mask:4;
    441   };
    442 
    443   struct MBOptOp {
    444     ARM_MB::MemBOpt Val;
    445   };
    446 
    447   struct ISBOptOp {
    448     ARM_ISB::InstSyncBOpt Val;
    449   };
    450 
    451   struct IFlagsOp {
    452     ARM_PROC::IFlags Val;
    453   };
    454 
    455   struct MMaskOp {
    456     unsigned Val;
    457   };
    458 
    459   struct BankedRegOp {
    460     unsigned Val;
    461   };
    462 
    463   struct TokOp {
    464     const char *Data;
    465     unsigned Length;
    466   };
    467 
    468   struct RegOp {
    469     unsigned RegNum;
    470   };
    471 
    472   // A vector register list is a sequential list of 1 to 4 registers.
    473   struct VectorListOp {
    474     unsigned RegNum;
    475     unsigned Count;
    476     unsigned LaneIndex;
    477     bool isDoubleSpaced;
    478   };
    479 
    480   struct VectorIndexOp {
    481     unsigned Val;
    482   };
    483 
    484   struct ImmOp {
    485     const MCExpr *Val;
    486   };
    487 
    488   /// Combined record for all forms of ARM address expressions.
    489   struct MemoryOp {
    490     unsigned BaseRegNum;
    491     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
    492     // was specified.
    493     const MCConstantExpr *OffsetImm;  // Offset immediate value
    494     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
    495     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
    496     unsigned ShiftImm;        // shift for OffsetReg.
    497     unsigned Alignment;       // 0 = no alignment specified
    498     // n = alignment in bytes (2, 4, 8, 16, or 32)
    499     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
    500   };
    501 
    502   struct PostIdxRegOp {
    503     unsigned RegNum;
    504     bool isAdd;
    505     ARM_AM::ShiftOpc ShiftTy;
    506     unsigned ShiftImm;
    507   };
    508 
    509   struct ShifterImmOp {
    510     bool isASR;
    511     unsigned Imm;
    512   };
    513 
    514   struct RegShiftedRegOp {
    515     ARM_AM::ShiftOpc ShiftTy;
    516     unsigned SrcReg;
    517     unsigned ShiftReg;
    518     unsigned ShiftImm;
    519   };
    520 
    521   struct RegShiftedImmOp {
    522     ARM_AM::ShiftOpc ShiftTy;
    523     unsigned SrcReg;
    524     unsigned ShiftImm;
    525   };
    526 
    527   struct RotImmOp {
    528     unsigned Imm;
    529   };
    530 
    531   struct ModImmOp {
    532     unsigned Bits;
    533     unsigned Rot;
    534   };
    535 
    536   struct BitfieldOp {
    537     unsigned LSB;
    538     unsigned Width;
    539   };
    540 
    541   union {
    542     struct CCOp CC;
    543     struct CopOp Cop;
    544     struct CoprocOptionOp CoprocOption;
    545     struct MBOptOp MBOpt;
    546     struct ISBOptOp ISBOpt;
    547     struct ITMaskOp ITMask;
    548     struct IFlagsOp IFlags;
    549     struct MMaskOp MMask;
    550     struct BankedRegOp BankedReg;
    551     struct TokOp Tok;
    552     struct RegOp Reg;
    553     struct VectorListOp VectorList;
    554     struct VectorIndexOp VectorIndex;
    555     struct ImmOp Imm;
    556     struct MemoryOp Memory;
    557     struct PostIdxRegOp PostIdxReg;
    558     struct ShifterImmOp ShifterImm;
    559     struct RegShiftedRegOp RegShiftedReg;
    560     struct RegShiftedImmOp RegShiftedImm;
    561     struct RotImmOp RotImm;
    562     struct ModImmOp ModImm;
    563     struct BitfieldOp Bitfield;
    564   };
    565 
    566 public:
    567   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
    568 
    569   /// getStartLoc - Get the location of the first token of this operand.
    570   SMLoc getStartLoc() const override { return StartLoc; }
    571   /// getEndLoc - Get the location of the last token of this operand.
    572   SMLoc getEndLoc() const override { return EndLoc; }
    573   /// getLocRange - Get the range between the first and last token of this
    574   /// operand.
    575   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
    576 
    577   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
    578   SMLoc getAlignmentLoc() const {
    579     assert(Kind == k_Memory && "Invalid access!");
    580     return AlignmentLoc;
    581   }
    582 
    583   ARMCC::CondCodes getCondCode() const {
    584     assert(Kind == k_CondCode && "Invalid access!");
    585     return CC.Val;
    586   }
    587 
    588   unsigned getCoproc() const {
    589     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
    590     return Cop.Val;
    591   }
    592 
    593   StringRef getToken() const {
    594     assert(Kind == k_Token && "Invalid access!");
    595     return StringRef(Tok.Data, Tok.Length);
    596   }
    597 
    598   unsigned getReg() const override {
    599     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
    600     return Reg.RegNum;
    601   }
    602 
    603   const SmallVectorImpl<unsigned> &getRegList() const {
    604     assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
    605             Kind == k_SPRRegisterList) && "Invalid access!");
    606     return Registers;
    607   }
    608 
    609   const MCExpr *getImm() const {
    610     assert(isImm() && "Invalid access!");
    611     return Imm.Val;
    612   }
    613 
    614   unsigned getVectorIndex() const {
    615     assert(Kind == k_VectorIndex && "Invalid access!");
    616     return VectorIndex.Val;
    617   }
    618 
    619   ARM_MB::MemBOpt getMemBarrierOpt() const {
    620     assert(Kind == k_MemBarrierOpt && "Invalid access!");
    621     return MBOpt.Val;
    622   }
    623 
    624   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
    625     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
    626     return ISBOpt.Val;
    627   }
    628 
    629   ARM_PROC::IFlags getProcIFlags() const {
    630     assert(Kind == k_ProcIFlags && "Invalid access!");
    631     return IFlags.Val;
    632   }
    633 
    634   unsigned getMSRMask() const {
    635     assert(Kind == k_MSRMask && "Invalid access!");
    636     return MMask.Val;
    637   }
    638 
    639   unsigned getBankedReg() const {
    640     assert(Kind == k_BankedReg && "Invalid access!");
    641     return BankedReg.Val;
    642   }
    643 
    644   bool isCoprocNum() const { return Kind == k_CoprocNum; }
    645   bool isCoprocReg() const { return Kind == k_CoprocReg; }
    646   bool isCoprocOption() const { return Kind == k_CoprocOption; }
    647   bool isCondCode() const { return Kind == k_CondCode; }
    648   bool isCCOut() const { return Kind == k_CCOut; }
    649   bool isITMask() const { return Kind == k_ITCondMask; }
    650   bool isITCondCode() const { return Kind == k_CondCode; }
    651   bool isImm() const override { return Kind == k_Immediate; }
    652   // checks whether this operand is an unsigned offset which fits is a field
    653   // of specified width and scaled by a specific number of bits
    654   template<unsigned width, unsigned scale>
    655   bool isUnsignedOffset() const {
    656     if (!isImm()) return false;
    657     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    658     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
    659       int64_t Val = CE->getValue();
    660       int64_t Align = 1LL << scale;
    661       int64_t Max = Align * ((1LL << width) - 1);
    662       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
    663     }
    664     return false;
    665   }
    666   // checks whether this operand is an signed offset which fits is a field
    667   // of specified width and scaled by a specific number of bits
    668   template<unsigned width, unsigned scale>
    669   bool isSignedOffset() const {
    670     if (!isImm()) return false;
    671     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    672     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
    673       int64_t Val = CE->getValue();
    674       int64_t Align = 1LL << scale;
    675       int64_t Max = Align * ((1LL << (width-1)) - 1);
    676       int64_t Min = -Align * (1LL << (width-1));
    677       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
    678     }
    679     return false;
    680   }
    681 
    682   // checks whether this operand is a memory operand computed as an offset
    683   // applied to PC. the offset may have 8 bits of magnitude and is represented
    684   // with two bits of shift. textually it may be either [pc, #imm], #imm or
    685   // relocable expression...
    686   bool isThumbMemPC() const {
    687     int64_t Val = 0;
    688     if (isImm()) {
    689       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    690       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
    691       if (!CE) return false;
    692       Val = CE->getValue();
    693     }
    694     else if (isMem()) {
    695       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
    696       if(Memory.BaseRegNum != ARM::PC) return false;
    697       Val = Memory.OffsetImm->getValue();
    698     }
    699     else return false;
    700     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
    701   }
    702   bool isFPImm() const {
    703     if (!isImm()) return false;
    704     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    705     if (!CE) return false;
    706     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
    707     return Val != -1;
    708   }
    709   bool isFBits16() const {
    710     if (!isImm()) return false;
    711     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    712     if (!CE) return false;
    713     int64_t Value = CE->getValue();
    714     return Value >= 0 && Value <= 16;
    715   }
    716   bool isFBits32() const {
    717     if (!isImm()) return false;
    718     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    719     if (!CE) return false;
    720     int64_t Value = CE->getValue();
    721     return Value >= 1 && Value <= 32;
    722   }
    723   bool isImm8s4() const {
    724     if (!isImm()) return false;
    725     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    726     if (!CE) return false;
    727     int64_t Value = CE->getValue();
    728     return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
    729   }
    730   bool isImm0_1020s4() const {
    731     if (!isImm()) return false;
    732     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    733     if (!CE) return false;
    734     int64_t Value = CE->getValue();
    735     return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
    736   }
    737   bool isImm0_508s4() const {
    738     if (!isImm()) return false;
    739     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    740     if (!CE) return false;
    741     int64_t Value = CE->getValue();
    742     return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
    743   }
    744   bool isImm0_508s4Neg() const {
    745     if (!isImm()) return false;
    746     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    747     if (!CE) return false;
    748     int64_t Value = -CE->getValue();
    749     // explicitly exclude zero. we want that to use the normal 0_508 version.
    750     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
    751   }
    752   bool isImm0_239() const {
    753     if (!isImm()) return false;
    754     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    755     if (!CE) return false;
    756     int64_t Value = CE->getValue();
    757     return Value >= 0 && Value < 240;
    758   }
    759   bool isImm0_255() const {
    760     if (!isImm()) return false;
    761     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    762     if (!CE) return false;
    763     int64_t Value = CE->getValue();
    764     return Value >= 0 && Value < 256;
    765   }
    766   bool isImm0_4095() const {
    767     if (!isImm()) return false;
    768     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    769     if (!CE) return false;
    770     int64_t Value = CE->getValue();
    771     return Value >= 0 && Value < 4096;
    772   }
    773   bool isImm0_4095Neg() const {
    774     if (!isImm()) return false;
    775     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    776     if (!CE) return false;
    777     int64_t Value = -CE->getValue();
    778     return Value > 0 && Value < 4096;
    779   }
    780   bool isImm0_1() const {
    781     if (!isImm()) return false;
    782     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    783     if (!CE) return false;
    784     int64_t Value = CE->getValue();
    785     return Value >= 0 && Value < 2;
    786   }
    787   bool isImm0_3() const {
    788     if (!isImm()) return false;
    789     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    790     if (!CE) return false;
    791     int64_t Value = CE->getValue();
    792     return Value >= 0 && Value < 4;
    793   }
    794   bool isImm0_7() const {
    795     if (!isImm()) return false;
    796     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    797     if (!CE) return false;
    798     int64_t Value = CE->getValue();
    799     return Value >= 0 && Value < 8;
    800   }
    801   bool isImm0_15() const {
    802     if (!isImm()) return false;
    803     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    804     if (!CE) return false;
    805     int64_t Value = CE->getValue();
    806     return Value >= 0 && Value < 16;
    807   }
    808   bool isImm0_31() const {
    809     if (!isImm()) return false;
    810     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    811     if (!CE) return false;
    812     int64_t Value = CE->getValue();
    813     return Value >= 0 && Value < 32;
    814   }
    815   bool isImm0_63() const {
    816     if (!isImm()) return false;
    817     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    818     if (!CE) return false;
    819     int64_t Value = CE->getValue();
    820     return Value >= 0 && Value < 64;
    821   }
    822   bool isImm8() const {
    823     if (!isImm()) return false;
    824     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    825     if (!CE) return false;
    826     int64_t Value = CE->getValue();
    827     return Value == 8;
    828   }
    829   bool isImm16() const {
    830     if (!isImm()) return false;
    831     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    832     if (!CE) return false;
    833     int64_t Value = CE->getValue();
    834     return Value == 16;
    835   }
    836   bool isImm32() const {
    837     if (!isImm()) return false;
    838     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    839     if (!CE) return false;
    840     int64_t Value = CE->getValue();
    841     return Value == 32;
    842   }
    843   bool isShrImm8() const {
    844     if (!isImm()) return false;
    845     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    846     if (!CE) return false;
    847     int64_t Value = CE->getValue();
    848     return Value > 0 && Value <= 8;
    849   }
    850   bool isShrImm16() const {
    851     if (!isImm()) return false;
    852     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    853     if (!CE) return false;
    854     int64_t Value = CE->getValue();
    855     return Value > 0 && Value <= 16;
    856   }
    857   bool isShrImm32() const {
    858     if (!isImm()) return false;
    859     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    860     if (!CE) return false;
    861     int64_t Value = CE->getValue();
    862     return Value > 0 && Value <= 32;
    863   }
    864   bool isShrImm64() const {
    865     if (!isImm()) return false;
    866     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    867     if (!CE) return false;
    868     int64_t Value = CE->getValue();
    869     return Value > 0 && Value <= 64;
    870   }
    871   bool isImm1_7() const {
    872     if (!isImm()) return false;
    873     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    874     if (!CE) return false;
    875     int64_t Value = CE->getValue();
    876     return Value > 0 && Value < 8;
    877   }
    878   bool isImm1_15() const {
    879     if (!isImm()) return false;
    880     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    881     if (!CE) return false;
    882     int64_t Value = CE->getValue();
    883     return Value > 0 && Value < 16;
    884   }
    885   bool isImm1_31() const {
    886     if (!isImm()) return false;
    887     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    888     if (!CE) return false;
    889     int64_t Value = CE->getValue();
    890     return Value > 0 && Value < 32;
    891   }
    892   bool isImm1_16() const {
    893     if (!isImm()) return false;
    894     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    895     if (!CE) return false;
    896     int64_t Value = CE->getValue();
    897     return Value > 0 && Value < 17;
    898   }
    899   bool isImm1_32() const {
    900     if (!isImm()) return false;
    901     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    902     if (!CE) return false;
    903     int64_t Value = CE->getValue();
    904     return Value > 0 && Value < 33;
    905   }
    906   bool isImm0_32() const {
    907     if (!isImm()) return false;
    908     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    909     if (!CE) return false;
    910     int64_t Value = CE->getValue();
    911     return Value >= 0 && Value < 33;
    912   }
    913   bool isImm0_65535() const {
    914     if (!isImm()) return false;
    915     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    916     if (!CE) return false;
    917     int64_t Value = CE->getValue();
    918     return Value >= 0 && Value < 65536;
    919   }
    920   bool isImm256_65535Expr() const {
    921     if (!isImm()) return false;
    922     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    923     // If it's not a constant expression, it'll generate a fixup and be
    924     // handled later.
    925     if (!CE) return true;
    926     int64_t Value = CE->getValue();
    927     return Value >= 256 && Value < 65536;
    928   }
    929   bool isImm0_65535Expr() const {
    930     if (!isImm()) return false;
    931     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    932     // If it's not a constant expression, it'll generate a fixup and be
    933     // handled later.
    934     if (!CE) return true;
    935     int64_t Value = CE->getValue();
    936     return Value >= 0 && Value < 65536;
    937   }
    938   bool isImm24bit() const {
    939     if (!isImm()) return false;
    940     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    941     if (!CE) return false;
    942     int64_t Value = CE->getValue();
    943     return Value >= 0 && Value <= 0xffffff;
    944   }
    945   bool isImmThumbSR() const {
    946     if (!isImm()) return false;
    947     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    948     if (!CE) return false;
    949     int64_t Value = CE->getValue();
    950     return Value > 0 && Value < 33;
    951   }
    952   bool isPKHLSLImm() const {
    953     if (!isImm()) return false;
    954     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    955     if (!CE) return false;
    956     int64_t Value = CE->getValue();
    957     return Value >= 0 && Value < 32;
    958   }
    959   bool isPKHASRImm() const {
    960     if (!isImm()) return false;
    961     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    962     if (!CE) return false;
    963     int64_t Value = CE->getValue();
    964     return Value > 0 && Value <= 32;
    965   }
    966   bool isAdrLabel() const {
    967     // If we have an immediate that's not a constant, treat it as a label
    968     // reference needing a fixup.
    969     if (isImm() && !isa<MCConstantExpr>(getImm()))
    970       return true;
    971 
    972     // If it is a constant, it must fit into a modified immediate encoding.
    973     if (!isImm()) return false;
    974     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    975     if (!CE) return false;
    976     int64_t Value = CE->getValue();
    977     return (ARM_AM::getSOImmVal(Value) != -1 ||
    978             ARM_AM::getSOImmVal(-Value) != -1);
    979   }
    980   bool isT2SOImm() const {
    981     if (!isImm()) return false;
    982     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    983     if (!CE) return false;
    984     int64_t Value = CE->getValue();
    985     return ARM_AM::getT2SOImmVal(Value) != -1;
    986   }
    987   bool isT2SOImmNot() const {
    988     if (!isImm()) return false;
    989     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    990     if (!CE) return false;
    991     int64_t Value = CE->getValue();
    992     return ARM_AM::getT2SOImmVal(Value) == -1 &&
    993       ARM_AM::getT2SOImmVal(~Value) != -1;
    994   }
    995   bool isT2SOImmNeg() const {
    996     if (!isImm()) return false;
    997     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    998     if (!CE) return false;
    999     int64_t Value = CE->getValue();
   1000     // Only use this when not representable as a plain so_imm.
   1001     return ARM_AM::getT2SOImmVal(Value) == -1 &&
   1002       ARM_AM::getT2SOImmVal(-Value) != -1;
   1003   }
   1004   bool isSetEndImm() const {
   1005     if (!isImm()) return false;
   1006     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1007     if (!CE) return false;
   1008     int64_t Value = CE->getValue();
   1009     return Value == 1 || Value == 0;
   1010   }
   1011   bool isReg() const override { return Kind == k_Register; }
   1012   bool isRegList() const { return Kind == k_RegisterList; }
   1013   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
   1014   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
   1015   bool isToken() const override { return Kind == k_Token; }
   1016   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
   1017   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
   1018   bool isMem() const override { return Kind == k_Memory; }
   1019   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
   1020   bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
   1021   bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
   1022   bool isRotImm() const { return Kind == k_RotateImmediate; }
   1023   bool isModImm() const { return Kind == k_ModifiedImmediate; }
   1024   bool isModImmNot() const {
   1025     if (!isImm()) return false;
   1026     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1027     if (!CE) return false;
   1028     int64_t Value = CE->getValue();
   1029     return ARM_AM::getSOImmVal(~Value) != -1;
   1030   }
   1031   bool isModImmNeg() const {
   1032     if (!isImm()) return false;
   1033     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1034     if (!CE) return false;
   1035     int64_t Value = CE->getValue();
   1036     return ARM_AM::getSOImmVal(Value) == -1 &&
   1037       ARM_AM::getSOImmVal(-Value) != -1;
   1038   }
   1039   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
   1040   bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
   1041   bool isPostIdxReg() const {
   1042     return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
   1043   }
   1044   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
   1045     if (!isMem())
   1046       return false;
   1047     // No offset of any kind.
   1048     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
   1049      (alignOK || Memory.Alignment == Alignment);
   1050   }
   1051   bool isMemPCRelImm12() const {
   1052     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1053       return false;
   1054     // Base register must be PC.
   1055     if (Memory.BaseRegNum != ARM::PC)
   1056       return false;
   1057     // Immediate offset in range [-4095, 4095].
   1058     if (!Memory.OffsetImm) return true;
   1059     int64_t Val = Memory.OffsetImm->getValue();
   1060     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
   1061   }
   1062   bool isAlignedMemory() const {
   1063     return isMemNoOffset(true);
   1064   }
   1065   bool isAlignedMemoryNone() const {
   1066     return isMemNoOffset(false, 0);
   1067   }
   1068   bool isDupAlignedMemoryNone() const {
   1069     return isMemNoOffset(false, 0);
   1070   }
   1071   bool isAlignedMemory16() const {
   1072     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
   1073       return true;
   1074     return isMemNoOffset(false, 0);
   1075   }
   1076   bool isDupAlignedMemory16() const {
   1077     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
   1078       return true;
   1079     return isMemNoOffset(false, 0);
   1080   }
   1081   bool isAlignedMemory32() const {
   1082     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
   1083       return true;
   1084     return isMemNoOffset(false, 0);
   1085   }
   1086   bool isDupAlignedMemory32() const {
   1087     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
   1088       return true;
   1089     return isMemNoOffset(false, 0);
   1090   }
   1091   bool isAlignedMemory64() const {
   1092     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1093       return true;
   1094     return isMemNoOffset(false, 0);
   1095   }
   1096   bool isDupAlignedMemory64() const {
   1097     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1098       return true;
   1099     return isMemNoOffset(false, 0);
   1100   }
   1101   bool isAlignedMemory64or128() const {
   1102     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1103       return true;
   1104     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
   1105       return true;
   1106     return isMemNoOffset(false, 0);
   1107   }
   1108   bool isDupAlignedMemory64or128() const {
   1109     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1110       return true;
   1111     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
   1112       return true;
   1113     return isMemNoOffset(false, 0);
   1114   }
   1115   bool isAlignedMemory64or128or256() const {
   1116     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1117       return true;
   1118     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
   1119       return true;
   1120     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
   1121       return true;
   1122     return isMemNoOffset(false, 0);
   1123   }
   1124   bool isAddrMode2() const {
   1125     if (!isMem() || Memory.Alignment != 0) return false;
   1126     // Check for register offset.
   1127     if (Memory.OffsetRegNum) return true;
   1128     // Immediate offset in range [-4095, 4095].
   1129     if (!Memory.OffsetImm) return true;
   1130     int64_t Val = Memory.OffsetImm->getValue();
   1131     return Val > -4096 && Val < 4096;
   1132   }
   1133   bool isAM2OffsetImm() const {
   1134     if (!isImm()) return false;
   1135     // Immediate offset in range [-4095, 4095].
   1136     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1137     if (!CE) return false;
   1138     int64_t Val = CE->getValue();
   1139     return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
   1140   }
   1141   bool isAddrMode3() const {
   1142     // If we have an immediate that's not a constant, treat it as a label
   1143     // reference needing a fixup. If it is a constant, it's something else
   1144     // and we reject it.
   1145     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1146       return true;
   1147     if (!isMem() || Memory.Alignment != 0) return false;
   1148     // No shifts are legal for AM3.
   1149     if (Memory.ShiftType != ARM_AM::no_shift) return false;
   1150     // Check for register offset.
   1151     if (Memory.OffsetRegNum) return true;
   1152     // Immediate offset in range [-255, 255].
   1153     if (!Memory.OffsetImm) return true;
   1154     int64_t Val = Memory.OffsetImm->getValue();
   1155     // The #-0 offset is encoded as INT32_MIN, and we have to check
   1156     // for this too.
   1157     return (Val > -256 && Val < 256) || Val == INT32_MIN;
   1158   }
   1159   bool isAM3Offset() const {
   1160     if (Kind != k_Immediate && Kind != k_PostIndexRegister)
   1161       return false;
   1162     if (Kind == k_PostIndexRegister)
   1163       return PostIdxReg.ShiftTy == ARM_AM::no_shift;
   1164     // Immediate offset in range [-255, 255].
   1165     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1166     if (!CE) return false;
   1167     int64_t Val = CE->getValue();
   1168     // Special case, #-0 is INT32_MIN.
   1169     return (Val > -256 && Val < 256) || Val == INT32_MIN;
   1170   }
   1171   bool isAddrMode5() const {
   1172     // If we have an immediate that's not a constant, treat it as a label
   1173     // reference needing a fixup. If it is a constant, it's something else
   1174     // and we reject it.
   1175     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1176       return true;
   1177     if (!isMem() || Memory.Alignment != 0) return false;
   1178     // Check for register offset.
   1179     if (Memory.OffsetRegNum) return false;
   1180     // Immediate offset in range [-1020, 1020] and a multiple of 4.
   1181     if (!Memory.OffsetImm) return true;
   1182     int64_t Val = Memory.OffsetImm->getValue();
   1183     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
   1184       Val == INT32_MIN;
   1185   }
   1186   bool isMemTBB() const {
   1187     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1188         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
   1189       return false;
   1190     return true;
   1191   }
   1192   bool isMemTBH() const {
   1193     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1194         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
   1195         Memory.Alignment != 0 )
   1196       return false;
   1197     return true;
   1198   }
   1199   bool isMemRegOffset() const {
   1200     if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
   1201       return false;
   1202     return true;
   1203   }
   1204   bool isT2MemRegOffset() const {
   1205     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1206         Memory.Alignment != 0)
   1207       return false;
   1208     // Only lsl #{0, 1, 2, 3} allowed.
   1209     if (Memory.ShiftType == ARM_AM::no_shift)
   1210       return true;
   1211     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
   1212       return false;
   1213     return true;
   1214   }
   1215   bool isMemThumbRR() const {
   1216     // Thumb reg+reg addressing is simple. Just two registers, a base and
   1217     // an offset. No shifts, negations or any other complicating factors.
   1218     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1219         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
   1220       return false;
   1221     return isARMLowRegister(Memory.BaseRegNum) &&
   1222       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
   1223   }
   1224   bool isMemThumbRIs4() const {
   1225     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1226         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1227       return false;
   1228     // Immediate offset, multiple of 4 in range [0, 124].
   1229     if (!Memory.OffsetImm) return true;
   1230     int64_t Val = Memory.OffsetImm->getValue();
   1231     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
   1232   }
   1233   bool isMemThumbRIs2() const {
   1234     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1235         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1236       return false;
   1237     // Immediate offset, multiple of 4 in range [0, 62].
   1238     if (!Memory.OffsetImm) return true;
   1239     int64_t Val = Memory.OffsetImm->getValue();
   1240     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
   1241   }
   1242   bool isMemThumbRIs1() const {
   1243     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1244         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1245       return false;
   1246     // Immediate offset in range [0, 31].
   1247     if (!Memory.OffsetImm) return true;
   1248     int64_t Val = Memory.OffsetImm->getValue();
   1249     return Val >= 0 && Val <= 31;
   1250   }
   1251   bool isMemThumbSPI() const {
   1252     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1253         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
   1254       return false;
   1255     // Immediate offset, multiple of 4 in range [0, 1020].
   1256     if (!Memory.OffsetImm) return true;
   1257     int64_t Val = Memory.OffsetImm->getValue();
   1258     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
   1259   }
   1260   bool isMemImm8s4Offset() const {
   1261     // If we have an immediate that's not a constant, treat it as a label
   1262     // reference needing a fixup. If it is a constant, it's something else
   1263     // and we reject it.
   1264     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1265       return true;
   1266     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1267       return false;
   1268     // Immediate offset a multiple of 4 in range [-1020, 1020].
   1269     if (!Memory.OffsetImm) return true;
   1270     int64_t Val = Memory.OffsetImm->getValue();
   1271     // Special case, #-0 is INT32_MIN.
   1272     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
   1273   }
   1274   bool isMemImm0_1020s4Offset() const {
   1275     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1276       return false;
   1277     // Immediate offset a multiple of 4 in range [0, 1020].
   1278     if (!Memory.OffsetImm) return true;
   1279     int64_t Val = Memory.OffsetImm->getValue();
   1280     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
   1281   }
   1282   bool isMemImm8Offset() const {
   1283     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1284       return false;
   1285     // Base reg of PC isn't allowed for these encodings.
   1286     if (Memory.BaseRegNum == ARM::PC) return false;
   1287     // Immediate offset in range [-255, 255].
   1288     if (!Memory.OffsetImm) return true;
   1289     int64_t Val = Memory.OffsetImm->getValue();
   1290     return (Val == INT32_MIN) || (Val > -256 && Val < 256);
   1291   }
   1292   bool isMemPosImm8Offset() const {
   1293     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1294       return false;
   1295     // Immediate offset in range [0, 255].
   1296     if (!Memory.OffsetImm) return true;
   1297     int64_t Val = Memory.OffsetImm->getValue();
   1298     return Val >= 0 && Val < 256;
   1299   }
   1300   bool isMemNegImm8Offset() const {
   1301     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1302       return false;
   1303     // Base reg of PC isn't allowed for these encodings.
   1304     if (Memory.BaseRegNum == ARM::PC) return false;
   1305     // Immediate offset in range [-255, -1].
   1306     if (!Memory.OffsetImm) return false;
   1307     int64_t Val = Memory.OffsetImm->getValue();
   1308     return (Val == INT32_MIN) || (Val > -256 && Val < 0);
   1309   }
   1310   bool isMemUImm12Offset() const {
   1311     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1312       return false;
   1313     // Immediate offset in range [0, 4095].
   1314     if (!Memory.OffsetImm) return true;
   1315     int64_t Val = Memory.OffsetImm->getValue();
   1316     return (Val >= 0 && Val < 4096);
   1317   }
   1318   bool isMemImm12Offset() const {
   1319     // If we have an immediate that's not a constant, treat it as a label
   1320     // reference needing a fixup. If it is a constant, it's something else
   1321     // and we reject it.
   1322     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1323       return true;
   1324 
   1325     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1326       return false;
   1327     // Immediate offset in range [-4095, 4095].
   1328     if (!Memory.OffsetImm) return true;
   1329     int64_t Val = Memory.OffsetImm->getValue();
   1330     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
   1331   }
   1332   bool isPostIdxImm8() const {
   1333     if (!isImm()) return false;
   1334     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1335     if (!CE) return false;
   1336     int64_t Val = CE->getValue();
   1337     return (Val > -256 && Val < 256) || (Val == INT32_MIN);
   1338   }
   1339   bool isPostIdxImm8s4() const {
   1340     if (!isImm()) return false;
   1341     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1342     if (!CE) return false;
   1343     int64_t Val = CE->getValue();
   1344     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
   1345       (Val == INT32_MIN);
   1346   }
   1347 
   1348   bool isMSRMask() const { return Kind == k_MSRMask; }
   1349   bool isBankedReg() const { return Kind == k_BankedReg; }
   1350   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
   1351 
   1352   // NEON operands.
   1353   bool isSingleSpacedVectorList() const {
   1354     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
   1355   }
   1356   bool isDoubleSpacedVectorList() const {
   1357     return Kind == k_VectorList && VectorList.isDoubleSpaced;
   1358   }
   1359   bool isVecListOneD() const {
   1360     if (!isSingleSpacedVectorList()) return false;
   1361     return VectorList.Count == 1;
   1362   }
   1363 
   1364   bool isVecListDPair() const {
   1365     if (!isSingleSpacedVectorList()) return false;
   1366     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
   1367               .contains(VectorList.RegNum));
   1368   }
   1369 
   1370   bool isVecListThreeD() const {
   1371     if (!isSingleSpacedVectorList()) return false;
   1372     return VectorList.Count == 3;
   1373   }
   1374 
   1375   bool isVecListFourD() const {
   1376     if (!isSingleSpacedVectorList()) return false;
   1377     return VectorList.Count == 4;
   1378   }
   1379 
   1380   bool isVecListDPairSpaced() const {
   1381     if (Kind != k_VectorList) return false;
   1382     if (isSingleSpacedVectorList()) return false;
   1383     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
   1384               .contains(VectorList.RegNum));
   1385   }
   1386 
   1387   bool isVecListThreeQ() const {
   1388     if (!isDoubleSpacedVectorList()) return false;
   1389     return VectorList.Count == 3;
   1390   }
   1391 
   1392   bool isVecListFourQ() const {
   1393     if (!isDoubleSpacedVectorList()) return false;
   1394     return VectorList.Count == 4;
   1395   }
   1396 
   1397   bool isSingleSpacedVectorAllLanes() const {
   1398     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
   1399   }
   1400   bool isDoubleSpacedVectorAllLanes() const {
   1401     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
   1402   }
   1403   bool isVecListOneDAllLanes() const {
   1404     if (!isSingleSpacedVectorAllLanes()) return false;
   1405     return VectorList.Count == 1;
   1406   }
   1407 
   1408   bool isVecListDPairAllLanes() const {
   1409     if (!isSingleSpacedVectorAllLanes()) return false;
   1410     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
   1411               .contains(VectorList.RegNum));
   1412   }
   1413 
   1414   bool isVecListDPairSpacedAllLanes() const {
   1415     if (!isDoubleSpacedVectorAllLanes()) return false;
   1416     return VectorList.Count == 2;
   1417   }
   1418 
   1419   bool isVecListThreeDAllLanes() const {
   1420     if (!isSingleSpacedVectorAllLanes()) return false;
   1421     return VectorList.Count == 3;
   1422   }
   1423 
   1424   bool isVecListThreeQAllLanes() const {
   1425     if (!isDoubleSpacedVectorAllLanes()) return false;
   1426     return VectorList.Count == 3;
   1427   }
   1428 
   1429   bool isVecListFourDAllLanes() const {
   1430     if (!isSingleSpacedVectorAllLanes()) return false;
   1431     return VectorList.Count == 4;
   1432   }
   1433 
   1434   bool isVecListFourQAllLanes() const {
   1435     if (!isDoubleSpacedVectorAllLanes()) return false;
   1436     return VectorList.Count == 4;
   1437   }
   1438 
   1439   bool isSingleSpacedVectorIndexed() const {
   1440     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
   1441   }
   1442   bool isDoubleSpacedVectorIndexed() const {
   1443     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
   1444   }
   1445   bool isVecListOneDByteIndexed() const {
   1446     if (!isSingleSpacedVectorIndexed()) return false;
   1447     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
   1448   }
   1449 
   1450   bool isVecListOneDHWordIndexed() const {
   1451     if (!isSingleSpacedVectorIndexed()) return false;
   1452     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
   1453   }
   1454 
   1455   bool isVecListOneDWordIndexed() const {
   1456     if (!isSingleSpacedVectorIndexed()) return false;
   1457     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
   1458   }
   1459 
   1460   bool isVecListTwoDByteIndexed() const {
   1461     if (!isSingleSpacedVectorIndexed()) return false;
   1462     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
   1463   }
   1464 
   1465   bool isVecListTwoDHWordIndexed() const {
   1466     if (!isSingleSpacedVectorIndexed()) return false;
   1467     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
   1468   }
   1469 
   1470   bool isVecListTwoQWordIndexed() const {
   1471     if (!isDoubleSpacedVectorIndexed()) return false;
   1472     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
   1473   }
   1474 
   1475   bool isVecListTwoQHWordIndexed() const {
   1476     if (!isDoubleSpacedVectorIndexed()) return false;
   1477     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
   1478   }
   1479 
   1480   bool isVecListTwoDWordIndexed() const {
   1481     if (!isSingleSpacedVectorIndexed()) return false;
   1482     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
   1483   }
   1484 
   1485   bool isVecListThreeDByteIndexed() const {
   1486     if (!isSingleSpacedVectorIndexed()) return false;
   1487     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
   1488   }
   1489 
   1490   bool isVecListThreeDHWordIndexed() const {
   1491     if (!isSingleSpacedVectorIndexed()) return false;
   1492     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
   1493   }
   1494 
   1495   bool isVecListThreeQWordIndexed() const {
   1496     if (!isDoubleSpacedVectorIndexed()) return false;
   1497     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
   1498   }
   1499 
   1500   bool isVecListThreeQHWordIndexed() const {
   1501     if (!isDoubleSpacedVectorIndexed()) return false;
   1502     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
   1503   }
   1504 
   1505   bool isVecListThreeDWordIndexed() const {
   1506     if (!isSingleSpacedVectorIndexed()) return false;
   1507     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
   1508   }
   1509 
   1510   bool isVecListFourDByteIndexed() const {
   1511     if (!isSingleSpacedVectorIndexed()) return false;
   1512     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
   1513   }
   1514 
   1515   bool isVecListFourDHWordIndexed() const {
   1516     if (!isSingleSpacedVectorIndexed()) return false;
   1517     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
   1518   }
   1519 
   1520   bool isVecListFourQWordIndexed() const {
   1521     if (!isDoubleSpacedVectorIndexed()) return false;
   1522     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
   1523   }
   1524 
   1525   bool isVecListFourQHWordIndexed() const {
   1526     if (!isDoubleSpacedVectorIndexed()) return false;
   1527     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
   1528   }
   1529 
   1530   bool isVecListFourDWordIndexed() const {
   1531     if (!isSingleSpacedVectorIndexed()) return false;
   1532     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
   1533   }
   1534 
   1535   bool isVectorIndex8() const {
   1536     if (Kind != k_VectorIndex) return false;
   1537     return VectorIndex.Val < 8;
   1538   }
   1539   bool isVectorIndex16() const {
   1540     if (Kind != k_VectorIndex) return false;
   1541     return VectorIndex.Val < 4;
   1542   }
   1543   bool isVectorIndex32() const {
   1544     if (Kind != k_VectorIndex) return false;
   1545     return VectorIndex.Val < 2;
   1546   }
   1547 
   1548   bool isNEONi8splat() const {
   1549     if (!isImm()) return false;
   1550     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1551     // Must be a constant.
   1552     if (!CE) return false;
   1553     int64_t Value = CE->getValue();
   1554     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
   1555     // value.
   1556     return Value >= 0 && Value < 256;
   1557   }
   1558 
   1559   bool isNEONi16splat() const {
   1560     if (isNEONByteReplicate(2))
   1561       return false; // Leave that for bytes replication and forbid by default.
   1562     if (!isImm())
   1563       return false;
   1564     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1565     // Must be a constant.
   1566     if (!CE) return false;
   1567     unsigned Value = CE->getValue();
   1568     return ARM_AM::isNEONi16splat(Value);
   1569   }
   1570 
   1571   bool isNEONi16splatNot() const {
   1572     if (!isImm())
   1573       return false;
   1574     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1575     // Must be a constant.
   1576     if (!CE) return false;
   1577     unsigned Value = CE->getValue();
   1578     return ARM_AM::isNEONi16splat(~Value & 0xffff);
   1579   }
   1580 
   1581   bool isNEONi32splat() const {
   1582     if (isNEONByteReplicate(4))
   1583       return false; // Leave that for bytes replication and forbid by default.
   1584     if (!isImm())
   1585       return false;
   1586     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1587     // Must be a constant.
   1588     if (!CE) return false;
   1589     unsigned Value = CE->getValue();
   1590     return ARM_AM::isNEONi32splat(Value);
   1591   }
   1592 
   1593   bool isNEONi32splatNot() const {
   1594     if (!isImm())
   1595       return false;
   1596     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1597     // Must be a constant.
   1598     if (!CE) return false;
   1599     unsigned Value = CE->getValue();
   1600     return ARM_AM::isNEONi32splat(~Value);
   1601   }
   1602 
   1603   bool isNEONByteReplicate(unsigned NumBytes) const {
   1604     if (!isImm())
   1605       return false;
   1606     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1607     // Must be a constant.
   1608     if (!CE)
   1609       return false;
   1610     int64_t Value = CE->getValue();
   1611     if (!Value)
   1612       return false; // Don't bother with zero.
   1613 
   1614     unsigned char B = Value & 0xff;
   1615     for (unsigned i = 1; i < NumBytes; ++i) {
   1616       Value >>= 8;
   1617       if ((Value & 0xff) != B)
   1618         return false;
   1619     }
   1620     return true;
   1621   }
   1622   bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); }
   1623   bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); }
   1624   bool isNEONi32vmov() const {
   1625     if (isNEONByteReplicate(4))
   1626       return false; // Let it to be classified as byte-replicate case.
   1627     if (!isImm())
   1628       return false;
   1629     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1630     // Must be a constant.
   1631     if (!CE)
   1632       return false;
   1633     int64_t Value = CE->getValue();
   1634     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
   1635     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
   1636     // FIXME: This is probably wrong and a copy and paste from previous example
   1637     return (Value >= 0 && Value < 256) ||
   1638       (Value >= 0x0100 && Value <= 0xff00) ||
   1639       (Value >= 0x010000 && Value <= 0xff0000) ||
   1640       (Value >= 0x01000000 && Value <= 0xff000000) ||
   1641       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
   1642       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
   1643   }
   1644   bool isNEONi32vmovNeg() const {
   1645     if (!isImm()) return false;
   1646     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1647     // Must be a constant.
   1648     if (!CE) return false;
   1649     int64_t Value = ~CE->getValue();
   1650     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
   1651     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
   1652     // FIXME: This is probably wrong and a copy and paste from previous example
   1653     return (Value >= 0 && Value < 256) ||
   1654       (Value >= 0x0100 && Value <= 0xff00) ||
   1655       (Value >= 0x010000 && Value <= 0xff0000) ||
   1656       (Value >= 0x01000000 && Value <= 0xff000000) ||
   1657       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
   1658       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
   1659   }
   1660 
   1661   bool isNEONi64splat() const {
   1662     if (!isImm()) return false;
   1663     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1664     // Must be a constant.
   1665     if (!CE) return false;
   1666     uint64_t Value = CE->getValue();
   1667     // i64 value with each byte being either 0 or 0xff.
   1668     for (unsigned i = 0; i < 8; ++i)
   1669       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
   1670     return true;
   1671   }
   1672 
   1673   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
   1674     // Add as immediates when possible.  Null MCExpr = 0.
