Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/CodeGen/MachineCombinerPattern.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/MC/MCInstrInfo.h"
     22 #include "llvm/Support/BranchProbability.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 
     25 namespace llvm {
     26 
     27 class InstrItineraryData;
     28 class LiveVariables;
     29 class MCAsmInfo;
     30 class MachineMemOperand;
     31 class MachineRegisterInfo;
     32 class MDNode;
     33 class MCInst;
     34 struct MCSchedModel;
     35 class MCSymbolRefExpr;
     36 class SDNode;
     37 class ScheduleHazardRecognizer;
     38 class SelectionDAG;
     39 class ScheduleDAG;
     40 class TargetRegisterClass;
     41 class TargetRegisterInfo;
     42 class TargetSubtargetInfo;
     43 class TargetSchedModel;
     44 class DFAPacketizer;
     45 
     46 template<class T> class SmallVectorImpl;
     47 
     48 
     49 //---------------------------------------------------------------------------
     50 ///
     51 /// TargetInstrInfo - Interface to description of machine instruction set
     52 ///
     53 class TargetInstrInfo : public MCInstrInfo {
     54   TargetInstrInfo(const TargetInstrInfo &) = delete;
     55   void operator=(const TargetInstrInfo &) = delete;
     56 public:
     57   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
     58                   unsigned CatchRetOpcode = ~0u)
     59       : CallFrameSetupOpcode(CFSetupOpcode),
     60         CallFrameDestroyOpcode(CFDestroyOpcode),
     61         CatchRetOpcode(CatchRetOpcode) {}
     62 
     63   virtual ~TargetInstrInfo();
     64 
     65   static bool isGenericOpcode(unsigned Opc) {
     66     return Opc <= TargetOpcode::GENERIC_OP_END;
     67   }
     68 
     69   /// Given a machine instruction descriptor, returns the register
     70   /// class constraint for OpNum, or NULL.
     71   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
     72                                          unsigned OpNum,
     73                                          const TargetRegisterInfo *TRI,
     74                                          const MachineFunction &MF) const;
     75 
     76   /// Return true if the instruction is trivially rematerializable, meaning it
     77   /// has no side effects and requires no operands that aren't always available.
     78   /// This means the only allowed uses are constants and unallocatable physical
     79   /// registers so that the instructions result is independent of the place
     80   /// in the function.
     81   bool isTriviallyReMaterializable(const MachineInstr *MI,
     82                                    AliasAnalysis *AA = nullptr) const {
     83     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     84            (MI->getDesc().isRematerializable() &&
     85             (isReallyTriviallyReMaterializable(MI, AA) ||
     86              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     87   }
     88 
     89 protected:
     90   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
     91   /// set, this hook lets the target specify whether the instruction is actually
     92   /// trivially rematerializable, taking into consideration its operands. This
     93   /// predicate must return false if the instruction has any side effects other
     94   /// than producing a value, or if it requres any address registers that are
     95   /// not always available.
     96   /// Requirements must be check as stated in isTriviallyReMaterializable() .
     97   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
     98                                                  AliasAnalysis *AA) const {
     99     return false;
    100   }
    101 
    102   /// This method commutes the operands of the given machine instruction MI.
    103   /// The operands to be commuted are specified by their indices OpIdx1 and
    104   /// OpIdx2.
    105   ///
    106   /// If a target has any instructions that are commutable but require
    107   /// converting to different instructions or making non-trivial changes
    108   /// to commute them, this method can be overloaded to do that.
    109   /// The default implementation simply swaps the commutable operands.
    110   ///
    111   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    112   /// new machine instruction is created and returned.
    113   ///
    114   /// Do not call this method for a non-commutable instruction.
    115   /// Even though the instruction is commutable, the method may still
    116   /// fail to commute the operands, null pointer is returned in such cases.
    117   virtual MachineInstr *commuteInstructionImpl(MachineInstr *MI,
    118                                                bool NewMI,
    119                                                unsigned OpIdx1,
    120                                                unsigned OpIdx2) const;
    121 
    122   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
    123   /// operand indices to (ResultIdx1, ResultIdx2).
    124   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
    125   /// predefined to some indices or be undefined (designated by the special
    126   /// value 'CommuteAnyOperandIndex').
    127   /// The predefined result indices cannot be re-defined.
    128   /// The function returns true iff after the result pair redefinition
    129   /// the fixed result pair is equal to or equivalent to the source pair of
    130   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
    131   /// the pairs (x,y) and (y,x) are equivalent.
    132   static bool fixCommutedOpIndices(unsigned &ResultIdx1,
    133                                    unsigned &ResultIdx2,
    134                                    unsigned CommutableOpIdx1,
    135                                    unsigned CommutableOpIdx2);
    136 
    137 private:
    138   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
    139   /// set and the target hook isReallyTriviallyReMaterializable returns false,
    140   /// this function does target-independent tests to determine if the
    141   /// instruction is really trivially rematerializable.
    142   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
    143                                                 AliasAnalysis *AA) const;
    144 
    145 public:
    146   /// These methods return the opcode of the frame setup/destroy instructions
    147   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
    148   /// order to abstract away the difference between operating with a frame
    149   /// pointer and operating without, through the use of these two instructions.
    150   ///
    151   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    152   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    153 
    154   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
    155 
    156   /// Returns the actual stack pointer adjustment made by an instruction
    157   /// as part of a call sequence. By default, only call frame setup/destroy
    158   /// instructions adjust the stack, but targets may want to override this
    159   /// to enable more fine-grained adjustment, or adjust by a different value.
    160   virtual int getSPAdjust(const MachineInstr *MI) const;
    161 
    162   /// Return true if the instruction is a "coalescable" extension instruction.
    163   /// That is, it's like a copy where it's legal for the source to overlap the
    164   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
    165   /// expected the pre-extension value is available as a subreg of the result
    166   /// register. This also returns the sub-register index in SubIdx.
    167   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    168                                      unsigned &SrcReg, unsigned &DstReg,
    169                                      unsigned &SubIdx) const {
    170     return false;
    171   }
    172 
    173   /// If the specified machine instruction is a direct
    174   /// load from a stack slot, return the virtual or physical register number of
    175   /// the destination along with the FrameIndex of the loaded stack slot.  If
    176   /// not, return 0.  This predicate must return 0 if the instruction has
    177   /// any side effects other than loading from the stack slot.
    178   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
    179                                        int &FrameIndex) const {
    180     return 0;
    181   }
    182 
    183   /// Check for post-frame ptr elimination stack locations as well.
    184   /// This uses a heuristic so it isn't reliable for correctness.
    185   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    186                                              int &FrameIndex) const {
    187     return 0;
    188   }
    189 
    190   /// If the specified machine instruction has a load from a stack slot,
    191   /// return true along with the FrameIndex of the loaded stack slot and the
    192   /// machine mem operand containing the reference.
    193   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
    194   /// any instructions that loads from the stack.  This is just a hint, as some
    195   /// cases may be missed.
