1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/MC/MCSection.h" 36 #include "llvm/MC/MCStreamer.h" 37 #include "llvm/MC/MCSubtargetInfo.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/MC/MCTargetAsmParser.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/TargetParser.h" 43 #include "llvm/Support/COFF.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 51 using namespace llvm; 52 53 namespace { 54 55 class ARMOperand; 56 57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 58 59 class UnwindContext { 60 MCAsmParser &Parser; 61 62 typedef SmallVector<SMLoc, 4> Locs; 63 64 Locs FnStartLocs; 65 Locs CantUnwindLocs; 66 Locs PersonalityLocs; 67 Locs PersonalityIndexLocs; 68 Locs HandlerDataLocs; 69 int FPReg; 70 71 public: 72 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 73 74 bool hasFnStart() const { return !FnStartLocs.empty(); } 75 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 76 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 77 bool hasPersonality() const { 78 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 79 } 80 81 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 82 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 83 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 84 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 85 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 86 87 void saveFPReg(int Reg) { FPReg = Reg; } 88 int getFPReg() const { return FPReg; } 89 90 void emitFnStartLocNotes() const { 91 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 92 FI != FE; ++FI) 93 Parser.Note(*FI, ".fnstart was specified here"); 94 } 95 void emitCantUnwindLocNotes() const { 96 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 97 UE = CantUnwindLocs.end(); UI != UE; ++UI) 98 Parser.Note(*UI, ".cantunwind was specified here"); 99 } 100 void emitHandlerDataLocNotes() const { 101 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 102 HE = HandlerDataLocs.end(); HI != HE; ++HI) 103 Parser.Note(*HI, ".handlerdata was specified here"); 104 } 105 void emitPersonalityLocNotes() const { 106 for (Locs::const_iterator PI = PersonalityLocs.begin(), 107 PE = PersonalityLocs.end(), 108 PII = PersonalityIndexLocs.begin(), 109 PIE = PersonalityIndexLocs.end(); 110 PI != PE || PII != PIE;) { 111 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 112 Parser.Note(*PI++, ".personality was specified here"); 113 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 114 Parser.Note(*PII++, ".personalityindex was specified here"); 115 else 116 llvm_unreachable(".personality and .personalityindex cannot be " 117 "at the same location"); 118 } 119 } 120 121 void reset() { 122 FnStartLocs = Locs(); 123 CantUnwindLocs = Locs(); 124 PersonalityLocs = Locs(); 125 HandlerDataLocs = Locs(); 126 PersonalityIndexLocs = Locs(); 127 FPReg = ARM::SP; 128 } 129 }; 130 131 class ARMAsmParser : public MCTargetAsmParser { 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 246 OperandVector &Operands); 247 bool isThumb() const { 248 // FIXME: Can tablegen auto-generate this? 249 return getSTI().getFeatureBits()[ARM::ModeThumb]; 250 } 251 bool isThumbOne() const { 252 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 253 } 254 bool isThumbTwo() const { 255 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 256 } 257 bool hasThumb() const { 258 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 259 } 260 bool hasV6Ops() const { 261 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 262 } 263 bool hasV6MOps() const { 264 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 265 } 266 bool hasV7Ops() const { 267 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 268 } 269 bool hasV8Ops() const { 270 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 271 } 272 bool hasARM() const { 273 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 274 } 275 bool hasDSP() const { 276 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 277 } 278 bool hasD16() const { 279 return getSTI().getFeatureBits()[ARM::FeatureD16]; 280 } 281 bool hasV8_1aOps() const { 282 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 283 } 284 285 void SwitchMode() { 286 MCSubtargetInfo &STI = copySTI(); 287 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 288 setAvailableFeatures(FB); 289 } 290 bool isMClass() const { 291 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 292 } 293 294 /// @name Auto-generated Match Functions 295 /// { 296 297 #define GET_ASSEMBLER_HEADER 298 #include "ARMGenAsmMatcher.inc" 299 300 /// } 301 302 OperandMatchResultTy parseITCondCode(OperandVector &); 303 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 304 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 305 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 306 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 307 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 308 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 309 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 310 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 311 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 312 int High); 313 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 314 return parsePKHImm(O, "lsl", 0, 31); 315 } 316 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 317 return parsePKHImm(O, "asr", 1, 32); 318 } 319 OperandMatchResultTy parseSetEndImm(OperandVector &); 320 OperandMatchResultTy parseShifterImm(OperandVector &); 321 OperandMatchResultTy parseRotImm(OperandVector &); 322 OperandMatchResultTy parseModImm(OperandVector &); 323 OperandMatchResultTy parseBitfield(OperandVector &); 324 OperandMatchResultTy parsePostIdxReg(OperandVector &); 325 OperandMatchResultTy parseAM3Offset(OperandVector &); 326 OperandMatchResultTy parseFPImm(OperandVector &); 327 OperandMatchResultTy parseVectorList(OperandVector &); 328 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 329 SMLoc &EndLoc); 330 331 // Asm Match Converter Methods 332 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 333 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 334 335 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 336 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 337 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 338 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 339 340 public: 341 enum ARMMatchResultTy { 342 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 343 Match_RequiresNotITBlock, 344 Match_RequiresV6, 345 Match_RequiresThumb2, 346 Match_RequiresV8, 347 #define GET_OPERAND_DIAGNOSTIC_TYPES 348 #include "ARMGenAsmMatcher.inc" 349 350 }; 351 352 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 353 const MCInstrInfo &MII, const MCTargetOptions &Options) 354 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 355 MCAsmParserExtension::Initialize(Parser); 356 357 // Cache the MCRegisterInfo. 358 MRI = getContext().getRegisterInfo(); 359 360 // Initialize the set of available features. 361 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 362 363 // Not in an ITBlock to start with. 364 ITState.CurPosition = ~0U; 365 366 NextSymbolIsThumb = false; 367 } 368 369 // Implementation of the MCTargetAsmParser interface: 370 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 371 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 372 SMLoc NameLoc, OperandVector &Operands) override; 373 bool ParseDirective(AsmToken DirectiveID) override; 374 375 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 376 unsigned Kind) override; 377 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 378 379 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 380 OperandVector &Operands, MCStreamer &Out, 381 uint64_t &ErrorInfo, 382 bool MatchingInlineAsm) override; 383 void onLabelParsed(MCSymbol *Symbol) override; 384 }; 385 } // end anonymous namespace 386 387 namespace { 388 389 /// ARMOperand - Instances of this class represent a parsed ARM machine 390 /// operand. 391 class ARMOperand : public MCParsedAsmOperand { 392 enum KindTy { 393 k_CondCode, 394 k_CCOut, 395 k_ITCondMask, 396 k_CoprocNum, 397 k_CoprocReg, 398 k_CoprocOption, 399 k_Immediate, 400 k_MemBarrierOpt, 401 k_InstSyncBarrierOpt, 402 k_Memory, 403 k_PostIndexRegister, 404 k_MSRMask, 405 k_BankedReg, 406 k_ProcIFlags, 407 k_VectorIndex, 408 k_Register, 409 k_RegisterList, 410 k_DPRRegisterList, 411 k_SPRRegisterList, 412 k_VectorList, 413 k_VectorListAllLanes, 414 k_VectorListIndexed, 415 k_ShiftedRegister, 416 k_ShiftedImmediate, 417 k_ShifterImmediate, 418 k_RotateImmediate, 419 k_ModifiedImmediate, 420 k_BitfieldDescriptor, 421 k_Token 422 } Kind; 423 424 SMLoc StartLoc, EndLoc, AlignmentLoc; 425 SmallVector<unsigned, 8> Registers; 426 427 struct CCOp { 428 ARMCC::CondCodes Val; 429 }; 430 431 struct CopOp { 432 unsigned Val; 433 }; 434 435 struct CoprocOptionOp { 436 unsigned Val; 437 }; 438 439 struct ITMaskOp { 440 unsigned Mask:4; 441 }; 442 443 struct MBOptOp { 444 ARM_MB::MemBOpt Val; 445 }; 446 447 struct ISBOptOp { 448 ARM_ISB::InstSyncBOpt Val; 449 }; 450 451 struct IFlagsOp { 452 ARM_PROC::IFlags Val; 453 }; 454 455 struct MMaskOp { 456 unsigned Val; 457 }; 458 459 struct BankedRegOp { 460 unsigned Val; 461 }; 462 463 struct TokOp { 464 const char *Data; 465 unsigned Length; 466 }; 467 468 struct RegOp { 469 unsigned RegNum; 470 }; 471 472 // A vector register list is a sequential list of 1 to 4 registers. 473 struct VectorListOp { 474 unsigned RegNum; 475 unsigned Count; 476 unsigned LaneIndex; 477 bool isDoubleSpaced; 478 }; 479 480 struct VectorIndexOp { 481 unsigned Val; 482 }; 483 484 struct ImmOp { 485 const MCExpr *Val; 486 }; 487 488 /// Combined record for all forms of ARM address expressions. 489 struct MemoryOp { 490 unsigned BaseRegNum; 491 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 492 // was specified. 493 const MCConstantExpr *OffsetImm; // Offset immediate value 494 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 495 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 496 unsigned ShiftImm; // shift for OffsetReg. 497 unsigned Alignment; // 0 = no alignment specified 498 // n = alignment in bytes (2, 4, 8, 16, or 32) 499 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 500 }; 501 502 struct PostIdxRegOp { 503 unsigned RegNum; 504 bool isAdd; 505 ARM_AM::ShiftOpc ShiftTy; 506 unsigned ShiftImm; 507 }; 508 509 struct ShifterImmOp { 510 bool isASR; 511 unsigned Imm; 512 }; 513 514 struct RegShiftedRegOp { 515 ARM_AM::ShiftOpc ShiftTy; 516 unsigned SrcReg; 517 unsigned ShiftReg; 518 unsigned ShiftImm; 519 }; 520 521 struct RegShiftedImmOp { 522 ARM_AM::ShiftOpc ShiftTy; 523 unsigned SrcReg; 524 unsigned ShiftImm; 525 }; 526 527 struct RotImmOp { 528 unsigned Imm; 529 }; 530 531 struct ModImmOp { 532 unsigned Bits; 533 unsigned Rot; 534 }; 535 536 struct BitfieldOp { 537 unsigned LSB; 538 unsigned Width; 539 }; 540 541 union { 542 struct CCOp CC; 543 struct CopOp Cop; 544 struct CoprocOptionOp CoprocOption; 545 struct MBOptOp MBOpt; 546 struct ISBOptOp ISBOpt; 547 struct ITMaskOp ITMask; 548 struct IFlagsOp IFlags; 549 struct MMaskOp MMask; 550 struct BankedRegOp BankedReg; 551 struct TokOp Tok; 552 struct RegOp Reg; 553 struct VectorListOp VectorList; 554 struct VectorIndexOp VectorIndex; 555 struct ImmOp Imm; 556 struct MemoryOp Memory; 557 struct PostIdxRegOp PostIdxReg; 558 struct ShifterImmOp ShifterImm; 559 struct RegShiftedRegOp RegShiftedReg; 560 struct RegShiftedImmOp RegShiftedImm; 561 struct RotImmOp RotImm; 562 struct ModImmOp ModImm; 563 struct BitfieldOp Bitfield; 564 }; 565 566 public: 567 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 568 569 /// getStartLoc - Get the location of the first token of this operand. 570 SMLoc getStartLoc() const override { return StartLoc; } 571 /// getEndLoc - Get the location of the last token of this operand. 572 SMLoc getEndLoc() const override { return EndLoc; } 573 /// getLocRange - Get the range between the first and last token of this 574 /// operand. 575 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 576 577 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 578 SMLoc getAlignmentLoc() const { 579 assert(Kind == k_Memory && "Invalid access!"); 580 return AlignmentLoc; 581 } 582 583 ARMCC::CondCodes getCondCode() const { 584 assert(Kind == k_CondCode && "Invalid access!"); 585 return CC.Val; 586 } 587 588 unsigned getCoproc() const { 589 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 590 return Cop.Val; 591 } 592 593 StringRef getToken() const { 594 assert(Kind == k_Token && "Invalid access!"); 595 return StringRef(Tok.Data, Tok.Length); 596 } 597 598 unsigned getReg() const override { 599 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 600 return Reg.RegNum; 601 } 602 603 const SmallVectorImpl<unsigned> &getRegList() const { 604 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 605 Kind == k_SPRRegisterList) && "Invalid access!"); 606 return Registers; 607 } 608 609 const MCExpr *getImm() const { 610 assert(isImm() && "Invalid access!"); 611 return Imm.Val; 612 } 613 614 unsigned getVectorIndex() const { 615 assert(Kind == k_VectorIndex && "Invalid access!"); 616 return VectorIndex.Val; 617 } 618 619 ARM_MB::MemBOpt getMemBarrierOpt() const { 620 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 621 return MBOpt.Val; 622 } 623 624 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 625 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 626 return ISBOpt.Val; 627 } 628 629 ARM_PROC::IFlags getProcIFlags() const { 630 assert(Kind == k_ProcIFlags && "Invalid access!"); 631 return IFlags.Val; 632 } 633 634 unsigned getMSRMask() const { 635 assert(Kind == k_MSRMask && "Invalid access!"); 636 return MMask.Val; 637 } 638 639 unsigned getBankedReg() const { 640 assert(Kind == k_BankedReg && "Invalid access!"); 641 return BankedReg.Val; 642 } 643 644 bool isCoprocNum() const { return Kind == k_CoprocNum; } 645 bool isCoprocReg() const { return Kind == k_CoprocReg; } 646 bool isCoprocOption() const { return Kind == k_CoprocOption; } 647 bool isCondCode() const { return Kind == k_CondCode; } 648 bool isCCOut() const { return Kind == k_CCOut; } 649 bool isITMask() const { return Kind == k_ITCondMask; } 650 bool isITCondCode() const { return Kind == k_CondCode; } 651 bool isImm() const override { return Kind == k_Immediate; } 652 // checks whether this operand is an unsigned offset which fits is a field 653 // of specified width and scaled by a specific number of bits 654 template<unsigned width, unsigned scale> 655 bool isUnsignedOffset() const { 656 if (!isImm()) return false; 657 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 658 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 659 int64_t Val = CE->getValue(); 660 int64_t Align = 1LL << scale; 661 int64_t Max = Align * ((1LL << width) - 1); 662 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 663 } 664 return false; 665 } 666 // checks whether this operand is an signed offset which fits is a field 667 // of specified width and scaled by a specific number of bits 668 template<unsigned width, unsigned scale> 669 bool isSignedOffset() const { 670 if (!isImm()) return false; 671 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 672 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 673 int64_t Val = CE->getValue(); 674 int64_t Align = 1LL << scale; 675 int64_t Max = Align * ((1LL << (width-1)) - 1); 676 int64_t Min = -Align * (1LL << (width-1)); 677 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 678 } 679 return false; 680 } 681 682 // checks whether this operand is a memory operand computed as an offset 683 // applied to PC. the offset may have 8 bits of magnitude and is represented 684 // with two bits of shift. textually it may be either [pc, #imm], #imm or 685 // relocable expression... 686 bool isThumbMemPC() const { 687 int64_t Val = 0; 688 if (isImm()) { 689 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 690 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 691 if (!CE) return false; 692 Val = CE->getValue(); 693 } 694 else if (isMem()) { 695 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 696 if(Memory.BaseRegNum != ARM::PC) return false; 697 Val = Memory.OffsetImm->getValue(); 698 } 699 else return false; 700 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 701 } 702 bool isFPImm() const { 703 if (!isImm()) return false; 704 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 705 if (!CE) return false; 706 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 707 return Val != -1; 708 } 709 bool isFBits16() const { 710 if (!isImm()) return false; 711 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 712 if (!CE) return false; 713 int64_t Value = CE->getValue(); 714 return Value >= 0 && Value <= 16; 715 } 716 bool isFBits32() const { 717 if (!isImm()) return false; 718 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 719 if (!CE) return false; 720 int64_t Value = CE->getValue(); 721 return Value >= 1 && Value <= 32; 722 } 723 bool isImm8s4() const { 724 if (!isImm()) return false; 725 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 726 if (!CE) return false; 727 int64_t Value = CE->getValue(); 728 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 729 } 730 bool isImm0_1020s4() const { 731 if (!isImm()) return false; 732 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 733 if (!CE) return false; 734 int64_t Value = CE->getValue(); 735 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 736 } 737 bool isImm0_508s4() const { 738 if (!isImm()) return false; 739 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 740 if (!CE) return false; 741 int64_t Value = CE->getValue(); 742 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 743 } 744 bool isImm0_508s4Neg() const { 745 if (!isImm()) return false; 746 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 747 if (!CE) return false; 748 int64_t Value = -CE->getValue(); 749 // explicitly exclude zero. we want that to use the normal 0_508 version. 750 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 751 } 752 bool isImm0_239() const { 753 if (!isImm()) return false; 754 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 755 if (!CE) return false; 756 int64_t Value = CE->getValue(); 757 return Value >= 0 && Value < 240; 758 } 759 bool isImm0_255() const { 760 if (!isImm()) return false; 761 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 762 if (!CE) return false; 763 int64_t Value = CE->getValue(); 764 return Value >= 0 && Value < 256; 765 } 766 bool isImm0_4095() const { 767 if (!isImm()) return false; 768 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 769 if (!CE) return false; 770 int64_t Value = CE->getValue(); 771 return Value >= 0 && Value < 4096; 772 } 773 bool isImm0_4095Neg() const { 774 if (!isImm()) return false; 775 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 776 if (!CE) return false; 777 int64_t Value = -CE->getValue(); 778 return Value > 0 && Value < 4096; 779 } 780 bool isImm0_1() const { 781 if (!isImm()) return false; 782 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 783 if (!CE) return false; 784 int64_t Value = CE->getValue(); 785 return Value >= 0 && Value < 2; 786 } 787 bool isImm0_3() const { 788 if (!isImm()) return false; 789 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 790 if (!CE) return false; 791 int64_t Value = CE->getValue(); 792 return Value >= 0 && Value < 4; 793 } 794 bool isImm0_7() const { 795 if (!isImm()) return false; 796 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 797 if (!CE) return false; 798 int64_t Value = CE->getValue(); 799 return Value >= 0 && Value < 8; 800 } 801 bool isImm0_15() const { 802 if (!isImm()) return false; 803 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 804 if (!CE) return false; 805 int64_t Value = CE->getValue(); 806 return Value >= 0 && Value < 16; 807 } 808 bool isImm0_31() const { 809 if (!isImm()) return false; 810 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 811 if (!CE) return false; 812 int64_t Value = CE->getValue(); 813 return Value >= 0 && Value < 32; 814 } 815 bool isImm0_63() const { 816 if (!isImm()) return false; 817 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 818 if (!CE) return false; 819 int64_t Value = CE->getValue(); 820 return Value >= 0 && Value < 64; 821 } 822 bool isImm8() const { 823 if (!isImm()) return false; 824 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 825 if (!CE) return false; 826 int64_t Value = CE->getValue(); 827 return Value == 8; 828 } 829 bool isImm16() const { 830 if (!isImm()) return false; 831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 832 if (!CE) return false; 833 int64_t Value = CE->getValue(); 834 return Value == 16; 835 } 836 bool isImm32() const { 837 if (!isImm()) return false; 838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 839 if (!CE) return false; 840 int64_t Value = CE->getValue(); 841 return Value == 32; 842 } 843 bool isShrImm8() const { 844 if (!isImm()) return false; 845 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 846 if (!CE) return false; 847 int64_t Value = CE->getValue(); 848 return Value > 0 && Value <= 8; 849 } 850 bool isShrImm16() const { 851 if (!isImm()) return false; 852 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 853 if (!CE) return false; 854 int64_t Value = CE->getValue(); 855 return Value > 0 && Value <= 16; 856 } 857 bool isShrImm32() const { 858 if (!isImm()) return false; 859 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 860 if (!CE) return false; 861 int64_t Value = CE->getValue(); 862 return Value > 0 && Value <= 32; 863 } 864 bool isShrImm64() const { 865 if (!isImm()) return false; 866 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 867 if (!CE) return false; 868 int64_t Value = CE->getValue(); 869 return Value > 0 && Value <= 64; 870 } 871 bool isImm1_7() const { 872 if (!isImm()) return false; 873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 874 if (!CE) return false; 875 int64_t Value = CE->getValue(); 876 return Value > 0 && Value < 8; 877 } 878 bool isImm1_15() const { 879 if (!isImm()) return false; 880 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 881 if (!CE) return false; 882 int64_t Value = CE->getValue(); 883 return Value > 0 && Value < 16; 884 } 885 bool isImm1_31() const { 886 if (!isImm()) return false; 887 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 888 if (!CE) return false; 889 int64_t Value = CE->getValue(); 890 return Value > 0 && Value < 32; 891 } 892 bool isImm1_16() const { 893 if (!isImm()) return false; 894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 895 if (!CE) return false; 896 int64_t Value = CE->getValue(); 897 return Value > 0 && Value < 17; 898 } 899 bool isImm1_32() const { 900 if (!isImm()) return false; 901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 902 if (!CE) return false; 903 int64_t Value = CE->getValue(); 904 return Value > 0 && Value < 33; 905 } 906 bool isImm0_32() const { 907 if (!isImm()) return false; 908 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 909 if (!CE) return false; 910 int64_t Value = CE->getValue(); 911 return Value >= 0 && Value < 33; 912 } 913 bool isImm0_65535() const { 914 if (!isImm()) return false; 915 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 916 if (!CE) return false; 917 int64_t Value = CE->getValue(); 918 return Value >= 0 && Value < 65536; 919 } 920 bool isImm256_65535Expr() const { 921 if (!isImm()) return false; 922 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 923 // If it's not a constant expression, it'll generate a fixup and be 924 // handled later. 925 if (!CE) return true; 926 int64_t Value = CE->getValue(); 927 return Value >= 256 && Value < 65536; 928 } 929 bool isImm0_65535Expr() const { 930 if (!isImm()) return false; 931 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 932 // If it's not a constant expression, it'll generate a fixup and be 933 // handled later. 934 if (!CE) return true; 935 int64_t Value = CE->getValue(); 936 return Value >= 0 && Value < 65536; 937 } 938 bool isImm24bit() const { 939 if (!isImm()) return false; 940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 941 if (!CE) return false; 942 int64_t Value = CE->getValue(); 943 return Value >= 0 && Value <= 0xffffff; 944 } 945 bool isImmThumbSR() const { 946 if (!isImm()) return false; 947 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 948 if (!CE) return false; 949 int64_t Value = CE->getValue(); 950 return Value > 0 && Value < 33; 951 } 952 bool isPKHLSLImm() const { 953 if (!isImm()) return false; 954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 955 if (!CE) return false; 956 int64_t Value = CE->getValue(); 957 return Value >= 0 && Value < 32; 958 } 959 bool isPKHASRImm() const { 960 if (!isImm()) return false; 961 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 962 if (!CE) return false; 963 int64_t Value = CE->getValue(); 964 return Value > 0 && Value <= 32; 965 } 966 bool isAdrLabel() const { 967 // If we have an immediate that's not a constant, treat it as a label 968 // reference needing a fixup. 969 if (isImm() && !isa<MCConstantExpr>(getImm())) 970 return true; 971 972 // If it is a constant, it must fit into a modified immediate encoding. 973 if (!isImm()) return false; 974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 975 if (!CE) return false; 976 int64_t Value = CE->getValue(); 977 return (ARM_AM::getSOImmVal(Value) != -1 || 978 ARM_AM::getSOImmVal(-Value) != -1); 979 } 980 bool isT2SOImm() const { 981 if (!isImm()) return false; 982 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 983 if (!CE) return false; 984 int64_t Value = CE->getValue(); 985 return ARM_AM::getT2SOImmVal(Value) != -1; 986 } 987 bool isT2SOImmNot() const { 988 if (!isImm()) return false; 989 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 990 if (!CE) return false; 991 int64_t Value = CE->getValue(); 992 return ARM_AM::getT2SOImmVal(Value) == -1 && 993 ARM_AM::getT2SOImmVal(~Value) != -1; 994 } 995 bool isT2SOImmNeg() const { 996 if (!isImm()) return false; 997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 998 if (!CE) return false; 999 int64_t Value = CE->getValue(); 1000 // Only use this when not representable as a plain so_imm. 1001 return ARM_AM::getT2SOImmVal(Value) == -1 && 1002 ARM_AM::getT2SOImmVal(-Value) != -1; 1003 } 1004 bool isSetEndImm() const { 1005 if (!isImm()) return false; 1006 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1007 if (!CE) return false; 1008 int64_t Value = CE->getValue(); 1009 return Value == 1 || Value == 0; 1010 } 1011 bool isReg() const override { return Kind == k_Register; } 1012 bool isRegList() const { return Kind == k_RegisterList; } 1013 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1014 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1015 bool isToken() const override { return Kind == k_Token; } 1016 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1017 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1018 bool isMem() const override { return Kind == k_Memory; } 1019 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1020 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1021 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1022 bool isRotImm() const { return Kind == k_RotateImmediate; } 1023 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1024 bool isModImmNot() const { 1025 if (!isImm()) return false; 1026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1027 if (!CE) return false; 1028 int64_t Value = CE->getValue(); 1029 return ARM_AM::getSOImmVal(~Value) != -1; 1030 } 1031 bool isModImmNeg() const { 1032 if (!isImm()) return false; 1033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1034 if (!CE) return false; 1035 int64_t Value = CE->getValue(); 1036 return ARM_AM::getSOImmVal(Value) == -1 && 1037 ARM_AM::getSOImmVal(-Value) != -1; 1038 } 1039 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1040 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1041 bool isPostIdxReg() const { 1042 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1043 } 1044 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1045 if (!isMem()) 1046 return false; 1047 // No offset of any kind. 1048 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1049 (alignOK || Memory.Alignment == Alignment); 1050 } 1051 bool isMemPCRelImm12() const { 1052 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1053 return false; 1054 // Base register must be PC. 1055 if (Memory.BaseRegNum != ARM::PC) 1056 return false; 1057 // Immediate offset in range [-4095, 4095]. 