   1675     if (!Expr)
   1676       Inst.addOperand(MCOperand::createImm(0));
   1677     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
   1678       Inst.addOperand(MCOperand::createImm(CE->getValue()));
   1679     else
   1680       Inst.addOperand(MCOperand::createExpr(Expr));
   1681   }
   1682 
   1683   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
   1684     assert(N == 2 && "Invalid number of operands!");
   1685     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
   1686     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
   1687     Inst.addOperand(MCOperand::createReg(RegNum));
   1688   }
   1689 
   1690   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
   1691     assert(N == 1 && "Invalid number of operands!");
   1692     Inst.addOperand(MCOperand::createImm(getCoproc()));
   1693   }
   1694 
   1695   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
   1696     assert(N == 1 && "Invalid number of operands!");
   1697     Inst.addOperand(MCOperand::createImm(getCoproc()));
   1698   }
   1699 
   1700   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
   1701     assert(N == 1 && "Invalid number of operands!");
   1702     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
   1703   }
   1704 
   1705   void addITMaskOperands(MCInst &Inst, unsigned N) const {
   1706     assert(N == 1 && "Invalid number of operands!");
   1707     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
   1708   }
   1709 
   1710   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
   1711     assert(N == 1 && "Invalid number of operands!");
   1712     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
   1713   }
   1714 
   1715   void addCCOutOperands(MCInst &Inst, unsigned N) const {
   1716     assert(N == 1 && "Invalid number of operands!");
   1717     Inst.addOperand(MCOperand::createReg(getReg()));
   1718   }
   1719 
   1720   void addRegOperands(MCInst &Inst, unsigned N) const {
   1721     assert(N == 1 && "Invalid number of operands!");
   1722     Inst.addOperand(MCOperand::createReg(getReg()));
   1723   }
   1724 
   1725   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
   1726     assert(N == 3 && "Invalid number of operands!");
   1727     assert(isRegShiftedReg() &&
   1728            "addRegShiftedRegOperands() on non-RegShiftedReg!");
   1729     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
   1730     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
   1731     Inst.addOperand(MCOperand::createImm(
   1732       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
   1733   }
   1734 
   1735   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
   1736     assert(N == 2 && "Invalid number of operands!");
   1737     assert(isRegShiftedImm() &&
   1738            "addRegShiftedImmOperands() on non-RegShiftedImm!");
   1739     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
   1740     // Shift of #32 is encoded as 0 where permitted
   1741     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
   1742     Inst.addOperand(MCOperand::createImm(
   1743       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
   1744   }
   1745 
   1746   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
   1747     assert(N == 1 && "Invalid number of operands!");
   1748     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
   1749                                          ShifterImm.Imm));
   1750   }
   1751 
   1752   void addRegListOperands(MCInst &Inst, unsigned N) const {
   1753     assert(N == 1 && "Invalid number of operands!");
   1754     const SmallVectorImpl<unsigned> &RegList = getRegList();
   1755     for (SmallVectorImpl<unsigned>::const_iterator
   1756            I = RegList.begin(), E = RegList.end(); I != E; ++I)
   1757       Inst.addOperand(MCOperand::createReg(*I));
   1758   }
   1759 
   1760   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
   1761     addRegListOperands(Inst, N);
   1762   }
   1763 
   1764   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
   1765     addRegListOperands(Inst, N);
   1766   }
   1767 
   1768   void addRotImmOperands(MCInst &Inst, unsigned N) const {
   1769     assert(N == 1 && "Invalid number of operands!");
   1770     // Encoded as val>>3. The printer handles display as 8, 16, 24.
   1771     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
   1772   }
   1773 
   1774   void addModImmOperands(MCInst &Inst, unsigned N) const {
   1775     assert(N == 1 && "Invalid number of operands!");
   1776 
   1777     // Support for fixups (MCFixup)
   1778     if (isImm())
   1779       return addImmOperands(Inst, N);
   1780 
   1781     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
   1782   }
   1783 
   1784   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
   1785     assert(N == 1 && "Invalid number of operands!");
   1786     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1787     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
   1788     Inst.addOperand(MCOperand::createImm(Enc));
   1789   }
   1790 
   1791   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
   1792     assert(N == 1 && "Invalid number of operands!");
   1793     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1794     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
   1795     Inst.addOperand(MCOperand::createImm(Enc));
   1796   }
   1797 
   1798   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
   1799     assert(N == 1 && "Invalid number of operands!");
   1800     // Munge the lsb/width into a bitfield mask.
   1801     unsigned lsb = Bitfield.LSB;
   1802     unsigned width = Bitfield.Width;
   1803     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
   1804     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
   1805                       (32 - (lsb + width)));
   1806     Inst.addOperand(MCOperand::createImm(Mask));
   1807   }
   1808 
   1809   void addImmOperands(MCInst &Inst, unsigned N) const {
   1810     assert(N == 1 && "Invalid number of operands!");
   1811     addExpr(Inst, getImm());
   1812   }
   1813 
   1814   void addFBits16Operands(MCInst &Inst, unsigned N) const {
   1815     assert(N == 1 && "Invalid number of operands!");
   1816     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1817     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
   1818   }
   1819 
   1820   void addFBits32Operands(MCInst &Inst, unsigned N) const {
   1821     assert(N == 1 && "Invalid number of operands!");
   1822     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1823     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
   1824   }
   1825 
   1826   void addFPImmOperands(MCInst &Inst, unsigned N) const {
   1827     assert(N == 1 && "Invalid number of operands!");
   1828     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1829     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
   1830     Inst.addOperand(MCOperand::createImm(Val));
   1831   }
   1832 
   1833   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
   1834     assert(N == 1 && "Invalid number of operands!");
   1835     // FIXME: We really want to scale the value here, but the LDRD/STRD
   1836     // instruction don't encode operands that way yet.
   1837     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1838     Inst.addOperand(MCOperand::createImm(CE->getValue()));
   1839   }
   1840 
   1841   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
   1842     assert(N == 1 && "Invalid number of operands!");
   1843     // The immediate is scaled by four in the encoding and is stored
   1844     // in the MCInst as such. Lop off the low two bits here.
   1845     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1846     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
   1847   }
   1848 
   1849   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
   1850     assert(N == 1 && "Invalid number of operands!");
   1851     // The immediate is scaled by four in the encoding and is stored
   1852     // in the MCInst as such. Lop off the low two bits here.
   1853     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1854     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
   1855   }
   1856 
   1857   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
   1858     assert(N == 1 && "Invalid number of operands!");
   1859     // The immediate is scaled by four in the encoding and is stored
   1860     // in the MCInst as such. Lop off the low two bits here.
   1861     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1862     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
   1863   }
   1864 
   1865   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
   1866     assert(N == 1 && "Invalid number of operands!");
   1867     // The constant encodes as the immediate-1, and we store in the instruction
   1868     // the bits as encoded, so subtract off one here.
   1869     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1870     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
   1871   }
   1872 
   1873   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
   1874     assert(N == 1 && "Invalid number of operands!");
   1875     // The constant encodes as the immediate-1, and we store in the instruction
   1876     // the bits as encoded, so subtract off one here.
   1877     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1878     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
   1879   }
   1880 
   1881   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
   1882     assert(N == 1 && "Invalid number of operands!");
   1883     // The constant encodes as the immediate, except for 32, which encodes as
   1884     // zero.
   1885     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1886     unsigned Imm = CE->getValue();
   1887     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
   1888   }
   1889 
   1890   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
   1891     assert(N == 1 && "Invalid number of operands!");
   1892     // An ASR value of 32 encodes as 0, so that's how we want to add it to
   1893     // the instruction as well.
   1894     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1895     int Val = CE->getValue();
   1896     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
   1897   }
   1898 
   1899   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
   1900     assert(N == 1 && "Invalid number of operands!");
   1901     // The operand is actually a t2_so_imm, but we have its bitwise
   1902     // negation in the assembly source, so twiddle it here.
   1903     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1904     Inst.addOperand(MCOperand::createImm(~CE->getValue()));
   1905   }
   1906 
   1907   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
   1908     assert(N == 1 && "Invalid number of operands!");
   1909     // The operand is actually a t2_so_imm, but we have its
   1910     // negation in the assembly source, so twiddle it here.
   1911     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1912     Inst.addOperand(MCOperand::createImm(-CE->getValue()));
   1913   }
   1914 
   1915   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
   1916     assert(N == 1 && "Invalid number of operands!");
   1917     // The operand is actually an imm0_4095, but we have its
   1918     // negation in the assembly source, so twiddle it here.
   1919     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1920     Inst.addOperand(MCOperand::createImm(-CE->getValue()));
   1921   }
   1922 
   1923   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
   1924     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
   1925       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
   1926       return;
   1927     }
   1928 
   1929     const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
   1930     assert(SR && "Unknown value type!");
   1931     Inst.addOperand(MCOperand::createExpr(SR));
   1932   }
   1933 
   1934   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
   1935     assert(N == 1 && "Invalid number of operands!");
   1936     if (isImm()) {
   1937       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1938       if (CE) {
   1939         Inst.addOperand(MCOperand::createImm(CE->getValue()));
   1940         return;
   1941       }
   1942 
   1943       const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
   1944       assert(SR && "Unknown value type!");
   1945       Inst.addOperand(MCOperand::createExpr(SR));
   1946       return;
   1947     }
   1948 
   1949     assert(isMem()  && "Unknown value type!");
   1950     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
   1951     Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
   1952   }
   1953 
   1954   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
   1955     assert(N == 1 && "Invalid number of operands!");
   1956     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
   1957   }
   1958 
   1959   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
   1960     assert(N == 1 && "Invalid number of operands!");
   1961     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
   1962   }
   1963 
   1964   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
   1965     assert(N == 1 && "Invalid number of operands!");
   1966     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   1967   }
   1968 
   1969   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
   1970     assert(N == 1 && "Invalid number of operands!");
   1971     int32_t Imm = Memory.OffsetImm->getValue();
   1972     Inst.addOperand(MCOperand::createImm(Imm));
   1973   }
   1974 
   1975   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
   1976     assert(N == 1 && "Invalid number of operands!");
   1977     assert(isImm() && "Not an immediate!");
   1978 
   1979     // If we have an immediate that's not a constant, treat it as a label
   1980     // reference needing a fixup.
   1981     if (!isa<MCConstantExpr>(getImm())) {
   1982       Inst.addOperand(MCOperand::createExpr(getImm()));
   1983       return;
   1984     }
   1985 
   1986     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1987     int Val = CE->getValue();
   1988     Inst.addOperand(MCOperand::createImm(Val));
   1989   }
   1990 
   1991   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
   1992     assert(N == 2 && "Invalid number of operands!");
   1993     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   1994     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
   1995   }
   1996 
   1997   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
   1998     addAlignedMemoryOperands(Inst, N);
   1999   }
   2000 
   2001   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
   2002     addAlignedMemoryOperands(Inst, N);
   2003   }
   2004 
   2005   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
   2006     addAlignedMemoryOperands(Inst, N);
   2007   }
   2008 
   2009   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
   2010     addAlignedMemoryOperands(Inst, N);
   2011   }
   2012 
   2013   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
   2014     addAlignedMemoryOperands(Inst, N);
   2015   }
   2016 
   2017   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
   2018     addAlignedMemoryOperands(Inst, N);
   2019   }
   2020 
   2021   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
   2022     addAlignedMemoryOperands(Inst, N);
   2023   }
   2024 
   2025   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
   2026     addAlignedMemoryOperands(Inst, N);
   2027   }
   2028 
   2029   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
   2030     addAlignedMemoryOperands(Inst, N);
   2031   }
   2032 
   2033   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
   2034     addAlignedMemoryOperands(Inst, N);
   2035   }
   2036 
   2037   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
   2038     addAlignedMemoryOperands(Inst, N);
   2039   }
   2040 
   2041   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
   2042     assert(N == 3 && "Invalid number of operands!");
   2043     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2044     if (!Memory.OffsetRegNum) {
   2045       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2046       // Special case for #-0
   2047       if (Val == INT32_MIN) Val = 0;
   2048       if (Val < 0) Val = -Val;
   2049       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
   2050     } else {
   2051       // For register offset, we encode the shift type and negation flag
   2052       // here.
   2053       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
   2054                               Memory.ShiftImm, Memory.ShiftType);
   2055     }
   2056     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2057     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
   2058     Inst.addOperand(MCOperand::createImm(Val));
   2059   }
   2060 
   2061   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
   2062     assert(N == 2 && "Invalid number of operands!");
   2063     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2064     assert(CE && "non-constant AM2OffsetImm operand!");
   2065     int32_t Val = CE->getValue();
   2066     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2067     // Special case for #-0
   2068     if (Val == INT32_MIN) Val = 0;
   2069     if (Val < 0) Val = -Val;
   2070     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
   2071     Inst.addOperand(MCOperand::createReg(0));
   2072     Inst.addOperand(MCOperand::createImm(Val));
   2073   }
   2074 
   2075   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
   2076     assert(N == 3 && "Invalid number of operands!");
   2077     // If we have an immediate that's not a constant, treat it as a label
   2078     // reference needing a fixup. If it is a constant, it's something else
   2079     // and we reject it.
   2080     if (isImm()) {
   2081       Inst.addOperand(MCOperand::createExpr(getImm()));
   2082       Inst.addOperand(MCOperand::createReg(0));
   2083       Inst.addOperand(MCOperand::createImm(0));
   2084       return;
   2085     }
   2086 
   2087     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2088     if (!Memory.OffsetRegNum) {
   2089       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2090       // Special case for #-0
   2091       if (Val == INT32_MIN) Val = 0;
   2092       if (Val < 0) Val = -Val;
   2093       Val = ARM_AM::getAM3Opc(AddSub, Val);
   2094     } else {
   2095       // For register offset, we encode the shift type and negation flag
   2096       // here.
   2097       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
   2098     }
   2099     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2100     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
   2101     Inst.addOperand(MCOperand::createImm(Val));
   2102   }
   2103 
   2104   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
   2105     assert(N == 2 && "Invalid number of operands!");
   2106     if (Kind == k_PostIndexRegister) {
   2107       int32_t Val =
   2108         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
   2109       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
   2110       Inst.addOperand(MCOperand::createImm(Val));
   2111       return;
   2112     }
   2113 
   2114     // Constant offset.
   2115     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
   2116     int32_t Val = CE->getValue();
   2117     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2118     // Special case for #-0
   2119     if (Val == INT32_MIN) Val = 0;
   2120     if (Val < 0) Val = -Val;
   2121     Val = ARM_AM::getAM3Opc(AddSub, Val);
   2122     Inst.addOperand(MCOperand::createReg(0));
   2123     Inst.addOperand(MCOperand::createImm(Val));
   2124   }
   2125 
   2126   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
   2127     assert(N == 2 && "Invalid number of operands!");
   2128     // If we have an immediate that's not a constant, treat it as a label
   2129     // reference needing a fixup. If it is a constant, it's something else
   2130     // and we reject it.
   2131     if (isImm()) {
   2132       Inst.addOperand(MCOperand::createExpr(getImm()));
   2133       Inst.addOperand(MCOperand::createImm(0));
   2134       return;
   2135     }
   2136 
   2137     // The lower two bits are always zero and as such are not encoded.
   2138     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
   2139     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2140     // Special case for #-0
   2141     if (Val == INT32_MIN) Val = 0;
   2142     if (Val < 0) Val = -Val;
   2143     Val = ARM_AM::getAM5Opc(AddSub, Val);
   2144     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2145     Inst.addOperand(MCOperand::createImm(Val));
   2146   }
   2147 
   2148   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
   2149     assert(N == 2 && "Invalid number of operands!");
   2150     // If we have an immediate that's not a constant, treat it as a label
   2151     // reference needing a fixup. If it is a constant, it's something else
   2152     // and we reject it.
   2153     if (isImm()) {
   2154       Inst.addOperand(MCOperand::createExpr(getImm()));
   2155       Inst.addOperand(MCOperand::createImm(0));
   2156       return;
   2157     }
   2158 
   2159     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2160     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2161     Inst.addOperand(MCOperand::createImm(Val));
   2162   }
   2163 
   2164   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
   2165     assert(N == 2 && "Invalid number of operands!");
   2166     // The lower two bits are always zero and as such are not encoded.
   2167     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
   2168     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2169     Inst.addOperand(MCOperand::createImm(Val));
   2170   }
   2171 
   2172   void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   2173     assert(N == 2 && "Invalid number of operands!");
   2174     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2175     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2176     Inst.addOperand(MCOperand::createImm(Val));
   2177   }
   2178 
   2179   void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   2180     addMemImm8OffsetOperands(Inst, N);
   2181   }
   2182 
   2183   void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   2184     addMemImm8OffsetOperands(Inst, N);
   2185   }
   2186 
   2187   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
   2188     assert(N == 2 && "Invalid number of operands!");
   2189     // If this is an immediate, it's a label reference.
   2190     if (isImm()) {
   2191       addExpr(Inst, getImm());
   2192       Inst.addOperand(MCOperand::createImm(0));
   2193       return;
   2194     }
   2195 
   2196     // Otherwise, it's a normal memory reg+offset.
   2197     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2198     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2199     Inst.addOperand(MCOperand::createImm(Val));
   2200   }
   2201 
   2202   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
   2203     assert(N == 2 && "Invalid number of operands!");
   2204     // If this is an immediate, it's a label reference.
   2205     if (isImm()) {
   2206       addExpr(Inst, getImm());
   2207       Inst.addOperand(MCOperand::createImm(0));
   2208       return;
   2209     }
   2210 
   2211     // Otherwise, it's a normal memory reg+offset.
   2212     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2213     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2214     Inst.addOperand(MCOperand::createImm(Val));
   2215   }
   2216 
   2217   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
   2218     assert(N == 2 && "Invalid number of operands!");
   2219     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2220     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
   2221   }
   2222 
   2223   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
   2224     assert(N == 2 && "Invalid number of operands!");
   2225     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2226     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
   2227   }
   2228 
   2229   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
   2230     assert(N == 3 && "Invalid number of operands!");
   2231     unsigned Val =
   2232       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
   2233                         Memory.ShiftImm, Memory.ShiftType);
   2234     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2235     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
   2236     Inst.addOperand(MCOperand::createImm(Val));
   2237   }
   2238 
   2239   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
   2240     assert(N == 3 && "Invalid number of operands!");
   2241     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2242     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
   2243     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
   2244   }
   2245 
   2246   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
   2247     assert(N == 2 && "Invalid number of operands!");
   2248     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2249     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
   2250   }
   2251 
   2252   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
   2253     assert(N == 2 && "Invalid number of operands!");
   2254     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
   2255     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2256     Inst.addOperand(MCOperand::createImm(Val));
   2257   }
   2258 
   2259   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
   2260     assert(N == 2 && "Invalid number of operands!");
   2261     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
   2262     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2263     Inst.addOperand(MCOperand::createImm(Val));
   2264   }
   2265 
   2266   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
   2267     assert(N == 2 && "Invalid number of operands!");
   2268     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
   2269     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2270     Inst.addOperand(MCOperand::createImm(Val));
   2271   }
   2272 
   2273   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
   2274     assert(N == 2 && "Invalid number of operands!");
   2275     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
   2276     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
   2277     Inst.addOperand(MCOperand::createImm(Val));
   2278   }
   2279 
   2280   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
   2281     assert(N == 1 && "Invalid number of operands!");
   2282     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2283     assert(CE && "non-constant post-idx-imm8 operand!");
   2284     int Imm = CE->getValue();
   2285     bool isAdd = Imm >= 0;
   2286     if (Imm == INT32_MIN) Imm = 0;
   2287     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
   2288     Inst.addOperand(MCOperand::createImm(Imm));
   2289   }
   2290 
   2291   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
   2292     assert(N == 1 && "Invalid number of operands!");
   2293     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2294     assert(CE && "non-constant post-idx-imm8s4 operand!");
   2295     int Imm = CE->getValue();
   2296     bool isAdd = Imm >= 0;
   2297     if (Imm == INT32_MIN) Imm = 0;
   2298     // Immediate is scaled by 4.
   2299     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
   2300     Inst.addOperand(MCOperand::createImm(Imm));
   2301   }
   2302 
   2303   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
   2304     assert(N == 2 && "Invalid number of operands!");
   2305     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
   2306     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
   2307   }
   2308 
   2309   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
   2310     assert(N == 2 && "Invalid number of operands!");
   2311     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
   2312     // The sign, shift type, and shift amount are encoded in a single operand
   2313     // using the AM2 encoding helpers.
   2314     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
   2315     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
   2316                                      PostIdxReg.ShiftTy);
   2317     Inst.addOperand(MCOperand::createImm(Imm));
   2318   }
   2319 
   2320   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
   2321     assert(N == 1 && "Invalid number of operands!");
   2322     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
   2323   }
   2324 
   2325   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
   2326     assert(N == 1 && "Invalid number of operands!");
   2327     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
   2328   }
   2329 
   2330   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
   2331     assert(N == 1 && "Invalid number of operands!");
   2332     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
   2333   }
   2334 
   2335   void addVecListOperands(MCInst &Inst, unsigned N) const {
   2336     assert(N == 1 && "Invalid number of operands!");
   2337     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
   2338   }
   2339 
   2340   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
   2341     assert(N == 2 && "Invalid number of operands!");
   2342     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
   2343     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
   2344   }
   2345 
   2346   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
   2347     assert(N == 1 && "Invalid number of operands!");
   2348     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
   2349   }
   2350 
   2351   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
   2352     assert(N == 1 && "Invalid number of operands!");
   2353     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
   2354   }
   2355 
   2356   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
   2357     assert(N == 1 && "Invalid number of operands!");
   2358     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
   2359   }
   2360 
   2361   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
   2362     assert(N == 1 && "Invalid number of operands!");
   2363     // The immediate encodes the type of constant as well as the value.
   2364     // Mask in that this is an i8 splat.
   2365     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2366     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
   2367   }
   2368 
   2369   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
   2370     assert(N == 1 && "Invalid number of operands!");
   2371     // The immediate encodes the type of constant as well as the value.
   2372     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2373     unsigned Value = CE->getValue();
   2374     Value = ARM_AM::encodeNEONi16splat(Value);
   2375     Inst.addOperand(MCOperand::createImm(Value));
   2376   }
   2377 
   2378   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
   2379     assert(N == 1 && "Invalid number of operands!");
   2380     // The immediate encodes the type of constant as well as the value.
   2381     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2382     unsigned Value = CE->getValue();
   2383     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
   2384     Inst.addOperand(MCOperand::createImm(Value));
   2385   }
   2386 
   2387   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
   2388     assert(N == 1 && "Invalid number of operands!");
   2389     // The immediate encodes the type of constant as well as the value.
   2390     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2391     unsigned Value = CE->getValue();
   2392     Value = ARM_AM::encodeNEONi32splat(Value);
   2393     Inst.addOperand(MCOperand::createImm(Value));
   2394   }
   2395 
   2396   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
   2397     assert(N == 1 && "Invalid number of operands!");
   2398     // The immediate encodes the type of constant as well as the value.
   2399     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2400     unsigned Value = CE->getValue();
   2401     Value = ARM_AM::encodeNEONi32splat(~Value);
   2402     Inst.addOperand(MCOperand::createImm(Value));
   2403   }
   2404 
   2405   void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const {
   2406     assert(N == 1 && "Invalid number of operands!");
   2407     // The immediate encodes the type of constant as well as the value.
   2408     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2409     unsigned Value = CE->getValue();
   2410     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
   2411             Inst.getOpcode() == ARM::VMOVv16i8) &&
   2412            "All vmvn instructions that wants to replicate non-zero byte "
   2413            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
   2414     unsigned B = ((~Value) & 0xff);
   2415     B |= 0xe00; // cmode = 0b1110
   2416     Inst.addOperand(MCOperand::createImm(B));
   2417   }
   2418   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
   2419     assert(N == 1 && "Invalid number of operands!");
   2420     // The immediate encodes the type of constant as well as the value.
   2421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2422     unsigned Value = CE->getValue();
   2423     if (Value >= 256 && Value <= 0xffff)
   2424       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
   2425     else if (Value > 0xffff && Value <= 0xffffff)
   2426       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
   2427     else if (Value > 0xffffff)
   2428       Value = (Value >> 24) | 0x600;
   2429     Inst.addOperand(MCOperand::createImm(Value));
   2430   }
   2431 
   2432   void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const {
   2433     assert(N == 1 && "Invalid number of operands!");
   2434     // The immediate encodes the type of constant as well as the value.
   2435     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2436     unsigned Value = CE->getValue();
   2437     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
   2438             Inst.getOpcode() == ARM::VMOVv16i8) &&
   2439            "All instructions that wants to replicate non-zero byte "
   2440            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
   2441     unsigned B = Value & 0xff;
   2442     B |= 0xe00; // cmode = 0b1110
   2443     Inst.addOperand(MCOperand::createImm(B));
   2444   }
   2445   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
   2446     assert(N == 1 && "Invalid number of operands!");
   2447     // The immediate encodes the type of constant as well as the value.
   2448     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2449     unsigned Value = ~CE->getValue();
   2450     if (Value >= 256 && Value <= 0xffff)
   2451       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
   2452     else if (Value > 0xffff && Value <= 0xffffff)
   2453       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
   2454     else if (Value > 0xffffff)
   2455       Value = (Value >> 24) | 0x600;
   2456     Inst.addOperand(MCOperand::createImm(Value));
   2457   }
   2458 
   2459   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
   2460     assert(N == 1 && "Invalid number of operands!");
   2461     // The immediate encodes the type of constant as well as the value.
   2462     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2463     uint64_t Value = CE->getValue();
   2464     unsigned Imm = 0;
   2465     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
   2466       Imm |= (Value & 1) << i;
   2467     }
   2468     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
   2469   }
   2470 
   2471   void print(raw_ostream &OS) const override;
   2472 
   2473   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
   2474     auto Op = make_unique<ARMOperand>(k_ITCondMask);
   2475     Op->ITMask.Mask = Mask;
   2476     Op->StartLoc = S;
   2477     Op->EndLoc = S;
   2478     return Op;
   2479   }
   2480 
   2481   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
   2482                                                     SMLoc S) {
   2483     auto Op = make_unique<ARMOperand>(k_CondCode);
   2484     Op->CC.Val = CC;
   2485     Op->StartLoc = S;
   2486     Op->EndLoc = S;
   2487     return Op;
   2488   }
   2489 
   2490   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
   2491     auto Op = make_unique<ARMOperand>(k_CoprocNum);
   2492     Op->Cop.Val = CopVal;
   2493     Op->StartLoc = S;
   2494     Op->EndLoc = S;
   2495     return Op;
   2496   }
   2497 
   2498   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
   2499     auto Op = make_unique<ARMOperand>(k_CoprocReg);
   2500     Op->Cop.Val = CopVal;
   2501     Op->StartLoc = S;
   2502     Op->EndLoc = S;
   2503     return Op;
   2504   }
   2505 
   2506   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
   2507                                                         SMLoc E) {
   2508     auto Op = make_unique<ARMOperand>(k_CoprocOption);
   2509     Op->Cop.Val = Val;
   2510     Op->StartLoc = S;
   2511     Op->EndLoc = E;
   2512     return Op;
   2513   }
   2514 
   2515   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
   2516     auto Op = make_unique<ARMOperand>(k_CCOut);
   2517     Op->Reg.RegNum = RegNum;
   2518     Op->StartLoc = S;
   2519     Op->EndLoc = S;
   2520     return Op;
   2521   }
   2522 
   2523   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
   2524     auto Op = make_unique<ARMOperand>(k_Token);
   2525     Op->Tok.Data = Str.data();
   2526     Op->Tok.Length = Str.size();
   2527     Op->StartLoc = S;
   2528     Op->EndLoc = S;
   2529     return Op;
   2530   }
   2531 
   2532   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
   2533                                                SMLoc E) {
   2534     auto Op = make_unique<ARMOperand>(k_Register);
   2535     Op->Reg.RegNum = RegNum;
   2536     Op->StartLoc = S;
   2537     Op->EndLoc = E;
   2538     return Op;
   2539   }
   2540 
   2541   static std::unique_ptr<ARMOperand>
   2542   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
   2543                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
   2544                         SMLoc E) {
   2545     auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
   2546     Op->RegShiftedReg.ShiftTy = ShTy;
   2547     Op->RegShiftedReg.SrcReg = SrcReg;
   2548     Op->RegShiftedReg.ShiftReg = ShiftReg;
   2549     Op->RegShiftedReg.ShiftImm = ShiftImm;
   2550     Op->StartLoc = S;
   2551     Op->EndLoc = E;
   2552     return Op;
   2553   }
   2554 
   2555   static std::unique_ptr<ARMOperand>
   2556   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
   2557                          unsigned ShiftImm, SMLoc S, SMLoc E) {
   2558     auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
   2559     Op->RegShiftedImm.ShiftTy = ShTy;
   2560     Op->RegShiftedImm.SrcReg = SrcReg;
   2561     Op->RegShiftedImm.ShiftImm = ShiftImm;
   2562     Op->StartLoc = S;
   2563     Op->EndLoc = E;
   2564     return Op;
   2565   }
   2566 
   2567   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
   2568                                                       SMLoc S, SMLoc E) {
   2569     auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
   2570     Op->ShifterImm.isASR = isASR;
   2571     Op->ShifterImm.Imm = Imm;
   2572     Op->StartLoc = S;
   2573     Op->EndLoc = E;
   2574     return Op;
   2575   }
   2576 
   2577   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
   2578                                                   SMLoc E) {
   2579     auto Op = make_unique<ARMOperand>(k_RotateImmediate);
   2580     Op->RotImm.Imm = Imm;
   2581     Op->StartLoc = S;
   2582     Op->EndLoc = E;
   2583     return Op;
   2584   }
   2585 
   2586   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
   2587                                                   SMLoc S, SMLoc E) {
   2588     auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
   2589     Op->ModImm.Bits = Bits;
   2590     Op->ModImm.Rot = Rot;
   2591     Op->StartLoc = S;
   2592     Op->EndLoc = E;
   2593     return Op;
   2594   }
   2595 
   2596   static std::unique_ptr<ARMOperand>
   2597   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
   2598     auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
   2599     Op->Bitfield.LSB = LSB;
   2600     Op->Bitfield.Width = Width;
   2601     Op->StartLoc = S;
   2602     Op->EndLoc = E;
   2603     return Op;
   2604   }
   2605 
   2606   static std::unique_ptr<ARMOperand>
   2607   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
   2608                 SMLoc StartLoc, SMLoc EndLoc) {
   2609     assert (Regs.size() > 0 && "RegList contains no registers?");
   2610     KindTy Kind = k_RegisterList;
   2611 
   2612     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
   2613       Kind = k_DPRRegisterList;
   2614     else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
   2615              contains(Regs.front().second))
   2616       Kind = k_SPRRegisterList;
   2617 
   2618     // Sort based on the register encoding values.
   2619     array_pod_sort(Regs.begin(), Regs.end());
   2620 
   2621     auto Op = make_unique<ARMOperand>(Kind);
   2622     for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
   2623            I = Regs.begin(), E = Regs.end(); I != E; ++I)
   2624       Op->Registers.push_back(I->second);
   2625     Op->StartLoc = StartLoc;
   2626     Op->EndLoc = EndLoc;
   2627     return Op;
   2628   }
   2629 
   2630   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
   2631                                                       unsigned Count,
   2632                                                       bool isDoubleSpaced,
   2633                                                       SMLoc S, SMLoc E) {
   2634     auto Op = make_unique<ARMOperand>(k_VectorList);
   2635     Op->VectorList.RegNum = RegNum;
   2636     Op->VectorList.Count = Count;
   2637     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2638     Op->StartLoc = S;
   2639     Op->EndLoc = E;
   2640     return Op;
   2641   }
   2642 
   2643   static std::unique_ptr<ARMOperand>
   2644   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
   2645                            SMLoc S, SMLoc E) {
   2646     auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
   2647     Op->VectorList.RegNum = RegNum;
   2648     Op->VectorList.Count = Count;
   2649     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2650     Op->StartLoc = S;
   2651     Op->EndLoc = E;
   2652     return Op;
   2653   }
   2654 
   2655   static std::unique_ptr<ARMOperand>
   2656   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
   2657                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
   2658     auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
   2659     Op->VectorList.RegNum = RegNum;
   2660     Op->VectorList.Count = Count;
   2661     Op->VectorList.LaneIndex = Index;
   2662     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2663     Op->StartLoc = S;
   2664     Op->EndLoc = E;
   2665     return Op;
   2666   }
   2667 
   2668   static std::unique_ptr<ARMOperand>
   2669   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
   2670     auto Op = make_unique<ARMOperand>(k_VectorIndex);
   2671     Op->VectorIndex.Val = Idx;
   2672     Op->StartLoc = S;
   2673     Op->EndLoc = E;
   2674     return Op;
   2675   }
   2676 
   2677   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
   2678                                                SMLoc E) {
   2679     auto Op = make_unique<ARMOperand>(k_Immediate);
   2680     Op->Imm.Val = Val;
   2681     Op->StartLoc = S;
   2682     Op->EndLoc = E;
   2683     return Op;
   2684   }
   2685 
   2686   static std::unique_ptr<ARMOperand>
   2687   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
   2688             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
   2689             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
   2690             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
   2691     auto Op = make_unique<ARMOperand>(k_Memory);
   2692     Op->Memory.BaseRegNum = BaseRegNum;
   2693     Op->Memory.OffsetImm = OffsetImm;
   2694     Op->Memory.OffsetRegNum = OffsetRegNum;
   2695     Op->Memory.ShiftType = ShiftType;
   2696     Op->Memory.ShiftImm = ShiftImm;
   2697     Op->Memory.Alignment = Alignment;
   2698     Op->Memory.isNegative = isNegative;
   2699     Op->StartLoc = S;
   2700     Op->EndLoc = E;
   2701     Op->AlignmentLoc = AlignmentLoc;
   2702     return Op;
   2703   }
   2704 
   2705   static std::unique_ptr<ARMOperand>
   2706   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
   2707                    unsigned ShiftImm, SMLoc S, SMLoc E) {
   2708     auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
   2709     Op->PostIdxReg.RegNum = RegNum;
   2710     Op->PostIdxReg.isAdd = isAdd;
   2711     Op->PostIdxReg.ShiftTy = ShiftTy;
   2712     Op->PostIdxReg.ShiftImm = ShiftImm;
   2713     Op->StartLoc = S;
   2714     Op->EndLoc = E;
   2715     return Op;
   2716   }
   2717 
   2718   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
   2719                                                          SMLoc S) {
   2720     auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
   2721     Op->MBOpt.Val = Opt;
   2722     Op->StartLoc = S;
   2723     Op->EndLoc = S;
   2724     return Op;
   2725   }
   2726 
   2727   static std::unique_ptr<ARMOperand>
   2728   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
   2729     auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
   2730     Op->ISBOpt.Val = Opt;
   2731     Op->StartLoc = S;
   2732     Op->EndLoc = S;
   2733     return Op;
   2734   }
   2735 
   2736   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
   2737                                                       SMLoc S) {
   2738     auto Op = make_unique<ARMOperand>(k_ProcIFlags);
   2739     Op->IFlags.Val = IFlags;
   2740     Op->StartLoc = S;
   2741     Op->EndLoc = S;
   2742     return Op;
   2743   }
   2744 
   2745   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
   2746     auto Op = make_unique<ARMOperand>(k_MSRMask);
   2747     Op->MMask.Val = MMask;
   2748     Op->StartLoc = S;
   2749     Op->EndLoc = S;
   2750     return Op;
   2751   }
   2752 
   2753   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
   2754     auto Op = make_unique<ARMOperand>(k_BankedReg);
   2755     Op->BankedReg.Val = Reg;
   2756     Op->StartLoc = S;
   2757     Op->EndLoc = S;
   2758     return Op;
   2759   }
   2760 };
   2761 
   2762 } // end anonymous namespace.
   2763 
   2764 void ARMOperand::print(raw_ostream &OS) const {
   2765   switch (Kind) {
   2766   case k_CondCode:
   2767     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
   2768     break;
   2769   case k_CCOut:
   2770     OS << "<ccout " << getReg() << ">";
   2771     break;
   2772   case k_ITCondMask: {
   2773     static const char *const MaskStr[] = {
   2774       "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
   2775       "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
   2776     };
   2777     assert((ITMask.Mask & 0xf) == ITMask.Mask);
   2778     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
   2779     break;
   2780   }
   2781   case k_CoprocNum:
   2782     OS << "<coprocessor number: " << getCoproc() << ">";
   2783     break;
   2784   case k_CoprocReg:
   2785     OS << "<coprocessor register: " << getCoproc() << ">";
   2786     break;
   2787   case k_CoprocOption:
   2788     OS << "<coprocessor option: " << CoprocOption.Val << ">";
   2789     break;
   2790   case k_MSRMask:
   2791     OS << "<mask: " << getMSRMask() << ">";
   2792     break;
   2793   case k_BankedReg:
   2794     OS << "<banked reg: " << getBankedReg() << ">";
   2795     break;
   2796   case k_Immediate:
   2797     OS << *getImm();
   2798     break;
   2799   case k_MemBarrierOpt:
   2800     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
   2801     break;
   2802   case k_InstSyncBarrierOpt:
   2803     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
   2804     break;
   2805   case k_Memory:
   2806     OS << "<memory "
   2807        << " base:" << Memory.BaseRegNum;
   2808     OS << ">";
   2809     break;
   2810   case k_PostIndexRegister:
   2811     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
   2812        << PostIdxReg.RegNum;
   2813     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
   2814       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
   2815          << PostIdxReg.ShiftImm;
   2816     OS << ">";
   2817     break;
   2818   case k_ProcIFlags: {
   2819     OS << "<ARM_PROC::";
   2820     unsigned IFlags = getProcIFlags();
   2821     for (int i=2; i >= 0; --i)
   2822       if (IFlags & (1 << i))
   2823         OS << ARM_PROC::IFlagsToString(1 << i);
   2824     OS << ">";
   2825     break;
   2826   }
   2827   case k_Register:
   2828     OS << "<register " << getReg() << ">";
   2829     break;
   2830   case k_ShifterImmediate:
   2831     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
   2832        << " #" << ShifterImm.Imm << ">";
   2833     break;
   2834   case k_ShiftedRegister:
   2835     OS << "<so_reg_reg "
   2836        << RegShiftedReg.SrcReg << " "
   2837        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
   2838        << " " << RegShiftedReg.ShiftReg << ">";
   2839     break;
   2840   case k_ShiftedImmediate:
   2841     OS << "<so_reg_imm "
   2842        << RegShiftedImm.SrcReg << " "
   2843        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
   2844        << " #" << RegShiftedImm.ShiftImm << ">";
   2845     break;
   2846   case k_RotateImmediate:
   2847     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
   2848     break;
   2849   case k_ModifiedImmediate:
   2850     OS << "<mod_imm #" << ModImm.Bits << ", #"
   2851        <<  ModImm.Rot << ")>";
   2852     break;
   2853   case k_BitfieldDescriptor:
   2854     OS << "<bitfield " << "lsb: " << Bitfield.LSB
   2855        << ", width: " << Bitfield.Width << ">";
   2856     break;
   2857   case k_RegisterList:
   2858   case k_DPRRegisterList:
   2859   case k_SPRRegisterList: {
   2860     OS << "<register_list ";
   2861 
   2862     const SmallVectorImpl<unsigned> &RegList = getRegList();
   2863     for (SmallVectorImpl<unsigned>::const_iterator
   2864            I = RegList.begin(), E = RegList.end(); I != E; ) {
   2865       OS << *I;
   2866       if (++I < E) OS << ", ";
   2867     }
   2868 
   2869     OS << ">";
   2870     break;
   2871   }
   2872   case k_VectorList:
   2873     OS << "<vector_list " << VectorList.Count << " * "
   2874        << VectorList.RegNum << ">";
   2875     break;
   2876   case k_VectorListAllLanes:
   2877     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
   2878        << VectorList.RegNum << ">";
   2879     break;
   2880   case k_VectorListIndexed:
   2881     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
   2882        << VectorList.Count << " * " << VectorList.RegNum << ">";
   2883     break;
   2884   case k_Token:
   2885     OS << "'" << getToken() << "'";
   2886     break;
   2887   case k_VectorIndex:
   2888     OS << "<vectorindex " << getVectorIndex() << ">";
   2889     break;
   2890   }
   2891 }
   2892 
   2893 /// @name Auto-generated Match Functions
   2894 /// {
   2895 
   2896 static unsigned MatchRegisterName(StringRef Name);
   2897 
   2898 /// }
   2899 
   2900 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
   2901                                  SMLoc &StartLoc, SMLoc &EndLoc) {
   2902   const AsmToken &Tok = getParser().getTok();
   2903   StartLoc = Tok.getLoc();
   2904   EndLoc = Tok.getEndLoc();
   2905   RegNo = tryParseRegister();
   2906 
   2907   return (RegNo == (unsigned)-1);
   2908 }
   2909 
   2910 /// Try to parse a register name.  The token must be an Identifier when called,
   2911 /// and if it is a register name the token is eaten and the register number is
   2912 /// returned.  Otherwise return -1.
   2913 ///
   2914 int ARMAsmParser::tryParseRegister() {
   2915   MCAsmParser &Parser = getParser();
   2916   const AsmToken &Tok = Parser.getTok();
   2917   if (Tok.isNot(AsmToken::Identifier)) return -1;
   2918 
   2919   std::string lowerCase = Tok.getString().lower();
   2920   unsigned RegNum = MatchRegisterName(lowerCase);
   2921   if (!RegNum) {
   2922     RegNum = StringSwitch<unsigned>(lowerCase)
   2923       .Case("r13", ARM::SP)
   2924       .Case("r14", ARM::LR)
   2925       .Case("r15", ARM::PC)
   2926       .Case("ip", ARM::R12)
   2927       // Additional register name aliases for 'gas' compatibility.