    196   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    197                                     const MachineMemOperand *&MMO,
    198                                     int &FrameIndex) const;
    199 
    200   /// If the specified machine instruction is a direct
    201   /// store to a stack slot, return the virtual or physical register number of
    202   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    203   /// not, return 0.  This predicate must return 0 if the instruction has
    204   /// any side effects other than storing to the stack slot.
    205   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
    206                                       int &FrameIndex) const {
    207     return 0;
    208   }
    209 
    210   /// Check for post-frame ptr elimination stack locations as well.
    211   /// This uses a heuristic, so it isn't reliable for correctness.
    212   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    213                                             int &FrameIndex) const {
    214     return 0;
    215   }
    216 
    217   /// If the specified machine instruction has a store to a stack slot,
    218   /// return true along with the FrameIndex of the loaded stack slot and the
    219   /// machine mem operand containing the reference.
    220   /// If not, return false.  Unlike isStoreToStackSlot,
    221   /// this returns true for any instructions that stores to the
    222   /// stack.  This is just a hint, as some cases may be missed.
    223   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    224                                    const MachineMemOperand *&MMO,
    225                                    int &FrameIndex) const;
    226 
    227   /// Return true if the specified machine instruction
    228   /// is a copy of one stack slot to another and has no other effect.
    229   /// Provide the identity of the two frame indices.
    230   virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
    231                                int &SrcFrameIndex) const {
    232     return false;
    233   }
    234 
    235   /// Compute the size in bytes and offset within a stack slot of a spilled
    236   /// register or subregister.
    237   ///
    238   /// \param [out] Size in bytes of the spilled value.
    239   /// \param [out] Offset in bytes within the stack slot.
    240   /// \returns true if both Size and Offset are successfully computed.
    241   ///
    242   /// Not all subregisters have computable spill slots. For example,
    243   /// subregisters registers may not be byte-sized, and a pair of discontiguous
    244   /// subregisters has no single offset.
    245   ///
    246   /// Targets with nontrivial bigendian implementations may need to override
    247   /// this, particularly to support spilled vector registers.
    248   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
    249                                  unsigned &Size, unsigned &Offset,
    250                                  const MachineFunction &MF) const;
    251 
    252   /// Return true if the instruction is as cheap as a move instruction.
    253   ///
    254   /// Targets for different archs need to override this, and different
    255   /// micro-architectures can also be finely tuned inside.
    256   virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
    257     return MI->isAsCheapAsAMove();
    258   }
    259 
    260   /// Re-issue the specified 'original' instruction at the
    261   /// specific location targeting a new destination register.
    262   /// The register in Orig->getOperand(0).getReg() will be substituted by
    263   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    264   /// SubIdx.
    265   virtual void reMaterialize(MachineBasicBlock &MBB,
    266                              MachineBasicBlock::iterator MI,
    267                              unsigned DestReg, unsigned SubIdx,
    268                              const MachineInstr *Orig,
    269                              const TargetRegisterInfo &TRI) const;
    270 
    271   /// Create a duplicate of the Orig instruction in MF. This is like
    272   /// MachineFunction::CloneMachineInstr(), but the target may update operands
    273   /// that are required to be unique.
    274   ///
    275   /// The instruction must be duplicable as indicated by isNotDuplicable().
    276   virtual MachineInstr *duplicate(MachineInstr *Orig,
    277                                   MachineFunction &MF) const;
    278 
    279   /// This method must be implemented by targets that
    280   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    281   /// may be able to convert a two-address instruction into one or more true
    282   /// three-address instructions on demand.  This allows the X86 target (for
    283   /// example) to convert ADD and SHL instructions into LEA instructions if they
    284   /// would require register copies due to two-addressness.
    285   ///
    286   /// This method returns a null pointer if the transformation cannot be
    287   /// performed, otherwise it returns the last new instruction.
    288   ///
    289   virtual MachineInstr *
    290   convertToThreeAddress(MachineFunction::iterator &MFI,
    291                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    292     return nullptr;
    293   }
    294 
    295   // This constant can be used as an input value of operand index passed to
    296   // the method findCommutedOpIndices() to tell the method that the
    297   // corresponding operand index is not pre-defined and that the method
    298   // can pick any commutable operand.
    299   static const unsigned CommuteAnyOperandIndex = ~0U;
    300 
    301   /// This method commutes the operands of the given machine instruction MI.
    302   ///
    303   /// The operands to be commuted are specified by their indices OpIdx1 and
    304   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
    305   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
    306   /// any arbitrarily chosen commutable operand. If both arguments are set to
    307   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
    308   /// operands; then commutes them if such operands could be found.
    309   ///
    310   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    311   /// new machine instruction is created and returned.
    312   ///
    313   /// Do not call this method for a non-commutable instruction or
    314   /// for non-commuable operands.
    315   /// Even though the instruction is commutable, the method may still
    316   /// fail to commute the operands, null pointer is returned in such cases.
    317   MachineInstr *
    318   commuteInstruction(MachineInstr *MI,
    319                      bool NewMI = false,
    320                      unsigned OpIdx1 = CommuteAnyOperandIndex,
    321                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
    322 
    323   /// Returns true iff the routine could find two commutable operands in the
    324   /// given machine instruction.
    325   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
    326   /// If any of the INPUT values is set to the special value
    327   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
    328   /// operand, then returns its index in the corresponding argument.
    329   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
    330   /// looks for 2 commutable operands.
    331   /// If INPUT values refer to some operands of MI, then the method simply
    332   /// returns true if the corresponding operands are commutable and returns
    333   /// false otherwise.
    334   ///
    335   /// For example, calling this method this way:
    336   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
    337   ///     findCommutedOpIndices(MI, Op1, Op2);
    338   /// can be interpreted as a query asking to find an operand that would be
    339   /// commutable with the operand#1.
    340   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    341                                      unsigned &SrcOpIdx2) const;
    342 
    343   /// A pair composed of a register and a sub-register index.
    344   /// Used to give some type checking when modeling Reg:SubReg.
    345   struct RegSubRegPair {
    346     unsigned Reg;
    347     unsigned SubReg;
    348     RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
    349         : Reg(Reg), SubReg(SubReg) {}
    350   };
    351   /// A pair composed of a pair of a register and a sub-register index,
    352   /// and another sub-register index.
    353   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
    354   struct RegSubRegPairAndIdx : RegSubRegPair {
    355     unsigned SubIdx;
    356     RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
    357                         unsigned SubIdx = 0)
    358         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
    359   };
    360 
    361   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
    362   /// and \p DefIdx.
    363   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
    364   /// the list is modeled as <Reg:SubReg, SubIdx>.
    365   /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
    366   /// two elements:
    367   /// - vreg1:sub1, sub0
    368   /// - vreg2<:0>, sub1
    369   ///
    370   /// \returns true if it is possible to build such an input sequence
    371   /// with the pair \p MI, \p DefIdx. False otherwise.
    372   ///
    373   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
    374   ///
    375   /// \note The generic implementation does not provide any support for
    376   /// MI.isRegSequenceLike(). In other words, one has to override
    377   /// getRegSequenceLikeInputs for target specific instructions.
    378   bool
    379   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
    380                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
    381 
    382   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
    383   /// and \p DefIdx.
