Home | History | Annotate | Download | only in X86
      1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the X86-specific support for the FastISel class. Much
     11 // of the target-specific code is generated by tablegen in the file
     12 // X86GenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "X86.h"
     17 #include "X86CallingConv.h"
     18 #include "X86InstrBuilder.h"
     19 #include "X86InstrInfo.h"
     20 #include "X86MachineFunctionInfo.h"
     21 #include "X86RegisterInfo.h"
     22 #include "X86Subtarget.h"
     23 #include "X86TargetMachine.h"
     24 #include "llvm/Analysis/BranchProbabilityInfo.h"
     25 #include "llvm/CodeGen/Analysis.h"
     26 #include "llvm/CodeGen/FastISel.h"
     27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     28 #include "llvm/CodeGen/MachineConstantPool.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineRegisterInfo.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/GetElementPtrTypeIterator.h"
     35 #include "llvm/IR/GlobalAlias.h"
     36 #include "llvm/IR/GlobalVariable.h"
     37 #include "llvm/IR/Instructions.h"
     38 #include "llvm/IR/IntrinsicInst.h"
     39 #include "llvm/IR/Operator.h"
     40 #include "llvm/MC/MCAsmInfo.h"
     41 #include "llvm/MC/MCSymbol.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Target/TargetOptions.h"
     44 using namespace llvm;
     45 
     46 namespace {
     47 
     48 class X86FastISel final : public FastISel {
     49   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
     50   /// make the right decision when generating code for different targets.
     51   const X86Subtarget *Subtarget;
     52 
     53   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
     54   /// floating point ops.
     55   /// When SSE is available, use it for f32 operations.
     56   /// When SSE2 is available, use it for f64 operations.
     57   bool X86ScalarSSEf64;
     58   bool X86ScalarSSEf32;
     59 
     60 public:
     61   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
     62                        const TargetLibraryInfo *libInfo)
     63       : FastISel(funcInfo, libInfo) {
     64     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
     65     X86ScalarSSEf64 = Subtarget->hasSSE2();
     66     X86ScalarSSEf32 = Subtarget->hasSSE1();
     67   }
     68 
     69   bool fastSelectInstruction(const Instruction *I) override;
     70 
     71   /// \brief The specified machine instr operand is a vreg, and that
     72   /// vreg is being provided by the specified load instruction.  If possible,
     73   /// try to fold the load as an operand to the instruction, returning true if
     74   /// possible.
     75   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
     76                            const LoadInst *LI) override;
     77 
     78   bool fastLowerArguments() override;
     79   bool fastLowerCall(CallLoweringInfo &CLI) override;
     80   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
     81 
     82 #include "X86GenFastISel.inc"
     83 
     84 private:
     85   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
     86 
     87   bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
     88                        unsigned &ResultReg, unsigned Alignment = 1);
     89 
     90   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
     91                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
     92   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
     93                         X86AddressMode &AM,
     94                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
     95 
     96   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
     97                          unsigned &ResultReg);
     98 
     99   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
    100   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
    101 
    102   bool X86SelectLoad(const Instruction *I);
    103 
    104   bool X86SelectStore(const Instruction *I);
    105 
    106   bool X86SelectRet(const Instruction *I);
    107 
    108   bool X86SelectCmp(const Instruction *I);
    109 
    110   bool X86SelectZExt(const Instruction *I);
    111 
    112   bool X86SelectBranch(const Instruction *I);
    113 
    114   bool X86SelectShift(const Instruction *I);
    115 
    116   bool X86SelectDivRem(const Instruction *I);
    117 
    118   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
    119 
    120   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
    121 
    122   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
    123 
    124   bool X86SelectSelect(const Instruction *I);
    125 
    126   bool X86SelectTrunc(const Instruction *I);
    127 
    128   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
    129                                const TargetRegisterClass *RC);
    130 
    131   bool X86SelectFPExt(const Instruction *I);
    132   bool X86SelectFPTrunc(const Instruction *I);
    133   bool X86SelectSIToFP(const Instruction *I);
    134 
    135   const X86InstrInfo *getInstrInfo() const {
    136     return Subtarget->getInstrInfo();
    137   }
    138   const X86TargetMachine *getTargetMachine() const {
    139     return static_cast<const X86TargetMachine *>(&TM);
    140   }
    141 
    142   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
    143 
    144   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
    145   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
    146   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
    147   unsigned fastMaterializeConstant(const Constant *C) override;
    148 
    149   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
    150 
    151   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
    152 
    153   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    154   /// computed in an SSE register, not on the X87 floating point stack.
    155   bool isScalarFPTypeInSSEReg(EVT VT) const {
    156     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    157       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    158   }
    159 
    160   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
    161 
    162   bool IsMemcpySmall(uint64_t Len);
    163 
    164   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
    165                           X86AddressMode SrcAM, uint64_t Len);
    166 
    167   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
    168                             const Value *Cond);
    169 
    170   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
    171                                             X86AddressMode &AM);
    172 };
    173 
    174 } // end anonymous namespace.
    175 
    176 static std::pair<X86::CondCode, bool>
    177 getX86ConditionCode(CmpInst::Predicate Predicate) {
    178   X86::CondCode CC = X86::COND_INVALID;
    179   bool NeedSwap = false;
    180   switch (Predicate) {
    181   default: break;
    182   // Floating-point Predicates
    183   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
    184   case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
    185   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
    186   case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
    187   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
    188   case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
    189   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
    190   case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
    191   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
    192   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
    193   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
    194   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
    195   case CmpInst::FCMP_OEQ: // fall-through
    196   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
    197 
    198   // Integer Predicates
    199   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
    200   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
    201   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
    202   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
    203   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
    204   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
    205   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
    206   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
    207   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
    208   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
    209   }
    210 
    211   return std::make_pair(CC, NeedSwap);
    212 }
    213 
    214 static std::pair<unsigned, bool>
    215 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
    216   unsigned CC;
    217   bool NeedSwap = false;
    218 
    219   // SSE Condition code mapping:
    220   //  0 - EQ
    221   //  1 - LT
    222   //  2 - LE
    223   //  3 - UNORD
    224   //  4 - NEQ
    225   //  5 - NLT
    226   //  6 - NLE
    227   //  7 - ORD
    228   switch (Predicate) {
    229   default: llvm_unreachable("Unexpected predicate");
    230   case CmpInst::FCMP_OEQ: CC = 0;          break;
    231   case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
    232   case CmpInst::FCMP_OLT: CC = 1;          break;
    233   case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
    234   case CmpInst::FCMP_OLE: CC = 2;          break;
    235   case CmpInst::FCMP_UNO: CC = 3;          break;
    236   case CmpInst::FCMP_UNE: CC = 4;          break;
    237   case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
    238   case CmpInst::FCMP_UGE: CC = 5;          break;
    239   case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
    240   case CmpInst::FCMP_UGT: CC = 6;          break;
    241   case CmpInst::FCMP_ORD: CC = 7;          break;
    242   case CmpInst::FCMP_UEQ:
    243   case CmpInst::FCMP_ONE: CC = 8;          break;
    244   }
    245 
    246   return std::make_pair(CC, NeedSwap);
    247 }
    248 
    249 /// \brief Adds a complex addressing mode to the given machine instr builder.
    250 /// Note, this will constrain the index register.  If its not possible to
    251 /// constrain the given index register, then a new one will be created.  The
    252 /// IndexReg field of the addressing mode will be updated to match in this case.
    253 const MachineInstrBuilder &
    254 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
    255                             X86AddressMode &AM) {
    256   // First constrain the index register.  It needs to be a GR64_NOSP.
    257   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
    258                                          MIB->getNumOperands() +
    259                                          X86::AddrIndexReg);
    260   return ::addFullAddress(MIB, AM);
    261 }
    262 
    263 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
    264 /// into the user. The condition code will only be updated on success.
    265 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
    266                                        const Value *Cond) {
    267   if (!isa<ExtractValueInst>(Cond))
    268     return false;
    269 
    270   const auto *EV = cast<ExtractValueInst>(Cond);
    271   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
    272     return false;
    273 
    274   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
    275   MVT RetVT;
    276   const Function *Callee = II->getCalledFunction();
    277   Type *RetTy =
    278     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
    279   if (!isTypeLegal(RetTy, RetVT))
    280     return false;
    281 
    282   if (RetVT != MVT::i32 && RetVT != MVT::i64)
    283     return false;
    284 
    285   X86::CondCode TmpCC;
    286   switch (II->getIntrinsicID()) {
    287   default: return false;
    288   case Intrinsic::sadd_with_overflow:
    289   case Intrinsic::ssub_with_overflow:
    290   case Intrinsic::smul_with_overflow:
    291   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
    292   case Intrinsic::uadd_with_overflow:
    293   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
    294   }
    295 
    296   // Check if both instructions are in the same basic block.
    297   if (II->getParent() != I->getParent())
    298     return false;
    299 
    300   // Make sure nothing is in the way
    301   BasicBlock::const_iterator Start(I);
    302   BasicBlock::const_iterator End(II);
    303   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
    304     // We only expect extractvalue instructions between the intrinsic and the
    305     // instruction to be selected.
    306     if (!isa<ExtractValueInst>(Itr))
    307       return false;
    308 
    309     // Check that the extractvalue operand comes from the intrinsic.
    310     const auto *EVI = cast<ExtractValueInst>(Itr);
    311     if (EVI->getAggregateOperand() != II)
    312       return false;
    313   }
    314 
    315   CC = TmpCC;
    316   return true;
    317 }
    318 
    319 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
    320   EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
    321   if (evt == MVT::Other || !evt.isSimple())
    322     // Unhandled type. Halt "fast" selection and bail.
    323     return false;
    324 
    325   VT = evt.getSimpleVT();
    326   // For now, require SSE/SSE2 for performing floating-point operations,
    327   // since x87 requires additional work.
    328   if (VT == MVT::f64 && !X86ScalarSSEf64)
    329     return false;
    330   if (VT == MVT::f32 && !X86ScalarSSEf32)
    331     return false;
    332   // Similarly, no f80 support yet.
    333   if (VT == MVT::f80)
    334     return false;
    335   // We only handle legal types. For example, on x86-32 the instruction
    336   // selector contains all of the 64-bit instructions from x86-64,
    337   // under the assumption that i64 won't be used if the target doesn't
    338   // support it.
    339   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
    340 }
    341 
    342 #include "X86GenCallingConv.inc"
    343 
    344 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
    345 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
    346 /// Return true and the result register by reference if it is possible.
    347 bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
    348                                   MachineMemOperand *MMO, unsigned &ResultReg,
    349                                   unsigned Alignment) {
    350   // Get opcode and regclass of the output for the given load instruction.
    351   unsigned Opc = 0;
    352   const TargetRegisterClass *RC = nullptr;
    353   switch (VT.getSimpleVT().SimpleTy) {
    354   default: return false;
    355   case MVT::i1:
    356   case MVT::i8:
    357     Opc = X86::MOV8rm;
    358     RC  = &X86::GR8RegClass;
    359     break;
    360   case MVT::i16:
    361     Opc = X86::MOV16rm;
    362     RC  = &X86::GR16RegClass;
    363     break;
    364   case MVT::i32:
    365     Opc = X86::MOV32rm;
    366     RC  = &X86::GR32RegClass;
    367     break;
    368   case MVT::i64:
    369     // Must be in x86-64 mode.
    370     Opc = X86::MOV64rm;
    371     RC  = &X86::GR64RegClass;
    372     break;
    373   case MVT::f32:
    374     if (X86ScalarSSEf32) {
    375       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
    376       RC  = &X86::FR32RegClass;
    377     } else {
    378       Opc = X86::LD_Fp32m;
    379       RC  = &X86::RFP32RegClass;
    380     }
    381     break;
    382   case MVT::f64:
    383     if (X86ScalarSSEf64) {
    384       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
    385       RC  = &X86::FR64RegClass;
    386     } else {
    387       Opc = X86::LD_Fp64m;
    388       RC  = &X86::RFP64RegClass;
    389     }
    390     break;
    391   case MVT::f80:
    392     // No f80 support yet.
    393     return false;
    394   case MVT::v4f32:
    395     if (Alignment >= 16)
    396       Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
    397     else
    398       Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
    399     RC  = &X86::VR128RegClass;
    400     break;
    401   case MVT::v2f64:
    402     if (Alignment >= 16)
    403       Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
    404     else
    405       Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
    406     RC  = &X86::VR128RegClass;
    407     break;
    408   case MVT::v4i32:
    409   case MVT::v2i64:
    410   case MVT::v8i16:
    411   case MVT::v16i8:
    412     if (Alignment >= 16)
    413       Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
    414     else
    415       Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
    416     RC  = &X86::VR128RegClass;
    417     break;
    418   }
    419 
    420   ResultReg = createResultReg(RC);
    421   MachineInstrBuilder MIB =
    422     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
    423   addFullAddress(MIB, AM);
    424   if (MMO)
    425     MIB->addMemOperand(*FuncInfo.MF, MMO);
    426   return true;
    427 }
    428 
    429 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
    430 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
    431 /// and a displacement offset, or a GlobalAddress,
    432 /// i.e. V. Return true if it is possible.
    433 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
    434                                    X86AddressMode &AM,
    435                                    MachineMemOperand *MMO, bool Aligned) {
    436   bool HasSSE2 = Subtarget->hasSSE2();
    437   bool HasSSE4A = Subtarget->hasSSE4A();
    438   bool HasAVX = Subtarget->hasAVX();
    439   bool IsNonTemporal = MMO && MMO->isNonTemporal();
    440 
    441   // Get opcode and regclass of the output for the given store instruction.
    442   unsigned Opc = 0;
    443   switch (VT.getSimpleVT().SimpleTy) {
    444   case MVT::f80: // No f80 support yet.
    445   default: return false;
    446   case MVT::i1: {
    447     // Mask out all but lowest bit.
    448     unsigned AndResult = createResultReg(&X86::GR8RegClass);
    449     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    450             TII.get(X86::AND8ri), AndResult)
    451       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
    452     ValReg = AndResult;
    453   }
    454   // FALLTHROUGH, handling i1 as i8.
    455   case MVT::i8:  Opc = X86::MOV8mr;  break;
    456   case MVT::i16: Opc = X86::MOV16mr; break;
    457   case MVT::i32:
    458     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
    459     break;
    460   case MVT::i64:
    461     // Must be in x86-64 mode.
    462     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
    463     break;
    464   case MVT::f32:
    465     if (X86ScalarSSEf32) {
    466       if (IsNonTemporal && HasSSE4A)
    467         Opc = X86::MOVNTSS;
    468       else
    469         Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
    470     } else
    471       Opc = X86::ST_Fp32m;
    472     break;
    473   case MVT::f64:
    474     if (X86ScalarSSEf32) {
    475       if (IsNonTemporal && HasSSE4A)
    476         Opc = X86::MOVNTSD;
    477       else
    478         Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
    479     } else
    480       Opc = X86::ST_Fp64m;
    481     break;
    482   case MVT::v4f32:
    483     if (Aligned) {
    484       if (IsNonTemporal)
    485         Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
    486       else
    487         Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
    488     } else
    489       Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
    490     break;
    491   case MVT::v2f64:
    492     if (Aligned) {
    493       if (IsNonTemporal)
    494         Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
    495       else
    496         Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
    497     } else
    498       Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
    499     break;
    500   case MVT::v4i32:
    501   case MVT::v2i64:
    502   case MVT::v8i16:
    503   case MVT::v16i8:
    504     if (Aligned) {
    505       if (IsNonTemporal)
    506         Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
    507       else
    508         Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
    509     } else
    510       Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
    511     break;
    512   }
    513 
    514   MachineInstrBuilder MIB =
    515     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
    516   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
    517   if (MMO)
    518     MIB->addMemOperand(*FuncInfo.MF, MMO);
    519 
    520   return true;
    521 }
    522 
    523 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
    524                                    X86AddressMode &AM,
    525                                    MachineMemOperand *MMO, bool Aligned) {
    526   // Handle 'null' like i32/i64 0.