   2928       .Case("a1", ARM::R0)
   2929       .Case("a2", ARM::R1)
   2930       .Case("a3", ARM::R2)
   2931       .Case("a4", ARM::R3)
   2932       .Case("v1", ARM::R4)
   2933       .Case("v2", ARM::R5)
   2934       .Case("v3", ARM::R6)
   2935       .Case("v4", ARM::R7)
   2936       .Case("v5", ARM::R8)
   2937       .Case("v6", ARM::R9)
   2938       .Case("v7", ARM::R10)
   2939       .Case("v8", ARM::R11)
   2940       .Case("sb", ARM::R9)
   2941       .Case("sl", ARM::R10)
   2942       .Case("fp", ARM::R11)
   2943       .Default(0);
   2944   }
   2945   if (!RegNum) {
   2946     // Check for aliases registered via .req. Canonicalize to lower case.
   2947     // That's more consistent since register names are case insensitive, and
   2948     // it's how the original entry was passed in from MC/MCParser/AsmParser.
   2949     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
   2950     // If no match, return failure.
   2951     if (Entry == RegisterReqs.end())
   2952       return -1;
   2953     Parser.Lex(); // Eat identifier token.
   2954     return Entry->getValue();
   2955   }
   2956 
   2957   // Some FPUs only have 16 D registers, so D16-D31 are invalid
   2958   if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
   2959     return -1;
   2960 
   2961   Parser.Lex(); // Eat identifier token.
   2962 
   2963   return RegNum;
   2964 }
   2965 
   2966 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
   2967 // If a recoverable error occurs, return 1. If an irrecoverable error
   2968 // occurs, return -1. An irrecoverable error is one where tokens have been
   2969 // consumed in the process of trying to parse the shifter (i.e., when it is
   2970 // indeed a shifter operand, but malformed).
   2971 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
   2972   MCAsmParser &Parser = getParser();
   2973   SMLoc S = Parser.getTok().getLoc();
   2974   const AsmToken &Tok = Parser.getTok();
   2975   if (Tok.isNot(AsmToken::Identifier))
   2976     return -1;
   2977 
   2978   std::string lowerCase = Tok.getString().lower();
   2979   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
   2980       .Case("asl", ARM_AM::lsl)
   2981       .Case("lsl", ARM_AM::lsl)
   2982       .Case("lsr", ARM_AM::lsr)
   2983       .Case("asr", ARM_AM::asr)
   2984       .Case("ror", ARM_AM::ror)
   2985       .Case("rrx", ARM_AM::rrx)
   2986       .Default(ARM_AM::no_shift);
   2987 
   2988   if (ShiftTy == ARM_AM::no_shift)
   2989     return 1;
   2990 
   2991   Parser.Lex(); // Eat the operator.
   2992 
   2993   // The source register for the shift has already been added to the
   2994   // operand list, so we need to pop it off and combine it into the shifted
   2995   // register operand instead.
   2996   std::unique_ptr<ARMOperand> PrevOp(
   2997       (ARMOperand *)Operands.pop_back_val().release());
   2998   if (!PrevOp->isReg())
   2999     return Error(PrevOp->getStartLoc(), "shift must be of a register");
   3000   int SrcReg = PrevOp->getReg();
   3001 
   3002   SMLoc EndLoc;
   3003   int64_t Imm = 0;
   3004   int ShiftReg = 0;
   3005   if (ShiftTy == ARM_AM::rrx) {
   3006     // RRX Doesn't have an explicit shift amount. The encoder expects
   3007     // the shift register to be the same as the source register. Seems odd,
   3008     // but OK.
   3009     ShiftReg = SrcReg;
   3010   } else {
   3011     // Figure out if this is shifted by a constant or a register (for non-RRX).
   3012     if (Parser.getTok().is(AsmToken::Hash) ||
   3013         Parser.getTok().is(AsmToken::Dollar)) {
   3014       Parser.Lex(); // Eat hash.
   3015       SMLoc ImmLoc = Parser.getTok().getLoc();
   3016       const MCExpr *ShiftExpr = nullptr;
   3017       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
   3018         Error(ImmLoc, "invalid immediate shift value");
   3019         return -1;
   3020       }
   3021       // The expression must be evaluatable as an immediate.
   3022       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
   3023       if (!CE) {
   3024         Error(ImmLoc, "invalid immediate shift value");
   3025         return -1;
   3026       }
   3027       // Range check the immediate.
   3028       // lsl, ror: 0 <= imm <= 31
   3029       // lsr, asr: 0 <= imm <= 32
   3030       Imm = CE->getValue();
   3031       if (Imm < 0 ||
   3032           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
   3033           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
   3034         Error(ImmLoc, "immediate shift value out of range");
   3035         return -1;
   3036       }
   3037       // shift by zero is a nop. Always send it through as lsl.
   3038       // ('as' compatibility)
   3039       if (Imm == 0)
   3040         ShiftTy = ARM_AM::lsl;
   3041     } else if (Parser.getTok().is(AsmToken::Identifier)) {
   3042       SMLoc L = Parser.getTok().getLoc();
   3043       EndLoc = Parser.getTok().getEndLoc();
   3044       ShiftReg = tryParseRegister();
   3045       if (ShiftReg == -1) {
   3046         Error(L, "expected immediate or register in shift operand");
   3047         return -1;
   3048       }
   3049     } else {
   3050       Error(Parser.getTok().getLoc(),
   3051             "expected immediate or register in shift operand");
   3052       return -1;
   3053     }
   3054   }
   3055 
   3056   if (ShiftReg && ShiftTy != ARM_AM::rrx)
   3057     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
   3058                                                          ShiftReg, Imm,
   3059                                                          S, EndLoc));
   3060   else
   3061     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
   3062                                                           S, EndLoc));
   3063 
   3064   return 0;
   3065 }
   3066 
   3067 
   3068 /// Try to parse a register name.  The token must be an Identifier when called.
   3069 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
   3070 /// if there is a "writeback". 'true' if it's not a register.
   3071 ///
   3072 /// TODO this is likely to change to allow different register types and or to
   3073 /// parse for a specific register type.
   3074 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
   3075   MCAsmParser &Parser = getParser();
   3076   const AsmToken &RegTok = Parser.getTok();
   3077   int RegNo = tryParseRegister();
   3078   if (RegNo == -1)
   3079     return true;
   3080 
   3081   Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
   3082                                            RegTok.getEndLoc()));
   3083 
   3084   const AsmToken &ExclaimTok = Parser.getTok();
   3085   if (ExclaimTok.is(AsmToken::Exclaim)) {
   3086     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
   3087                                                ExclaimTok.getLoc()));
   3088     Parser.Lex(); // Eat exclaim token
   3089     return false;
   3090   }
   3091 
   3092   // Also check for an index operand. This is only legal for vector registers,
   3093   // but that'll get caught OK in operand matching, so we don't need to
   3094   // explicitly filter everything else out here.
   3095   if (Parser.getTok().is(AsmToken::LBrac)) {
   3096     SMLoc SIdx = Parser.getTok().getLoc();
   3097     Parser.Lex(); // Eat left bracket token.
   3098 
   3099     const MCExpr *ImmVal;
   3100     if (getParser().parseExpression(ImmVal))
   3101       return true;
   3102     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
   3103     if (!MCE)
   3104       return TokError("immediate value expected for vector index");
   3105 
   3106     if (Parser.getTok().isNot(AsmToken::RBrac))
   3107       return Error(Parser.getTok().getLoc(), "']' expected");
   3108 
   3109     SMLoc E = Parser.getTok().getEndLoc();
   3110     Parser.Lex(); // Eat right bracket token.
   3111 
   3112     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
   3113                                                      SIdx, E,
   3114                                                      getContext()));
   3115   }
   3116 
   3117   return false;
   3118 }
   3119 
   3120 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
   3121 /// instruction with a symbolic operand name.
   3122 /// We accept "crN" syntax for GAS compatibility.
   3123 /// <operand-name> ::= <prefix><number>
   3124 /// If CoprocOp is 'c', then:
   3125 ///   <prefix> ::= c | cr
   3126 /// If CoprocOp is 'p', then :
   3127 ///   <prefix> ::= p
   3128 /// <number> ::= integer in range [0, 15]
   3129 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
   3130   // Use the same layout as the tablegen'erated register name matcher. Ugly,
   3131   // but efficient.
   3132   if (Name.size() < 2 || Name[0] != CoprocOp)
   3133     return -1;
   3134   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
   3135 
   3136   switch (Name.size()) {
   3137   default: return -1;
   3138   case 1:
   3139     switch (Name[0]) {
   3140     default:  return -1;
   3141     case '0': return 0;
   3142     case '1': return 1;
   3143     case '2': return 2;
   3144     case '3': return 3;
   3145     case '4': return 4;
   3146     case '5': return 5;
   3147     case '6': return 6;
   3148     case '7': return 7;
   3149     case '8': return 8;
   3150     case '9': return 9;
   3151     }
   3152   case 2:
   3153     if (Name[0] != '1')
   3154       return -1;
   3155     switch (Name[1]) {
   3156     default:  return -1;
   3157     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
   3158     // However, old cores (v5/v6) did use them in that way.
   3159     case '0': return 10;
   3160     case '1': return 11;
   3161     case '2': return 12;
   3162     case '3': return 13;
   3163     case '4': return 14;
   3164     case '5': return 15;
   3165     }
   3166   }
   3167 }
   3168 
   3169 /// parseITCondCode - Try to parse a condition code for an IT instruction.
   3170 ARMAsmParser::OperandMatchResultTy
   3171 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
   3172   MCAsmParser &Parser = getParser();
   3173   SMLoc S = Parser.getTok().getLoc();
   3174   const AsmToken &Tok = Parser.getTok();
   3175   if (!Tok.is(AsmToken::Identifier))
   3176     return MatchOperand_NoMatch;
   3177   unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
   3178     .Case("eq", ARMCC::EQ)
   3179     .Case("ne", ARMCC::NE)
   3180     .Case("hs", ARMCC::HS)
   3181     .Case("cs", ARMCC::HS)
   3182     .Case("lo", ARMCC::LO)
   3183     .Case("cc", ARMCC::LO)
   3184     .Case("mi", ARMCC::MI)
   3185     .Case("pl", ARMCC::PL)
   3186     .Case("vs", ARMCC::VS)
   3187     .Case("vc", ARMCC::VC)
   3188     .Case("hi", ARMCC::HI)
   3189     .Case("ls", ARMCC::LS)
   3190     .Case("ge", ARMCC::GE)
   3191     .Case("lt", ARMCC::LT)
   3192     .Case("gt", ARMCC::GT)
   3193     .Case("le", ARMCC::LE)
   3194     .Case("al", ARMCC::AL)
   3195     .Default(~0U);
   3196   if (CC == ~0U)
   3197     return MatchOperand_NoMatch;
   3198   Parser.Lex(); // Eat the token.
   3199 
   3200   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
   3201 
   3202   return MatchOperand_Success;
   3203 }
   3204 
   3205 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
   3206 /// token must be an Identifier when called, and if it is a coprocessor
   3207 /// number, the token is eaten and the operand is added to the operand list.
   3208 ARMAsmParser::OperandMatchResultTy
   3209 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
   3210   MCAsmParser &Parser = getParser();
   3211   SMLoc S = Parser.getTok().getLoc();
   3212   const AsmToken &Tok = Parser.getTok();
   3213   if (Tok.isNot(AsmToken::Identifier))
   3214     return MatchOperand_NoMatch;
   3215 
   3216   int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
   3217   if (Num == -1)
   3218     return MatchOperand_NoMatch;
   3219   // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
   3220   if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
   3221     return MatchOperand_NoMatch;
   3222 
   3223   Parser.Lex(); // Eat identifier token.
   3224   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
   3225   return MatchOperand_Success;
   3226 }
   3227 
   3228 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
   3229 /// token must be an Identifier when called, and if it is a coprocessor
   3230 /// number, the token is eaten and the operand is added to the operand list.
   3231 ARMAsmParser::OperandMatchResultTy
   3232 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
   3233   MCAsmParser &Parser = getParser();
   3234   SMLoc S = Parser.getTok().getLoc();
   3235   const AsmToken &Tok = Parser.getTok();
   3236   if (Tok.isNot(AsmToken::Identifier))
   3237     return MatchOperand_NoMatch;
   3238 
   3239   int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
   3240   if (Reg == -1)
   3241     return MatchOperand_NoMatch;
   3242 
   3243   Parser.Lex(); // Eat identifier token.
   3244   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
   3245   return MatchOperand_Success;
   3246 }
   3247 
   3248 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
   3249 /// coproc_option : '{' imm0_255 '}'
   3250 ARMAsmParser::OperandMatchResultTy
   3251 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
   3252   MCAsmParser &Parser = getParser();
   3253   SMLoc S = Parser.getTok().getLoc();
   3254 
   3255   // If this isn't a '{', this isn't a coprocessor immediate operand.
   3256   if (Parser.getTok().isNot(AsmToken::LCurly))
   3257     return MatchOperand_NoMatch;
   3258   Parser.Lex(); // Eat the '{'
   3259 
   3260   const MCExpr *Expr;
   3261   SMLoc Loc = Parser.getTok().getLoc();
   3262   if (getParser().parseExpression(Expr)) {
   3263     Error(Loc, "illegal expression");
   3264     return MatchOperand_ParseFail;
   3265   }
   3266   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   3267   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
   3268     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
   3269     return MatchOperand_ParseFail;
   3270   }
   3271   int Val = CE->getValue();
   3272 
   3273   // Check for and consume the closing '}'
   3274   if (Parser.getTok().isNot(AsmToken::RCurly))
   3275     return MatchOperand_ParseFail;
   3276   SMLoc E = Parser.getTok().getEndLoc();
   3277   Parser.Lex(); // Eat the '}'
   3278 
   3279   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
   3280   return MatchOperand_Success;
   3281 }
   3282 
   3283 // For register list parsing, we need to map from raw GPR register numbering
   3284 // to the enumeration values. The enumeration values aren't sorted by
   3285 // register number due to our using "sp", "lr" and "pc" as canonical names.
   3286 static unsigned getNextRegister(unsigned Reg) {
   3287   // If this is a GPR, we need to do it manually, otherwise we can rely
   3288   // on the sort ordering of the enumeration since the other reg-classes
   3289   // are sane.
   3290   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3291     return Reg + 1;
   3292   switch(Reg) {
   3293   default: llvm_unreachable("Invalid GPR number!");
   3294   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
   3295   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
   3296   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
   3297   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
   3298   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
   3299   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
   3300   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
   3301   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
   3302   }
   3303 }
   3304 
   3305 // Return the low-subreg of a given Q register.
   3306 static unsigned getDRegFromQReg(unsigned QReg) {
   3307   switch (QReg) {
   3308   default: llvm_unreachable("expected a Q register!");
   3309   case ARM::Q0:  return ARM::D0;
   3310   case ARM::Q1:  return ARM::D2;
   3311   case ARM::Q2:  return ARM::D4;
   3312   case ARM::Q3:  return ARM::D6;
   3313   case ARM::Q4:  return ARM::D8;
   3314   case ARM::Q5:  return ARM::D10;
   3315   case ARM::Q6:  return ARM::D12;
   3316   case ARM::Q7:  return ARM::D14;
   3317   case ARM::Q8:  return ARM::D16;
   3318   case ARM::Q9:  return ARM::D18;
   3319   case ARM::Q10: return ARM::D20;
   3320   case ARM::Q11: return ARM::D22;
   3321   case ARM::Q12: return ARM::D24;
   3322   case ARM::Q13: return ARM::D26;
   3323   case ARM::Q14: return ARM::D28;
   3324   case ARM::Q15: return ARM::D30;
   3325   }
   3326 }
   3327 
   3328 /// Parse a register list.
   3329 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
   3330   MCAsmParser &Parser = getParser();
   3331   assert(Parser.getTok().is(AsmToken::LCurly) &&
   3332          "Token is not a Left Curly Brace");
   3333   SMLoc S = Parser.getTok().getLoc();
   3334   Parser.Lex(); // Eat '{' token.
   3335   SMLoc RegLoc = Parser.getTok().getLoc();
   3336 
   3337   // Check the first register in the list to see what register class
   3338   // this is a list of.
   3339   int Reg = tryParseRegister();
   3340   if (Reg == -1)
   3341     return Error(RegLoc, "register expected");
   3342 
   3343   // The reglist instructions have at most 16 registers, so reserve
   3344   // space for that many.
   3345   int EReg = 0;
   3346   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
   3347 
   3348   // Allow Q regs and just interpret them as the two D sub-registers.
   3349   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3350     Reg = getDRegFromQReg(Reg);
   3351     EReg = MRI->getEncodingValue(Reg);
   3352     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3353     ++Reg;
   3354   }
   3355   const MCRegisterClass *RC;
   3356   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3357     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
   3358   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
   3359     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
   3360   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
   3361     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
   3362   else
   3363     return Error(RegLoc, "invalid register in register list");
   3364 
   3365   // Store the register.
   3366   EReg = MRI->getEncodingValue(Reg);
   3367   Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3368 
   3369   // This starts immediately after the first register token in the list,
   3370   // so we can see either a comma or a minus (range separator) as a legal
   3371   // next token.
   3372   while (Parser.getTok().is(AsmToken::Comma) ||
   3373          Parser.getTok().is(AsmToken::Minus)) {
   3374     if (Parser.getTok().is(AsmToken::Minus)) {
   3375       Parser.Lex(); // Eat the minus.
   3376       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
   3377       int EndReg = tryParseRegister();
   3378       if (EndReg == -1)
   3379         return Error(AfterMinusLoc, "register expected");
   3380       // Allow Q regs and just interpret them as the two D sub-registers.
   3381       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
   3382         EndReg = getDRegFromQReg(EndReg) + 1;
   3383       // If the register is the same as the start reg, there's nothing
   3384       // more to do.
   3385       if (Reg == EndReg)
   3386         continue;
   3387       // The register must be in the same register class as the first.
   3388       if (!RC->contains(EndReg))
   3389         return Error(AfterMinusLoc, "invalid register in register list");
   3390       // Ranges must go from low to high.
   3391       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
   3392         return Error(AfterMinusLoc, "bad range in register list");
   3393 
   3394       // Add all the registers in the range to the register list.
   3395       while (Reg != EndReg) {
   3396         Reg = getNextRegister(Reg);
   3397         EReg = MRI->getEncodingValue(Reg);
   3398         Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3399       }
   3400       continue;
   3401     }
   3402     Parser.Lex(); // Eat the comma.
   3403     RegLoc = Parser.getTok().getLoc();
   3404     int OldReg = Reg;
   3405     const AsmToken RegTok = Parser.getTok();
   3406     Reg = tryParseRegister();
   3407     if (Reg == -1)
   3408       return Error(RegLoc, "register expected");
   3409     // Allow Q regs and just interpret them as the two D sub-registers.
   3410     bool isQReg = false;
   3411     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3412       Reg = getDRegFromQReg(Reg);
   3413       isQReg = true;
   3414     }
   3415     // The register must be in the same register class as the first.
   3416     if (!RC->contains(Reg))
   3417       return Error(RegLoc, "invalid register in register list");
   3418     // List must be monotonically increasing.
   3419     if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
   3420       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3421         Warning(RegLoc, "register list not in ascending order");
   3422       else
   3423         return Error(RegLoc, "register list not in ascending order");
   3424     }
   3425     if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
   3426       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
   3427               ") in register list");
   3428       continue;
   3429     }
   3430     // VFP register lists must also be contiguous.
   3431     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
   3432         Reg != OldReg + 1)
   3433       return Error(RegLoc, "non-contiguous register range");
   3434     EReg = MRI->getEncodingValue(Reg);
   3435     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3436     if (isQReg) {
   3437       EReg = MRI->getEncodingValue(++Reg);
   3438       Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3439     }
   3440   }
   3441 
   3442   if (Parser.getTok().isNot(AsmToken::RCurly))
   3443     return Error(Parser.getTok().getLoc(), "'}' expected");
   3444   SMLoc E = Parser.getTok().getEndLoc();
   3445   Parser.Lex(); // Eat '}' token.
   3446 
   3447   // Push the register list operand.
   3448   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
   3449 
   3450   // The ARM system instruction variants for LDM/STM have a '^' token here.
   3451   if (Parser.getTok().is(AsmToken::Caret)) {
   3452     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
   3453     Parser.Lex(); // Eat '^' token.
   3454   }
   3455 
   3456   return false;
   3457 }
   3458 
   3459 // Helper function to parse the lane index for vector lists.
   3460 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3461 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
   3462   MCAsmParser &Parser = getParser();
   3463   Index = 0; // Always return a defined index value.
   3464   if (Parser.getTok().is(AsmToken::LBrac)) {
   3465     Parser.Lex(); // Eat the '['.
   3466     if (Parser.getTok().is(AsmToken::RBrac)) {
   3467       // "Dn[]" is the 'all lanes' syntax.
   3468       LaneKind = AllLanes;
   3469       EndLoc = Parser.getTok().getEndLoc();
   3470       Parser.Lex(); // Eat the ']'.
   3471       return MatchOperand_Success;
   3472     }
   3473 
   3474     // There's an optional '#' token here. Normally there wouldn't be, but
   3475     // inline assemble puts one in, and it's friendly to accept that.
   3476     if (Parser.getTok().is(AsmToken::Hash))
   3477       Parser.Lex(); // Eat '#' or '$'.
   3478 
   3479     const MCExpr *LaneIndex;
   3480     SMLoc Loc = Parser.getTok().getLoc();
   3481     if (getParser().parseExpression(LaneIndex)) {
   3482       Error(Loc, "illegal expression");
   3483       return MatchOperand_ParseFail;
   3484     }
   3485     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
   3486     if (!CE) {
   3487       Error(Loc, "lane index must be empty or an integer");
   3488       return MatchOperand_ParseFail;
   3489     }
   3490     if (Parser.getTok().isNot(AsmToken::RBrac)) {
   3491       Error(Parser.getTok().getLoc(), "']' expected");
   3492       return MatchOperand_ParseFail;
   3493     }
   3494     EndLoc = Parser.getTok().getEndLoc();
   3495     Parser.Lex(); // Eat the ']'.
   3496     int64_t Val = CE->getValue();
   3497 
   3498     // FIXME: Make this range check context sensitive for .8, .16, .32.
   3499     if (Val < 0 || Val > 7) {
   3500       Error(Parser.getTok().getLoc(), "lane index out of range");
   3501       return MatchOperand_ParseFail;
   3502     }
   3503     Index = Val;
   3504     LaneKind = IndexedLane;
   3505     return MatchOperand_Success;
   3506   }
   3507   LaneKind = NoLanes;
   3508   return MatchOperand_Success;
   3509 }
   3510 
   3511 // parse a vector register list
   3512 ARMAsmParser::OperandMatchResultTy
   3513 ARMAsmParser::parseVectorList(OperandVector &Operands) {
   3514   MCAsmParser &Parser = getParser();
   3515   VectorLaneTy LaneKind;
   3516   unsigned LaneIndex;
   3517   SMLoc S = Parser.getTok().getLoc();
   3518   // As an extension (to match gas), support a plain D register or Q register
   3519   // (without encosing curly braces) as a single or double entry list,
   3520   // respectively.
   3521   if (Parser.getTok().is(AsmToken::Identifier)) {
   3522     SMLoc E = Parser.getTok().getEndLoc();
   3523     int Reg = tryParseRegister();
   3524     if (Reg == -1)
   3525       return MatchOperand_NoMatch;
   3526     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
   3527       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
   3528       if (Res != MatchOperand_Success)
   3529         return Res;
   3530       switch (LaneKind) {
   3531       case NoLanes:
   3532         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
   3533         break;
   3534       case AllLanes:
   3535         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
   3536                                                                 S, E));
   3537         break;
   3538       case IndexedLane:
   3539         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
   3540                                                                LaneIndex,
   3541                                                                false, S, E));
   3542         break;
   3543       }
   3544       return MatchOperand_Success;
   3545     }
   3546     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3547       Reg = getDRegFromQReg(Reg);
   3548       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
   3549       if (Res != MatchOperand_Success)
   3550         return Res;
   3551       switch (LaneKind) {
   3552       case NoLanes:
   3553         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
   3554                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
   3555         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
   3556         break;
   3557       case AllLanes:
   3558         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
   3559                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
   3560         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
   3561                                                                 S, E));
   3562         break;
   3563       case IndexedLane:
   3564         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
   3565                                                                LaneIndex,
   3566                                                                false, S, E));
   3567         break;
   3568       }
   3569       return MatchOperand_Success;
   3570     }
   3571     Error(S, "vector register expected");
   3572     return MatchOperand_ParseFail;
   3573   }
   3574 
   3575   if (Parser.getTok().isNot(AsmToken::LCurly))
   3576     return MatchOperand_NoMatch;
   3577 
   3578   Parser.Lex(); // Eat '{' token.
   3579   SMLoc RegLoc = Parser.getTok().getLoc();
   3580 
   3581   int Reg = tryParseRegister();
   3582   if (Reg == -1) {
   3583     Error(RegLoc, "register expected");
   3584     return MatchOperand_ParseFail;
   3585   }
   3586   unsigned Count = 1;
   3587   int Spacing = 0;
   3588   unsigned FirstReg = Reg;
   3589   // The list is of D registers, but we also allow Q regs and just interpret
   3590   // them as the two D sub-registers.
   3591   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3592     FirstReg = Reg = getDRegFromQReg(Reg);
   3593     Spacing = 1; // double-spacing requires explicit D registers, otherwise
   3594                  // it's ambiguous with four-register single spaced.
   3595     ++Reg;
   3596     ++Count;
   3597   }
   3598 
   3599   SMLoc E;
   3600   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
   3601     return MatchOperand_ParseFail;
   3602 
   3603   while (Parser.getTok().is(AsmToken::Comma) ||
   3604          Parser.getTok().is(AsmToken::Minus)) {
   3605     if (Parser.getTok().is(AsmToken::Minus)) {
   3606       if (!Spacing)
   3607         Spacing = 1; // Register range implies a single spaced list.
   3608       else if (Spacing == 2) {
   3609         Error(Parser.getTok().getLoc(),
   3610               "sequential registers in double spaced list");
   3611         return MatchOperand_ParseFail;
   3612       }
   3613       Parser.Lex(); // Eat the minus.
   3614       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
   3615       int EndReg = tryParseRegister();
   3616       if (EndReg == -1) {
   3617         Error(AfterMinusLoc, "register expected");
   3618         return MatchOperand_ParseFail;
   3619       }
   3620       // Allow Q regs and just interpret them as the two D sub-registers.
   3621       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
   3622         EndReg = getDRegFromQReg(EndReg) + 1;
   3623       // If the register is the same as the start reg, there's nothing
   3624       // more to do.
   3625       if (Reg == EndReg)
   3626         continue;
   3627       // The register must be in the same register class as the first.
   3628       if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
   3629         Error(AfterMinusLoc, "invalid register in register list");
   3630         return MatchOperand_ParseFail;
   3631       }
   3632       // Ranges must go from low to high.
   3633       if (Reg > EndReg) {
   3634         Error(AfterMinusLoc, "bad range in register list");
   3635         return MatchOperand_ParseFail;
   3636       }
   3637       // Parse the lane specifier if present.
   3638       VectorLaneTy NextLaneKind;
   3639       unsigned NextLaneIndex;
   3640       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
   3641           MatchOperand_Success)
   3642         return MatchOperand_ParseFail;
   3643       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3644         Error(AfterMinusLoc, "mismatched lane index in register list");
   3645         return MatchOperand_ParseFail;
   3646       }
   3647 
   3648       // Add all the registers in the range to the register list.
   3649       Count += EndReg - Reg;
   3650       Reg = EndReg;
   3651       continue;
   3652     }
   3653     Parser.Lex(); // Eat the comma.
   3654     RegLoc = Parser.getTok().getLoc();
   3655     int OldReg = Reg;
   3656     Reg = tryParseRegister();
   3657     if (Reg == -1) {
   3658       Error(RegLoc, "register expected");
   3659       return MatchOperand_ParseFail;
   3660     }
   3661     // vector register lists must be contiguous.
   3662     // It's OK to use the enumeration values directly here rather, as the
   3663     // VFP register classes have the enum sorted properly.
   3664     //
   3665     // The list is of D registers, but we also allow Q regs and just interpret
   3666     // them as the two D sub-registers.
   3667     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3668       if (!Spacing)
   3669         Spacing = 1; // Register range implies a single spaced list.
   3670       else if (Spacing == 2) {
   3671         Error(RegLoc,
   3672               "invalid register in double-spaced list (must be 'D' register')");
   3673         return MatchOperand_ParseFail;
   3674       }
   3675       Reg = getDRegFromQReg(Reg);
   3676       if (Reg != OldReg + 1) {
   3677         Error(RegLoc, "non-contiguous register range");
   3678         return MatchOperand_ParseFail;
   3679       }
   3680       ++Reg;
   3681       Count += 2;
   3682       // Parse the lane specifier if present.
   3683       VectorLaneTy NextLaneKind;
   3684       unsigned NextLaneIndex;
   3685       SMLoc LaneLoc = Parser.getTok().getLoc();
   3686       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
   3687           MatchOperand_Success)
   3688         return MatchOperand_ParseFail;
   3689       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3690         Error(LaneLoc, "mismatched lane index in register list");
   3691         return MatchOperand_ParseFail;
   3692       }
   3693       continue;
   3694     }
   3695     // Normal D register.
   3696     // Figure out the register spacing (single or double) of the list if
   3697     // we don't know it already.
   3698     if (!Spacing)
   3699       Spacing = 1 + (Reg == OldReg + 2);
   3700 
   3701     // Just check that it's contiguous and keep going.
   3702     if (Reg != OldReg + Spacing) {
   3703       Error(RegLoc, "non-contiguous register range");
   3704       return MatchOperand_ParseFail;
   3705     }
   3706     ++Count;
   3707     // Parse the lane specifier if present.
   3708     VectorLaneTy NextLaneKind;
   3709     unsigned NextLaneIndex;
   3710     SMLoc EndLoc = Parser.getTok().getLoc();
   3711     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
   3712       return MatchOperand_ParseFail;
   3713     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3714       Error(EndLoc, "mismatched lane index in register list");
   3715       return MatchOperand_ParseFail;
   3716     }
   3717   }
   3718 
   3719   if (Parser.getTok().isNot(AsmToken::RCurly)) {
   3720     Error(Parser.getTok().getLoc(), "'}' expected");
   3721     return MatchOperand_ParseFail;
   3722   }
   3723   E = Parser.getTok().getEndLoc();
   3724   Parser.Lex(); // Eat '}' token.
   3725 
   3726   switch (LaneKind) {
   3727   case NoLanes:
   3728     // Two-register operands have been converted to the
   3729     // composite register classes.
   3730     if (Count == 2) {
   3731       const MCRegisterClass *RC = (Spacing == 1) ?
   3732         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
   3733         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
   3734       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
   3735     }
   3736 
   3737     Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
   3738                                                     (Spacing == 2), S, E));
   3739     break;
   3740   case AllLanes:
   3741     // Two-register operands have been converted to the
   3742     // composite register classes.
   3743     if (Count == 2) {
   3744       const MCRegisterClass *RC = (Spacing == 1) ?
   3745         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
   3746         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
   3747       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
   3748     }
   3749     Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
   3750                                                             (Spacing == 2),
   3751                                                             S, E));
   3752     break;
   3753   case IndexedLane:
   3754     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
   3755                                                            LaneIndex,
   3756                                                            (Spacing == 2),
   3757                                                            S, E));
   3758     break;
   3759   }
   3760   return MatchOperand_Success;
   3761 }
   3762 
   3763 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
   3764 ARMAsmParser::OperandMatchResultTy
   3765 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
   3766   MCAsmParser &Parser = getParser();
   3767   SMLoc S = Parser.getTok().getLoc();
   3768   const AsmToken &Tok = Parser.getTok();
   3769   unsigned Opt;
   3770 
   3771   if (Tok.is(AsmToken::Identifier)) {
   3772     StringRef OptStr = Tok.getString();
   3773 
   3774     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
   3775       .Case("sy",    ARM_MB::SY)
   3776       .Case("st",    ARM_MB::ST)
   3777       .Case("ld",    ARM_MB::LD)
   3778       .Case("sh",    ARM_MB::ISH)
   3779       .Case("ish",   ARM_MB::ISH)
   3780       .Case("shst",  ARM_MB::ISHST)
   3781       .Case("ishst", ARM_MB::ISHST)
   3782       .Case("ishld", ARM_MB::ISHLD)
   3783       .Case("nsh",   ARM_MB::NSH)
   3784       .Case("un",    ARM_MB::NSH)
   3785       .Case("nshst", ARM_MB::NSHST)
   3786       .Case("nshld", ARM_MB::NSHLD)
   3787       .Case("unst",  ARM_MB::NSHST)
   3788       .Case("osh",   ARM_MB::OSH)
   3789       .Case("oshst", ARM_MB::OSHST)
   3790       .Case("oshld", ARM_MB::OSHLD)
   3791       .Default(~0U);
   3792 
   3793     // ishld, oshld, nshld and ld are only available from ARMv8.
   3794     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
   3795                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
   3796       Opt = ~0U;
   3797 
   3798     if (Opt == ~0U)
   3799       return MatchOperand_NoMatch;
   3800 
   3801     Parser.Lex(); // Eat identifier token.
   3802   } else if (Tok.is(AsmToken::Hash) ||
   3803              Tok.is(AsmToken::Dollar) ||
   3804              Tok.is(AsmToken::Integer)) {
   3805     if (Parser.getTok().isNot(AsmToken::Integer))
   3806       Parser.Lex(); // Eat '#' or '$'.
   3807     SMLoc Loc = Parser.getTok().getLoc();
   3808 
   3809     const MCExpr *MemBarrierID;
   3810     if (getParser().parseExpression(MemBarrierID)) {
   3811       Error(Loc, "illegal expression");
   3812       return MatchOperand_ParseFail;
   3813     }
   3814 
   3815     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
   3816     if (!CE) {
   3817       Error(Loc, "constant expression expected");
   3818       return MatchOperand_ParseFail;
   3819     }
   3820 
   3821     int Val = CE->getValue();
   3822     if (Val & ~0xf) {
   3823       Error(Loc, "immediate value out of range");
   3824       return MatchOperand_ParseFail;
   3825     }
   3826 
   3827     Opt = ARM_MB::RESERVED_0 + Val;
   3828   } else
   3829     return MatchOperand_ParseFail;
   3830 
   3831   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
   3832   return MatchOperand_Success;
   3833 }
   3834 
   3835 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
   3836 ARMAsmParser::OperandMatchResultTy
   3837 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
   3838   MCAsmParser &Parser = getParser();
   3839   SMLoc S = Parser.getTok().getLoc();
   3840   const AsmToken &Tok = Parser.getTok();
   3841   unsigned Opt;
   3842 
   3843   if (Tok.is(AsmToken::Identifier)) {
   3844     StringRef OptStr = Tok.getString();
   3845 
   3846     if (OptStr.equals_lower("sy"))
   3847       Opt = ARM_ISB::SY;
   3848     else
   3849       return MatchOperand_NoMatch;
   3850 
   3851     Parser.Lex(); // Eat identifier token.
   3852   } else if (Tok.is(AsmToken::Hash) ||
   3853              Tok.is(AsmToken::Dollar) ||
   3854              Tok.is(AsmToken::Integer)) {
   3855     if (Parser.getTok().isNot(AsmToken::Integer))
   3856       Parser.Lex(); // Eat '#' or '$'.
   3857     SMLoc Loc = Parser.getTok().getLoc();
   3858 
   3859     const MCExpr *ISBarrierID;
   3860     if (getParser().parseExpression(ISBarrierID)) {
   3861       Error(Loc, "illegal expression");
   3862       return MatchOperand_ParseFail;
   3863     }
   3864 
   3865     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
   3866     if (!CE) {
   3867       Error(Loc, "constant expression expected");
   3868       return MatchOperand_ParseFail;
   3869     }
   3870 
   3871     int Val = CE->getValue();
   3872     if (Val & ~0xf) {
   3873       Error(Loc, "immediate value out of range");
   3874       return MatchOperand_ParseFail;
   3875     }
   3876 
   3877     Opt = ARM_ISB::RESERVED_0 + Val;
   3878   } else
   3879     return MatchOperand_ParseFail;
   3880 
   3881   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
   3882           (ARM_ISB::InstSyncBOpt)Opt, S));
   3883   return MatchOperand_Success;
   3884 }
   3885 
   3886 
   3887 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
   3888 ARMAsmParser::OperandMatchResultTy
   3889 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
   3890   MCAsmParser &Parser = getParser();
   3891   SMLoc S = Parser.getTok().getLoc();
   3892   const AsmToken &Tok = Parser.getTok();
   3893   if (!Tok.is(AsmToken::Identifier))
   3894     return MatchOperand_NoMatch;
   3895   StringRef IFlagsStr = Tok.getString();
   3896 
   3897   // An iflags string of "none" is interpreted to mean that none of the AIF
   3898   // bits are set.  Not a terribly useful instruction, but a valid encoding.
   3899   unsigned IFlags = 0;
   3900   if (IFlagsStr != "none") {
   3901         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
   3902       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
   3903         .Case("a", ARM_PROC::A)
   3904         .Case("i", ARM_PROC::I)
   3905         .Case("f", ARM_PROC::F)
   3906         .Default(~0U);
   3907 
   3908       // If some specific iflag is already set, it means that some letter is
   3909       // present more than once, this is not acceptable.
   3910       if (Flag == ~0U || (IFlags & Flag))
   3911         return MatchOperand_NoMatch;
   3912 
   3913       IFlags |= Flag;
   3914     }
   3915   }
   3916 
   3917   Parser.Lex(); // Eat identifier token.
   3918   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
   3919   return MatchOperand_Success;
   3920 }
   3921 
   3922 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
   3923 ARMAsmParser::OperandMatchResultTy
   3924 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
   3925   MCAsmParser &Parser = getParser();
   3926   SMLoc S = Parser.getTok().getLoc();
   3927   const AsmToken &Tok = Parser.getTok();
   3928   if (!Tok.is(AsmToken::Identifier))
   3929     return MatchOperand_NoMatch;
   3930   StringRef Mask = Tok.getString();
   3931 
   3932   if (isMClass()) {
   3933     // See ARMv6-M 10.1.1
   3934     std::string Name = Mask.lower();
   3935     unsigned FlagsVal = StringSwitch<unsigned>(Name)
   3936       // Note: in the documentation:
   3937       //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
   3938       //  for MSR APSR_nzcvq.
   3939       // but we do make it an alias here.  This is so to get the "mask encoding"
   3940       // bits correct on MSR APSR writes.
   3941       //
   3942       // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
   3943       // should really only be allowed when writing a special register.  Note
   3944       // they get dropped in the MRS instruction reading a special register as
   3945       // the SYSm field is only 8 bits.
   3946       .Case("apsr", 0x800)
   3947       .Case("apsr_nzcvq", 0x800)
   3948       .Case("apsr_g", 0x400)
   3949       .Case("apsr_nzcvqg", 0xc00)
   3950       .Case("iapsr", 0x801)
   3951       .Case("iapsr_nzcvq", 0x801)
   3952       .Case("iapsr_g", 0x401)
   3953       .Case("iapsr_nzcvqg", 0xc01)
   3954       .Case("eapsr", 0x802)
   3955       .Case("eapsr_nzcvq", 0x802)
   3956       .Case("eapsr_g", 0x402)
   3957       .Case("eapsr_nzcvqg", 0xc02)
   3958       .Case("xpsr", 0x803)
   3959       .Case("xpsr_nzcvq", 0x803)
   3960       .Case("xpsr_g", 0x403)
   3961       .Case("xpsr_nzcvqg", 0xc03)
   3962       .Case("ipsr", 0x805)
   3963       .Case("epsr", 0x806)
   3964       .Case("iepsr", 0x807)
   3965       .Case("msp", 0x808)
   3966       .Case("psp", 0x809)
   3967       .Case("primask", 0x810)
   3968       .Case("basepri", 0x811)
   3969       .Case("basepri_max", 0x812)
   3970       .Case("faultmask", 0x813)
   3971       .Case("control", 0x814)
   3972       .Default(~0U);
   3973 
   3974     if (FlagsVal == ~0U)
   3975       return MatchOperand_NoMatch;
   3976 
   3977     if (!hasDSP() && (FlagsVal & 0x400))
   3978       // The _g and _nzcvqg versions are only valid if the DSP extension is
   3979       // available.
   3980       return MatchOperand_NoMatch;
   3981 
   3982     if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
   3983       // basepri, basepri_max and faultmask only valid for V7m.
   3984       return MatchOperand_NoMatch;
   3985 
   3986     Parser.Lex(); // Eat identifier token.
   3987     Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
   3988     return MatchOperand_Success;
   3989   }
   3990 
   3991   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
   3992   size_t Start = 0, Next = Mask.find('_');
   3993   StringRef Flags = "";
   3994   std::string SpecReg = Mask.slice(Start, Next).lower();
   3995   if (Next != StringRef::npos)
   3996     Flags = Mask.slice(Next+1, Mask.size());
   3997 
   3998   // FlagsVal contains the complete mask:
   3999   // 3-0: Mask
   4000   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
   4001   unsigned FlagsVal = 0;
   4002 
   4003   if (SpecReg == "apsr") {
   4004     FlagsVal = StringSwitch<unsigned>(Flags)
   4005     .Case("nzcvq",  0x8) // same as CPSR_f
   4006     .Case("g",      0x4) // same as CPSR_s
   4007     .Case("nzcvqg", 0xc) // same as CPSR_fs
   4008     .Default(~0U);
   4009 
   4010     if (FlagsVal == ~0U) {
   4011       if (!Flags.empty())
   4012         return MatchOperand_NoMatch;
   4013       else
   4014         FlagsVal = 8; // No flag
   4015     }
   4016   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
   4017     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
   4018     if (Flags == "all" || Flags == "")
   4019       Flags = "fc";
   4020     for (int i = 0, e = Flags.size(); i != e; ++i) {
   4021       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
   4022       .Case("c", 1)
   4023       .Case("x", 2)
   4024       .Case("s", 4)
   4025       .Case("f", 8)
   4026       .Default(~0U);
   4027 
   4028       // If some specific flag is already set, it means that some letter is
   4029       // present more than once, this is not acceptable.