    384   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
    385   /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
    386   /// - vreg1:sub1, sub0
    387   ///
    388   /// \returns true if it is possible to build such an input sequence
    389   /// with the pair \p MI, \p DefIdx. False otherwise.
    390   ///
    391   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
    392   ///
    393   /// \note The generic implementation does not provide any support for
    394   /// MI.isExtractSubregLike(). In other words, one has to override
    395   /// getExtractSubregLikeInputs for target specific instructions.
    396   bool
    397   getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
    398                          RegSubRegPairAndIdx &InputReg) const;
    399 
    400   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
    401   /// and \p DefIdx.
    402   /// \p [out] BaseReg and \p [out] InsertedReg contain
    403   /// the equivalent inputs of INSERT_SUBREG.
    404   /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
    405   /// - BaseReg: vreg0:sub0
    406   /// - InsertedReg: vreg1:sub1, sub3
    407   ///
    408   /// \returns true if it is possible to build such an input sequence
    409   /// with the pair \p MI, \p DefIdx. False otherwise.
    410   ///
    411   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
    412   ///
    413   /// \note The generic implementation does not provide any support for
    414   /// MI.isInsertSubregLike(). In other words, one has to override
    415   /// getInsertSubregLikeInputs for target specific instructions.
    416   bool
    417   getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
    418                         RegSubRegPair &BaseReg,
    419                         RegSubRegPairAndIdx &InsertedReg) const;
    420 
    421 
    422   /// Return true if two machine instructions would produce identical values.
    423   /// By default, this is only true when the two instructions
    424   /// are deemed identical except for defs. If this function is called when the
    425   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    426   /// aggressive checks.
    427   virtual bool produceSameValue(const MachineInstr *MI0,
    428                                 const MachineInstr *MI1,
    429                                 const MachineRegisterInfo *MRI = nullptr) const;
    430 
    431   /// Analyze the branching code at the end of MBB, returning
    432   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    433   /// implemented for a target).  Upon success, this returns false and returns
    434   /// with the following information in various cases:
    435   ///
    436   /// 1. If this block ends with no branches (it just falls through to its succ)
    437   ///    just return false, leaving TBB/FBB null.
    438   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    439   ///    the destination block.
    440   /// 3. If this block ends with a conditional branch and it falls through to a
    441   ///    successor block, it sets TBB to be the branch destination block and a
    442   ///    list of operands that evaluate the condition. These operands can be
    443   ///    passed to other TargetInstrInfo methods to create new branches.
    444   /// 4. If this block ends with a conditional branch followed by an
    445   ///    unconditional branch, it returns the 'true' destination in TBB, the
    446   ///    'false' destination in FBB, and a list of operands that evaluate the
    447   ///    condition.  These operands can be passed to other TargetInstrInfo
    448   ///    methods to create new branches.
    449   ///
    450   /// Note that RemoveBranch and InsertBranch must be implemented to support
    451   /// cases where this method returns success.
    452   ///
    453   /// If AllowModify is true, then this routine is allowed to modify the basic
    454   /// block (e.g. delete instructions after the unconditional branch).
    455   ///
    456   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    457                              MachineBasicBlock *&FBB,
    458                              SmallVectorImpl<MachineOperand> &Cond,
    459                              bool AllowModify = false) const {
    460     return true;
    461   }
    462 
    463   /// Represents a predicate at the MachineFunction level.  The control flow a
    464   /// MachineBranchPredicate represents is:
    465   ///
    466   ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
    467   ///  if Reg then goto TrueDest else goto FalseDest
    468   ///
    469   struct MachineBranchPredicate {
    470     enum ComparePredicate {
    471       PRED_EQ,     // True if two values are equal
    472       PRED_NE,     // True if two values are not equal
    473       PRED_INVALID // Sentinel value
    474     };
    475 
    476     ComparePredicate Predicate;
    477     MachineOperand LHS;
    478     MachineOperand RHS;
    479     MachineBasicBlock *TrueDest;
    480     MachineBasicBlock *FalseDest;
    481     MachineInstr *ConditionDef;
    482 
    483     /// SingleUseCondition is true if ConditionDef is dead except for the
    484     /// branch(es) at the end of the basic block.
    485     ///
    486     bool SingleUseCondition;
    487 
    488     explicit MachineBranchPredicate()
    489         : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
    490           RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
    491           FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
    492     }
    493   };
    494 
    495   /// Analyze the branching code at the end of MBB and parse it into the
    496   /// MachineBranchPredicate structure if possible.  Returns false on success
    497   /// and true on failure.
    498   ///
    499   /// If AllowModify is true, then this routine is allowed to modify the basic
    500   /// block (e.g. delete instructions after the unconditional branch).
    501   ///
    502   virtual bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
    503                                       MachineBranchPredicate &MBP,
    504                                       bool AllowModify = false) const {
    505     return true;
    506   }
    507 
    508   /// Remove the branching code at the end of the specific MBB.
    509   /// This is only invoked in cases where AnalyzeBranch returns success. It
    510   /// returns the number of instructions that were removed.
    511   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    512     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
    513   }
    514 
    515   /// Insert branch code into the end of the specified MachineBasicBlock.
    516   /// The operands to this method are the same as those
    517   /// returned by AnalyzeBranch.  This is only invoked in cases where
    518   /// AnalyzeBranch returns success. It returns the number of instructions
    519   /// inserted.
    520   ///
    521   /// It is also invoked by tail merging to add unconditional branches in
    522   /// cases where AnalyzeBranch doesn't apply because there was no original
    523   /// branch to analyze.  At least this much must be implemented, else tail
    524   /// merging needs to be disabled.
    525   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    526                                 MachineBasicBlock *FBB,
    527                                 ArrayRef<MachineOperand> Cond,
    528                                 DebugLoc DL) const {
    529     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
    530   }
    531 
    532   /// Delete the instruction OldInst and everything after it, replacing it with
    533   /// an unconditional branch to NewDest. This is used by the tail merging pass.
    534   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    535                                        MachineBasicBlock *NewDest) const;
    536 
    537   /// Get an instruction that performs an unconditional branch to the given
    538   /// symbol.
    539   virtual void
    540   getUnconditionalBranch(MCInst &MI,
    541                          const MCSymbolRefExpr *BranchTarget) const {
    542     llvm_unreachable("Target didn't implement "
    543                      "TargetInstrInfo::getUnconditionalBranch!");
    544   }
    545 
    546   /// Get a machine trap instruction.
    547   virtual void getTrap(MCInst &MI) const {
    548     llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
    549   }
    550 
    551   /// Get a number of bytes that suffices to hold
    552   /// either the instruction returned by getUnconditionalBranch or the
    553   /// instruction returned by getTrap. This only makes sense because
    554   /// getUnconditionalBranch returns a single, specific instruction. This
    555   /// information is needed by the jumptable construction code, since it must
    556   /// decide how many bytes to use for a jumptable entry so it can generate the
    557   /// right mask.
    558   ///
    559   /// Note that if the jumptable instruction requires alignment, then that
    560   /// alignment should be factored into this required bound so that the
    561   /// resulting bound gives the right alignment for the instruction.