    527   if (isa<ConstantPointerNull>(Val))
    528     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
    529 
    530   // If this is a store of a simple constant, fold the constant into the store.
    531   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    532     unsigned Opc = 0;
    533     bool Signed = true;
    534     switch (VT.getSimpleVT().SimpleTy) {
    535     default: break;
    536     case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
    537     case MVT::i8:  Opc = X86::MOV8mi;  break;
    538     case MVT::i16: Opc = X86::MOV16mi; break;
    539     case MVT::i32: Opc = X86::MOV32mi; break;
    540     case MVT::i64:
    541       // Must be a 32-bit sign extended value.
    542       if (isInt<32>(CI->getSExtValue()))
    543         Opc = X86::MOV64mi32;
    544       break;
    545     }
    546 
    547     if (Opc) {
    548       MachineInstrBuilder MIB =
    549         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
    550       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
    551                                             : CI->getZExtValue());
    552       if (MMO)
    553         MIB->addMemOperand(*FuncInfo.MF, MMO);
    554       return true;
    555     }
    556   }
    557 
    558   unsigned ValReg = getRegForValue(Val);
    559   if (ValReg == 0)
    560     return false;
    561 
    562   bool ValKill = hasTrivialKill(Val);
    563   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
    564 }
    565 
    566 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
    567 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
    568 /// ISD::SIGN_EXTEND).
    569 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
    570                                     unsigned Src, EVT SrcVT,
    571                                     unsigned &ResultReg) {
    572   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
    573                            Src, /*TODO: Kill=*/false);
    574   if (RR == 0)
    575     return false;
    576 
    577   ResultReg = RR;
    578   return true;
    579 }
    580 
    581 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
    582   // Handle constant address.
    583   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    584     // Can't handle alternate code models yet.
    585     if (TM.getCodeModel() != CodeModel::Small)
    586       return false;
    587 
    588     // Can't handle TLS yet.
    589     if (GV->isThreadLocal())
    590       return false;
    591 
    592     // RIP-relative addresses can't have additional register operands, so if
    593     // we've already folded stuff into the addressing mode, just force the
    594     // global value into its own register, which we can use as the basereg.
    595     if (!Subtarget->isPICStyleRIPRel() ||
    596         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
    597       // Okay, we've committed to selecting this global. Set up the address.
    598       AM.GV = GV;
    599 
    600       // Allow the subtarget to classify the global.
    601       unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
    602 
    603       // If this reference is relative to the pic base, set it now.
    604       if (isGlobalRelativeToPICBase(GVFlags)) {
    605         // FIXME: How do we know Base.Reg is free??
    606         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
    607       }
    608 
    609       // Unless the ABI requires an extra load, return a direct reference to
    610       // the global.
    611       if (!isGlobalStubReference(GVFlags)) {
    612         if (Subtarget->isPICStyleRIPRel()) {
    613           // Use rip-relative addressing if we can.  Above we verified that the
    614           // base and index registers are unused.
    615           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    616           AM.Base.Reg = X86::RIP;
    617         }
    618         AM.GVOpFlags = GVFlags;
    619         return true;
    620       }
    621 
    622       // Ok, we need to do a load from a stub.  If we've already loaded from
    623       // this stub, reuse the loaded pointer, otherwise emit the load now.
    624       DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
    625       unsigned LoadReg;
    626       if (I != LocalValueMap.end() && I->second != 0) {
    627         LoadReg = I->second;
    628       } else {
    629         // Issue load from stub.
    630         unsigned Opc = 0;
    631         const TargetRegisterClass *RC = nullptr;
    632         X86AddressMode StubAM;
    633         StubAM.Base.Reg = AM.Base.Reg;
    634         StubAM.GV = GV;
    635         StubAM.GVOpFlags = GVFlags;
    636 
    637         // Prepare for inserting code in the local-value area.
    638         SavePoint SaveInsertPt = enterLocalValueArea();
    639 
    640         if (TLI.getPointerTy(DL) == MVT::i64) {
    641           Opc = X86::MOV64rm;
    642           RC  = &X86::GR64RegClass;
    643 
    644           if (Subtarget->isPICStyleRIPRel())
    645             StubAM.Base.Reg = X86::RIP;
    646         } else {
    647           Opc = X86::MOV32rm;
    648           RC  = &X86::GR32RegClass;
    649         }
    650 
    651         LoadReg = createResultReg(RC);
    652         MachineInstrBuilder LoadMI =
    653           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
    654         addFullAddress(LoadMI, StubAM);
    655 
    656         // Ok, back to normal mode.
    657         leaveLocalValueArea(SaveInsertPt);
    658 
    659         // Prevent loading GV stub multiple times in same MBB.
    660         LocalValueMap[V] = LoadReg;
    661       }
    662 
    663       // Now construct the final address. Note that the Disp, Scale,
    664       // and Index values may already be set here.
    665       AM.Base.Reg = LoadReg;
    666       AM.GV = nullptr;
    667       return true;
    668     }
    669   }
    670 
    671   // If all else fails, try to materialize the value in a register.
    672   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    673     if (AM.Base.Reg == 0) {
    674       AM.Base.Reg = getRegForValue(V);
    675       return AM.Base.Reg != 0;
    676     }
    677     if (AM.IndexReg == 0) {
    678       assert(AM.Scale == 1 && "Scale with no index!");
    679       AM.IndexReg = getRegForValue(V);
    680       return AM.IndexReg != 0;
    681     }
    682   }
    683 
    684   return false;
    685 }
    686 
    687 /// X86SelectAddress - Attempt to fill in an address from the given value.
    688 ///
    689 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
    690   SmallVector<const Value *, 32> GEPs;
    691 redo_gep:
    692   const User *U = nullptr;
    693   unsigned Opcode = Instruction::UserOp1;
    694   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    695     // Don't walk into other basic blocks; it's possible we haven't
    696     // visited them yet, so the instructions may not yet be assigned
    697     // virtual registers.
    698     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
    699         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    700       Opcode = I->getOpcode();
    701       U = I;
    702     }
    703   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    704     Opcode = C->getOpcode();
    705     U = C;
    706   }
    707 
    708   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
    709     if (Ty->getAddressSpace() > 255)
    710       // Fast instruction selection doesn't support the special
    711       // address spaces.
    712       return false;
    713 
    714   switch (Opcode) {
    715   default: break;
    716   case Instruction::BitCast:
    717     // Look past bitcasts.
    718     return X86SelectAddress(U->getOperand(0), AM);
    719 
    720   case Instruction::IntToPtr:
    721     // Look past no-op inttoptrs.
    722     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
    723         TLI.getPointerTy(DL))
    724       return X86SelectAddress(U->getOperand(0), AM);
    725     break;
    726 
    727   case Instruction::PtrToInt:
    728     // Look past no-op ptrtoints.
    729     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
    730       return X86SelectAddress(U->getOperand(0), AM);
    731     break;
    732 
    733   case Instruction::Alloca: {
    734     // Do static allocas.
    735     const AllocaInst *A = cast<AllocaInst>(V);
    736     DenseMap<const AllocaInst *, int>::iterator SI =
    737       FuncInfo.StaticAllocaMap.find(A);
    738     if (SI != FuncInfo.StaticAllocaMap.end()) {
    739       AM.BaseType = X86AddressMode::FrameIndexBase;
    740       AM.Base.FrameIndex = SI->second;
    741       return true;
    742     }
    743     break;
    744   }
    745 
    746   case Instruction::Add: {
    747     // Adds of constants are common and easy enough.
    748     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
    749       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
    750       // They have to fit in the 32-bit signed displacement field though.
    751       if (isInt<32>(Disp)) {
    752         AM.Disp = (uint32_t)Disp;
    753         return X86SelectAddress(U->getOperand(0), AM);
    754       }
    755     }
    756     break;
    757   }
    758 
    759   case Instruction::GetElementPtr: {
    760     X86AddressMode SavedAM = AM;
    761 
    762     // Pattern-match simple GEPs.
    763     uint64_t Disp = (int32_t)AM.Disp;
    764     unsigned IndexReg = AM.IndexReg;
    765     unsigned Scale = AM.Scale;
    766     gep_type_iterator GTI = gep_type_begin(U);
    767     // Iterate through the indices, folding what we can. Constants can be
    768     // folded, and one dynamic index can be handled, if the scale is supported.
    769     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    770          i != e; ++i, ++GTI) {
    771       const Value *Op = *i;
    772       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    773         const StructLayout *SL = DL.getStructLayout(STy);
    774         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
    775         continue;
    776       }
    777 
    778       // A array/variable index is always of the form i*S where S is the
    779       // constant scale size.  See if we can push the scale into immediates.
    780       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
    781       for (;;) {
    782         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    783           // Constant-offset addressing.
    784           Disp += CI->getSExtValue() * S;
    785           break;
    786         }
    787         if (canFoldAddIntoGEP(U, Op)) {
    788           // A compatible add with a constant operand. Fold the constant.
    789           ConstantInt *CI =
    790             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    791           Disp += CI->getSExtValue() * S;
    792           // Iterate on the other operand.
    793           Op = cast<AddOperator>(Op)->getOperand(0);
    794           continue;
    795         }
    796         if (IndexReg == 0 &&
    797             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
    798             (S == 1 || S == 2 || S == 4 || S == 8)) {
    799           // Scaled-index addressing.
    800           Scale = S;
    801           IndexReg = getRegForGEPIndex(Op).first;
    802           if (IndexReg == 0)
    803             return false;
    804           break;
    805         }
    806         // Unsupported.
    807         goto unsupported_gep;
    808       }
    809     }
    810 
    811     // Check for displacement overflow.
    812     if (!isInt<32>(Disp))
    813       break;
    814 
    815     AM.IndexReg = IndexReg;
    816     AM.Scale = Scale;
    817     AM.Disp = (uint32_t)Disp;
    818     GEPs.push_back(V);
    819 
    820     if (const GetElementPtrInst *GEP =
    821           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
    822       // Ok, the GEP indices were covered by constant-offset and scaled-index
    823       // addressing. Update the address state and move on to examining the base.
    824       V = GEP;
    825       goto redo_gep;
    826     } else if (X86SelectAddress(U->getOperand(0), AM)) {
    827       return true;
    828     }
    829 
    830     // If we couldn't merge the gep value into this addr mode, revert back to
    831     // our address and just match the value instead of completely failing.
    832     AM = SavedAM;
    833 
    834     for (SmallVectorImpl<const Value *>::reverse_iterator
    835            I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
    836       if (handleConstantAddresses(*I, AM))
    837         return true;
    838 
    839     return false;
    840   unsupported_gep:
    841     // Ok, the GEP indices weren't all covered.
    842     break;
    843   }
    844   }
    845 
    846   return handleConstantAddresses(V, AM);
    847 }
    848 
    849 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
    850 ///
    851 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
    852   const User *U = nullptr;
    853   unsigned Opcode = Instruction::UserOp1;
    854   const Instruction *I = dyn_cast<Instruction>(V);
    855   // Record if the value is defined in the same basic block.
    856   //
    857   // This information is crucial to know whether or not folding an
    858   // operand is valid.
    859   // Indeed, FastISel generates or reuses a virtual register for all
    860   // operands of all instructions it selects. Obviously, the definition and
    861   // its uses must use the same virtual register otherwise the produced
    862   // code is incorrect.
    863   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
    864   // registers for values that are alive across basic blocks. This ensures
    865   // that the values are consistently set between across basic block, even
    866   // if different instruction selection mechanisms are used (e.g., a mix of
    867   // SDISel and FastISel).
    868   // For values local to a basic block, the instruction selection process
    869   // generates these virtual registers with whatever method is appropriate
    870   // for its needs. In particular, FastISel and SDISel do not share the way
    871   // local virtual registers are set.
    872   // Therefore, this is impossible (or at least unsafe) to share values
    873   // between basic blocks unless they use the same instruction selection
    874   // method, which is not guarantee for X86.
    875   // Moreover, things like hasOneUse could not be used accurately, if we
    876   // allow to reference values across basic blocks whereas they are not
    877   // alive across basic blocks initially.
    878   bool InMBB = true;
    879   if (I) {
    880     Opcode = I->getOpcode();
    881     U = I;
    882     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
    883   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    884     Opcode = C->getOpcode();
    885     U = C;
    886   }
    887 
    888   switch (Opcode) {
    889   default: break;
    890   case Instruction::BitCast:
    891     // Look past bitcasts if its operand is in the same BB.
    892     if (InMBB)
    893       return X86SelectCallAddress(U->getOperand(0), AM);
    894     break;
    895 
    896   case Instruction::IntToPtr:
    897     // Look past no-op inttoptrs if its operand is in the same BB.
    898     if (InMBB &&
    899         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
    900             TLI.getPointerTy(DL))
    901       return X86SelectCallAddress(U->getOperand(0), AM);
    902     break;
    903 
    904   case Instruction::PtrToInt:
    905     // Look past no-op ptrtoints if its operand is in the same BB.
    906     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
    907       return X86SelectCallAddress(U->getOperand(0), AM);
    908     break;
    909   }
    910 
    911   // Handle constant address.
    912   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    913     // Can't handle alternate code models yet.
    914     if (TM.getCodeModel() != CodeModel::Small)
    915       return false;
    916 
    917     // RIP-relative addresses can't have additional register operands.
    918     if (Subtarget->isPICStyleRIPRel() &&
    919         (AM.Base.Reg != 0 || AM.IndexReg != 0))
    920       return false;
    921 
    922     // Can't handle DLL Import.
    923     if (GV->hasDLLImportStorageClass())
    924       return false;
    925 
    926     // Can't handle TLS.
    927     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
    928       if (GVar->isThreadLocal())
    929         return false;
    930 
    931     // Okay, we've committed to selecting this global. Set up the basic address.
    932     AM.GV = GV;
    933 
    934     // No ABI requires an extra load for anything other than DLLImport, which
    935     // we rejected above. Return a direct reference to the global.
    936     if (Subtarget->isPICStyleRIPRel()) {
    937       // Use rip-relative addressing if we can.  Above we verified that the
    938       // base and index registers are unused.
    939       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    940       AM.Base.Reg = X86::RIP;
    941     } else if (Subtarget->isPICStyleStubPIC()) {
    942       AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
    943     } else if (Subtarget->isPICStyleGOT()) {
    944       AM.GVOpFlags = X86II::MO_GOTOFF;
    945     }
    946 
    947     return true;
    948   }
    949 
    950   // If all else fails, try to materialize the value in a register.