1058 if (!Memory.OffsetImm) return true; 1059 int64_t Val = Memory.OffsetImm->getValue(); 1060 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1061 } 1062 bool isAlignedMemory() const { 1063 return isMemNoOffset(true); 1064 } 1065 bool isAlignedMemoryNone() const { 1066 return isMemNoOffset(false, 0); 1067 } 1068 bool isDupAlignedMemoryNone() const { 1069 return isMemNoOffset(false, 0); 1070 } 1071 bool isAlignedMemory16() const { 1072 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1073 return true; 1074 return isMemNoOffset(false, 0); 1075 } 1076 bool isDupAlignedMemory16() const { 1077 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1078 return true; 1079 return isMemNoOffset(false, 0); 1080 } 1081 bool isAlignedMemory32() const { 1082 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1083 return true; 1084 return isMemNoOffset(false, 0); 1085 } 1086 bool isDupAlignedMemory32() const { 1087 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1088 return true; 1089 return isMemNoOffset(false, 0); 1090 } 1091 bool isAlignedMemory64() const { 1092 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1093 return true; 1094 return isMemNoOffset(false, 0); 1095 } 1096 bool isDupAlignedMemory64() const { 1097 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1098 return true; 1099 return isMemNoOffset(false, 0); 1100 } 1101 bool isAlignedMemory64or128() const { 1102 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1103 return true; 1104 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1105 return true; 1106 return isMemNoOffset(false, 0); 1107 } 1108 bool isDupAlignedMemory64or128() const { 1109 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1110 return true; 1111 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1112 return true; 1113 return isMemNoOffset(false, 0); 1114 } 1115 bool isAlignedMemory64or128or256() const { 1116 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1117 return true; 1118 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1119 return true; 1120 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1121 return true; 1122 return isMemNoOffset(false, 0); 1123 } 1124 bool isAddrMode2() const { 1125 if (!isMem() || Memory.Alignment != 0) return false; 1126 // Check for register offset. 1127 if (Memory.OffsetRegNum) return true; 1128 // Immediate offset in range [-4095, 4095]. 1129 if (!Memory.OffsetImm) return true; 1130 int64_t Val = Memory.OffsetImm->getValue(); 1131 return Val > -4096 && Val < 4096; 1132 } 1133 bool isAM2OffsetImm() const { 1134 if (!isImm()) return false; 1135 // Immediate offset in range [-4095, 4095]. 1136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1137 if (!CE) return false; 1138 int64_t Val = CE->getValue(); 1139 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1140 } 1141 bool isAddrMode3() const { 1142 // If we have an immediate that's not a constant, treat it as a label 1143 // reference needing a fixup. If it is a constant, it's something else 1144 // and we reject it. 1145 if (isImm() && !isa<MCConstantExpr>(getImm())) 1146 return true; 1147 if (!isMem() || Memory.Alignment != 0) return false; 1148 // No shifts are legal for AM3. 1149 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1150 // Check for register offset. 1151 if (Memory.OffsetRegNum) return true; 1152 // Immediate offset in range [-255, 255]. 1153 if (!Memory.OffsetImm) return true; 1154 int64_t Val = Memory.OffsetImm->getValue(); 1155 // The #-0 offset is encoded as INT32_MIN, and we have to check 1156 // for this too. 1157 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1158 } 1159 bool isAM3Offset() const { 1160 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1161 return false; 1162 if (Kind == k_PostIndexRegister) 1163 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1164 // Immediate offset in range [-255, 255]. 1165 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1166 if (!CE) return false; 1167 int64_t Val = CE->getValue(); 1168 // Special case, #-0 is INT32_MIN. 1169 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1170 } 1171 bool isAddrMode5() const { 1172 // If we have an immediate that's not a constant, treat it as a label 1173 // reference needing a fixup. If it is a constant, it's something else 1174 // and we reject it. 1175 if (isImm() && !isa<MCConstantExpr>(getImm())) 1176 return true; 1177 if (!isMem() || Memory.Alignment != 0) return false; 1178 // Check for register offset. 1179 if (Memory.OffsetRegNum) return false; 1180 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1181 if (!Memory.OffsetImm) return true; 1182 int64_t Val = Memory.OffsetImm->getValue(); 1183 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1184 Val == INT32_MIN; 1185 } 1186 bool isMemTBB() const { 1187 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1188 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1189 return false; 1190 return true; 1191 } 1192 bool isMemTBH() const { 1193 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1194 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1195 Memory.Alignment != 0 ) 1196 return false; 1197 return true; 1198 } 1199 bool isMemRegOffset() const { 1200 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1201 return false; 1202 return true; 1203 } 1204 bool isT2MemRegOffset() const { 1205 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1206 Memory.Alignment != 0) 1207 return false; 1208 // Only lsl #{0, 1, 2, 3} allowed. 1209 if (Memory.ShiftType == ARM_AM::no_shift) 1210 return true; 1211 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1212 return false; 1213 return true; 1214 } 1215 bool isMemThumbRR() const { 1216 // Thumb reg+reg addressing is simple. Just two registers, a base and 1217 // an offset. No shifts, negations or any other complicating factors. 1218 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1219 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1220 return false; 1221 return isARMLowRegister(Memory.BaseRegNum) && 1222 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1223 } 1224 bool isMemThumbRIs4() const { 1225 if (!isMem() || Memory.OffsetRegNum != 0 || 1226 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1227 return false; 1228 // Immediate offset, multiple of 4 in range [0, 124]. 1229 if (!Memory.OffsetImm) return true; 1230 int64_t Val = Memory.OffsetImm->getValue(); 1231 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1232 } 1233 bool isMemThumbRIs2() const { 1234 if (!isMem() || Memory.OffsetRegNum != 0 || 1235 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1236 return false; 1237 // Immediate offset, multiple of 4 in range [0, 62]. 1238 if (!Memory.OffsetImm) return true; 1239 int64_t Val = Memory.OffsetImm->getValue(); 1240 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1241 } 1242 bool isMemThumbRIs1() const { 1243 if (!isMem() || Memory.OffsetRegNum != 0 || 1244 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1245 return false; 1246 // Immediate offset in range [0, 31]. 1247 if (!Memory.OffsetImm) return true; 1248 int64_t Val = Memory.OffsetImm->getValue(); 1249 return Val >= 0 && Val <= 31; 1250 } 1251 bool isMemThumbSPI() const { 1252 if (!isMem() || Memory.OffsetRegNum != 0 || 1253 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1254 return false; 1255 // Immediate offset, multiple of 4 in range [0, 1020]. 1256 if (!Memory.OffsetImm) return true; 1257 int64_t Val = Memory.OffsetImm->getValue(); 1258 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1259 } 1260 bool isMemImm8s4Offset() const { 1261 // If we have an immediate that's not a constant, treat it as a label 1262 // reference needing a fixup. If it is a constant, it's something else 1263 // and we reject it. 1264 if (isImm() && !isa<MCConstantExpr>(getImm())) 1265 return true; 1266 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1267 return false; 1268 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1269 if (!Memory.OffsetImm) return true; 1270 int64_t Val = Memory.OffsetImm->getValue(); 1271 // Special case, #-0 is INT32_MIN. 1272 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1273 } 1274 bool isMemImm0_1020s4Offset() const { 1275 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1276 return false; 1277 // Immediate offset a multiple of 4 in range [0, 1020]. 1278 if (!Memory.OffsetImm) return true; 1279 int64_t Val = Memory.OffsetImm->getValue(); 1280 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1281 } 1282 bool isMemImm8Offset() const { 1283 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1284 return false; 1285 // Base reg of PC isn't allowed for these encodings. 1286 if (Memory.BaseRegNum == ARM::PC) return false; 1287 // Immediate offset in range [-255, 255]. 1288 if (!Memory.OffsetImm) return true; 1289 int64_t Val = Memory.OffsetImm->getValue(); 1290 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1291 } 1292 bool isMemPosImm8Offset() const { 1293 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1294 return false; 1295 // Immediate offset in range [0, 255]. 1296 if (!Memory.OffsetImm) return true; 1297 int64_t Val = Memory.OffsetImm->getValue(); 1298 return Val >= 0 && Val < 256; 1299 } 1300 bool isMemNegImm8Offset() const { 1301 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1302 return false; 1303 // Base reg of PC isn't allowed for these encodings. 1304 if (Memory.BaseRegNum == ARM::PC) return false; 1305 // Immediate offset in range [-255, -1]. 1306 if (!Memory.OffsetImm) return false; 1307 int64_t Val = Memory.OffsetImm->getValue(); 1308 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1309 } 1310 bool isMemUImm12Offset() const { 1311 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1312 return false; 1313 // Immediate offset in range [0, 4095]. 1314 if (!Memory.OffsetImm) return true; 1315 int64_t Val = Memory.OffsetImm->getValue(); 1316 return (Val >= 0 && Val < 4096); 1317 } 1318 bool isMemImm12Offset() const { 1319 // If we have an immediate that's not a constant, treat it as a label 1320 // reference needing a fixup. If it is a constant, it's something else 1321 // and we reject it. 1322 if (isImm() && !isa<MCConstantExpr>(getImm())) 1323 return true; 1324 1325 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1326 return false; 1327 // Immediate offset in range [-4095, 4095]. 1328 if (!Memory.OffsetImm) return true; 1329 int64_t Val = Memory.OffsetImm->getValue(); 1330 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1331 } 1332 bool isPostIdxImm8() const { 1333 if (!isImm()) return false; 1334 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1335 if (!CE) return false; 1336 int64_t Val = CE->getValue(); 1337 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1338 } 1339 bool isPostIdxImm8s4() const { 1340 if (!isImm()) return false; 1341 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1342 if (!CE) return false; 1343 int64_t Val = CE->getValue(); 1344 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1345 (Val == INT32_MIN); 1346 } 1347 1348 bool isMSRMask() const { return Kind == k_MSRMask; } 1349 bool isBankedReg() const { return Kind == k_BankedReg; } 1350 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1351 1352 // NEON operands. 1353 bool isSingleSpacedVectorList() const { 1354 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1355 } 1356 bool isDoubleSpacedVectorList() const { 1357 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1358 } 1359 bool isVecListOneD() const { 1360 if (!isSingleSpacedVectorList()) return false; 1361 return VectorList.Count == 1; 1362 } 1363 1364 bool isVecListDPair() const { 1365 if (!isSingleSpacedVectorList()) return false; 1366 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1367 .contains(VectorList.RegNum)); 1368 } 1369 1370 bool isVecListThreeD() const { 1371 if (!isSingleSpacedVectorList()) return false; 1372 return VectorList.Count == 3; 1373 } 1374 1375 bool isVecListFourD() const { 1376 if (!isSingleSpacedVectorList()) return false; 1377 return VectorList.Count == 4; 1378 } 1379 1380 bool isVecListDPairSpaced() const { 1381 if (Kind != k_VectorList) return false; 1382 if (isSingleSpacedVectorList()) return false; 1383 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1384 .contains(VectorList.RegNum)); 1385 } 1386 1387 bool isVecListThreeQ() const { 1388 if (!isDoubleSpacedVectorList()) return false; 1389 return VectorList.Count == 3; 1390 } 1391 1392 bool isVecListFourQ() const { 1393 if (!isDoubleSpacedVectorList()) return false; 1394 return VectorList.Count == 4; 1395 } 1396 1397 bool isSingleSpacedVectorAllLanes() const { 1398 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1399 } 1400 bool isDoubleSpacedVectorAllLanes() const { 1401 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1402 } 1403 bool isVecListOneDAllLanes() const { 1404 if (!isSingleSpacedVectorAllLanes()) return false; 1405 return VectorList.Count == 1; 1406 } 1407 1408 bool isVecListDPairAllLanes() const { 1409 if (!isSingleSpacedVectorAllLanes()) return false; 1410 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1411 .contains(VectorList.RegNum)); 1412 } 1413 1414 bool isVecListDPairSpacedAllLanes() const { 1415 if (!isDoubleSpacedVectorAllLanes()) return false; 1416 return VectorList.Count == 2; 1417 } 1418 1419 bool isVecListThreeDAllLanes() const { 1420 if (!isSingleSpacedVectorAllLanes()) return false; 1421 return VectorList.Count == 3; 1422 } 1423 1424 bool isVecListThreeQAllLanes() const { 1425 if (!isDoubleSpacedVectorAllLanes()) return false; 1426 return VectorList.Count == 3; 1427 } 1428 1429 bool isVecListFourDAllLanes() const { 1430 if (!isSingleSpacedVectorAllLanes()) return false; 1431 return VectorList.Count == 4; 1432 } 1433 1434 bool isVecListFourQAllLanes() const { 1435 if (!isDoubleSpacedVectorAllLanes()) return false; 1436 return VectorList.Count == 4; 1437 } 1438 1439 bool isSingleSpacedVectorIndexed() const { 1440 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1441 } 1442 bool isDoubleSpacedVectorIndexed() const { 1443 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1444 } 1445 bool isVecListOneDByteIndexed() const { 1446 if (!isSingleSpacedVectorIndexed()) return false; 1447 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1448 } 1449 1450 bool isVecListOneDHWordIndexed() const { 1451 if (!isSingleSpacedVectorIndexed()) return false; 1452 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1453 } 1454 1455 bool isVecListOneDWordIndexed() const { 1456 if (!isSingleSpacedVectorIndexed()) return false; 1457 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1458 } 1459 1460 bool isVecListTwoDByteIndexed() const { 1461 if (!isSingleSpacedVectorIndexed()) return false; 1462 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1463 } 1464 1465 bool isVecListTwoDHWordIndexed() const { 1466 if (!isSingleSpacedVectorIndexed()) return false; 1467 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1468 } 1469 1470 bool isVecListTwoQWordIndexed() const { 1471 if (!isDoubleSpacedVectorIndexed()) return false; 1472 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1473 } 1474 1475 bool isVecListTwoQHWordIndexed() const { 1476 if (!isDoubleSpacedVectorIndexed()) return false; 1477 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1478 } 1479 1480 bool isVecListTwoDWordIndexed() const { 1481 if (!isSingleSpacedVectorIndexed()) return false; 1482 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1483 } 1484 1485 bool isVecListThreeDByteIndexed() const { 1486 if (!isSingleSpacedVectorIndexed()) return false; 1487 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1488 } 1489 1490 bool isVecListThreeDHWordIndexed() const { 1491 if (!isSingleSpacedVectorIndexed()) return false; 1492 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1493 } 1494 1495 bool isVecListThreeQWordIndexed() const { 1496 if (!isDoubleSpacedVectorIndexed()) return false; 1497 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1498 } 1499 1500 bool isVecListThreeQHWordIndexed() const { 1501 if (!isDoubleSpacedVectorIndexed()) return false; 1502 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1503 } 1504 1505 bool isVecListThreeDWordIndexed() const { 1506 if (!isSingleSpacedVectorIndexed()) return false; 1507 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1508 } 1509 1510 bool isVecListFourDByteIndexed() const { 1511 if (!isSingleSpacedVectorIndexed()) return false; 1512 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1513 } 1514 1515 bool isVecListFourDHWordIndexed() const { 1516 if (!isSingleSpacedVectorIndexed()) return false; 1517 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1518 } 1519 1520 bool isVecListFourQWordIndexed() const { 1521 if (!isDoubleSpacedVectorIndexed()) return false; 1522 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1523 } 1524 1525 bool isVecListFourQHWordIndexed() const { 1526 if (!isDoubleSpacedVectorIndexed()) return false; 1527 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1528 } 1529 1530 bool isVecListFourDWordIndexed() const { 1531 if (!isSingleSpacedVectorIndexed()) return false; 1532 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1533 } 1534 1535 bool isVectorIndex8() const { 1536 if (Kind != k_VectorIndex) return false; 1537 return VectorIndex.Val < 8; 1538 } 1539 bool isVectorIndex16() const { 1540 if (Kind != k_VectorIndex) return false; 1541 return VectorIndex.Val < 4; 1542 } 1543 bool isVectorIndex32() const { 1544 if (Kind != k_VectorIndex) return false; 1545 return VectorIndex.Val < 2; 1546 } 1547 1548 bool isNEONi8splat() const { 1549 if (!isImm()) return false; 1550 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1551 // Must be a constant. 1552 if (!CE) return false; 1553 int64_t Value = CE->getValue(); 1554 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1555 // value. 1556 return Value >= 0 && Value < 256; 1557 } 1558 1559 bool isNEONi16splat() const { 1560 if (isNEONByteReplicate(2)) 1561 return false; // Leave that for bytes replication and forbid by default. 1562 if (!isImm()) 1563 return false; 1564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1565 // Must be a constant. 1566 if (!CE) return false; 1567 unsigned Value = CE->getValue(); 1568 return ARM_AM::isNEONi16splat(Value); 1569 } 1570 1571 bool isNEONi16splatNot() const { 1572 if (!isImm()) 1573 return false; 1574 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1575 // Must be a constant. 1576 if (!CE) return false; 1577 unsigned Value = CE->getValue(); 1578 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1579 } 1580 1581 bool isNEONi32splat() const { 1582 if (isNEONByteReplicate(4)) 1583 return false; // Leave that for bytes replication and forbid by default. 1584 if (!isImm()) 1585 return false; 1586 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1587 // Must be a constant. 1588 if (!CE) return false; 1589 unsigned Value = CE->getValue(); 1590 return ARM_AM::isNEONi32splat(Value); 1591 } 1592 1593 bool isNEONi32splatNot() const { 1594 if (!isImm()) 1595 return false; 1596 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1597 // Must be a constant. 1598 if (!CE) return false; 1599 unsigned Value = CE->getValue(); 1600 return ARM_AM::isNEONi32splat(~Value); 1601 } 1602 1603 bool isNEONByteReplicate(unsigned NumBytes) const { 1604 if (!isImm()) 1605 return false; 1606 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1607 // Must be a constant. 1608 if (!CE) 1609 return false; 1610 int64_t Value = CE->getValue(); 1611 if (!Value) 1612 return false; // Don't bother with zero. 1613 1614 unsigned char B = Value & 0xff; 1615 for (unsigned i = 1; i < NumBytes; ++i) { 1616 Value >>= 8; 1617 if ((Value & 0xff) != B) 1618 return false; 1619 } 1620 return true; 1621 } 1622 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1623 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1624 bool isNEONi32vmov() const { 1625 if (isNEONByteReplicate(4)) 1626 return false; // Let it to be classified as byte-replicate case. 1627 if (!isImm()) 1628 return false; 1629 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1630 // Must be a constant. 1631 if (!CE) 1632 return false; 1633 int64_t Value = CE->getValue(); 1634 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1635 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1636 // FIXME: This is probably wrong and a copy and paste from previous example 1637 return (Value >= 0 && Value < 256) || 1638 (Value >= 0x0100 && Value <= 0xff00) || 1639 (Value >= 0x010000 && Value <= 0xff0000) || 1640 (Value >= 0x01000000 && Value <= 0xff000000) || 1641 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1642 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1643 } 1644 bool isNEONi32vmovNeg() const { 1645 if (!isImm()) return false; 1646 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1647 // Must be a constant. 1648 if (!CE) return false; 1649 int64_t Value = ~CE->getValue(); 1650 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1651 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1652 // FIXME: This is probably wrong and a copy and paste from previous example 1653 return (Value >= 0 && Value < 256) || 1654 (Value >= 0x0100 && Value <= 0xff00) || 1655 (Value >= 0x010000 && Value <= 0xff0000) || 1656 (Value >= 0x01000000 && Value <= 0xff000000) || 1657 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1658 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1659 } 1660 1661 bool isNEONi64splat() const { 1662 if (!isImm()) return false; 1663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1664 // Must be a constant. 1665 if (!CE) return false; 1666 uint64_t Value = CE->getValue(); 1667 // i64 value with each byte being either 0 or 0xff. 1668 for (unsigned i = 0; i < 8; ++i) 1669 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1670 return true; 1671 } 1672 1673 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1674 // Add as immediates when possible. Null MCExpr = 0. 1675 if (!Expr) 1676 Inst.addOperand(MCOperand::createImm(0)); 1677 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1678 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1679 else 1680 Inst.addOperand(MCOperand::createExpr(Expr)); 1681 } 1682 1683 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1684 assert(N == 2 && "Invalid number of operands!"); 1685 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1686 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1687 Inst.addOperand(MCOperand::createReg(RegNum)); 1688 } 1689 1690 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1691 assert(N == 1 && "Invalid number of operands!"); 1692 Inst.addOperand(MCOperand::createImm(getCoproc())); 1693 } 1694 1695 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1696 assert(N == 1 && "Invalid number of operands!"); 1697 Inst.addOperand(MCOperand::createImm(getCoproc())); 1698 } 1699 1700 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1701 assert(N == 1 && "Invalid number of operands!"); 1702 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1703 } 1704 1705 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1706 assert(N == 1 && "Invalid number of operands!"); 1707 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1708 } 1709 1710 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1711 assert(N == 1 && "Invalid number of operands!"); 1712 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1713 } 1714 1715 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1716 assert(N == 1 && "Invalid number of operands!"); 1717 Inst.addOperand(MCOperand::createReg(getReg())); 1718 } 1719 1720 void addRegOperands(MCInst &Inst, unsigned N) const { 1721 assert(N == 1 && "Invalid number of operands!"); 1722 Inst.addOperand(MCOperand::createReg(getReg())); 1723 } 1724 1725 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1726 assert(N == 3 && "Invalid number of operands!"); 1727 assert(isRegShiftedReg() && 1728 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1729 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1730 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1731 Inst.addOperand(MCOperand::createImm( 1732 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1733 } 1734 1735 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1736 assert(N == 2 && "Invalid number of operands!"); 1737 assert(isRegShiftedImm() && 1738 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1739 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1740 // Shift of #32 is encoded as 0 where permitted 1741 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1742 Inst.addOperand(MCOperand::createImm( 1743 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1744 } 1745 1746 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1747 assert(N == 1 && "Invalid number of operands!"); 1748 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1749 ShifterImm.Imm)); 1750 } 1751 1752 void addRegListOperands(MCInst &Inst, unsigned N) const { 1753 assert(N == 1 && "Invalid number of operands!"); 1754 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1755 for (SmallVectorImpl<unsigned>::const_iterator 1756 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1757 Inst.addOperand(MCOperand::createReg(*I)); 1758 } 1759 1760 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1761 addRegListOperands(Inst, N); 1762 } 1763 1764 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1765 addRegListOperands(Inst, N); 1766 } 1767 1768 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1769 assert(N == 1 && "Invalid number of operands!"); 1770 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1771 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1772 } 1773 1774 void addModImmOperands(MCInst &Inst, unsigned N) const { 1775 assert(N == 1 && "Invalid number of operands!"); 1776 1777 // Support for fixups (MCFixup) 1778 if (isImm()) 1779 return addImmOperands(Inst, N); 1780 1781 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1782 } 1783 1784 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1785 assert(N == 1 && "Invalid number of operands!"); 1786 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1787 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1788 Inst.addOperand(MCOperand::createImm(Enc)); 1789 } 1790 1791 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1792 assert(N == 1 && "Invalid number of operands!"); 1793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1794 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1795 Inst.addOperand(MCOperand::createImm(Enc)); 1796 } 1797 1798 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1799 assert(N == 1 && "Invalid number of operands!"); 1800 // Munge the lsb/width into a bitfield mask. 1801 unsigned lsb = Bitfield.LSB; 1802 unsigned width = Bitfield.Width; 1803 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1804 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1805 (32 - (lsb + width))); 1806 Inst.addOperand(MCOperand::createImm(Mask)); 1807 } 1808 1809 void addImmOperands(MCInst &Inst, unsigned N) const { 1810 assert(N == 1 && "Invalid number of operands!"); 1811 addExpr(Inst, getImm()); 1812 } 1813 1814 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1815 assert(N == 1 && "Invalid number of operands!"); 1816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1817 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1818 } 1819 1820 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1821 assert(N == 1 && "Invalid number of operands!"); 1822 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1823 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1824 } 1825 1826 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1827 assert(N == 1 && "Invalid number of operands!"); 1828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1829 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1830 Inst.addOperand(MCOperand::createImm(Val)); 1831 } 1832 1833 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1834 assert(N == 1 && "Invalid number of operands!"); 1835 // FIXME: We really want to scale the value here, but the LDRD/STRD 1836 // instruction don't encode operands that way yet. 1837 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1838 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1839 } 1840 1841 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1842 assert(N == 1 && "Invalid number of operands!"); 1843 // The immediate is scaled by four in the encoding and is stored 1844 // in the MCInst as such. Lop off the low two bits here. 1845 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1846 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1847 } 1848 1849 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1850 assert(N == 1 && "Invalid number of operands!"); 1851 // The immediate is scaled by four in the encoding and is stored 1852 // in the MCInst as such. Lop off the low two bits here. 1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1854 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1855 } 1856 1857 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1858 assert(N == 1 && "Invalid number of operands!"); 1859 // The immediate is scaled by four in the encoding and is stored 1860 // in the MCInst as such. Lop off the low two bits here. 