   4030       if (FlagsVal == ~0U || (FlagsVal & Flag))
   4031         return MatchOperand_NoMatch;
   4032       FlagsVal |= Flag;
   4033     }
   4034   } else // No match for special register.
   4035     return MatchOperand_NoMatch;
   4036 
   4037   // Special register without flags is NOT equivalent to "fc" flags.
   4038   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
   4039   // two lines would enable gas compatibility at the expense of breaking
   4040   // round-tripping.
   4041   //
   4042   // if (!FlagsVal)
   4043   //  FlagsVal = 0x9;
   4044 
   4045   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
   4046   if (SpecReg == "spsr")
   4047     FlagsVal |= 16;
   4048 
   4049   Parser.Lex(); // Eat identifier token.
   4050   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
   4051   return MatchOperand_Success;
   4052 }
   4053 
   4054 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
   4055 /// use in the MRS/MSR instructions added to support virtualization.
   4056 ARMAsmParser::OperandMatchResultTy
   4057 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
   4058   MCAsmParser &Parser = getParser();
   4059   SMLoc S = Parser.getTok().getLoc();
   4060   const AsmToken &Tok = Parser.getTok();
   4061   if (!Tok.is(AsmToken::Identifier))
   4062     return MatchOperand_NoMatch;
   4063   StringRef RegName = Tok.getString();
   4064 
   4065   // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM
   4066   // and bit 5 is R.
   4067   unsigned Encoding = StringSwitch<unsigned>(RegName.lower())
   4068                           .Case("r8_usr", 0x00)
   4069                           .Case("r9_usr", 0x01)
   4070                           .Case("r10_usr", 0x02)
   4071                           .Case("r11_usr", 0x03)
   4072                           .Case("r12_usr", 0x04)
   4073                           .Case("sp_usr", 0x05)
   4074                           .Case("lr_usr", 0x06)
   4075                           .Case("r8_fiq", 0x08)
   4076                           .Case("r9_fiq", 0x09)
   4077                           .Case("r10_fiq", 0x0a)
   4078                           .Case("r11_fiq", 0x0b)
   4079                           .Case("r12_fiq", 0x0c)
   4080                           .Case("sp_fiq", 0x0d)
   4081                           .Case("lr_fiq", 0x0e)
   4082                           .Case("lr_irq", 0x10)
   4083                           .Case("sp_irq", 0x11)
   4084                           .Case("lr_svc", 0x12)
   4085                           .Case("sp_svc", 0x13)
   4086                           .Case("lr_abt", 0x14)
   4087                           .Case("sp_abt", 0x15)
   4088                           .Case("lr_und", 0x16)
   4089                           .Case("sp_und", 0x17)
   4090                           .Case("lr_mon", 0x1c)
   4091                           .Case("sp_mon", 0x1d)
   4092                           .Case("elr_hyp", 0x1e)
   4093                           .Case("sp_hyp", 0x1f)
   4094                           .Case("spsr_fiq", 0x2e)
   4095                           .Case("spsr_irq", 0x30)
   4096                           .Case("spsr_svc", 0x32)
   4097                           .Case("spsr_abt", 0x34)
   4098                           .Case("spsr_und", 0x36)
   4099                           .Case("spsr_mon", 0x3c)
   4100                           .Case("spsr_hyp", 0x3e)
   4101                           .Default(~0U);
   4102 
   4103   if (Encoding == ~0U)
   4104     return MatchOperand_NoMatch;
   4105 
   4106   Parser.Lex(); // Eat identifier token.
   4107   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
   4108   return MatchOperand_Success;
   4109 }
   4110 
   4111 ARMAsmParser::OperandMatchResultTy
   4112 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
   4113                           int High) {
   4114   MCAsmParser &Parser = getParser();
   4115   const AsmToken &Tok = Parser.getTok();
   4116   if (Tok.isNot(AsmToken::Identifier)) {
   4117     Error(Parser.getTok().getLoc(), Op + " operand expected.");
   4118     return MatchOperand_ParseFail;
   4119   }
   4120   StringRef ShiftName = Tok.getString();
   4121   std::string LowerOp = Op.lower();
   4122   std::string UpperOp = Op.upper();
   4123   if (ShiftName != LowerOp && ShiftName != UpperOp) {
   4124     Error(Parser.getTok().getLoc(), Op + " operand expected.");
   4125     return MatchOperand_ParseFail;
   4126   }
   4127   Parser.Lex(); // Eat shift type token.
   4128 
   4129   // There must be a '#' and a shift amount.
   4130   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4131       Parser.getTok().isNot(AsmToken::Dollar)) {
   4132     Error(Parser.getTok().getLoc(), "'#' expected");
   4133     return MatchOperand_ParseFail;
   4134   }
   4135   Parser.Lex(); // Eat hash token.
   4136 
   4137   const MCExpr *ShiftAmount;
   4138   SMLoc Loc = Parser.getTok().getLoc();
   4139   SMLoc EndLoc;
   4140   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   4141     Error(Loc, "illegal expression");
   4142     return MatchOperand_ParseFail;
   4143   }
   4144   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   4145   if (!CE) {
   4146     Error(Loc, "constant expression expected");
   4147     return MatchOperand_ParseFail;
   4148   }
   4149   int Val = CE->getValue();
   4150   if (Val < Low || Val > High) {
   4151     Error(Loc, "immediate value out of range");
   4152     return MatchOperand_ParseFail;
   4153   }
   4154 
   4155   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
   4156 
   4157   return MatchOperand_Success;
   4158 }
   4159 
   4160 ARMAsmParser::OperandMatchResultTy
   4161 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
   4162   MCAsmParser &Parser = getParser();
   4163   const AsmToken &Tok = Parser.getTok();
   4164   SMLoc S = Tok.getLoc();
   4165   if (Tok.isNot(AsmToken::Identifier)) {
   4166     Error(S, "'be' or 'le' operand expected");
   4167     return MatchOperand_ParseFail;
   4168   }
   4169   int Val = StringSwitch<int>(Tok.getString().lower())
   4170     .Case("be", 1)
   4171     .Case("le", 0)
   4172     .Default(-1);
   4173   Parser.Lex(); // Eat the token.
   4174 
   4175   if (Val == -1) {
   4176     Error(S, "'be' or 'le' operand expected");
   4177     return MatchOperand_ParseFail;
   4178   }
   4179   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
   4180                                                                   getContext()),
   4181                                            S, Tok.getEndLoc()));
   4182   return MatchOperand_Success;
   4183 }
   4184 
   4185 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
   4186 /// instructions. Legal values are:
   4187 ///     lsl #n  'n' in [0,31]
   4188 ///     asr #n  'n' in [1,32]
   4189 ///             n == 32 encoded as n == 0.
   4190 ARMAsmParser::OperandMatchResultTy
   4191 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
   4192   MCAsmParser &Parser = getParser();
   4193   const AsmToken &Tok = Parser.getTok();
   4194   SMLoc S = Tok.getLoc();
   4195   if (Tok.isNot(AsmToken::Identifier)) {
   4196     Error(S, "shift operator 'asr' or 'lsl' expected");
   4197     return MatchOperand_ParseFail;
   4198   }
   4199   StringRef ShiftName = Tok.getString();
   4200   bool isASR;
   4201   if (ShiftName == "lsl" || ShiftName == "LSL")
   4202     isASR = false;
   4203   else if (ShiftName == "asr" || ShiftName == "ASR")
   4204     isASR = true;
   4205   else {
   4206     Error(S, "shift operator 'asr' or 'lsl' expected");
   4207     return MatchOperand_ParseFail;
   4208   }
   4209   Parser.Lex(); // Eat the operator.
   4210 
   4211   // A '#' and a shift amount.
   4212   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4213       Parser.getTok().isNot(AsmToken::Dollar)) {
   4214     Error(Parser.getTok().getLoc(), "'#' expected");
   4215     return MatchOperand_ParseFail;
   4216   }
   4217   Parser.Lex(); // Eat hash token.
   4218   SMLoc ExLoc = Parser.getTok().getLoc();
   4219 
   4220   const MCExpr *ShiftAmount;
   4221   SMLoc EndLoc;
   4222   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   4223     Error(ExLoc, "malformed shift expression");
   4224     return MatchOperand_ParseFail;
   4225   }
   4226   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   4227   if (!CE) {
   4228     Error(ExLoc, "shift amount must be an immediate");
   4229     return MatchOperand_ParseFail;
   4230   }
   4231 
   4232   int64_t Val = CE->getValue();
   4233   if (isASR) {
   4234     // Shift amount must be in [1,32]
   4235     if (Val < 1 || Val > 32) {
   4236       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
   4237       return MatchOperand_ParseFail;
   4238     }
   4239     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
   4240     if (isThumb() && Val == 32) {
   4241       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
   4242       return MatchOperand_ParseFail;
   4243     }
   4244     if (Val == 32) Val = 0;
   4245   } else {
   4246     // Shift amount must be in [1,32]
   4247     if (Val < 0 || Val > 31) {
   4248       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
   4249       return MatchOperand_ParseFail;
   4250     }
   4251   }
   4252 
   4253   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
   4254 
   4255   return MatchOperand_Success;
   4256 }
   4257 
   4258 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
   4259 /// of instructions. Legal values are:
   4260 ///     ror #n  'n' in {0, 8, 16, 24}
   4261 ARMAsmParser::OperandMatchResultTy
   4262 ARMAsmParser::parseRotImm(OperandVector &Operands) {
   4263   MCAsmParser &Parser = getParser();
   4264   const AsmToken &Tok = Parser.getTok();
   4265   SMLoc S = Tok.getLoc();
   4266   if (Tok.isNot(AsmToken::Identifier))
   4267     return MatchOperand_NoMatch;
   4268   StringRef ShiftName = Tok.getString();
   4269   if (ShiftName != "ror" && ShiftName != "ROR")
   4270     return MatchOperand_NoMatch;
   4271   Parser.Lex(); // Eat the operator.
   4272 
   4273   // A '#' and a rotate amount.
   4274   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4275       Parser.getTok().isNot(AsmToken::Dollar)) {
   4276     Error(Parser.getTok().getLoc(), "'#' expected");
   4277     return MatchOperand_ParseFail;
   4278   }
   4279   Parser.Lex(); // Eat hash token.
   4280   SMLoc ExLoc = Parser.getTok().getLoc();
   4281 
   4282   const MCExpr *ShiftAmount;
   4283   SMLoc EndLoc;
   4284   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   4285     Error(ExLoc, "malformed rotate expression");
   4286     return MatchOperand_ParseFail;
   4287   }
   4288   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   4289   if (!CE) {
   4290     Error(ExLoc, "rotate amount must be an immediate");
   4291     return MatchOperand_ParseFail;
   4292   }
   4293 
   4294   int64_t Val = CE->getValue();
   4295   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
   4296   // normally, zero is represented in asm by omitting the rotate operand
   4297   // entirely.
   4298   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
   4299     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
   4300     return MatchOperand_ParseFail;
   4301   }
   4302 
   4303   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
   4304 
   4305   return MatchOperand_Success;
   4306 }
   4307 
   4308 ARMAsmParser::OperandMatchResultTy
   4309 ARMAsmParser::parseModImm(OperandVector &Operands) {
   4310   MCAsmParser &Parser = getParser();
   4311   MCAsmLexer &Lexer = getLexer();
   4312   int64_t Imm1, Imm2;
   4313 
   4314   SMLoc S = Parser.getTok().getLoc();
   4315 
   4316   // 1) A mod_imm operand can appear in the place of a register name:
   4317   //   add r0, #mod_imm
   4318   //   add r0, r0, #mod_imm
   4319   // to correctly handle the latter, we bail out as soon as we see an
   4320   // identifier.
   4321   //
   4322   // 2) Similarly, we do not want to parse into complex operands:
   4323   //   mov r0, #mod_imm
   4324   //   mov r0, :lower16:(_foo)
   4325   if (Parser.getTok().is(AsmToken::Identifier) ||
   4326       Parser.getTok().is(AsmToken::Colon))
   4327     return MatchOperand_NoMatch;
   4328 
   4329   // Hash (dollar) is optional as per the ARMARM
   4330   if (Parser.getTok().is(AsmToken::Hash) ||
   4331       Parser.getTok().is(AsmToken::Dollar)) {
   4332     // Avoid parsing into complex operands (#:)
   4333     if (Lexer.peekTok().is(AsmToken::Colon))
   4334       return MatchOperand_NoMatch;
   4335 
   4336     // Eat the hash (dollar)
   4337     Parser.Lex();
   4338   }
   4339 
   4340   SMLoc Sx1, Ex1;
   4341   Sx1 = Parser.getTok().getLoc();
   4342   const MCExpr *Imm1Exp;
   4343   if (getParser().parseExpression(Imm1Exp, Ex1)) {
   4344     Error(Sx1, "malformed expression");
   4345     return MatchOperand_ParseFail;
   4346   }
   4347 
   4348   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
   4349 
   4350   if (CE) {
   4351     // Immediate must fit within 32-bits
   4352     Imm1 = CE->getValue();
   4353     int Enc = ARM_AM::getSOImmVal(Imm1);
   4354     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
   4355       // We have a match!
   4356       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
   4357                                                   (Enc & 0xF00) >> 7,
   4358                                                   Sx1, Ex1));
   4359       return MatchOperand_Success;
   4360     }
   4361 
   4362     // We have parsed an immediate which is not for us, fallback to a plain
   4363     // immediate. This can happen for instruction aliases. For an example,
   4364     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
   4365     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
   4366     // instruction with a mod_imm operand. The alias is defined such that the
   4367     // parser method is shared, that's why we have to do this here.
   4368     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
   4369       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
   4370       return MatchOperand_Success;
   4371     }
   4372   } else {
   4373     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
   4374     // MCFixup). Fallback to a plain immediate.
   4375     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
   4376     return MatchOperand_Success;
   4377   }
   4378 
   4379   // From this point onward, we expect the input to be a (#bits, #rot) pair
   4380   if (Parser.getTok().isNot(AsmToken::Comma)) {
   4381     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
   4382     return MatchOperand_ParseFail;
   4383   }
   4384 
   4385   if (Imm1 & ~0xFF) {
   4386     Error(Sx1, "immediate operand must a number in the range [0, 255]");
   4387     return MatchOperand_ParseFail;
   4388   }
   4389 
   4390   // Eat the comma
   4391   Parser.Lex();
   4392 
   4393   // Repeat for #rot
   4394   SMLoc Sx2, Ex2;
   4395   Sx2 = Parser.getTok().getLoc();
   4396 
   4397   // Eat the optional hash (dollar)
   4398   if (Parser.getTok().is(AsmToken::Hash) ||
   4399       Parser.getTok().is(AsmToken::Dollar))
   4400     Parser.Lex();
   4401 
   4402   const MCExpr *Imm2Exp;
   4403   if (getParser().parseExpression(Imm2Exp, Ex2)) {
   4404     Error(Sx2, "malformed expression");
   4405     return MatchOperand_ParseFail;
   4406   }
   4407 
   4408   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
   4409 
   4410   if (CE) {
   4411     Imm2 = CE->getValue();
   4412     if (!(Imm2 & ~0x1E)) {
   4413       // We have a match!
   4414       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
   4415       return MatchOperand_Success;
   4416     }
   4417     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
   4418     return MatchOperand_ParseFail;
   4419   } else {
   4420     Error(Sx2, "constant expression expected");
   4421     return MatchOperand_ParseFail;
   4422   }
   4423 }
   4424 
   4425 ARMAsmParser::OperandMatchResultTy
   4426 ARMAsmParser::parseBitfield(OperandVector &Operands) {
   4427   MCAsmParser &Parser = getParser();
   4428   SMLoc S = Parser.getTok().getLoc();
   4429   // The bitfield descriptor is really two operands, the LSB and the width.
   4430   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4431       Parser.getTok().isNot(AsmToken::Dollar)) {
   4432     Error(Parser.getTok().getLoc(), "'#' expected");
   4433     return MatchOperand_ParseFail;
   4434   }
   4435   Parser.Lex(); // Eat hash token.
   4436 
   4437   const MCExpr *LSBExpr;
   4438   SMLoc E = Parser.getTok().getLoc();
   4439   if (getParser().parseExpression(LSBExpr)) {
   4440     Error(E, "malformed immediate expression");
   4441     return MatchOperand_ParseFail;
   4442   }
   4443   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
   4444   if (!CE) {
   4445     Error(E, "'lsb' operand must be an immediate");
   4446     return MatchOperand_ParseFail;
   4447   }
   4448 
   4449   int64_t LSB = CE->getValue();
   4450   // The LSB must be in the range [0,31]
   4451   if (LSB < 0 || LSB > 31) {
   4452     Error(E, "'lsb' operand must be in the range [0,31]");
   4453     return MatchOperand_ParseFail;
   4454   }
   4455   E = Parser.getTok().getLoc();
   4456 
   4457   // Expect another immediate operand.
   4458   if (Parser.getTok().isNot(AsmToken::Comma)) {
   4459     Error(Parser.getTok().getLoc(), "too few operands");
   4460     return MatchOperand_ParseFail;
   4461   }
   4462   Parser.Lex(); // Eat hash token.
   4463   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4464       Parser.getTok().isNot(AsmToken::Dollar)) {
   4465     Error(Parser.getTok().getLoc(), "'#' expected");
   4466     return MatchOperand_ParseFail;
   4467   }
   4468   Parser.Lex(); // Eat hash token.
   4469 
   4470   const MCExpr *WidthExpr;
   4471   SMLoc EndLoc;
   4472   if (getParser().parseExpression(WidthExpr, EndLoc)) {
   4473     Error(E, "malformed immediate expression");
   4474     return MatchOperand_ParseFail;
   4475   }
   4476   CE = dyn_cast<MCConstantExpr>(WidthExpr);
   4477   if (!CE) {
   4478     Error(E, "'width' operand must be an immediate");
   4479     return MatchOperand_ParseFail;
   4480   }
   4481 
   4482   int64_t Width = CE->getValue();
   4483   // The LSB must be in the range [1,32-lsb]
   4484   if (Width < 1 || Width > 32 - LSB) {
   4485     Error(E, "'width' operand must be in the range [1,32-lsb]");
   4486     return MatchOperand_ParseFail;
   4487   }
   4488 
   4489   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
   4490 
   4491   return MatchOperand_Success;
   4492 }
   4493 
   4494 ARMAsmParser::OperandMatchResultTy
   4495 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
   4496   // Check for a post-index addressing register operand. Specifically:
   4497   // postidx_reg := '+' register {, shift}
   4498   //              | '-' register {, shift}
   4499   //              | register {, shift}
   4500 
   4501   // This method must return MatchOperand_NoMatch without consuming any tokens
   4502   // in the case where there is no match, as other alternatives take other
   4503   // parse methods.
   4504   MCAsmParser &Parser = getParser();
   4505   AsmToken Tok = Parser.getTok();
   4506   SMLoc S = Tok.getLoc();
   4507   bool haveEaten = false;
   4508   bool isAdd = true;
   4509   if (Tok.is(AsmToken::Plus)) {
   4510     Parser.Lex(); // Eat the '+' token.
   4511     haveEaten = true;
   4512   } else if (Tok.is(AsmToken::Minus)) {
   4513     Parser.Lex(); // Eat the '-' token.
   4514     isAdd = false;
   4515     haveEaten = true;
   4516   }
   4517 
   4518   SMLoc E = Parser.getTok().getEndLoc();
   4519   int Reg = tryParseRegister();
   4520   if (Reg == -1) {
   4521     if (!haveEaten)
   4522       return MatchOperand_NoMatch;
   4523     Error(Parser.getTok().getLoc(), "register expected");
   4524     return MatchOperand_ParseFail;
   4525   }
   4526 
   4527   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
   4528   unsigned ShiftImm = 0;
   4529   if (Parser.getTok().is(AsmToken::Comma)) {
   4530     Parser.Lex(); // Eat the ','.
   4531     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
   4532       return MatchOperand_ParseFail;
   4533 
   4534     // FIXME: Only approximates end...may include intervening whitespace.
   4535     E = Parser.getTok().getLoc();
   4536   }
   4537 
   4538   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
   4539                                                   ShiftImm, S, E));
   4540 
   4541   return MatchOperand_Success;
   4542 }
   4543 
   4544 ARMAsmParser::OperandMatchResultTy
   4545 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
   4546   // Check for a post-index addressing register operand. Specifically:
   4547   // am3offset := '+' register
   4548   //              | '-' register
   4549   //              | register
   4550   //              | # imm
   4551   //              | # + imm
   4552   //              | # - imm
   4553 
   4554   // This method must return MatchOperand_NoMatch without consuming any tokens
   4555   // in the case where there is no match, as other alternatives take other
   4556   // parse methods.
   4557   MCAsmParser &Parser = getParser();
   4558   AsmToken Tok = Parser.getTok();
   4559   SMLoc S = Tok.getLoc();
   4560 
   4561   // Do immediates first, as we always parse those if we have a '#'.
   4562   if (Parser.getTok().is(AsmToken::Hash) ||
   4563       Parser.getTok().is(AsmToken::Dollar)) {
   4564     Parser.Lex(); // Eat '#' or '$'.
   4565     // Explicitly look for a '-', as we need to encode negative zero
   4566     // differently.
   4567     bool isNegative = Parser.getTok().is(AsmToken::Minus);
   4568     const MCExpr *Offset;
   4569     SMLoc E;
   4570     if (getParser().parseExpression(Offset, E))
   4571       return MatchOperand_ParseFail;
   4572     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
   4573     if (!CE) {
   4574       Error(S, "constant expression expected");
   4575       return MatchOperand_ParseFail;
   4576     }
   4577     // Negative zero is encoded as the flag value INT32_MIN.
   4578     int32_t Val = CE->getValue();
   4579     if (isNegative && Val == 0)
   4580       Val = INT32_MIN;
   4581 
   4582     Operands.push_back(
   4583       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
   4584 
   4585     return MatchOperand_Success;
   4586   }
   4587 
   4588 
   4589   bool haveEaten = false;
   4590   bool isAdd = true;
   4591   if (Tok.is(AsmToken::Plus)) {
   4592     Parser.Lex(); // Eat the '+' token.
   4593     haveEaten = true;
   4594   } else if (Tok.is(AsmToken::Minus)) {
   4595     Parser.Lex(); // Eat the '-' token.
   4596     isAdd = false;
   4597     haveEaten = true;
   4598   }
   4599 
   4600   Tok = Parser.getTok();
   4601   int Reg = tryParseRegister();
   4602   if (Reg == -1) {
   4603     if (!haveEaten)
   4604       return MatchOperand_NoMatch;
   4605     Error(Tok.getLoc(), "register expected");
   4606     return MatchOperand_ParseFail;
   4607   }
   4608 
   4609   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
   4610                                                   0, S, Tok.getEndLoc()));
   4611 
   4612   return MatchOperand_Success;
   4613 }
   4614 
   4615 /// Convert parsed operands to MCInst.  Needed here because this instruction
   4616 /// only has two register operands, but multiplication is commutative so
   4617 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
   4618 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
   4619                                     const OperandVector &Operands) {
   4620   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
   4621   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
   4622   // If we have a three-operand form, make sure to set Rn to be the operand
   4623   // that isn't the same as Rd.
   4624   unsigned RegOp = 4;
   4625   if (Operands.size() == 6 &&
   4626       ((ARMOperand &)*Operands[4]).getReg() ==
   4627           ((ARMOperand &)*Operands[3]).getReg())
   4628     RegOp = 5;
   4629   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
   4630   Inst.addOperand(Inst.getOperand(0));
   4631   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
   4632 }
   4633 
   4634 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
   4635                                     const OperandVector &Operands) {
   4636   int CondOp = -1, ImmOp = -1;
   4637   switch(Inst.getOpcode()) {
   4638     case ARM::tB:
   4639     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
   4640 
   4641     case ARM::t2B:
   4642     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
   4643 
   4644     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
   4645   }
   4646   // first decide whether or not the branch should be conditional
   4647   // by looking at it's location relative to an IT block
   4648   if(inITBlock()) {
   4649     // inside an IT block we cannot have any conditional branches. any
   4650     // such instructions needs to be converted to unconditional form
   4651     switch(Inst.getOpcode()) {
   4652       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
   4653       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
   4654     }
   4655   } else {
   4656     // outside IT blocks we can only have unconditional branches with AL
   4657     // condition code or conditional branches with non-AL condition code
   4658     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
   4659     switch(Inst.getOpcode()) {
   4660       case ARM::tB:
   4661       case ARM::tBcc:
   4662         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
   4663         break;
   4664       case ARM::t2B:
   4665       case ARM::t2Bcc:
   4666         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
   4667         break;
   4668     }
   4669   }
   4670 
   4671   // now decide on encoding size based on branch target range
   4672   switch(Inst.getOpcode()) {
   4673     // classify tB as either t2B or t1B based on range of immediate operand
   4674     case ARM::tB: {
   4675       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
   4676       if (!op.isSignedOffset<11, 1>() && isThumbTwo())
   4677         Inst.setOpcode(ARM::t2B);
   4678       break;
   4679     }
   4680     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
   4681     case ARM::tBcc: {
   4682       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
   4683       if (!op.isSignedOffset<8, 1>() && isThumbTwo())
   4684         Inst.setOpcode(ARM::t2Bcc);
   4685       break;
   4686     }
   4687   }
   4688   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
   4689   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
   4690 }
   4691 
   4692 /// Parse an ARM memory expression, return false if successful else return true
   4693 /// or an error.  The first token must be a '[' when called.
   4694 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
   4695   MCAsmParser &Parser = getParser();
   4696   SMLoc S, E;
   4697   assert(Parser.getTok().is(AsmToken::LBrac) &&
   4698          "Token is not a Left Bracket");
   4699   S = Parser.getTok().getLoc();
   4700   Parser.Lex(); // Eat left bracket token.
   4701 
   4702   const AsmToken &BaseRegTok = Parser.getTok();
   4703   int BaseRegNum = tryParseRegister();
   4704   if (BaseRegNum == -1)
   4705     return Error(BaseRegTok.getLoc(), "register expected");
   4706 
   4707   // The next token must either be a comma, a colon or a closing bracket.
   4708   const AsmToken &Tok = Parser.getTok();
   4709   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
   4710       !Tok.is(AsmToken::RBrac))
   4711     return Error(Tok.getLoc(), "malformed memory operand");
   4712 
   4713   if (Tok.is(AsmToken::RBrac)) {
   4714     E = Tok.getEndLoc();
   4715     Parser.Lex(); // Eat right bracket token.
   4716 
   4717     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
   4718                                              ARM_AM::no_shift, 0, 0, false,
   4719                                              S, E));
   4720 
   4721     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4722     // operand. It's rather odd, but syntactically valid.
   4723     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4724       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4725       Parser.Lex(); // Eat the '!'.
   4726     }
   4727 
   4728     return false;
   4729   }
   4730 
   4731   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
   4732          "Lost colon or comma in memory operand?!");
   4733   if (Tok.is(AsmToken::Comma)) {
   4734     Parser.Lex(); // Eat the comma.
   4735   }
   4736 
   4737   // If we have a ':', it's an alignment specifier.
   4738   if (Parser.getTok().is(AsmToken::Colon)) {
   4739     Parser.Lex(); // Eat the ':'.
   4740     E = Parser.getTok().getLoc();
   4741     SMLoc AlignmentLoc = Tok.getLoc();
   4742 
   4743     const MCExpr *Expr;
   4744     if (getParser().parseExpression(Expr))
   4745      return true;
   4746 
   4747     // The expression has to be a constant. Memory references with relocations
   4748     // don't come through here, as they use the <label> forms of the relevant
   4749     // instructions.
   4750     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   4751     if (!CE)
   4752       return Error (E, "constant expression expected");
   4753 
   4754     unsigned Align = 0;
   4755     switch (CE->getValue()) {
   4756     default:
   4757       return Error(E,
   4758                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
   4759     case 16:  Align = 2; break;
   4760     case 32:  Align = 4; break;
   4761     case 64:  Align = 8; break;
   4762     case 128: Align = 16; break;
   4763     case 256: Align = 32; break;
   4764     }
   4765 
   4766     // Now we should have the closing ']'
   4767     if (Parser.getTok().isNot(AsmToken::RBrac))
   4768       return Error(Parser.getTok().getLoc(), "']' expected");
   4769     E = Parser.getTok().getEndLoc();
   4770     Parser.Lex(); // Eat right bracket token.
   4771 
   4772     // Don't worry about range checking the value here. That's handled by
   4773     // the is*() predicates.
   4774     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
   4775                                              ARM_AM::no_shift, 0, Align,
   4776                                              false, S, E, AlignmentLoc));
   4777 
   4778     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4779     // operand.
   4780     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4781       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4782       Parser.Lex(); // Eat the '!'.
   4783     }
   4784 
   4785     return false;
   4786   }
   4787 
   4788   // If we have a '#', it's an immediate offset, else assume it's a register
   4789   // offset. Be friendly and also accept a plain integer (without a leading
   4790   // hash) for gas compatibility.
   4791   if (Parser.getTok().is(AsmToken::Hash) ||
   4792       Parser.getTok().is(AsmToken::Dollar) ||
   4793       Parser.getTok().is(AsmToken::Integer)) {
   4794     if (Parser.getTok().isNot(AsmToken::Integer))
   4795       Parser.Lex(); // Eat '#' or '$'.
   4796     E = Parser.getTok().getLoc();
   4797 
   4798     bool isNegative = getParser().getTok().is(AsmToken::Minus);
   4799     const MCExpr *Offset;
   4800     if (getParser().parseExpression(Offset))
   4801      return true;
   4802 
   4803     // The expression has to be a constant. Memory references with relocations
   4804     // don't come through here, as they use the <label> forms of the relevant
   4805     // instructions.
   4806     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
   4807     if (!CE)
   4808       return Error (E, "constant expression expected");
   4809 
   4810     // If the constant was #-0, represent it as INT32_MIN.
   4811     int32_t Val = CE->getValue();
   4812     if (isNegative && Val == 0)
   4813       CE = MCConstantExpr::create(INT32_MIN, getContext());
   4814 
   4815     // Now we should have the closing ']'
   4816     if (Parser.getTok().isNot(AsmToken::RBrac))
   4817       return Error(Parser.getTok().getLoc(), "']' expected");
   4818     E = Parser.getTok().getEndLoc();
   4819     Parser.Lex(); // Eat right bracket token.
   4820 
   4821     // Don't worry about range checking the value here. That's handled by
   4822     // the is*() predicates.
   4823     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
   4824                                              ARM_AM::no_shift, 0, 0,
   4825                                              false, S, E));
   4826 
   4827     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4828     // operand.
   4829     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4830       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4831       Parser.Lex(); // Eat the '!'.
   4832     }
   4833 
   4834     return false;
   4835   }
   4836 
   4837   // The register offset is optionally preceded by a '+' or '-'
   4838   bool isNegative = false;
   4839   if (Parser.getTok().is(AsmToken::Minus)) {
   4840     isNegative = true;
   4841     Parser.Lex(); // Eat the '-'.
   4842   } else if (Parser.getTok().is(AsmToken::Plus)) {
   4843     // Nothing to do.
   4844     Parser.Lex(); // Eat the '+'.
   4845   }
   4846 
   4847   E = Parser.getTok().getLoc();
   4848   int OffsetRegNum = tryParseRegister();
   4849   if (OffsetRegNum == -1)
   4850     return Error(E, "register expected");
   4851 
   4852   // If there's a shift operator, handle it.
   4853   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
   4854   unsigned ShiftImm = 0;
   4855   if (Parser.getTok().is(AsmToken::Comma)) {
   4856     Parser.Lex(); // Eat the ','.
   4857     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
   4858       return true;
   4859   }
   4860 
   4861   // Now we should have the closing ']'
   4862   if (Parser.getTok().isNot(AsmToken::RBrac))
   4863     return Error(Parser.getTok().getLoc(), "']' expected");
   4864   E = Parser.getTok().getEndLoc();
   4865   Parser.Lex(); // Eat right bracket token.
   4866 
   4867   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
   4868                                            ShiftType, ShiftImm, 0, isNegative,
   4869                                            S, E));
   4870 
   4871   // If there's a pre-indexing writeback marker, '!', just add it as a token
   4872   // operand.
   4873   if (Parser.getTok().is(AsmToken::Exclaim)) {
   4874     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4875     Parser.Lex(); // Eat the '!'.
   4876   }
   4877 
   4878   return false;
   4879 }
   4880 
   4881 /// parseMemRegOffsetShift - one of these two:
   4882 ///   ( lsl | lsr | asr | ror ) , # shift_amount
   4883 ///   rrx
   4884 /// return true if it parses a shift otherwise it returns false.
   4885 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
   4886                                           unsigned &Amount) {
   4887   MCAsmParser &Parser = getParser();
   4888   SMLoc Loc = Parser.getTok().getLoc();
   4889   const AsmToken &Tok = Parser.getTok();
   4890   if (Tok.isNot(AsmToken::Identifier))
   4891     return true;
   4892   StringRef ShiftName = Tok.getString();
   4893   if (ShiftName == "lsl" || ShiftName == "LSL" ||
   4894       ShiftName == "asl" || ShiftName == "ASL")
   4895     St = ARM_AM::lsl;
   4896   else if (ShiftName == "lsr" || ShiftName == "LSR")
   4897     St = ARM_AM::lsr;
   4898   else if (ShiftName == "asr" || ShiftName == "ASR")
   4899     St = ARM_AM::asr;
   4900   else if (ShiftName == "ror" || ShiftName == "ROR")
   4901     St = ARM_AM::ror;
   4902   else if (ShiftName == "rrx" || ShiftName == "RRX")
   4903     St = ARM_AM::rrx;
   4904   else
   4905     return Error(Loc, "illegal shift operator");
   4906   Parser.Lex(); // Eat shift type token.
   4907 
   4908   // rrx stands alone.
   4909   Amount = 0;
   4910   if (St != ARM_AM::rrx) {
   4911     Loc = Parser.getTok().getLoc();
   4912     // A '#' and a shift amount.
   4913     const AsmToken &HashTok = Parser.getTok();
   4914     if (HashTok.isNot(AsmToken::Hash) &&
   4915         HashTok.isNot(AsmToken::Dollar))
   4916       return Error(HashTok.getLoc(), "'#' expected");
   4917     Parser.Lex(); // Eat hash token.
   4918 
   4919     const MCExpr *Expr;
   4920     if (getParser().parseExpression(Expr))
   4921       return true;
   4922     // Range check the immediate.
   4923     // lsl, ror: 0 <= imm <= 31
   4924     // lsr, asr: 0 <= imm <= 32
   4925     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   4926     if (!CE)
   4927       return Error(Loc, "shift amount must be an immediate");
   4928     int64_t Imm = CE->getValue();
   4929     if (Imm < 0 ||
   4930         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
   4931         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
   4932       return Error(Loc, "immediate shift value out of range");
   4933     // If <ShiftTy> #0, turn it into a no_shift.
   4934     if (Imm == 0)
   4935       St = ARM_AM::lsl;
   4936     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
   4937     if (Imm == 32)
   4938       Imm = 0;
   4939     Amount = Imm;
   4940   }
   4941 
   4942   return false;
   4943 }
   4944 
   4945 /// parseFPImm - A floating point immediate expression operand.
   4946 ARMAsmParser::OperandMatchResultTy
   4947 ARMAsmParser::parseFPImm(OperandVector &Operands) {
   4948   MCAsmParser &Parser = getParser();
   4949   // Anything that can accept a floating point constant as an operand
   4950   // needs to go through here, as the regular parseExpression is
   4951   // integer only.
   4952   //
   4953   // This routine still creates a generic Immediate operand, containing
   4954   // a bitcast of the 64-bit floating point value. The various operands
   4955   // that accept floats can check whether the value is valid for them
   4956   // via the standard is*() predicates.
   4957 
   4958   SMLoc S = Parser.getTok().getLoc();
   4959 
   4960   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4961       Parser.getTok().isNot(AsmToken::Dollar))
   4962     return MatchOperand_NoMatch;
   4963 
   4964   // Disambiguate the VMOV forms that can accept an FP immediate.
   4965   // vmov.f32 <sreg>, #imm
   4966   // vmov.f64 <dreg>, #imm
   4967   // vmov.f32 <dreg>, #imm  @ vector f32x2
   4968   // vmov.f32 <qreg>, #imm  @ vector f32x4
   4969   //
   4970   // There are also the NEON VMOV instructions which expect an
   4971   // integer constant. Make sure we don't try to parse an FPImm
   4972   // for these:
   4973   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
   4974   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
   4975   bool isVmovf = TyOp.isToken() &&
   4976                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64");
   4977   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
   4978   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
   4979                                          Mnemonic.getToken() == "fconsts");
   4980   if (!(isVmovf || isFconst))
   4981     return MatchOperand_NoMatch;
   4982 
   4983   Parser.Lex(); // Eat '#' or '$'.
   4984 
   4985   // Handle negation, as that still comes through as a separate token.
   4986   bool isNegative = false;
   4987   if (Parser.getTok().is(AsmToken::Minus)) {
   4988     isNegative = true;
   4989     Parser.Lex();
   4990   }
   4991   const AsmToken &Tok = Parser.getTok();
   4992   SMLoc Loc = Tok.getLoc();
   4993   if (Tok.is(AsmToken::Real) && isVmovf) {
   4994     APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
   4995     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
   4996     // If we had a '-' in front, toggle the sign bit.
   4997     IntVal ^= (uint64_t)isNegative << 31;
   4998     Parser.Lex(); // Eat the token.
   4999     Operands.push_back(ARMOperand::CreateImm(
   5000           MCConstantExpr::create(IntVal, getContext()),
   5001           S, Parser.getTok().getLoc()));
   5002     return MatchOperand_Success;
   5003   }
   5004   // Also handle plain integers. Instructions which allow floating point
   5005   // immediates also allow a raw encoded 8-bit value.
   5006   if (Tok.is(AsmToken::Integer) && isFconst) {
   5007     int64_t Val = Tok.getIntVal();
   5008     Parser.Lex(); // Eat the token.
   5009     if (Val > 255 || Val < 0) {
   5010       Error(Loc, "encoded floating point value out of range");
   5011       return MatchOperand_ParseFail;
   5012     }
   5013     float RealVal = ARM_AM::getFPImmFloat(Val);
   5014     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
   5015 
   5016     Operands.push_back(ARMOperand::CreateImm(
   5017         MCConstantExpr::create(Val, getContext()), S,
   5018         Parser.getTok().getLoc()));
   5019     return MatchOperand_Success;
   5020   }
   5021 
   5022   Error(Loc, "invalid floating point immediate");
   5023   return MatchOperand_ParseFail;
   5024 }
   5025 
   5026 /// Parse a arm instruction operand.  For now this parses the operand regardless
   5027 /// of the mnemonic.
   5028 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
   5029   MCAsmParser &Parser = getParser();
   5030   SMLoc S, E;
   5031 
   5032   // Check if the current operand has a custom associated parser, if so, try to
   5033   // custom parse the operand, or fallback to the general approach.
   5034   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
   5035   if (ResTy == MatchOperand_Success)
   5036     return false;
   5037   // If there wasn't a custom match, try the generic matcher below. Otherwise,
   5038   // there was a match, but an error occurred, in which case, just return that
   5039   // the operand parsing failed.
   5040   if (ResTy == MatchOperand_ParseFail)
   5041     return true;
   5042 
   5043   switch (getLexer().getKind()) {
   5044   default:
   5045     Error(Parser.getTok().getLoc(), "unexpected token in operand");
   5046     return true;
   5047   case AsmToken::Identifier: {
   5048     // If we've seen a branch mnemonic, the next operand must be a label.  This
   5049     // is true even if the label is a register name.  So "br r1" means branch to
   5050     // label "r1".
   5051     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
   5052     if (!ExpectLabel) {
   5053       if (!tryParseRegisterWithWriteBack(Operands))
   5054         return false;
   5055       int Res = tryParseShiftRegister(Operands);
   5056       if (Res == 0) // success
   5057         return false;
   5058       else if (Res == -1) // irrecoverable error
   5059         return true;
   5060       // If this is VMRS, check for the apsr_nzcv operand.
   5061       if (Mnemonic == "vmrs" &&
   5062           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
   5063         S = Parser.getTok().getLoc();
   5064         Parser.Lex();
   5065         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
   5066         return false;
   5067       }
   5068     }
   5069 
   5070     // Fall though for the Identifier case that is not a register or a
   5071     // special name.
   5072   }
   5073   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
   5074   case AsmToken::Integer: // things like 1f and 2b as a branch targets
   5075   case AsmToken::String:  // quoted label names.
   5076   case AsmToken::Dot: {   // . as a branch target
   5077     // This was not a register so parse other operands that start with an
   5078     // identifier (like labels) as expressions and create them as immediates.
   5079     const MCExpr *IdVal;
   5080     S = Parser.getTok().getLoc();
   5081     if (getParser().parseExpression(IdVal))
   5082       return true;
   5083     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5084     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
   5085     return false;
   5086   }
   5087   case AsmToken::LBrac:
   5088     return parseMemory(Operands);
   5089   case AsmToken::LCurly:
   5090     return parseRegisterList(Operands);
   5091   case AsmToken::Dollar:
   5092   case AsmToken::Hash: {
   5093     // #42 -> immediate.