    951   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    952     if (AM.Base.Reg == 0) {
    953       AM.Base.Reg = getRegForValue(V);
    954       return AM.Base.Reg != 0;
    955     }
    956     if (AM.IndexReg == 0) {
    957       assert(AM.Scale == 1 && "Scale with no index!");
    958       AM.IndexReg = getRegForValue(V);
    959       return AM.IndexReg != 0;
    960     }
    961   }
    962 
    963   return false;
    964 }
    965 
    966 
    967 /// X86SelectStore - Select and emit code to implement store instructions.
    968 bool X86FastISel::X86SelectStore(const Instruction *I) {
    969   // Atomic stores need special handling.
    970   const StoreInst *S = cast<StoreInst>(I);
    971 
    972   if (S->isAtomic())
    973     return false;
    974 
    975   const Value *Val = S->getValueOperand();
    976   const Value *Ptr = S->getPointerOperand();
    977 
    978   MVT VT;
    979   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
    980     return false;
    981 
    982   unsigned Alignment = S->getAlignment();
    983   unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
    984   if (Alignment == 0) // Ensure that codegen never sees alignment 0
    985     Alignment = ABIAlignment;
    986   bool Aligned = Alignment >= ABIAlignment;
    987 
    988   X86AddressMode AM;
    989   if (!X86SelectAddress(Ptr, AM))
    990     return false;
    991 
    992   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
    993 }
    994 
    995 /// X86SelectRet - Select and emit code to implement ret instructions.
    996 bool X86FastISel::X86SelectRet(const Instruction *I) {
    997   const ReturnInst *Ret = cast<ReturnInst>(I);
    998   const Function &F = *I->getParent()->getParent();
    999   const X86MachineFunctionInfo *X86MFInfo =
   1000       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
   1001 
   1002   if (!FuncInfo.CanLowerReturn)
   1003     return false;
   1004 
   1005   CallingConv::ID CC = F.getCallingConv();
   1006   if (CC != CallingConv::C &&
   1007       CC != CallingConv::Fast &&
   1008       CC != CallingConv::X86_FastCall &&
   1009       CC != CallingConv::X86_64_SysV)
   1010     return false;
   1011 
   1012   if (Subtarget->isCallingConvWin64(CC))
   1013     return false;
   1014 
   1015   // Don't handle popping bytes on return for now.
   1016   if (X86MFInfo->getBytesToPopOnReturn() != 0)
   1017     return false;
   1018 
   1019   // fastcc with -tailcallopt is intended to provide a guaranteed
   1020   // tail call optimization. Fastisel doesn't know how to do that.
   1021   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
   1022     return false;
   1023 
   1024   // Let SDISel handle vararg functions.
   1025   if (F.isVarArg())
   1026     return false;
   1027 
   1028   // Build a list of return value registers.
   1029   SmallVector<unsigned, 4> RetRegs;
   1030 
   1031   if (Ret->getNumOperands() > 0) {
   1032     SmallVector<ISD::OutputArg, 4> Outs;
   1033     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
   1034 
   1035     // Analyze operands of the call, assigning locations to each operand.
   1036     SmallVector<CCValAssign, 16> ValLocs;
   1037     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
   1038     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
   1039 
   1040     const Value *RV = Ret->getOperand(0);
   1041     unsigned Reg = getRegForValue(RV);
   1042     if (Reg == 0)
   1043       return false;
   1044 
   1045     // Only handle a single return value for now.
   1046     if (ValLocs.size() != 1)
   1047       return false;
   1048 
   1049     CCValAssign &VA = ValLocs[0];
   1050 
   1051     // Don't bother handling odd stuff for now.
   1052     if (VA.getLocInfo() != CCValAssign::Full)
   1053       return false;
   1054     // Only handle register returns for now.
   1055     if (!VA.isRegLoc())
   1056       return false;
   1057 
   1058     // The calling-convention tables for x87 returns don't tell
   1059     // the whole story.
   1060     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
   1061       return false;
   1062 
   1063     unsigned SrcReg = Reg + VA.getValNo();
   1064     EVT SrcVT = TLI.getValueType(DL, RV->getType());
   1065     EVT DstVT = VA.getValVT();
   1066     // Special handling for extended integers.
   1067     if (SrcVT != DstVT) {
   1068       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
   1069         return false;
   1070 
   1071       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
   1072         return false;
   1073 
   1074       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
   1075 
   1076       if (SrcVT == MVT::i1) {
   1077         if (Outs[0].Flags.isSExt())
   1078           return false;
   1079         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
   1080         SrcVT = MVT::i8;
   1081       }
   1082       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
   1083                                              ISD::SIGN_EXTEND;
   1084       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
   1085                           SrcReg, /*TODO: Kill=*/false);
   1086     }
   1087 
   1088     // Make the copy.
   1089     unsigned DstReg = VA.getLocReg();
   1090     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
   1091     // Avoid a cross-class copy. This is very unlikely.
   1092     if (!SrcRC->contains(DstReg))
   1093       return false;
   1094     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1095             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
   1096 
   1097     // Add register to return instruction.
   1098     RetRegs.push_back(VA.getLocReg());
   1099   }
   1100 
   1101   // The x86-64 ABI for returning structs by value requires that we copy
   1102   // the sret argument into %rax for the return. We saved the argument into
   1103   // a virtual register in the entry block, so now we copy the value out
   1104   // and into %rax. We also do the same with %eax for Win32.
   1105   if (F.hasStructRetAttr() &&
   1106       (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
   1107     unsigned Reg = X86MFInfo->getSRetReturnReg();
   1108     assert(Reg &&
   1109            "SRetReturnReg should have been set in LowerFormalArguments()!");
   1110     unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   1111     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1112             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
   1113     RetRegs.push_back(RetReg);
   1114   }
   1115 
   1116   // Now emit the RET.
   1117   MachineInstrBuilder MIB =
   1118     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1119             TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
   1120   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
   1121     MIB.addReg(RetRegs[i], RegState::Implicit);
   1122   return true;
   1123 }
   1124 
   1125 /// X86SelectLoad - Select and emit code to implement load instructions.
   1126 ///
   1127 bool X86FastISel::X86SelectLoad(const Instruction *I) {
   1128   const LoadInst *LI = cast<LoadInst>(I);
   1129 
   1130   // Atomic loads need special handling.
   1131   if (LI->isAtomic())
   1132     return false;
   1133 
   1134   MVT VT;
   1135   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
   1136     return false;
   1137 
   1138   const Value *Ptr = LI->getPointerOperand();
   1139 
   1140   X86AddressMode AM;
   1141   if (!X86SelectAddress(Ptr, AM))
   1142     return false;
   1143 
   1144   unsigned Alignment = LI->getAlignment();
   1145   unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
   1146   if (Alignment == 0) // Ensure that codegen never sees alignment 0
   1147     Alignment = ABIAlignment;
   1148 
   1149   unsigned ResultReg = 0;
   1150   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
   1151                        Alignment))
   1152     return false;
   1153 
   1154   updateValueMap(I, ResultReg);
   1155   return true;
   1156 }
   1157 
   1158 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
   1159   bool HasAVX = Subtarget->hasAVX();
   1160   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
   1161   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
   1162 
   1163   switch (VT.getSimpleVT().SimpleTy) {
   1164   default:       return 0;
   1165   case MVT::i8:  return X86::CMP8rr;
   1166   case MVT::i16: return X86::CMP16rr;
   1167   case MVT::i32: return X86::CMP32rr;
   1168   case MVT::i64: return X86::CMP64rr;
   1169   case MVT::f32:
   1170     return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
   1171   case MVT::f64:
   1172     return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
   1173   }
   1174 }
   1175 
   1176 /// If we have a comparison with RHS as the RHS  of the comparison, return an
   1177 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
   1178 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
   1179   int64_t Val = RHSC->getSExtValue();
   1180   switch (VT.getSimpleVT().SimpleTy) {
   1181   // Otherwise, we can't fold the immediate into this comparison.
   1182   default:
   1183     return 0;
   1184   case MVT::i8:
   1185     return X86::CMP8ri;
   1186   case MVT::i16:
   1187     if (isInt<8>(Val))
   1188       return X86::CMP16ri8;
   1189     return X86::CMP16ri;
   1190   case MVT::i32:
   1191     if (isInt<8>(Val))
   1192       return X86::CMP32ri8;
   1193     return X86::CMP32ri;
   1194   case MVT::i64:
   1195     if (isInt<8>(Val))
   1196       return X86::CMP64ri8;
   1197     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
   1198     // field.
   1199     if (isInt<32>(Val))
   1200       return X86::CMP64ri32;
   1201     return 0;
   1202   }
   1203 }
   1204 
   1205 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
   1206                                      EVT VT, DebugLoc CurDbgLoc) {
   1207   unsigned Op0Reg = getRegForValue(Op0);
   1208   if (Op0Reg == 0) return false;
   1209 
   1210   // Handle 'null' like i32/i64 0.
   1211   if (isa<ConstantPointerNull>(Op1))
   1212     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
   1213 
   1214   // We have two options: compare with register or immediate.  If the RHS of
   1215   // the compare is an immediate that we can fold into this compare, use
   1216   // CMPri, otherwise use CMPrr.
   1217   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
   1218     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
   1219       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
   1220         .addReg(Op0Reg)
   1221         .addImm(Op1C->getSExtValue());
   1222       return true;
   1223     }
   1224   }
   1225 
   1226   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
   1227   if (CompareOpc == 0) return false;
   1228 
   1229   unsigned Op1Reg = getRegForValue(Op1);
   1230   if (Op1Reg == 0) return false;
   1231   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
   1232     .addReg(Op0Reg)
   1233     .addReg(Op1Reg);
   1234 
   1235   return true;
   1236 }
   1237 
   1238 bool X86FastISel::X86SelectCmp(const Instruction *I) {
   1239   const CmpInst *CI = cast<CmpInst>(I);
   1240 
   1241   MVT VT;
   1242   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
   1243     return false;
   1244 
   1245   // Try to optimize or fold the cmp.
   1246   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1247   unsigned ResultReg = 0;
   1248   switch (Predicate) {
   1249   default: break;
   1250   case CmpInst::FCMP_FALSE: {
   1251     ResultReg = createResultReg(&X86::GR32RegClass);
   1252     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
   1253             ResultReg);
   1254     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
   1255                                            X86::sub_8bit);
   1256     if (!ResultReg)
   1257       return false;
   1258     break;
   1259   }
   1260   case CmpInst::FCMP_TRUE: {
   1261     ResultReg = createResultReg(&X86::GR8RegClass);
   1262     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
   1263             ResultReg).addImm(1);
   1264     break;
   1265   }
   1266   }
   1267 
   1268   if (ResultReg) {
   1269     updateValueMap(I, ResultReg);
   1270     return true;
   1271   }
   1272 
   1273   const Value *LHS = CI->getOperand(0);
   1274   const Value *RHS = CI->getOperand(1);
   1275 
   1276   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
   1277   // We don't have to materialize a zero constant for this case and can just use
   1278   // %x again on the RHS.
   1279   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
   1280     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
   1281     if (RHSC && RHSC->isNullValue())
   1282       RHS = LHS;
   1283   }
   1284 
   1285   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
   1286   static unsigned SETFOpcTable[2][3] = {
   1287     { X86::SETEr,  X86::SETNPr, X86::AND8rr },
   1288     { X86::SETNEr, X86::SETPr,  X86::OR8rr  }
   1289   };
   1290   unsigned *SETFOpc = nullptr;
   1291   switch (Predicate) {
   1292   default: break;
   1293   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
   1294   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
   1295   }
   1296 
   1297   ResultReg = createResultReg(&X86::GR8RegClass);
   1298   if (SETFOpc) {
   1299     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
   1300       return false;
   1301 
   1302     unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
   1303     unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
   1304     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
   1305             FlagReg1);
   1306     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
   1307             FlagReg2);
   1308     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
   1309             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
   1310     updateValueMap(I, ResultReg);
   1311     return true;
   1312   }
   1313 
   1314   X86::CondCode CC;
   1315   bool SwapArgs;
   1316   std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
   1317   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
   1318   unsigned Opc = X86::getSETFromCond(CC);
   1319 
   1320   if (SwapArgs)
   1321     std::swap(LHS, RHS);
   1322 
   1323   // Emit a compare of LHS/RHS.
   1324   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
   1325     return false;
   1326 
   1327   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
   1328   updateValueMap(I, ResultReg);
   1329   return true;
   1330 }
   1331 
   1332 bool X86FastISel::X86SelectZExt(const Instruction *I) {
   1333   EVT DstVT = TLI.getValueType(DL, I->getType());
   1334   if (!TLI.isTypeLegal(DstVT))
   1335     return false;
   1336 
   1337   unsigned ResultReg = getRegForValue(I->getOperand(0));
   1338   if (ResultReg == 0)
   1339     return false;
   1340 
   1341   // Handle zero-extension from i1 to i8, which is common.
   1342   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
   1343   if (SrcVT.SimpleTy == MVT::i1) {
   1344     // Set the high bits to zero.
   1345     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
   1346     SrcVT = MVT::i8;
   1347 
   1348     if (ResultReg == 0)
   1349       return false;
   1350   }
   1351 
   1352   if (DstVT == MVT::i64) {
   1353     // Handle extension to 64-bits via sub-register shenanigans.
   1354     unsigned MovInst;
   1355 
   1356     switch (SrcVT.SimpleTy) {
   1357     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
   1358     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
   1359     case MVT::i32: MovInst = X86::MOV32rr;     break;
   1360     default: llvm_unreachable("Unexpected zext to i64 source type");
   1361     }
   1362 
   1363     unsigned Result32 = createResultReg(&X86::GR32RegClass);
   1364     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
   1365       .addReg(ResultReg);
   1366 
   1367     ResultReg = createResultReg(&X86::GR64RegClass);
   1368     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
   1369             ResultReg)
   1370       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
   1371   } else if (DstVT != MVT::i8) {
   1372     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
   1373                            ResultReg, /*Kill=*/true);
   1374     if (ResultReg == 0)
   1375       return false;
   1376   }
   1377 
   1378   updateValueMap(I, ResultReg);
   1379   return true;
   1380 }
   1381 
   1382 bool X86FastISel::X86SelectBranch(const Instruction *I) {
   1383   // Unconditional branches are selected by tablegen-generated code.
   1384   // Handle a conditional branch.
   1385   const BranchInst *BI = cast<BranchInst>(I);
   1386   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1387   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1388 
   1389   // Fold the common case of a conditional branch with a comparison
   1390   // in the same block (values defined on other blocks may not have
   1391   // initialized registers).
   1392   X86::CondCode CC;
   1393   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1394     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
   1395       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
   1396 
   1397       // Try to optimize or fold the cmp.
   1398       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1399       switch (Predicate) {
   1400       default: break;
   1401       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
   1402       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
   1403       }
   1404 
   1405       const Value *CmpLHS = CI->getOperand(0);
   1406       const Value *CmpRHS = CI->getOperand(1);
   1407 
   1408       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
   1409       // 0.0.
   1410       // We don't have to materialize a zero constant for this case and can just
   1411       // use %x again on the RHS.
   1412       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
   1413         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
   1414         if (CmpRHSC && CmpRHSC->isNullValue())
   1415           CmpRHS = CmpLHS;
   1416       }
   1417 
   1418       // Try to take advantage of fallthrough opportunities.