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1863 } 1864 1865 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1866 assert(N == 1 && "Invalid number of operands!"); 1867 // The constant encodes as the immediate-1, and we store in the instruction 1868 // the bits as encoded, so subtract off one here. 1869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1870 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1871 } 1872 1873 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1874 assert(N == 1 && "Invalid number of operands!"); 1875 // The constant encodes as the immediate-1, and we store in the instruction 1876 // the bits as encoded, so subtract off one here. 1877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1878 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1879 } 1880 1881 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1882 assert(N == 1 && "Invalid number of operands!"); 1883 // The constant encodes as the immediate, except for 32, which encodes as 1884 // zero. 1885 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1886 unsigned Imm = CE->getValue(); 1887 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1888 } 1889 1890 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1891 assert(N == 1 && "Invalid number of operands!"); 1892 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1893 // the instruction as well. 1894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1895 int Val = CE->getValue(); 1896 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1897 } 1898 1899 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1900 assert(N == 1 && "Invalid number of operands!"); 1901 // The operand is actually a t2_so_imm, but we have its bitwise 1902 // negation in the assembly source, so twiddle it here. 1903 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1904 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1905 } 1906 1907 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1908 assert(N == 1 && "Invalid number of operands!"); 1909 // The operand is actually a t2_so_imm, but we have its 1910 // negation in the assembly source, so twiddle it here. 1911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1912 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1913 } 1914 1915 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1916 assert(N == 1 && "Invalid number of operands!"); 1917 // The operand is actually an imm0_4095, but we have its 1918 // negation in the assembly source, so twiddle it here. 1919 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1920 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1921 } 1922 1923 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1924 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1925 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 1926 return; 1927 } 1928 1929 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1930 assert(SR && "Unknown value type!"); 1931 Inst.addOperand(MCOperand::createExpr(SR)); 1932 } 1933 1934 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1935 assert(N == 1 && "Invalid number of operands!"); 1936 if (isImm()) { 1937 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1938 if (CE) { 1939 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1940 return; 1941 } 1942 1943 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1944 assert(SR && "Unknown value type!"); 1945 Inst.addOperand(MCOperand::createExpr(SR)); 1946 return; 1947 } 1948 1949 assert(isMem() && "Unknown value type!"); 1950 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 1951 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 1952 } 1953 1954 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 1955 assert(N == 1 && "Invalid number of operands!"); 1956 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 1957 } 1958 1959 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 1960 assert(N == 1 && "Invalid number of operands!"); 1961 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 1962 } 1963 1964 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 1965 assert(N == 1 && "Invalid number of operands!"); 1966 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1967 } 1968 1969 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 1970 assert(N == 1 && "Invalid number of operands!"); 1971 int32_t Imm = Memory.OffsetImm->getValue(); 1972 Inst.addOperand(MCOperand::createImm(Imm)); 1973 } 1974 1975 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 1976 assert(N == 1 && "Invalid number of operands!"); 1977 assert(isImm() && "Not an immediate!"); 1978 1979 // If we have an immediate that's not a constant, treat it as a label 1980 // reference needing a fixup. 1981 if (!isa<MCConstantExpr>(getImm())) { 1982 Inst.addOperand(MCOperand::createExpr(getImm())); 1983 return; 1984 } 1985 1986 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1987 int Val = CE->getValue(); 1988 Inst.addOperand(MCOperand::createImm(Val)); 1989 } 1990 1991 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 1992 assert(N == 2 && "Invalid number of operands!"); 1993 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1994 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 1995 } 1996 1997 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 1998 addAlignedMemoryOperands(Inst, N); 1999 } 2000 2001 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2002 addAlignedMemoryOperands(Inst, N); 2003 } 2004 2005 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2006 addAlignedMemoryOperands(Inst, N); 2007 } 2008 2009 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2010 addAlignedMemoryOperands(Inst, N); 2011 } 2012 2013 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2014 addAlignedMemoryOperands(Inst, N); 2015 } 2016 2017 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2018 addAlignedMemoryOperands(Inst, N); 2019 } 2020 2021 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2022 addAlignedMemoryOperands(Inst, N); 2023 } 2024 2025 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2026 addAlignedMemoryOperands(Inst, N); 2027 } 2028 2029 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2030 addAlignedMemoryOperands(Inst, N); 2031 } 2032 2033 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2034 addAlignedMemoryOperands(Inst, N); 2035 } 2036 2037 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2038 addAlignedMemoryOperands(Inst, N); 2039 } 2040 2041 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2042 assert(N == 3 && "Invalid number of operands!"); 2043 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2044 if (!Memory.OffsetRegNum) { 2045 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2046 // Special case for #-0 2047 if (Val == INT32_MIN) Val = 0; 2048 if (Val < 0) Val = -Val; 2049 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2050 } else { 2051 // For register offset, we encode the shift type and negation flag 2052 // here. 2053 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2054 Memory.ShiftImm, Memory.ShiftType); 2055 } 2056 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2057 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2058 Inst.addOperand(MCOperand::createImm(Val)); 2059 } 2060 2061 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2062 assert(N == 2 && "Invalid number of operands!"); 2063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2064 assert(CE && "non-constant AM2OffsetImm operand!"); 2065 int32_t Val = CE->getValue(); 2066 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2067 // Special case for #-0 2068 if (Val == INT32_MIN) Val = 0; 2069 if (Val < 0) Val = -Val; 2070 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2071 Inst.addOperand(MCOperand::createReg(0)); 2072 Inst.addOperand(MCOperand::createImm(Val)); 2073 } 2074 2075 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2076 assert(N == 3 && "Invalid number of operands!"); 2077 // If we have an immediate that's not a constant, treat it as a label 2078 // reference needing a fixup. If it is a constant, it's something else 2079 // and we reject it. 2080 if (isImm()) { 2081 Inst.addOperand(MCOperand::createExpr(getImm())); 2082 Inst.addOperand(MCOperand::createReg(0)); 2083 Inst.addOperand(MCOperand::createImm(0)); 2084 return; 2085 } 2086 2087 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2088 if (!Memory.OffsetRegNum) { 2089 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2090 // Special case for #-0 2091 if (Val == INT32_MIN) Val = 0; 2092 if (Val < 0) Val = -Val; 2093 Val = ARM_AM::getAM3Opc(AddSub, Val); 2094 } else { 2095 // For register offset, we encode the shift type and negation flag 2096 // here. 2097 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2098 } 2099 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2100 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2101 Inst.addOperand(MCOperand::createImm(Val)); 2102 } 2103 2104 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2105 assert(N == 2 && "Invalid number of operands!"); 2106 if (Kind == k_PostIndexRegister) { 2107 int32_t Val = 2108 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2109 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2110 Inst.addOperand(MCOperand::createImm(Val)); 2111 return; 2112 } 2113 2114 // Constant offset. 2115 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2116 int32_t Val = CE->getValue(); 2117 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2118 // Special case for #-0 2119 if (Val == INT32_MIN) Val = 0; 2120 if (Val < 0) Val = -Val; 2121 Val = ARM_AM::getAM3Opc(AddSub, Val); 2122 Inst.addOperand(MCOperand::createReg(0)); 2123 Inst.addOperand(MCOperand::createImm(Val)); 2124 } 2125 2126 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2127 assert(N == 2 && "Invalid number of operands!"); 2128 // If we have an immediate that's not a constant, treat it as a label 2129 // reference needing a fixup. If it is a constant, it's something else 2130 // and we reject it. 2131 if (isImm()) { 2132 Inst.addOperand(MCOperand::createExpr(getImm())); 2133 Inst.addOperand(MCOperand::createImm(0)); 2134 return; 2135 } 2136 2137 // The lower two bits are always zero and as such are not encoded. 2138 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2139 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2140 // Special case for #-0 2141 if (Val == INT32_MIN) Val = 0; 2142 if (Val < 0) Val = -Val; 2143 Val = ARM_AM::getAM5Opc(AddSub, Val); 2144 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2145 Inst.addOperand(MCOperand::createImm(Val)); 2146 } 2147 2148 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2149 assert(N == 2 && "Invalid number of operands!"); 2150 // If we have an immediate that's not a constant, treat it as a label 2151 // reference needing a fixup. If it is a constant, it's something else 2152 // and we reject it. 2153 if (isImm()) { 2154 Inst.addOperand(MCOperand::createExpr(getImm())); 2155 Inst.addOperand(MCOperand::createImm(0)); 2156 return; 2157 } 2158 2159 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2160 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2161 Inst.addOperand(MCOperand::createImm(Val)); 2162 } 2163 2164 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2165 assert(N == 2 && "Invalid number of operands!"); 2166 // The lower two bits are always zero and as such are not encoded. 2167 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2168 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2169 Inst.addOperand(MCOperand::createImm(Val)); 2170 } 2171 2172 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2173 assert(N == 2 && "Invalid number of operands!"); 2174 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2175 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2176 Inst.addOperand(MCOperand::createImm(Val)); 2177 } 2178 2179 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2180 addMemImm8OffsetOperands(Inst, N); 2181 } 2182 2183 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2184 addMemImm8OffsetOperands(Inst, N); 2185 } 2186 2187 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2188 assert(N == 2 && "Invalid number of operands!"); 2189 // If this is an immediate, it's a label reference. 2190 if (isImm()) { 2191 addExpr(Inst, getImm()); 2192 Inst.addOperand(MCOperand::createImm(0)); 2193 return; 2194 } 2195 2196 // Otherwise, it's a normal memory reg+offset. 2197 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2198 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2199 Inst.addOperand(MCOperand::createImm(Val)); 2200 } 2201 2202 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2203 assert(N == 2 && "Invalid number of operands!"); 2204 // If this is an immediate, it's a label reference. 2205 if (isImm()) { 2206 addExpr(Inst, getImm()); 2207 Inst.addOperand(MCOperand::createImm(0)); 2208 return; 2209 } 2210 2211 // Otherwise, it's a normal memory reg+offset. 2212 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2213 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2214 Inst.addOperand(MCOperand::createImm(Val)); 2215 } 2216 2217 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2218 assert(N == 2 && "Invalid number of operands!"); 2219 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2220 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2221 } 2222 2223 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2224 assert(N == 2 && "Invalid number of operands!"); 2225 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2226 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2227 } 2228 2229 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2230 assert(N == 3 && "Invalid number of operands!"); 2231 unsigned Val = 2232 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2233 Memory.ShiftImm, Memory.ShiftType); 2234 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2235 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2236 Inst.addOperand(MCOperand::createImm(Val)); 2237 } 2238 2239 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2240 assert(N == 3 && "Invalid number of operands!"); 2241 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2242 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2243 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2244 } 2245 2246 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2247 assert(N == 2 && "Invalid number of operands!"); 2248 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2249 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2250 } 2251 2252 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2253 assert(N == 2 && "Invalid number of operands!"); 2254 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2255 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2256 Inst.addOperand(MCOperand::createImm(Val)); 2257 } 2258 2259 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2260 assert(N == 2 && "Invalid number of operands!"); 2261 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2262 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2263 Inst.addOperand(MCOperand::createImm(Val)); 2264 } 2265 2266 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2267 assert(N == 2 && "Invalid number of operands!"); 2268 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2269 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2270 Inst.addOperand(MCOperand::createImm(Val)); 2271 } 2272 2273 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2274 assert(N == 2 && "Invalid number of operands!"); 2275 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2276 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2277 Inst.addOperand(MCOperand::createImm(Val)); 2278 } 2279 2280 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2281 assert(N == 1 && "Invalid number of operands!"); 2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2283 assert(CE && "non-constant post-idx-imm8 operand!"); 2284 int Imm = CE->getValue(); 2285 bool isAdd = Imm >= 0; 2286 if (Imm == INT32_MIN) Imm = 0; 2287 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2288 Inst.addOperand(MCOperand::createImm(Imm)); 2289 } 2290 2291 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2292 assert(N == 1 && "Invalid number of operands!"); 2293 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2294 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2295 int Imm = CE->getValue(); 2296 bool isAdd = Imm >= 0; 2297 if (Imm == INT32_MIN) Imm = 0; 2298 // Immediate is scaled by 4. 2299 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2300 Inst.addOperand(MCOperand::createImm(Imm)); 2301 } 2302 2303 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2304 assert(N == 2 && "Invalid number of operands!"); 2305 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2306 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2307 } 2308 2309 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2310 assert(N == 2 && "Invalid number of operands!"); 2311 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2312 // The sign, shift type, and shift amount are encoded in a single operand 2313 // using the AM2 encoding helpers. 2314 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2315 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2316 PostIdxReg.ShiftTy); 2317 Inst.addOperand(MCOperand::createImm(Imm)); 2318 } 2319 2320 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2321 assert(N == 1 && "Invalid number of operands!"); 2322 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2323 } 2324 2325 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2326 assert(N == 1 && "Invalid number of operands!"); 2327 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2328 } 2329 2330 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2331 assert(N == 1 && "Invalid number of operands!"); 2332 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2333 } 2334 2335 void addVecListOperands(MCInst &Inst, unsigned N) const { 2336 assert(N == 1 && "Invalid number of operands!"); 2337 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2338 } 2339 2340 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2341 assert(N == 2 && "Invalid number of operands!"); 2342 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2343 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2344 } 2345 2346 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2347 assert(N == 1 && "Invalid number of operands!"); 2348 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2349 } 2350 2351 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2352 assert(N == 1 && "Invalid number of operands!"); 2353 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2354 } 2355 2356 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2357 assert(N == 1 && "Invalid number of operands!"); 2358 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2359 } 2360 2361 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2362 assert(N == 1 && "Invalid number of operands!"); 2363 // The immediate encodes the type of constant as well as the value. 2364 // Mask in that this is an i8 splat. 2365 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2366 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2367 } 2368 2369 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2370 assert(N == 1 && "Invalid number of operands!"); 2371 // The immediate encodes the type of constant as well as the value. 2372 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2373 unsigned Value = CE->getValue(); 2374 Value = ARM_AM::encodeNEONi16splat(Value); 2375 Inst.addOperand(MCOperand::createImm(Value)); 2376 } 2377 2378 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2379 assert(N == 1 && "Invalid number of operands!"); 2380 // The immediate encodes the type of constant as well as the value. 2381 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2382 unsigned Value = CE->getValue(); 2383 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2384 Inst.addOperand(MCOperand::createImm(Value)); 2385 } 2386 2387 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2388 assert(N == 1 && "Invalid number of operands!"); 2389 // The immediate encodes the type of constant as well as the value. 2390 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2391 unsigned Value = CE->getValue(); 2392 Value = ARM_AM::encodeNEONi32splat(Value); 2393 Inst.addOperand(MCOperand::createImm(Value)); 2394 } 2395 2396 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2397 assert(N == 1 && "Invalid number of operands!"); 2398 // The immediate encodes the type of constant as well as the value. 2399 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2400 unsigned Value = CE->getValue(); 2401 Value = ARM_AM::encodeNEONi32splat(~Value); 2402 Inst.addOperand(MCOperand::createImm(Value)); 2403 } 2404 2405 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2406 assert(N == 1 && "Invalid number of operands!"); 2407 // The immediate encodes the type of constant as well as the value. 2408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2409 unsigned Value = CE->getValue(); 2410 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2411 Inst.getOpcode() == ARM::VMOVv16i8) && 2412 "All vmvn instructions that wants to replicate non-zero byte " 2413 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2414 unsigned B = ((~Value) & 0xff); 2415 B |= 0xe00; // cmode = 0b1110 2416 Inst.addOperand(MCOperand::createImm(B)); 2417 } 2418 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2419 assert(N == 1 && "Invalid number of operands!"); 2420 // The immediate encodes the type of constant as well as the value. 2421 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2422 unsigned Value = CE->getValue(); 2423 if (Value >= 256 && Value <= 0xffff) 2424 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2425 else if (Value > 0xffff && Value <= 0xffffff) 2426 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2427 else if (Value > 0xffffff) 2428 Value = (Value >> 24) | 0x600; 2429 Inst.addOperand(MCOperand::createImm(Value)); 2430 } 2431 2432 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2433 assert(N == 1 && "Invalid number of operands!"); 2434 // The immediate encodes the type of constant as well as the value. 2435 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2436 unsigned Value = CE->getValue(); 2437 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2438 Inst.getOpcode() == ARM::VMOVv16i8) && 2439 "All instructions that wants to replicate non-zero byte " 2440 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2441 unsigned B = Value & 0xff; 2442 B |= 0xe00; // cmode = 0b1110 2443 Inst.addOperand(MCOperand::createImm(B)); 2444 } 2445 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2446 assert(N == 1 && "Invalid number of operands!"); 2447 // The immediate encodes the type of constant as well as the value. 2448 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2449 unsigned Value = ~CE->getValue(); 2450 if (Value >= 256 && Value <= 0xffff) 2451 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2452 else if (Value > 0xffff && Value <= 0xffffff) 2453 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2454 else if (Value > 0xffffff) 2455 Value = (Value >> 24) | 0x600; 2456 Inst.addOperand(MCOperand::createImm(Value)); 2457 } 2458 2459 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2460 assert(N == 1 && "Invalid number of operands!"); 2461 // The immediate encodes the type of constant as well as the value. 