    562   virtual unsigned getJumpInstrTableEntryBound() const {
    563     // This method gets called by LLVMTargetMachine always, so it can't fail
    564     // just because there happens to be no implementation for this target.
    565     // Any code that tries to use a jumptable annotation without defining
    566     // getUnconditionalBranch on the appropriate Target will fail anyway, and
    567     // the value returned here won't matter in that case.
    568     return 0;
    569   }
    570 
    571   /// Return true if it's legal to split the given basic
    572   /// block at the specified instruction (i.e. instruction would be the start
    573   /// of a new basic block).
    574   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    575                                    MachineBasicBlock::iterator MBBI) const {
    576     return true;
    577   }
    578 
    579   /// Return true if it's profitable to predicate
    580   /// instructions with accumulated instruction latency of "NumCycles"
    581   /// of the specified basic block, where the probability of the instructions
    582   /// being executed is given by Probability, and Confidence is a measure
    583   /// of our confidence that it will be properly predicted.
    584   virtual
    585   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    586                            unsigned ExtraPredCycles,
    587                            BranchProbability Probability) const {
    588     return false;
    589   }
    590 
    591   /// Second variant of isProfitableToIfCvt. This one
    592   /// checks for the case where two basic blocks from true and false path
    593   /// of a if-then-else (diamond) are predicated on mutally exclusive
    594   /// predicates, where the probability of the true path being taken is given
    595   /// by Probability, and Confidence is a measure of our confidence that it
    596   /// will be properly predicted.
    597   virtual bool
    598   isProfitableToIfCvt(MachineBasicBlock &TMBB,
    599                       unsigned NumTCycles, unsigned ExtraTCycles,
    600                       MachineBasicBlock &FMBB,
    601                       unsigned NumFCycles, unsigned ExtraFCycles,
    602                       BranchProbability Probability) const {
    603     return false;
    604   }
    605 
    606   /// Return true if it's profitable for if-converter to duplicate instructions
    607   /// of specified accumulated instruction latencies in the specified MBB to
    608   /// enable if-conversion.
    609   /// The probability of the instructions being executed is given by
    610   /// Probability, and Confidence is a measure of our confidence that it
    611   /// will be properly predicted.
    612   virtual bool
    613   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    614                             BranchProbability Probability) const {
    615     return false;
    616   }
    617 
    618   /// Return true if it's profitable to unpredicate
    619   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
    620   /// exclusive predicates.
    621   /// e.g.
    622   ///   subeq  r0, r1, #1
    623   ///   addne  r0, r1, #1
    624   /// =>
    625   ///   sub    r0, r1, #1
    626   ///   addne  r0, r1, #1
    627   ///
    628   /// This may be profitable is conditional instructions are always executed.
    629   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
    630                                          MachineBasicBlock &FMBB) const {
    631     return false;
    632   }
    633 
    634   /// Return true if it is possible to insert a select
    635   /// instruction that chooses between TrueReg and FalseReg based on the
    636   /// condition code in Cond.
    637   ///
    638   /// When successful, also return the latency in cycles from TrueReg,
    639   /// FalseReg, and Cond to the destination register. In most cases, a select
    640   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
    641   ///
    642   /// Some x86 implementations have 2-cycle cmov instructions.
    643   ///
    644   /// @param MBB         Block where select instruction would be inserted.
    645   /// @param Cond        Condition returned by AnalyzeBranch.
    646   /// @param TrueReg     Virtual register to select when Cond is true.
    647   /// @param FalseReg    Virtual register to select when Cond is false.
    648   /// @param CondCycles  Latency from Cond+Branch to select output.
    649   /// @param TrueCycles  Latency from TrueReg to select output.
    650   /// @param FalseCycles Latency from FalseReg to select output.
    651   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
    652                                ArrayRef<MachineOperand> Cond,
    653                                unsigned TrueReg, unsigned FalseReg,
    654                                int &CondCycles,
    655                                int &TrueCycles, int &FalseCycles) const {
    656     return false;
    657   }
    658 
    659   /// Insert a select instruction into MBB before I that will copy TrueReg to
    660   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
    661   ///
    662   /// This function can only be called after canInsertSelect() returned true.
    663   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
    664   /// that the same flags or registers required by Cond are available at the
    665   /// insertion point.
    666   ///
    667   /// @param MBB      Block where select instruction should be inserted.
    668   /// @param I        Insertion point.
    669   /// @param DL       Source location for debugging.
    670   /// @param DstReg   Virtual register to be defined by select instruction.
    671   /// @param Cond     Condition as computed by AnalyzeBranch.
    672   /// @param TrueReg  Virtual register to copy when Cond is true.
    673   /// @param FalseReg Virtual register to copy when Cons is false.
    674   virtual void insertSelect(MachineBasicBlock &MBB,
    675                             MachineBasicBlock::iterator I, DebugLoc DL,
    676                             unsigned DstReg, ArrayRef<MachineOperand> Cond,
    677                             unsigned TrueReg, unsigned FalseReg) const {
    678     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
    679   }
    680 
    681   /// Analyze the given select instruction, returning true if
    682   /// it cannot be understood. It is assumed that MI->isSelect() is true.
    683   ///
    684   /// When successful, return the controlling condition and the operands that
    685   /// determine the true and false result values.
    686   ///
    687   ///   Result = SELECT Cond, TrueOp, FalseOp
    688   ///
    689   /// Some targets can optimize select instructions, for example by predicating
    690   /// the instruction defining one of the operands. Such targets should set
    691   /// Optimizable.
    692   ///
    693   /// @param         MI Select instruction to analyze.
    694   /// @param Cond    Condition controlling the select.
    695   /// @param TrueOp  Operand number of the value selected when Cond is true.
    696   /// @param FalseOp Operand number of the value selected when Cond is false.
    697   /// @param Optimizable Returned as true if MI is optimizable.
    698   /// @returns False on success.
    699   virtual bool analyzeSelect(const MachineInstr *MI,
    700                              SmallVectorImpl<MachineOperand> &Cond,
    701                              unsigned &TrueOp, unsigned &FalseOp,
    702                              bool &Optimizable) const {
    703     assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
    704     return true;
    705   }
    706 
    707   /// Given a select instruction that was understood by
    708   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
    709   /// merging it with one of its operands. Returns NULL on failure.
    710   ///
    711   /// When successful, returns the new select instruction. The client is
    712   /// responsible for deleting MI.
    713   ///
    714   /// If both sides of the select can be optimized, PreferFalse is used to pick
    715   /// a side.
    716   ///
    717   /// @param MI          Optimizable select instruction.
    718   /// @param NewMIs     Set that record all MIs in the basic block up to \p
    719   /// MI. Has to be updated with any newly created MI or deleted ones.
    720   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
    721   /// @returns Optimized instruction or NULL.
    722   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
    723                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
    724                                        bool PreferFalse = false) const {
    725     // This function must be implemented if Optimizable is ever set.
    726     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
    727   }
    728 
    729   /// Emit instructions to copy a pair of physical registers.