   1419       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1420         std::swap(TrueMBB, FalseMBB);
   1421         Predicate = CmpInst::getInversePredicate(Predicate);
   1422       }
   1423 
   1424       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
   1425       // code check. Instead two branch instructions are required to check all
   1426       // the flags. First we change the predicate to a supported condition code,
   1427       // which will be the first branch. Later one we will emit the second
   1428       // branch.
   1429       bool NeedExtraBranch = false;
   1430       switch (Predicate) {
   1431       default: break;
   1432       case CmpInst::FCMP_OEQ:
   1433         std::swap(TrueMBB, FalseMBB); // fall-through
   1434       case CmpInst::FCMP_UNE:
   1435         NeedExtraBranch = true;
   1436         Predicate = CmpInst::FCMP_ONE;
   1437         break;
   1438       }
   1439 
   1440       bool SwapArgs;
   1441       unsigned BranchOpc;
   1442       std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
   1443       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
   1444 
   1445       BranchOpc = X86::GetCondBranchFromCond(CC);
   1446       if (SwapArgs)
   1447         std::swap(CmpLHS, CmpRHS);
   1448 
   1449       // Emit a compare of the LHS and RHS, setting the flags.
   1450       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
   1451         return false;
   1452 
   1453       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
   1454         .addMBB(TrueMBB);
   1455 
   1456       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
   1457       // to UNE above).
   1458       if (NeedExtraBranch) {
   1459         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
   1460           .addMBB(TrueMBB);
   1461       }
   1462 
   1463       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
   1464       return true;
   1465     }
   1466   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1467     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
   1468     // typically happen for _Bool and C++ bools.
   1469     MVT SourceVT;
   1470     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1471         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
   1472       unsigned TestOpc = 0;
   1473       switch (SourceVT.SimpleTy) {
   1474       default: break;
   1475       case MVT::i8:  TestOpc = X86::TEST8ri; break;
   1476       case MVT::i16: TestOpc = X86::TEST16ri; break;
   1477       case MVT::i32: TestOpc = X86::TEST32ri; break;
   1478       case MVT::i64: TestOpc = X86::TEST64ri32; break;
   1479       }
   1480       if (TestOpc) {
   1481         unsigned OpReg = getRegForValue(TI->getOperand(0));
   1482         if (OpReg == 0) return false;
   1483         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
   1484           .addReg(OpReg).addImm(1);
   1485 
   1486         unsigned JmpOpc = X86::JNE_1;
   1487         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1488           std::swap(TrueMBB, FalseMBB);
   1489           JmpOpc = X86::JE_1;
   1490         }
   1491 
   1492         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
   1493           .addMBB(TrueMBB);
   1494 
   1495         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
   1496         return true;
   1497       }
   1498     }
   1499   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
   1500     // Fake request the condition, otherwise the intrinsic might be completely
   1501     // optimized away.
   1502     unsigned TmpReg = getRegForValue(BI->getCondition());
   1503     if (TmpReg == 0)
   1504       return false;
   1505 
   1506     unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
   1507 
   1508     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
   1509       .addMBB(TrueMBB);
   1510     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
   1511     return true;
   1512   }
   1513 
   1514   // Otherwise do a clumsy setcc and re-test it.
   1515   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
   1516   // in an explicit cast, so make sure to handle that correctly.
   1517   unsigned OpReg = getRegForValue(BI->getCondition());
   1518   if (OpReg == 0) return false;
   1519 
   1520   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
   1521     .addReg(OpReg).addImm(1);
   1522   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
   1523     .addMBB(TrueMBB);
   1524   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
   1525   return true;
   1526 }
   1527 
   1528 bool X86FastISel::X86SelectShift(const Instruction *I) {
   1529   unsigned CReg = 0, OpReg = 0;
   1530   const TargetRegisterClass *RC = nullptr;
   1531   if (I->getType()->isIntegerTy(8)) {
   1532     CReg = X86::CL;
   1533     RC = &X86::GR8RegClass;
   1534     switch (I->getOpcode()) {
   1535     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
   1536     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
   1537     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
   1538     default: return false;
   1539     }
   1540   } else if (I->getType()->isIntegerTy(16)) {
   1541     CReg = X86::CX;
   1542     RC = &X86::GR16RegClass;
   1543     switch (I->getOpcode()) {
   1544     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
   1545     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
   1546     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
   1547     default: return false;
   1548     }
   1549   } else if (I->getType()->isIntegerTy(32)) {
   1550     CReg = X86::ECX;
   1551     RC = &X86::GR32RegClass;
   1552     switch (I->getOpcode()) {
   1553     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
   1554     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
   1555     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
   1556     default: return false;
   1557     }
   1558   } else if (I->getType()->isIntegerTy(64)) {
   1559     CReg = X86::RCX;
   1560     RC = &X86::GR64RegClass;
   1561     switch (I->getOpcode()) {
   1562     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
   1563     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
   1564     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
   1565     default: return false;
   1566     }
   1567   } else {
   1568     return false;
   1569   }
   1570 
   1571   MVT VT;
   1572   if (!isTypeLegal(I->getType(), VT))
   1573     return false;
   1574 
   1575   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1576   if (Op0Reg == 0) return false;
   1577 
   1578   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1579   if (Op1Reg == 0) return false;
   1580   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
   1581           CReg).addReg(Op1Reg);
   1582 
   1583   // The shift instruction uses X86::CL. If we defined a super-register
   1584   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
   1585   if (CReg != X86::CL)
   1586     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1587             TII.get(TargetOpcode::KILL), X86::CL)
   1588       .addReg(CReg, RegState::Kill);
   1589 
   1590   unsigned ResultReg = createResultReg(RC);
   1591   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
   1592     .addReg(Op0Reg);
   1593   updateValueMap(I, ResultReg);
   1594   return true;
   1595 }
   1596 
   1597 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
   1598   const static unsigned NumTypes = 4; // i8, i16, i32, i64
   1599   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
   1600   const static bool S = true;  // IsSigned
   1601   const static bool U = false; // !IsSigned
   1602   const static unsigned Copy = TargetOpcode::COPY;
   1603   // For the X86 DIV/IDIV instruction, in most cases the dividend
   1604   // (numerator) must be in a specific register pair highreg:lowreg,
   1605   // producing the quotient in lowreg and the remainder in highreg.
   1606   // For most data types, to set up the instruction, the dividend is
   1607   // copied into lowreg, and lowreg is sign-extended or zero-extended
   1608   // into highreg.  The exception is i8, where the dividend is defined
   1609   // as a single register rather than a register pair, and we
   1610   // therefore directly sign-extend or zero-extend the dividend into
   1611   // lowreg, instead of copying, and ignore the highreg.
   1612   const static struct DivRemEntry {
   1613     // The following portion depends only on the data type.
   1614     const TargetRegisterClass *RC;
   1615     unsigned LowInReg;  // low part of the register pair
   1616     unsigned HighInReg; // high part of the register pair
   1617     // The following portion depends on both the data type and the operation.
   1618     struct DivRemResult {
   1619     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
   1620     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
   1621                               // highreg, or copying a zero into highreg.
   1622     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
   1623                               // zero/sign-extending into lowreg for i8.
   1624     unsigned DivRemResultReg; // Register containing the desired result.
   1625     bool IsOpSigned;          // Whether to use signed or unsigned form.
   1626     } ResultTable[NumOps];
   1627   } OpTable[NumTypes] = {
   1628     { &X86::GR8RegClass,  X86::AX,  0, {
   1629         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
   1630         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
   1631         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
   1632         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
   1633       }
   1634     }, // i8
   1635     { &X86::GR16RegClass, X86::AX,  X86::DX, {
   1636         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
   1637         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
   1638         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
   1639         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
   1640       }
   1641     }, // i16
   1642     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
   1643         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
   1644         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
   1645         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
   1646         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
   1647       }
   1648     }, // i32
   1649     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
   1650         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
   1651         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
   1652         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
   1653         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
   1654       }
   1655     }, // i64
   1656   };
   1657 
   1658   MVT VT;
   1659   if (!isTypeLegal(I->getType(), VT))
   1660     return false;
   1661 
   1662   unsigned TypeIndex, OpIndex;
   1663   switch (VT.SimpleTy) {
   1664   default: return false;
   1665   case MVT::i8:  TypeIndex = 0; break;
   1666   case MVT::i16: TypeIndex = 1; break;
   1667   case MVT::i32: TypeIndex = 2; break;
   1668   case MVT::i64: TypeIndex = 3;
   1669     if (!Subtarget->is64Bit())
   1670       return false;
   1671     break;
   1672   }
   1673 
   1674   switch (I->getOpcode()) {
   1675   default: llvm_unreachable("Unexpected div/rem opcode");
   1676   case Instruction::SDiv: OpIndex = 0; break;
   1677   case Instruction::SRem: OpIndex = 1; break;
   1678   case Instruction::UDiv: OpIndex = 2; break;
   1679   case Instruction::URem: OpIndex = 3; break;
   1680   }
   1681 
   1682   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
   1683   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
   1684   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1685   if (Op0Reg == 0)
   1686     return false;
   1687   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1688   if (Op1Reg == 0)
   1689     return false;
   1690 
   1691   // Move op0 into low-order input register.
   1692   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1693           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
   1694   // Zero-extend or sign-extend into high-order input register.
   1695   if (OpEntry.OpSignExtend) {
   1696     if (OpEntry.IsOpSigned)
   1697       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1698               TII.get(OpEntry.OpSignExtend));
   1699     else {
   1700       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
   1701       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1702               TII.get(X86::MOV32r0), Zero32);
   1703 
   1704       // Copy the zero into the appropriate sub/super/identical physical
   1705       // register. Unfortunately the operations needed are not uniform enough
   1706       // to fit neatly into the table above.
   1707       if (VT.SimpleTy == MVT::i16) {
   1708         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1709                 TII.get(Copy), TypeEntry.HighInReg)
   1710           .addReg(Zero32, 0, X86::sub_16bit);
   1711       } else if (VT.SimpleTy == MVT::i32) {
   1712         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1713                 TII.get(Copy), TypeEntry.HighInReg)
   1714             .addReg(Zero32);
   1715       } else if (VT.SimpleTy == MVT::i64) {
   1716         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1717                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
   1718             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
   1719       }
   1720     }
   1721   }
   1722   // Generate the DIV/IDIV instruction.
   1723   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1724           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
   1725   // For i8 remainder, we can't reference AH directly, as we'll end
   1726   // up with bogus copies like %R9B = COPY %AH. Reference AX
   1727   // instead to prevent AH references in a REX instruction.
   1728   //
   1729   // The current assumption of the fast register allocator is that isel
   1730   // won't generate explicit references to the GPR8_NOREX registers. If
   1731   // the allocator and/or the backend get enhanced to be more robust in
   1732   // that regard, this can be, and should be, removed.
   1733   unsigned ResultReg = 0;
   1734   if ((I->getOpcode() == Instruction::SRem ||
   1735        I->getOpcode() == Instruction::URem) &&
   1736       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
   1737     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
   1738     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
   1739     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1740             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
   1741 
   1742     // Shift AX right by 8 bits instead of using AH.
   1743     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
   1744             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
   1745 
   1746     // Now reference the 8-bit subreg of the result.
   1747     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
   1748                                            /*Kill=*/true, X86::sub_8bit);
   1749   }
   1750   // Copy the result out of the physreg if we haven't already.
   1751   if (!ResultReg) {
   1752     ResultReg = createResultReg(TypeEntry.RC);
   1753     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
   1754         .addReg(OpEntry.DivRemResultReg);
   1755   }
   1756   updateValueMap(I, ResultReg);
   1757 
   1758   return true;
   1759 }
   1760 
   1761 /// \brief Emit a conditional move instruction (if the are supported) to lower
   1762 /// the select.
   1763 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
   1764   // Check if the subtarget supports these instructions.
   1765   if (!Subtarget->hasCMov())
   1766     return false;
   1767 
   1768   // FIXME: Add support for i8.
   1769   if (RetVT < MVT::i16 || RetVT > MVT::i64)
   1770     return false;
   1771 
   1772   const Value *Cond = I->getOperand(0);
   1773   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   1774   bool NeedTest = true;
   1775   X86::CondCode CC = X86::COND_NE;
   1776 
   1777   // Optimize conditions coming from a compare if both instructions are in the
   1778   // same basic block (values defined in other basic blocks may not have
   1779   // initialized registers).
   1780   const auto *CI = dyn_cast<CmpInst>(Cond);
   1781   if (CI && (CI->getParent() == I->getParent())) {
   1782     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1783 
   1784     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
   1785     static unsigned SETFOpcTable[2][3] = {
   1786       { X86::SETNPr, X86::SETEr , X86::TEST8rr },
   1787       { X86::SETPr,  X86::SETNEr, X86::OR8rr   }
   1788     };
   1789     unsigned *SETFOpc = nullptr;
   1790     switch (Predicate) {
   1791     default: break;
   1792     case CmpInst::FCMP_OEQ:
   1793       SETFOpc = &SETFOpcTable[0][0];
   1794       Predicate = CmpInst::ICMP_NE;
   1795       break;
   1796     case CmpInst::FCMP_UNE:
   1797       SETFOpc = &SETFOpcTable[1][0];
   1798       Predicate = CmpInst::ICMP_NE;
   1799       break;
   1800     }
   1801 
   1802     bool NeedSwap;
   1803     std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
   1804     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
   1805 
   1806     const Value *CmpLHS = CI->getOperand(0);
   1807     const Value *CmpRHS = CI->getOperand(1);
   1808     if (NeedSwap)
   1809       std::swap(CmpLHS, CmpRHS);
   1810 
   1811     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
   1812     // Emit a compare of the LHS and RHS, setting the flags.
   1813     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
   1814       return false;
   1815 
   1816     if (SETFOpc) {
   1817       unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
   1818       unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
   1819       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
   1820               FlagReg1);
   1821       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
   1822               FlagReg2);
   1823       auto const &II = TII.get(SETFOpc[2]);
   1824       if (II.getNumDefs()) {
   1825         unsigned TmpReg = createResultReg(&X86::GR8RegClass);
   1826         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
   1827           .addReg(FlagReg2).addReg(FlagReg1);
   1828       } else {
   1829         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1830           .addReg(FlagReg2).addReg(FlagReg1);
   1831       }
   1832     }
   1833     NeedTest = false;
   1834   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
   1835     // Fake request the condition, otherwise the intrinsic might be completely
   1836     // optimized away.
   1837     unsigned TmpReg = getRegForValue(Cond);
   1838     if (TmpReg == 0)
   1839       return false;
   1840 
   1841     NeedTest = false;
   1842   }
   1843 
   1844   if (NeedTest) {
   1845     // Selects operate on i1, however, CondReg is 8 bits width and may contain
   1846     // garbage. Indeed, only the less significant bit is supposed to be
   1847     // accurate. If we read more than the lsb, we may see non-zero values
   1848     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
   1849     // the select. This is achieved by performing TEST against 1.