2462 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2463 uint64_t Value = CE->getValue(); 2464 unsigned Imm = 0; 2465 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2466 Imm |= (Value & 1) << i; 2467 } 2468 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2469 } 2470 2471 void print(raw_ostream &OS) const override; 2472 2473 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2474 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2475 Op->ITMask.Mask = Mask; 2476 Op->StartLoc = S; 2477 Op->EndLoc = S; 2478 return Op; 2479 } 2480 2481 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2482 SMLoc S) { 2483 auto Op = make_unique<ARMOperand>(k_CondCode); 2484 Op->CC.Val = CC; 2485 Op->StartLoc = S; 2486 Op->EndLoc = S; 2487 return Op; 2488 } 2489 2490 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2491 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2492 Op->Cop.Val = CopVal; 2493 Op->StartLoc = S; 2494 Op->EndLoc = S; 2495 return Op; 2496 } 2497 2498 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2499 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2500 Op->Cop.Val = CopVal; 2501 Op->StartLoc = S; 2502 Op->EndLoc = S; 2503 return Op; 2504 } 2505 2506 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2507 SMLoc E) { 2508 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2509 Op->Cop.Val = Val; 2510 Op->StartLoc = S; 2511 Op->EndLoc = E; 2512 return Op; 2513 } 2514 2515 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2516 auto Op = make_unique<ARMOperand>(k_CCOut); 2517 Op->Reg.RegNum = RegNum; 2518 Op->StartLoc = S; 2519 Op->EndLoc = S; 2520 return Op; 2521 } 2522 2523 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2524 auto Op = make_unique<ARMOperand>(k_Token); 2525 Op->Tok.Data = Str.data(); 2526 Op->Tok.Length = Str.size(); 2527 Op->StartLoc = S; 2528 Op->EndLoc = S; 2529 return Op; 2530 } 2531 2532 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2533 SMLoc E) { 2534 auto Op = make_unique<ARMOperand>(k_Register); 2535 Op->Reg.RegNum = RegNum; 2536 Op->StartLoc = S; 2537 Op->EndLoc = E; 2538 return Op; 2539 } 2540 2541 static std::unique_ptr<ARMOperand> 2542 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2543 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2544 SMLoc E) { 2545 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2546 Op->RegShiftedReg.ShiftTy = ShTy; 2547 Op->RegShiftedReg.SrcReg = SrcReg; 2548 Op->RegShiftedReg.ShiftReg = ShiftReg; 2549 Op->RegShiftedReg.ShiftImm = ShiftImm; 2550 Op->StartLoc = S; 2551 Op->EndLoc = E; 2552 return Op; 2553 } 2554 2555 static std::unique_ptr<ARMOperand> 2556 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2557 unsigned ShiftImm, SMLoc S, SMLoc E) { 2558 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2559 Op->RegShiftedImm.ShiftTy = ShTy; 2560 Op->RegShiftedImm.SrcReg = SrcReg; 2561 Op->RegShiftedImm.ShiftImm = ShiftImm; 2562 Op->StartLoc = S; 2563 Op->EndLoc = E; 2564 return Op; 2565 } 2566 2567 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2568 SMLoc S, SMLoc E) { 2569 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2570 Op->ShifterImm.isASR = isASR; 2571 Op->ShifterImm.Imm = Imm; 2572 Op->StartLoc = S; 2573 Op->EndLoc = E; 2574 return Op; 2575 } 2576 2577 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2578 SMLoc E) { 2579 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2580 Op->RotImm.Imm = Imm; 2581 Op->StartLoc = S; 2582 Op->EndLoc = E; 2583 return Op; 2584 } 2585 2586 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2587 SMLoc S, SMLoc E) { 2588 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2589 Op->ModImm.Bits = Bits; 2590 Op->ModImm.Rot = Rot; 2591 Op->StartLoc = S; 2592 Op->EndLoc = E; 2593 return Op; 2594 } 2595 2596 static std::unique_ptr<ARMOperand> 2597 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2598 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2599 Op->Bitfield.LSB = LSB; 2600 Op->Bitfield.Width = Width; 2601 Op->StartLoc = S; 2602 Op->EndLoc = E; 2603 return Op; 2604 } 2605 2606 static std::unique_ptr<ARMOperand> 2607 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2608 SMLoc StartLoc, SMLoc EndLoc) { 2609 assert (Regs.size() > 0 && "RegList contains no registers?"); 2610 KindTy Kind = k_RegisterList; 2611 2612 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2613 Kind = k_DPRRegisterList; 2614 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2615 contains(Regs.front().second)) 2616 Kind = k_SPRRegisterList; 2617 2618 // Sort based on the register encoding values. 2619 array_pod_sort(Regs.begin(), Regs.end()); 2620 2621 auto Op = make_unique<ARMOperand>(Kind); 2622 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2623 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2624 Op->Registers.push_back(I->second); 2625 Op->StartLoc = StartLoc; 2626 Op->EndLoc = EndLoc; 2627 return Op; 2628 } 2629 2630 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2631 unsigned Count, 2632 bool isDoubleSpaced, 2633 SMLoc S, SMLoc E) { 2634 auto Op = make_unique<ARMOperand>(k_VectorList); 2635 Op->VectorList.RegNum = RegNum; 2636 Op->VectorList.Count = Count; 2637 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2638 Op->StartLoc = S; 2639 Op->EndLoc = E; 2640 return Op; 2641 } 2642 2643 static std::unique_ptr<ARMOperand> 2644 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2645 SMLoc S, SMLoc E) { 2646 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2647 Op->VectorList.RegNum = RegNum; 2648 Op->VectorList.Count = Count; 2649 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2650 Op->StartLoc = S; 2651 Op->EndLoc = E; 2652 return Op; 2653 } 2654 2655 static std::unique_ptr<ARMOperand> 2656 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2657 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2658 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2659 Op->VectorList.RegNum = RegNum; 2660 Op->VectorList.Count = Count; 2661 Op->VectorList.LaneIndex = Index; 2662 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2663 Op->StartLoc = S; 2664 Op->EndLoc = E; 2665 return Op; 2666 } 2667 2668 static std::unique_ptr<ARMOperand> 2669 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2670 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2671 Op->VectorIndex.Val = Idx; 2672 Op->StartLoc = S; 2673 Op->EndLoc = E; 2674 return Op; 2675 } 2676 2677 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2678 SMLoc E) { 2679 auto Op = make_unique<ARMOperand>(k_Immediate); 2680 Op->Imm.Val = Val; 2681 Op->StartLoc = S; 2682 Op->EndLoc = E; 2683 return Op; 2684 } 2685 2686 static std::unique_ptr<ARMOperand> 2687 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2688 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2689 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2690 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2691 auto Op = make_unique<ARMOperand>(k_Memory); 2692 Op->Memory.BaseRegNum = BaseRegNum; 2693 Op->Memory.OffsetImm = OffsetImm; 2694 Op->Memory.OffsetRegNum = OffsetRegNum; 2695 Op->Memory.ShiftType = ShiftType; 2696 Op->Memory.ShiftImm = ShiftImm; 2697 Op->Memory.Alignment = Alignment; 2698 Op->Memory.isNegative = isNegative; 2699 Op->StartLoc = S; 2700 Op->EndLoc = E; 2701 Op->AlignmentLoc = AlignmentLoc; 2702 return Op; 2703 } 2704 2705 static std::unique_ptr<ARMOperand> 2706 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2707 unsigned ShiftImm, SMLoc S, SMLoc E) { 2708 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2709 Op->PostIdxReg.RegNum = RegNum; 2710 Op->PostIdxReg.isAdd = isAdd; 2711 Op->PostIdxReg.ShiftTy = ShiftTy; 2712 Op->PostIdxReg.ShiftImm = ShiftImm; 2713 Op->StartLoc = S; 2714 Op->EndLoc = E; 2715 return Op; 2716 } 2717 2718 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2719 SMLoc S) { 2720 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2721 Op->MBOpt.Val = Opt; 2722 Op->StartLoc = S; 2723 Op->EndLoc = S; 2724 return Op; 2725 } 2726 2727 static std::unique_ptr<ARMOperand> 2728 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2729 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2730 Op->ISBOpt.Val = Opt; 2731 Op->StartLoc = S; 2732 Op->EndLoc = S; 2733 return Op; 2734 } 2735 2736 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2737 SMLoc S) { 2738 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2739 Op->IFlags.Val = IFlags; 2740 Op->StartLoc = S; 2741 Op->EndLoc = S; 2742 return Op; 2743 } 2744 2745 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2746 auto Op = make_unique<ARMOperand>(k_MSRMask); 2747 Op->MMask.Val = MMask; 2748 Op->StartLoc = S; 2749 Op->EndLoc = S; 2750 return Op; 2751 } 2752 2753 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2754 auto Op = make_unique<ARMOperand>(k_BankedReg); 2755 Op->BankedReg.Val = Reg; 2756 Op->StartLoc = S; 2757 Op->EndLoc = S; 2758 return Op; 2759 } 2760 }; 2761 2762 } // end anonymous namespace. 2763 2764 void ARMOperand::print(raw_ostream &OS) const { 2765 switch (Kind) { 2766 case k_CondCode: 2767 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2768 break; 2769 case k_CCOut: 2770 OS << "<ccout " << getReg() << ">"; 2771 break; 2772 case k_ITCondMask: { 2773 static const char *const MaskStr[] = { 2774 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2775 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2776 }; 2777 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2778 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2779 break; 2780 } 2781 case k_CoprocNum: 2782 OS << "<coprocessor number: " << getCoproc() << ">"; 2783 break; 2784 case k_CoprocReg: 2785 OS << "<coprocessor register: " << getCoproc() << ">"; 2786 break; 2787 case k_CoprocOption: 2788 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2789 break; 2790 case k_MSRMask: 2791 OS << "<mask: " << getMSRMask() << ">"; 2792 break; 2793 case k_BankedReg: 2794 OS << "<banked reg: " << getBankedReg() << ">"; 2795 break; 2796 case k_Immediate: 2797 OS << *getImm(); 2798 break; 2799 case k_MemBarrierOpt: 2800 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2801 break; 2802 case k_InstSyncBarrierOpt: 2803 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2804 break; 2805 case k_Memory: 2806 OS << "<memory " 2807 << " base:" << Memory.BaseRegNum; 2808 OS << ">"; 2809 break; 2810 case k_PostIndexRegister: 2811 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2812 << PostIdxReg.RegNum; 2813 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2814 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2815 << PostIdxReg.ShiftImm; 2816 OS << ">"; 2817 break; 2818 case k_ProcIFlags: { 2819 OS << "<ARM_PROC::"; 2820 unsigned IFlags = getProcIFlags(); 2821 for (int i=2; i >= 0; --i) 2822 if (IFlags & (1 << i)) 2823 OS << ARM_PROC::IFlagsToString(1 << i); 2824 OS << ">"; 2825 break; 2826 } 2827 case k_Register: 2828 OS << "<register " << getReg() << ">"; 2829 break; 2830 case k_ShifterImmediate: 2831 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2832 << " #" << ShifterImm.Imm << ">"; 2833 break; 2834 case k_ShiftedRegister: 2835 OS << "<so_reg_reg " 2836 << RegShiftedReg.SrcReg << " " 2837 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2838 << " " << RegShiftedReg.ShiftReg << ">"; 2839 break; 2840 case k_ShiftedImmediate: 2841 OS << "<so_reg_imm " 2842 << RegShiftedImm.SrcReg << " " 2843 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2844 << " #" << RegShiftedImm.ShiftImm << ">"; 2845 break; 2846 case k_RotateImmediate: 2847 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2848 break; 2849 case k_ModifiedImmediate: 2850 OS << "<mod_imm #" << ModImm.Bits << ", #" 2851 << ModImm.Rot << ")>"; 2852 break; 2853 case k_BitfieldDescriptor: 2854 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2855 << ", width: " << Bitfield.Width << ">"; 2856 break; 2857 case k_RegisterList: 2858 case k_DPRRegisterList: 2859 case k_SPRRegisterList: { 2860 OS << "<register_list "; 2861 2862 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2863 for (SmallVectorImpl<unsigned>::const_iterator 2864 I = RegList.begin(), E = RegList.end(); I != E; ) { 2865 OS << *I; 2866 if (++I < E) OS << ", "; 2867 } 2868 2869 OS << ">"; 2870 break; 2871 } 2872 case k_VectorList: 2873 OS << "<vector_list " << VectorList.Count << " * " 2874 << VectorList.RegNum << ">"; 2875 break; 2876 case k_VectorListAllLanes: 2877 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2878 << VectorList.RegNum << ">"; 2879 break; 2880 case k_VectorListIndexed: 2881 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2882 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2883 break; 2884 case k_Token: 2885 OS << "'" << getToken() << "'"; 2886 break; 2887 case k_VectorIndex: 2888 OS << "<vectorindex " << getVectorIndex() << ">"; 2889 break; 2890 } 2891 } 2892 2893 /// @name Auto-generated Match Functions 2894 /// { 2895 2896 static unsigned MatchRegisterName(StringRef Name); 2897 2898 /// } 2899 2900 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2901 SMLoc &StartLoc, SMLoc &EndLoc) { 2902 const AsmToken &Tok = getParser().getTok(); 2903 StartLoc = Tok.getLoc(); 2904 EndLoc = Tok.getEndLoc(); 2905 RegNo = tryParseRegister(); 2906 2907 return (RegNo == (unsigned)-1); 2908 } 2909 2910 /// Try to parse a register name. The token must be an Identifier when called, 2911 /// and if it is a register name the token is eaten and the register number is 2912 /// returned. Otherwise return -1. 2913 /// 2914 int ARMAsmParser::tryParseRegister() { 2915 MCAsmParser &Parser = getParser(); 2916 const AsmToken &Tok = Parser.getTok(); 2917 if (Tok.isNot(AsmToken::Identifier)) return -1; 2918 2919 std::string lowerCase = Tok.getString().lower(); 2920 unsigned RegNum = MatchRegisterName(lowerCase); 2921 if (!RegNum) { 2922 RegNum = StringSwitch<unsigned>(lowerCase) 2923 .Case("r13", ARM::SP) 2924 .Case("r14", ARM::LR) 2925 .Case("r15", ARM::PC) 2926 .Case("ip", ARM::R12) 2927 // Additional register name aliases for 'gas' compatibility. 2928 .Case("a1", ARM::R0) 2929 .Case("a2", ARM::R1) 2930 .Case("a3", ARM::R2) 2931 .Case("a4", ARM::R3) 2932 .Case("v1", ARM::R4) 2933 .Case("v2", ARM::R5) 2934 .Case("v3", ARM::R6) 2935 .Case("v4", ARM::R7) 2936 .Case("v5", ARM::R8) 2937 .Case("v6", ARM::R9) 2938 .Case("v7", ARM::R10) 2939 .Case("v8", ARM::R11) 2940 .Case("sb", ARM::R9) 2941 .Case("sl", ARM::R10) 2942 .Case("fp", ARM::R11) 2943 .Default(0); 2944 } 2945 if (!RegNum) { 2946 // Check for aliases registered via .req. Canonicalize to lower case. 2947 // That's more consistent since register names are case insensitive, and 2948 // it's how the original entry was passed in from MC/MCParser/AsmParser. 2949 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 2950 // If no match, return failure. 2951 if (Entry == RegisterReqs.end()) 2952 return -1; 2953 Parser.Lex(); // Eat identifier token. 2954 return Entry->getValue(); 2955 } 2956 2957 // Some FPUs only have 16 D registers, so D16-D31 are invalid 2958 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 2959 return -1; 2960 2961 Parser.Lex(); // Eat identifier token. 2962 2963 return RegNum; 2964 } 2965 2966 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 2967 // If a recoverable error occurs, return 1. If an irrecoverable error 2968 // occurs, return -1. An irrecoverable error is one where tokens have been 2969 // consumed in the process of trying to parse the shifter (i.e., when it is 2970 // indeed a shifter operand, but malformed). 2971 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 2972 MCAsmParser &Parser = getParser(); 2973 SMLoc S = Parser.getTok().getLoc(); 2974 const AsmToken &Tok = Parser.getTok(); 2975 if (Tok.isNot(AsmToken::Identifier)) 2976 return -1; 2977 2978 std::string lowerCase = Tok.getString().lower(); 2979 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 2980 .Case("asl", ARM_AM::lsl) 2981 .Case("lsl", ARM_AM::lsl) 2982 .Case("lsr", ARM_AM::lsr) 2983 .Case("asr", ARM_AM::asr) 2984 .Case("ror", ARM_AM::ror) 2985 .Case("rrx", ARM_AM::rrx) 2986 .Default(ARM_AM::no_shift); 2987 2988 if (ShiftTy == ARM_AM::no_shift) 2989 return 1; 2990 2991 Parser.Lex(); // Eat the operator. 2992 2993 // The source register for the shift has already been added to the 2994 // operand list, so we need to pop it off and combine it into the shifted 2995 // register operand instead. 2996 std::unique_ptr<ARMOperand> PrevOp( 2997 (ARMOperand *)Operands.pop_back_val().release()); 2998 if (!PrevOp->isReg()) 2999 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3000 int SrcReg = PrevOp->getReg(); 3001 3002 SMLoc EndLoc; 3003 int64_t Imm = 0; 3004 int ShiftReg = 0; 3005 if (ShiftTy == ARM_AM::rrx) { 3006 // RRX Doesn't have an explicit shift amount. The encoder expects 3007 // the shift register to be the same as the source register. Seems odd, 3008 // but OK. 3009 ShiftReg = SrcReg; 3010 } else { 3011 // Figure out if this is shifted by a constant or a register (for non-RRX). 3012 if (Parser.getTok().is(AsmToken::Hash) || 3013 Parser.getTok().is(AsmToken::Dollar)) { 3014 Parser.Lex(); // Eat hash. 3015 SMLoc ImmLoc = Parser.getTok().getLoc(); 3016 const MCExpr *ShiftExpr = nullptr; 3017 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3018 Error(ImmLoc, "invalid immediate shift value"); 3019 return -1; 3020 } 3021 // The expression must be evaluatable as an immediate. 3022 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3023 if (!CE) { 3024 Error(ImmLoc, "invalid immediate shift value"); 3025 return -1; 3026 } 3027 // Range check the immediate. 3028 // lsl, ror: 0 <= imm <= 31 3029 // lsr, asr: 0 <= imm <= 32 3030 Imm = CE->getValue(); 3031 if (Imm < 0 || 3032 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3033 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3034 Error(ImmLoc, "immediate shift value out of range"); 3035 return -1; 3036 } 3037 // shift by zero is a nop. Always send it through as lsl. 3038 // ('as' compatibility) 3039 if (Imm == 0) 3040 ShiftTy = ARM_AM::lsl; 3041 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3042 SMLoc L = Parser.getTok().getLoc(); 3043 EndLoc = Parser.getTok().getEndLoc(); 3044 ShiftReg = tryParseRegister(); 3045 if (ShiftReg == -1) { 3046 Error(L, "expected immediate or register in shift operand"); 3047 return -1; 3048 } 3049 } else { 3050 Error(Parser.getTok().getLoc(), 3051 "expected immediate or register in shift operand"); 3052 return -1; 3053 } 3054 } 3055 3056 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3057 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3058 ShiftReg, Imm, 3059 S, EndLoc)); 3060 else 3061 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3062 S, EndLoc)); 3063 3064 return 0; 3065 } 3066 3067 3068 /// Try to parse a register name. The token must be an Identifier when called. 3069 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3070 /// if there is a "writeback". 'true' if it's not a register. 3071 /// 3072 /// TODO this is likely to change to allow different register types and or to 3073 /// parse for a specific register type. 3074 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3075 MCAsmParser &Parser = getParser(); 3076 const AsmToken &RegTok = Parser.getTok(); 3077 int RegNo = tryParseRegister(); 3078 if (RegNo == -1) 3079 return true; 3080 3081 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3082 RegTok.getEndLoc())); 3083 3084 const AsmToken &ExclaimTok = Parser.getTok(); 3085 if (ExclaimTok.is(AsmToken::Exclaim)) { 3086 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3087 ExclaimTok.getLoc())); 3088 Parser.Lex(); // Eat exclaim token 3089 return false; 3090 } 3091 3092 // Also check for an index operand. This is only legal for vector registers, 3093 // but that'll get caught OK in operand matching, so we don't need to 3094 // explicitly filter everything else out here. 3095 if (Parser.getTok().is(AsmToken::LBrac)) { 3096 SMLoc SIdx = Parser.getTok().getLoc(); 3097 Parser.Lex(); // Eat left bracket token. 3098 3099 const MCExpr *ImmVal; 3100 if (getParser().parseExpression(ImmVal)) 3101 return true; 3102 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3103 if (!MCE) 3104 return TokError("immediate value expected for vector index"); 3105 3106 if (Parser.getTok().isNot(AsmToken::RBrac)) 3107 return Error(Parser.getTok().getLoc(), "']' expected"); 3108 3109 SMLoc E = Parser.getTok().getEndLoc(); 3110 Parser.Lex(); // Eat right bracket token. 3111 3112 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3113 SIdx, E, 3114 getContext())); 3115 } 3116 3117 return false; 3118 } 3119 3120 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3121 /// instruction with a symbolic operand name. 3122 /// We accept "crN" syntax for GAS compatibility. 3123 /// <operand-name> ::= <prefix><number> 3124 /// If CoprocOp is 'c', then: 3125 /// <prefix> ::= c | cr 3126 /// If CoprocOp is 'p', then : 3127 /// <prefix> ::= p 3128 /// <number> ::= integer in range [0, 15] 3129 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3130 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3131 // but efficient. 3132 if (Name.size() < 2 || Name[0] != CoprocOp) 3133 return -1; 3134 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3135 3136 switch (Name.size()) { 3137 default: return -1; 3138 case 1: 3139 switch (Name[0]) { 3140 default: return -1; 3141 case '0': return 0; 3142 case '1': return 1; 3143 case '2': return 2; 3144 case '3': return 3; 3145 case '4': return 4; 3146 case '5': return 5; 3147 case '6': return 6; 3148 case '7': return 7; 3149 case '8': return 8; 3150 case '9': return 9; 3151 } 3152 case 2: 3153 if (Name[0] != '1') 3154 return -1; 3155 switch (Name[1]) { 3156 default: return -1; 3157 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3158 // However, old cores (v5/v6) did use them in that way. 3159 case '0': return 10; 3160 case '1': return 11; 3161 case '2': return 12; 3162 case '3': return 13; 3163 case '4': return 14; 3164 case '5': return 15; 3165 } 3166 } 3167 } 3168 3169 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3170 ARMAsmParser::OperandMatchResultTy 3171 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3172 MCAsmParser &Parser = getParser(); 3173 SMLoc S = Parser.getTok().getLoc(); 3174 const AsmToken &Tok = Parser.getTok(); 3175 if (!Tok.is(AsmToken::Identifier)) 3176 return MatchOperand_NoMatch; 3177 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3178 .Case("eq", ARMCC::EQ) 3179 .Case("ne", ARMCC::NE) 3180 .Case("hs", ARMCC::HS) 3181 .Case("cs", ARMCC::HS) 3182 .Case("lo", ARMCC::LO) 3183 .Case("cc", ARMCC::LO) 3184 .Case("mi", ARMCC::MI) 3185 .Case("pl", ARMCC::PL) 3186 .Case("vs", ARMCC::VS) 3187 .Case("vc", ARMCC::VC) 3188 .Case("hi", ARMCC::HI) 3189 .Case("ls", ARMCC::LS) 3190 .Case("ge", ARMCC::GE) 3191 .Case("lt", ARMCC::LT) 3192 .Case("gt", ARMCC::GT) 3193 .Case("le", ARMCC::LE) 3194 .Case("al", ARMCC::AL) 3195 .Default(~0U); 3196 if (CC == ~0U) 3197 return MatchOperand_NoMatch; 3198 Parser.Lex(); // Eat the token. 3199 3200 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3201 3202 return MatchOperand_Success; 3203 } 3204 3205 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3206 /// token must be an Identifier when called, and if it is a coprocessor 3207 /// number, the token is eaten and the operand is added to the operand list. 3208 ARMAsmParser::OperandMatchResultTy 3209 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3210 MCAsmParser &Parser = getParser(); 3211 SMLoc S = Parser.getTok().getLoc(); 3212 const AsmToken &Tok = Parser.getTok(); 3213 if (Tok.isNot(AsmToken::Identifier)) 3214 return MatchOperand_NoMatch; 3215 3216 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3217 if (Num == -1) 3218 return MatchOperand_NoMatch; 3219 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3220 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3221 return MatchOperand_NoMatch; 3222 3223 Parser.Lex(); // Eat identifier token. 3224 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3225 return MatchOperand_Success; 3226 } 3227 3228 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3229 /// token must be an Identifier when called, and if it is a coprocessor 3230 /// number, the token is eaten and the operand is added to the operand list. 3231 ARMAsmParser::OperandMatchResultTy 3232 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3233 MCAsmParser &Parser = getParser(); 3234 SMLoc S = Parser.getTok().getLoc(); 3235 const AsmToken &Tok = Parser.getTok(); 3236 if (Tok.isNot(AsmToken::Identifier)) 3237 return MatchOperand_NoMatch; 3238 3239 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3240 if (Reg == -1) 3241 return MatchOperand_NoMatch; 3242 3243 Parser.Lex(); // Eat identifier token. 3244 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3245 return MatchOperand_Success; 3246 } 3247 3248 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3249 /// coproc_option : '{' imm0_255 '}' 3250 ARMAsmParser::OperandMatchResultTy 3251 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3252 MCAsmParser &Parser = getParser(); 3253 SMLoc S = Parser.getTok().getLoc(); 3254 3255 // If this isn't a '{', this isn't a coprocessor immediate operand. 3256 if (Parser.getTok().isNot(AsmToken::LCurly)) 3257 return MatchOperand_NoMatch; 3258 Parser.Lex(); // Eat the '{' 3259 3260 const MCExpr *Expr; 3261 SMLoc Loc = Parser.getTok().getLoc(); 3262 if (getParser().parseExpression(Expr)) { 3263 Error(Loc, "illegal expression"); 3264 return MatchOperand_ParseFail; 3265 } 3266 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3267 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3268 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3269 return MatchOperand_ParseFail; 3270 } 3271 int Val = CE->getValue(); 3272 3273 // Check for and consume the closing '}' 3274 if (Parser.getTok().isNot(AsmToken::RCurly)) 3275 return MatchOperand_ParseFail; 3276 SMLoc E = Parser.getTok().getEndLoc(); 3277 Parser.Lex(); // Eat the '}' 3278 3279 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3280 return MatchOperand_Success; 3281 } 3282 3283 // For register list parsing, we need to map from raw GPR register numbering 3284 // to the enumeration values. The enumeration values aren't sorted by 3285 // register number due to our using "sp", "lr" and "pc" as canonical names. 3286 static unsigned getNextRegister(unsigned Reg) { 3287 // If this is a GPR, we need to do it manually, otherwise we can rely 3288 // on the sort ordering of the enumeration since the other reg-classes 3289 // are sane. 3290 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3291 return Reg + 1; 3292 switch(Reg) { 3293 default: llvm_unreachable("Invalid GPR number!"); 3294 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3295 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3296 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3297 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3298 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3299 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3300 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3301 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3302 } 3303 } 3304 3305 // Return the low-subreg of a given Q register. 3306 static unsigned getDRegFromQReg(unsigned QReg) { 3307 switch (QReg) { 3308 default: llvm_unreachable("expected a Q register!"); 3309 case ARM::Q0: return ARM::D0; 3310 case ARM::Q1: return ARM::D2; 3311 case ARM::Q2: return ARM::D4; 3312 case ARM::Q3: return ARM::D6; 3313 case ARM::Q4: return ARM::D8; 3314 case ARM::Q5: return ARM::D10; 3315 case ARM::Q6: return ARM::D12; 3316 case ARM::Q7: return ARM::D14; 3317 case ARM::Q8: return ARM::D16; 3318 case ARM::Q9: return ARM::D18; 3319 case ARM::Q10: return ARM::D20; 3320 case ARM::Q11: return ARM::D22; 3321 case ARM::Q12: return ARM::D24; 3322 case ARM::Q13: return ARM::D26; 3323 case ARM::Q14: return ARM::D28; 3324 case ARM::Q15: return ARM::D30; 3325 } 3326 } 3327 3328 /// Parse a register list. 3329 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3330 MCAsmParser &Parser = getParser(); 3331 assert(Parser.getTok().is(AsmToken::LCurly) && 3332 "Token is not a Left Curly Brace"); 3333 SMLoc S = Parser.getTok().getLoc(); 3334 Parser.Lex(); // Eat '{' token. 