    730   ///
    731   /// This function should support copies within any legal register class as
    732   /// well as any cross-class copies created during instruction selection.
    733   ///
    734   /// The source and destination registers may overlap, which may require a
    735   /// careful implementation when multiple copy instructions are required for
    736   /// large registers. See for example the ARM target.
    737   virtual void copyPhysReg(MachineBasicBlock &MBB,
    738                            MachineBasicBlock::iterator MI, DebugLoc DL,
    739                            unsigned DestReg, unsigned SrcReg,
    740                            bool KillSrc) const {
    741     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
    742   }
    743 
    744   /// Store the specified register of the given register class to the specified
    745   /// stack frame index. The store instruction is to be added to the given
    746   /// machine basic block before the specified machine instruction. If isKill
    747   /// is true, the register operand is the last use and must be marked kill.
    748   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    749                                    MachineBasicBlock::iterator MI,
    750                                    unsigned SrcReg, bool isKill, int FrameIndex,
    751                                    const TargetRegisterClass *RC,
    752                                    const TargetRegisterInfo *TRI) const {
    753     llvm_unreachable("Target didn't implement "
    754                      "TargetInstrInfo::storeRegToStackSlot!");
    755   }
    756 
    757   /// Load the specified register of the given register class from the specified
    758   /// stack frame index. The load instruction is to be added to the given
    759   /// machine basic block before the specified machine instruction.
    760   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    761                                     MachineBasicBlock::iterator MI,
    762                                     unsigned DestReg, int FrameIndex,
    763                                     const TargetRegisterClass *RC,
    764                                     const TargetRegisterInfo *TRI) const {
    765     llvm_unreachable("Target didn't implement "
    766                      "TargetInstrInfo::loadRegFromStackSlot!");
    767   }
    768 
    769   /// This function is called for all pseudo instructions
    770   /// that remain after register allocation. Many pseudo instructions are
    771   /// created to help register allocation. This is the place to convert them
    772   /// into real instructions. The target can edit MI in place, or it can insert
    773   /// new instructions and erase MI. The function should return true if
    774   /// anything was changed.
    775   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    776     return false;
    777   }
    778 
    779   /// Attempt to fold a load or store of the specified stack
    780   /// slot into the specified machine instruction for the specified operand(s).
    781   /// If this is possible, a new instruction is returned with the specified
    782   /// operand folded, otherwise NULL is returned.
    783   /// The new instruction is inserted before MI, and the client is responsible
    784   /// for removing the old instruction.
    785   MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
    786                                   ArrayRef<unsigned> Ops, int FrameIndex) const;
    787 
    788   /// Same as the previous version except it allows folding of any load and
    789   /// store from / to any address, not just from a specific stack slot.
    790   MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
    791                                   ArrayRef<unsigned> Ops,
    792                                   MachineInstr *LoadMI) const;
    793 
    794   /// Return true when there is potentially a faster code sequence
    795   /// for an instruction chain ending in \p Root. All potential patterns are
    796   /// returned in the \p Pattern vector. Pattern should be sorted in priority
    797   /// order since the pattern evaluator stops checking as soon as it finds a
    798   /// faster sequence.
    799   /// \param Root - Instruction that could be combined with one of its operands
    800   /// \param Patterns - Vector of possible combination patterns
    801   virtual bool getMachineCombinerPatterns(
    802       MachineInstr &Root,
    803       SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
    804 
    805   /// Return true if the input \P Inst is part of a chain of dependent ops
    806   /// that are suitable for reassociation, otherwise return false.
    807   /// If the instruction's operands must be commuted to have a previous
    808   /// instruction of the same type define the first source operand, \P Commuted
    809   /// will be set to true.
    810   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
    811 
    812   /// Return true when \P Inst is both associative and commutative.
    813   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
    814     return false;
    815   }
    816 
    817   /// Return true when \P Inst has reassociable operands in the same \P MBB.
    818   virtual bool hasReassociableOperands(const MachineInstr &Inst,
    819                                        const MachineBasicBlock *MBB) const;
    820 
    821   /// Return true when \P Inst has reassociable sibling.
    822   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
    823 
    824   /// When getMachineCombinerPatterns() finds patterns, this function generates
    825   /// the instructions that could replace the original code sequence. The client
    826   /// has to decide whether the actual replacement is beneficial or not.
    827   /// \param Root - Instruction that could be combined with one of its operands
    828   /// \param Pattern - Combination pattern for Root
    829   /// \param InsInstrs - Vector of new instructions that implement P
    830   /// \param DelInstrs - Old instructions, including Root, that could be
    831   /// replaced by InsInstr
    832   /// \param InstrIdxForVirtReg - map of virtual register to instruction in
    833   /// InsInstr that defines it
    834   virtual void genAlternativeCodeSequence(
    835       MachineInstr &Root, MachineCombinerPattern Pattern,
    836       SmallVectorImpl<MachineInstr *> &InsInstrs,
    837       SmallVectorImpl<MachineInstr *> &DelInstrs,
    838       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
    839 
    840   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
    841   /// reduce critical path length.
    842   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
    843                       MachineCombinerPattern Pattern,
    844                       SmallVectorImpl<MachineInstr *> &InsInstrs,
    845                       SmallVectorImpl<MachineInstr *> &DelInstrs,
    846                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
    847 
    848   /// This is an architecture-specific helper function of reassociateOps.
    849   /// Set special operand attributes for new instructions after reassociation.
    850   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
    851                                      MachineInstr &NewMI1,
    852                                      MachineInstr &NewMI2) const {
    853     return;
    854   };
    855 
    856   /// Return true when a target supports MachineCombiner.
    857   virtual bool useMachineCombiner() const { return false; }
    858 
    859 protected:
    860   /// Target-dependent implementation for foldMemoryOperand.
    861   /// Target-independent code in foldMemoryOperand will
    862   /// take care of adding a MachineMemOperand to the newly created instruction.
    863   /// The instruction and any auxiliary instructions necessary will be inserted
    864   /// at InsertPt.
    865   virtual MachineInstr *foldMemoryOperandImpl(
    866       MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
    867       MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
    868     return nullptr;
    869   }
    870 
    871   /// Target-dependent implementation for foldMemoryOperand.
    872   /// Target-independent code in foldMemoryOperand will
    873   /// take care of adding a MachineMemOperand to the newly created instruction.
    874   /// The instruction and any auxiliary instructions necessary will be inserted
    875   /// at InsertPt.
    876   virtual MachineInstr *foldMemoryOperandImpl(
    877       MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
    878       MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
    879     return nullptr;
    880   }
    881 
    882   /// \brief Target-dependent implementation of getRegSequenceInputs.
    883   ///
    884   /// \returns true if it is possible to build the equivalent
    885   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
    886   ///
    887   /// \pre MI.isRegSequenceLike().
    888   ///
    889   /// \see TargetInstrInfo::getRegSequenceInputs.
    890   virtual bool getRegSequenceLikeInputs(
    891       const MachineInstr &MI, unsigned DefIdx,
    892       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
    893     return false;
    894   }
    895 
    896   /// \brief Target-dependent implementation of getExtractSubregInputs.