   1850     unsigned CondReg = getRegForValue(Cond);
   1851     if (CondReg == 0)
   1852       return false;
   1853     bool CondIsKill = hasTrivialKill(Cond);
   1854 
   1855     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
   1856       .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
   1857   }
   1858 
   1859   const Value *LHS = I->getOperand(1);
   1860   const Value *RHS = I->getOperand(2);
   1861 
   1862   unsigned RHSReg = getRegForValue(RHS);
   1863   bool RHSIsKill = hasTrivialKill(RHS);
   1864 
   1865   unsigned LHSReg = getRegForValue(LHS);
   1866   bool LHSIsKill = hasTrivialKill(LHS);
   1867 
   1868   if (!LHSReg || !RHSReg)
   1869     return false;
   1870 
   1871   unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
   1872   unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
   1873                                        LHSReg, LHSIsKill);
   1874   updateValueMap(I, ResultReg);
   1875   return true;
   1876 }
   1877 
   1878 /// \brief Emit SSE or AVX instructions to lower the select.
   1879 ///
   1880 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
   1881 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
   1882 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
   1883 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
   1884   // Optimize conditions coming from a compare if both instructions are in the
   1885   // same basic block (values defined in other basic blocks may not have
   1886   // initialized registers).
   1887   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
   1888   if (!CI || (CI->getParent() != I->getParent()))
   1889     return false;
   1890 
   1891   if (I->getType() != CI->getOperand(0)->getType() ||
   1892       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
   1893         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
   1894     return false;
   1895 
   1896   const Value *CmpLHS = CI->getOperand(0);
   1897   const Value *CmpRHS = CI->getOperand(1);
   1898   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1899 
   1900   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
   1901   // We don't have to materialize a zero constant for this case and can just use
   1902   // %x again on the RHS.
   1903   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
   1904     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
   1905     if (CmpRHSC && CmpRHSC->isNullValue())
   1906       CmpRHS = CmpLHS;
   1907   }
   1908 
   1909   unsigned CC;
   1910   bool NeedSwap;
   1911   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
   1912   if (CC > 7)
   1913     return false;
   1914 
   1915   if (NeedSwap)
   1916     std::swap(CmpLHS, CmpRHS);
   1917 
   1918   // Choose the SSE instruction sequence based on data type (float or double).
   1919   static unsigned OpcTable[2][4] = {
   1920     { X86::CMPSSrr,  X86::FsANDPSrr,  X86::FsANDNPSrr,  X86::FsORPSrr  },
   1921     { X86::CMPSDrr,  X86::FsANDPDrr,  X86::FsANDNPDrr,  X86::FsORPDrr  }
   1922   };
   1923 
   1924   unsigned *Opc = nullptr;
   1925   switch (RetVT.SimpleTy) {
   1926   default: return false;
   1927   case MVT::f32: Opc = &OpcTable[0][0]; break;
   1928   case MVT::f64: Opc = &OpcTable[1][0]; break;
   1929   }
   1930 
   1931   const Value *LHS = I->getOperand(1);
   1932   const Value *RHS = I->getOperand(2);
   1933 
   1934   unsigned LHSReg = getRegForValue(LHS);
   1935   bool LHSIsKill = hasTrivialKill(LHS);
   1936 
   1937   unsigned RHSReg = getRegForValue(RHS);
   1938   bool RHSIsKill = hasTrivialKill(RHS);
   1939 
   1940   unsigned CmpLHSReg = getRegForValue(CmpLHS);
   1941   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
   1942 
   1943   unsigned CmpRHSReg = getRegForValue(CmpRHS);
   1944   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
   1945 
   1946   if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
   1947     return false;
   1948 
   1949   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   1950   unsigned ResultReg;
   1951 
   1952   if (Subtarget->hasAVX()) {
   1953     const TargetRegisterClass *FR32 = &X86::FR32RegClass;
   1954     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
   1955 
   1956     // If we have AVX, create 1 blendv instead of 3 logic instructions.
   1957     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
   1958     // uses XMM0 as the selection register. That may need just as many
   1959     // instructions as the AND/ANDN/OR sequence due to register moves, so
   1960     // don't bother.
   1961     unsigned CmpOpcode =
   1962       (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
   1963     unsigned BlendOpcode =
   1964       (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
   1965 
   1966     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
   1967                                        CmpRHSReg, CmpRHSIsKill, CC);
   1968     unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
   1969                                           LHSReg, LHSIsKill, CmpReg, true);
   1970     ResultReg = createResultReg(RC);
   1971     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1972             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
   1973   } else {
   1974     unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
   1975                                        CmpRHSReg, CmpRHSIsKill, CC);
   1976     unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
   1977                                       LHSReg, LHSIsKill);
   1978     unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
   1979                                        RHSReg, RHSIsKill);
   1980     ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
   1981                                          AndReg, /*IsKill=*/true);
   1982   }
   1983   updateValueMap(I, ResultReg);
   1984   return true;
   1985 }
   1986 
   1987 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
   1988   // These are pseudo CMOV instructions and will be later expanded into control-
   1989   // flow.
   1990   unsigned Opc;
   1991   switch (RetVT.SimpleTy) {
   1992   default: return false;
   1993   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
   1994   case MVT::i16: Opc = X86::CMOV_GR16; break;
   1995   case MVT::i32: Opc = X86::CMOV_GR32; break;
   1996   case MVT::f32: Opc = X86::CMOV_FR32; break;
   1997   case MVT::f64: Opc = X86::CMOV_FR64; break;
   1998   }
   1999 
   2000   const Value *Cond = I->getOperand(0);
   2001   X86::CondCode CC = X86::COND_NE;
   2002 
   2003   // Optimize conditions coming from a compare if both instructions are in the
   2004   // same basic block (values defined in other basic blocks may not have
   2005   // initialized registers).
   2006   const auto *CI = dyn_cast<CmpInst>(Cond);
   2007   if (CI && (CI->getParent() == I->getParent())) {
   2008     bool NeedSwap;
   2009     std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
   2010     if (CC > X86::LAST_VALID_COND)
   2011       return false;
   2012 
   2013     const Value *CmpLHS = CI->getOperand(0);
   2014     const Value *CmpRHS = CI->getOperand(1);
   2015 
   2016     if (NeedSwap)
   2017       std::swap(CmpLHS, CmpRHS);
   2018 
   2019     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
   2020     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
   2021       return false;
   2022   } else {
   2023     unsigned CondReg = getRegForValue(Cond);
   2024     if (CondReg == 0)
   2025       return false;
   2026     bool CondIsKill = hasTrivialKill(Cond);
   2027     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
   2028       .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
   2029   }
   2030 
   2031   const Value *LHS = I->getOperand(1);
   2032   const Value *RHS = I->getOperand(2);
   2033 
   2034   unsigned LHSReg = getRegForValue(LHS);
   2035   bool LHSIsKill = hasTrivialKill(LHS);
   2036 
   2037   unsigned RHSReg = getRegForValue(RHS);
   2038   bool RHSIsKill = hasTrivialKill(RHS);
   2039 
   2040   if (!LHSReg || !RHSReg)
   2041     return false;
   2042 
   2043   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   2044 
   2045   unsigned ResultReg =
   2046     fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
   2047   updateValueMap(I, ResultReg);
   2048   return true;
   2049 }
   2050 
   2051 bool X86FastISel::X86SelectSelect(const Instruction *I) {
   2052   MVT RetVT;
   2053   if (!isTypeLegal(I->getType(), RetVT))
   2054     return false;
   2055 
   2056   // Check if we can fold the select.
   2057   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
   2058     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   2059     const Value *Opnd = nullptr;
   2060     switch (Predicate) {
   2061     default:                              break;
   2062     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
   2063     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
   2064     }
   2065     // No need for a select anymore - this is an unconditional move.
   2066     if (Opnd) {
   2067       unsigned OpReg = getRegForValue(Opnd);
   2068       if (OpReg == 0)
   2069         return false;
   2070       bool OpIsKill = hasTrivialKill(Opnd);
   2071       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   2072       unsigned ResultReg = createResultReg(RC);
   2073       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2074               TII.get(TargetOpcode::COPY), ResultReg)
   2075         .addReg(OpReg, getKillRegState(OpIsKill));
   2076       updateValueMap(I, ResultReg);
   2077       return true;
   2078     }
   2079   }
   2080 
   2081   // First try to use real conditional move instructions.
   2082   if (X86FastEmitCMoveSelect(RetVT, I))
   2083     return true;
   2084 
   2085   // Try to use a sequence of SSE instructions to simulate a conditional move.
   2086   if (X86FastEmitSSESelect(RetVT, I))
   2087     return true;
   2088 
   2089   // Fall-back to pseudo conditional move instructions, which will be later
   2090   // converted to control-flow.
   2091   if (X86FastEmitPseudoSelect(RetVT, I))
   2092     return true;
   2093 
   2094   return false;
   2095 }
   2096 
   2097 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
   2098   // The target-independent selection algorithm in FastISel already knows how
   2099   // to select a SINT_TO_FP if the target is SSE but not AVX.
   2100   // Early exit if the subtarget doesn't have AVX.
   2101   if (!Subtarget->hasAVX())
   2102     return false;
   2103 
   2104   if (!I->getOperand(0)->getType()->isIntegerTy(32))
   2105     return false;
   2106 
   2107   // Select integer to float/double conversion.
   2108   unsigned OpReg = getRegForValue(I->getOperand(0));
   2109   if (OpReg == 0)
   2110     return false;
   2111 
   2112   const TargetRegisterClass *RC = nullptr;
   2113   unsigned Opcode;
   2114 
   2115   if (I->getType()->isDoubleTy()) {
   2116     // sitofp int -> double
   2117     Opcode = X86::VCVTSI2SDrr;
   2118     RC = &X86::FR64RegClass;
   2119   } else if (I->getType()->isFloatTy()) {
   2120     // sitofp int -> float
   2121     Opcode = X86::VCVTSI2SSrr;
   2122     RC = &X86::FR32RegClass;
   2123   } else
   2124     return false;
   2125 
   2126   unsigned ImplicitDefReg = createResultReg(RC);
   2127   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2128           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
   2129   unsigned ResultReg =
   2130       fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
   2131   updateValueMap(I, ResultReg);
   2132   return true;
   2133 }
   2134 
   2135 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
   2136 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
   2137                                           unsigned TargetOpc,
   2138                                           const TargetRegisterClass *RC) {
   2139   assert((I->getOpcode() == Instruction::FPExt ||
   2140           I->getOpcode() == Instruction::FPTrunc) &&
   2141          "Instruction must be an FPExt or FPTrunc!");
   2142 
   2143   unsigned OpReg = getRegForValue(I->getOperand(0));
   2144   if (OpReg == 0)
   2145     return false;
   2146 
   2147   unsigned ResultReg = createResultReg(RC);
   2148   MachineInstrBuilder MIB;
   2149   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
   2150                 ResultReg);
   2151   if (Subtarget->hasAVX())
   2152     MIB.addReg(OpReg);
   2153   MIB.addReg(OpReg);
   2154   updateValueMap(I, ResultReg);
   2155   return true;
   2156 }
   2157 
   2158 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
   2159   if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
   2160       I->getOperand(0)->getType()->isFloatTy()) {
   2161     // fpext from float to double.
   2162     unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
   2163     return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
   2164   }
   2165 
   2166   return false;
   2167 }
   2168 
   2169 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
   2170   if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
   2171       I->getOperand(0)->getType()->isDoubleTy()) {
   2172     // fptrunc from double to float.
   2173     unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
   2174     return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
   2175   }
   2176 
   2177   return false;
   2178 }
   2179 
   2180 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
   2181   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
   2182   EVT DstVT = TLI.getValueType(DL, I->getType());
   2183 
   2184   // This code only handles truncation to byte.
   2185   if (DstVT != MVT::i8 && DstVT != MVT::i1)
   2186     return false;
   2187   if (!TLI.isTypeLegal(SrcVT))
   2188     return false;
   2189 
   2190   unsigned InputReg = getRegForValue(I->getOperand(0));
   2191   if (!InputReg)
   2192     // Unhandled operand.  Halt "fast" selection and bail.
   2193     return false;
   2194 
   2195   if (SrcVT == MVT::i8) {
   2196     // Truncate from i8 to i1; no code needed.
   2197     updateValueMap(I, InputReg);
   2198     return true;
   2199   }
   2200 
   2201   bool KillInputReg = false;
   2202   if (!Subtarget->is64Bit()) {
   2203     // If we're on x86-32; we can't extract an i8 from a general register.
   2204     // First issue a copy to GR16_ABCD or GR32_ABCD.
   2205     const TargetRegisterClass *CopyRC =
   2206       (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
   2207     unsigned CopyReg = createResultReg(CopyRC);
   2208     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2209             TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
   2210     InputReg = CopyReg;
   2211     KillInputReg = true;
   2212   }
   2213 
   2214   // Issue an extract_subreg.
   2215   unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
   2216                                                   InputReg, KillInputReg,
   2217                                                   X86::sub_8bit);
   2218   if (!ResultReg)
   2219     return false;
   2220 
   2221   updateValueMap(I, ResultReg);
   2222   return true;
   2223 }
   2224 
   2225 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
   2226   return Len <= (Subtarget->is64Bit() ? 32 : 16);
   2227 }
   2228 
   2229 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
   2230                                      X86AddressMode SrcAM, uint64_t Len) {
   2231 
   2232   // Make sure we don't bloat code by inlining very large memcpy's.
   2233   if (!IsMemcpySmall(Len))
   2234     return false;
   2235 
   2236   bool i64Legal = Subtarget->is64Bit();
   2237 
   2238   // We don't care about alignment here since we just emit integer accesses.
   2239   while (Len) {
   2240     MVT VT;
   2241     if (Len >= 8 && i64Legal)
   2242       VT = MVT::i64;
   2243     else if (Len >= 4)
   2244       VT = MVT::i32;
   2245     else if (Len >= 2)
   2246       VT = MVT::i16;
   2247     else
   2248       VT = MVT::i8;
   2249 
   2250     unsigned Reg;
   2251     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
   2252     RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
   2253     assert(RV && "Failed to emit load or store??");
   2254 
   2255     unsigned Size = VT.getSizeInBits()/8;
   2256     Len -= Size;
   2257     DestAM.Disp += Size;
   2258     SrcAM.Disp += Size;
   2259   }
   2260 
   2261   return true;
   2262 }
   2263 
   2264 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
   2265   // FIXME: Handle more intrinsics.
   2266   switch (II->getIntrinsicID()) {
   2267   default: return false;
   2268   case Intrinsic::convert_from_fp16:
   2269   case Intrinsic::convert_to_fp16: {
   2270     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
   2271       return false;
   2272 
   2273     const Value *Op = II->getArgOperand(0);
   2274     unsigned InputReg = getRegForValue(Op);
   2275     if (InputReg == 0)
   2276       return false;
   2277 
   2278     // F16C only allows converting from float to half and from half to float.
   2279     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
   2280     if (IsFloatToHalf) {
   2281       if (!Op->getType()->isFloatTy())
   2282         return false;
   2283     } else {
   2284       if (!II->getType()->isFloatTy())
   2285         return false;
   2286     }
   2287 
   2288     unsigned ResultReg = 0;
   2289     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
   2290     if (IsFloatToHalf) {
   2291       // 'InputReg' is implicitly promoted from register class FR32 to
   2292       // register class VR128 by method 'constrainOperandRegClass' which is
   2293       // directly called by 'fastEmitInst_ri'.
   2294       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
   2295       // used to provide rounding control.