3335 SMLoc RegLoc = Parser.getTok().getLoc(); 3336 3337 // Check the first register in the list to see what register class 3338 // this is a list of. 3339 int Reg = tryParseRegister(); 3340 if (Reg == -1) 3341 return Error(RegLoc, "register expected"); 3342 3343 // The reglist instructions have at most 16 registers, so reserve 3344 // space for that many. 3345 int EReg = 0; 3346 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3347 3348 // Allow Q regs and just interpret them as the two D sub-registers. 3349 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3350 Reg = getDRegFromQReg(Reg); 3351 EReg = MRI->getEncodingValue(Reg); 3352 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3353 ++Reg; 3354 } 3355 const MCRegisterClass *RC; 3356 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3357 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3358 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3359 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3360 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3361 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3362 else 3363 return Error(RegLoc, "invalid register in register list"); 3364 3365 // Store the register. 3366 EReg = MRI->getEncodingValue(Reg); 3367 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3368 3369 // This starts immediately after the first register token in the list, 3370 // so we can see either a comma or a minus (range separator) as a legal 3371 // next token. 3372 while (Parser.getTok().is(AsmToken::Comma) || 3373 Parser.getTok().is(AsmToken::Minus)) { 3374 if (Parser.getTok().is(AsmToken::Minus)) { 3375 Parser.Lex(); // Eat the minus. 3376 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3377 int EndReg = tryParseRegister(); 3378 if (EndReg == -1) 3379 return Error(AfterMinusLoc, "register expected"); 3380 // Allow Q regs and just interpret them as the two D sub-registers. 3381 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3382 EndReg = getDRegFromQReg(EndReg) + 1; 3383 // If the register is the same as the start reg, there's nothing 3384 // more to do. 3385 if (Reg == EndReg) 3386 continue; 3387 // The register must be in the same register class as the first. 3388 if (!RC->contains(EndReg)) 3389 return Error(AfterMinusLoc, "invalid register in register list"); 3390 // Ranges must go from low to high. 3391 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3392 return Error(AfterMinusLoc, "bad range in register list"); 3393 3394 // Add all the registers in the range to the register list. 3395 while (Reg != EndReg) { 3396 Reg = getNextRegister(Reg); 3397 EReg = MRI->getEncodingValue(Reg); 3398 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3399 } 3400 continue; 3401 } 3402 Parser.Lex(); // Eat the comma. 3403 RegLoc = Parser.getTok().getLoc(); 3404 int OldReg = Reg; 3405 const AsmToken RegTok = Parser.getTok(); 3406 Reg = tryParseRegister(); 3407 if (Reg == -1) 3408 return Error(RegLoc, "register expected"); 3409 // Allow Q regs and just interpret them as the two D sub-registers. 3410 bool isQReg = false; 3411 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3412 Reg = getDRegFromQReg(Reg); 3413 isQReg = true; 3414 } 3415 // The register must be in the same register class as the first. 3416 if (!RC->contains(Reg)) 3417 return Error(RegLoc, "invalid register in register list"); 3418 // List must be monotonically increasing. 3419 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3420 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3421 Warning(RegLoc, "register list not in ascending order"); 3422 else 3423 return Error(RegLoc, "register list not in ascending order"); 3424 } 3425 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3426 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3427 ") in register list"); 3428 continue; 3429 } 3430 // VFP register lists must also be contiguous. 3431 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3432 Reg != OldReg + 1) 3433 return Error(RegLoc, "non-contiguous register range"); 3434 EReg = MRI->getEncodingValue(Reg); 3435 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3436 if (isQReg) { 3437 EReg = MRI->getEncodingValue(++Reg); 3438 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3439 } 3440 } 3441 3442 if (Parser.getTok().isNot(AsmToken::RCurly)) 3443 return Error(Parser.getTok().getLoc(), "'}' expected"); 3444 SMLoc E = Parser.getTok().getEndLoc(); 3445 Parser.Lex(); // Eat '}' token. 3446 3447 // Push the register list operand. 3448 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3449 3450 // The ARM system instruction variants for LDM/STM have a '^' token here. 3451 if (Parser.getTok().is(AsmToken::Caret)) { 3452 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3453 Parser.Lex(); // Eat '^' token. 3454 } 3455 3456 return false; 3457 } 3458 3459 // Helper function to parse the lane index for vector lists. 3460 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3461 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3462 MCAsmParser &Parser = getParser(); 3463 Index = 0; // Always return a defined index value. 3464 if (Parser.getTok().is(AsmToken::LBrac)) { 3465 Parser.Lex(); // Eat the '['. 3466 if (Parser.getTok().is(AsmToken::RBrac)) { 3467 // "Dn[]" is the 'all lanes' syntax. 3468 LaneKind = AllLanes; 3469 EndLoc = Parser.getTok().getEndLoc(); 3470 Parser.Lex(); // Eat the ']'. 3471 return MatchOperand_Success; 3472 } 3473 3474 // There's an optional '#' token here. Normally there wouldn't be, but 3475 // inline assemble puts one in, and it's friendly to accept that. 3476 if (Parser.getTok().is(AsmToken::Hash)) 3477 Parser.Lex(); // Eat '#' or '$'. 3478 3479 const MCExpr *LaneIndex; 3480 SMLoc Loc = Parser.getTok().getLoc(); 3481 if (getParser().parseExpression(LaneIndex)) { 3482 Error(Loc, "illegal expression"); 3483 return MatchOperand_ParseFail; 3484 } 3485 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3486 if (!CE) { 3487 Error(Loc, "lane index must be empty or an integer"); 3488 return MatchOperand_ParseFail; 3489 } 3490 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3491 Error(Parser.getTok().getLoc(), "']' expected"); 3492 return MatchOperand_ParseFail; 3493 } 3494 EndLoc = Parser.getTok().getEndLoc(); 3495 Parser.Lex(); // Eat the ']'. 3496 int64_t Val = CE->getValue(); 3497 3498 // FIXME: Make this range check context sensitive for .8, .16, .32. 3499 if (Val < 0 || Val > 7) { 3500 Error(Parser.getTok().getLoc(), "lane index out of range"); 3501 return MatchOperand_ParseFail; 3502 } 3503 Index = Val; 3504 LaneKind = IndexedLane; 3505 return MatchOperand_Success; 3506 } 3507 LaneKind = NoLanes; 3508 return MatchOperand_Success; 3509 } 3510 3511 // parse a vector register list 3512 ARMAsmParser::OperandMatchResultTy 3513 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3514 MCAsmParser &Parser = getParser(); 3515 VectorLaneTy LaneKind; 3516 unsigned LaneIndex; 3517 SMLoc S = Parser.getTok().getLoc(); 3518 // As an extension (to match gas), support a plain D register or Q register 3519 // (without encosing curly braces) as a single or double entry list, 3520 // respectively. 3521 if (Parser.getTok().is(AsmToken::Identifier)) { 3522 SMLoc E = Parser.getTok().getEndLoc(); 3523 int Reg = tryParseRegister(); 3524 if (Reg == -1) 3525 return MatchOperand_NoMatch; 3526 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3527 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3528 if (Res != MatchOperand_Success) 3529 return Res; 3530 switch (LaneKind) { 3531 case NoLanes: 3532 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3533 break; 3534 case AllLanes: 3535 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3536 S, E)); 3537 break; 3538 case IndexedLane: 3539 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3540 LaneIndex, 3541 false, S, E)); 3542 break; 3543 } 3544 return MatchOperand_Success; 3545 } 3546 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3547 Reg = getDRegFromQReg(Reg); 3548 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3549 if (Res != MatchOperand_Success) 3550 return Res; 3551 switch (LaneKind) { 3552 case NoLanes: 3553 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3554 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3555 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3556 break; 3557 case AllLanes: 3558 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3559 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3560 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3561 S, E)); 3562 break; 3563 case IndexedLane: 3564 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3565 LaneIndex, 3566 false, S, E)); 3567 break; 3568 } 3569 return MatchOperand_Success; 3570 } 3571 Error(S, "vector register expected"); 3572 return MatchOperand_ParseFail; 3573 } 3574 3575 if (Parser.getTok().isNot(AsmToken::LCurly)) 3576 return MatchOperand_NoMatch; 3577 3578 Parser.Lex(); // Eat '{' token. 3579 SMLoc RegLoc = Parser.getTok().getLoc(); 3580 3581 int Reg = tryParseRegister(); 3582 if (Reg == -1) { 3583 Error(RegLoc, "register expected"); 3584 return MatchOperand_ParseFail; 3585 } 3586 unsigned Count = 1; 3587 int Spacing = 0; 3588 unsigned FirstReg = Reg; 3589 // The list is of D registers, but we also allow Q regs and just interpret 3590 // them as the two D sub-registers. 3591 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3592 FirstReg = Reg = getDRegFromQReg(Reg); 3593 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3594 // it's ambiguous with four-register single spaced. 3595 ++Reg; 3596 ++Count; 3597 } 3598 3599 SMLoc E; 3600 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3601 return MatchOperand_ParseFail; 3602 3603 while (Parser.getTok().is(AsmToken::Comma) || 3604 Parser.getTok().is(AsmToken::Minus)) { 3605 if (Parser.getTok().is(AsmToken::Minus)) { 3606 if (!Spacing) 3607 Spacing = 1; // Register range implies a single spaced list. 3608 else if (Spacing == 2) { 3609 Error(Parser.getTok().getLoc(), 3610 "sequential registers in double spaced list"); 3611 return MatchOperand_ParseFail; 3612 } 3613 Parser.Lex(); // Eat the minus. 3614 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3615 int EndReg = tryParseRegister(); 3616 if (EndReg == -1) { 3617 Error(AfterMinusLoc, "register expected"); 3618 return MatchOperand_ParseFail; 3619 } 3620 // Allow Q regs and just interpret them as the two D sub-registers. 3621 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3622 EndReg = getDRegFromQReg(EndReg) + 1; 3623 // If the register is the same as the start reg, there's nothing 3624 // more to do. 3625 if (Reg == EndReg) 3626 continue; 3627 // The register must be in the same register class as the first. 3628 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3629 Error(AfterMinusLoc, "invalid register in register list"); 3630 return MatchOperand_ParseFail; 3631 } 3632 // Ranges must go from low to high. 3633 if (Reg > EndReg) { 3634 Error(AfterMinusLoc, "bad range in register list"); 3635 return MatchOperand_ParseFail; 3636 } 3637 // Parse the lane specifier if present. 3638 VectorLaneTy NextLaneKind; 3639 unsigned NextLaneIndex; 3640 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3641 MatchOperand_Success) 3642 return MatchOperand_ParseFail; 3643 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3644 Error(AfterMinusLoc, "mismatched lane index in register list"); 3645 return MatchOperand_ParseFail; 3646 } 3647 3648 // Add all the registers in the range to the register list. 3649 Count += EndReg - Reg; 3650 Reg = EndReg; 3651 continue; 3652 } 3653 Parser.Lex(); // Eat the comma. 3654 RegLoc = Parser.getTok().getLoc(); 3655 int OldReg = Reg; 3656 Reg = tryParseRegister(); 3657 if (Reg == -1) { 3658 Error(RegLoc, "register expected"); 3659 return MatchOperand_ParseFail; 3660 } 3661 // vector register lists must be contiguous. 3662 // It's OK to use the enumeration values directly here rather, as the 3663 // VFP register classes have the enum sorted properly. 3664 // 3665 // The list is of D registers, but we also allow Q regs and just interpret 3666 // them as the two D sub-registers. 3667 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3668 if (!Spacing) 3669 Spacing = 1; // Register range implies a single spaced list. 3670 else if (Spacing == 2) { 3671 Error(RegLoc, 3672 "invalid register in double-spaced list (must be 'D' register')"); 3673 return MatchOperand_ParseFail; 3674 } 3675 Reg = getDRegFromQReg(Reg); 3676 if (Reg != OldReg + 1) { 3677 Error(RegLoc, "non-contiguous register range"); 3678 return MatchOperand_ParseFail; 3679 } 3680 ++Reg; 3681 Count += 2; 3682 // Parse the lane specifier if present. 3683 VectorLaneTy NextLaneKind; 3684 unsigned NextLaneIndex; 3685 SMLoc LaneLoc = Parser.getTok().getLoc(); 3686 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3687 MatchOperand_Success) 3688 return MatchOperand_ParseFail; 3689 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3690 Error(LaneLoc, "mismatched lane index in register list"); 3691 return MatchOperand_ParseFail; 3692 } 3693 continue; 3694 } 3695 // Normal D register. 3696 // Figure out the register spacing (single or double) of the list if 3697 // we don't know it already. 3698 if (!Spacing) 3699 Spacing = 1 + (Reg == OldReg + 2); 3700 3701 // Just check that it's contiguous and keep going. 3702 if (Reg != OldReg + Spacing) { 3703 Error(RegLoc, "non-contiguous register range"); 3704 return MatchOperand_ParseFail; 3705 } 3706 ++Count; 3707 // Parse the lane specifier if present. 3708 VectorLaneTy NextLaneKind; 3709 unsigned NextLaneIndex; 3710 SMLoc EndLoc = Parser.getTok().getLoc(); 3711 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3712 return MatchOperand_ParseFail; 3713 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3714 Error(EndLoc, "mismatched lane index in register list"); 3715 return MatchOperand_ParseFail; 3716 } 3717 } 3718 3719 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3720 Error(Parser.getTok().getLoc(), "'}' expected"); 3721 return MatchOperand_ParseFail; 3722 } 3723 E = Parser.getTok().getEndLoc(); 3724 Parser.Lex(); // Eat '}' token. 3725 3726 switch (LaneKind) { 3727 case NoLanes: 3728 // Two-register operands have been converted to the 3729 // composite register classes. 3730 if (Count == 2) { 3731 const MCRegisterClass *RC = (Spacing == 1) ? 3732 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3733 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3734 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3735 } 3736 3737 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3738 (Spacing == 2), S, E)); 3739 break; 3740 case AllLanes: 3741 // Two-register operands have been converted to the 3742 // composite register classes. 3743 if (Count == 2) { 3744 const MCRegisterClass *RC = (Spacing == 1) ? 3745 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3746 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3747 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3748 } 3749 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3750 (Spacing == 2), 3751 S, E)); 3752 break; 3753 case IndexedLane: 3754 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3755 LaneIndex, 3756 (Spacing == 2), 3757 S, E)); 3758 break; 3759 } 3760 return MatchOperand_Success; 3761 } 3762 3763 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3764 ARMAsmParser::OperandMatchResultTy 3765 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3766 MCAsmParser &Parser = getParser(); 3767 SMLoc S = Parser.getTok().getLoc(); 3768 const AsmToken &Tok = Parser.getTok(); 3769 unsigned Opt; 3770 3771 if (Tok.is(AsmToken::Identifier)) { 3772 StringRef OptStr = Tok.getString(); 3773 3774 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3775 .Case("sy", ARM_MB::SY) 3776 .Case("st", ARM_MB::ST) 3777 .Case("ld", ARM_MB::LD) 3778 .Case("sh", ARM_MB::ISH) 3779 .Case("ish", ARM_MB::ISH) 3780 .Case("shst", ARM_MB::ISHST) 3781 .Case("ishst", ARM_MB::ISHST) 3782 .Case("ishld", ARM_MB::ISHLD) 3783 .Case("nsh", ARM_MB::NSH) 3784 .Case("un", ARM_MB::NSH) 3785 .Case("nshst", ARM_MB::NSHST) 3786 .Case("nshld", ARM_MB::NSHLD) 3787 .Case("unst", ARM_MB::NSHST) 3788 .Case("osh", ARM_MB::OSH) 3789 .Case("oshst", ARM_MB::OSHST) 3790 .Case("oshld", ARM_MB::OSHLD) 3791 .Default(~0U); 3792 3793 // ishld, oshld, nshld and ld are only available from ARMv8. 3794 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3795 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3796 Opt = ~0U; 3797 3798 if (Opt == ~0U) 3799 return MatchOperand_NoMatch; 3800 3801 Parser.Lex(); // Eat identifier token. 3802 } else if (Tok.is(AsmToken::Hash) || 3803 Tok.is(AsmToken::Dollar) || 3804 Tok.is(AsmToken::Integer)) { 3805 if (Parser.getTok().isNot(AsmToken::Integer)) 3806 Parser.Lex(); // Eat '#' or '$'. 3807 SMLoc Loc = Parser.getTok().getLoc(); 3808 3809 const MCExpr *MemBarrierID; 3810 if (getParser().parseExpression(MemBarrierID)) { 3811 Error(Loc, "illegal expression"); 3812 return MatchOperand_ParseFail; 3813 } 3814 3815 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3816 if (!CE) { 3817 Error(Loc, "constant expression expected"); 3818 return MatchOperand_ParseFail; 3819 } 3820 3821 int Val = CE->getValue(); 3822 if (Val & ~0xf) { 3823 Error(Loc, "immediate value out of range"); 3824 return MatchOperand_ParseFail; 3825 } 3826 3827 Opt = ARM_MB::RESERVED_0 + Val; 3828 } else 3829 return MatchOperand_ParseFail; 3830 3831 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3832 return MatchOperand_Success; 3833 } 3834 3835 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3836 ARMAsmParser::OperandMatchResultTy 3837 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3838 MCAsmParser &Parser = getParser(); 3839 SMLoc S = Parser.getTok().getLoc(); 3840 const AsmToken &Tok = Parser.getTok(); 3841 unsigned Opt; 3842 3843 if (Tok.is(AsmToken::Identifier)) { 3844 StringRef OptStr = Tok.getString(); 3845 3846 if (OptStr.equals_lower("sy")) 3847 Opt = ARM_ISB::SY; 3848 else 3849 return MatchOperand_NoMatch; 3850 3851 Parser.Lex(); // Eat identifier token. 3852 } else if (Tok.is(AsmToken::Hash) || 3853 Tok.is(AsmToken::Dollar) || 3854 Tok.is(AsmToken::Integer)) { 3855 if (Parser.getTok().isNot(AsmToken::Integer)) 3856 Parser.Lex(); // Eat '#' or '$'. 3857 SMLoc Loc = Parser.getTok().getLoc(); 3858 3859 const MCExpr *ISBarrierID; 3860 if (getParser().parseExpression(ISBarrierID)) { 3861 Error(Loc, "illegal expression"); 3862 return MatchOperand_ParseFail; 3863 } 3864 3865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3866 if (!CE) { 3867 Error(Loc, "constant expression expected"); 3868 return MatchOperand_ParseFail; 3869 } 3870 3871 int Val = CE->getValue(); 3872 if (Val & ~0xf) { 3873 Error(Loc, "immediate value out of range"); 3874 return MatchOperand_ParseFail; 3875 } 3876 3877 Opt = ARM_ISB::RESERVED_0 + Val; 3878 } else 3879 return MatchOperand_ParseFail; 3880 3881 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3882 (ARM_ISB::InstSyncBOpt)Opt, S)); 3883 return MatchOperand_Success; 3884 } 3885 3886 3887 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3888 ARMAsmParser::OperandMatchResultTy 3889 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3890 MCAsmParser &Parser = getParser(); 3891 SMLoc S = Parser.getTok().getLoc(); 3892 const AsmToken &Tok = Parser.getTok(); 3893 if (!Tok.is(AsmToken::Identifier)) 3894 return MatchOperand_NoMatch; 3895 StringRef IFlagsStr = Tok.getString(); 3896 3897 // An iflags string of "none" is interpreted to mean that none of the AIF 3898 // bits are set. Not a terribly useful instruction, but a valid encoding. 3899 unsigned IFlags = 0; 3900 if (IFlagsStr != "none") { 3901 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3902 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3903 .Case("a", ARM_PROC::A) 3904 .Case("i", ARM_PROC::I) 3905 .Case("f", ARM_PROC::F) 3906 .Default(~0U); 3907 3908 // If some specific iflag is already set, it means that some letter is 3909 // present more than once, this is not acceptable. 3910 if (Flag == ~0U || (IFlags & Flag)) 3911 return MatchOperand_NoMatch; 3912 3913 IFlags |= Flag; 3914 } 3915 } 3916 3917 Parser.Lex(); // Eat identifier token. 3918 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3919 return MatchOperand_Success; 3920 } 3921 3922 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 3923 ARMAsmParser::OperandMatchResultTy 3924 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 3925 MCAsmParser &Parser = getParser(); 3926 SMLoc S = Parser.getTok().getLoc(); 3927 const AsmToken &Tok = Parser.getTok(); 3928 if (!Tok.is(AsmToken::Identifier)) 3929 return MatchOperand_NoMatch; 3930 StringRef Mask = Tok.getString(); 3931 3932 if (isMClass()) { 3933 // See ARMv6-M 10.1.1 3934 std::string Name = Mask.lower(); 3935 unsigned FlagsVal = StringSwitch<unsigned>(Name) 3936 // Note: in the documentation: 3937 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 3938 // for MSR APSR_nzcvq. 3939 // but we do make it an alias here. This is so to get the "mask encoding" 3940 // bits correct on MSR APSR writes. 3941 // 3942 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 3943 // should really only be allowed when writing a special register. Note 3944 // they get dropped in the MRS instruction reading a special register as 3945 // the SYSm field is only 8 bits. 3946 .Case("apsr", 0x800) 3947 .Case("apsr_nzcvq", 0x800) 3948 .Case("apsr_g", 0x400) 3949 .Case("apsr_nzcvqg", 0xc00) 3950 .Case("iapsr", 0x801) 3951 .Case("iapsr_nzcvq", 0x801) 3952 .Case("iapsr_g", 0x401) 3953 .Case("iapsr_nzcvqg", 0xc01) 3954 .Case("eapsr", 0x802) 3955 .Case("eapsr_nzcvq", 0x802) 3956 .Case("eapsr_g", 0x402) 3957 .Case("eapsr_nzcvqg", 0xc02) 3958 .Case("xpsr", 0x803) 3959 .Case("xpsr_nzcvq", 0x803) 3960 .Case("xpsr_g", 0x403) 3961 .Case("xpsr_nzcvqg", 0xc03) 3962 .Case("ipsr", 0x805) 3963 .Case("epsr", 0x806) 3964 .Case("iepsr", 0x807) 3965 .Case("msp", 0x808) 3966 .Case("psp", 0x809) 3967 .Case("primask", 0x810) 3968 .Case("basepri", 0x811) 3969 .Case("basepri_max", 0x812) 3970 .Case("faultmask", 0x813) 3971 .Case("control", 0x814) 3972 .Default(~0U); 3973 3974 if (FlagsVal == ~0U) 3975 return MatchOperand_NoMatch; 3976 3977 if (!hasDSP() && (FlagsVal & 0x400)) 3978 // The _g and _nzcvqg versions are only valid if the DSP extension is 3979 // available. 3980 return MatchOperand_NoMatch; 3981 3982 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 3983 // basepri, basepri_max and faultmask only valid for V7m. 3984 return MatchOperand_NoMatch; 3985 3986 Parser.Lex(); // Eat identifier token. 3987 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 3988 return MatchOperand_Success; 3989 } 3990 3991 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 3992 size_t Start = 0, Next = Mask.find('_'); 3993 StringRef Flags = ""; 3994 std::string SpecReg = Mask.slice(Start, Next).lower(); 3995 if (Next != StringRef::npos) 3996 Flags = Mask.slice(Next+1, Mask.size()); 3997 3998 // FlagsVal contains the complete mask: 3999 // 3-0: Mask 4000 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4001 unsigned FlagsVal = 0; 4002 4003 if (SpecReg == "apsr") { 4004 FlagsVal = StringSwitch<unsigned>(Flags) 4005 .Case("nzcvq", 0x8) // same as CPSR_f 4006 .Case("g", 0x4) // same as CPSR_s 4007 .Case("nzcvqg", 0xc) // same as CPSR_fs 4008 .Default(~0U); 4009 4010 if (FlagsVal == ~0U) { 4011 if (!Flags.empty()) 4012 return MatchOperand_NoMatch; 4013 else 4014 FlagsVal = 8; // No flag 4015 } 4016 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4017 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4018 if (Flags == "all" || Flags == "") 4019 Flags = "fc"; 4020 for (int i = 0, e = Flags.size(); i != e; ++i) { 4021 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4022 .Case("c", 1) 4023 .Case("x", 2) 4024 .Case("s", 4) 4025 .Case("f", 8) 4026 .Default(~0U); 4027 4028 // If some specific flag is already set, it means that some letter is 4029 // present more than once, this is not acceptable. 4030 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4031 return MatchOperand_NoMatch; 4032 FlagsVal |= Flag; 4033 } 4034 } else // No match for special register. 4035 return MatchOperand_NoMatch; 4036 4037 // Special register without flags is NOT equivalent to "fc" flags. 4038 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4039 // two lines would enable gas compatibility at the expense of breaking 4040 // round-tripping. 4041 // 4042 // if (!FlagsVal) 4043 // FlagsVal = 0x9; 4044 4045 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4046 if (SpecReg == "spsr") 4047 FlagsVal |= 16; 4048 4049 Parser.Lex(); // Eat identifier token. 4050 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4051 return MatchOperand_Success; 4052 } 4053 4054 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4055 /// use in the MRS/MSR instructions added to support virtualization. 4056 ARMAsmParser::OperandMatchResultTy 4057 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4058 MCAsmParser &Parser = getParser(); 4059 SMLoc S = Parser.getTok().getLoc(); 4060 const AsmToken &Tok = Parser.getTok(); 4061 if (!Tok.is(AsmToken::Identifier)) 4062 return MatchOperand_NoMatch; 4063 StringRef RegName = Tok.getString(); 4064 4065 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4066 // and bit 5 is R. 4067 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4068 .Case("r8_usr", 0x00) 4069 .Case("r9_usr", 0x01) 4070 .Case("r10_usr", 0x02) 4071 .Case("r11_usr", 0x03) 4072 .Case("r12_usr", 0x04) 4073 .Case("sp_usr", 0x05) 4074 .Case("lr_usr", 0x06) 4075 .Case("r8_fiq", 0x08) 4076 .Case("r9_fiq", 0x09) 4077 .Case("r10_fiq", 0x0a) 4078 .Case("r11_fiq", 0x0b) 4079 .Case("r12_fiq", 0x0c) 4080 .Case("sp_fiq", 0x0d) 4081 .Case("lr_fiq", 0x0e) 4082 .Case("lr_irq", 0x10) 4083 .Case("sp_irq", 0x11) 4084 .Case("lr_svc", 0x12) 4085 .Case("sp_svc", 0x13) 4086 .Case("lr_abt", 0x14) 4087 .Case("sp_abt", 0x15) 4088 .Case("lr_und", 0x16) 4089 .Case("sp_und", 0x17) 4090 .Case("lr_mon", 0x1c) 4091 .Case("sp_mon", 0x1d) 4092 .Case("elr_hyp", 0x1e) 4093 .Case("sp_hyp", 0x1f) 4094 .Case("spsr_fiq", 0x2e) 4095 .Case("spsr_irq", 0x30) 4096 .Case("spsr_svc", 0x32) 4097 .Case("spsr_abt", 0x34) 4098 .Case("spsr_und", 0x36) 4099 .Case("spsr_mon", 0x3c) 4100 .Case("spsr_hyp", 0x3e) 4101 .Default(~0U); 4102 4103 if (Encoding == ~0U) 4104 return MatchOperand_NoMatch; 4105 4106 Parser.Lex(); // Eat identifier token. 4107 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4108 return MatchOperand_Success; 4109 } 4110 4111 ARMAsmParser::OperandMatchResultTy 4112 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4113 int High) { 4114 MCAsmParser &Parser = getParser(); 4115 const AsmToken &Tok = Parser.getTok(); 4116 if (Tok.isNot(AsmToken::Identifier)) { 4117 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4118 return MatchOperand_ParseFail; 4119 } 4120 StringRef ShiftName = Tok.getString(); 4121 std::string LowerOp = Op.lower(); 4122 std::string UpperOp = Op.upper(); 4123 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4124 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4125 return MatchOperand_ParseFail; 4126 } 4127 Parser.Lex(); // Eat shift type token. 4128 4129 // There must be a '#' and a shift amount. 4130 if (Parser.getTok().isNot(AsmToken::Hash) && 4131 Parser.getTok().isNot(AsmToken::Dollar)) { 4132 Error(Parser.getTok().getLoc(), "'#' expected"); 4133 return MatchOperand_ParseFail; 4134 } 4135 Parser.Lex(); // Eat hash token. 