    897   ///
    898   /// \returns true if it is possible to build the equivalent
    899   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
    900   ///
    901   /// \pre MI.isExtractSubregLike().
    902   ///
    903   /// \see TargetInstrInfo::getExtractSubregInputs.
    904   virtual bool getExtractSubregLikeInputs(
    905       const MachineInstr &MI, unsigned DefIdx,
    906       RegSubRegPairAndIdx &InputReg) const {
    907     return false;
    908   }
    909 
    910   /// \brief Target-dependent implementation of getInsertSubregInputs.
    911   ///
    912   /// \returns true if it is possible to build the equivalent
    913   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
    914   ///
    915   /// \pre MI.isInsertSubregLike().
    916   ///
    917   /// \see TargetInstrInfo::getInsertSubregInputs.
    918   virtual bool
    919   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
    920                             RegSubRegPair &BaseReg,
    921                             RegSubRegPairAndIdx &InsertedReg) const {
    922     return false;
    923   }
    924 
    925 public:
    926   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    927   /// a store or a load and a store into two or more instruction. If this is
    928   /// possible, returns true as well as the new instructions by reference.
    929   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    930                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    931                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    932     return false;
    933   }
    934 
    935   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    936                                    SmallVectorImpl<SDNode*> &NewNodes) const {
    937     return false;
    938   }
    939 
    940   /// Returns the opcode of the would be new
    941   /// instruction after load / store are unfolded from an instruction of the
    942   /// specified opcode. It returns zero if the specified unfolding is not
    943   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    944   /// index of the operand which will hold the register holding the loaded
    945   /// value.
    946   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    947                                       bool UnfoldLoad, bool UnfoldStore,
    948                                       unsigned *LoadRegIndex = nullptr) const {
    949     return 0;
    950   }
    951 
    952   /// This is used by the pre-regalloc scheduler to determine if two loads are
    953   /// loading from the same base address. It should only return true if the base
    954   /// pointers are the same and the only differences between the two addresses
    955   /// are the offset. It also returns the offsets by reference.
    956   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    957                                     int64_t &Offset1, int64_t &Offset2) const {
    958     return false;
    959   }
    960 
    961   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
    962   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
    963   /// On some targets if two loads are loading from
    964   /// addresses in the same cache line, it's better if they are scheduled
    965   /// together. This function takes two integers that represent the load offsets
    966   /// from the common base address. It returns true if it decides it's desirable
    967   /// to schedule the two loads together. "NumLoads" is the number of loads that
    968   /// have already been scheduled after Load1.
    969   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    970                                        int64_t Offset1, int64_t Offset2,
    971                                        unsigned NumLoads) const {
    972     return false;
    973   }
    974 
    975   /// Get the base register and byte offset of an instruction that reads/writes
    976   /// memory.
    977   virtual bool getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
    978                                      unsigned &Offset,
    979                                      const TargetRegisterInfo *TRI) const {
    980     return false;
    981   }
    982 
    983   virtual bool enableClusterLoads() const { return false; }
    984 
    985   virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
    986                                   MachineInstr *SecondLdSt,
    987                                   unsigned NumLoads) const {
    988     return false;
    989   }
    990 
    991   /// Can this target fuse the given instructions if they are scheduled
    992   /// adjacent.
    993   virtual bool shouldScheduleAdjacent(MachineInstr* First,
    994                                       MachineInstr *Second) const {
    995     return false;
    996   }
    997 
    998   /// Reverses the branch condition of the specified condition list,
    999   /// returning false on success and true if it cannot be reversed.
   1000   virtual
   1001   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1002     return true;
   1003   }
   1004 
   1005   /// Insert a noop into the instruction stream at the specified point.
   1006   virtual void insertNoop(MachineBasicBlock &MBB,
   1007                           MachineBasicBlock::iterator MI) const;
   1008 
   1009 
   1010   /// Return the noop instruction to use for a noop.
   1011   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
   1012 
   1013 
   1014   /// Returns true if the instruction is already predicated.
   1015   virtual bool isPredicated(const MachineInstr *MI) const {
   1016     return false;
   1017   }
   1018 
   1019   /// Returns true if the instruction is a
   1020   /// terminator instruction that has not been predicated.
   1021   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
   1022 
   1023   /// Convert the instruction into a predicated instruction.
   1024   /// It returns true if the operation was successful.
   1025   virtual
   1026   bool PredicateInstruction(MachineInstr *MI,
   1027                             ArrayRef<MachineOperand> Pred) const;
   1028 
   1029   /// Returns true if the first specified predicate
   1030   /// subsumes the second, e.g. GE subsumes GT.
   1031   virtual
   1032   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
   1033                          ArrayRef<MachineOperand> Pred2) const {
   1034     return false;
   1035   }
   1036 
   1037   /// If the specified instruction defines any predicate
   1038   /// or condition code register(s) used for predication, returns true as well
   1039   /// as the definition predicate(s) by reference.
   1040   virtual bool DefinesPredicate(MachineInstr *MI,
   1041                                 std::vector<MachineOperand> &Pred) const {
   1042     return false;
   1043   }
   1044 
   1045   /// Return true if the specified instruction can be predicated.
   1046   /// By default, this returns true for every instruction with a
   1047   /// PredicateOperand.
   1048   virtual bool isPredicable(MachineInstr *MI) const {
   1049     return MI->getDesc().isPredicable();
   1050   }
   1051 
   1052   /// Return true if it's safe to move a machine
   1053   /// instruction that defines the specified register class.
   1054   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   1055     return true;
   1056   }
   1057 
   1058   /// Test if the given instruction should be considered a scheduling boundary.
   1059   /// This primarily includes labels and terminators.
   1060   virtual bool isSchedulingBoundary(const MachineInstr *MI,
   1061                                     const MachineBasicBlock *MBB,
   1062                                     const MachineFunction &MF) const;
   1063 
   1064   /// Measure the specified inline asm to determine an approximation of its
   1065   /// length.
   1066   virtual unsigned getInlineAsmLength(const char *Str,
   1067                                       const MCAsmInfo &MAI) const;
   1068 
   1069   /// Allocate and return a hazard recognizer to use for this target when
   1070   /// scheduling the machine instructions before register allocation.
   1071   virtual ScheduleHazardRecognizer*
   1072   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
   1073                                const ScheduleDAG *DAG) const;
   1074 
   1075   /// Allocate and return a hazard recognizer to use for this target when
   1076   /// scheduling the machine instructions before register allocation.
   1077   virtual ScheduleHazardRecognizer*
   1078   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
   1079                                  const ScheduleDAG *DAG) const;
   1080 
   1081   /// Allocate and return a hazard recognizer to use for this target when
   1082   /// scheduling the machine instructions after register allocation.
   1083   virtual ScheduleHazardRecognizer*
   1084   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
   1085                                      const ScheduleDAG *DAG) const;
   1086 
   1087   /// Provide a global flag for disabling the PreRA hazard recognizer that
   1088   /// targets may choose to honor.