   2296       InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 0);
   2297 
   2298       // Move the lower 32-bits of ResultReg to another register of class GR32.
   2299       ResultReg = createResultReg(&X86::GR32RegClass);
   2300       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2301               TII.get(X86::VMOVPDI2DIrr), ResultReg)
   2302           .addReg(InputReg, RegState::Kill);
   2303 
   2304       // The result value is in the lower 16-bits of ResultReg.
   2305       unsigned RegIdx = X86::sub_16bit;
   2306       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
   2307     } else {
   2308       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
   2309       // Explicitly sign-extend the input to 32-bit.
   2310       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
   2311                             /*Kill=*/false);
   2312 
   2313       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
   2314       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
   2315                             InputReg, /*Kill=*/true);
   2316 
   2317       InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
   2318 
   2319       // The result value is in the lower 32-bits of ResultReg.
   2320       // Emit an explicit copy from register class VR128 to register class FR32.
   2321       ResultReg = createResultReg(&X86::FR32RegClass);
   2322       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2323               TII.get(TargetOpcode::COPY), ResultReg)
   2324           .addReg(InputReg, RegState::Kill);
   2325     }
   2326 
   2327     updateValueMap(II, ResultReg);
   2328     return true;
   2329   }
   2330   case Intrinsic::frameaddress: {
   2331     MachineFunction *MF = FuncInfo.MF;
   2332     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
   2333       return false;
   2334 
   2335     Type *RetTy = II->getCalledFunction()->getReturnType();
   2336 
   2337     MVT VT;
   2338     if (!isTypeLegal(RetTy, VT))
   2339       return false;
   2340 
   2341     unsigned Opc;
   2342     const TargetRegisterClass *RC = nullptr;
   2343 
   2344     switch (VT.SimpleTy) {
   2345     default: llvm_unreachable("Invalid result type for frameaddress.");
   2346     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
   2347     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
   2348     }
   2349 
   2350     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
   2351     // we get the wrong frame register.
   2352     MachineFrameInfo *MFI = MF->getFrameInfo();
   2353     MFI->setFrameAddressIsTaken(true);
   2354 
   2355     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
   2356     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
   2357     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
   2358             (FrameReg == X86::EBP && VT == MVT::i32)) &&
   2359            "Invalid Frame Register!");
   2360 
   2361     // Always make a copy of the frame register to to a vreg first, so that we
   2362     // never directly reference the frame register (the TwoAddressInstruction-
   2363     // Pass doesn't like that).
   2364     unsigned SrcReg = createResultReg(RC);
   2365     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2366             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
   2367 
   2368     // Now recursively load from the frame address.
   2369     // movq (%rbp), %rax
   2370     // movq (%rax), %rax
   2371     // movq (%rax), %rax
   2372     // ...
   2373     unsigned DestReg;
   2374     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
   2375     while (Depth--) {
   2376       DestReg = createResultReg(RC);
   2377       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2378                            TII.get(Opc), DestReg), SrcReg);
   2379       SrcReg = DestReg;
   2380     }
   2381 
   2382     updateValueMap(II, SrcReg);
   2383     return true;
   2384   }
   2385   case Intrinsic::memcpy: {
   2386     const MemCpyInst *MCI = cast<MemCpyInst>(II);
   2387     // Don't handle volatile or variable length memcpys.
   2388     if (MCI->isVolatile())
   2389       return false;
   2390 
   2391     if (isa<ConstantInt>(MCI->getLength())) {
   2392       // Small memcpy's are common enough that we want to do them
   2393       // without a call if possible.
   2394       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
   2395       if (IsMemcpySmall(Len)) {
   2396         X86AddressMode DestAM, SrcAM;
   2397         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
   2398             !X86SelectAddress(MCI->getRawSource(), SrcAM))
   2399           return false;
   2400         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
   2401         return true;
   2402       }
   2403     }
   2404 
   2405     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   2406     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
   2407       return false;
   2408 
   2409     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
   2410       return false;
   2411 
   2412     return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
   2413   }
   2414   case Intrinsic::memset: {
   2415     const MemSetInst *MSI = cast<MemSetInst>(II);
   2416 
   2417     if (MSI->isVolatile())
   2418       return false;
   2419 
   2420     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   2421     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
   2422       return false;
   2423 
   2424     if (MSI->getDestAddressSpace() > 255)
   2425       return false;
   2426 
   2427     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
   2428   }
   2429   case Intrinsic::stackprotector: {
   2430     // Emit code to store the stack guard onto the stack.
   2431     EVT PtrTy = TLI.getPointerTy(DL);
   2432 
   2433     const Value *Op1 = II->getArgOperand(0); // The guard's value.
   2434     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
   2435 
   2436     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
   2437 
   2438     // Grab the frame index.
   2439     X86AddressMode AM;
   2440     if (!X86SelectAddress(Slot, AM)) return false;
   2441     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
   2442     return true;
   2443   }
   2444   case Intrinsic::dbg_declare: {
   2445     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
   2446     X86AddressMode AM;
   2447     assert(DI->getAddress() && "Null address should be checked earlier!");
   2448     if (!X86SelectAddress(DI->getAddress(), AM))
   2449       return false;
   2450     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
   2451     // FIXME may need to add RegState::Debug to any registers produced,
   2452     // although ESP/EBP should be the only ones at the moment.
   2453     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
   2454            "Expected inlined-at fields to agree");
   2455     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
   2456         .addImm(0)
   2457         .addMetadata(DI->getVariable())
   2458         .addMetadata(DI->getExpression());
   2459     return true;
   2460   }
   2461   case Intrinsic::trap: {
   2462     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
   2463     return true;
   2464   }
   2465   case Intrinsic::sqrt: {
   2466     if (!Subtarget->hasSSE1())
   2467       return false;
   2468 
   2469     Type *RetTy = II->getCalledFunction()->getReturnType();
   2470 
   2471     MVT VT;
   2472     if (!isTypeLegal(RetTy, VT))
   2473       return false;
   2474 
   2475     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
   2476     // is not generated by FastISel yet.
   2477     // FIXME: Update this code once tablegen can handle it.
   2478     static const unsigned SqrtOpc[2][2] = {
   2479       {X86::SQRTSSr, X86::VSQRTSSr},
   2480       {X86::SQRTSDr, X86::VSQRTSDr}
   2481     };
   2482     bool HasAVX = Subtarget->hasAVX();
   2483     unsigned Opc;
   2484     const TargetRegisterClass *RC;
   2485     switch (VT.SimpleTy) {
   2486     default: return false;
   2487     case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
   2488     case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
   2489     }
   2490 
   2491     const Value *SrcVal = II->getArgOperand(0);
   2492     unsigned SrcReg = getRegForValue(SrcVal);
   2493 
   2494     if (SrcReg == 0)
   2495       return false;
   2496 
   2497     unsigned ImplicitDefReg = 0;
   2498     if (HasAVX) {
   2499       ImplicitDefReg = createResultReg(RC);
   2500       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2501               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
   2502     }
   2503 
   2504     unsigned ResultReg = createResultReg(RC);
   2505     MachineInstrBuilder MIB;
   2506     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
   2507                   ResultReg);
   2508 
   2509     if (ImplicitDefReg)
   2510       MIB.addReg(ImplicitDefReg);
   2511 
   2512     MIB.addReg(SrcReg);
   2513 
   2514     updateValueMap(II, ResultReg);
   2515     return true;
   2516   }
   2517   case Intrinsic::sadd_with_overflow:
   2518   case Intrinsic::uadd_with_overflow:
   2519   case Intrinsic::ssub_with_overflow:
   2520   case Intrinsic::usub_with_overflow:
   2521   case Intrinsic::smul_with_overflow:
   2522   case Intrinsic::umul_with_overflow: {
   2523     // This implements the basic lowering of the xalu with overflow intrinsics
   2524     // into add/sub/mul followed by either seto or setb.
   2525     const Function *Callee = II->getCalledFunction();
   2526     auto *Ty = cast<StructType>(Callee->getReturnType());
   2527     Type *RetTy = Ty->getTypeAtIndex(0U);
   2528     Type *CondTy = Ty->getTypeAtIndex(1);
   2529 
   2530     MVT VT;
   2531     if (!isTypeLegal(RetTy, VT))
   2532       return false;
   2533 
   2534     if (VT < MVT::i8 || VT > MVT::i64)
   2535       return false;
   2536 
   2537     const Value *LHS = II->getArgOperand(0);
   2538     const Value *RHS = II->getArgOperand(1);
   2539 
   2540     // Canonicalize immediate to the RHS.
   2541     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
   2542         isCommutativeIntrinsic(II))
   2543       std::swap(LHS, RHS);
   2544 
   2545     bool UseIncDec = false;
   2546     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
   2547       UseIncDec = true;
   2548 
   2549     unsigned BaseOpc, CondOpc;
   2550     switch (II->getIntrinsicID()) {
   2551     default: llvm_unreachable("Unexpected intrinsic!");
   2552     case Intrinsic::sadd_with_overflow:
   2553       BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
   2554       CondOpc = X86::SETOr;
   2555       break;
   2556     case Intrinsic::uadd_with_overflow:
   2557       BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
   2558     case Intrinsic::ssub_with_overflow:
   2559       BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
   2560       CondOpc = X86::SETOr;
   2561       break;
   2562     case Intrinsic::usub_with_overflow:
   2563       BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
   2564     case Intrinsic::smul_with_overflow:
   2565       BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
   2566     case Intrinsic::umul_with_overflow:
   2567       BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
   2568     }
   2569 
   2570     unsigned LHSReg = getRegForValue(LHS);
   2571     if (LHSReg == 0)
   2572       return false;
   2573     bool LHSIsKill = hasTrivialKill(LHS);
   2574 
   2575     unsigned ResultReg = 0;
   2576     // Check if we have an immediate version.
   2577     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
   2578       static const unsigned Opc[2][4] = {
   2579         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
   2580         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
   2581       };
   2582 
   2583       if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
   2584         ResultReg = createResultReg(TLI.getRegClassFor(VT));
   2585         bool IsDec = BaseOpc == X86ISD::DEC;
   2586         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2587                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
   2588           .addReg(LHSReg, getKillRegState(LHSIsKill));
   2589       } else
   2590         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
   2591                                 CI->getZExtValue());
   2592     }
   2593 
   2594     unsigned RHSReg;
   2595     bool RHSIsKill;
   2596     if (!ResultReg) {
   2597       RHSReg = getRegForValue(RHS);
   2598       if (RHSReg == 0)
   2599         return false;
   2600       RHSIsKill = hasTrivialKill(RHS);
   2601       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
   2602                               RHSIsKill);
   2603     }
   2604 
   2605     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
   2606     // it manually.
   2607     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
   2608       static const unsigned MULOpc[] =
   2609         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
   2610       static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
   2611       // First copy the first operand into RAX, which is an implicit input to
   2612       // the X86::MUL*r instruction.
   2613       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2614               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
   2615         .addReg(LHSReg, getKillRegState(LHSIsKill));
   2616       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
   2617                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
   2618     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
   2619       static const unsigned MULOpc[] =
   2620         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
   2621       if (VT == MVT::i8) {
   2622         // Copy the first operand into AL, which is an implicit input to the
   2623         // X86::IMUL8r instruction.
   2624         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2625                TII.get(TargetOpcode::COPY), X86::AL)
   2626           .addReg(LHSReg, getKillRegState(LHSIsKill));
   2627         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
   2628                                    RHSIsKill);
   2629       } else
   2630         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
   2631                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
   2632                                     RHSReg, RHSIsKill);
   2633     }
   2634 
   2635     if (!ResultReg)
   2636       return false;
   2637 
   2638     unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
   2639     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
   2640     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
   2641             ResultReg2);
   2642 
   2643     updateValueMap(II, ResultReg, 2);
   2644     return true;
   2645   }
   2646   case Intrinsic::x86_sse_cvttss2si:
   2647   case Intrinsic::x86_sse_cvttss2si64:
   2648   case Intrinsic::x86_sse2_cvttsd2si:
   2649   case Intrinsic::x86_sse2_cvttsd2si64: {
   2650     bool IsInputDouble;
   2651     switch (II->getIntrinsicID()) {
   2652     default: llvm_unreachable("Unexpected intrinsic.");
   2653     case Intrinsic::x86_sse_cvttss2si:
   2654     case Intrinsic::x86_sse_cvttss2si64:
   2655       if (!Subtarget->hasSSE1())
   2656         return false;
   2657       IsInputDouble = false;
   2658       break;
   2659     case Intrinsic::x86_sse2_cvttsd2si:
   2660     case Intrinsic::x86_sse2_cvttsd2si64:
   2661       if (!Subtarget->hasSSE2())
   2662         return false;
   2663       IsInputDouble = true;
   2664       break;
   2665     }
   2666 
   2667     Type *RetTy = II->getCalledFunction()->getReturnType();
   2668     MVT VT;
   2669     if (!isTypeLegal(RetTy, VT))
   2670       return false;
   2671 
   2672     static const unsigned CvtOpc[2][2][2] = {
   2673       { { X86::CVTTSS2SIrr,   X86::VCVTTSS2SIrr   },
   2674         { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr }  },
   2675       { { X86::CVTTSD2SIrr,   X86::VCVTTSD2SIrr   },
   2676         { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr }  }
   2677     };
   2678     bool HasAVX = Subtarget->hasAVX();
   2679     unsigned Opc;
   2680     switch (VT.SimpleTy) {
   2681     default: llvm_unreachable("Unexpected result type.");
   2682     case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
   2683     case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
   2684     }
   2685 
   2686     // Check if we can fold insertelement instructions into the convert.
   2687     const Value *Op = II->getArgOperand(0);
   2688     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
   2689       const Value *Index = IE->getOperand(2);
   2690       if (!isa<ConstantInt>(Index))
   2691         break;
   2692       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
   2693 
   2694       if (Idx == 0) {
   2695         Op = IE->getOperand(1);
   2696         break;
   2697       }
   2698       Op = IE->getOperand(0);
   2699     }
   2700 
   2701     unsigned Reg = getRegForValue(Op);
   2702     if (Reg == 0)
   2703       return false;
   2704 
   2705     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
   2706     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
   2707       .addReg(Reg);
   2708 
   2709     updateValueMap(II, ResultReg);
   2710     return true;
   2711   }
   2712   }
   2713 }
   2714 
   2715 bool X86FastISel::fastLowerArguments() {
   2716   if (!FuncInfo.CanLowerReturn)
   2717     return false;
   2718 
   2719   const Function *F = FuncInfo.Fn;
   2720   if (F->isVarArg())
   2721     return false;
   2722 
   2723   CallingConv::ID CC = F->getCallingConv();
   2724   if (CC != CallingConv::C)
   2725     return false;
   2726 
   2727   if (Subtarget->isCallingConvWin64(CC))
   2728     return false;
   2729 
   2730   if (!Subtarget->is64Bit())
   2731     return false;
   2732 
   2733   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
   2734   unsigned GPRCnt = 0;
   2735   unsigned FPRCnt = 0;
   2736   unsigned Idx = 0;
   2737   for (auto const &Arg : F->args()) {
   2738     // The first argument is at index 1.