4136 4137 const MCExpr *ShiftAmount; 4138 SMLoc Loc = Parser.getTok().getLoc(); 4139 SMLoc EndLoc; 4140 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4141 Error(Loc, "illegal expression"); 4142 return MatchOperand_ParseFail; 4143 } 4144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4145 if (!CE) { 4146 Error(Loc, "constant expression expected"); 4147 return MatchOperand_ParseFail; 4148 } 4149 int Val = CE->getValue(); 4150 if (Val < Low || Val > High) { 4151 Error(Loc, "immediate value out of range"); 4152 return MatchOperand_ParseFail; 4153 } 4154 4155 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4156 4157 return MatchOperand_Success; 4158 } 4159 4160 ARMAsmParser::OperandMatchResultTy 4161 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4162 MCAsmParser &Parser = getParser(); 4163 const AsmToken &Tok = Parser.getTok(); 4164 SMLoc S = Tok.getLoc(); 4165 if (Tok.isNot(AsmToken::Identifier)) { 4166 Error(S, "'be' or 'le' operand expected"); 4167 return MatchOperand_ParseFail; 4168 } 4169 int Val = StringSwitch<int>(Tok.getString().lower()) 4170 .Case("be", 1) 4171 .Case("le", 0) 4172 .Default(-1); 4173 Parser.Lex(); // Eat the token. 4174 4175 if (Val == -1) { 4176 Error(S, "'be' or 'le' operand expected"); 4177 return MatchOperand_ParseFail; 4178 } 4179 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4180 getContext()), 4181 S, Tok.getEndLoc())); 4182 return MatchOperand_Success; 4183 } 4184 4185 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4186 /// instructions. Legal values are: 4187 /// lsl #n 'n' in [0,31] 4188 /// asr #n 'n' in [1,32] 4189 /// n == 32 encoded as n == 0. 4190 ARMAsmParser::OperandMatchResultTy 4191 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4192 MCAsmParser &Parser = getParser(); 4193 const AsmToken &Tok = Parser.getTok(); 4194 SMLoc S = Tok.getLoc(); 4195 if (Tok.isNot(AsmToken::Identifier)) { 4196 Error(S, "shift operator 'asr' or 'lsl' expected"); 4197 return MatchOperand_ParseFail; 4198 } 4199 StringRef ShiftName = Tok.getString(); 4200 bool isASR; 4201 if (ShiftName == "lsl" || ShiftName == "LSL") 4202 isASR = false; 4203 else if (ShiftName == "asr" || ShiftName == "ASR") 4204 isASR = true; 4205 else { 4206 Error(S, "shift operator 'asr' or 'lsl' expected"); 4207 return MatchOperand_ParseFail; 4208 } 4209 Parser.Lex(); // Eat the operator. 4210 4211 // A '#' and a shift amount. 4212 if (Parser.getTok().isNot(AsmToken::Hash) && 4213 Parser.getTok().isNot(AsmToken::Dollar)) { 4214 Error(Parser.getTok().getLoc(), "'#' expected"); 4215 return MatchOperand_ParseFail; 4216 } 4217 Parser.Lex(); // Eat hash token. 4218 SMLoc ExLoc = Parser.getTok().getLoc(); 4219 4220 const MCExpr *ShiftAmount; 4221 SMLoc EndLoc; 4222 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4223 Error(ExLoc, "malformed shift expression"); 4224 return MatchOperand_ParseFail; 4225 } 4226 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4227 if (!CE) { 4228 Error(ExLoc, "shift amount must be an immediate"); 4229 return MatchOperand_ParseFail; 4230 } 4231 4232 int64_t Val = CE->getValue(); 4233 if (isASR) { 4234 // Shift amount must be in [1,32] 4235 if (Val < 1 || Val > 32) { 4236 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4237 return MatchOperand_ParseFail; 4238 } 4239 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4240 if (isThumb() && Val == 32) { 4241 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4242 return MatchOperand_ParseFail; 4243 } 4244 if (Val == 32) Val = 0; 4245 } else { 4246 // Shift amount must be in [1,32] 4247 if (Val < 0 || Val > 31) { 4248 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4249 return MatchOperand_ParseFail; 4250 } 4251 } 4252 4253 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4254 4255 return MatchOperand_Success; 4256 } 4257 4258 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4259 /// of instructions. Legal values are: 4260 /// ror #n 'n' in {0, 8, 16, 24} 4261 ARMAsmParser::OperandMatchResultTy 4262 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4263 MCAsmParser &Parser = getParser(); 4264 const AsmToken &Tok = Parser.getTok(); 4265 SMLoc S = Tok.getLoc(); 4266 if (Tok.isNot(AsmToken::Identifier)) 4267 return MatchOperand_NoMatch; 4268 StringRef ShiftName = Tok.getString(); 4269 if (ShiftName != "ror" && ShiftName != "ROR") 4270 return MatchOperand_NoMatch; 4271 Parser.Lex(); // Eat the operator. 4272 4273 // A '#' and a rotate amount. 4274 if (Parser.getTok().isNot(AsmToken::Hash) && 4275 Parser.getTok().isNot(AsmToken::Dollar)) { 4276 Error(Parser.getTok().getLoc(), "'#' expected"); 4277 return MatchOperand_ParseFail; 4278 } 4279 Parser.Lex(); // Eat hash token. 4280 SMLoc ExLoc = Parser.getTok().getLoc(); 4281 4282 const MCExpr *ShiftAmount; 4283 SMLoc EndLoc; 4284 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4285 Error(ExLoc, "malformed rotate expression"); 4286 return MatchOperand_ParseFail; 4287 } 4288 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4289 if (!CE) { 4290 Error(ExLoc, "rotate amount must be an immediate"); 4291 return MatchOperand_ParseFail; 4292 } 4293 4294 int64_t Val = CE->getValue(); 4295 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4296 // normally, zero is represented in asm by omitting the rotate operand 4297 // entirely. 4298 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4299 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4300 return MatchOperand_ParseFail; 4301 } 4302 4303 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4304 4305 return MatchOperand_Success; 4306 } 4307 4308 ARMAsmParser::OperandMatchResultTy 4309 ARMAsmParser::parseModImm(OperandVector &Operands) { 4310 MCAsmParser &Parser = getParser(); 4311 MCAsmLexer &Lexer = getLexer(); 4312 int64_t Imm1, Imm2; 4313 4314 SMLoc S = Parser.getTok().getLoc(); 4315 4316 // 1) A mod_imm operand can appear in the place of a register name: 4317 // add r0, #mod_imm 4318 // add r0, r0, #mod_imm 4319 // to correctly handle the latter, we bail out as soon as we see an 4320 // identifier. 4321 // 4322 // 2) Similarly, we do not want to parse into complex operands: 4323 // mov r0, #mod_imm 4324 // mov r0, :lower16:(_foo) 4325 if (Parser.getTok().is(AsmToken::Identifier) || 4326 Parser.getTok().is(AsmToken::Colon)) 4327 return MatchOperand_NoMatch; 4328 4329 // Hash (dollar) is optional as per the ARMARM 4330 if (Parser.getTok().is(AsmToken::Hash) || 4331 Parser.getTok().is(AsmToken::Dollar)) { 4332 // Avoid parsing into complex operands (#:) 4333 if (Lexer.peekTok().is(AsmToken::Colon)) 4334 return MatchOperand_NoMatch; 4335 4336 // Eat the hash (dollar) 4337 Parser.Lex(); 4338 } 4339 4340 SMLoc Sx1, Ex1; 4341 Sx1 = Parser.getTok().getLoc(); 4342 const MCExpr *Imm1Exp; 4343 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4344 Error(Sx1, "malformed expression"); 4345 return MatchOperand_ParseFail; 4346 } 4347 4348 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4349 4350 if (CE) { 4351 // Immediate must fit within 32-bits 4352 Imm1 = CE->getValue(); 4353 int Enc = ARM_AM::getSOImmVal(Imm1); 4354 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4355 // We have a match! 4356 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4357 (Enc & 0xF00) >> 7, 4358 Sx1, Ex1)); 4359 return MatchOperand_Success; 4360 } 4361 4362 // We have parsed an immediate which is not for us, fallback to a plain 4363 // immediate. This can happen for instruction aliases. For an example, 4364 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4365 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4366 // instruction with a mod_imm operand. The alias is defined such that the 4367 // parser method is shared, that's why we have to do this here. 4368 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4369 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4370 return MatchOperand_Success; 4371 } 4372 } else { 4373 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4374 // MCFixup). Fallback to a plain immediate. 4375 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4376 return MatchOperand_Success; 4377 } 4378 4379 // From this point onward, we expect the input to be a (#bits, #rot) pair 4380 if (Parser.getTok().isNot(AsmToken::Comma)) { 4381 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4382 return MatchOperand_ParseFail; 4383 } 4384 4385 if (Imm1 & ~0xFF) { 4386 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4387 return MatchOperand_ParseFail; 4388 } 4389 4390 // Eat the comma 4391 Parser.Lex(); 4392 4393 // Repeat for #rot 4394 SMLoc Sx2, Ex2; 4395 Sx2 = Parser.getTok().getLoc(); 4396 4397 // Eat the optional hash (dollar) 4398 if (Parser.getTok().is(AsmToken::Hash) || 4399 Parser.getTok().is(AsmToken::Dollar)) 4400 Parser.Lex(); 4401 4402 const MCExpr *Imm2Exp; 4403 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4404 Error(Sx2, "malformed expression"); 4405 return MatchOperand_ParseFail; 4406 } 4407 4408 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4409 4410 if (CE) { 4411 Imm2 = CE->getValue(); 4412 if (!(Imm2 & ~0x1E)) { 4413 // We have a match! 4414 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4415 return MatchOperand_Success; 4416 } 4417 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4418 return MatchOperand_ParseFail; 4419 } else { 4420 Error(Sx2, "constant expression expected"); 4421 return MatchOperand_ParseFail; 4422 } 4423 } 4424 4425 ARMAsmParser::OperandMatchResultTy 4426 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4427 MCAsmParser &Parser = getParser(); 4428 SMLoc S = Parser.getTok().getLoc(); 4429 // The bitfield descriptor is really two operands, the LSB and the width. 4430 if (Parser.getTok().isNot(AsmToken::Hash) && 4431 Parser.getTok().isNot(AsmToken::Dollar)) { 4432 Error(Parser.getTok().getLoc(), "'#' expected"); 4433 return MatchOperand_ParseFail; 4434 } 4435 Parser.Lex(); // Eat hash token. 4436 4437 const MCExpr *LSBExpr; 4438 SMLoc E = Parser.getTok().getLoc(); 4439 if (getParser().parseExpression(LSBExpr)) { 4440 Error(E, "malformed immediate expression"); 4441 return MatchOperand_ParseFail; 4442 } 4443 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4444 if (!CE) { 4445 Error(E, "'lsb' operand must be an immediate"); 4446 return MatchOperand_ParseFail; 4447 } 4448 4449 int64_t LSB = CE->getValue(); 4450 // The LSB must be in the range [0,31] 4451 if (LSB < 0 || LSB > 31) { 4452 Error(E, "'lsb' operand must be in the range [0,31]"); 4453 return MatchOperand_ParseFail; 4454 } 4455 E = Parser.getTok().getLoc(); 4456 4457 // Expect another immediate operand. 4458 if (Parser.getTok().isNot(AsmToken::Comma)) { 4459 Error(Parser.getTok().getLoc(), "too few operands"); 4460 return MatchOperand_ParseFail; 4461 } 4462 Parser.Lex(); // Eat hash token. 4463 if (Parser.getTok().isNot(AsmToken::Hash) && 4464 Parser.getTok().isNot(AsmToken::Dollar)) { 4465 Error(Parser.getTok().getLoc(), "'#' expected"); 4466 return MatchOperand_ParseFail; 4467 } 4468 Parser.Lex(); // Eat hash token. 4469 4470 const MCExpr *WidthExpr; 4471 SMLoc EndLoc; 4472 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4473 Error(E, "malformed immediate expression"); 4474 return MatchOperand_ParseFail; 4475 } 4476 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4477 if (!CE) { 4478 Error(E, "'width' operand must be an immediate"); 4479 return MatchOperand_ParseFail; 4480 } 4481 4482 int64_t Width = CE->getValue(); 4483 // The LSB must be in the range [1,32-lsb] 4484 if (Width < 1 || Width > 32 - LSB) { 4485 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4486 return MatchOperand_ParseFail; 4487 } 4488 4489 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4490 4491 return MatchOperand_Success; 4492 } 4493 4494 ARMAsmParser::OperandMatchResultTy 4495 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4496 // Check for a post-index addressing register operand. Specifically: 4497 // postidx_reg := '+' register {, shift} 4498 // | '-' register {, shift} 4499 // | register {, shift} 4500 4501 // This method must return MatchOperand_NoMatch without consuming any tokens 4502 // in the case where there is no match, as other alternatives take other 4503 // parse methods. 4504 MCAsmParser &Parser = getParser(); 4505 AsmToken Tok = Parser.getTok(); 4506 SMLoc S = Tok.getLoc(); 4507 bool haveEaten = false; 4508 bool isAdd = true; 4509 if (Tok.is(AsmToken::Plus)) { 4510 Parser.Lex(); // Eat the '+' token. 4511 haveEaten = true; 4512 } else if (Tok.is(AsmToken::Minus)) { 4513 Parser.Lex(); // Eat the '-' token. 4514 isAdd = false; 4515 haveEaten = true; 4516 } 4517 4518 SMLoc E = Parser.getTok().getEndLoc(); 4519 int Reg = tryParseRegister(); 4520 if (Reg == -1) { 4521 if (!haveEaten) 4522 return MatchOperand_NoMatch; 4523 Error(Parser.getTok().getLoc(), "register expected"); 4524 return MatchOperand_ParseFail; 4525 } 4526 4527 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4528 unsigned ShiftImm = 0; 4529 if (Parser.getTok().is(AsmToken::Comma)) { 4530 Parser.Lex(); // Eat the ','. 4531 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4532 return MatchOperand_ParseFail; 4533 4534 // FIXME: Only approximates end...may include intervening whitespace. 4535 E = Parser.getTok().getLoc(); 4536 } 4537 4538 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4539 ShiftImm, S, E)); 4540 4541 return MatchOperand_Success; 4542 } 4543 4544 ARMAsmParser::OperandMatchResultTy 4545 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4546 // Check for a post-index addressing register operand. Specifically: 4547 // am3offset := '+' register 4548 // | '-' register 4549 // | register 4550 // | # imm 4551 // | # + imm 4552 // | # - imm 4553 4554 // This method must return MatchOperand_NoMatch without consuming any tokens 4555 // in the case where there is no match, as other alternatives take other 4556 // parse methods. 4557 MCAsmParser &Parser = getParser(); 4558 AsmToken Tok = Parser.getTok(); 4559 SMLoc S = Tok.getLoc(); 4560 4561 // Do immediates first, as we always parse those if we have a '#'. 4562 if (Parser.getTok().is(AsmToken::Hash) || 4563 Parser.getTok().is(AsmToken::Dollar)) { 4564 Parser.Lex(); // Eat '#' or '$'. 4565 // Explicitly look for a '-', as we need to encode negative zero 4566 // differently. 4567 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4568 const MCExpr *Offset; 4569 SMLoc E; 4570 if (getParser().parseExpression(Offset, E)) 4571 return MatchOperand_ParseFail; 4572 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4573 if (!CE) { 4574 Error(S, "constant expression expected"); 4575 return MatchOperand_ParseFail; 4576 } 4577 // Negative zero is encoded as the flag value INT32_MIN. 4578 int32_t Val = CE->getValue(); 4579 if (isNegative && Val == 0) 4580 Val = INT32_MIN; 4581 4582 Operands.push_back( 4583 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4584 4585 return MatchOperand_Success; 4586 } 4587 4588 4589 bool haveEaten = false; 4590 bool isAdd = true; 4591 if (Tok.is(AsmToken::Plus)) { 4592 Parser.Lex(); // Eat the '+' token. 4593 haveEaten = true; 4594 } else if (Tok.is(AsmToken::Minus)) { 4595 Parser.Lex(); // Eat the '-' token. 4596 isAdd = false; 4597 haveEaten = true; 4598 } 4599 4600 Tok = Parser.getTok(); 4601 int Reg = tryParseRegister(); 4602 if (Reg == -1) { 4603 if (!haveEaten) 4604 return MatchOperand_NoMatch; 4605 Error(Tok.getLoc(), "register expected"); 4606 return MatchOperand_ParseFail; 4607 } 4608 4609 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4610 0, S, Tok.getEndLoc())); 4611 4612 return MatchOperand_Success; 4613 } 4614 4615 /// Convert parsed operands to MCInst. Needed here because this instruction 4616 /// only has two register operands, but multiplication is commutative so 4617 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4618 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4619 const OperandVector &Operands) { 4620 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4621 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4622 // If we have a three-operand form, make sure to set Rn to be the operand 4623 // that isn't the same as Rd. 4624 unsigned RegOp = 4; 4625 if (Operands.size() == 6 && 4626 ((ARMOperand &)*Operands[4]).getReg() == 4627 ((ARMOperand &)*Operands[3]).getReg()) 4628 RegOp = 5; 4629 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4630 Inst.addOperand(Inst.getOperand(0)); 4631 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4632 } 4633 4634 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4635 const OperandVector &Operands) { 4636 int CondOp = -1, ImmOp = -1; 4637 switch(Inst.getOpcode()) { 4638 case ARM::tB: 4639 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4640 4641 case ARM::t2B: 4642 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4643 4644 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4645 } 4646 // first decide whether or not the branch should be conditional 4647 // by looking at it's location relative to an IT block 4648 if(inITBlock()) { 4649 // inside an IT block we cannot have any conditional branches. any 4650 // such instructions needs to be converted to unconditional form 4651 switch(Inst.getOpcode()) { 4652 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4653 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4654 } 4655 } else { 4656 // outside IT blocks we can only have unconditional branches with AL 4657 // condition code or conditional branches with non-AL condition code 4658 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4659 switch(Inst.getOpcode()) { 4660 case ARM::tB: 4661 case ARM::tBcc: 4662 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4663 break; 4664 case ARM::t2B: 4665 case ARM::t2Bcc: 4666 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4667 break; 4668 } 4669 } 4670 4671 // now decide on encoding size based on branch target range 4672 switch(Inst.getOpcode()) { 4673 // classify tB as either t2B or t1B based on range of immediate operand 4674 case ARM::tB: { 4675 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4676 if (!op.isSignedOffset<11, 1>() && isThumbTwo()) 4677 Inst.setOpcode(ARM::t2B); 4678 break; 4679 } 4680 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4681 case ARM::tBcc: { 4682 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4683 if (!op.isSignedOffset<8, 1>() && isThumbTwo()) 4684 Inst.setOpcode(ARM::t2Bcc); 4685 break; 4686 } 4687 } 4688 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4689 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4690 } 4691 4692 /// Parse an ARM memory expression, return false if successful else return true 4693 /// or an error. The first token must be a '[' when called. 4694 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4695 MCAsmParser &Parser = getParser(); 4696 SMLoc S, E; 4697 assert(Parser.getTok().is(AsmToken::LBrac) && 4698 "Token is not a Left Bracket"); 4699 S = Parser.getTok().getLoc(); 4700 Parser.Lex(); // Eat left bracket token. 4701 4702 const AsmToken &BaseRegTok = Parser.getTok(); 4703 int BaseRegNum = tryParseRegister(); 4704 if (BaseRegNum == -1) 4705 return Error(BaseRegTok.getLoc(), "register expected"); 4706 4707 // The next token must either be a comma, a colon or a closing bracket. 4708 const AsmToken &Tok = Parser.getTok(); 4709 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4710 !Tok.is(AsmToken::RBrac)) 4711 return Error(Tok.getLoc(), "malformed memory operand"); 4712 4713 if (Tok.is(AsmToken::RBrac)) { 4714 E = Tok.getEndLoc(); 4715 Parser.Lex(); // Eat right bracket token. 4716 4717 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4718 ARM_AM::no_shift, 0, 0, false, 4719 S, E)); 4720 4721 // If there's a pre-indexing writeback marker, '!', just add it as a token 4722 // operand. It's rather odd, but syntactically valid. 4723 if (Parser.getTok().is(AsmToken::Exclaim)) { 4724 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4725 Parser.Lex(); // Eat the '!'. 4726 } 4727 4728 return false; 4729 } 4730 4731 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4732 "Lost colon or comma in memory operand?!"); 4733 if (Tok.is(AsmToken::Comma)) { 4734 Parser.Lex(); // Eat the comma. 4735 } 4736 4737 // If we have a ':', it's an alignment specifier. 4738 if (Parser.getTok().is(AsmToken::Colon)) { 4739 Parser.Lex(); // Eat the ':'. 4740 E = Parser.getTok().getLoc(); 4741 SMLoc AlignmentLoc = Tok.getLoc(); 4742 4743 const MCExpr *Expr; 4744 if (getParser().parseExpression(Expr)) 4745 return true; 4746 4747 // The expression has to be a constant. Memory references with relocations 4748 // don't come through here, as they use the <label> forms of the relevant 4749 // instructions. 4750 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4751 if (!CE) 4752 return Error (E, "constant expression expected"); 4753 4754 unsigned Align = 0; 4755 switch (CE->getValue()) { 4756 default: 4757 return Error(E, 4758 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4759 case 16: Align = 2; break; 4760 case 32: Align = 4; break; 4761 case 64: Align = 8; break; 4762 case 128: Align = 16; break; 4763 case 256: Align = 32; break; 4764 } 4765 4766 // Now we should have the closing ']' 4767 if (Parser.getTok().isNot(AsmToken::RBrac)) 4768 return Error(Parser.getTok().getLoc(), "']' expected"); 4769 E = Parser.getTok().getEndLoc(); 4770 Parser.Lex(); // Eat right bracket token. 4771 4772 // Don't worry about range checking the value here. That's handled by 4773 // the is*() predicates. 4774 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4775 ARM_AM::no_shift, 0, Align, 4776 false, S, E, AlignmentLoc)); 4777 4778 // If there's a pre-indexing writeback marker, '!', just add it as a token 4779 // operand. 4780 if (Parser.getTok().is(AsmToken::Exclaim)) { 4781 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4782 Parser.Lex(); // Eat the '!'. 4783 } 4784 4785 return false; 4786 } 4787 4788 // If we have a '#', it's an immediate offset, else assume it's a register 4789 // offset. Be friendly and also accept a plain integer (without a leading 4790 // hash) for gas compatibility. 4791 if (Parser.getTok().is(AsmToken::Hash) || 4792 Parser.getTok().is(AsmToken::Dollar) || 4793 Parser.getTok().is(AsmToken::Integer)) { 4794 if (Parser.getTok().isNot(AsmToken::Integer)) 4795 Parser.Lex(); // Eat '#' or '$'. 4796 E = Parser.getTok().getLoc(); 4797 4798 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4799 const MCExpr *Offset; 4800 if (getParser().parseExpression(Offset)) 4801 return true; 4802 4803 // The expression has to be a constant. Memory references with relocations 4804 // don't come through here, as they use the <label> forms of the relevant 4805 // instructions. 4806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4807 if (!CE) 4808 return Error (E, "constant expression expected"); 4809 4810 // If the constant was #-0, represent it as INT32_MIN. 4811 int32_t Val = CE->getValue(); 4812 if (isNegative && Val == 0) 4813 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4814 4815 // Now we should have the closing ']' 4816 if (Parser.getTok().isNot(AsmToken::RBrac)) 4817 return Error(Parser.getTok().getLoc(), "']' expected"); 4818 E = Parser.getTok().getEndLoc(); 4819 Parser.Lex(); // Eat right bracket token. 4820 4821 // Don't worry about range checking the value here. That's handled by 4822 // the is*() predicates. 4823 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4824 ARM_AM::no_shift, 0, 0, 4825 false, S, E)); 4826 4827 // If there's a pre-indexing writeback marker, '!', just add it as a token 4828 // operand. 4829 if (Parser.getTok().is(AsmToken::Exclaim)) { 4830 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4831 Parser.Lex(); // Eat the '!'. 4832 } 4833 4834 return false; 4835 } 4836 4837 // The register offset is optionally preceded by a '+' or '-' 4838 bool isNegative = false; 4839 if (Parser.getTok().is(AsmToken::Minus)) { 4840 isNegative = true; 4841 Parser.Lex(); // Eat the '-'. 4842 } else if (Parser.getTok().is(AsmToken::Plus)) { 4843 // Nothing to do. 4844 Parser.Lex(); // Eat the '+'. 4845 } 4846 4847 E = Parser.getTok().getLoc(); 4848 int OffsetRegNum = tryParseRegister(); 4849 if (OffsetRegNum == -1) 4850 return Error(E, "register expected"); 4851 4852 // If there's a shift operator, handle it. 4853 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4854 unsigned ShiftImm = 0; 4855 if (Parser.getTok().is(AsmToken::Comma)) { 4856 Parser.Lex(); // Eat the ','. 4857 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4858 return true; 4859 } 4860 4861 // Now we should have the closing ']' 4862 if (Parser.getTok().isNot(AsmToken::RBrac)) 4863 return Error(Parser.getTok().getLoc(), "']' expected"); 4864 E = Parser.getTok().getEndLoc(); 4865 Parser.Lex(); // Eat right bracket token. 4866 4867 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4868 ShiftType, ShiftImm, 0, isNegative, 4869 S, E)); 4870 4871 // If there's a pre-indexing writeback marker, '!', just add it as a token 4872 // operand. 4873 if (Parser.getTok().is(AsmToken::Exclaim)) { 4874 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4875 Parser.Lex(); // Eat the '!'. 4876 } 4877 4878 return false; 4879 } 4880 4881 /// parseMemRegOffsetShift - one of these two: 4882 /// ( lsl | lsr | asr | ror ) , # shift_amount 4883 /// rrx 4884 /// return true if it parses a shift otherwise it returns false. 4885 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4886 unsigned &Amount) { 4887 MCAsmParser &Parser = getParser(); 4888 SMLoc Loc = Parser.getTok().getLoc(); 4889 const AsmToken &Tok = Parser.getTok(); 4890 if (Tok.isNot(AsmToken::Identifier)) 4891 return true; 4892 StringRef ShiftName = Tok.getString(); 4893 if (ShiftName == "lsl" || ShiftName == "LSL" || 4894 ShiftName == "asl" || ShiftName == "ASL") 4895 St = ARM_AM::lsl; 4896 else if (ShiftName == "lsr" || ShiftName == "LSR") 4897 St = ARM_AM::lsr; 4898 else if (ShiftName == "asr" || ShiftName == "ASR") 4899 St = ARM_AM::asr; 4900 else if (ShiftName == "ror" || ShiftName == "ROR") 4901 St = ARM_AM::ror; 4902 else if (ShiftName == "rrx" || ShiftName == "RRX") 4903 St = ARM_AM::rrx; 4904 else 4905 return Error(Loc, "illegal shift operator"); 4906 Parser.Lex(); // Eat shift type token. 4907 4908 // rrx stands alone. 4909 Amount = 0; 4910 if (St != ARM_AM::rrx) { 4911 Loc = Parser.getTok().getLoc(); 4912 // A '#' and a shift amount. 4913 const AsmToken &HashTok = Parser.getTok(); 4914 if (HashTok.isNot(AsmToken::Hash) && 4915 HashTok.isNot(AsmToken::Dollar)) 4916 return Error(HashTok.getLoc(), "'#' expected"); 4917 Parser.Lex(); // Eat hash token. 4918 4919 const MCExpr *Expr; 4920 if (getParser().parseExpression(Expr)) 4921 return true; 4922 // Range check the immediate. 4923 // lsl, ror: 0 <= imm <= 31 4924 // lsr, asr: 0 <= imm <= 32 4925 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4926 if (!CE) 4927 return Error(Loc, "shift amount must be an immediate"); 4928 int64_t Imm = CE->getValue(); 4929 if (Imm < 0 || 4930 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 4931 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 4932 return Error(Loc, "immediate shift value out of range"); 4933 // If <ShiftTy> #0, turn it into a no_shift. 4934 if (Imm == 0) 4935 St = ARM_AM::lsl; 4936 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 4937 if (Imm == 32) 4938 Imm = 0; 4939 Amount = Imm; 4940 } 4941 4942 return false; 4943 } 4944 4945 /// parseFPImm - A floating point immediate expression operand. 