   5094     S = Parser.getTok().getLoc();
   5095     Parser.Lex();
   5096 
   5097     if (Parser.getTok().isNot(AsmToken::Colon)) {
   5098       bool isNegative = Parser.getTok().is(AsmToken::Minus);
   5099       const MCExpr *ImmVal;
   5100       if (getParser().parseExpression(ImmVal))
   5101         return true;
   5102       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
   5103       if (CE) {
   5104         int32_t Val = CE->getValue();
   5105         if (isNegative && Val == 0)
   5106           ImmVal = MCConstantExpr::create(INT32_MIN, getContext());
   5107       }
   5108       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5109       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
   5110 
   5111       // There can be a trailing '!' on operands that we want as a separate
   5112       // '!' Token operand. Handle that here. For example, the compatibility
   5113       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
   5114       if (Parser.getTok().is(AsmToken::Exclaim)) {
   5115         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
   5116                                                    Parser.getTok().getLoc()));
   5117         Parser.Lex(); // Eat exclaim token
   5118       }
   5119       return false;
   5120     }
   5121     // w/ a ':' after the '#', it's just like a plain ':'.
   5122     // FALLTHROUGH
   5123   }
   5124   case AsmToken::Colon: {
   5125     S = Parser.getTok().getLoc();
   5126     // ":lower16:" and ":upper16:" expression prefixes
   5127     // FIXME: Check it's an expression prefix,
   5128     // e.g. (FOO - :lower16:BAR) isn't legal.
   5129     ARMMCExpr::VariantKind RefKind;
   5130     if (parsePrefix(RefKind))
   5131       return true;
   5132 
   5133     const MCExpr *SubExprVal;
   5134     if (getParser().parseExpression(SubExprVal))
   5135       return true;
   5136 
   5137     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
   5138                                               getContext());
   5139     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5140     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
   5141     return false;
   5142   }
   5143   case AsmToken::Equal: {
   5144     S = Parser.getTok().getLoc();
   5145     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
   5146       return Error(S, "unexpected token in operand");
   5147 
   5148     Parser.Lex(); // Eat '='
   5149     const MCExpr *SubExprVal;
   5150     if (getParser().parseExpression(SubExprVal))
   5151       return true;
   5152     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5153 
   5154     const MCExpr *CPLoc =
   5155         getTargetStreamer().addConstantPoolEntry(SubExprVal, S);
   5156     Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E));
   5157     return false;
   5158   }
   5159   }
   5160 }
   5161 
   5162 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
   5163 //  :lower16: and :upper16:.
   5164 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
   5165   MCAsmParser &Parser = getParser();
   5166   RefKind = ARMMCExpr::VK_ARM_None;
   5167 
   5168   // consume an optional '#' (GNU compatibility)
   5169   if (getLexer().is(AsmToken::Hash))
   5170     Parser.Lex();
   5171 
   5172   // :lower16: and :upper16: modifiers
   5173   assert(getLexer().is(AsmToken::Colon) && "expected a :");
   5174   Parser.Lex(); // Eat ':'
   5175 
   5176   if (getLexer().isNot(AsmToken::Identifier)) {
   5177     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
   5178     return true;
   5179   }
   5180 
   5181   enum {
   5182     COFF = (1 << MCObjectFileInfo::IsCOFF),
   5183     ELF = (1 << MCObjectFileInfo::IsELF),
   5184     MACHO = (1 << MCObjectFileInfo::IsMachO)
   5185   };
   5186   static const struct PrefixEntry {
   5187     const char *Spelling;
   5188     ARMMCExpr::VariantKind VariantKind;
   5189     uint8_t SupportedFormats;
   5190   } PrefixEntries[] = {
   5191     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
   5192     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
   5193   };
   5194 
   5195   StringRef IDVal = Parser.getTok().getIdentifier();
   5196 
   5197   const auto &Prefix =
   5198       std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
   5199                    [&IDVal](const PrefixEntry &PE) {
   5200                       return PE.Spelling == IDVal;
   5201                    });
   5202   if (Prefix == std::end(PrefixEntries)) {
   5203     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
   5204     return true;
   5205   }
   5206 
   5207   uint8_t CurrentFormat;
   5208   switch (getContext().getObjectFileInfo()->getObjectFileType()) {
   5209   case MCObjectFileInfo::IsMachO:
   5210     CurrentFormat = MACHO;
   5211     break;
   5212   case MCObjectFileInfo::IsELF:
   5213     CurrentFormat = ELF;
   5214     break;
   5215   case MCObjectFileInfo::IsCOFF:
   5216     CurrentFormat = COFF;
   5217     break;
   5218   }
   5219 
   5220   if (~Prefix->SupportedFormats & CurrentFormat) {
   5221     Error(Parser.getTok().getLoc(),
   5222           "cannot represent relocation in the current file format");
   5223     return true;
   5224   }
   5225 
   5226   RefKind = Prefix->VariantKind;
   5227   Parser.Lex();
   5228 
   5229   if (getLexer().isNot(AsmToken::Colon)) {
   5230     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
   5231     return true;
   5232   }
   5233   Parser.Lex(); // Eat the last ':'
   5234 
   5235   return false;
   5236 }
   5237 
   5238 /// \brief Given a mnemonic, split out possible predication code and carry
   5239 /// setting letters to form a canonical mnemonic and flags.
   5240 //
   5241 // FIXME: Would be nice to autogen this.
   5242 // FIXME: This is a bit of a maze of special cases.
   5243 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
   5244                                       unsigned &PredicationCode,
   5245                                       bool &CarrySetting,
   5246                                       unsigned &ProcessorIMod,
   5247                                       StringRef &ITMask) {
   5248   PredicationCode = ARMCC::AL;
   5249   CarrySetting = false;
   5250   ProcessorIMod = 0;
   5251 
   5252   // Ignore some mnemonics we know aren't predicated forms.
   5253   //
   5254   // FIXME: Would be nice to autogen this.
   5255   if ((Mnemonic == "movs" && isThumb()) ||
   5256       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
   5257       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
   5258       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
   5259       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
   5260       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
   5261       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
   5262       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
   5263       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
   5264       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
   5265       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
   5266       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
   5267       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
   5268       Mnemonic.startswith("vsel"))
   5269     return Mnemonic;
   5270 
   5271   // First, split out any predication code. Ignore mnemonics we know aren't
   5272   // predicated but do have a carry-set and so weren't caught above.
   5273   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
   5274       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
   5275       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
   5276       Mnemonic != "sbcs" && Mnemonic != "rscs") {
   5277     unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
   5278       .Case("eq", ARMCC::EQ)
   5279       .Case("ne", ARMCC::NE)
   5280       .Case("hs", ARMCC::HS)
   5281       .Case("cs", ARMCC::HS)
   5282       .Case("lo", ARMCC::LO)
   5283       .Case("cc", ARMCC::LO)
   5284       .Case("mi", ARMCC::MI)
   5285       .Case("pl", ARMCC::PL)
   5286       .Case("vs", ARMCC::VS)
   5287       .Case("vc", ARMCC::VC)
   5288       .Case("hi", ARMCC::HI)
   5289       .Case("ls", ARMCC::LS)
   5290       .Case("ge", ARMCC::GE)
   5291       .Case("lt", ARMCC::LT)
   5292       .Case("gt", ARMCC::GT)
   5293       .Case("le", ARMCC::LE)
   5294       .Case("al", ARMCC::AL)
   5295       .Default(~0U);
   5296     if (CC != ~0U) {
   5297       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
   5298       PredicationCode = CC;
   5299     }
   5300   }
   5301 
   5302   // Next, determine if we have a carry setting bit. We explicitly ignore all
   5303   // the instructions we know end in 's'.
   5304   if (Mnemonic.endswith("s") &&
   5305       !(Mnemonic == "cps" || Mnemonic == "mls" ||
   5306         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
   5307         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
   5308         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
   5309         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
   5310         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
   5311         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
   5312         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
   5313         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
   5314         (Mnemonic == "movs" && isThumb()))) {
   5315     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
   5316     CarrySetting = true;
   5317   }
   5318 
   5319   // The "cps" instruction can have a interrupt mode operand which is glued into
   5320   // the mnemonic. Check if this is the case, split it and parse the imod op
   5321   if (Mnemonic.startswith("cps")) {
   5322     // Split out any imod code.
   5323     unsigned IMod =
   5324       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
   5325       .Case("ie", ARM_PROC::IE)
   5326       .Case("id", ARM_PROC::ID)
   5327       .Default(~0U);
   5328     if (IMod != ~0U) {
   5329       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
   5330       ProcessorIMod = IMod;
   5331     }
   5332   }
   5333 
   5334   // The "it" instruction has the condition mask on the end of the mnemonic.
   5335   if (Mnemonic.startswith("it")) {
   5336     ITMask = Mnemonic.slice(2, Mnemonic.size());
   5337     Mnemonic = Mnemonic.slice(0, 2);
   5338   }
   5339 
   5340   return Mnemonic;
   5341 }
   5342 
   5343 /// \brief Given a canonical mnemonic, determine if the instruction ever allows
   5344 /// inclusion of carry set or predication code operands.
   5345 //
   5346 // FIXME: It would be nice to autogen this.
   5347 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
   5348                                          bool &CanAcceptCarrySet,
   5349                                          bool &CanAcceptPredicationCode) {
   5350   CanAcceptCarrySet =
   5351       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
   5352       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
   5353       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
   5354       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
   5355       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
   5356       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
   5357       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
   5358       (!isThumb() &&
   5359        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
   5360         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
   5361 
   5362   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
   5363       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
   5364       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
   5365       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
   5366       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
   5367       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
   5368       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
   5369       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
   5370       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
   5371       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
   5372       (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
   5373     // These mnemonics are never predicable
   5374     CanAcceptPredicationCode = false;
   5375   } else if (!isThumb()) {
   5376     // Some instructions are only predicable in Thumb mode
   5377     CanAcceptPredicationCode =
   5378         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
   5379         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
   5380         Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
   5381         Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
   5382         Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" &&
   5383         Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") &&
   5384         !Mnemonic.startswith("srs");
   5385   } else if (isThumbOne()) {
   5386     if (hasV6MOps())
   5387       CanAcceptPredicationCode = Mnemonic != "movs";
   5388     else
   5389       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
   5390   } else
   5391     CanAcceptPredicationCode = true;
   5392 }
   5393 
   5394 // \brief Some Thumb instructions have two operand forms that are not
   5395 // available as three operand, convert to two operand form if possible.
   5396 //
   5397 // FIXME: We would really like to be able to tablegen'erate this.
   5398 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
   5399                                                  bool CarrySetting,
   5400                                                  OperandVector &Operands) {
   5401   if (Operands.size() != 6)
   5402     return;
   5403 
   5404   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
   5405         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
   5406   if (!Op3.isReg() || !Op4.isReg())
   5407     return;
   5408 
   5409   auto Op3Reg = Op3.getReg();
   5410   auto Op4Reg = Op4.getReg();
   5411 
   5412   // For most Thumb2 cases we just generate the 3 operand form and reduce
   5413   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
   5414   // won't accept SP or PC so we do the transformation here taking care
   5415   // with immediate range in the 'add sp, sp #imm' case.
   5416   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
   5417   if (isThumbTwo()) {
   5418     if (Mnemonic != "add")
   5419       return;
   5420     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
   5421                         (Op5.isReg() && Op5.getReg() == ARM::PC);
   5422     if (!TryTransform) {
   5423       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
   5424                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
   5425                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
   5426                        Op5.isImm() && !Op5.isImm0_508s4());
   5427     }
   5428     if (!TryTransform)
   5429       return;
   5430   } else if (!isThumbOne())
   5431     return;
   5432 
   5433   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
   5434         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
   5435         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
   5436         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
   5437     return;
   5438 
   5439   // If first 2 operands of a 3 operand instruction are the same
   5440   // then transform to 2 operand version of the same instruction
   5441   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
   5442   bool Transform = Op3Reg == Op4Reg;
   5443 
   5444   // For communtative operations, we might be able to transform if we swap
   5445   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
   5446   // as tADDrsp.
   5447   const ARMOperand *LastOp = &Op5;
   5448   bool Swap = false;
   5449   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
   5450       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
   5451        Mnemonic == "and" || Mnemonic == "eor" ||
   5452        Mnemonic == "adc" || Mnemonic == "orr")) {
   5453     Swap = true;
   5454     LastOp = &Op4;
   5455     Transform = true;
   5456   }
   5457 
   5458   // If both registers are the same then remove one of them from
   5459   // the operand list, with certain exceptions.
   5460   if (Transform) {
   5461     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
   5462     // 2 operand forms don't exist.
   5463     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
   5464         LastOp->isReg())
   5465       Transform = false;
   5466 
   5467     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
   5468     // 3-bits because the ARMARM says not to.
   5469     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
   5470       Transform = false;
   5471   }
   5472 
   5473   if (Transform) {
   5474     if (Swap)
   5475       std::swap(Op4, Op5);
   5476     Operands.erase(Operands.begin() + 3);
   5477   }
   5478 }
   5479 
   5480 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
   5481                                           OperandVector &Operands) {
   5482   // FIXME: This is all horribly hacky. We really need a better way to deal
   5483   // with optional operands like this in the matcher table.
   5484 
   5485   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
   5486   // another does not. Specifically, the MOVW instruction does not. So we
   5487   // special case it here and remove the defaulted (non-setting) cc_out
   5488   // operand if that's the instruction we're trying to match.
   5489   //
   5490   // We do this as post-processing of the explicit operands rather than just
   5491   // conditionally adding the cc_out in the first place because we need
   5492   // to check the type of the parsed immediate operand.
   5493   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
   5494       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
   5495       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
   5496       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
   5497     return true;
   5498 
   5499   // Register-register 'add' for thumb does not have a cc_out operand
   5500   // when there are only two register operands.
   5501   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
   5502       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5503       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5504       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
   5505     return true;
   5506   // Register-register 'add' for thumb does not have a cc_out operand
   5507   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
   5508   // have to check the immediate range here since Thumb2 has a variant
   5509   // that can handle a different range and has a cc_out operand.
   5510   if (((isThumb() && Mnemonic == "add") ||
   5511        (isThumbTwo() && Mnemonic == "sub")) &&
   5512       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5513       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5514       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
   5515       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5516       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
   5517        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
   5518     return true;
   5519   // For Thumb2, add/sub immediate does not have a cc_out operand for the
   5520   // imm0_4095 variant. That's the least-preferred variant when
   5521   // selecting via the generic "add" mnemonic, so to know that we
   5522   // should remove the cc_out operand, we have to explicitly check that
   5523   // it's not one of the other variants. Ugh.
   5524   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
   5525       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5526       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5527       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
   5528     // Nest conditions rather than one big 'if' statement for readability.
   5529     //
   5530     // If both registers are low, we're in an IT block, and the immediate is
   5531     // in range, we should use encoding T1 instead, which has a cc_out.
   5532     if (inITBlock() &&
   5533         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
   5534         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
   5535         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
   5536       return false;
   5537     // Check against T3. If the second register is the PC, this is an
   5538     // alternate form of ADR, which uses encoding T4, so check for that too.
   5539     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
   5540         static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
   5541       return false;
   5542 
   5543     // Otherwise, we use encoding T4, which does not have a cc_out
   5544     // operand.
   5545     return true;
   5546   }
   5547 
   5548   // The thumb2 multiply instruction doesn't have a CCOut register, so
   5549   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
   5550   // use the 16-bit encoding or not.
   5551   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
   5552       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5553       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5554       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5555       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
   5556       // If the registers aren't low regs, the destination reg isn't the
   5557       // same as one of the source regs, or the cc_out operand is zero
   5558       // outside of an IT block, we have to use the 32-bit encoding, so
   5559       // remove the cc_out operand.
   5560       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
   5561        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
   5562        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
   5563        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
   5564                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
   5565                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
   5566                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
   5567     return true;
   5568 
   5569   // Also check the 'mul' syntax variant that doesn't specify an explicit
   5570   // destination register.
   5571   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
   5572       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5573       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5574       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5575       // If the registers aren't low regs  or the cc_out operand is zero
   5576       // outside of an IT block, we have to use the 32-bit encoding, so
   5577       // remove the cc_out operand.
   5578       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
   5579        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
   5580        !inITBlock()))
   5581     return true;
   5582 
   5583 
   5584 
   5585   // Register-register 'add/sub' for thumb does not have a cc_out operand
   5586   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
   5587   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
   5588   // right, this will result in better diagnostics (which operand is off)
   5589   // anyway.
   5590   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
   5591       (Operands.size() == 5 || Operands.size() == 6) &&
   5592       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5593       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
   5594       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5595       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
   5596        (Operands.size() == 6 &&
   5597         static_cast<ARMOperand &>(*Operands[5]).isImm())))
   5598     return true;
   5599 
   5600   return false;
   5601 }
   5602 
   5603 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
   5604                                               OperandVector &Operands) {
   5605   // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
   5606   unsigned RegIdx = 3;
   5607   if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
   5608       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
   5609        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
   5610     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   5611         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
   5612          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
   5613       RegIdx = 4;
   5614 
   5615     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
   5616         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
   5617              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
   5618          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
   5619              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
   5620       return true;
   5621   }
   5622   return false;
   5623 }
   5624 
   5625 static bool isDataTypeToken(StringRef Tok) {
   5626   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
   5627     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
   5628     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
   5629     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
   5630     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
   5631     Tok == ".f" || Tok == ".d";
   5632 }
   5633 
   5634 // FIXME: This bit should probably be handled via an explicit match class
   5635 // in the .td files that matches the suffix instead of having it be
   5636 // a literal string token the way it is now.
   5637 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
   5638   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
   5639 }
   5640 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
   5641                                  unsigned VariantID);
   5642 
   5643 static bool RequiresVFPRegListValidation(StringRef Inst,
   5644                                          bool &AcceptSinglePrecisionOnly,
   5645                                          bool &AcceptDoublePrecisionOnly) {
   5646   if (Inst.size() < 7)
   5647     return false;
   5648 
   5649   if (Inst.startswith("fldm") || Inst.startswith("fstm")) {
   5650     StringRef AddressingMode = Inst.substr(4, 2);
   5651     if (AddressingMode == "ia" || AddressingMode == "db" ||
   5652         AddressingMode == "ea" || AddressingMode == "fd") {
   5653       AcceptSinglePrecisionOnly = Inst[6] == 's';
   5654       AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x';
   5655       return true;
   5656     }
   5657   }
   5658 
   5659   return false;
   5660 }
   5661 
   5662 /// Parse an arm instruction mnemonic followed by its operands.
   5663 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
   5664                                     SMLoc NameLoc, OperandVector &Operands) {
   5665   MCAsmParser &Parser = getParser();
   5666   // FIXME: Can this be done via tablegen in some fashion?
   5667   bool RequireVFPRegisterListCheck;
   5668   bool AcceptSinglePrecisionOnly;
   5669   bool AcceptDoublePrecisionOnly;
   5670   RequireVFPRegisterListCheck =
   5671     RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly,
   5672                                  AcceptDoublePrecisionOnly);
   5673 
   5674   // Apply mnemonic aliases before doing anything else, as the destination
   5675   // mnemonic may include suffices and we want to handle them normally.
   5676   // The generic tblgen'erated code does this later, at the start of
   5677   // MatchInstructionImpl(), but that's too late for aliases that include
   5678   // any sort of suffix.
   5679   uint64_t AvailableFeatures = getAvailableFeatures();
   5680   unsigned AssemblerDialect = getParser().getAssemblerDialect();
   5681   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
   5682 
   5683   // First check for the ARM-specific .req directive.
   5684   if (Parser.getTok().is(AsmToken::Identifier) &&
   5685       Parser.getTok().getIdentifier() == ".req") {
   5686     parseDirectiveReq(Name, NameLoc);
   5687     // We always return 'error' for this, as we're done with this
   5688     // statement and don't need to match the 'instruction."
   5689     return true;
   5690   }
   5691 
   5692   // Create the leading tokens for the mnemonic, split by '.' characters.
   5693   size_t Start = 0, Next = Name.find('.');
   5694   StringRef Mnemonic = Name.slice(Start, Next);
   5695 
   5696   // Split out the predication code and carry setting flag from the mnemonic.
   5697   unsigned PredicationCode;
   5698   unsigned ProcessorIMod;
   5699   bool CarrySetting;
   5700   StringRef ITMask;
   5701   Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
   5702                            ProcessorIMod, ITMask);
   5703 
   5704   // In Thumb1, only the branch (B) instruction can be predicated.
   5705   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
   5706     Parser.eatToEndOfStatement();
   5707     return Error(NameLoc, "conditional execution not supported in Thumb1");
   5708   }
   5709 
   5710   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
   5711 
   5712   // Handle the IT instruction ITMask. Convert it to a bitmask. This
   5713   // is the mask as it will be for the IT encoding if the conditional
   5714   // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
   5715   // where the conditional bit0 is zero, the instruction post-processing
   5716   // will adjust the mask accordingly.
   5717   if (Mnemonic == "it") {
   5718     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
   5719     if (ITMask.size() > 3) {
   5720       Parser.eatToEndOfStatement();
   5721       return Error(Loc, "too many conditions on IT instruction");
   5722     }
   5723     unsigned Mask = 8;
   5724     for (unsigned i = ITMask.size(); i != 0; --i) {
   5725       char pos = ITMask[i - 1];
   5726       if (pos != 't' && pos != 'e') {
   5727         Parser.eatToEndOfStatement();
   5728         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
   5729       }
   5730       Mask >>= 1;
   5731       if (ITMask[i - 1] == 't')
   5732         Mask |= 8;
   5733     }
   5734     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
   5735   }
   5736 
   5737   // FIXME: This is all a pretty gross hack. We should automatically handle
   5738   // optional operands like this via tblgen.
   5739 
   5740   // Next, add the CCOut and ConditionCode operands, if needed.
   5741   //
   5742   // For mnemonics which can ever incorporate a carry setting bit or predication
   5743   // code, our matching model involves us always generating CCOut and
   5744   // ConditionCode operands to match the mnemonic "as written" and then we let
   5745   // the matcher deal with finding the right instruction or generating an
   5746   // appropriate error.
   5747   bool CanAcceptCarrySet, CanAcceptPredicationCode;
   5748   getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
   5749 
   5750   // If we had a carry-set on an instruction that can't do that, issue an
   5751   // error.
   5752   if (!CanAcceptCarrySet && CarrySetting) {
   5753     Parser.eatToEndOfStatement();
   5754     return Error(NameLoc, "instruction '" + Mnemonic +
   5755                  "' can not set flags, but 's' suffix specified");
   5756   }
   5757   // If we had a predication code on an instruction that can't do that, issue an
   5758   // error.
   5759   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
   5760     Parser.eatToEndOfStatement();
   5761     return Error(NameLoc, "instruction '" + Mnemonic +
   5762                  "' is not predicable, but condition code specified");
   5763   }
   5764 
   5765   // Add the carry setting operand, if necessary.
   5766   if (CanAcceptCarrySet) {
   5767     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
   5768     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
   5769                                                Loc));
   5770   }
   5771 
   5772   // Add the predication code operand, if necessary.
   5773   if (CanAcceptPredicationCode) {
   5774     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
   5775                                       CarrySetting);
   5776     Operands.push_back(ARMOperand::CreateCondCode(
   5777                          ARMCC::CondCodes(PredicationCode), Loc));
   5778   }
   5779 
   5780   // Add the processor imod operand, if necessary.
   5781   if (ProcessorIMod) {
   5782     Operands.push_back(ARMOperand::CreateImm(
   5783           MCConstantExpr::create(ProcessorIMod, getContext()),
   5784                                  NameLoc, NameLoc));
   5785   } else if (Mnemonic == "cps" && isMClass()) {
   5786     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
   5787   }
   5788 
   5789   // Add the remaining tokens in the mnemonic.
   5790   while (Next != StringRef::npos) {
   5791     Start = Next;
   5792     Next = Name.find('.', Start + 1);
   5793     StringRef ExtraToken = Name.slice(Start, Next);
   5794 
   5795     // Some NEON instructions have an optional datatype suffix that is
   5796     // completely ignored. Check for that.
   5797     if (isDataTypeToken(ExtraToken) &&
   5798         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
   5799       continue;
   5800 
   5801     // For for ARM mode generate an error if the .n qualifier is used.
   5802     if (ExtraToken == ".n" && !isThumb()) {
   5803       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
   5804       Parser.eatToEndOfStatement();
   5805       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
   5806                    "arm mode");
   5807     }
   5808 
   5809     // The .n qualifier is always discarded as that is what the tables
   5810     // and matcher expect.  In ARM mode the .w qualifier has no effect,
   5811     // so discard it to avoid errors that can be caused by the matcher.
   5812     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
   5813       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
   5814       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
   5815     }
   5816   }
   5817 
   5818   // Read the remaining operands.
   5819   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   5820     // Read the first operand.
   5821     if (parseOperand(Operands, Mnemonic)) {
   5822       Parser.eatToEndOfStatement();
   5823       return true;
   5824     }
   5825 
   5826     while (getLexer().is(AsmToken::Comma)) {
   5827       Parser.Lex();  // Eat the comma.
   5828 
   5829       // Parse and remember the operand.
   5830       if (parseOperand(Operands, Mnemonic)) {
   5831         Parser.eatToEndOfStatement();
   5832         return true;
   5833       }
   5834     }
   5835   }
   5836 
   5837   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   5838     SMLoc Loc = getLexer().getLoc();
   5839     Parser.eatToEndOfStatement();
   5840     return Error(Loc, "unexpected token in argument list");
   5841   }
   5842 
   5843   Parser.Lex(); // Consume the EndOfStatement
   5844 
   5845   if (RequireVFPRegisterListCheck) {
   5846     ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back());
   5847     if (AcceptSinglePrecisionOnly && !Op.isSPRRegList())
   5848       return Error(Op.getStartLoc(),
   5849                    "VFP/Neon single precision register expected");
   5850     if (AcceptDoublePrecisionOnly && !Op.isDPRRegList())
   5851       return Error(Op.getStartLoc(),
   5852                    "VFP/Neon double precision register expected");
   5853   }
   5854 
   5855   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
   5856 
   5857   // Some instructions, mostly Thumb, have forms for the same mnemonic that
   5858   // do and don't have a cc_out optional-def operand. With some spot-checks
   5859   // of the operand list, we can figure out which variant we're trying to
   5860   // parse and adjust accordingly before actually matching. We shouldn't ever
   5861   // try to remove a cc_out operand that was explicitly set on the
   5862   // mnemonic, of course (CarrySetting == true). Reason number #317 the
   5863   // table driven matcher doesn't fit well with the ARM instruction set.
   5864   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
   5865     Operands.erase(Operands.begin() + 1);
   5866 
   5867   // Some instructions have the same mnemonic, but don't always
   5868   // have a predicate. Distinguish them here and delete the
   5869   // predicate if needed.
   5870   if (shouldOmitPredicateOperand(Mnemonic, Operands))
   5871     Operands.erase(Operands.begin() + 1);
   5872 
   5873   // ARM mode 'blx' need special handling, as the register operand version
   5874   // is predicable, but the label operand version is not. So, we can't rely
   5875   // on the Mnemonic based checking to correctly figure out when to put
   5876   // a k_CondCode operand in the list. If we're trying to match the label
   5877   // version, remove the k_CondCode operand here.
   5878   if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
   5879       static_cast<ARMOperand &>(*Operands[2]).isImm())
   5880     Operands.erase(Operands.begin() + 1);
   5881 
   5882   // Adjust operands of ldrexd/strexd to MCK_GPRPair.
   5883   // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
   5884   // a single GPRPair reg operand is used in the .td file to replace the two
   5885   // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
   5886   // expressed as a GPRPair, so we have to manually merge them.
   5887   // FIXME: We would really like to be able to tablegen'erate this.
   5888   if (!isThumb() && Operands.size() > 4 &&
   5889       (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
   5890        Mnemonic == "stlexd")) {
   5891     bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
   5892     unsigned Idx = isLoad ? 2 : 3;
   5893     ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
   5894     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
   5895 
   5896     const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
   5897     // Adjust only if Op1 and Op2 are GPRs.
   5898     if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
   5899         MRC.contains(Op2.getReg())) {
   5900       unsigned Reg1 = Op1.getReg();
   5901       unsigned Reg2 = Op2.getReg();
   5902       unsigned Rt = MRI->getEncodingValue(Reg1);
   5903       unsigned Rt2 = MRI->getEncodingValue(Reg2);
   5904 
   5905       // Rt2 must be Rt + 1 and Rt must be even.
   5906       if (Rt + 1 != Rt2 || (Rt & 1)) {
   5907         Error(Op2.getStartLoc(), isLoad
   5908                                      ? "destination operands must be sequential"
   5909                                      : "source operands must be sequential");
   5910         return true;
   5911       }
   5912       unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
   5913           &(MRI->getRegClass(ARM::GPRPairRegClassID)));
   5914       Operands[Idx] =
   5915           ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
   5916       Operands.erase(Operands.begin() + Idx + 1);
   5917     }
   5918   }
   5919 
   5920   // GNU Assembler extension (compatibility)
   5921   if ((Mnemonic == "ldrd" || Mnemonic == "strd")) {
   5922     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
   5923     ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
   5924     if (Op3.isMem()) {
   5925       assert(Op2.isReg() && "expected register argument");
   5926 
   5927       unsigned SuperReg = MRI->getMatchingSuperReg(
   5928           Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID));
   5929 
   5930       assert(SuperReg && "expected register pair");
   5931 
   5932       unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1);
   5933 
   5934       Operands.insert(
   5935           Operands.begin() + 3,
   5936           ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
   5937     }
   5938   }
   5939 
   5940   // FIXME: As said above, this is all a pretty gross hack.  This instruction
   5941   // does not fit with other "subs" and tblgen.
   5942   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
   5943   // so the Mnemonic is the original name "subs" and delete the predicate
   5944   // operand so it will match the table entry.
   5945   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
   5946       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5947       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
   5948       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5949       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
   5950       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
   5951     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
   5952     Operands.erase(Operands.begin() + 1);
   5953   }
   5954   return false;
   5955 }
   5956 
   5957 // Validate context-sensitive operand constraints.
   5958 
   5959 // return 'true' if register list contains non-low GPR registers,
   5960 // 'false' otherwise. If Reg is in the register list or is HiReg, set
   5961 // 'containsReg' to true.
   5962 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
   5963                                  unsigned Reg, unsigned HiReg,
   5964                                  bool &containsReg) {
   5965   containsReg = false;
   5966   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
   5967     unsigned OpReg = Inst.getOperand(i).getReg();
   5968     if (OpReg == Reg)
   5969       containsReg = true;
   5970     // Anything other than a low register isn't legal here.
   5971     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
   5972       return true;
   5973   }
   5974   return false;
   5975 }
   5976 
   5977 // Check if the specified regisgter is in the register list of the inst,
   5978 // starting at the indicated operand number.
   5979 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
   5980   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
   5981     unsigned OpReg = Inst.getOperand(i).getReg();
   5982     if (OpReg == Reg)
   5983       return true;
   5984   }
   5985   return false;
   5986 }
   5987 
   5988 // Return true if instruction has the interesting property of being
   5989 // allowed in IT blocks, but not being predicable.
   5990 static bool instIsBreakpoint(const MCInst &Inst) {
   5991     return Inst.getOpcode() == ARM::tBKPT ||
   5992            Inst.getOpcode() == ARM::BKPT ||
   5993            Inst.getOpcode() == ARM::tHLT ||
   5994            Inst.getOpcode() == ARM::HLT;
   5995 
   5996 }
   5997 
   5998 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
   5999                                        const OperandVector &Operands,
   6000                                        unsigned ListNo, bool IsARPop) {
   6001   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
   6002   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
   6003 
   6004   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
   6005   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
   6006   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
   6007 
   6008   if (!IsARPop && ListContainsSP)
   6009     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6010                  "SP may not be in the register list");
   6011   else if (ListContainsPC && ListContainsLR)
   6012     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6013                  "PC and LR may not be in the register list simultaneously");
   6014   else if (inITBlock() && !lastInITBlock() && ListContainsPC)
   6015     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6016                  "instruction must be outside of IT block or the last "
   6017                  "instruction in an IT block");
   6018   return false;
   6019 }
   6020 
   6021 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
   6022                                        const OperandVector &Operands,
   6023                                        unsigned ListNo) {
   6024   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
   6025   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
   6026 
   6027   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
   6028   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
   6029 
   6030   if (ListContainsSP && ListContainsPC)
   6031     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6032                  "SP and PC may not be in the register list");
   6033   else if (ListContainsSP)
   6034     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6035                  "SP may not be in the register list");
   6036   else if (ListContainsPC)
   6037     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6038                  "PC may not be in the register list");
   6039   return false;
   6040 }
   6041 
   6042 // FIXME: We would really like to be able to tablegen'erate this.
   6043 bool ARMAsmParser::validateInstruction(MCInst &Inst,
   6044                                        const OperandVector &Operands) {
   6045   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
   6046   SMLoc Loc = Operands[0]->getStartLoc();
   6047 
   6048   // Check the IT block state first.
   6049   // NOTE: BKPT and HLT instructions have the interesting property of being
   6050   // allowed in IT blocks, but not being predicable. They just always execute.
   6051   if (inITBlock() && !instIsBreakpoint(Inst)) {
   6052     unsigned Bit = 1;
   6053     if (ITState.FirstCond)
   6054       ITState.FirstCond = false;
   6055     else
   6056       Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
   6057     // The instruction must be predicable.
   6058     if (!MCID.isPredicable())
   6059       return Error(Loc, "instructions in IT block must be predicable");
   6060     unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
   6061     unsigned ITCond = Bit ? ITState.Cond :
   6062       ARMCC::getOppositeCondition(ITState.Cond);
   6063     if (Cond != ITCond) {
   6064       // Find the condition code Operand to get its SMLoc information.
   6065       SMLoc CondLoc;
   6066       for (unsigned I = 1; I < Operands.size(); ++I)
   6067         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
   6068           CondLoc = Operands[I]->getStartLoc();
   6069       return Error(CondLoc, "incorrect condition in IT block; got '" +
   6070                    StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
   6071                    "', but expected '" +
   6072                    ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
   6073     }
   6074   // Check for non-'al' condition codes outside of the IT block.
   6075   } else if (isThumbTwo() && MCID.isPredicable() &&
   6076              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
   6077              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
   6078              Inst.getOpcode() != ARM::t2Bcc)
   6079     return Error(Loc, "predicated instructions must be in IT block");
   6080 
   6081   const unsigned Opcode = Inst.getOpcode();
   6082   switch (Opcode) {
   6083   case ARM::LDRD:
   6084   case ARM::LDRD_PRE:
   6085   case ARM::LDRD_POST: {
   6086     const unsigned RtReg = Inst.getOperand(0).getReg();
   6087 
   6088     // Rt can't be R14.
   6089     if (RtReg == ARM::LR)
   6090       return Error(Operands[3]->getStartLoc(),
   6091                    "Rt can't be R14");
   6092 
   6093     const unsigned Rt = MRI->getEncodingValue(RtReg);
   6094     // Rt must be even-numbered.
   6095     if ((Rt & 1) == 1)
   6096       return Error(Operands[3]->getStartLoc(),
   6097                    "Rt must be even-numbered");
   6098 
   6099     // Rt2 must be Rt + 1.
   6100     const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6101     if (Rt2 != Rt + 1)
   6102       return Error(Operands[3]->getStartLoc(),
   6103                    "destination operands must be sequential");
   6104 
   6105     if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
   6106       const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
   6107       // For addressing modes with writeback, the base register needs to be
   6108       // different from the destination registers.
   6109       if (Rn == Rt || Rn == Rt2)
   6110         return Error(Operands[3]->getStartLoc(),
   6111                      "base register needs to be different from destination "
   6112                      "registers");
   6113     }
   6114 
   6115     return false;
   6116   }
   6117   case ARM::t2LDRDi8:
   6118   case ARM::t2LDRD_PRE:
   6119   case ARM::t2LDRD_POST: {
   6120     // Rt2 must be different from Rt.
   6121     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   6122     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6123     if (Rt2 == Rt)
   6124       return Error(Operands[3]->getStartLoc(),
   6125                    "destination operands can't be identical");
   6126     return false;
   6127   }
   6128   case ARM::t2BXJ: {
   6129     const unsigned RmReg = Inst.getOperand(0).getReg();
   6130     // Rm = SP is no longer unpredictable in v8-A
   6131     if (RmReg == ARM::SP && !hasV8Ops())
   6132       return Error(Operands[2]->getStartLoc(),
   6133                    "r13 (SP) is an unpredictable operand to BXJ");
   6134     return false;
   6135   }
   6136   case ARM::STRD: {
   6137     // Rt2 must be Rt + 1.
   6138     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   6139     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6140     if (Rt2 != Rt + 1)
   6141       return Error(Operands[3]->getStartLoc(),
   6142                    "source operands must be sequential");
   6143     return false;
   6144   }
   6145   case ARM::STRD_PRE:
   6146   case ARM::STRD_POST: {
   6147     // Rt2 must be Rt + 1.
   6148     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6149     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
   6150     if (Rt2 != Rt + 1)
   6151       return Error(Operands[3]->getStartLoc(),
   6152                    "source operands must be sequential");
   6153     return false;
   6154   }
   6155   case ARM::STR_PRE_IMM:
   6156   case ARM::STR_PRE_REG:
   6157   case ARM::STR_POST_IMM:
   6158   case ARM::STR_POST_REG:
   6159   case ARM::STRH_PRE:
   6160   case ARM::STRH_POST:
   6161   case ARM::STRB_PRE_IMM:
   6162   case ARM::STRB_PRE_REG:
   6163   case ARM::STRB_POST_IMM:
   6164   case ARM::STRB_POST_REG: {
   6165     // Rt must be different from Rn.
   6166     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6167     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
   6168 
   6169     if (Rt == Rn)
   6170       return Error(Operands[3]->getStartLoc(),
   6171                    "source register and base register can't be identical");
   6172     return false;
   6173   }
   6174   case ARM::LDR_PRE_IMM:
   6175   case ARM::LDR_PRE_REG:
   6176   case ARM::LDR_POST_IMM:
   6177   case ARM::LDR_POST_REG:
   6178   case ARM::LDRH_PRE:
   6179   case ARM::LDRH_POST:
   6180   case ARM::LDRSH_PRE:
   6181   case ARM::LDRSH_POST:
   6182   case ARM::LDRB_PRE_IMM:
   6183   case ARM::LDRB_PRE_REG:
   6184   case ARM::LDRB_POST_IMM:
   6185   case ARM::LDRB_POST_REG:
   6186   case ARM::LDRSB_PRE:
   6187   case ARM::LDRSB_POST: {
   6188     // Rt must be different from Rn.
   6189     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   6190     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
   6191 
   6192     if (Rt == Rn)
   6193       return Error(Operands[3]->getStartLoc(),
   6194                    "destination register and base register can't be identical");
   6195     return false;
   6196   }
   6197   case ARM::SBFX:
   6198   case ARM::UBFX: {
   6199     // Width must be in range [1, 32-lsb].
   6200     unsigned LSB = Inst.getOperand(2).getImm();
   6201     unsigned Widthm1 = Inst.getOperand(3).getImm();
   6202     if (Widthm1 >= 32 - LSB)
   6203       return Error(Operands[5]->getStartLoc(),
   6204                    "bitfield width must be in range [1,32-lsb]");
   6205     return false;
   6206   }
   6207   // Notionally handles ARM::tLDMIA_UPD too.
   6208   case ARM::tLDMIA: {
   6209     // If we're parsing Thumb2, the .w variant is available and handles
   6210     // most cases that are normally illegal for a Thumb1 LDM instruction.
   6211     // We'll make the transformation in processInstruction() if necessary.
   6212     //
   6213     // Thumb LDM instructions are writeback iff the base register is not
   6214     // in the register list.
   6215     unsigned Rn = Inst.getOperand(0).getReg();
   6216     bool HasWritebackToken =
   6217         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   6218          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
   6219     bool ListContainsBase;
   6220     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
   6221       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
   6222                    "registers must be in range r0-r7");
   6223     // If we should have writeback, then there should be a '!' token.
   6224     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
   6225       return Error(Operands[2]->getStartLoc(),
   6226                    "writeback operator '!' expected");
   6227     // If we should not have writeback, there must not be a '!'. This is
   6228     // true even for the 32-bit wide encodings.
   6229     if (ListContainsBase && HasWritebackToken)
   6230       return Error(Operands[3]->getStartLoc(),
   6231                    "writeback operator '!' not allowed when base register "
   6232                    "in register list");
   6233 
   6234     if (validatetLDMRegList(Inst, Operands, 3))
   6235       return true;
   6236     break;
   6237   }
   6238   case ARM::LDMIA_UPD:
   6239   case ARM::LDMDB_UPD:
   6240   case ARM::LDMIB_UPD:
   6241   case ARM::LDMDA_UPD:
   6242     // ARM variants loading and updating the same register are only officially
   6243     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
   6244     if (!hasV7Ops())
   6245       break;
   6246     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
   6247       return Error(Operands.back()->getStartLoc(),
   6248                    "writeback register not allowed in register list");
   6249     break;
   6250   case ARM::t2LDMIA:
   6251   case ARM::t2LDMDB:
   6252     if (validatetLDMRegList(Inst, Operands, 3))
   6253       return true;
   6254     break;
   6255   case ARM::t2STMIA:
   6256   case ARM::t2STMDB:
   6257     if (validatetSTMRegList(Inst, Operands, 3))
   6258       return true;
   6259     break;
   6260   case ARM::t2LDMIA_UPD:
   6261   case ARM::t2LDMDB_UPD:
   6262   case ARM::t2STMIA_UPD:
   6263   case ARM::t2STMDB_UPD: {
   6264     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
   6265       return Error(Operands.back()->getStartLoc(),
   6266                    "writeback register not allowed in register list");
   6267 
   6268     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
   6269       if (validatetLDMRegList(Inst, Operands, 3))
   6270         return true;
   6271     } else {
   6272       if (validatetSTMRegList(Inst, Operands, 3))
   6273         return true;
   6274     }
   6275     break;
   6276   }
   6277   case ARM::sysLDMIA_UPD:
   6278   case ARM::sysLDMDA_UPD:
   6279   case ARM::sysLDMDB_UPD:
   6280   case ARM::sysLDMIB_UPD:
   6281     if (!listContainsReg(Inst, 3, ARM::PC))
   6282       return Error(Operands[4]->getStartLoc(),
   6283                    "writeback register only allowed on system LDM "
   6284                    "if PC in register-list");
   6285     break;
   6286   case ARM::sysSTMIA_UPD:
   6287   case ARM::sysSTMDA_UPD:
   6288   case ARM::sysSTMDB_UPD:
   6289   case ARM::sysSTMIB_UPD:
   6290     return Error(Operands[2]->getStartLoc(),
   6291                  "system STM cannot have writeback register");
   6292   case ARM::tMUL: {
   6293     // The second source operand must be the same register as the destination
   6294     // operand.