   2739     ++Idx;
   2740     if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
   2741         F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
   2742         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
   2743         F->getAttributes().hasAttribute(Idx, Attribute::Nest))
   2744       return false;
   2745 
   2746     Type *ArgTy = Arg.getType();
   2747     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
   2748       return false;
   2749 
   2750     EVT ArgVT = TLI.getValueType(DL, ArgTy);
   2751     if (!ArgVT.isSimple()) return false;
   2752     switch (ArgVT.getSimpleVT().SimpleTy) {
   2753     default: return false;
   2754     case MVT::i32:
   2755     case MVT::i64:
   2756       ++GPRCnt;
   2757       break;
   2758     case MVT::f32:
   2759     case MVT::f64:
   2760       if (!Subtarget->hasSSE1())
   2761         return false;
   2762       ++FPRCnt;
   2763       break;
   2764     }
   2765 
   2766     if (GPRCnt > 6)
   2767       return false;
   2768 
   2769     if (FPRCnt > 8)
   2770       return false;
   2771   }
   2772 
   2773   static const MCPhysReg GPR32ArgRegs[] = {
   2774     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
   2775   };
   2776   static const MCPhysReg GPR64ArgRegs[] = {
   2777     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
   2778   };
   2779   static const MCPhysReg XMMArgRegs[] = {
   2780     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2781     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2782   };
   2783 
   2784   unsigned GPRIdx = 0;
   2785   unsigned FPRIdx = 0;
   2786   for (auto const &Arg : F->args()) {
   2787     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
   2788     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
   2789     unsigned SrcReg;
   2790     switch (VT.SimpleTy) {
   2791     default: llvm_unreachable("Unexpected value type.");
   2792     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
   2793     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
   2794     case MVT::f32: // fall-through
   2795     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
   2796     }
   2797     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
   2798     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
   2799     // Without this, EmitLiveInCopies may eliminate the livein if its only
   2800     // use is a bitcast (which isn't turned into an instruction).
   2801     unsigned ResultReg = createResultReg(RC);
   2802     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2803             TII.get(TargetOpcode::COPY), ResultReg)
   2804       .addReg(DstReg, getKillRegState(true));
   2805     updateValueMap(&Arg, ResultReg);
   2806   }
   2807   return true;
   2808 }
   2809 
   2810 static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
   2811                                            CallingConv::ID CC,
   2812                                            ImmutableCallSite *CS) {
   2813   if (Subtarget->is64Bit())
   2814     return 0;
   2815   if (Subtarget->getTargetTriple().isOSMSVCRT())
   2816     return 0;
   2817   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
   2818       CC == CallingConv::HiPE)
   2819     return 0;
   2820 
   2821   if (CS)
   2822     if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
   2823         CS->paramHasAttr(1, Attribute::InReg))
   2824       return 0;
   2825 
   2826   return 4;
   2827 }
   2828 
   2829 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
   2830   auto &OutVals       = CLI.OutVals;
   2831   auto &OutFlags      = CLI.OutFlags;
   2832   auto &OutRegs       = CLI.OutRegs;
   2833   auto &Ins           = CLI.Ins;
   2834   auto &InRegs        = CLI.InRegs;
   2835   CallingConv::ID CC  = CLI.CallConv;
   2836   bool &IsTailCall    = CLI.IsTailCall;
   2837   bool IsVarArg       = CLI.IsVarArg;
   2838   const Value *Callee = CLI.Callee;
   2839   MCSymbol *Symbol = CLI.Symbol;
   2840 
   2841   bool Is64Bit        = Subtarget->is64Bit();
   2842   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
   2843 
   2844   // Handle only C, fastcc, and webkit_js calling conventions for now.
   2845   switch (CC) {
   2846   default: return false;
   2847   case CallingConv::C:
   2848   case CallingConv::Fast:
   2849   case CallingConv::WebKit_JS:
   2850   case CallingConv::X86_FastCall:
   2851   case CallingConv::X86_64_Win64:
   2852   case CallingConv::X86_64_SysV:
   2853     break;
   2854   }
   2855 
   2856   // Allow SelectionDAG isel to handle tail calls.
   2857   if (IsTailCall)
   2858     return false;
   2859 
   2860   // fastcc with -tailcallopt is intended to provide a guaranteed
   2861   // tail call optimization. Fastisel doesn't know how to do that.
   2862   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
   2863     return false;
   2864 
   2865   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
   2866   // x86-32. Special handling for x86-64 is implemented.
   2867   if (IsVarArg && IsWin64)
   2868     return false;
   2869 
   2870   // Don't know about inalloca yet.
   2871   if (CLI.CS && CLI.CS->hasInAllocaArgument())
   2872     return false;
   2873 
   2874   // Fast-isel doesn't know about callee-pop yet.
   2875   if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
   2876                        TM.Options.GuaranteedTailCallOpt))
   2877     return false;
   2878 
   2879   SmallVector<MVT, 16> OutVTs;
   2880   SmallVector<unsigned, 16> ArgRegs;
   2881 
   2882   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
   2883   // instruction. This is safe because it is common to all FastISel supported
   2884   // calling conventions on x86.
   2885   for (int i = 0, e = OutVals.size(); i != e; ++i) {
   2886     Value *&Val = OutVals[i];
   2887     ISD::ArgFlagsTy Flags = OutFlags[i];
   2888     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
   2889       if (CI->getBitWidth() < 32) {
   2890         if (Flags.isSExt())
   2891           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
   2892         else
   2893           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
   2894       }
   2895     }
   2896 
   2897     // Passing bools around ends up doing a trunc to i1 and passing it.
   2898     // Codegen this as an argument + "and 1".
   2899     MVT VT;
   2900     auto *TI = dyn_cast<TruncInst>(Val);
   2901     unsigned ResultReg;
   2902     if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
   2903               (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
   2904               TI->hasOneUse()) {
   2905       Value *PrevVal = TI->getOperand(0);
   2906       ResultReg = getRegForValue(PrevVal);
   2907 
   2908       if (!ResultReg)
   2909         return false;
   2910 
   2911       if (!isTypeLegal(PrevVal->getType(), VT))
   2912         return false;
   2913 
   2914       ResultReg =
   2915         fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
   2916     } else {
   2917       if (!isTypeLegal(Val->getType(), VT))
   2918         return false;
   2919       ResultReg = getRegForValue(Val);
   2920     }
   2921 
   2922     if (!ResultReg)
   2923       return false;
   2924 
   2925     ArgRegs.push_back(ResultReg);
   2926     OutVTs.push_back(VT);
   2927   }
   2928 
   2929   // Analyze operands of the call, assigning locations to each operand.
   2930   SmallVector<CCValAssign, 16> ArgLocs;
   2931   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
   2932 
   2933   // Allocate shadow area for Win64
   2934   if (IsWin64)
   2935     CCInfo.AllocateStack(32, 8);
   2936 
   2937   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
   2938 
   2939   // Get a count of how many bytes are to be pushed on the stack.
   2940   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
   2941 
   2942   // Issue CALLSEQ_START
   2943   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   2944   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
   2945     .addImm(NumBytes).addImm(0);
   2946 
   2947   // Walk the register/memloc assignments, inserting copies/loads.
   2948   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
   2949   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2950     CCValAssign const &VA = ArgLocs[i];
   2951     const Value *ArgVal = OutVals[VA.getValNo()];
   2952     MVT ArgVT = OutVTs[VA.getValNo()];
   2953 
   2954     if (ArgVT == MVT::x86mmx)
   2955       return false;
   2956 
   2957     unsigned ArgReg = ArgRegs[VA.getValNo()];
   2958 
   2959     // Promote the value if needed.
   2960     switch (VA.getLocInfo()) {
   2961     case CCValAssign::Full: break;
   2962     case CCValAssign::SExt: {
   2963       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2964              "Unexpected extend");
   2965       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
   2966                                        ArgVT, ArgReg);
   2967       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
   2968       ArgVT = VA.getLocVT();
   2969       break;
   2970     }
   2971     case CCValAssign::ZExt: {
   2972       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2973              "Unexpected extend");
   2974       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
   2975                                        ArgVT, ArgReg);
   2976       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
   2977       ArgVT = VA.getLocVT();
   2978       break;
   2979     }
   2980     case CCValAssign::AExt: {
   2981       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2982              "Unexpected extend");
   2983       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
   2984                                        ArgVT, ArgReg);
   2985       if (!Emitted)
   2986         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
   2987                                     ArgVT, ArgReg);
   2988       if (!Emitted)
   2989         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
   2990                                     ArgVT, ArgReg);
   2991 
   2992       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
   2993       ArgVT = VA.getLocVT();
   2994       break;
   2995     }
   2996     case CCValAssign::BCvt: {
   2997       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
   2998                           /*TODO: Kill=*/false);
   2999       assert(ArgReg && "Failed to emit a bitcast!");
   3000       ArgVT = VA.getLocVT();
   3001       break;
   3002     }
   3003     case CCValAssign::VExt:
   3004       // VExt has not been implemented, so this should be impossible to reach
   3005       // for now.  However, fallback to Selection DAG isel once implemented.
   3006       return false;
   3007     case CCValAssign::AExtUpper:
   3008     case CCValAssign::SExtUpper:
   3009     case CCValAssign::ZExtUpper:
   3010     case CCValAssign::FPExt:
   3011       llvm_unreachable("Unexpected loc info!");
   3012     case CCValAssign::Indirect:
   3013       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
   3014       // support this.
   3015       return false;
   3016     }
   3017 
   3018     if (VA.isRegLoc()) {
   3019       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3020               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
   3021       OutRegs.push_back(VA.getLocReg());
   3022     } else {
   3023       assert(VA.isMemLoc());
   3024 
   3025       // Don't emit stores for undef values.
   3026       if (isa<UndefValue>(ArgVal))
   3027         continue;
   3028 
   3029       unsigned LocMemOffset = VA.getLocMemOffset();
   3030       X86AddressMode AM;
   3031       AM.Base.Reg = RegInfo->getStackRegister();
   3032       AM.Disp = LocMemOffset;
   3033       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
   3034       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
   3035       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
   3036           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
   3037           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
   3038       if (Flags.isByVal()) {
   3039         X86AddressMode SrcAM;
   3040         SrcAM.Base.Reg = ArgReg;
   3041         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
   3042           return false;
   3043       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
   3044         // If this is a really simple value, emit this with the Value* version
   3045         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
   3046         // as it can cause us to reevaluate the argument.
   3047         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
   3048           return false;
   3049       } else {
   3050         bool ValIsKill = hasTrivialKill(ArgVal);
   3051         if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
   3052           return false;
   3053       }
   3054     }
   3055   }
   3056 
   3057   // ELF / PIC requires GOT in the EBX register before function calls via PLT
   3058   // GOT pointer.
   3059   if (Subtarget->isPICStyleGOT()) {
   3060     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   3061     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3062             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
   3063   }
   3064 
   3065   if (Is64Bit && IsVarArg && !IsWin64) {
   3066     // From AMD64 ABI document:
   3067     // For calls that may call functions that use varargs or stdargs
   3068     // (prototype-less calls or calls to functions containing ellipsis (...) in
   3069     // the declaration) %al is used as hidden argument to specify the number
   3070     // of SSE registers used. The contents of %al do not need to match exactly
   3071     // the number of registers, but must be an ubound on the number of SSE
   3072     // registers used and is in the range 0 - 8 inclusive.
   3073 
   3074     // Count the number of XMM registers allocated.
   3075     static const MCPhysReg XMMArgRegs[] = {
   3076       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   3077       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   3078     };
   3079     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
   3080     assert((Subtarget->hasSSE1() || !NumXMMRegs)
   3081            && "SSE registers cannot be used when SSE is disabled");
   3082     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
   3083             X86::AL).addImm(NumXMMRegs);
   3084   }
   3085 
   3086   // Materialize callee address in a register. FIXME: GV address can be
   3087   // handled with a CALLpcrel32 instead.
   3088   X86AddressMode CalleeAM;
   3089   if (!X86SelectCallAddress(Callee, CalleeAM))
   3090     return false;
   3091 
   3092   unsigned CalleeOp = 0;
   3093   const GlobalValue *GV = nullptr;
   3094   if (CalleeAM.GV != nullptr) {
   3095     GV = CalleeAM.GV;
   3096   } else if (CalleeAM.Base.Reg != 0) {
   3097     CalleeOp = CalleeAM.Base.Reg;
   3098   } else
   3099     return false;
   3100 
   3101   // Issue the call.
   3102   MachineInstrBuilder MIB;
   3103   if (CalleeOp) {
   3104     // Register-indirect call.
   3105     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
   3106     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
   3107       .addReg(CalleeOp);
   3108   } else {
   3109     // Direct call.
   3110     assert(GV && "Not a direct call");
   3111     unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
   3112 
   3113     // See if we need any target-specific flags on the GV operand.
   3114     unsigned char OpFlags = 0;
   3115 
   3116     // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   3117     // external symbols most go through the PLT in PIC mode.  If the symbol
   3118     // has hidden or protected visibility, or if it is static or local, then
   3119     // we don't need to use the PLT - we can directly call it.
   3120     if (Subtarget->isTargetELF() &&
   3121         TM.getRelocationModel() == Reloc::PIC_ &&
   3122         GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   3123       OpFlags = X86II::MO_PLT;
   3124     } else if (Subtarget->isPICStyleStubAny() &&
   3125                !GV->isStrongDefinitionForLinker() &&
   3126                (!Subtarget->getTargetTriple().isMacOSX() ||
   3127                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   3128       // PC-relative references to external symbols should go through $stub,
   3129       // unless we're building with the leopard linker or later, which
   3130       // automatically synthesizes these stubs.
   3131       OpFlags = X86II::MO_DARWIN_STUB;
   3132     }
   3133 
   3134     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
   3135     if (Symbol)
   3136       MIB.addSym(Symbol, OpFlags);
   3137     else
   3138       MIB.addGlobalAddress(GV, 0, OpFlags);
   3139   }
   3140 
   3141   // Add a register mask operand representing the call-preserved registers.
   3142   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   3143   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
   3144 
   3145   // Add an implicit use GOT pointer in EBX.
   3146   if (Subtarget->isPICStyleGOT())
   3147     MIB.addReg(X86::EBX, RegState::Implicit);
   3148 
   3149   if (Is64Bit && IsVarArg && !IsWin64)
   3150     MIB.addReg(X86::AL, RegState::Implicit);
   3151 
   3152   // Add implicit physical register uses to the call.
   3153   for (auto Reg : OutRegs)
   3154     MIB.addReg(Reg, RegState::Implicit);
   3155 
   3156   // Issue CALLSEQ_END
   3157   unsigned NumBytesForCalleeToPop =
   3158     computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
   3159   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   3160   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
   3161     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
   3162 
   3163   // Now handle call return values.
   3164   SmallVector<CCValAssign, 16> RVLocs;
   3165   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
   3166                     CLI.RetTy->getContext());
   3167   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
   3168 
   3169   // Copy all of the result registers out of their specified physreg.
   3170   unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
   3171   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   3172     CCValAssign &VA = RVLocs[i];
   3173     EVT CopyVT = VA.getValVT();
   3174     unsigned CopyReg = ResultReg + i;
   3175 
   3176     // If this is x86-64, and we disabled SSE, we can't return FP values
   3177     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
   3178         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
   3179       report_fatal_error("SSE register return with SSE disabled");
   3180     }
   3181 
   3182     // If we prefer to use the value in xmm registers, copy it out as f80 and
   3183     // use a truncate to move it from fp stack reg to xmm reg.