   1089   bool usePreRAHazardRecognizer() const;
   1090 
   1091   /// For a comparison instruction, return the source registers
   1092   /// in SrcReg and SrcReg2 if having two register operands, and the value it
   1093   /// compares against in CmpValue. Return true if the comparison instruction
   1094   /// can be analyzed.
   1095   virtual bool analyzeCompare(const MachineInstr *MI,
   1096                               unsigned &SrcReg, unsigned &SrcReg2,
   1097                               int &Mask, int &Value) const {
   1098     return false;
   1099   }
   1100 
   1101   /// See if the comparison instruction can be converted
   1102   /// into something more efficient. E.g., on ARM most instructions can set the
   1103   /// flags register, obviating the need for a separate CMP.
   1104   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
   1105                                     unsigned SrcReg, unsigned SrcReg2,
   1106                                     int Mask, int Value,
   1107                                     const MachineRegisterInfo *MRI) const {
   1108     return false;
   1109   }
   1110   virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; }
   1111 
   1112   /// Try to remove the load by folding it to a register operand at the use.
   1113   /// We fold the load instructions if and only if the
   1114   /// def and use are in the same BB. We only look at one load and see
   1115   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
   1116   /// defined by the load we are trying to fold. DefMI returns the machine
   1117   /// instruction that defines FoldAsLoadDefReg, and the function returns
   1118   /// the machine instruction generated due to folding.
   1119   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
   1120                         const MachineRegisterInfo *MRI,
   1121                         unsigned &FoldAsLoadDefReg,
   1122                         MachineInstr *&DefMI) const {
   1123     return nullptr;
   1124   }
   1125 
   1126   /// 'Reg' is known to be defined by a move immediate instruction,
   1127   /// try to fold the immediate into the use instruction.
   1128   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
   1129   /// then the caller may assume that DefMI has been erased from its parent
   1130   /// block. The caller may assume that it will not be erased by this
   1131   /// function otherwise.
   1132   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
   1133                              unsigned Reg, MachineRegisterInfo *MRI) const {
   1134     return false;
   1135   }
   1136 
   1137   /// Return the number of u-operations the given machine
   1138   /// instruction will be decoded to on the target cpu. The itinerary's
   1139   /// IssueWidth is the number of microops that can be dispatched each
   1140   /// cycle. An instruction with zero microops takes no dispatch resources.
   1141   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
   1142                                   const MachineInstr *MI) const;
   1143 
   1144   /// Return true for pseudo instructions that don't consume any
   1145   /// machine resources in their current form. These are common cases that the
   1146   /// scheduler should consider free, rather than conservatively handling them
   1147   /// as instructions with no itinerary.
   1148   bool isZeroCost(unsigned Opcode) const {
   1149     return Opcode <= TargetOpcode::COPY;
   1150   }
   1151 
   1152   virtual int getOperandLatency(const InstrItineraryData *ItinData,
   1153                                 SDNode *DefNode, unsigned DefIdx,
   1154                                 SDNode *UseNode, unsigned UseIdx) const;
   1155 
   1156   /// Compute and return the use operand latency of a given pair of def and use.
   1157   /// In most cases, the static scheduling itinerary was enough to determine the
   1158   /// operand latency. But it may not be possible for instructions with variable
   1159   /// number of defs / uses.
   1160   ///
   1161   /// This is a raw interface to the itinerary that may be directly overridden
   1162   /// by a target. Use computeOperandLatency to get the best estimate of
   1163   /// latency.
   1164   virtual int getOperandLatency(const InstrItineraryData *ItinData,
   1165                                 const MachineInstr *DefMI, unsigned DefIdx,
   1166                                 const MachineInstr *UseMI,
   1167                                 unsigned UseIdx) const;
   1168 
   1169   /// Compute and return the latency of the given data
   1170   /// dependent def and use when the operand indices are already known.
   1171   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
   1172                                  const MachineInstr *DefMI, unsigned DefIdx,
   1173                                  const MachineInstr *UseMI, unsigned UseIdx)
   1174     const;
   1175 
   1176   /// Compute the instruction latency of a given instruction.
   1177   /// If the instruction has higher cost when predicated, it's returned via
   1178   /// PredCost.
   1179   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
   1180                                    const MachineInstr *MI,
   1181                                    unsigned *PredCost = nullptr) const;
   1182 
   1183   virtual unsigned getPredicationCost(const MachineInstr *MI) const;
   1184 
   1185   virtual int getInstrLatency(const InstrItineraryData *ItinData,
   1186                               SDNode *Node) const;
   1187 
   1188   /// Return the default expected latency for a def based on it's opcode.
   1189   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
   1190                              const MachineInstr *DefMI) const;
   1191 
   1192   int computeDefOperandLatency(const InstrItineraryData *ItinData,
   1193                                const MachineInstr *DefMI) const;
   1194 
   1195   /// Return true if this opcode has high latency to its result.
   1196   virtual bool isHighLatencyDef(int opc) const { return false; }
   1197 
   1198   /// Compute operand latency between a def of 'Reg'
   1199   /// and a use in the current loop. Return true if the target considered
   1200   /// it 'high'. This is used by optimization passes such as machine LICM to
   1201   /// determine whether it makes sense to hoist an instruction out even in a
   1202   /// high register pressure situation.
   1203   virtual
   1204   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
   1205                              const MachineRegisterInfo *MRI,
   1206                              const MachineInstr *DefMI, unsigned DefIdx,
   1207                              const MachineInstr *UseMI, unsigned UseIdx) const {
   1208     return false;
   1209   }
   1210 
   1211   /// Compute operand latency of a def of 'Reg'. Return true
   1212   /// if the target considered it 'low'.
   1213   virtual
   1214   bool hasLowDefLatency(const TargetSchedModel &SchedModel,
   1215                         const MachineInstr *DefMI, unsigned DefIdx) const;
   1216 
   1217   /// Perform target-specific instruction verification.
   1218   virtual
   1219   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
   1220     return true;
   1221   }
   1222 
   1223   /// Return the current execution domain and bit mask of
   1224   /// possible domains for instruction.
   1225   ///
   1226   /// Some micro-architectures have multiple execution domains, and multiple
   1227   /// opcodes that perform the same operation in different domains.  For
   1228   /// example, the x86 architecture provides the por, orps, and orpd
   1229   /// instructions that all do the same thing.  There is a latency penalty if a
   1230   /// register is written in one domain and read in another.
   1231   ///
   1232   /// This function returns a pair (domain, mask) containing the execution
   1233   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
   1234   /// function can be used to change the opcode to one of the domains in the
   1235   /// bit mask.  Instructions whose execution domain can't be changed should
   1236   /// return a 0 mask.
   1237   ///
   1238   /// The execution domain numbers don't have any special meaning except domain
   1239   /// 0 is used for instructions that are not associated with any interesting
   1240   /// execution domain.
   1241   ///
   1242   virtual std::pair<uint16_t, uint16_t>
   1243   getExecutionDomain(const MachineInstr *MI) const {
   1244     return std::make_pair(0, 0);
   1245   }
   1246 
   1247   /// Change the opcode of MI to execute in Domain.
   1248   ///
   1249   /// The bit (1 << Domain) must be set in the mask returned from
   1250   /// getExecutionDomain(MI).