   6295     //
   6296     // In this case, we must directly check the parsed operands because the
   6297     // cvtThumbMultiply() function is written in such a way that it guarantees
   6298     // this first statement is always true for the new Inst.  Essentially, the
   6299     // destination is unconditionally copied into the second source operand
   6300     // without checking to see if it matches what we actually parsed.
   6301     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
   6302                                  ((ARMOperand &)*Operands[5]).getReg()) &&
   6303         (((ARMOperand &)*Operands[3]).getReg() !=
   6304          ((ARMOperand &)*Operands[4]).getReg())) {
   6305       return Error(Operands[3]->getStartLoc(),
   6306                    "destination register must match source register");
   6307     }
   6308     break;
   6309   }
   6310   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
   6311   // so only issue a diagnostic for thumb1. The instructions will be
   6312   // switched to the t2 encodings in processInstruction() if necessary.
   6313   case ARM::tPOP: {
   6314     bool ListContainsBase;
   6315     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
   6316         !isThumbTwo())
   6317       return Error(Operands[2]->getStartLoc(),
   6318                    "registers must be in range r0-r7 or pc");
   6319     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
   6320       return true;
   6321     break;
   6322   }
   6323   case ARM::tPUSH: {
   6324     bool ListContainsBase;
   6325     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
   6326         !isThumbTwo())
   6327       return Error(Operands[2]->getStartLoc(),
   6328                    "registers must be in range r0-r7 or lr");
   6329     if (validatetSTMRegList(Inst, Operands, 2))
   6330       return true;
   6331     break;
   6332   }
   6333   case ARM::tSTMIA_UPD: {
   6334     bool ListContainsBase, InvalidLowList;
   6335     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
   6336                                           0, ListContainsBase);
   6337     if (InvalidLowList && !isThumbTwo())
   6338       return Error(Operands[4]->getStartLoc(),
   6339                    "registers must be in range r0-r7");
   6340 
   6341     // This would be converted to a 32-bit stm, but that's not valid if the
   6342     // writeback register is in the list.
   6343     if (InvalidLowList && ListContainsBase)
   6344       return Error(Operands[4]->getStartLoc(),
   6345                    "writeback operator '!' not allowed when base register "
   6346                    "in register list");
   6347 
   6348     if (validatetSTMRegList(Inst, Operands, 4))
   6349       return true;
   6350     break;
   6351   }
   6352   case ARM::tADDrSP: {
   6353     // If the non-SP source operand and the destination operand are not the
   6354     // same, we need thumb2 (for the wide encoding), or we have an error.
   6355     if (!isThumbTwo() &&
   6356         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
   6357       return Error(Operands[4]->getStartLoc(),
   6358                    "source register must be the same as destination");
   6359     }
   6360     break;
   6361   }
   6362   // Final range checking for Thumb unconditional branch instructions.
   6363   case ARM::tB:
   6364     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
   6365       return Error(Operands[2]->getStartLoc(), "branch target out of range");
   6366     break;
   6367   case ARM::t2B: {
   6368     int op = (Operands[2]->isImm()) ? 2 : 3;
   6369     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
   6370       return Error(Operands[op]->getStartLoc(), "branch target out of range");
   6371     break;
   6372   }
   6373   // Final range checking for Thumb conditional branch instructions.
   6374   case ARM::tBcc:
   6375     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
   6376       return Error(Operands[2]->getStartLoc(), "branch target out of range");
   6377     break;
   6378   case ARM::t2Bcc: {
   6379     int Op = (Operands[2]->isImm()) ? 2 : 3;
   6380     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
   6381       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
   6382     break;
   6383   }
   6384   case ARM::MOVi16:
   6385   case ARM::t2MOVi16:
   6386   case ARM::t2MOVTi16:
   6387     {
   6388     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
   6389     // especially when we turn it into a movw and the expression <symbol> does
   6390     // not have a :lower16: or :upper16 as part of the expression.  We don't
   6391     // want the behavior of silently truncating, which can be unexpected and
   6392     // lead to bugs that are difficult to find since this is an easy mistake
   6393     // to make.
   6394     int i = (Operands[3]->isImm()) ? 3 : 4;
   6395     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
   6396     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
   6397     if (CE) break;
   6398     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
   6399     if (!E) break;
   6400     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
   6401     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
   6402                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
   6403       return Error(
   6404           Op.getStartLoc(),
   6405           "immediate expression for mov requires :lower16: or :upper16");
   6406     break;
   6407   }
   6408   }
   6409 
   6410   return false;
   6411 }
   6412 
   6413 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
   6414   switch(Opc) {
   6415   default: llvm_unreachable("unexpected opcode!");
   6416   // VST1LN
   6417   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
   6418   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
   6419   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
   6420   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
   6421   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
   6422   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
   6423   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
   6424   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
   6425   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
   6426 
   6427   // VST2LN
   6428   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
   6429   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
   6430   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
   6431   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
   6432   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
   6433 
   6434   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
   6435   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
   6436   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
   6437   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
   6438   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
   6439 
   6440   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
   6441   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
   6442   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
   6443   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
   6444   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
   6445 
   6446   // VST3LN
   6447   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
   6448   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
   6449   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
   6450   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
   6451   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
   6452   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
   6453   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
   6454   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
   6455   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
   6456   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
   6457   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
   6458   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
   6459   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
   6460   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
   6461   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
   6462 
   6463   // VST3
   6464   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
   6465   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
   6466   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
   6467   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
   6468   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
   6469   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
   6470   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
   6471   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
   6472   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
   6473   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
   6474   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
   6475   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
   6476   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
   6477   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
   6478   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
   6479   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
   6480   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
   6481   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
   6482 
   6483   // VST4LN
   6484   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
   6485   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
   6486   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
   6487   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
   6488   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
   6489   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
   6490   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
   6491   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
   6492   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
   6493   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
   6494   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
   6495   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
   6496   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
   6497   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
   6498   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
   6499 
   6500   // VST4
   6501   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
   6502   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
   6503   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
   6504   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
   6505   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
   6506   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
   6507   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
   6508   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
   6509   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
   6510   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
   6511   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
   6512   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
   6513   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
   6514   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
   6515   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
   6516   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
   6517   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
   6518   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
   6519   }
   6520 }
   6521 
   6522 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
   6523   switch(Opc) {
   6524   default: llvm_unreachable("unexpected opcode!");
   6525   // VLD1LN
   6526   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
   6527   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
   6528   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
   6529   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
   6530   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
   6531   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
   6532   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
   6533   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
   6534   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
   6535 
   6536   // VLD2LN
   6537   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
   6538   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
   6539   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
   6540   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
   6541   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
   6542   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
   6543   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
   6544   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
   6545   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
   6546   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
   6547   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
   6548   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
   6549   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
   6550   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
   6551   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
   6552 
   6553   // VLD3DUP
   6554   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
   6555   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
   6556   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
   6557   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
   6558   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
   6559   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
   6560   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
   6561   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
   6562   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
   6563   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
   6564   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
   6565   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
   6566   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
   6567   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
   6568   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
   6569   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
   6570   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
   6571   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
   6572 
   6573   // VLD3LN
   6574   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
   6575   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
   6576   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
   6577   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
   6578   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
   6579   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
   6580   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
   6581   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
   6582   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
   6583   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
   6584   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
   6585   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
   6586   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
   6587   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
   6588   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
   6589 
   6590   // VLD3
   6591   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
   6592   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
   6593   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
   6594   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
   6595   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
   6596   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
   6597   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
   6598   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
   6599   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
   6600   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
   6601   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
   6602   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
   6603   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
   6604   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
   6605   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
   6606   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
   6607   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
   6608   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
   6609 
   6610   // VLD4LN
   6611   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
   6612   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
   6613   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
   6614   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
   6615   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
   6616   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
   6617   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
   6618   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
   6619   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
   6620   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
   6621   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
   6622   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
   6623   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
   6624   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
   6625   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
   6626 
   6627   // VLD4DUP
   6628   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
   6629   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
   6630   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
   6631   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
   6632   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
   6633   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
   6634   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
   6635   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
   6636   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
   6637   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
   6638   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
   6639   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
   6640   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
   6641   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
   6642   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
   6643   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
   6644   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
   6645   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
   6646 
   6647   // VLD4
   6648   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
   6649   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
   6650   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
   6651   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
   6652   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
   6653   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
   6654   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
   6655   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
   6656   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
   6657   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
   6658   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
   6659   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
   6660   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
   6661   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
   6662   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
   6663   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
   6664   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
   6665   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
   6666   }
   6667 }
   6668 
   6669 bool ARMAsmParser::processInstruction(MCInst &Inst,
   6670                                       const OperandVector &Operands,
   6671                                       MCStreamer &Out) {
   6672   switch (Inst.getOpcode()) {
   6673   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
   6674   case ARM::LDRT_POST:
   6675   case ARM::LDRBT_POST: {
   6676     const unsigned Opcode =
   6677       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
   6678                                            : ARM::LDRBT_POST_IMM;
   6679     MCInst TmpInst;
   6680     TmpInst.setOpcode(Opcode);
   6681     TmpInst.addOperand(Inst.getOperand(0));
   6682     TmpInst.addOperand(Inst.getOperand(1));
   6683     TmpInst.addOperand(Inst.getOperand(1));
   6684     TmpInst.addOperand(MCOperand::createReg(0));
   6685     TmpInst.addOperand(MCOperand::createImm(0));
   6686     TmpInst.addOperand(Inst.getOperand(2));
   6687     TmpInst.addOperand(Inst.getOperand(3));
   6688     Inst = TmpInst;
   6689     return true;
   6690   }
   6691   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
   6692   case ARM::STRT_POST:
   6693   case ARM::STRBT_POST: {
   6694     const unsigned Opcode =
   6695       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
   6696                                            : ARM::STRBT_POST_IMM;
   6697     MCInst TmpInst;
   6698     TmpInst.setOpcode(Opcode);
   6699     TmpInst.addOperand(Inst.getOperand(1));
   6700     TmpInst.addOperand(Inst.getOperand(0));
   6701     TmpInst.addOperand(Inst.getOperand(1));
   6702     TmpInst.addOperand(MCOperand::createReg(0));
   6703     TmpInst.addOperand(MCOperand::createImm(0));
   6704     TmpInst.addOperand(Inst.getOperand(2));
   6705     TmpInst.addOperand(Inst.getOperand(3));
   6706     Inst = TmpInst;
   6707     return true;
   6708   }
   6709   // Alias for alternate form of 'ADR Rd, #imm' instruction.
   6710   case ARM::ADDri: {
   6711     if (Inst.getOperand(1).getReg() != ARM::PC ||
   6712         Inst.getOperand(5).getReg() != 0 ||
   6713         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
   6714       return false;
   6715     MCInst TmpInst;
   6716     TmpInst.setOpcode(ARM::ADR);
   6717     TmpInst.addOperand(Inst.getOperand(0));
   6718     if (Inst.getOperand(2).isImm()) {
   6719       // Immediate (mod_imm) will be in its encoded form, we must unencode it
   6720       // before passing it to the ADR instruction.
   6721       unsigned Enc = Inst.getOperand(2).getImm();
   6722       TmpInst.addOperand(MCOperand::createImm(
   6723         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
   6724     } else {
   6725       // Turn PC-relative expression into absolute expression.
   6726       // Reading PC provides the start of the current instruction + 8 and
   6727       // the transform to adr is biased by that.
   6728       MCSymbol *Dot = getContext().createTempSymbol();
   6729       Out.EmitLabel(Dot);
   6730       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
   6731       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
   6732                                                      MCSymbolRefExpr::VK_None,
   6733                                                      getContext());
   6734       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
   6735       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
   6736                                                      getContext());
   6737       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
   6738                                                         getContext());
   6739       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
   6740     }
   6741     TmpInst.addOperand(Inst.getOperand(3));
   6742     TmpInst.addOperand(Inst.getOperand(4));
   6743     Inst = TmpInst;
   6744     return true;
   6745   }
   6746   // Aliases for alternate PC+imm syntax of LDR instructions.
   6747   case ARM::t2LDRpcrel:
   6748     // Select the narrow version if the immediate will fit.
   6749     if (Inst.getOperand(1).getImm() > 0 &&
   6750         Inst.getOperand(1).getImm() <= 0xff &&
   6751         !(static_cast<ARMOperand &>(*Operands[2]).isToken() &&
   6752           static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w"))
   6753       Inst.setOpcode(ARM::tLDRpci);
   6754     else
   6755       Inst.setOpcode(ARM::t2LDRpci);
   6756     return true;
   6757   case ARM::t2LDRBpcrel:
   6758     Inst.setOpcode(ARM::t2LDRBpci);
   6759     return true;
   6760   case ARM::t2LDRHpcrel:
   6761     Inst.setOpcode(ARM::t2LDRHpci);
   6762     return true;
   6763   case ARM::t2LDRSBpcrel:
   6764     Inst.setOpcode(ARM::t2LDRSBpci);
   6765     return true;
   6766   case ARM::t2LDRSHpcrel:
   6767     Inst.setOpcode(ARM::t2LDRSHpci);
   6768     return true;
   6769   // Handle NEON VST complex aliases.
   6770   case ARM::VST1LNdWB_register_Asm_8:
   6771   case ARM::VST1LNdWB_register_Asm_16:
   6772   case ARM::VST1LNdWB_register_Asm_32: {
   6773     MCInst TmpInst;
   6774     // Shuffle the operands around so the lane index operand is in the
   6775     // right place.
   6776     unsigned Spacing;
   6777     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6778     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6779     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6780     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6781     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6782     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6783     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6784     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6785     TmpInst.addOperand(Inst.getOperand(6));
   6786     Inst = TmpInst;
   6787     return true;
   6788   }
   6789 
   6790   case ARM::VST2LNdWB_register_Asm_8:
   6791   case ARM::VST2LNdWB_register_Asm_16:
   6792   case ARM::VST2LNdWB_register_Asm_32:
   6793   case ARM::VST2LNqWB_register_Asm_16:
   6794   case ARM::VST2LNqWB_register_Asm_32: {
   6795     MCInst TmpInst;
   6796     // Shuffle the operands around so the lane index operand is in the
   6797     // right place.
   6798     unsigned Spacing;
   6799     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6800     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6801     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6802     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6803     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6804     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6805     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6806                                             Spacing));
   6807     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6808     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6809     TmpInst.addOperand(Inst.getOperand(6));
   6810     Inst = TmpInst;
   6811     return true;
   6812   }
   6813 
   6814   case ARM::VST3LNdWB_register_Asm_8:
   6815   case ARM::VST3LNdWB_register_Asm_16:
   6816   case ARM::VST3LNdWB_register_Asm_32:
   6817   case ARM::VST3LNqWB_register_Asm_16:
   6818   case ARM::VST3LNqWB_register_Asm_32: {
   6819     MCInst TmpInst;
   6820     // Shuffle the operands around so the lane index operand is in the
   6821     // right place.
   6822     unsigned Spacing;
   6823     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6824     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6825     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6826     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6827     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6828     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6829     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6830                                             Spacing));
   6831     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6832                                             Spacing * 2));
   6833     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6834     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6835     TmpInst.addOperand(Inst.getOperand(6));
   6836     Inst = TmpInst;
   6837     return true;
   6838   }
   6839 
   6840   case ARM::VST4LNdWB_register_Asm_8:
   6841   case ARM::VST4LNdWB_register_Asm_16:
   6842   case ARM::VST4LNdWB_register_Asm_32:
   6843   case ARM::VST4LNqWB_register_Asm_16:
   6844   case ARM::VST4LNqWB_register_Asm_32: {
   6845     MCInst TmpInst;
   6846     // Shuffle the operands around so the lane index operand is in the
   6847     // right place.
   6848     unsigned Spacing;
   6849     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6850     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6851     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6852     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6853     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6854     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6855     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6856                                             Spacing));
   6857     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6858                                             Spacing * 2));
   6859     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6860                                             Spacing * 3));
   6861     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6862     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6863     TmpInst.addOperand(Inst.getOperand(6));
   6864     Inst = TmpInst;
   6865     return true;
   6866   }
   6867 
   6868   case ARM::VST1LNdWB_fixed_Asm_8:
   6869   case ARM::VST1LNdWB_fixed_Asm_16:
   6870   case ARM::VST1LNdWB_fixed_Asm_32: {
   6871     MCInst TmpInst;
   6872     // Shuffle the operands around so the lane index operand is in the
   6873     // right place.
   6874     unsigned Spacing;
   6875     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6876     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6877     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6878     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6879     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   6880     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6881     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6882     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6883     TmpInst.addOperand(Inst.getOperand(5));
   6884     Inst = TmpInst;
   6885     return true;
   6886   }
   6887 
   6888   case ARM::VST2LNdWB_fixed_Asm_8:
   6889   case ARM::VST2LNdWB_fixed_Asm_16:
   6890   case ARM::VST2LNdWB_fixed_Asm_32:
   6891   case ARM::VST2LNqWB_fixed_Asm_16:
   6892   case ARM::VST2LNqWB_fixed_Asm_32: {
   6893     MCInst TmpInst;
   6894     // Shuffle the operands around so the lane index operand is in the
   6895     // right place.
   6896     unsigned Spacing;
   6897     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6898     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6899     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6900     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6901     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   6902     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6903     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6904                                             Spacing));
   6905     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6906     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6907     TmpInst.addOperand(Inst.getOperand(5));
   6908     Inst = TmpInst;
   6909     return true;
   6910   }
   6911 
   6912   case ARM::VST3LNdWB_fixed_Asm_8:
   6913   case ARM::VST3LNdWB_fixed_Asm_16:
   6914   case ARM::VST3LNdWB_fixed_Asm_32:
   6915   case ARM::VST3LNqWB_fixed_Asm_16:
   6916   case ARM::VST3LNqWB_fixed_Asm_32: {
   6917     MCInst TmpInst;
   6918     // Shuffle the operands around so the lane index operand is in the
   6919     // right place.
   6920     unsigned Spacing;
   6921     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6922     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6923     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6924     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6925     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   6926     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6927     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6928                                             Spacing));
   6929     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6930                                             Spacing * 2));
   6931     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6932     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6933     TmpInst.addOperand(Inst.getOperand(5));
   6934     Inst = TmpInst;
   6935     return true;
   6936   }
   6937 
   6938   case ARM::VST4LNdWB_fixed_Asm_8:
   6939   case ARM::VST4LNdWB_fixed_Asm_16:
   6940   case ARM::VST4LNdWB_fixed_Asm_32:
   6941   case ARM::VST4LNqWB_fixed_Asm_16:
   6942   case ARM::VST4LNqWB_fixed_Asm_32: {
   6943     MCInst TmpInst;
   6944     // Shuffle the operands around so the lane index operand is in the
   6945     // right place.
   6946     unsigned Spacing;
   6947     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6948     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6949     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6950     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6951     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   6952     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6953     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6954                                             Spacing));
   6955     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6956                                             Spacing * 2));
   6957     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6958                                             Spacing * 3));
   6959     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6960     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6961     TmpInst.addOperand(Inst.getOperand(5));
   6962     Inst = TmpInst;
   6963     return true;
   6964   }
   6965 
   6966   case ARM::VST1LNdAsm_8:
   6967   case ARM::VST1LNdAsm_16:
   6968   case ARM::VST1LNdAsm_32: {
   6969     MCInst TmpInst;
   6970     // Shuffle the operands around so the lane index operand is in the
   6971     // right place.
   6972     unsigned Spacing;
   6973     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6974     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6975     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6976     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6977     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6978     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6979     TmpInst.addOperand(Inst.getOperand(5));
   6980     Inst = TmpInst;
   6981     return true;
   6982   }
   6983 
   6984   case ARM::VST2LNdAsm_8:
   6985   case ARM::VST2LNdAsm_16:
   6986   case ARM::VST2LNdAsm_32:
   6987   case ARM::VST2LNqAsm_16:
   6988   case ARM::VST2LNqAsm_32: {
   6989     MCInst TmpInst;
   6990     // Shuffle the operands around so the lane index operand is in the
   6991     // right place.
   6992     unsigned Spacing;
   6993     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6994     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6995     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6996     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6997     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   6998                                             Spacing));
   6999     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7000     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7001     TmpInst.addOperand(Inst.getOperand(5));
   7002     Inst = TmpInst;
   7003     return true;
   7004   }
   7005 
   7006   case ARM::VST3LNdAsm_8:
   7007   case ARM::VST3LNdAsm_16:
   7008   case ARM::VST3LNdAsm_32:
   7009   case ARM::VST3LNqAsm_16:
   7010   case ARM::VST3LNqAsm_32: {
   7011     MCInst TmpInst;
   7012     // Shuffle the operands around so the lane index operand is in the
   7013     // right place.
   7014     unsigned Spacing;
   7015     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7016     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7017     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7018     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7019     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7020                                             Spacing));
   7021     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7022                                             Spacing * 2));
   7023     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7024     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7025     TmpInst.addOperand(Inst.getOperand(5));
   7026     Inst = TmpInst;
   7027     return true;
   7028   }
   7029 
   7030   case ARM::VST4LNdAsm_8:
   7031   case ARM::VST4LNdAsm_16:
   7032   case ARM::VST4LNdAsm_32:
   7033   case ARM::VST4LNqAsm_16:
   7034   case ARM::VST4LNqAsm_32: {
   7035     MCInst TmpInst;
   7036     // Shuffle the operands around so the lane index operand is in the
   7037     // right place.
   7038     unsigned Spacing;
   7039     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7040     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7041     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7042     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7043     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7044                                             Spacing));
   7045     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7046                                             Spacing * 2));
   7047     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7048                                             Spacing * 3));
   7049     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7050     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7051     TmpInst.addOperand(Inst.getOperand(5));
   7052     Inst = TmpInst;
   7053     return true;
   7054   }
   7055 
   7056   // Handle NEON VLD complex aliases.
   7057   case ARM::VLD1LNdWB_register_Asm_8:
   7058   case ARM::VLD1LNdWB_register_Asm_16:
   7059   case ARM::VLD1LNdWB_register_Asm_32: {
   7060     MCInst TmpInst;
   7061     // Shuffle the operands around so the lane index operand is in the
   7062     // right place.
   7063     unsigned Spacing;
   7064     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7065     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7066     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7067     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7068     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7069     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7070     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7071     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7072     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7073     TmpInst.addOperand(Inst.getOperand(6));
   7074     Inst = TmpInst;
   7075     return true;
   7076   }
   7077 
   7078   case ARM::VLD2LNdWB_register_Asm_8:
   7079   case ARM::VLD2LNdWB_register_Asm_16:
   7080   case ARM::VLD2LNdWB_register_Asm_32:
   7081   case ARM::VLD2LNqWB_register_Asm_16:
   7082   case ARM::VLD2LNqWB_register_Asm_32: {
   7083     MCInst TmpInst;
   7084     // Shuffle the operands around so the lane index operand is in the
   7085     // right place.
   7086     unsigned Spacing;
   7087     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7088     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7089     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7090                                             Spacing));
   7091     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7092     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7093     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7094     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7095     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7096     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7097                                             Spacing));
   7098     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7099     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7100     TmpInst.addOperand(Inst.getOperand(6));
   7101     Inst = TmpInst;
   7102     return true;
   7103   }
   7104 
   7105   case ARM::VLD3LNdWB_register_Asm_8:
   7106   case ARM::VLD3LNdWB_register_Asm_16:
   7107   case ARM::VLD3LNdWB_register_Asm_32:
   7108   case ARM::VLD3LNqWB_register_Asm_16:
   7109   case ARM::VLD3LNqWB_register_Asm_32: {
   7110     MCInst TmpInst;
   7111     // Shuffle the operands around so the lane index operand is in the
   7112     // right place.
   7113     unsigned Spacing;
   7114     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7115     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7116     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7117                                             Spacing));
   7118     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7119                                             Spacing * 2));
   7120     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7121     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7122     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7123     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7124     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7125     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7126                                             Spacing));
   7127     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7128                                             Spacing * 2));
   7129     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7130     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7131     TmpInst.addOperand(Inst.getOperand(6));
   7132     Inst = TmpInst;
   7133     return true;
   7134   }
   7135 
   7136   case ARM::VLD4LNdWB_register_Asm_8:
   7137   case ARM::VLD4LNdWB_register_Asm_16:
   7138   case ARM::VLD4LNdWB_register_Asm_32:
   7139   case ARM::VLD4LNqWB_register_Asm_16:
   7140   case ARM::VLD4LNqWB_register_Asm_32: {
   7141     MCInst TmpInst;
   7142     // Shuffle the operands around so the lane index operand is in the
   7143     // right place.
   7144     unsigned Spacing;
   7145     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7146     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7147     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7148                                             Spacing));
   7149     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7150                                             Spacing * 2));
   7151     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7152                                             Spacing * 3));
   7153     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7154     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7155     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7156     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7157     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7158     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7159                                             Spacing));
   7160     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7161                                             Spacing * 2));
   7162     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7163                                             Spacing * 3));
   7164     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7165     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7166     TmpInst.addOperand(Inst.getOperand(6));
   7167     Inst = TmpInst;
   7168     return true;
   7169   }
   7170 
   7171   case ARM::VLD1LNdWB_fixed_Asm_8:
   7172   case ARM::VLD1LNdWB_fixed_Asm_16:
   7173   case ARM::VLD1LNdWB_fixed_Asm_32: {
   7174     MCInst TmpInst;
   7175     // Shuffle the operands around so the lane index operand is in the
   7176     // right place.
   7177     unsigned Spacing;
   7178     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7179     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7180     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7181     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7182     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7183     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7184     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7185     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7186     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7187     TmpInst.addOperand(Inst.getOperand(5));
   7188     Inst = TmpInst;
   7189     return true;
   7190   }
   7191 
   7192   case ARM::VLD2LNdWB_fixed_Asm_8:
   7193   case ARM::VLD2LNdWB_fixed_Asm_16:
   7194   case ARM::VLD2LNdWB_fixed_Asm_32:
   7195   case ARM::VLD2LNqWB_fixed_Asm_16:
   7196   case ARM::VLD2LNqWB_fixed_Asm_32: {
   7197     MCInst TmpInst;
   7198     // Shuffle the operands around so the lane index operand is in the
   7199     // right place.
   7200     unsigned Spacing;
   7201     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7202     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7203     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7204                                             Spacing));
   7205     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7206     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7207     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7208     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7209     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7210     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7211                                             Spacing));
   7212     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7213     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7214     TmpInst.addOperand(Inst.getOperand(5));
   7215     Inst = TmpInst;
   7216     return true;
   7217   }
   7218 
   7219   case ARM::VLD3LNdWB_fixed_Asm_8:
   7220   case ARM::VLD3LNdWB_fixed_Asm_16:
   7221   case ARM::VLD3LNdWB_fixed_Asm_32:
   7222   case ARM::VLD3LNqWB_fixed_Asm_16:
   7223   case ARM::VLD3LNqWB_fixed_Asm_32: {
   7224     MCInst TmpInst;
   7225     // Shuffle the operands around so the lane index operand is in the
   7226     // right place.
   7227     unsigned Spacing;
   7228     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7229     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7230     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7231                                             Spacing));
   7232     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7233                                             Spacing * 2));
   7234     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7235     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7236     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7237     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7238     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7239     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7240                                             Spacing));
   7241     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7242                                             Spacing * 2));
   7243     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7244     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7245     TmpInst.addOperand(Inst.getOperand(5));
   7246     Inst = TmpInst;
   7247     return true;
   7248   }
   7249 
   7250   case ARM::VLD4LNdWB_fixed_Asm_8:
   7251   case ARM::VLD4LNdWB_fixed_Asm_16:
   7252   case ARM::VLD4LNdWB_fixed_Asm_32:
   7253   case ARM::VLD4LNqWB_fixed_Asm_16:
   7254   case ARM::VLD4LNqWB_fixed_Asm_32: {
   7255     MCInst TmpInst;
   7256     // Shuffle the operands around so the lane index operand is in the
   7257     // right place.
   7258     unsigned Spacing;
   7259     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7260     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7261     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7262                                             Spacing));
   7263     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7264                                             Spacing * 2));
   7265     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7266                                             Spacing * 3));
   7267     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7268     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7269     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7270     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7271     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7272     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7273                                             Spacing));
   7274     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7275                                             Spacing * 2));
   7276     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7277                                             Spacing * 3));
   7278     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7279     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7280     TmpInst.addOperand(Inst.getOperand(5));
   7281     Inst = TmpInst;
   7282     return true;
   7283   }
   7284 
   7285   case ARM::VLD1LNdAsm_8:
   7286   case ARM::VLD1LNdAsm_16:
   7287   case ARM::VLD1LNdAsm_32: {
   7288     MCInst TmpInst;
   7289     // Shuffle the operands around so the lane index operand is in the
   7290     // right place.
   7291     unsigned Spacing;
   7292     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7293     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7294     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7295     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7296     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7297     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7298     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7299     TmpInst.addOperand(Inst.getOperand(5));
   7300     Inst = TmpInst;
   7301     return true;
   7302   }
   7303 
   7304   case ARM::VLD2LNdAsm_8:
   7305   case ARM::VLD2LNdAsm_16:
   7306   case ARM::VLD2LNdAsm_32:
   7307   case ARM::VLD2LNqAsm_16:
   7308   case ARM::VLD2LNqAsm_32: {
   7309     MCInst TmpInst;
   7310     // Shuffle the operands around so the lane index operand is in the
   7311     // right place.
   7312     unsigned Spacing;
   7313     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7314     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7315     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7316                                             Spacing));
   7317     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7318     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7319     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7320     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7321                                             Spacing));
   7322     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7323     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7324     TmpInst.addOperand(Inst.getOperand(5));
   7325     Inst = TmpInst;
   7326     return true;
   7327   }
   7328 
   7329   case ARM::VLD3LNdAsm_8:
   7330   case ARM::VLD3LNdAsm_16:
   7331   case ARM::VLD3LNdAsm_32:
   7332   case ARM::VLD3LNqAsm_16:
   7333   case ARM::VLD3LNqAsm_32: {
   7334     MCInst TmpInst;
   7335     // Shuffle the operands around so the lane index operand is in the
   7336     // right place.
   7337     unsigned Spacing;
   7338     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7339     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7340     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7341                                             Spacing));
   7342     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7343                                             Spacing * 2));
   7344     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7345     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7346     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7347     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7348                                             Spacing));
   7349     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7350                                             Spacing * 2));
   7351     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7352     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7353     TmpInst.addOperand(Inst.getOperand(5));
   7354     Inst = TmpInst;
   7355     return true;
   7356   }
   7357 
   7358   case ARM::VLD4LNdAsm_8:
   7359   case ARM::VLD4LNdAsm_16:
   7360   case ARM::VLD4LNdAsm_32:
   7361   case ARM::VLD4LNqAsm_16:
   7362   case ARM::VLD4LNqAsm_32: {
   7363     MCInst TmpInst;
   7364     // Shuffle the operands around so the lane index operand is in the
   7365     // right place.
   7366     unsigned Spacing;
   7367     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7368     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7369     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7370                                             Spacing));
   7371     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7372                                             Spacing * 2));
   7373     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7374                                             Spacing * 3));
   7375     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7376     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7377     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7378     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7379                                             Spacing));
   7380     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7381                                             Spacing * 2));
   7382     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7383                                             Spacing * 3));
   7384     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7385     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7386     TmpInst.addOperand(Inst.getOperand(5));
   7387     Inst = TmpInst;
   7388     return true;
   7389   }
   7390 
   7391   // VLD3DUP single 3-element structure to all lanes instructions.
   7392   case ARM::VLD3DUPdAsm_8:
   7393   case ARM::VLD3DUPdAsm_16:
   7394   case ARM::VLD3DUPdAsm_32:
   7395   case ARM::VLD3DUPqAsm_8:
   7396   case ARM::VLD3DUPqAsm_16:
   7397   case ARM::VLD3DUPqAsm_32: {
   7398     MCInst TmpInst;
   7399     unsigned Spacing;
   7400     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7401     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7402     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7403                                             Spacing));
   7404     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7405                                             Spacing * 2));
   7406     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7407     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7408     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7409     TmpInst.addOperand(Inst.getOperand(4));
   7410     Inst = TmpInst;
   7411     return true;
   7412   }
   7413 
   7414   case ARM::VLD3DUPdWB_fixed_Asm_8:
   7415   case ARM::VLD3DUPdWB_fixed_Asm_16:
   7416   case ARM::VLD3DUPdWB_fixed_Asm_32:
   7417   case ARM::VLD3DUPqWB_fixed_Asm_8:
   7418   case ARM::VLD3DUPqWB_fixed_Asm_16:
   7419   case ARM::VLD3DUPqWB_fixed_Asm_32: {
   7420     MCInst TmpInst;
   7421     unsigned Spacing;
   7422     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7423     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7424     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7425                                             Spacing));
   7426     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7427                                             Spacing * 2));
   7428     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7429     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7430     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7431     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7432     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7433     TmpInst.addOperand(Inst.getOperand(4));
   7434     Inst = TmpInst;
   7435     return true;
   7436   }
   7437 
   7438   case ARM::VLD3DUPdWB_register_Asm_8:
   7439   case ARM::VLD3DUPdWB_register_Asm_16:
   7440   case ARM::VLD3DUPdWB_register_Asm_32:
   7441   case ARM::VLD3DUPqWB_register_Asm_8:
   7442   case ARM::VLD3DUPqWB_register_Asm_16:
   7443   case ARM::VLD3DUPqWB_register_Asm_32: {
   7444     MCInst TmpInst;
   7445     unsigned Spacing;
   7446     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7447     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7448     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7449                                             Spacing));
   7450     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7451                                             Spacing * 2));
   7452     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7453     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7454     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7455     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7456     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7457     TmpInst.addOperand(Inst.getOperand(5));
   7458     Inst = TmpInst;
   7459     return true;
   7460   }
   7461 
   7462   // VLD3 multiple 3-element structure instructions.
   7463   case ARM::VLD3dAsm_8:
   7464   case ARM::VLD3dAsm_16:
   7465   case ARM::VLD3dAsm_32:
   7466   case ARM::VLD3qAsm_8:
   7467   case ARM::VLD3qAsm_16:
   7468   case ARM::VLD3qAsm_32: {
   7469     MCInst TmpInst;
   7470     unsigned Spacing;
   7471     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7472     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7473     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7474                                             Spacing));
   7475     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7476                                             Spacing * 2));
   7477     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7478     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7479     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7480     TmpInst.addOperand(Inst.getOperand(4));
   7481     Inst = TmpInst;
   7482     return true;
   7483   }
   7484 
   7485   case ARM::VLD3dWB_fixed_Asm_8:
   7486   case ARM::VLD3dWB_fixed_Asm_16:
   7487   case ARM::VLD3dWB_fixed_Asm_32:
   7488   case ARM::VLD3qWB_fixed_Asm_8:
   7489   case ARM::VLD3qWB_fixed_Asm_16:
   7490   case ARM::VLD3qWB_fixed_Asm_32: {
   7491     MCInst TmpInst;
   7492     unsigned Spacing;
   7493     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7494     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7495     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7496                                             Spacing));
   7497     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7498                                             Spacing * 2));
   7499     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7500     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7501     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7502     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7503     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7504     TmpInst.addOperand(Inst.getOperand(4));
   7505     Inst = TmpInst;
   7506     return true;
   7507   }
   7508 
   7509   case ARM::VLD3dWB_register_Asm_8:
   7510   case ARM::VLD3dWB_register_Asm_16:
   7511   case ARM::VLD3dWB_register_Asm_32:
   7512   case ARM::VLD3qWB_register_Asm_8:
   7513   case ARM::VLD3qWB_register_Asm_16:
   7514   case ARM::VLD3qWB_register_Asm_32: {
   7515     MCInst TmpInst;
   7516     unsigned Spacing;
   7517     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7518     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7519     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7520                                             Spacing));
   7521     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7522                                             Spacing * 2));
   7523     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7524     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7525     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7526     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7527     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7528     TmpInst.addOperand(Inst.getOperand(5));
   7529     Inst = TmpInst;
   7530     return true;
   7531   }
   7532 
   7533   // VLD4DUP single 3-element structure to all lanes instructions.
   7534   case ARM::VLD4DUPdAsm_8:
   7535   case ARM::VLD4DUPdAsm_16:
   7536   case ARM::VLD4DUPdAsm_32:
   7537   case ARM::VLD4DUPqAsm_8:
   7538   case ARM::VLD4DUPqAsm_16:
   7539   case ARM::VLD4DUPqAsm_32: {
   7540     MCInst TmpInst;
   7541     unsigned Spacing;
   7542     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7543     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7544     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7545                                             Spacing));
   7546     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7547                                             Spacing * 2));
   7548     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7549                                             Spacing * 3));
   7550     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7551     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7552     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7553     TmpInst.addOperand(Inst.getOperand(4));
   7554     Inst = TmpInst;
   7555     return true;
   7556   }
   7557 
   7558   case ARM::VLD4DUPdWB_fixed_Asm_8:
   7559   case ARM::VLD4DUPdWB_fixed_Asm_16:
   7560   case ARM::VLD4DUPdWB_fixed_Asm_32:
   7561   case ARM::VLD4DUPqWB_fixed_Asm_8:
   7562   case ARM::VLD4DUPqWB_fixed_Asm_16:
   7563   case ARM::VLD4DUPqWB_fixed_Asm_32: {
   7564     MCInst TmpInst;
   7565     unsigned Spacing;
   7566     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7567     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7568     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7569                                             Spacing));
   7570     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7571                                             Spacing * 2));
   7572     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7573                                             Spacing * 3));
   7574     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7575     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7576     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7577     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7578     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7579     TmpInst.addOperand(Inst.getOperand(4));
   7580     Inst = TmpInst;
   7581     return true;
   7582   }
   7583 
   7584   case ARM::VLD4DUPdWB_register_Asm_8:
   7585   case ARM::VLD4DUPdWB_register_Asm_16:
   7586   case ARM::VLD4DUPdWB_register_Asm_32:
   7587   case ARM::VLD4DUPqWB_register_Asm_8:
   7588   case ARM::VLD4DUPqWB_register_Asm_16:
   7589   case ARM::VLD4DUPqWB_register_Asm_32: {
   7590     MCInst TmpInst;
   7591     unsigned Spacing;
   7592     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7593     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7594     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7595                                             Spacing));
   7596     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7597                                             Spacing * 2));
   7598     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7599                                             Spacing * 3));
   7600     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7601     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7602     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7603     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7604     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7605     TmpInst.addOperand(Inst.getOperand(5));
   7606     Inst = TmpInst;
   7607     return true;
   7608   }
   7609 
   7610   // VLD4 multiple 4-element structure instructions.
   7611   case ARM::VLD4dAsm_8:
   7612   case ARM::VLD4dAsm_16:
   7613   case ARM::VLD4dAsm_32:
   7614   case ARM::VLD4qAsm_8:
   7615   case ARM::VLD4qAsm_16:
   7616   case ARM::VLD4qAsm_32: {
   7617     MCInst TmpInst;
   7618     unsigned Spacing;
   7619     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7620     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7621     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7622                                             Spacing));
   7623     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7624                                             Spacing * 2));
   7625     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7626                                             Spacing * 3));
   7627     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7628     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7629     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7630     TmpInst.addOperand(Inst.getOperand(4));
   7631     Inst = TmpInst;
   7632     return true;
   7633   }
   7634 
   7635   case ARM::VLD4dWB_fixed_Asm_8:
   7636   case ARM::VLD4dWB_fixed_Asm_16:
   7637   case ARM::VLD4dWB_fixed_Asm_32:
   7638   case ARM::VLD4qWB_fixed_Asm_8:
   7639   case ARM::VLD4qWB_fixed_Asm_16:
   7640   case ARM::VLD4qWB_fixed_Asm_32: {
   7641     MCInst TmpInst;
   7642     unsigned Spacing;
   7643     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7644     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7645     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7646                                             Spacing));
   7647     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7648                                             Spacing * 2));
   7649     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7650                                             Spacing * 3));
   7651     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7652     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7653     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7654     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7655     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7656     TmpInst.addOperand(Inst.getOperand(4));
   7657     Inst = TmpInst;
   7658     return true;
   7659   }
   7660 
   7661   case ARM::VLD4dWB_register_Asm_8:
   7662   case ARM::VLD4dWB_register_Asm_16:
   7663   case ARM::VLD4dWB_register_Asm_32:
   7664   case ARM::VLD4qWB_register_Asm_8:
   7665   case ARM::VLD4qWB_register_Asm_16:
   7666   case ARM::VLD4qWB_register_Asm_32: {
   7667     MCInst TmpInst;
   7668     unsigned Spacing;
   7669     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7670     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7671     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7672                                             Spacing));
   7673     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7674                                             Spacing * 2));
   7675     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7676                                             Spacing * 3));
   7677     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7678     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7679     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7680     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7681     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7682     TmpInst.addOperand(Inst.getOperand(5));
   7683     Inst = TmpInst;
   7684     return true;
   7685   }
   7686 
   7687   // VST3 multiple 3-element structure instructions.