   3184     if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
   3185         isScalarFPTypeInSSEReg(VA.getValVT())) {
   3186       CopyVT = MVT::f80;
   3187       CopyReg = createResultReg(&X86::RFP80RegClass);
   3188     }
   3189 
   3190     // Copy out the result.
   3191     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3192             TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
   3193     InRegs.push_back(VA.getLocReg());
   3194 
   3195     // Round the f80 to the right size, which also moves it to the appropriate
   3196     // xmm register. This is accomplished by storing the f80 value in memory
   3197     // and then loading it back.
   3198     if (CopyVT != VA.getValVT()) {
   3199       EVT ResVT = VA.getValVT();
   3200       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
   3201       unsigned MemSize = ResVT.getSizeInBits()/8;
   3202       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
   3203       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3204                                 TII.get(Opc)), FI)
   3205         .addReg(CopyReg);
   3206       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
   3207       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3208                                 TII.get(Opc), ResultReg + i), FI);
   3209     }
   3210   }
   3211 
   3212   CLI.ResultReg = ResultReg;
   3213   CLI.NumResultRegs = RVLocs.size();
   3214   CLI.Call = MIB;
   3215 
   3216   return true;
   3217 }
   3218 
   3219 bool
   3220 X86FastISel::fastSelectInstruction(const Instruction *I)  {
   3221   switch (I->getOpcode()) {
   3222   default: break;
   3223   case Instruction::Load:
   3224     return X86SelectLoad(I);
   3225   case Instruction::Store:
   3226     return X86SelectStore(I);
   3227   case Instruction::Ret:
   3228     return X86SelectRet(I);
   3229   case Instruction::ICmp:
   3230   case Instruction::FCmp:
   3231     return X86SelectCmp(I);
   3232   case Instruction::ZExt:
   3233     return X86SelectZExt(I);
   3234   case Instruction::Br:
   3235     return X86SelectBranch(I);
   3236   case Instruction::LShr:
   3237   case Instruction::AShr:
   3238   case Instruction::Shl:
   3239     return X86SelectShift(I);
   3240   case Instruction::SDiv:
   3241   case Instruction::UDiv:
   3242   case Instruction::SRem:
   3243   case Instruction::URem:
   3244     return X86SelectDivRem(I);
   3245   case Instruction::Select:
   3246     return X86SelectSelect(I);
   3247   case Instruction::Trunc:
   3248     return X86SelectTrunc(I);
   3249   case Instruction::FPExt:
   3250     return X86SelectFPExt(I);
   3251   case Instruction::FPTrunc:
   3252     return X86SelectFPTrunc(I);
   3253   case Instruction::SIToFP:
   3254     return X86SelectSIToFP(I);
   3255   case Instruction::IntToPtr: // Deliberate fall-through.
   3256   case Instruction::PtrToInt: {
   3257     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
   3258     EVT DstVT = TLI.getValueType(DL, I->getType());
   3259     if (DstVT.bitsGT(SrcVT))
   3260       return X86SelectZExt(I);
   3261     if (DstVT.bitsLT(SrcVT))
   3262       return X86SelectTrunc(I);
   3263     unsigned Reg = getRegForValue(I->getOperand(0));
   3264     if (Reg == 0) return false;
   3265     updateValueMap(I, Reg);
   3266     return true;
   3267   }
   3268   case Instruction::BitCast: {
   3269     // Select SSE2/AVX bitcasts between 128/256 bit vector types.
   3270     if (!Subtarget->hasSSE2())
   3271       return false;
   3272 
   3273     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
   3274     EVT DstVT = TLI.getValueType(DL, I->getType());
   3275 
   3276     if (!SrcVT.isSimple() || !DstVT.isSimple())
   3277       return false;
   3278 
   3279     if (!SrcVT.is128BitVector() &&
   3280         !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
   3281       return false;
   3282 
   3283     unsigned Reg = getRegForValue(I->getOperand(0));
   3284     if (Reg == 0)
   3285       return false;
   3286 
   3287     // No instruction is needed for conversion. Reuse the register used by
   3288     // the fist operand.
   3289     updateValueMap(I, Reg);
   3290     return true;
   3291   }
   3292   }
   3293 
   3294   return false;
   3295 }
   3296 
   3297 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
   3298   if (VT > MVT::i64)
   3299     return 0;
   3300 
   3301   uint64_t Imm = CI->getZExtValue();
   3302   if (Imm == 0) {
   3303     unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
   3304     switch (VT.SimpleTy) {
   3305     default: llvm_unreachable("Unexpected value type");
   3306     case MVT::i1:
   3307     case MVT::i8:
   3308       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
   3309                                         X86::sub_8bit);
   3310     case MVT::i16:
   3311       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
   3312                                         X86::sub_16bit);
   3313     case MVT::i32:
   3314       return SrcReg;
   3315     case MVT::i64: {
   3316       unsigned ResultReg = createResultReg(&X86::GR64RegClass);
   3317       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3318               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
   3319         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
   3320       return ResultReg;
   3321     }
   3322     }
   3323   }
   3324 
   3325   unsigned Opc = 0;
   3326   switch (VT.SimpleTy) {
   3327   default: llvm_unreachable("Unexpected value type");
   3328   case MVT::i1:  VT = MVT::i8; // fall-through
   3329   case MVT::i8:  Opc = X86::MOV8ri;  break;
   3330   case MVT::i16: Opc = X86::MOV16ri; break;
   3331   case MVT::i32: Opc = X86::MOV32ri; break;
   3332   case MVT::i64: {
   3333     if (isUInt<32>(Imm))
   3334       Opc = X86::MOV32ri;
   3335     else if (isInt<32>(Imm))
   3336       Opc = X86::MOV64ri32;
   3337     else
   3338       Opc = X86::MOV64ri;
   3339     break;
   3340   }
   3341   }
   3342   if (VT == MVT::i64 && Opc == X86::MOV32ri) {
   3343     unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
   3344     unsigned ResultReg = createResultReg(&X86::GR64RegClass);
   3345     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3346             TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
   3347       .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
   3348     return ResultReg;
   3349   }
   3350   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
   3351 }
   3352 
   3353 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
   3354   if (CFP->isNullValue())
   3355     return fastMaterializeFloatZero(CFP);
   3356 
   3357   // Can't handle alternate code models yet.
   3358   CodeModel::Model CM = TM.getCodeModel();
   3359   if (CM != CodeModel::Small && CM != CodeModel::Large)
   3360     return 0;
   3361 
   3362   // Get opcode and regclass of the output for the given load instruction.
   3363   unsigned Opc = 0;
   3364   const TargetRegisterClass *RC = nullptr;
   3365   switch (VT.SimpleTy) {
   3366   default: return 0;
   3367   case MVT::f32:
   3368     if (X86ScalarSSEf32) {
   3369       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
   3370       RC  = &X86::FR32RegClass;
   3371     } else {
   3372       Opc = X86::LD_Fp32m;
   3373       RC  = &X86::RFP32RegClass;
   3374     }
   3375     break;
   3376   case MVT::f64:
   3377     if (X86ScalarSSEf64) {
   3378       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
   3379       RC  = &X86::FR64RegClass;
   3380     } else {
   3381       Opc = X86::LD_Fp64m;
   3382       RC  = &X86::RFP64RegClass;
   3383     }
   3384     break;
   3385   case MVT::f80:
   3386     // No f80 support yet.
   3387     return 0;
   3388   }
   3389 
   3390   // MachineConstantPool wants an explicit alignment.
   3391   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
   3392   if (Align == 0) {
   3393     // Alignment of vector types. FIXME!
   3394     Align = DL.getTypeAllocSize(CFP->getType());
   3395   }
   3396 
   3397   // x86-32 PIC requires a PIC base register for constant pools.
   3398   unsigned PICBase = 0;
   3399   unsigned char OpFlag = 0;
   3400   if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
   3401     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   3402     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   3403   } else if (Subtarget->isPICStyleGOT()) {
   3404     OpFlag = X86II::MO_GOTOFF;
   3405     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   3406   } else if (Subtarget->isPICStyleRIPRel() &&
   3407              TM.getCodeModel() == CodeModel::Small) {
   3408     PICBase = X86::RIP;
   3409   }
   3410 
   3411   // Create the load from the constant pool.
   3412   unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
   3413   unsigned ResultReg = createResultReg(RC);
   3414 
   3415   if (CM == CodeModel::Large) {
   3416     unsigned AddrReg = createResultReg(&X86::GR64RegClass);
   3417     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
   3418             AddrReg)
   3419       .addConstantPoolIndex(CPI, 0, OpFlag);
   3420     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3421                                       TII.get(Opc), ResultReg);
   3422     addDirectMem(MIB, AddrReg);
   3423     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
   3424         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
   3425         MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
   3426     MIB->addMemOperand(*FuncInfo.MF, MMO);
   3427     return ResultReg;
   3428   }
   3429 
   3430   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3431                                    TII.get(Opc), ResultReg),
   3432                            CPI, PICBase, OpFlag);
   3433   return ResultReg;
   3434 }
   3435 
   3436 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
   3437   // Can't handle alternate code models yet.
   3438   if (TM.getCodeModel() != CodeModel::Small)
   3439     return 0;
   3440 
   3441   // Materialize addresses with LEA/MOV instructions.
   3442   X86AddressMode AM;
   3443   if (X86SelectAddress(GV, AM)) {
   3444     // If the expression is just a basereg, then we're done, otherwise we need
   3445     // to emit an LEA.
   3446     if (AM.BaseType == X86AddressMode::RegBase &&
   3447         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
   3448       return AM.Base.Reg;
   3449 
   3450     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
   3451     if (TM.getRelocationModel() == Reloc::Static &&
   3452         TLI.getPointerTy(DL) == MVT::i64) {
   3453       // The displacement code could be more than 32 bits away so we need to use
   3454       // an instruction with a 64 bit immediate
   3455       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
   3456               ResultReg)
   3457         .addGlobalAddress(GV);
   3458     } else {
   3459       unsigned Opc =
   3460           TLI.getPointerTy(DL) == MVT::i32
   3461               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
   3462               : X86::LEA64r;
   3463       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3464                              TII.get(Opc), ResultReg), AM);
   3465     }
   3466     return ResultReg;
   3467   }
   3468   return 0;
   3469 }
   3470 
   3471 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
   3472   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
   3473 
   3474   // Only handle simple types.
   3475   if (!CEVT.isSimple())
   3476     return 0;
   3477   MVT VT = CEVT.getSimpleVT();
   3478 
   3479   if (const auto *CI = dyn_cast<ConstantInt>(C))
   3480     return X86MaterializeInt(CI, VT);
   3481   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
   3482     return X86MaterializeFP(CFP, VT);
   3483   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
   3484     return X86MaterializeGV(GV, VT);
   3485 
   3486   return 0;
   3487 }
   3488 
   3489 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
   3490   // Fail on dynamic allocas. At this point, getRegForValue has already
   3491   // checked its CSE maps, so if we're here trying to handle a dynamic
   3492   // alloca, we're not going to succeed. X86SelectAddress has a
   3493   // check for dynamic allocas, because it's called directly from
   3494   // various places, but targetMaterializeAlloca also needs a check
   3495   // in order to avoid recursion between getRegForValue,
   3496   // X86SelectAddrss, and targetMaterializeAlloca.
   3497   if (!FuncInfo.StaticAllocaMap.count(C))
   3498     return 0;
   3499   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
   3500 
   3501   X86AddressMode AM;
   3502   if (!X86SelectAddress(C, AM))
   3503     return 0;
   3504   unsigned Opc =
   3505       TLI.getPointerTy(DL) == MVT::i32
   3506           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
   3507           : X86::LEA64r;
   3508   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
   3509   unsigned ResultReg = createResultReg(RC);
   3510   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3511                          TII.get(Opc), ResultReg), AM);
   3512   return ResultReg;
   3513 }
   3514 
   3515 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
   3516   MVT VT;
   3517   if (!isTypeLegal(CF->getType(), VT))
   3518     return 0;
   3519 
   3520   // Get opcode and regclass for the given zero.
   3521   unsigned Opc = 0;
   3522   const TargetRegisterClass *RC = nullptr;
   3523   switch (VT.SimpleTy) {
   3524   default: return 0;
   3525   case MVT::f32:
   3526     if (X86ScalarSSEf32) {
   3527       Opc = X86::FsFLD0SS;
   3528       RC  = &X86::FR32RegClass;
   3529     } else {
   3530       Opc = X86::LD_Fp032;
   3531       RC  = &X86::RFP32RegClass;
   3532     }
   3533     break;
   3534   case MVT::f64:
   3535     if (X86ScalarSSEf64) {
   3536       Opc = X86::FsFLD0SD;
   3537       RC  = &X86::FR64RegClass;
   3538     } else {
   3539       Opc = X86::LD_Fp064;
   3540       RC  = &X86::RFP64RegClass;
   3541     }
   3542     break;
   3543   case MVT::f80:
   3544     // No f80 support yet.
   3545     return 0;
   3546   }
   3547 
   3548   unsigned ResultReg = createResultReg(RC);
   3549   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
   3550   return ResultReg;
   3551 }
   3552 
   3553 
   3554 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
   3555                                       const LoadInst *LI) {
   3556   const Value *Ptr = LI->getPointerOperand();
   3557   X86AddressMode AM;
   3558   if (!X86SelectAddress(Ptr, AM))
   3559     return false;
   3560 
   3561   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
   3562 
   3563   unsigned Size = DL.getTypeAllocSize(LI->getType());
   3564   unsigned Alignment = LI->getAlignment();
   3565 
   3566   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
   3567     Alignment = DL.getABITypeAlignment(LI->getType());
   3568 
   3569   SmallVector<MachineOperand, 8> AddrOps;
   3570   AM.getFullAddress(AddrOps);
   3571 
   3572   MachineInstr *Result = XII.foldMemoryOperandImpl(
   3573       *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
   3574       /*AllowCommute=*/true);
   3575   if (!Result)
   3576     return false;
   3577 
   3578   // The index register could be in the wrong register class.  Unfortunately,
   3579   // foldMemoryOperandImpl could have commuted the instruction so its not enough
   3580   // to just look at OpNo + the offset to the index reg.  We actually need to
   3581   // scan the instruction to find the index reg and see if its the correct reg
   3582   // class.
   3583   unsigned OperandNo = 0;
   3584   for (MachineInstr::mop_iterator I = Result->operands_begin(),
   3585        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
   3586     MachineOperand &MO = *I;
   3587     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
   3588       continue;
   3589     // Found the index reg, now try to rewrite it.
   3590     unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
   3591                                                  MO.getReg(), OperandNo);
   3592     if (IndexReg == MO.getReg())
   3593       continue;
   3594     MO.setReg(IndexReg);
   3595   }
   3596 
   3597   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
   3598   MI->eraseFromParent();
   3599   return true;
   3600 }
   3601 
   3602 
   3603 namespace llvm {
   3604   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
   3605                                 const TargetLibraryInfo *libInfo) {
   3606     return new X86FastISel(funcInfo, libInfo);
   3607   }
   3608 }
   3609