   1251   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
   1252 
   1253 
   1254   /// Returns the preferred minimum clearance
   1255   /// before an instruction with an unwanted partial register update.
   1256   ///
   1257   /// Some instructions only write part of a register, and implicitly need to
   1258   /// read the other parts of the register.  This may cause unwanted stalls
   1259   /// preventing otherwise unrelated instructions from executing in parallel in
   1260   /// an out-of-order CPU.
   1261   ///
   1262   /// For example, the x86 instruction cvtsi2ss writes its result to bits
   1263   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
   1264   /// the instruction needs to wait for the old value of the register to become
   1265   /// available:
   1266   ///
   1267   ///   addps %xmm1, %xmm0
   1268   ///   movaps %xmm0, (%rax)
   1269   ///   cvtsi2ss %rbx, %xmm0
   1270   ///
   1271   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
   1272   /// instruction before it can issue, even though the high bits of %xmm0
   1273   /// probably aren't needed.
   1274   ///
   1275   /// This hook returns the preferred clearance before MI, measured in
   1276   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
   1277   /// instructions before MI.  It should only return a positive value for
   1278   /// unwanted dependencies.  If the old bits of the defined register have
   1279   /// useful values, or if MI is determined to otherwise read the dependency,
   1280   /// the hook should return 0.
   1281   ///
   1282   /// The unwanted dependency may be handled by:
   1283   ///
   1284   /// 1. Allocating the same register for an MI def and use.  That makes the
   1285   ///    unwanted dependency identical to a required dependency.
   1286   ///
   1287   /// 2. Allocating a register for the def that has no defs in the previous N
   1288   ///    instructions.
   1289   ///
   1290   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
   1291   ///    allows the target to insert a dependency breaking instruction.
   1292   ///
   1293   virtual unsigned
   1294   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
   1295                                const TargetRegisterInfo *TRI) const {
   1296     // The default implementation returns 0 for no partial register dependency.
   1297     return 0;
   1298   }
   1299 
   1300   /// \brief Return the minimum clearance before an instruction that reads an
   1301   /// unused register.
   1302   ///
   1303   /// For example, AVX instructions may copy part of a register operand into
   1304   /// the unused high bits of the destination register.
   1305   ///
   1306   /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
   1307   ///
   1308   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
   1309   /// false dependence on any previous write to %xmm0.
   1310   ///
   1311   /// This hook works similarly to getPartialRegUpdateClearance, except that it
   1312   /// does not take an operand index. Instead sets \p OpNum to the index of the
   1313   /// unused register.
   1314   virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
   1315                                         const TargetRegisterInfo *TRI) const {
   1316     // The default implementation returns 0 for no undef register dependency.
   1317     return 0;
   1318   }
   1319 
   1320   /// Insert a dependency-breaking instruction
   1321   /// before MI to eliminate an unwanted dependency on OpNum.
   1322   ///
   1323   /// If it wasn't possible to avoid a def in the last N instructions before MI
   1324   /// (see getPartialRegUpdateClearance), this hook will be called to break the
   1325   /// unwanted dependency.
   1326   ///
   1327   /// On x86, an xorps instruction can be used as a dependency breaker:
   1328   ///
   1329   ///   addps %xmm1, %xmm0
   1330   ///   movaps %xmm0, (%rax)
   1331   ///   xorps %xmm0, %xmm0
   1332   ///   cvtsi2ss %rbx, %xmm0
   1333   ///
   1334   /// An <imp-kill> operand should be added to MI if an instruction was
   1335   /// inserted.  This ties the instructions together in the post-ra scheduler.
   1336   ///
   1337   virtual void
   1338   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   1339                             const TargetRegisterInfo *TRI) const {}
   1340 
   1341   /// Create machine specific model for scheduling.
   1342   virtual DFAPacketizer *
   1343   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
   1344     return nullptr;
   1345   }
   1346 
   1347   // Sometimes, it is possible for the target
   1348   // to tell, even without aliasing information, that two MIs access different
   1349   // memory addresses. This function returns true if two MIs access different
   1350   // memory addresses and false otherwise.
   1351   virtual bool
   1352   areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
   1353                                   AliasAnalysis *AA = nullptr) const {
   1354     assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
   1355            "MIa must load from or modify a memory location");
   1356     assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
   1357            "MIb must load from or modify a memory location");
   1358     return false;
   1359   }
   1360 
   1361   /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
   1362   /// which is a heuristic used for CSE'ing phys reg defs.
   1363   virtual unsigned getMachineCSELookAheadLimit () const {
   1364     // The default lookahead is small to prevent unprofitable quadratic
   1365     // behavior.
   1366     return 5;
   1367   }
   1368 
   1369   /// Return an array that contains the ids of the target indices (used for the
   1370   /// TargetIndex machine operand) and their names.
   1371   ///
   1372   /// MIR Serialization is able to serialize only the target indices that are
   1373   /// defined by this method.
   1374   virtual ArrayRef<std::pair<int, const char *>>
   1375   getSerializableTargetIndices() const {
   1376     return None;
   1377   }
   1378 
   1379   /// Decompose the machine operand's target flags into two values - the direct
   1380   /// target flag value and any of bit flags that are applied.
   1381   virtual std::pair<unsigned, unsigned>
   1382   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
   1383     return std::make_pair(0u, 0u);
   1384   }
   1385 
   1386   /// Return an array that contains the direct target flag values and their
   1387   /// names.
   1388   ///
   1389   /// MIR Serialization is able to serialize only the target flags that are
   1390   /// defined by this method.
   1391   virtual ArrayRef<std::pair<unsigned, const char *>>
   1392   getSerializableDirectMachineOperandTargetFlags() const {
   1393     return None;
   1394   }
   1395 
   1396   /// Return an array that contains the bitmask target flag values and their
   1397   /// names.
   1398   ///
   1399   /// MIR Serialization is able to serialize only the target flags that are
   1400   /// defined by this method.
   1401   virtual ArrayRef<std::pair<unsigned, const char *>>
   1402   getSerializableBitmaskMachineOperandTargetFlags() const {
   1403     return None;
   1404   }
   1405 
   1406 private:
   1407   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
   1408   unsigned CatchRetOpcode;
   1409 };
   1410 
   1411 /// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
   1412 template<>
   1413 struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
   1414   typedef DenseMapInfo<unsigned> RegInfo;
   1415 
   1416   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
   1417     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
   1418                          RegInfo::getEmptyKey());
   1419   }
   1420   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
   1421     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
   1422                          RegInfo::getTombstoneKey());
   1423   }
   1424   /// \brief Reuse getHashValue implementation from
   1425   /// std::pair<unsigned, unsigned>.
   1426   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
   1427     std::pair<unsigned, unsigned> PairVal =
   1428         std::make_pair(Val.Reg, Val.SubReg);
   1429     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
   1430   }
   1431   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
   1432                       const TargetInstrInfo::RegSubRegPair &RHS) {
   1433     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
   1434            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
   1435   }
   1436 };
   1437 
   1438 } // End llvm namespace
   1439 
   1440 #endif
   1441