   7688   case ARM::VST3dAsm_8:
   7689   case ARM::VST3dAsm_16:
   7690   case ARM::VST3dAsm_32:
   7691   case ARM::VST3qAsm_8:
   7692   case ARM::VST3qAsm_16:
   7693   case ARM::VST3qAsm_32: {
   7694     MCInst TmpInst;
   7695     unsigned Spacing;
   7696     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7697     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7698     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7699     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7700     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7701                                             Spacing));
   7702     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7703                                             Spacing * 2));
   7704     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7705     TmpInst.addOperand(Inst.getOperand(4));
   7706     Inst = TmpInst;
   7707     return true;
   7708   }
   7709 
   7710   case ARM::VST3dWB_fixed_Asm_8:
   7711   case ARM::VST3dWB_fixed_Asm_16:
   7712   case ARM::VST3dWB_fixed_Asm_32:
   7713   case ARM::VST3qWB_fixed_Asm_8:
   7714   case ARM::VST3qWB_fixed_Asm_16:
   7715   case ARM::VST3qWB_fixed_Asm_32: {
   7716     MCInst TmpInst;
   7717     unsigned Spacing;
   7718     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7719     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7720     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7721     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7722     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7723     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7724     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7725                                             Spacing));
   7726     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7727                                             Spacing * 2));
   7728     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7729     TmpInst.addOperand(Inst.getOperand(4));
   7730     Inst = TmpInst;
   7731     return true;
   7732   }
   7733 
   7734   case ARM::VST3dWB_register_Asm_8:
   7735   case ARM::VST3dWB_register_Asm_16:
   7736   case ARM::VST3dWB_register_Asm_32:
   7737   case ARM::VST3qWB_register_Asm_8:
   7738   case ARM::VST3qWB_register_Asm_16:
   7739   case ARM::VST3qWB_register_Asm_32: {
   7740     MCInst TmpInst;
   7741     unsigned Spacing;
   7742     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7743     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7744     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7745     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7746     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7747     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7748     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7749                                             Spacing));
   7750     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7751                                             Spacing * 2));
   7752     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7753     TmpInst.addOperand(Inst.getOperand(5));
   7754     Inst = TmpInst;
   7755     return true;
   7756   }
   7757 
   7758   // VST4 multiple 3-element structure instructions.
   7759   case ARM::VST4dAsm_8:
   7760   case ARM::VST4dAsm_16:
   7761   case ARM::VST4dAsm_32:
   7762   case ARM::VST4qAsm_8:
   7763   case ARM::VST4qAsm_16:
   7764   case ARM::VST4qAsm_32: {
   7765     MCInst TmpInst;
   7766     unsigned Spacing;
   7767     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7768     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7769     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7770     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7771     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7772                                             Spacing));
   7773     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7774                                             Spacing * 2));
   7775     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7776                                             Spacing * 3));
   7777     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7778     TmpInst.addOperand(Inst.getOperand(4));
   7779     Inst = TmpInst;
   7780     return true;
   7781   }
   7782 
   7783   case ARM::VST4dWB_fixed_Asm_8:
   7784   case ARM::VST4dWB_fixed_Asm_16:
   7785   case ARM::VST4dWB_fixed_Asm_32:
   7786   case ARM::VST4qWB_fixed_Asm_8:
   7787   case ARM::VST4qWB_fixed_Asm_16:
   7788   case ARM::VST4qWB_fixed_Asm_32: {
   7789     MCInst TmpInst;
   7790     unsigned Spacing;
   7791     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7792     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7793     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7794     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7795     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
   7796     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7797     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7798                                             Spacing));
   7799     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7800                                             Spacing * 2));
   7801     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7802                                             Spacing * 3));
   7803     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7804     TmpInst.addOperand(Inst.getOperand(4));
   7805     Inst = TmpInst;
   7806     return true;
   7807   }
   7808 
   7809   case ARM::VST4dWB_register_Asm_8:
   7810   case ARM::VST4dWB_register_Asm_16:
   7811   case ARM::VST4dWB_register_Asm_32:
   7812   case ARM::VST4qWB_register_Asm_8:
   7813   case ARM::VST4qWB_register_Asm_16:
   7814   case ARM::VST4qWB_register_Asm_32: {
   7815     MCInst TmpInst;
   7816     unsigned Spacing;
   7817     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7818     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7819     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7820     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7821     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7822     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7823     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7824                                             Spacing));
   7825     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7826                                             Spacing * 2));
   7827     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
   7828                                             Spacing * 3));
   7829     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7830     TmpInst.addOperand(Inst.getOperand(5));
   7831     Inst = TmpInst;
   7832     return true;
   7833   }
   7834 
   7835   // Handle encoding choice for the shift-immediate instructions.
   7836   case ARM::t2LSLri:
   7837   case ARM::t2LSRri:
   7838   case ARM::t2ASRri: {
   7839     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7840         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   7841         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
   7842         !(static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   7843           static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) {
   7844       unsigned NewOpc;
   7845       switch (Inst.getOpcode()) {
   7846       default: llvm_unreachable("unexpected opcode");
   7847       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
   7848       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
   7849       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
   7850       }
   7851       // The Thumb1 operands aren't in the same order. Awesome, eh?
   7852       MCInst TmpInst;
   7853       TmpInst.setOpcode(NewOpc);
   7854       TmpInst.addOperand(Inst.getOperand(0));
   7855       TmpInst.addOperand(Inst.getOperand(5));
   7856       TmpInst.addOperand(Inst.getOperand(1));
   7857       TmpInst.addOperand(Inst.getOperand(2));
   7858       TmpInst.addOperand(Inst.getOperand(3));
   7859       TmpInst.addOperand(Inst.getOperand(4));
   7860       Inst = TmpInst;
   7861       return true;
   7862     }
   7863     return false;
   7864   }
   7865 
   7866   // Handle the Thumb2 mode MOV complex aliases.
   7867   case ARM::t2MOVsr:
   7868   case ARM::t2MOVSsr: {
   7869     // Which instruction to expand to depends on the CCOut operand and
   7870     // whether we're in an IT block if the register operands are low
   7871     // registers.
   7872     bool isNarrow = false;
   7873     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7874         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7875         isARMLowRegister(Inst.getOperand(2).getReg()) &&
   7876         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   7877         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
   7878       isNarrow = true;
   7879     MCInst TmpInst;
   7880     unsigned newOpc;
   7881     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
   7882     default: llvm_unreachable("unexpected opcode!");
   7883     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
   7884     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
   7885     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
   7886     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
   7887     }
   7888     TmpInst.setOpcode(newOpc);
   7889     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   7890     if (isNarrow)
   7891       TmpInst.addOperand(MCOperand::createReg(
   7892           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
   7893     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7894     TmpInst.addOperand(Inst.getOperand(2)); // Rm
   7895     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7896     TmpInst.addOperand(Inst.getOperand(5));
   7897     if (!isNarrow)
   7898       TmpInst.addOperand(MCOperand::createReg(
   7899           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
   7900     Inst = TmpInst;
   7901     return true;
   7902   }
   7903   case ARM::t2MOVsi:
   7904   case ARM::t2MOVSsi: {
   7905     // Which instruction to expand to depends on the CCOut operand and
   7906     // whether we're in an IT block if the register operands are low
   7907     // registers.
   7908     bool isNarrow = false;
   7909     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7910         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7911         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
   7912       isNarrow = true;
   7913     MCInst TmpInst;
   7914     unsigned newOpc;
   7915     switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
   7916     default: llvm_unreachable("unexpected opcode!");
   7917     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
   7918     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
   7919     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
   7920     case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
   7921     case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
   7922     }
   7923     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
   7924     if (Amount == 32) Amount = 0;
   7925     TmpInst.setOpcode(newOpc);
   7926     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   7927     if (isNarrow)
   7928       TmpInst.addOperand(MCOperand::createReg(
   7929           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
   7930     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7931     if (newOpc != ARM::t2RRX)
   7932       TmpInst.addOperand(MCOperand::createImm(Amount));
   7933     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7934     TmpInst.addOperand(Inst.getOperand(4));
   7935     if (!isNarrow)
   7936       TmpInst.addOperand(MCOperand::createReg(
   7937           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
   7938     Inst = TmpInst;
   7939     return true;
   7940   }
   7941   // Handle the ARM mode MOV complex aliases.
   7942   case ARM::ASRr:
   7943   case ARM::LSRr:
   7944   case ARM::LSLr:
   7945   case ARM::RORr: {
   7946     ARM_AM::ShiftOpc ShiftTy;
   7947     switch(Inst.getOpcode()) {
   7948     default: llvm_unreachable("unexpected opcode!");
   7949     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
   7950     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
   7951     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
   7952     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
   7953     }
   7954     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
   7955     MCInst TmpInst;
   7956     TmpInst.setOpcode(ARM::MOVsr);
   7957     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   7958     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7959     TmpInst.addOperand(Inst.getOperand(2)); // Rm
   7960     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
   7961     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7962     TmpInst.addOperand(Inst.getOperand(4));
   7963     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
   7964     Inst = TmpInst;
   7965     return true;
   7966   }
   7967   case ARM::ASRi:
   7968   case ARM::LSRi:
   7969   case ARM::LSLi:
   7970   case ARM::RORi: {
   7971     ARM_AM::ShiftOpc ShiftTy;
   7972     switch(Inst.getOpcode()) {
   7973     default: llvm_unreachable("unexpected opcode!");
   7974     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
   7975     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
   7976     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
   7977     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
   7978     }
   7979     // A shift by zero is a plain MOVr, not a MOVsi.
   7980     unsigned Amt = Inst.getOperand(2).getImm();
   7981     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
   7982     // A shift by 32 should be encoded as 0 when permitted
   7983     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
   7984       Amt = 0;
   7985     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
   7986     MCInst TmpInst;
   7987     TmpInst.setOpcode(Opc);
   7988     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   7989     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7990     if (Opc == ARM::MOVsi)
   7991       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
   7992     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7993     TmpInst.addOperand(Inst.getOperand(4));
   7994     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
   7995     Inst = TmpInst;
   7996     return true;
   7997   }
   7998   case ARM::RRXi: {
   7999     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
   8000     MCInst TmpInst;
   8001     TmpInst.setOpcode(ARM::MOVsi);
   8002     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   8003     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8004     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
   8005     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8006     TmpInst.addOperand(Inst.getOperand(3));
   8007     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
   8008     Inst = TmpInst;
   8009     return true;
   8010   }
   8011   case ARM::t2LDMIA_UPD: {
   8012     // If this is a load of a single register, then we should use
   8013     // a post-indexed LDR instruction instead, per the ARM ARM.
   8014     if (Inst.getNumOperands() != 5)
   8015       return false;
   8016     MCInst TmpInst;
   8017     TmpInst.setOpcode(ARM::t2LDR_POST);
   8018     TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8019     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8020     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8021     TmpInst.addOperand(MCOperand::createImm(4));
   8022     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8023     TmpInst.addOperand(Inst.getOperand(3));
   8024     Inst = TmpInst;
   8025     return true;
   8026   }
   8027   case ARM::t2STMDB_UPD: {
   8028     // If this is a store of a single register, then we should use
   8029     // a pre-indexed STR instruction instead, per the ARM ARM.
   8030     if (Inst.getNumOperands() != 5)
   8031       return false;
   8032     MCInst TmpInst;
   8033     TmpInst.setOpcode(ARM::t2STR_PRE);
   8034     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8035     TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8036     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8037     TmpInst.addOperand(MCOperand::createImm(-4));
   8038     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8039     TmpInst.addOperand(Inst.getOperand(3));
   8040     Inst = TmpInst;
   8041     return true;
   8042   }
   8043   case ARM::LDMIA_UPD:
   8044     // If this is a load of a single register via a 'pop', then we should use
   8045     // a post-indexed LDR instruction instead, per the ARM ARM.
   8046     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
   8047         Inst.getNumOperands() == 5) {
   8048       MCInst TmpInst;
   8049       TmpInst.setOpcode(ARM::LDR_POST_IMM);
   8050       TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8051       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8052       TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8053       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
   8054       TmpInst.addOperand(MCOperand::createImm(4));
   8055       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8056       TmpInst.addOperand(Inst.getOperand(3));
   8057       Inst = TmpInst;
   8058       return true;
   8059     }
   8060     break;
   8061   case ARM::STMDB_UPD:
   8062     // If this is a store of a single register via a 'push', then we should use
   8063     // a pre-indexed STR instruction instead, per the ARM ARM.
   8064     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
   8065         Inst.getNumOperands() == 5) {
   8066       MCInst TmpInst;
   8067       TmpInst.setOpcode(ARM::STR_PRE_IMM);
   8068       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8069       TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8070       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
   8071       TmpInst.addOperand(MCOperand::createImm(-4));
   8072       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8073       TmpInst.addOperand(Inst.getOperand(3));
   8074       Inst = TmpInst;
   8075     }
   8076     break;
   8077   case ARM::t2ADDri12:
   8078     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
   8079     // mnemonic was used (not "addw"), encoding T3 is preferred.
   8080     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
   8081         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
   8082       break;
   8083     Inst.setOpcode(ARM::t2ADDri);
   8084     Inst.addOperand(MCOperand::createReg(0)); // cc_out
   8085     break;
   8086   case ARM::t2SUBri12:
   8087     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
   8088     // mnemonic was used (not "subw"), encoding T3 is preferred.
   8089     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
   8090         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
   8091       break;
   8092     Inst.setOpcode(ARM::t2SUBri);
   8093     Inst.addOperand(MCOperand::createReg(0)); // cc_out
   8094     break;
   8095   case ARM::tADDi8:
   8096     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
   8097     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
   8098     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
   8099     // to encoding T1 if <Rd> is omitted."
   8100     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
   8101       Inst.setOpcode(ARM::tADDi3);
   8102       return true;
   8103     }
   8104     break;
   8105   case ARM::tSUBi8:
   8106     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
   8107     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
   8108     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
   8109     // to encoding T1 if <Rd> is omitted."
   8110     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
   8111       Inst.setOpcode(ARM::tSUBi3);
   8112       return true;
   8113     }
   8114     break;
   8115   case ARM::t2ADDri:
   8116   case ARM::t2SUBri: {
   8117     // If the destination and first source operand are the same, and
   8118     // the flags are compatible with the current IT status, use encoding T2
   8119     // instead of T3. For compatibility with the system 'as'. Make sure the
   8120     // wide encoding wasn't explicit.
   8121     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
   8122         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
   8123         (unsigned)Inst.getOperand(2).getImm() > 255 ||
   8124         ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
   8125          (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
   8126         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   8127          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
   8128       break;
   8129     MCInst TmpInst;
   8130     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
   8131                       ARM::tADDi8 : ARM::tSUBi8);
   8132     TmpInst.addOperand(Inst.getOperand(0));
   8133     TmpInst.addOperand(Inst.getOperand(5));
   8134     TmpInst.addOperand(Inst.getOperand(0));
   8135     TmpInst.addOperand(Inst.getOperand(2));
   8136     TmpInst.addOperand(Inst.getOperand(3));
   8137     TmpInst.addOperand(Inst.getOperand(4));
   8138     Inst = TmpInst;
   8139     return true;
   8140   }
   8141   case ARM::t2ADDrr: {
   8142     // If the destination and first source operand are the same, and
   8143     // there's no setting of the flags, use encoding T2 instead of T3.
   8144     // Note that this is only for ADD, not SUB. This mirrors the system
   8145     // 'as' behaviour.  Also take advantage of ADD being commutative.
   8146     // Make sure the wide encoding wasn't explicit.
   8147     bool Swap = false;
   8148     auto DestReg = Inst.getOperand(0).getReg();
   8149     bool Transform = DestReg == Inst.getOperand(1).getReg();
   8150     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
   8151       Transform = true;
   8152       Swap = true;
   8153     }
   8154     if (!Transform ||
   8155         Inst.getOperand(5).getReg() != 0 ||
   8156         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   8157          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
   8158       break;
   8159     MCInst TmpInst;
   8160     TmpInst.setOpcode(ARM::tADDhirr);
   8161     TmpInst.addOperand(Inst.getOperand(0));
   8162     TmpInst.addOperand(Inst.getOperand(0));
   8163     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
   8164     TmpInst.addOperand(Inst.getOperand(3));
   8165     TmpInst.addOperand(Inst.getOperand(4));
   8166     Inst = TmpInst;
   8167     return true;
   8168   }
   8169   case ARM::tADDrSP: {
   8170     // If the non-SP source operand and the destination operand are not the
   8171     // same, we need to use the 32-bit encoding if it's available.
   8172     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
   8173       Inst.setOpcode(ARM::t2ADDrr);
   8174       Inst.addOperand(MCOperand::createReg(0)); // cc_out
   8175       return true;
   8176     }
   8177     break;
   8178   }
   8179   case ARM::tB:
   8180     // A Thumb conditional branch outside of an IT block is a tBcc.
   8181     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
   8182       Inst.setOpcode(ARM::tBcc);
   8183       return true;
   8184     }
   8185     break;
   8186   case ARM::t2B:
   8187     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
   8188     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
   8189       Inst.setOpcode(ARM::t2Bcc);
   8190       return true;
   8191     }
   8192     break;
   8193   case ARM::t2Bcc:
   8194     // If the conditional is AL or we're in an IT block, we really want t2B.
   8195     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
   8196       Inst.setOpcode(ARM::t2B);
   8197       return true;
   8198     }
   8199     break;
   8200   case ARM::tBcc:
   8201     // If the conditional is AL, we really want tB.
   8202     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
   8203       Inst.setOpcode(ARM::tB);
   8204       return true;
   8205     }
   8206     break;
   8207   case ARM::tLDMIA: {
   8208     // If the register list contains any high registers, or if the writeback
   8209     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
   8210     // instead if we're in Thumb2. Otherwise, this should have generated
   8211     // an error in validateInstruction().
   8212     unsigned Rn = Inst.getOperand(0).getReg();
   8213     bool hasWritebackToken =
   8214         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   8215          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
   8216     bool listContainsBase;
   8217     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
   8218         (!listContainsBase && !hasWritebackToken) ||
   8219         (listContainsBase && hasWritebackToken)) {
   8220       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
   8221       assert (isThumbTwo());
   8222       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
   8223       // If we're switching to the updating version, we need to insert
   8224       // the writeback tied operand.
   8225       if (hasWritebackToken)
   8226         Inst.insert(Inst.begin(),
   8227                     MCOperand::createReg(Inst.getOperand(0).getReg()));
   8228       return true;
   8229     }
   8230     break;
   8231   }
   8232   case ARM::tSTMIA_UPD: {
   8233     // If the register list contains any high registers, we need to use
   8234     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
   8235     // should have generated an error in validateInstruction().
   8236     unsigned Rn = Inst.getOperand(0).getReg();
   8237     bool listContainsBase;
   8238     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
   8239       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
   8240       assert (isThumbTwo());
   8241       Inst.setOpcode(ARM::t2STMIA_UPD);
   8242       return true;
   8243     }
   8244     break;
   8245   }
   8246   case ARM::tPOP: {
   8247     bool listContainsBase;
   8248     // If the register list contains any high registers, we need to use
   8249     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
   8250     // should have generated an error in validateInstruction().
   8251     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
   8252       return false;
   8253     assert (isThumbTwo());
   8254     Inst.setOpcode(ARM::t2LDMIA_UPD);
   8255     // Add the base register and writeback operands.
   8256     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
   8257     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
   8258     return true;
   8259   }
   8260   case ARM::tPUSH: {
   8261     bool listContainsBase;
   8262     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
   8263       return false;
   8264     assert (isThumbTwo());
   8265     Inst.setOpcode(ARM::t2STMDB_UPD);
   8266     // Add the base register and writeback operands.
   8267     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
   8268     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
   8269     return true;
   8270   }
   8271   case ARM::t2MOVi: {
   8272     // If we can use the 16-bit encoding and the user didn't explicitly
   8273     // request the 32-bit variant, transform it here.
   8274     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8275         (unsigned)Inst.getOperand(1).getImm() <= 255 &&
   8276         ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
   8277           Inst.getOperand(4).getReg() == ARM::CPSR) ||
   8278          (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
   8279         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
   8280          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
   8281       // The operands aren't in the same order for tMOVi8...
   8282       MCInst TmpInst;
   8283       TmpInst.setOpcode(ARM::tMOVi8);
   8284       TmpInst.addOperand(Inst.getOperand(0));
   8285       TmpInst.addOperand(Inst.getOperand(4));
   8286       TmpInst.addOperand(Inst.getOperand(1));
   8287       TmpInst.addOperand(Inst.getOperand(2));
   8288       TmpInst.addOperand(Inst.getOperand(3));
   8289       Inst = TmpInst;
   8290       return true;
   8291     }
   8292     break;
   8293   }
   8294   case ARM::t2MOVr: {
   8295     // If we can use the 16-bit encoding and the user didn't explicitly
   8296     // request the 32-bit variant, transform it here.
   8297     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8298         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8299         Inst.getOperand(2).getImm() == ARMCC::AL &&
   8300         Inst.getOperand(4).getReg() == ARM::CPSR &&
   8301         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
   8302          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
   8303       // The operands aren't the same for tMOV[S]r... (no cc_out)
   8304       MCInst TmpInst;
   8305       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
   8306       TmpInst.addOperand(Inst.getOperand(0));
   8307       TmpInst.addOperand(Inst.getOperand(1));
   8308       TmpInst.addOperand(Inst.getOperand(2));
   8309       TmpInst.addOperand(Inst.getOperand(3));
   8310       Inst = TmpInst;
   8311       return true;
   8312     }
   8313     break;
   8314   }
   8315   case ARM::t2SXTH:
   8316   case ARM::t2SXTB:
   8317   case ARM::t2UXTH:
   8318   case ARM::t2UXTB: {
   8319     // If we can use the 16-bit encoding and the user didn't explicitly
   8320     // request the 32-bit variant, transform it here.
   8321     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8322         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8323         Inst.getOperand(2).getImm() == 0 &&
   8324         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
   8325          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
   8326       unsigned NewOpc;
   8327       switch (Inst.getOpcode()) {
   8328       default: llvm_unreachable("Illegal opcode!");
   8329       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
   8330       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
   8331       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
   8332       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
   8333       }
   8334       // The operands aren't the same for thumb1 (no rotate operand).
   8335       MCInst TmpInst;
   8336       TmpInst.setOpcode(NewOpc);
   8337       TmpInst.addOperand(Inst.getOperand(0));
   8338       TmpInst.addOperand(Inst.getOperand(1));
   8339       TmpInst.addOperand(Inst.getOperand(3));
   8340       TmpInst.addOperand(Inst.getOperand(4));
   8341       Inst = TmpInst;
   8342       return true;
   8343     }
   8344     break;
   8345   }
   8346   case ARM::MOVsi: {
   8347     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
   8348     // rrx shifts and asr/lsr of #32 is encoded as 0
   8349     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
   8350       return false;
   8351     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
   8352       // Shifting by zero is accepted as a vanilla 'MOVr'
   8353       MCInst TmpInst;
   8354       TmpInst.setOpcode(ARM::MOVr);
   8355       TmpInst.addOperand(Inst.getOperand(0));
   8356       TmpInst.addOperand(Inst.getOperand(1));
   8357       TmpInst.addOperand(Inst.getOperand(3));
   8358       TmpInst.addOperand(Inst.getOperand(4));
   8359       TmpInst.addOperand(Inst.getOperand(5));
   8360       Inst = TmpInst;
   8361       return true;
   8362     }
   8363     return false;
   8364   }
   8365   case ARM::ANDrsi:
   8366   case ARM::ORRrsi:
   8367   case ARM::EORrsi:
   8368   case ARM::BICrsi:
   8369   case ARM::SUBrsi:
   8370   case ARM::ADDrsi: {
   8371     unsigned newOpc;
   8372     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
   8373     if (SOpc == ARM_AM::rrx) return false;
   8374     switch (Inst.getOpcode()) {
   8375     default: llvm_unreachable("unexpected opcode!");
   8376     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
   8377     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
   8378     case ARM::EORrsi: newOpc = ARM::EORrr; break;
   8379     case ARM::BICrsi: newOpc = ARM::BICrr; break;
   8380     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
   8381     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
   8382     }
   8383     // If the shift is by zero, use the non-shifted instruction definition.
   8384     // The exception is for right shifts, where 0 == 32
   8385     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
   8386         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
   8387       MCInst TmpInst;
   8388       TmpInst.setOpcode(newOpc);
   8389       TmpInst.addOperand(Inst.getOperand(0));
   8390       TmpInst.addOperand(Inst.getOperand(1));
   8391       TmpInst.addOperand(Inst.getOperand(2));
   8392       TmpInst.addOperand(Inst.getOperand(4));
   8393       TmpInst.addOperand(Inst.getOperand(5));
   8394       TmpInst.addOperand(Inst.getOperand(6));
   8395       Inst = TmpInst;
   8396       return true;
   8397     }
   8398     return false;
   8399   }
   8400   case ARM::ITasm:
   8401   case ARM::t2IT: {
   8402     // The mask bits for all but the first condition are represented as
   8403     // the low bit of the condition code value implies 't'. We currently
   8404     // always have 1 implies 't', so XOR toggle the bits if the low bit
   8405     // of the condition code is zero.
   8406     MCOperand &MO = Inst.getOperand(1);
   8407     unsigned Mask = MO.getImm();
   8408     unsigned OrigMask = Mask;
   8409     unsigned TZ = countTrailingZeros(Mask);
   8410     if ((Inst.getOperand(0).getImm() & 1) == 0) {
   8411       assert(Mask && TZ <= 3 && "illegal IT mask value!");
   8412       Mask ^= (0xE << TZ) & 0xF;
   8413     }
   8414     MO.setImm(Mask);
   8415 
   8416     // Set up the IT block state according to the IT instruction we just
   8417     // matched.
   8418     assert(!inITBlock() && "nested IT blocks?!");
   8419     ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
   8420     ITState.Mask = OrigMask; // Use the original mask, not the updated one.
   8421     ITState.CurPosition = 0;
   8422     ITState.FirstCond = true;
   8423     break;
   8424   }
   8425   case ARM::t2LSLrr:
   8426   case ARM::t2LSRrr:
   8427   case ARM::t2ASRrr:
   8428   case ARM::t2SBCrr:
   8429   case ARM::t2RORrr:
   8430   case ARM::t2BICrr:
   8431   {
   8432     // Assemblers should use the narrow encodings of these instructions when permissible.
   8433     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8434          isARMLowRegister(Inst.getOperand(2).getReg())) &&
   8435         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   8436         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
   8437          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
   8438         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
   8439          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
   8440              ".w"))) {
   8441       unsigned NewOpc;
   8442       switch (Inst.getOpcode()) {
   8443         default: llvm_unreachable("unexpected opcode");
   8444         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
   8445         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
   8446         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
   8447         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
   8448         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
   8449         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
   8450       }
   8451       MCInst TmpInst;
   8452       TmpInst.setOpcode(NewOpc);
   8453       TmpInst.addOperand(Inst.getOperand(0));
   8454       TmpInst.addOperand(Inst.getOperand(5));
   8455       TmpInst.addOperand(Inst.getOperand(1));
   8456       TmpInst.addOperand(Inst.getOperand(2));
   8457       TmpInst.addOperand(Inst.getOperand(3));
   8458       TmpInst.addOperand(Inst.getOperand(4));
   8459       Inst = TmpInst;
   8460       return true;
   8461     }
   8462     return false;
   8463   }
   8464   case ARM::t2ANDrr:
   8465   case ARM::t2EORrr:
   8466   case ARM::t2ADCrr:
   8467   case ARM::t2ORRrr:
   8468   {
   8469     // Assemblers should use the narrow encodings of these instructions when permissible.
   8470     // These instructions are special in that they are commutable, so shorter encodings
   8471     // are available more often.
   8472     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8473          isARMLowRegister(Inst.getOperand(2).getReg())) &&
   8474         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
   8475          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
   8476         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
   8477          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
   8478         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
   8479          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
   8480              ".w"))) {
   8481       unsigned NewOpc;
   8482       switch (Inst.getOpcode()) {
   8483         default: llvm_unreachable("unexpected opcode");
   8484         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
   8485         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
   8486         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
   8487         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
   8488       }
   8489       MCInst TmpInst;
   8490       TmpInst.setOpcode(NewOpc);
   8491       TmpInst.addOperand(Inst.getOperand(0));
   8492       TmpInst.addOperand(Inst.getOperand(5));
   8493       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
   8494         TmpInst.addOperand(Inst.getOperand(1));
   8495         TmpInst.addOperand(Inst.getOperand(2));
   8496       } else {
   8497         TmpInst.addOperand(Inst.getOperand(2));
   8498         TmpInst.addOperand(Inst.getOperand(1));
   8499       }
   8500       TmpInst.addOperand(Inst.getOperand(3));
   8501       TmpInst.addOperand(Inst.getOperand(4));
   8502       Inst = TmpInst;
   8503       return true;
   8504     }
   8505     return false;
   8506   }
   8507   }
   8508   return false;
   8509 }
   8510 
   8511 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
   8512   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
   8513   // suffix depending on whether they're in an IT block or not.
   8514   unsigned Opc = Inst.getOpcode();
   8515   const MCInstrDesc &MCID = MII.get(Opc);
   8516   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
   8517     assert(MCID.hasOptionalDef() &&
   8518            "optionally flag setting instruction missing optional def operand");
   8519     assert(MCID.NumOperands == Inst.getNumOperands() &&
   8520            "operand count mismatch!");
   8521     // Find the optional-def operand (cc_out).
   8522     unsigned OpNo;
   8523     for (OpNo = 0;
   8524          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
   8525          ++OpNo)
   8526       ;
   8527     // If we're parsing Thumb1, reject it completely.
   8528     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
   8529       return Match_MnemonicFail;
   8530     // If we're parsing Thumb2, which form is legal depends on whether we're
   8531     // in an IT block.
   8532     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
   8533         !inITBlock())
   8534       return Match_RequiresITBlock;
   8535     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
   8536         inITBlock())
   8537       return Match_RequiresNotITBlock;
   8538   } else if (isThumbOne()) {
   8539     // Some high-register supporting Thumb1 encodings only allow both registers
   8540     // to be from r0-r7 when in Thumb2.
   8541     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
   8542         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8543         isARMLowRegister(Inst.getOperand(2).getReg()))
   8544       return Match_RequiresThumb2;
   8545     // Others only require ARMv6 or later.
   8546     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
   8547              isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8548              isARMLowRegister(Inst.getOperand(1).getReg()))
   8549       return Match_RequiresV6;
   8550   }
   8551 
   8552   for (unsigned I = 0; I < MCID.NumOperands; ++I)
   8553     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
   8554       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
   8555       if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops())
   8556         return Match_RequiresV8;
   8557       else if (Inst.getOperand(I).getReg() == ARM::PC)
   8558         return Match_InvalidOperand;
   8559     }
   8560 
   8561   return Match_Success;
   8562 }
   8563 
   8564 namespace llvm {
   8565 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) {
   8566   return true; // In an assembly source, no need to second-guess
   8567 }
   8568 }
   8569 
   8570 static const char *getSubtargetFeatureName(uint64_t Val);
   8571 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
   8572                                            OperandVector &Operands,
   8573                                            MCStreamer &Out, uint64_t &ErrorInfo,
   8574                                            bool MatchingInlineAsm) {
   8575   MCInst Inst;
   8576   unsigned MatchResult;
   8577 
   8578   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
   8579                                      MatchingInlineAsm);
   8580   switch (MatchResult) {
   8581   case Match_Success:
   8582     // Context sensitive operand constraints aren't handled by the matcher,
   8583     // so check them here.
   8584     if (validateInstruction(Inst, Operands)) {
   8585       // Still progress the IT block, otherwise one wrong condition causes
   8586       // nasty cascading errors.
   8587       forwardITPosition();
   8588       return true;
   8589     }
   8590 
   8591     { // processInstruction() updates inITBlock state, we need to save it away
   8592       bool wasInITBlock = inITBlock();
   8593 
   8594       // Some instructions need post-processing to, for example, tweak which
   8595       // encoding is selected. Loop on it while changes happen so the
   8596       // individual transformations can chain off each other. E.g.,
   8597       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
   8598       while (processInstruction(Inst, Operands, Out))
   8599         ;
   8600 
   8601       // Only after the instruction is fully processed, we can validate it
   8602       if (wasInITBlock && hasV8Ops() && isThumb() &&
   8603           !isV8EligibleForIT(&Inst)) {
   8604         Warning(IDLoc, "deprecated instruction in IT block");
   8605       }
   8606     }
   8607 
   8608     // Only move forward at the very end so that everything in validate
   8609     // and process gets a consistent answer about whether we're in an IT
   8610     // block.
   8611     forwardITPosition();
   8612 
   8613     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
   8614     // doesn't actually encode.
   8615     if (Inst.getOpcode() == ARM::ITasm)
   8616       return false;
   8617 
   8618     Inst.setLoc(IDLoc);
   8619     Out.EmitInstruction(Inst, getSTI());
   8620     return false;
   8621   case Match_MissingFeature: {
   8622     assert(ErrorInfo && "Unknown missing feature!");
   8623     // Special case the error message for the very common case where only
   8624     // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
   8625     std::string Msg = "instruction requires:";
   8626     uint64_t Mask = 1;
   8627     for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
   8628       if (ErrorInfo & Mask) {
   8629         Msg += " ";
   8630         Msg += getSubtargetFeatureName(ErrorInfo & Mask);
   8631       }
   8632       Mask <<= 1;
   8633     }
   8634     return Error(IDLoc, Msg);
   8635   }
   8636   case Match_InvalidOperand: {
   8637     SMLoc ErrorLoc = IDLoc;
   8638     if (ErrorInfo != ~0ULL) {
   8639       if (ErrorInfo >= Operands.size())
   8640         return Error(IDLoc, "too few operands for instruction");
   8641 
   8642       ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
   8643       if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8644     }
   8645 
   8646     return Error(ErrorLoc, "invalid operand for instruction");
   8647   }
   8648   case Match_MnemonicFail:
   8649     return Error(IDLoc, "invalid instruction",
   8650                  ((ARMOperand &)*Operands[0]).getLocRange());
   8651   case Match_RequiresNotITBlock:
   8652     return Error(IDLoc, "flag setting instruction only valid outside IT block");
   8653   case Match_RequiresITBlock:
   8654     return Error(IDLoc, "instruction only valid inside IT block");
   8655   case Match_RequiresV6:
   8656     return Error(IDLoc, "instruction variant requires ARMv6 or later");
   8657   case Match_RequiresThumb2:
   8658     return Error(IDLoc, "instruction variant requires Thumb2");
   8659   case Match_RequiresV8:
   8660     return Error(IDLoc, "instruction variant requires ARMv8 or later");
   8661   case Match_ImmRange0_15: {
   8662     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
   8663     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8664     return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
   8665   }
   8666   case Match_ImmRange0_239: {
   8667     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
   8668     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8669     return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
   8670   }
   8671   case Match_AlignedMemoryRequiresNone:
   8672   case Match_DupAlignedMemoryRequiresNone:
   8673   case Match_AlignedMemoryRequires16:
   8674   case Match_DupAlignedMemoryRequires16:
   8675   case Match_AlignedMemoryRequires32:
   8676   case Match_DupAlignedMemoryRequires32:
   8677   case Match_AlignedMemoryRequires64:
   8678   case Match_DupAlignedMemoryRequires64:
   8679   case Match_AlignedMemoryRequires64or128:
   8680   case Match_DupAlignedMemoryRequires64or128:
   8681   case Match_AlignedMemoryRequires64or128or256:
   8682   {
   8683     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc();
   8684     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8685     switch (MatchResult) {
   8686       default:
   8687         llvm_unreachable("Missing Match_Aligned type");
   8688       case Match_AlignedMemoryRequiresNone:
   8689       case Match_DupAlignedMemoryRequiresNone:
   8690         return Error(ErrorLoc, "alignment must be omitted");
   8691       case Match_AlignedMemoryRequires16:
   8692       case Match_DupAlignedMemoryRequires16:
   8693         return Error(ErrorLoc, "alignment must be 16 or omitted");
   8694       case Match_AlignedMemoryRequires32:
   8695       case Match_DupAlignedMemoryRequires32:
   8696         return Error(ErrorLoc, "alignment must be 32 or omitted");
   8697       case Match_AlignedMemoryRequires64:
   8698       case Match_DupAlignedMemoryRequires64:
   8699         return Error(ErrorLoc, "alignment must be 64 or omitted");
   8700       case Match_AlignedMemoryRequires64or128:
   8701       case Match_DupAlignedMemoryRequires64or128:
   8702         return Error(ErrorLoc, "alignment must be 64, 128 or omitted");
   8703       case Match_AlignedMemoryRequires64or128or256:
   8704         return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted");
   8705     }
   8706   }
   8707   }
   8708 
   8709   llvm_unreachable("Implement any new match types added!");
   8710 }
   8711 
   8712 /// parseDirective parses the arm specific directives
   8713 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
   8714   const MCObjectFileInfo::Environment Format =
   8715     getContext().getObjectFileInfo()->getObjectFileType();
   8716   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
   8717   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
   8718 
   8719   StringRef IDVal = DirectiveID.getIdentifier();
   8720   if (IDVal == ".word")
   8721     return parseLiteralValues(4, DirectiveID.getLoc());
   8722   else if (IDVal == ".short" || IDVal == ".hword")
   8723     return parseLiteralValues(2, DirectiveID.getLoc());
   8724   else if (IDVal == ".thumb")
   8725     return parseDirectiveThumb(DirectiveID.getLoc());
   8726   else if (IDVal == ".arm")
   8727     return parseDirectiveARM(DirectiveID.getLoc());
   8728   else if (IDVal == ".thumb_func")
   8729     return parseDirectiveThumbFunc(DirectiveID.getLoc());
   8730   else if (IDVal == ".code")
   8731     return parseDirectiveCode(DirectiveID.getLoc());
   8732   else if (IDVal == ".syntax")
   8733     return parseDirectiveSyntax(DirectiveID.getLoc());
   8734   else if (IDVal == ".unreq")
   8735     return parseDirectiveUnreq(DirectiveID.getLoc());
   8736   else if (IDVal == ".fnend")
   8737     return parseDirectiveFnEnd(DirectiveID.getLoc());
   8738   else if (IDVal == ".cantunwind")
   8739     return parseDirectiveCantUnwind(DirectiveID.getLoc());
   8740   else if (IDVal == ".personality")
   8741     return parseDirectivePersonality(DirectiveID.getLoc());
   8742   else if (IDVal == ".handlerdata")
   8743     return parseDirectiveHandlerData(DirectiveID.getLoc());
   8744   else if (IDVal == ".setfp")
   8745     return parseDirectiveSetFP(DirectiveID.getLoc());
   8746   else if (IDVal == ".pad")
   8747     return parseDirectivePad(DirectiveID.getLoc());
   8748   else if (IDVal == ".save")
   8749     return parseDirectiveRegSave(DirectiveID.getLoc(), false);
   8750   else if (IDVal == ".vsave")
   8751     return parseDirectiveRegSave(DirectiveID.getLoc(), true);
   8752   else if (IDVal == ".ltorg" || IDVal == ".pool")
   8753     return parseDirectiveLtorg(DirectiveID.getLoc());
   8754   else if (IDVal == ".even")
   8755     return parseDirectiveEven(DirectiveID.getLoc());
   8756   else if (IDVal == ".personalityindex")
   8757     return parseDirectivePersonalityIndex(DirectiveID.getLoc());
   8758   else if (IDVal == ".unwind_raw")
   8759     return parseDirectiveUnwindRaw(DirectiveID.getLoc());
   8760   else if (IDVal == ".movsp")
   8761     return parseDirectiveMovSP(DirectiveID.getLoc());
   8762   else if (IDVal == ".arch_extension")
   8763     return parseDirectiveArchExtension(DirectiveID.getLoc());
   8764   else if (IDVal == ".align")
   8765     return parseDirectiveAlign(DirectiveID.getLoc());
   8766   else if (IDVal == ".thumb_set")
   8767     return parseDirectiveThumbSet(DirectiveID.getLoc());
   8768 
   8769   if (!IsMachO && !IsCOFF) {
   8770     if (IDVal == ".arch")
   8771       return parseDirectiveArch(DirectiveID.getLoc());
   8772     else if (IDVal == ".cpu")
   8773       return parseDirectiveCPU(DirectiveID.getLoc());
   8774     else if (IDVal == ".eabi_attribute")
   8775       return parseDirectiveEabiAttr(DirectiveID.getLoc());
   8776     else if (IDVal == ".fpu")
   8777       return parseDirectiveFPU(DirectiveID.getLoc());
   8778     else if (IDVal == ".fnstart")
   8779       return parseDirectiveFnStart(DirectiveID.getLoc());
   8780     else if (IDVal == ".inst")
   8781       return parseDirectiveInst(DirectiveID.getLoc());
   8782     else if (IDVal == ".inst.n")
   8783       return parseDirectiveInst(DirectiveID.getLoc(), 'n');
   8784     else if (IDVal == ".inst.w")
   8785       return parseDirectiveInst(DirectiveID.getLoc(), 'w');
   8786     else if (IDVal == ".object_arch")
   8787       return parseDirectiveObjectArch(DirectiveID.getLoc());
   8788     else if (IDVal == ".tlsdescseq")
   8789       return parseDirectiveTLSDescSeq(DirectiveID.getLoc());
   8790   }
   8791 
   8792   return true;
   8793 }
   8794 
   8795 /// parseLiteralValues
   8796 ///  ::= .hword expression [, expression]*
   8797 ///  ::= .short expression [, expression]*
   8798 ///  ::= .word expression [, expression]*
   8799 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
   8800   MCAsmParser &Parser = getParser();
   8801   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8802     for (;;) {
   8803       const MCExpr *Value;
   8804       if (getParser().parseExpression(Value)) {
   8805         Parser.eatToEndOfStatement();
   8806         return false;
   8807       }
   8808 
   8809       getParser().getStreamer().EmitValue(Value, Size, L);
   8810 
   8811       if (getLexer().is(AsmToken::EndOfStatement))
   8812         break;
   8813 
   8814       // FIXME: Improve diagnostic.