4946 ARMAsmParser::OperandMatchResultTy 4947 ARMAsmParser::parseFPImm(OperandVector &Operands) { 4948 MCAsmParser &Parser = getParser(); 4949 // Anything that can accept a floating point constant as an operand 4950 // needs to go through here, as the regular parseExpression is 4951 // integer only. 4952 // 4953 // This routine still creates a generic Immediate operand, containing 4954 // a bitcast of the 64-bit floating point value. The various operands 4955 // that accept floats can check whether the value is valid for them 4956 // via the standard is*() predicates. 4957 4958 SMLoc S = Parser.getTok().getLoc(); 4959 4960 if (Parser.getTok().isNot(AsmToken::Hash) && 4961 Parser.getTok().isNot(AsmToken::Dollar)) 4962 return MatchOperand_NoMatch; 4963 4964 // Disambiguate the VMOV forms that can accept an FP immediate. 4965 // vmov.f32 <sreg>, #imm 4966 // vmov.f64 <dreg>, #imm 4967 // vmov.f32 <dreg>, #imm @ vector f32x2 4968 // vmov.f32 <qreg>, #imm @ vector f32x4 4969 // 4970 // There are also the NEON VMOV instructions which expect an 4971 // integer constant. Make sure we don't try to parse an FPImm 4972 // for these: 4973 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 4974 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 4975 bool isVmovf = TyOp.isToken() && 4976 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); 4977 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 4978 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 4979 Mnemonic.getToken() == "fconsts"); 4980 if (!(isVmovf || isFconst)) 4981 return MatchOperand_NoMatch; 4982 4983 Parser.Lex(); // Eat '#' or '$'. 4984 4985 // Handle negation, as that still comes through as a separate token. 4986 bool isNegative = false; 4987 if (Parser.getTok().is(AsmToken::Minus)) { 4988 isNegative = true; 4989 Parser.Lex(); 4990 } 4991 const AsmToken &Tok = Parser.getTok(); 4992 SMLoc Loc = Tok.getLoc(); 4993 if (Tok.is(AsmToken::Real) && isVmovf) { 4994 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 4995 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 4996 // If we had a '-' in front, toggle the sign bit. 4997 IntVal ^= (uint64_t)isNegative << 31; 4998 Parser.Lex(); // Eat the token. 4999 Operands.push_back(ARMOperand::CreateImm( 5000 MCConstantExpr::create(IntVal, getContext()), 5001 S, Parser.getTok().getLoc())); 5002 return MatchOperand_Success; 5003 } 5004 // Also handle plain integers. Instructions which allow floating point 5005 // immediates also allow a raw encoded 8-bit value. 5006 if (Tok.is(AsmToken::Integer) && isFconst) { 5007 int64_t Val = Tok.getIntVal(); 5008 Parser.Lex(); // Eat the token. 5009 if (Val > 255 || Val < 0) { 5010 Error(Loc, "encoded floating point value out of range"); 5011 return MatchOperand_ParseFail; 5012 } 5013 float RealVal = ARM_AM::getFPImmFloat(Val); 5014 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5015 5016 Operands.push_back(ARMOperand::CreateImm( 5017 MCConstantExpr::create(Val, getContext()), S, 5018 Parser.getTok().getLoc())); 5019 return MatchOperand_Success; 5020 } 5021 5022 Error(Loc, "invalid floating point immediate"); 5023 return MatchOperand_ParseFail; 5024 } 5025 5026 /// Parse a arm instruction operand. For now this parses the operand regardless 5027 /// of the mnemonic. 5028 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5029 MCAsmParser &Parser = getParser(); 5030 SMLoc S, E; 5031 5032 // Check if the current operand has a custom associated parser, if so, try to 5033 // custom parse the operand, or fallback to the general approach. 5034 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5035 if (ResTy == MatchOperand_Success) 5036 return false; 5037 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5038 // there was a match, but an error occurred, in which case, just return that 5039 // the operand parsing failed. 5040 if (ResTy == MatchOperand_ParseFail) 5041 return true; 5042 5043 switch (getLexer().getKind()) { 5044 default: 5045 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5046 return true; 5047 case AsmToken::Identifier: { 5048 // If we've seen a branch mnemonic, the next operand must be a label. This 5049 // is true even if the label is a register name. So "br r1" means branch to 5050 // label "r1". 5051 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5052 if (!ExpectLabel) { 5053 if (!tryParseRegisterWithWriteBack(Operands)) 5054 return false; 5055 int Res = tryParseShiftRegister(Operands); 5056 if (Res == 0) // success 5057 return false; 5058 else if (Res == -1) // irrecoverable error 5059 return true; 5060 // If this is VMRS, check for the apsr_nzcv operand. 5061 if (Mnemonic == "vmrs" && 5062 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5063 S = Parser.getTok().getLoc(); 5064 Parser.Lex(); 5065 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5066 return false; 5067 } 5068 } 5069 5070 // Fall though for the Identifier case that is not a register or a 5071 // special name. 5072 } 5073 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5074 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5075 case AsmToken::String: // quoted label names. 5076 case AsmToken::Dot: { // . as a branch target 5077 // This was not a register so parse other operands that start with an 5078 // identifier (like labels) as expressions and create them as immediates. 5079 const MCExpr *IdVal; 5080 S = Parser.getTok().getLoc(); 5081 if (getParser().parseExpression(IdVal)) 5082 return true; 5083 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5084 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5085 return false; 5086 } 5087 case AsmToken::LBrac: 5088 return parseMemory(Operands); 5089 case AsmToken::LCurly: 5090 return parseRegisterList(Operands); 5091 case AsmToken::Dollar: 5092 case AsmToken::Hash: { 5093 // #42 -> immediate. 5094 S = Parser.getTok().getLoc(); 5095 Parser.Lex(); 5096 5097 if (Parser.getTok().isNot(AsmToken::Colon)) { 5098 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5099 const MCExpr *ImmVal; 5100 if (getParser().parseExpression(ImmVal)) 5101 return true; 5102 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5103 if (CE) { 5104 int32_t Val = CE->getValue(); 5105 if (isNegative && Val == 0) 5106 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5107 } 5108 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5109 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5110 5111 // There can be a trailing '!' on operands that we want as a separate 5112 // '!' Token operand. Handle that here. For example, the compatibility 5113 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5114 if (Parser.getTok().is(AsmToken::Exclaim)) { 5115 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5116 Parser.getTok().getLoc())); 5117 Parser.Lex(); // Eat exclaim token 5118 } 5119 return false; 5120 } 5121 // w/ a ':' after the '#', it's just like a plain ':'. 5122 // FALLTHROUGH 5123 } 5124 case AsmToken::Colon: { 5125 S = Parser.getTok().getLoc(); 5126 // ":lower16:" and ":upper16:" expression prefixes 5127 // FIXME: Check it's an expression prefix, 5128 // e.g. (FOO - :lower16:BAR) isn't legal. 5129 ARMMCExpr::VariantKind RefKind; 5130 if (parsePrefix(RefKind)) 5131 return true; 5132 5133 const MCExpr *SubExprVal; 5134 if (getParser().parseExpression(SubExprVal)) 5135 return true; 5136 5137 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5138 getContext()); 5139 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5140 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5141 return false; 5142 } 5143 case AsmToken::Equal: { 5144 S = Parser.getTok().getLoc(); 5145 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5146 return Error(S, "unexpected token in operand"); 5147 5148 Parser.Lex(); // Eat '=' 5149 const MCExpr *SubExprVal; 5150 if (getParser().parseExpression(SubExprVal)) 5151 return true; 5152 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5153 5154 const MCExpr *CPLoc = 5155 getTargetStreamer().addConstantPoolEntry(SubExprVal, S); 5156 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5157 return false; 5158 } 5159 } 5160 } 5161 5162 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5163 // :lower16: and :upper16:. 5164 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5165 MCAsmParser &Parser = getParser(); 5166 RefKind = ARMMCExpr::VK_ARM_None; 5167 5168 // consume an optional '#' (GNU compatibility) 5169 if (getLexer().is(AsmToken::Hash)) 5170 Parser.Lex(); 5171 5172 // :lower16: and :upper16: modifiers 5173 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5174 Parser.Lex(); // Eat ':' 5175 5176 if (getLexer().isNot(AsmToken::Identifier)) { 5177 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5178 return true; 5179 } 5180 5181 enum { 5182 COFF = (1 << MCObjectFileInfo::IsCOFF), 5183 ELF = (1 << MCObjectFileInfo::IsELF), 5184 MACHO = (1 << MCObjectFileInfo::IsMachO) 5185 }; 5186 static const struct PrefixEntry { 5187 const char *Spelling; 5188 ARMMCExpr::VariantKind VariantKind; 5189 uint8_t SupportedFormats; 5190 } PrefixEntries[] = { 5191 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5192 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5193 }; 5194 5195 StringRef IDVal = Parser.getTok().getIdentifier(); 5196 5197 const auto &Prefix = 5198 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5199 [&IDVal](const PrefixEntry &PE) { 5200 return PE.Spelling == IDVal; 5201 }); 5202 if (Prefix == std::end(PrefixEntries)) { 5203 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5204 return true; 5205 } 5206 5207 uint8_t CurrentFormat; 5208 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5209 case MCObjectFileInfo::IsMachO: 5210 CurrentFormat = MACHO; 5211 break; 5212 case MCObjectFileInfo::IsELF: 5213 CurrentFormat = ELF; 5214 break; 5215 case MCObjectFileInfo::IsCOFF: 5216 CurrentFormat = COFF; 5217 break; 5218 } 5219 5220 if (~Prefix->SupportedFormats & CurrentFormat) { 5221 Error(Parser.getTok().getLoc(), 5222 "cannot represent relocation in the current file format"); 5223 return true; 5224 } 5225 5226 RefKind = Prefix->VariantKind; 5227 Parser.Lex(); 5228 5229 if (getLexer().isNot(AsmToken::Colon)) { 5230 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5231 return true; 5232 } 5233 Parser.Lex(); // Eat the last ':' 5234 5235 return false; 5236 } 5237 5238 /// \brief Given a mnemonic, split out possible predication code and carry 5239 /// setting letters to form a canonical mnemonic and flags. 5240 // 5241 // FIXME: Would be nice to autogen this. 5242 // FIXME: This is a bit of a maze of special cases. 5243 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5244 unsigned &PredicationCode, 5245 bool &CarrySetting, 5246 unsigned &ProcessorIMod, 5247 StringRef &ITMask) { 5248 PredicationCode = ARMCC::AL; 5249 CarrySetting = false; 5250 ProcessorIMod = 0; 5251 5252 // Ignore some mnemonics we know aren't predicated forms. 5253 // 5254 // FIXME: Would be nice to autogen this. 5255 if ((Mnemonic == "movs" && isThumb()) || 5256 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5257 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5258 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5259 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5260 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5261 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5262 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5263 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5264 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5265 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5266 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5267 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5268 Mnemonic.startswith("vsel")) 5269 return Mnemonic; 5270 5271 // First, split out any predication code. Ignore mnemonics we know aren't 5272 // predicated but do have a carry-set and so weren't caught above. 5273 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5274 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5275 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5276 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5277 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5278 .Case("eq", ARMCC::EQ) 5279 .Case("ne", ARMCC::NE) 5280 .Case("hs", ARMCC::HS) 5281 .Case("cs", ARMCC::HS) 5282 .Case("lo", ARMCC::LO) 5283 .Case("cc", ARMCC::LO) 5284 .Case("mi", ARMCC::MI) 5285 .Case("pl", ARMCC::PL) 5286 .Case("vs", ARMCC::VS) 5287 .Case("vc", ARMCC::VC) 5288 .Case("hi", ARMCC::HI) 5289 .Case("ls", ARMCC::LS) 5290 .Case("ge", ARMCC::GE) 5291 .Case("lt", ARMCC::LT) 5292 .Case("gt", ARMCC::GT) 5293 .Case("le", ARMCC::LE) 5294 .Case("al", ARMCC::AL) 5295 .Default(~0U); 5296 if (CC != ~0U) { 5297 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5298 PredicationCode = CC; 5299 } 5300 } 5301 5302 // Next, determine if we have a carry setting bit. We explicitly ignore all 5303 // the instructions we know end in 's'. 5304 if (Mnemonic.endswith("s") && 5305 !(Mnemonic == "cps" || Mnemonic == "mls" || 5306 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5307 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5308 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5309 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5310 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5311 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5312 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5313 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5314 (Mnemonic == "movs" && isThumb()))) { 5315 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5316 CarrySetting = true; 5317 } 5318 5319 // The "cps" instruction can have a interrupt mode operand which is glued into 5320 // the mnemonic. Check if this is the case, split it and parse the imod op 5321 if (Mnemonic.startswith("cps")) { 5322 // Split out any imod code. 5323 unsigned IMod = 5324 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5325 .Case("ie", ARM_PROC::IE) 5326 .Case("id", ARM_PROC::ID) 5327 .Default(~0U); 5328 if (IMod != ~0U) { 5329 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5330 ProcessorIMod = IMod; 5331 } 5332 } 5333 5334 // The "it" instruction has the condition mask on the end of the mnemonic. 5335 if (Mnemonic.startswith("it")) { 5336 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5337 Mnemonic = Mnemonic.slice(0, 2); 5338 } 5339 5340 return Mnemonic; 5341 } 5342 5343 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5344 /// inclusion of carry set or predication code operands. 5345 // 5346 // FIXME: It would be nice to autogen this. 5347 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5348 bool &CanAcceptCarrySet, 5349 bool &CanAcceptPredicationCode) { 5350 CanAcceptCarrySet = 5351 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5352 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5353 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5354 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5355 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5356 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5357 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5358 (!isThumb() && 5359 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5360 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5361 5362 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5363 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5364 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5365 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5366 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5367 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5368 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5369 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5370 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5371 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5372 (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { 5373 // These mnemonics are never predicable 5374 CanAcceptPredicationCode = false; 5375 } else if (!isThumb()) { 5376 // Some instructions are only predicable in Thumb mode 5377 CanAcceptPredicationCode = 5378 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5379 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5380 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5381 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5382 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5383 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5384 !Mnemonic.startswith("srs"); 5385 } else if (isThumbOne()) { 5386 if (hasV6MOps()) 5387 CanAcceptPredicationCode = Mnemonic != "movs"; 5388 else 5389 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5390 } else 5391 CanAcceptPredicationCode = true; 5392 } 5393 5394 // \brief Some Thumb instructions have two operand forms that are not 5395 // available as three operand, convert to two operand form if possible. 5396 // 5397 // FIXME: We would really like to be able to tablegen'erate this. 5398 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5399 bool CarrySetting, 5400 OperandVector &Operands) { 5401 if (Operands.size() != 6) 5402 return; 5403 5404 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5405 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5406 if (!Op3.isReg() || !Op4.isReg()) 5407 return; 5408 5409 auto Op3Reg = Op3.getReg(); 5410 auto Op4Reg = Op4.getReg(); 5411 5412 // For most Thumb2 cases we just generate the 3 operand form and reduce 5413 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5414 // won't accept SP or PC so we do the transformation here taking care 5415 // with immediate range in the 'add sp, sp #imm' case. 5416 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5417 if (isThumbTwo()) { 5418 if (Mnemonic != "add") 5419 return; 5420 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5421 (Op5.isReg() && Op5.getReg() == ARM::PC); 5422 if (!TryTransform) { 5423 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5424 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5425 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5426 Op5.isImm() && !Op5.isImm0_508s4()); 5427 } 5428 if (!TryTransform) 5429 return; 5430 } else if (!isThumbOne()) 5431 return; 5432 5433 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5434 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5435 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5436 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5437 return; 5438 5439 // If first 2 operands of a 3 operand instruction are the same 5440 // then transform to 2 operand version of the same instruction 5441 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5442 bool Transform = Op3Reg == Op4Reg; 5443 5444 // For communtative operations, we might be able to transform if we swap 5445 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5446 // as tADDrsp. 5447 const ARMOperand *LastOp = &Op5; 5448 bool Swap = false; 5449 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5450 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5451 Mnemonic == "and" || Mnemonic == "eor" || 5452 Mnemonic == "adc" || Mnemonic == "orr")) { 5453 Swap = true; 5454 LastOp = &Op4; 5455 Transform = true; 5456 } 5457 5458 // If both registers are the same then remove one of them from 5459 // the operand list, with certain exceptions. 5460 if (Transform) { 5461 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5462 // 2 operand forms don't exist. 5463 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5464 LastOp->isReg()) 5465 Transform = false; 5466 5467 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5468 // 3-bits because the ARMARM says not to. 5469 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5470 Transform = false; 5471 } 5472 5473 if (Transform) { 5474 if (Swap) 5475 std::swap(Op4, Op5); 5476 Operands.erase(Operands.begin() + 3); 5477 } 5478 } 5479 5480 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5481 OperandVector &Operands) { 5482 // FIXME: This is all horribly hacky. We really need a better way to deal 5483 // with optional operands like this in the matcher table. 5484 5485 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5486 // another does not. Specifically, the MOVW instruction does not. So we 5487 // special case it here and remove the defaulted (non-setting) cc_out 5488 // operand if that's the instruction we're trying to match. 5489 // 5490 // We do this as post-processing of the explicit operands rather than just 5491 // conditionally adding the cc_out in the first place because we need 5492 // to check the type of the parsed immediate operand. 5493 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5494 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5495 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5496 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5497 return true; 5498 5499 // Register-register 'add' for thumb does not have a cc_out operand 5500 // when there are only two register operands. 5501 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5502 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5503 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5504 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5505 return true; 5506 // Register-register 'add' for thumb does not have a cc_out operand 5507 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5508 // have to check the immediate range here since Thumb2 has a variant 5509 // that can handle a different range and has a cc_out operand. 5510 if (((isThumb() && Mnemonic == "add") || 5511 (isThumbTwo() && Mnemonic == "sub")) && 5512 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5513 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5514 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5515 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5516 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5517 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5518 return true; 5519 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5520 // imm0_4095 variant. That's the least-preferred variant when 5521 // selecting via the generic "add" mnemonic, so to know that we 5522 // should remove the cc_out operand, we have to explicitly check that 5523 // it's not one of the other variants. Ugh. 5524 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5525 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5526 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5527 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5528 // Nest conditions rather than one big 'if' statement for readability. 5529 // 5530 // If both registers are low, we're in an IT block, and the immediate is 5531 // in range, we should use encoding T1 instead, which has a cc_out. 5532 if (inITBlock() && 5533 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5534 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5535 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5536 return false; 5537 // Check against T3. If the second register is the PC, this is an 5538 // alternate form of ADR, which uses encoding T4, so check for that too. 5539 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5540 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5541 return false; 5542 5543 // Otherwise, we use encoding T4, which does not have a cc_out 5544 // operand. 5545 return true; 5546 } 5547 5548 // The thumb2 multiply instruction doesn't have a CCOut register, so 5549 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5550 // use the 16-bit encoding or not. 5551 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5552 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5553 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5554 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5555 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5556 // If the registers aren't low regs, the destination reg isn't the 5557 // same as one of the source regs, or the cc_out operand is zero 5558 // outside of an IT block, we have to use the 32-bit encoding, so 5559 // remove the cc_out operand. 5560 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5561 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5562 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5563 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5564 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5565 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5566 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5567 return true; 5568 5569 // Also check the 'mul' syntax variant that doesn't specify an explicit 5570 // destination register. 5571 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5572 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5573 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5574 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5575 // If the registers aren't low regs or the cc_out operand is zero 5576 // outside of an IT block, we have to use the 32-bit encoding, so 5577 // remove the cc_out operand. 5578 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5579 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5580 !inITBlock())) 5581 return true; 5582 5583 5584 5585 // Register-register 'add/sub' for thumb does not have a cc_out operand 5586 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5587 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5588 // right, this will result in better diagnostics (which operand is off) 5589 // anyway. 5590 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5591 (Operands.size() == 5 || Operands.size() == 6) && 5592 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5593 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5594 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5595 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5596 (Operands.size() == 6 && 5597 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5598 return true; 5599 5600 return false; 5601 } 5602 5603 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5604 OperandVector &Operands) { 5605 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5606 unsigned RegIdx = 3; 5607 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5608 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5609 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5610 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5611 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5612 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5613 RegIdx = 4; 5614 5615 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5616 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5617 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5618 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5619 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5620 return true; 5621 } 5622 return false; 5623 } 5624 5625 static bool isDataTypeToken(StringRef Tok) { 5626 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5627 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5628 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5629 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5630 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5631 Tok == ".f" || Tok == ".d"; 5632 } 5633 5634 // FIXME: This bit should probably be handled via an explicit match class 5635 // in the .td files that matches the suffix instead of having it be 5636 // a literal string token the way it is now. 5637 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5638 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5639 } 5640 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5641 unsigned VariantID); 5642 5643 static bool RequiresVFPRegListValidation(StringRef Inst, 5644 bool &AcceptSinglePrecisionOnly, 5645 bool &AcceptDoublePrecisionOnly) { 5646 if (Inst.size() < 7) 5647 return false; 5648 5649 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5650 StringRef AddressingMode = Inst.substr(4, 2); 5651 if (AddressingMode == "ia" || AddressingMode == "db" || 5652 AddressingMode == "ea" || AddressingMode == "fd") { 5653 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5654 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5655 return true; 5656 } 5657 } 5658 5659 return false; 5660 } 5661 5662 /// Parse an arm instruction mnemonic followed by its operands. 