   8815       if (getLexer().isNot(AsmToken::Comma)) {
   8816         Error(L, "unexpected token in directive");
   8817         return false;
   8818       }
   8819       Parser.Lex();
   8820     }
   8821   }
   8822 
   8823   Parser.Lex();
   8824   return false;
   8825 }
   8826 
   8827 /// parseDirectiveThumb
   8828 ///  ::= .thumb
   8829 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
   8830   MCAsmParser &Parser = getParser();
   8831   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8832     Error(L, "unexpected token in directive");
   8833     return false;
   8834   }
   8835   Parser.Lex();
   8836 
   8837   if (!hasThumb()) {
   8838     Error(L, "target does not support Thumb mode");
   8839     return false;
   8840   }
   8841 
   8842   if (!isThumb())
   8843     SwitchMode();
   8844 
   8845   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
   8846   return false;
   8847 }
   8848 
   8849 /// parseDirectiveARM
   8850 ///  ::= .arm
   8851 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
   8852   MCAsmParser &Parser = getParser();
   8853   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8854     Error(L, "unexpected token in directive");
   8855     return false;
   8856   }
   8857   Parser.Lex();
   8858 
   8859   if (!hasARM()) {
   8860     Error(L, "target does not support ARM mode");
   8861     return false;
   8862   }
   8863 
   8864   if (isThumb())
   8865     SwitchMode();
   8866 
   8867   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
   8868   return false;
   8869 }
   8870 
   8871 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
   8872   if (NextSymbolIsThumb) {
   8873     getParser().getStreamer().EmitThumbFunc(Symbol);
   8874     NextSymbolIsThumb = false;
   8875   }
   8876 }
   8877 
   8878 /// parseDirectiveThumbFunc
   8879 ///  ::= .thumbfunc symbol_name
   8880 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
   8881   MCAsmParser &Parser = getParser();
   8882   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
   8883   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
   8884 
   8885   // Darwin asm has (optionally) function name after .thumb_func direction
   8886   // ELF doesn't
   8887   if (IsMachO) {
   8888     const AsmToken &Tok = Parser.getTok();
   8889     if (Tok.isNot(AsmToken::EndOfStatement)) {
   8890       if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) {
   8891         Error(L, "unexpected token in .thumb_func directive");
   8892         return false;
   8893       }
   8894 
   8895       MCSymbol *Func =
   8896           getParser().getContext().getOrCreateSymbol(Tok.getIdentifier());
   8897       getParser().getStreamer().EmitThumbFunc(Func);
   8898       Parser.Lex(); // Consume the identifier token.
   8899       return false;
   8900     }
   8901   }
   8902 
   8903   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8904     Error(Parser.getTok().getLoc(), "unexpected token in directive");
   8905     Parser.eatToEndOfStatement();
   8906     return false;
   8907   }
   8908 
   8909   NextSymbolIsThumb = true;
   8910   return false;
   8911 }
   8912 
   8913 /// parseDirectiveSyntax
   8914 ///  ::= .syntax unified | divided
   8915 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
   8916   MCAsmParser &Parser = getParser();
   8917   const AsmToken &Tok = Parser.getTok();
   8918   if (Tok.isNot(AsmToken::Identifier)) {
   8919     Error(L, "unexpected token in .syntax directive");
   8920     return false;
   8921   }
   8922 
   8923   StringRef Mode = Tok.getString();
   8924   if (Mode == "unified" || Mode == "UNIFIED") {
   8925     Parser.Lex();
   8926   } else if (Mode == "divided" || Mode == "DIVIDED") {
   8927     Error(L, "'.syntax divided' arm asssembly not supported");
   8928     return false;
   8929   } else {
   8930     Error(L, "unrecognized syntax mode in .syntax directive");
   8931     return false;
   8932   }
   8933 
   8934   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8935     Error(Parser.getTok().getLoc(), "unexpected token in directive");
   8936     return false;
   8937   }
   8938   Parser.Lex();
   8939 
   8940   // TODO tell the MC streamer the mode
   8941   // getParser().getStreamer().Emit???();
   8942   return false;
   8943 }
   8944 
   8945 /// parseDirectiveCode
   8946 ///  ::= .code 16 | 32
   8947 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
   8948   MCAsmParser &Parser = getParser();
   8949   const AsmToken &Tok = Parser.getTok();
   8950   if (Tok.isNot(AsmToken::Integer)) {
   8951     Error(L, "unexpected token in .code directive");
   8952     return false;
   8953   }
   8954   int64_t Val = Parser.getTok().getIntVal();
   8955   if (Val != 16 && Val != 32) {
   8956     Error(L, "invalid operand to .code directive");
   8957     return false;
   8958   }
   8959   Parser.Lex();
   8960 
   8961   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8962     Error(Parser.getTok().getLoc(), "unexpected token in directive");
   8963     return false;
   8964   }
   8965   Parser.Lex();
   8966 
   8967   if (Val == 16) {
   8968     if (!hasThumb()) {
   8969       Error(L, "target does not support Thumb mode");
   8970       return false;
   8971     }
   8972 
   8973     if (!isThumb())
   8974       SwitchMode();
   8975     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
   8976   } else {
   8977     if (!hasARM()) {
   8978       Error(L, "target does not support ARM mode");
   8979       return false;
   8980     }
   8981 
   8982     if (isThumb())
   8983       SwitchMode();
   8984     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
   8985   }
   8986 
   8987   return false;
   8988 }
   8989 
   8990 /// parseDirectiveReq
   8991 ///  ::= name .req registername
   8992 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
   8993   MCAsmParser &Parser = getParser();
   8994   Parser.Lex(); // Eat the '.req' token.
   8995   unsigned Reg;
   8996   SMLoc SRegLoc, ERegLoc;
   8997   if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
   8998     Parser.eatToEndOfStatement();
   8999     Error(SRegLoc, "register name expected");
   9000     return false;
   9001   }
   9002 
   9003   // Shouldn't be anything else.
   9004   if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
   9005     Parser.eatToEndOfStatement();
   9006     Error(Parser.getTok().getLoc(), "unexpected input in .req directive.");
   9007     return false;
   9008   }
   9009 
   9010   Parser.Lex(); // Consume the EndOfStatement
   9011 
   9012   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) {
   9013     Error(SRegLoc, "redefinition of '" + Name + "' does not match original.");
   9014     return false;
   9015   }
   9016 
   9017   return false;
   9018 }
   9019 
   9020 /// parseDirectiveUneq
   9021 ///  ::= .unreq registername
   9022 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
   9023   MCAsmParser &Parser = getParser();
   9024   if (Parser.getTok().isNot(AsmToken::Identifier)) {
   9025     Parser.eatToEndOfStatement();
   9026     Error(L, "unexpected input in .unreq directive.");
   9027     return false;
   9028   }
   9029   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
   9030   Parser.Lex(); // Eat the identifier.
   9031   return false;
   9032 }
   9033 
   9034 /// parseDirectiveArch
   9035 ///  ::= .arch token
   9036 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
   9037   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
   9038 
   9039   unsigned ID = ARM::parseArch(Arch);
   9040 
   9041   if (ID == ARM::AK_INVALID) {
   9042     Error(L, "Unknown arch name");
   9043     return false;
   9044   }
   9045 
   9046   Triple T;
   9047   MCSubtargetInfo &STI = copySTI();
   9048   STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
   9049   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
   9050 
   9051   getTargetStreamer().emitArch(ID);
   9052   return false;
   9053 }
   9054 
   9055 /// parseDirectiveEabiAttr
   9056 ///  ::= .eabi_attribute int, int [, "str"]
   9057 ///  ::= .eabi_attribute Tag_name, int [, "str"]
   9058 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
   9059   MCAsmParser &Parser = getParser();
   9060   int64_t Tag;
   9061   SMLoc TagLoc;
   9062   TagLoc = Parser.getTok().getLoc();
   9063   if (Parser.getTok().is(AsmToken::Identifier)) {
   9064     StringRef Name = Parser.getTok().getIdentifier();
   9065     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
   9066     if (Tag == -1) {
   9067       Error(TagLoc, "attribute name not recognised: " + Name);
   9068       Parser.eatToEndOfStatement();
   9069       return false;
   9070     }
   9071     Parser.Lex();
   9072   } else {
   9073     const MCExpr *AttrExpr;
   9074 
   9075     TagLoc = Parser.getTok().getLoc();
   9076     if (Parser.parseExpression(AttrExpr)) {
   9077       Parser.eatToEndOfStatement();
   9078       return false;
   9079     }
   9080 
   9081     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
   9082     if (!CE) {
   9083       Error(TagLoc, "expected numeric constant");
   9084       Parser.eatToEndOfStatement();
   9085       return false;
   9086     }
   9087 
   9088     Tag = CE->getValue();
   9089   }
   9090 
   9091   if (Parser.getTok().isNot(AsmToken::Comma)) {
   9092     Error(Parser.getTok().getLoc(), "comma expected");
   9093     Parser.eatToEndOfStatement();
   9094     return false;
   9095   }
   9096   Parser.Lex(); // skip comma
   9097 
   9098   StringRef StringValue = "";
   9099   bool IsStringValue = false;
   9100 
   9101   int64_t IntegerValue = 0;
   9102   bool IsIntegerValue = false;
   9103 
   9104   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
   9105     IsStringValue = true;
   9106   else if (Tag == ARMBuildAttrs::compatibility) {
   9107     IsStringValue = true;
   9108     IsIntegerValue = true;
   9109   } else if (Tag < 32 || Tag % 2 == 0)
   9110     IsIntegerValue = true;
   9111   else if (Tag % 2 == 1)
   9112     IsStringValue = true;
   9113   else
   9114     llvm_unreachable("invalid tag type");
   9115 
   9116   if (IsIntegerValue) {
   9117     const MCExpr *ValueExpr;
   9118     SMLoc ValueExprLoc = Parser.getTok().getLoc();
   9119     if (Parser.parseExpression(ValueExpr)) {
   9120       Parser.eatToEndOfStatement();
   9121       return false;
   9122     }
   9123 
   9124     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
   9125     if (!CE) {
   9126       Error(ValueExprLoc, "expected numeric constant");
   9127       Parser.eatToEndOfStatement();
   9128       return false;
   9129     }
   9130 
   9131     IntegerValue = CE->getValue();
   9132   }
   9133 
   9134   if (Tag == ARMBuildAttrs::compatibility) {
   9135     if (Parser.getTok().isNot(AsmToken::Comma))
   9136       IsStringValue = false;
   9137     if (Parser.getTok().isNot(AsmToken::Comma)) {
   9138       Error(Parser.getTok().getLoc(), "comma expected");
   9139       Parser.eatToEndOfStatement();
   9140       return false;
   9141     } else {
   9142        Parser.Lex();
   9143     }
   9144   }
   9145 
   9146   if (IsStringValue) {
   9147     if (Parser.getTok().isNot(AsmToken::String)) {
   9148       Error(Parser.getTok().getLoc(), "bad string constant");
   9149       Parser.eatToEndOfStatement();
   9150       return false;
   9151     }
   9152 
   9153     StringValue = Parser.getTok().getStringContents();
   9154     Parser.Lex();
   9155   }
   9156 
   9157   if (IsIntegerValue && IsStringValue) {
   9158     assert(Tag == ARMBuildAttrs::compatibility);
   9159     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
   9160   } else if (IsIntegerValue)
   9161     getTargetStreamer().emitAttribute(Tag, IntegerValue);
   9162   else if (IsStringValue)
   9163     getTargetStreamer().emitTextAttribute(Tag, StringValue);
   9164   return false;
   9165 }
   9166 
   9167 /// parseDirectiveCPU
   9168 ///  ::= .cpu str
   9169 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
   9170   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
   9171   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
   9172 
   9173   // FIXME: This is using table-gen data, but should be moved to
   9174   // ARMTargetParser once that is table-gen'd.
   9175   if (!getSTI().isCPUStringValid(CPU)) {
   9176     Error(L, "Unknown CPU name");
   9177     return false;
   9178   }
   9179 
   9180   MCSubtargetInfo &STI = copySTI();
   9181   STI.setDefaultFeatures(CPU, "");
   9182   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
   9183 
   9184   return false;
   9185 }
   9186 /// parseDirectiveFPU
   9187 ///  ::= .fpu str
   9188 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
   9189   SMLoc FPUNameLoc = getTok().getLoc();
   9190   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
   9191 
   9192   unsigned ID = ARM::parseFPU(FPU);
   9193   std::vector<const char *> Features;
   9194   if (!ARM::getFPUFeatures(ID, Features)) {
   9195     Error(FPUNameLoc, "Unknown FPU name");
   9196     return false;
   9197   }
   9198 
   9199   MCSubtargetInfo &STI = copySTI();
   9200   for (auto Feature : Features)
   9201     STI.ApplyFeatureFlag(Feature);
   9202   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
   9203 
   9204   getTargetStreamer().emitFPU(ID);
   9205   return false;
   9206 }
   9207 
   9208 /// parseDirectiveFnStart
   9209 ///  ::= .fnstart
   9210 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
   9211   if (UC.hasFnStart()) {
   9212     Error(L, ".fnstart starts before the end of previous one");
   9213     UC.emitFnStartLocNotes();
   9214     return false;
   9215   }
   9216 
   9217   // Reset the unwind directives parser state
   9218   UC.reset();
   9219 
   9220   getTargetStreamer().emitFnStart();
   9221 
   9222   UC.recordFnStart(L);
   9223   return false;
   9224 }
   9225 
   9226 /// parseDirectiveFnEnd
   9227 ///  ::= .fnend
   9228 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
   9229   // Check the ordering of unwind directives
   9230   if (!UC.hasFnStart()) {
   9231     Error(L, ".fnstart must precede .fnend directive");
   9232     return false;
   9233   }
   9234 
   9235   // Reset the unwind directives parser state
   9236   getTargetStreamer().emitFnEnd();
   9237 
   9238   UC.reset();
   9239   return false;
   9240 }
   9241 
   9242 /// parseDirectiveCantUnwind
   9243 ///  ::= .cantunwind
   9244 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
   9245   UC.recordCantUnwind(L);
   9246 
   9247   // Check the ordering of unwind directives
   9248   if (!UC.hasFnStart()) {
   9249     Error(L, ".fnstart must precede .cantunwind directive");
   9250     return false;
   9251   }
   9252   if (UC.hasHandlerData()) {
   9253     Error(L, ".cantunwind can't be used with .handlerdata directive");
   9254     UC.emitHandlerDataLocNotes();
   9255     return false;
   9256   }
   9257   if (UC.hasPersonality()) {
   9258     Error(L, ".cantunwind can't be used with .personality directive");
   9259     UC.emitPersonalityLocNotes();
   9260     return false;
   9261   }
   9262 
   9263   getTargetStreamer().emitCantUnwind();
   9264   return false;
   9265 }
   9266 
   9267 /// parseDirectivePersonality
   9268 ///  ::= .personality name
   9269 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
   9270   MCAsmParser &Parser = getParser();
   9271   bool HasExistingPersonality = UC.hasPersonality();
   9272 
   9273   UC.recordPersonality(L);
   9274 
   9275   // Check the ordering of unwind directives
   9276   if (!UC.hasFnStart()) {
   9277     Error(L, ".fnstart must precede .personality directive");
   9278     return false;
   9279   }
   9280   if (UC.cantUnwind()) {
   9281     Error(L, ".personality can't be used with .cantunwind directive");
   9282     UC.emitCantUnwindLocNotes();
   9283     return false;
   9284   }
   9285   if (UC.hasHandlerData()) {
   9286     Error(L, ".personality must precede .handlerdata directive");
   9287     UC.emitHandlerDataLocNotes();
   9288     return false;
   9289   }
   9290   if (HasExistingPersonality) {
   9291     Parser.eatToEndOfStatement();
   9292     Error(L, "multiple personality directives");
   9293     UC.emitPersonalityLocNotes();
   9294     return false;
   9295   }
   9296 
   9297   // Parse the name of the personality routine
   9298   if (Parser.getTok().isNot(AsmToken::Identifier)) {
   9299     Parser.eatToEndOfStatement();
   9300     Error(L, "unexpected input in .personality directive.");
   9301     return false;
   9302   }
   9303   StringRef Name(Parser.getTok().getIdentifier());
   9304   Parser.Lex();
   9305 
   9306   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
   9307   getTargetStreamer().emitPersonality(PR);
   9308   return false;
   9309 }
   9310 
   9311 /// parseDirectiveHandlerData
   9312 ///  ::= .handlerdata
   9313 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
   9314   UC.recordHandlerData(L);
   9315 
   9316   // Check the ordering of unwind directives
   9317   if (!UC.hasFnStart()) {
   9318     Error(L, ".fnstart must precede .personality directive");
   9319     return false;
   9320   }
   9321   if (UC.cantUnwind()) {
   9322     Error(L, ".handlerdata can't be used with .cantunwind directive");
   9323     UC.emitCantUnwindLocNotes();
   9324     return false;
   9325   }
   9326 
   9327   getTargetStreamer().emitHandlerData();
   9328   return false;
   9329 }
   9330 
   9331 /// parseDirectiveSetFP
   9332 ///  ::= .setfp fpreg, spreg [, offset]
   9333 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
   9334   MCAsmParser &Parser = getParser();
   9335   // Check the ordering of unwind directives
   9336   if (!UC.hasFnStart()) {
   9337     Error(L, ".fnstart must precede .setfp directive");
   9338     return false;
   9339   }
   9340   if (UC.hasHandlerData()) {
   9341     Error(L, ".setfp must precede .handlerdata directive");
   9342     return false;
   9343   }
   9344 
   9345   // Parse fpreg
   9346   SMLoc FPRegLoc = Parser.getTok().getLoc();
   9347   int FPReg = tryParseRegister();
   9348   if (FPReg == -1) {
   9349     Error(FPRegLoc, "frame pointer register expected");
   9350     return false;
   9351   }
   9352 
   9353   // Consume comma
   9354   if (Parser.getTok().isNot(AsmToken::Comma)) {
   9355     Error(Parser.getTok().getLoc(), "comma expected");
   9356     return false;
   9357   }
   9358   Parser.Lex(); // skip comma
   9359 
   9360   // Parse spreg
   9361   SMLoc SPRegLoc = Parser.getTok().getLoc();
   9362   int SPReg = tryParseRegister();
   9363   if (SPReg == -1) {
   9364     Error(SPRegLoc, "stack pointer register expected");
   9365     return false;
   9366   }
   9367 
   9368   if (SPReg != ARM::SP && SPReg != UC.getFPReg()) {
   9369     Error(SPRegLoc, "register should be either $sp or the latest fp register");
   9370     return false;
   9371   }
   9372 
   9373   // Update the frame pointer register
   9374   UC.saveFPReg(FPReg);
   9375 
   9376   // Parse offset
   9377   int64_t Offset = 0;
   9378   if (Parser.getTok().is(AsmToken::Comma)) {
   9379     Parser.Lex(); // skip comma
   9380 
   9381     if (Parser.getTok().isNot(AsmToken::Hash) &&
   9382         Parser.getTok().isNot(AsmToken::Dollar)) {
   9383       Error(Parser.getTok().getLoc(), "'#' expected");
   9384       return false;
   9385     }
   9386     Parser.Lex(); // skip hash token.
   9387 
   9388     const MCExpr *OffsetExpr;
   9389     SMLoc ExLoc = Parser.getTok().getLoc();
   9390     SMLoc EndLoc;
   9391     if (getParser().parseExpression(OffsetExpr, EndLoc)) {
   9392       Error(ExLoc, "malformed setfp offset");
   9393       return false;
   9394     }
   9395     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9396     if (!CE) {
   9397       Error(ExLoc, "setfp offset must be an immediate");
   9398       return false;
   9399     }
   9400 
   9401     Offset = CE->getValue();
   9402   }
   9403 
   9404   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
   9405                                 static_cast<unsigned>(SPReg), Offset);
   9406   return false;
   9407 }
   9408 
   9409 /// parseDirective
   9410 ///  ::= .pad offset
   9411 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
   9412   MCAsmParser &Parser = getParser();
   9413   // Check the ordering of unwind directives
   9414   if (!UC.hasFnStart()) {
   9415     Error(L, ".fnstart must precede .pad directive");
   9416     return false;
   9417   }
   9418   if (UC.hasHandlerData()) {
   9419     Error(L, ".pad must precede .handlerdata directive");
   9420     return false;
   9421   }
   9422 
   9423   // Parse the offset
   9424   if (Parser.getTok().isNot(AsmToken::Hash) &&
   9425       Parser.getTok().isNot(AsmToken::Dollar)) {
   9426     Error(Parser.getTok().getLoc(), "'#' expected");
   9427     return false;
   9428   }
   9429   Parser.Lex(); // skip hash token.
   9430 
   9431   const MCExpr *OffsetExpr;
   9432   SMLoc ExLoc = Parser.getTok().getLoc();
   9433   SMLoc EndLoc;
   9434   if (getParser().parseExpression(OffsetExpr, EndLoc)) {
   9435     Error(ExLoc, "malformed pad offset");
   9436     return false;
   9437   }
   9438   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9439   if (!CE) {
   9440     Error(ExLoc, "pad offset must be an immediate");
   9441     return false;
   9442   }
   9443 
   9444   getTargetStreamer().emitPad(CE->getValue());
   9445   return false;
   9446 }
   9447 
   9448 /// parseDirectiveRegSave
   9449 ///  ::= .save  { registers }
   9450 ///  ::= .vsave { registers }
   9451 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
   9452   // Check the ordering of unwind directives
   9453   if (!UC.hasFnStart()) {
   9454     Error(L, ".fnstart must precede .save or .vsave directives");
   9455     return false;
   9456   }
   9457   if (UC.hasHandlerData()) {
   9458     Error(L, ".save or .vsave must precede .handlerdata directive");
   9459     return false;
   9460   }
   9461 
   9462   // RAII object to make sure parsed operands are deleted.
   9463   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
   9464 
   9465   // Parse the register list
   9466   if (parseRegisterList(Operands))
   9467     return false;
   9468   ARMOperand &Op = (ARMOperand &)*Operands[0];
   9469   if (!IsVector && !Op.isRegList()) {
   9470     Error(L, ".save expects GPR registers");
   9471     return false;
   9472   }
   9473   if (IsVector && !Op.isDPRRegList()) {
   9474     Error(L, ".vsave expects DPR registers");
   9475     return false;
   9476   }
   9477 
   9478   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
   9479   return false;
   9480 }
   9481 
   9482 /// parseDirectiveInst
   9483 ///  ::= .inst opcode [, ...]
   9484 ///  ::= .inst.n opcode [, ...]
   9485 ///  ::= .inst.w opcode [, ...]
   9486 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
   9487   MCAsmParser &Parser = getParser();
   9488   int Width;
   9489 
   9490   if (isThumb()) {
   9491     switch (Suffix) {
   9492     case 'n':
   9493       Width = 2;
   9494       break;
   9495     case 'w':
   9496       Width = 4;
   9497       break;
   9498     default:
   9499       Parser.eatToEndOfStatement();
   9500       Error(Loc, "cannot determine Thumb instruction size, "
   9501                  "use inst.n/inst.w instead");
   9502       return false;
   9503     }
   9504   } else {
   9505     if (Suffix) {
   9506       Parser.eatToEndOfStatement();
   9507       Error(Loc, "width suffixes are invalid in ARM mode");
   9508       return false;
   9509     }
   9510     Width = 4;
   9511   }
   9512 
   9513   if (getLexer().is(AsmToken::EndOfStatement)) {
   9514     Parser.eatToEndOfStatement();
   9515     Error(Loc, "expected expression following directive");
   9516     return false;
   9517   }
   9518 
   9519   for (;;) {
   9520     const MCExpr *Expr;
   9521 
   9522     if (getParser().parseExpression(Expr)) {
   9523       Error(Loc, "expected expression");
   9524       return false;
   9525     }
   9526 
   9527     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
   9528     if (!Value) {
   9529       Error(Loc, "expected constant expression");
   9530       return false;
   9531     }
   9532 
   9533     switch (Width) {
   9534     case 2:
   9535       if (Value->getValue() > 0xffff) {
   9536         Error(Loc, "inst.n operand is too big, use inst.w instead");
   9537         return false;
   9538       }
   9539       break;
   9540     case 4:
   9541       if (Value->getValue() > 0xffffffff) {
   9542         Error(Loc,
   9543               StringRef(Suffix ? "inst.w" : "inst") + " operand is too big");
   9544         return false;
   9545       }
   9546       break;
   9547     default:
   9548       llvm_unreachable("only supported widths are 2 and 4");
   9549     }
   9550 
   9551     getTargetStreamer().emitInst(Value->getValue(), Suffix);
   9552 
   9553     if (getLexer().is(AsmToken::EndOfStatement))
   9554       break;
   9555 
   9556     if (getLexer().isNot(AsmToken::Comma)) {
   9557       Error(Loc, "unexpected token in directive");
   9558       return false;
   9559     }
   9560 
   9561     Parser.Lex();
   9562   }
   9563 
   9564   Parser.Lex();
   9565   return false;
   9566 }
   9567 
   9568 /// parseDirectiveLtorg
   9569 ///  ::= .ltorg | .pool
   9570 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
   9571   getTargetStreamer().emitCurrentConstantPool();
   9572   return false;
   9573 }
   9574 
   9575 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
   9576   const MCSection *Section = getStreamer().getCurrentSection().first;
   9577 
   9578   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   9579     TokError("unexpected token in directive");
   9580     return false;
   9581   }
   9582 
   9583   if (!Section) {
   9584     getStreamer().InitSections(false);
   9585     Section = getStreamer().getCurrentSection().first;
   9586   }
   9587 
   9588   assert(Section && "must have section to emit alignment");
   9589   if (Section->UseCodeAlign())
   9590     getStreamer().EmitCodeAlignment(2);
   9591   else
   9592     getStreamer().EmitValueToAlignment(2);
   9593 
   9594   return false;
   9595 }
   9596 
   9597 /// parseDirectivePersonalityIndex
   9598 ///   ::= .personalityindex index
   9599 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
   9600   MCAsmParser &Parser = getParser();
   9601   bool HasExistingPersonality = UC.hasPersonality();
   9602 
   9603   UC.recordPersonalityIndex(L);
   9604 
   9605   if (!UC.hasFnStart()) {
   9606     Parser.eatToEndOfStatement();
   9607     Error(L, ".fnstart must precede .personalityindex directive");
   9608     return false;
   9609   }
   9610   if (UC.cantUnwind()) {
   9611     Parser.eatToEndOfStatement();
   9612     Error(L, ".personalityindex cannot be used with .cantunwind");
   9613     UC.emitCantUnwindLocNotes();
   9614     return false;
   9615   }
   9616   if (UC.hasHandlerData()) {
   9617     Parser.eatToEndOfStatement();
   9618     Error(L, ".personalityindex must precede .handlerdata directive");
   9619     UC.emitHandlerDataLocNotes();
   9620     return false;
   9621   }
   9622   if (HasExistingPersonality) {
   9623     Parser.eatToEndOfStatement();
   9624     Error(L, "multiple personality directives");
   9625     UC.emitPersonalityLocNotes();
   9626     return false;
   9627   }
   9628 
   9629   const MCExpr *IndexExpression;
   9630   SMLoc IndexLoc = Parser.getTok().getLoc();
   9631   if (Parser.parseExpression(IndexExpression)) {
   9632     Parser.eatToEndOfStatement();
   9633     return false;
   9634   }
   9635 
   9636   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
   9637   if (!CE) {
   9638     Parser.eatToEndOfStatement();
   9639     Error(IndexLoc, "index must be a constant number");
   9640     return false;
   9641   }
   9642   if (CE->getValue() < 0 ||
   9643       CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) {
   9644     Parser.eatToEndOfStatement();
   9645     Error(IndexLoc, "personality routine index should be in range [0-3]");
   9646     return false;
   9647   }
   9648 
   9649   getTargetStreamer().emitPersonalityIndex(CE->getValue());
   9650   return false;
   9651 }
   9652 
   9653 /// parseDirectiveUnwindRaw
   9654 ///   ::= .unwind_raw offset, opcode [, opcode...]
   9655 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
   9656   MCAsmParser &Parser = getParser();
   9657   if (!UC.hasFnStart()) {
   9658     Parser.eatToEndOfStatement();
   9659     Error(L, ".fnstart must precede .unwind_raw directives");
   9660     return false;
   9661   }
   9662 
   9663   int64_t StackOffset;
   9664 
   9665   const MCExpr *OffsetExpr;
   9666   SMLoc OffsetLoc = getLexer().getLoc();
   9667   if (getLexer().is(AsmToken::EndOfStatement) ||
   9668       getParser().parseExpression(OffsetExpr)) {
   9669     Error(OffsetLoc, "expected expression");
   9670     Parser.eatToEndOfStatement();
   9671     return false;
   9672   }
   9673 
   9674   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9675   if (!CE) {
   9676     Error(OffsetLoc, "offset must be a constant");
   9677     Parser.eatToEndOfStatement();
   9678     return false;
   9679   }
   9680 
   9681   StackOffset = CE->getValue();
   9682 
   9683   if (getLexer().isNot(AsmToken::Comma)) {
   9684     Error(getLexer().getLoc(), "expected comma");
   9685     Parser.eatToEndOfStatement();
   9686     return false;
   9687   }
   9688   Parser.Lex();
   9689 
   9690   SmallVector<uint8_t, 16> Opcodes;
   9691   for (;;) {
   9692     const MCExpr *OE;
   9693 
   9694     SMLoc OpcodeLoc = getLexer().getLoc();
   9695     if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) {
   9696       Error(OpcodeLoc, "expected opcode expression");
   9697       Parser.eatToEndOfStatement();
   9698       return false;
   9699     }
   9700 
   9701     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
   9702     if (!OC) {
   9703       Error(OpcodeLoc, "opcode value must be a constant");
   9704       Parser.eatToEndOfStatement();
   9705       return false;
   9706     }
   9707 
   9708     const int64_t Opcode = OC->getValue();
   9709     if (Opcode & ~0xff) {
   9710       Error(OpcodeLoc, "invalid opcode");
   9711       Parser.eatToEndOfStatement();
   9712       return false;
   9713     }
   9714 
   9715     Opcodes.push_back(uint8_t(Opcode));
   9716 
   9717     if (getLexer().is(AsmToken::EndOfStatement))
   9718       break;
   9719 
   9720     if (getLexer().isNot(AsmToken::Comma)) {
   9721       Error(getLexer().getLoc(), "unexpected token in directive");
   9722       Parser.eatToEndOfStatement();
   9723       return false;
   9724     }
   9725 
   9726     Parser.Lex();
   9727   }
   9728 
   9729   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
   9730 
   9731   Parser.Lex();
   9732   return false;
   9733 }
   9734 
   9735 /// parseDirectiveTLSDescSeq
   9736 ///   ::= .tlsdescseq tls-variable
   9737 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
   9738   MCAsmParser &Parser = getParser();
   9739 
   9740   if (getLexer().isNot(AsmToken::Identifier)) {
   9741     TokError("expected variable after '.tlsdescseq' directive");
   9742     Parser.eatToEndOfStatement();
   9743     return false;
   9744   }
   9745 
   9746   const MCSymbolRefExpr *SRE =
   9747     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
   9748                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
   9749   Lex();
   9750 
   9751   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   9752     Error(Parser.getTok().getLoc(), "unexpected token");
   9753     Parser.eatToEndOfStatement();
   9754     return false;
   9755   }
   9756 
   9757   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
   9758   return false;
   9759 }
   9760 
   9761 /// parseDirectiveMovSP
   9762 ///  ::= .movsp reg [, #offset]
   9763 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
   9764   MCAsmParser &Parser = getParser();
   9765   if (!UC.hasFnStart()) {
   9766     Parser.eatToEndOfStatement();
   9767     Error(L, ".fnstart must precede .movsp directives");
   9768     return false;
   9769   }
   9770   if (UC.getFPReg() != ARM::SP) {
   9771     Parser.eatToEndOfStatement();
   9772     Error(L, "unexpected .movsp directive");
   9773     return false;
   9774   }
   9775 
   9776   SMLoc SPRegLoc = Parser.getTok().getLoc();
   9777   int SPReg = tryParseRegister();
   9778   if (SPReg == -1) {
   9779     Parser.eatToEndOfStatement();
   9780     Error(SPRegLoc, "register expected");
   9781     return false;
   9782   }
   9783 
   9784   if (SPReg == ARM::SP || SPReg == ARM::PC) {
   9785     Parser.eatToEndOfStatement();
   9786     Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
   9787     return false;
   9788   }
   9789 
   9790   int64_t Offset = 0;
   9791   if (Parser.getTok().is(AsmToken::Comma)) {
   9792     Parser.Lex();
   9793 
   9794     if (Parser.getTok().isNot(AsmToken::Hash)) {
   9795       Error(Parser.getTok().getLoc(), "expected #constant");
   9796       Parser.eatToEndOfStatement();
   9797       return false;
   9798     }
   9799     Parser.Lex();
   9800 
   9801     const MCExpr *OffsetExpr;
   9802     SMLoc OffsetLoc = Parser.getTok().getLoc();
   9803     if (Parser.parseExpression(OffsetExpr)) {
   9804       Parser.eatToEndOfStatement();
   9805       Error(OffsetLoc, "malformed offset expression");
   9806       return false;
   9807     }
   9808 
   9809     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9810     if (!CE) {
   9811       Parser.eatToEndOfStatement();
   9812       Error(OffsetLoc, "offset must be an immediate constant");
   9813       return false;
   9814     }
   9815 
   9816     Offset = CE->getValue();
   9817   }
   9818 
   9819   getTargetStreamer().emitMovSP(SPReg, Offset);
   9820   UC.saveFPReg(SPReg);
   9821 
   9822   return false;
   9823 }
   9824 
   9825 /// parseDirectiveObjectArch
   9826 ///   ::= .object_arch name
   9827 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
   9828   MCAsmParser &Parser = getParser();
   9829   if (getLexer().isNot(AsmToken::Identifier)) {
   9830     Error(getLexer().getLoc(), "unexpected token");
   9831     Parser.eatToEndOfStatement();
   9832     return false;
   9833   }
   9834 
   9835   StringRef Arch = Parser.getTok().getString();
   9836   SMLoc ArchLoc = Parser.getTok().getLoc();
   9837   getLexer().Lex();
   9838 
   9839   unsigned ID = ARM::parseArch(Arch);
   9840 
   9841   if (ID == ARM::AK_INVALID) {
   9842     Error(ArchLoc, "unknown architecture '" + Arch + "'");
   9843     Parser.eatToEndOfStatement();
   9844     return false;
   9845   }
   9846 
   9847   getTargetStreamer().emitObjectArch(ID);
   9848 
   9849   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   9850     Error(getLexer().getLoc(), "unexpected token");
   9851     Parser.eatToEndOfStatement();
   9852   }
   9853 
   9854   return false;
   9855 }
   9856 
   9857 /// parseDirectiveAlign
   9858 ///   ::= .align
   9859 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
   9860   // NOTE: if this is not the end of the statement, fall back to the target
   9861   // agnostic handling for this directive which will correctly handle this.
   9862   if (getLexer().isNot(AsmToken::EndOfStatement))
   9863     return true;
   9864 
   9865   // '.align' is target specifically handled to mean 2**2 byte alignment.
   9866   if (getStreamer().getCurrentSection().first->UseCodeAlign())
   9867     getStreamer().EmitCodeAlignment(4, 0);
   9868   else
   9869     getStreamer().EmitValueToAlignment(4, 0, 1, 0);
   9870 
   9871   return false;
   9872 }
   9873 
   9874 /// parseDirectiveThumbSet
   9875 ///  ::= .thumb_set name, value
   9876 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
   9877   MCAsmParser &Parser = getParser();
   9878 
   9879   StringRef Name;
   9880   if (Parser.parseIdentifier(Name)) {
   9881     TokError("expected identifier after '.thumb_set'");
   9882     Parser.eatToEndOfStatement();
   9883     return false;
   9884   }
   9885 
   9886   if (getLexer().isNot(AsmToken::Comma)) {
   9887     TokError("expected comma after name '" + Name + "'");
   9888     Parser.eatToEndOfStatement();
   9889     return false;
   9890   }
   9891   Lex();
   9892 
   9893   MCSymbol *Sym;
   9894   const MCExpr *Value;
   9895   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
   9896                                                Parser, Sym, Value))
   9897     return true;
   9898 
   9899   getTargetStreamer().emitThumbSet(Sym, Value);
   9900   return false;
   9901 }
   9902 
   9903 /// Force static initialization.
   9904 extern "C" void LLVMInitializeARMAsmParser() {
   9905   RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget);
   9906   RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget);
   9907   RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget);
   9908   RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget);
   9909 }
   9910 
   9911 #define GET_REGISTER_MATCHER
   9912 #define GET_SUBTARGET_FEATURE_NAME
   9913 #define GET_MATCHER_IMPLEMENTATION
   9914 #include "ARMGenAsmMatcher.inc"
   9915 
   9916 // FIXME: This structure should be moved inside ARMTargetParser
   9917 // when we start to table-generate them, and we can use the ARM
   9918 // flags below, that were generated by table-gen.
   9919 static const struct {
   9920   const unsigned Kind;
   9921   const uint64_t ArchCheck;
   9922   const FeatureBitset Features;
   9923 } Extensions[] = {
   9924   { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} },
   9925   { ARM::AEK_CRYPTO,  Feature_HasV8,
   9926     {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
   9927   { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} },
   9928   { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass,
   9929     {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} },
   9930   { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} },
   9931   { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} },
   9932   { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} },
   9933   // FIXME: Only available in A-class, isel not predicated
   9934   { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} },
   9935   { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
   9936   // FIXME: Unsupported extensions.
   9937   { ARM::AEK_OS, Feature_None, {} },
   9938   { ARM::AEK_IWMMXT, Feature_None, {} },
   9939   { ARM::AEK_IWMMXT2, Feature_None, {} },
   9940   { ARM::AEK_MAVERICK, Feature_None, {} },
   9941   { ARM::AEK_XSCALE, Feature_None, {} },
   9942 };
   9943 
   9944 /// parseDirectiveArchExtension
   9945 ///   ::= .arch_extension [no]feature
   9946 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
   9947   MCAsmParser &Parser = getParser();
   9948 
   9949   if (getLexer().isNot(AsmToken::Identifier)) {
   9950     Error(getLexer().getLoc(), "unexpected token");
   9951     Parser.eatToEndOfStatement();
   9952     return false;
   9953   }
   9954 
   9955   StringRef Name = Parser.getTok().getString();
   9956   SMLoc ExtLoc = Parser.getTok().getLoc();
   9957   getLexer().Lex();
   9958 
   9959   bool EnableFeature = true;
   9960   if (Name.startswith_lower("no")) {
   9961     EnableFeature = false;
   9962     Name = Name.substr(2);
   9963   }
   9964   unsigned FeatureKind = ARM::parseArchExt(Name);
   9965   if (FeatureKind == ARM::AEK_INVALID)
   9966     Error(ExtLoc, "unknown architectural extension: " + Name);
   9967 
   9968   for (const auto &Extension : Extensions) {
   9969     if (Extension.Kind != FeatureKind)
   9970       continue;
   9971 
   9972     if (Extension.Features.none())
   9973       report_fatal_error("unsupported architectural extension: " + Name);
   9974 
   9975     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) {
   9976       Error(ExtLoc, "architectural extension '" + Name + "' is not "
   9977             "allowed for the current base architecture");
   9978       return false;
   9979     }
   9980 
   9981     MCSubtargetInfo &STI = copySTI();
   9982     FeatureBitset ToggleFeatures = EnableFeature
   9983       ? (~STI.getFeatureBits() & Extension.Features)
   9984       : ( STI.getFeatureBits() & Extension.Features);
   9985 
   9986     uint64_t Features =
   9987         ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
   9988     setAvailableFeatures(Features);
   9989     return false;
   9990   }
   9991 
   9992   Error(ExtLoc, "unknown architectural extension: " + Name);
   9993   Parser.eatToEndOfStatement();
   9994   return false;
   9995 }
   9996 
   9997 // Define this matcher function after the auto-generated include so we
   9998 // have the match class enum definitions.
   9999 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
   10000                                                   unsigned Kind) {
   10001   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
   10002   // If the kind is a token for a literal immediate, check if our asm
   10003   // operand matches. This is for InstAliases which have a fixed-value
   10004   // immediate in the syntax.
   10005   switch (Kind) {
   10006   default: break;
   10007   case MCK__35_0:
   10008     if (Op.isImm())
   10009       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
   10010         if (CE->getValue() == 0)
   10011           return Match_Success;
   10012     break;
   10013   case MCK_ModImm:
   10014     if (Op.isImm()) {
   10015       const MCExpr *SOExpr = Op.getImm();
   10016       int64_t Value;
   10017       if (!SOExpr->evaluateAsAbsolute(Value))
   10018         return Match_Success;
   10019       assert((Value >= INT32_MIN && Value <= UINT32_MAX) &&
   10020              "expression value must be representable in 32 bits");
   10021     }
   10022     break;
   10023   case MCK_rGPR:
   10024     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
   10025       return Match_Success;
   10026     break;
   10027   case MCK_GPRPair:
   10028     if (Op.isReg() &&
   10029         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
   10030       return Match_Success;
   10031     break;
   10032   }
   10033   return Match_InvalidOperand;
   10034 }
   10035