5663 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5664 SMLoc NameLoc, OperandVector &Operands) { 5665 MCAsmParser &Parser = getParser(); 5666 // FIXME: Can this be done via tablegen in some fashion? 5667 bool RequireVFPRegisterListCheck; 5668 bool AcceptSinglePrecisionOnly; 5669 bool AcceptDoublePrecisionOnly; 5670 RequireVFPRegisterListCheck = 5671 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5672 AcceptDoublePrecisionOnly); 5673 5674 // Apply mnemonic aliases before doing anything else, as the destination 5675 // mnemonic may include suffices and we want to handle them normally. 5676 // The generic tblgen'erated code does this later, at the start of 5677 // MatchInstructionImpl(), but that's too late for aliases that include 5678 // any sort of suffix. 5679 uint64_t AvailableFeatures = getAvailableFeatures(); 5680 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5681 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5682 5683 // First check for the ARM-specific .req directive. 5684 if (Parser.getTok().is(AsmToken::Identifier) && 5685 Parser.getTok().getIdentifier() == ".req") { 5686 parseDirectiveReq(Name, NameLoc); 5687 // We always return 'error' for this, as we're done with this 5688 // statement and don't need to match the 'instruction." 5689 return true; 5690 } 5691 5692 // Create the leading tokens for the mnemonic, split by '.' characters. 5693 size_t Start = 0, Next = Name.find('.'); 5694 StringRef Mnemonic = Name.slice(Start, Next); 5695 5696 // Split out the predication code and carry setting flag from the mnemonic. 5697 unsigned PredicationCode; 5698 unsigned ProcessorIMod; 5699 bool CarrySetting; 5700 StringRef ITMask; 5701 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5702 ProcessorIMod, ITMask); 5703 5704 // In Thumb1, only the branch (B) instruction can be predicated. 5705 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5706 Parser.eatToEndOfStatement(); 5707 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5708 } 5709 5710 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5711 5712 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5713 // is the mask as it will be for the IT encoding if the conditional 5714 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5715 // where the conditional bit0 is zero, the instruction post-processing 5716 // will adjust the mask accordingly. 5717 if (Mnemonic == "it") { 5718 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5719 if (ITMask.size() > 3) { 5720 Parser.eatToEndOfStatement(); 5721 return Error(Loc, "too many conditions on IT instruction"); 5722 } 5723 unsigned Mask = 8; 5724 for (unsigned i = ITMask.size(); i != 0; --i) { 5725 char pos = ITMask[i - 1]; 5726 if (pos != 't' && pos != 'e') { 5727 Parser.eatToEndOfStatement(); 5728 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5729 } 5730 Mask >>= 1; 5731 if (ITMask[i - 1] == 't') 5732 Mask |= 8; 5733 } 5734 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5735 } 5736 5737 // FIXME: This is all a pretty gross hack. We should automatically handle 5738 // optional operands like this via tblgen. 5739 5740 // Next, add the CCOut and ConditionCode operands, if needed. 5741 // 5742 // For mnemonics which can ever incorporate a carry setting bit or predication 5743 // code, our matching model involves us always generating CCOut and 5744 // ConditionCode operands to match the mnemonic "as written" and then we let 5745 // the matcher deal with finding the right instruction or generating an 5746 // appropriate error. 5747 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5748 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5749 5750 // If we had a carry-set on an instruction that can't do that, issue an 5751 // error. 5752 if (!CanAcceptCarrySet && CarrySetting) { 5753 Parser.eatToEndOfStatement(); 5754 return Error(NameLoc, "instruction '" + Mnemonic + 5755 "' can not set flags, but 's' suffix specified"); 5756 } 5757 // If we had a predication code on an instruction that can't do that, issue an 5758 // error. 5759 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5760 Parser.eatToEndOfStatement(); 5761 return Error(NameLoc, "instruction '" + Mnemonic + 5762 "' is not predicable, but condition code specified"); 5763 } 5764 5765 // Add the carry setting operand, if necessary. 5766 if (CanAcceptCarrySet) { 5767 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5768 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5769 Loc)); 5770 } 5771 5772 // Add the predication code operand, if necessary. 5773 if (CanAcceptPredicationCode) { 5774 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5775 CarrySetting); 5776 Operands.push_back(ARMOperand::CreateCondCode( 5777 ARMCC::CondCodes(PredicationCode), Loc)); 5778 } 5779 5780 // Add the processor imod operand, if necessary. 5781 if (ProcessorIMod) { 5782 Operands.push_back(ARMOperand::CreateImm( 5783 MCConstantExpr::create(ProcessorIMod, getContext()), 5784 NameLoc, NameLoc)); 5785 } else if (Mnemonic == "cps" && isMClass()) { 5786 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5787 } 5788 5789 // Add the remaining tokens in the mnemonic. 5790 while (Next != StringRef::npos) { 5791 Start = Next; 5792 Next = Name.find('.', Start + 1); 5793 StringRef ExtraToken = Name.slice(Start, Next); 5794 5795 // Some NEON instructions have an optional datatype suffix that is 5796 // completely ignored. Check for that. 5797 if (isDataTypeToken(ExtraToken) && 5798 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5799 continue; 5800 5801 // For for ARM mode generate an error if the .n qualifier is used. 5802 if (ExtraToken == ".n" && !isThumb()) { 5803 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5804 Parser.eatToEndOfStatement(); 5805 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5806 "arm mode"); 5807 } 5808 5809 // The .n qualifier is always discarded as that is what the tables 5810 // and matcher expect. In ARM mode the .w qualifier has no effect, 5811 // so discard it to avoid errors that can be caused by the matcher. 5812 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5813 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5814 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5815 } 5816 } 5817 5818 // Read the remaining operands. 5819 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5820 // Read the first operand. 5821 if (parseOperand(Operands, Mnemonic)) { 5822 Parser.eatToEndOfStatement(); 5823 return true; 5824 } 5825 5826 while (getLexer().is(AsmToken::Comma)) { 5827 Parser.Lex(); // Eat the comma. 5828 5829 // Parse and remember the operand. 5830 if (parseOperand(Operands, Mnemonic)) { 5831 Parser.eatToEndOfStatement(); 5832 return true; 5833 } 5834 } 5835 } 5836 5837 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5838 SMLoc Loc = getLexer().getLoc(); 5839 Parser.eatToEndOfStatement(); 5840 return Error(Loc, "unexpected token in argument list"); 5841 } 5842 5843 Parser.Lex(); // Consume the EndOfStatement 5844 5845 if (RequireVFPRegisterListCheck) { 5846 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5847 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5848 return Error(Op.getStartLoc(), 5849 "VFP/Neon single precision register expected"); 5850 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5851 return Error(Op.getStartLoc(), 5852 "VFP/Neon double precision register expected"); 5853 } 5854 5855 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5856 5857 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5858 // do and don't have a cc_out optional-def operand. With some spot-checks 5859 // of the operand list, we can figure out which variant we're trying to 5860 // parse and adjust accordingly before actually matching. We shouldn't ever 5861 // try to remove a cc_out operand that was explicitly set on the 5862 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5863 // table driven matcher doesn't fit well with the ARM instruction set. 5864 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5865 Operands.erase(Operands.begin() + 1); 5866 5867 // Some instructions have the same mnemonic, but don't always 5868 // have a predicate. Distinguish them here and delete the 5869 // predicate if needed. 5870 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5871 Operands.erase(Operands.begin() + 1); 5872 5873 // ARM mode 'blx' need special handling, as the register operand version 5874 // is predicable, but the label operand version is not. So, we can't rely 5875 // on the Mnemonic based checking to correctly figure out when to put 5876 // a k_CondCode operand in the list. If we're trying to match the label 5877 // version, remove the k_CondCode operand here. 5878 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5879 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5880 Operands.erase(Operands.begin() + 1); 5881 5882 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5883 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5884 // a single GPRPair reg operand is used in the .td file to replace the two 5885 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5886 // expressed as a GPRPair, so we have to manually merge them. 5887 // FIXME: We would really like to be able to tablegen'erate this. 5888 if (!isThumb() && Operands.size() > 4 && 5889 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5890 Mnemonic == "stlexd")) { 5891 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5892 unsigned Idx = isLoad ? 2 : 3; 5893 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5894 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5895 5896 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5897 // Adjust only if Op1 and Op2 are GPRs. 5898 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5899 MRC.contains(Op2.getReg())) { 5900 unsigned Reg1 = Op1.getReg(); 5901 unsigned Reg2 = Op2.getReg(); 5902 unsigned Rt = MRI->getEncodingValue(Reg1); 5903 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5904 5905 // Rt2 must be Rt + 1 and Rt must be even. 5906 if (Rt + 1 != Rt2 || (Rt & 1)) { 5907 Error(Op2.getStartLoc(), isLoad 5908 ? "destination operands must be sequential" 5909 : "source operands must be sequential"); 5910 return true; 5911 } 5912 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5913 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5914 Operands[Idx] = 5915 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5916 Operands.erase(Operands.begin() + Idx + 1); 5917 } 5918 } 5919 5920 // GNU Assembler extension (compatibility) 5921 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5922 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5923 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5924 if (Op3.isMem()) { 5925 assert(Op2.isReg() && "expected register argument"); 5926 5927 unsigned SuperReg = MRI->getMatchingSuperReg( 5928 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5929 5930 assert(SuperReg && "expected register pair"); 5931 5932 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5933 5934 Operands.insert( 5935 Operands.begin() + 3, 5936 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5937 } 5938 } 5939 5940 // FIXME: As said above, this is all a pretty gross hack. This instruction 5941 // does not fit with other "subs" and tblgen. 5942 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 5943 // so the Mnemonic is the original name "subs" and delete the predicate 5944 // operand so it will match the table entry. 5945 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 5946 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5947 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 5948 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5949 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 5950 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5951 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 5952 Operands.erase(Operands.begin() + 1); 5953 } 5954 return false; 5955 } 5956 5957 // Validate context-sensitive operand constraints. 5958 5959 // return 'true' if register list contains non-low GPR registers, 5960 // 'false' otherwise. If Reg is in the register list or is HiReg, set 5961 // 'containsReg' to true. 5962 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 5963 unsigned Reg, unsigned HiReg, 5964 bool &containsReg) { 5965 containsReg = false; 5966 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5967 unsigned OpReg = Inst.getOperand(i).getReg(); 5968 if (OpReg == Reg) 5969 containsReg = true; 5970 // Anything other than a low register isn't legal here. 5971 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 5972 return true; 5973 } 5974 return false; 5975 } 5976 5977 // Check if the specified regisgter is in the register list of the inst, 5978 // starting at the indicated operand number. 5979 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 5980 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 5981 unsigned OpReg = Inst.getOperand(i).getReg(); 5982 if (OpReg == Reg) 5983 return true; 5984 } 5985 return false; 5986 } 5987 5988 // Return true if instruction has the interesting property of being 5989 // allowed in IT blocks, but not being predicable. 5990 static bool instIsBreakpoint(const MCInst &Inst) { 5991 return Inst.getOpcode() == ARM::tBKPT || 5992 Inst.getOpcode() == ARM::BKPT || 5993 Inst.getOpcode() == ARM::tHLT || 5994 Inst.getOpcode() == ARM::HLT; 5995 5996 } 5997 5998 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 5999 const OperandVector &Operands, 6000 unsigned ListNo, bool IsARPop) { 6001 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6002 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6003 6004 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6005 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6006 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6007 6008 if (!IsARPop && ListContainsSP) 6009 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6010 "SP may not be in the register list"); 6011 else if (ListContainsPC && ListContainsLR) 6012 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6013 "PC and LR may not be in the register list simultaneously"); 6014 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6015 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6016 "instruction must be outside of IT block or the last " 6017 "instruction in an IT block"); 6018 return false; 6019 } 6020 6021 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6022 const OperandVector &Operands, 6023 unsigned ListNo) { 6024 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6025 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6026 6027 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6028 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6029 6030 if (ListContainsSP && ListContainsPC) 6031 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6032 "SP and PC may not be in the register list"); 6033 else if (ListContainsSP) 6034 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6035 "SP may not be in the register list"); 6036 else if (ListContainsPC) 6037 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6038 "PC may not be in the register list"); 6039 return false; 6040 } 6041 6042 // FIXME: We would really like to be able to tablegen'erate this. 6043 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6044 const OperandVector &Operands) { 6045 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6046 SMLoc Loc = Operands[0]->getStartLoc(); 6047 6048 // Check the IT block state first. 6049 // NOTE: BKPT and HLT instructions have the interesting property of being 6050 // allowed in IT blocks, but not being predicable. They just always execute. 6051 if (inITBlock() && !instIsBreakpoint(Inst)) { 6052 unsigned Bit = 1; 6053 if (ITState.FirstCond) 6054 ITState.FirstCond = false; 6055 else 6056 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6057 // The instruction must be predicable. 6058 if (!MCID.isPredicable()) 6059 return Error(Loc, "instructions in IT block must be predicable"); 6060 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6061 unsigned ITCond = Bit ? ITState.Cond : 6062 ARMCC::getOppositeCondition(ITState.Cond); 6063 if (Cond != ITCond) { 6064 // Find the condition code Operand to get its SMLoc information. 6065 SMLoc CondLoc; 6066 for (unsigned I = 1; I < Operands.size(); ++I) 6067 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6068 CondLoc = Operands[I]->getStartLoc(); 6069 return Error(CondLoc, "incorrect condition in IT block; got '" + 6070 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6071 "', but expected '" + 6072 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6073 } 6074 // Check for non-'al' condition codes outside of the IT block. 6075 } else if (isThumbTwo() && MCID.isPredicable() && 6076 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6077 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6078 Inst.getOpcode() != ARM::t2Bcc) 6079 return Error(Loc, "predicated instructions must be in IT block"); 6080 6081 const unsigned Opcode = Inst.getOpcode(); 6082 switch (Opcode) { 6083 case ARM::LDRD: 6084 case ARM::LDRD_PRE: 6085 case ARM::LDRD_POST: { 6086 const unsigned RtReg = Inst.getOperand(0).getReg(); 6087 6088 // Rt can't be R14. 6089 if (RtReg == ARM::LR) 6090 return Error(Operands[3]->getStartLoc(), 6091 "Rt can't be R14"); 6092 6093 const unsigned Rt = MRI->getEncodingValue(RtReg); 6094 // Rt must be even-numbered. 6095 if ((Rt & 1) == 1) 6096 return Error(Operands[3]->getStartLoc(), 6097 "Rt must be even-numbered"); 6098 6099 // Rt2 must be Rt + 1. 6100 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6101 if (Rt2 != Rt + 1) 6102 return Error(Operands[3]->getStartLoc(), 6103 "destination operands must be sequential"); 6104 6105 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6106 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6107 // For addressing modes with writeback, the base register needs to be 6108 // different from the destination registers. 6109 if (Rn == Rt || Rn == Rt2) 6110 return Error(Operands[3]->getStartLoc(), 6111 "base register needs to be different from destination " 6112 "registers"); 6113 } 6114 6115 return false; 6116 } 6117 case ARM::t2LDRDi8: 6118 case ARM::t2LDRD_PRE: 6119 case ARM::t2LDRD_POST: { 6120 // Rt2 must be different from Rt. 6121 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6122 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6123 if (Rt2 == Rt) 6124 return Error(Operands[3]->getStartLoc(), 6125 "destination operands can't be identical"); 6126 return false; 6127 } 6128 case ARM::t2BXJ: { 6129 const unsigned RmReg = Inst.getOperand(0).getReg(); 6130 // Rm = SP is no longer unpredictable in v8-A 6131 if (RmReg == ARM::SP && !hasV8Ops()) 6132 return Error(Operands[2]->getStartLoc(), 6133 "r13 (SP) is an unpredictable operand to BXJ"); 6134 return false; 6135 } 6136 case ARM::STRD: { 6137 // Rt2 must be Rt + 1. 6138 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6139 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6140 if (Rt2 != Rt + 1) 6141 return Error(Operands[3]->getStartLoc(), 6142 "source operands must be sequential"); 6143 return false; 6144 } 6145 case ARM::STRD_PRE: 6146 case ARM::STRD_POST: { 6147 // Rt2 must be Rt + 1. 6148 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6149 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6150 if (Rt2 != Rt + 1) 6151 return Error(Operands[3]->getStartLoc(), 6152 "source operands must be sequential"); 6153 return false; 6154 } 6155 case ARM::STR_PRE_IMM: 6156 case ARM::STR_PRE_REG: 6157 case ARM::STR_POST_IMM: 6158 case ARM::STR_POST_REG: 6159 case ARM::STRH_PRE: 6160 case ARM::STRH_POST: 6161 case ARM::STRB_PRE_IMM: 6162 case ARM::STRB_PRE_REG: 6163 case ARM::STRB_POST_IMM: 6164 case ARM::STRB_POST_REG: { 6165 // Rt must be different from Rn. 6166 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6167 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6168 6169 if (Rt == Rn) 6170 return Error(Operands[3]->getStartLoc(), 6171 "source register and base register can't be identical"); 6172 return false; 6173 } 6174 case ARM::LDR_PRE_IMM: 6175 case ARM::LDR_PRE_REG: 6176 case ARM::LDR_POST_IMM: 6177 case ARM::LDR_POST_REG: 6178 case ARM::LDRH_PRE: 6179 case ARM::LDRH_POST: 6180 case ARM::LDRSH_PRE: 6181 case ARM::LDRSH_POST: 6182 case ARM::LDRB_PRE_IMM: 6183 case ARM::LDRB_PRE_REG: 6184 case ARM::LDRB_POST_IMM: 6185 case ARM::LDRB_POST_REG: 6186 case ARM::LDRSB_PRE: 6187 case ARM::LDRSB_POST: { 6188 // Rt must be different from Rn. 6189 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6190 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6191 6192 if (Rt == Rn) 6193 return Error(Operands[3]->getStartLoc(), 6194 "destination register and base register can't be identical"); 6195 return false; 6196 } 6197 case ARM::SBFX: 6198 case ARM::UBFX: { 6199 // Width must be in range [1, 32-lsb]. 6200 unsigned LSB = Inst.getOperand(2).getImm(); 6201 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6202 if (Widthm1 >= 32 - LSB) 6203 return Error(Operands[5]->getStartLoc(), 6204 "bitfield width must be in range [1,32-lsb]"); 6205 return false; 6206 } 6207 // Notionally handles ARM::tLDMIA_UPD too. 6208 case ARM::tLDMIA: { 6209 // If we're parsing Thumb2, the .w variant is available and handles 6210 // most cases that are normally illegal for a Thumb1 LDM instruction. 6211 // We'll make the transformation in processInstruction() if necessary. 6212 // 6213 // Thumb LDM instructions are writeback iff the base register is not 6214 // in the register list. 6215 unsigned Rn = Inst.getOperand(0).getReg(); 6216 bool HasWritebackToken = 6217 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6218 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6219 bool ListContainsBase; 6220 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6221 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6222 "registers must be in range r0-r7"); 6223 // If we should have writeback, then there should be a '!' token. 6224 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6225 return Error(Operands[2]->getStartLoc(), 6226 "writeback operator '!' expected"); 6227 // If we should not have writeback, there must not be a '!'. This is 6228 // true even for the 32-bit wide encodings. 6229 if (ListContainsBase && HasWritebackToken) 6230 return Error(Operands[3]->getStartLoc(), 6231 "writeback operator '!' not allowed when base register " 6232 "in register list"); 6233 6234 if (validatetLDMRegList(Inst, Operands, 3)) 6235 return true; 6236 break; 6237 } 6238 case ARM::LDMIA_UPD: 6239 case ARM::LDMDB_UPD: 6240 case ARM::LDMIB_UPD: 6241 case ARM::LDMDA_UPD: 6242 // ARM variants loading and updating the same register are only officially 6243 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6244 if (!hasV7Ops()) 6245 break; 6246 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6247 return Error(Operands.back()->getStartLoc(), 6248 "writeback register not allowed in register list"); 6249 break; 6250 case ARM::t2LDMIA: 6251 case ARM::t2LDMDB: 6252 if (validatetLDMRegList(Inst, Operands, 3)) 6253 return true; 6254 break; 6255 case ARM::t2STMIA: 6256 case ARM::t2STMDB: 6257 if (validatetSTMRegList(Inst, Operands, 3)) 6258 return true; 6259 break; 6260 case ARM::t2LDMIA_UPD: 6261 case ARM::t2LDMDB_UPD: 6262 case ARM::t2STMIA_UPD: 6263 case ARM::t2STMDB_UPD: { 6264 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6265 return Error(Operands.back()->getStartLoc(), 6266 "writeback register not allowed in register list"); 6267 6268 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6269 if (validatetLDMRegList(Inst, Operands, 3)) 6270 return true; 6271 } else { 6272 if (validatetSTMRegList(Inst, Operands, 3)) 6273 return true; 6274 } 6275 break; 6276 } 6277 case ARM::sysLDMIA_UPD: 6278 case ARM::sysLDMDA_UPD: 6279 case ARM::sysLDMDB_UPD: 6280 case ARM::sysLDMIB_UPD: 6281 if (!listContainsReg(Inst, 3, ARM::PC)) 6282 return Error(Operands[4]->getStartLoc(), 6283 "writeback register only allowed on system LDM " 6284 "if PC in register-list"); 6285 break; 6286 case ARM::sysSTMIA_UPD: 6287 case ARM::sysSTMDA_UPD: 6288 case ARM::sysSTMDB_UPD: 6289 case ARM::sysSTMIB_UPD: 6290 return Error(Operands[2]->getStartLoc(), 6291 "system STM cannot have writeback register"); 6292 case ARM::tMUL: { 6293 // The second source operand must be the same register as the destination 6294 // operand. 6295 // 6296 // In this case, we must directly check the parsed operands because the 6297 // cvtThumbMultiply() function is written in such a way that it guarantees 6298 // this first statement is always true for the new Inst. Essentially, the 6299 // destination is unconditionally copied into the second source operand 6300 // without checking to see if it matches what we actually parsed. 6301 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6302 ((ARMOperand &)*Operands[5]).getReg()) && 6303 (((ARMOperand &)*Operands[3]).getReg() != 6304 ((ARMOperand &)*Operands[4]).getReg())) { 6305 return Error(Operands[3]->getStartLoc(), 6306 "destination register must match source register"); 6307 } 6308 break; 6309 } 6310 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6311 // so only issue a diagnostic for thumb1. The instructions will be 6312 // switched to the t2 encodings in processInstruction() if necessary. 6313 case ARM::tPOP: { 6314 bool ListContainsBase; 6315 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6316 !isThumbTwo()) 6317 return Error(Operands[2]->getStartLoc(), 6318 "registers must be in range r0-r7 or pc"); 6319 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6320 return true; 6321 break; 6322 } 6323 case ARM::tPUSH: { 6324 bool ListContainsBase; 6325 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6326 !isThumbTwo()) 6327 return Error(Operands[2]->getStartLoc(), 6328 "registers must be in range r0-r7 or lr"); 6329 if (validatetSTMRegList(Inst, Operands, 2)) 6330 return true; 6331 break; 6332 } 6333 case ARM::tSTMIA_UPD: { 6334 bool ListContainsBase, InvalidLowList; 6335 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6336 0, ListContainsBase); 6337 if (InvalidLowList && !isThumbTwo()) 6338 return Error(Operands[4]->getStartLoc(), 6339 "registers must be in range r0-r7"); 6340 6341 // This would be converted to a 32-bit stm, but that's not valid if the 6342 // writeback register is in the list. 6343 if (InvalidLowList && ListContainsBase) 6344 return Error(Operands[4]->getStartLoc(), 6345 "writeback operator '!' not allowed when base register " 6346 "in register list"); 6347 6348 if (validatetSTMRegList(Inst, Operands, 4)) 6349 return true; 6350 break; 6351 } 6352 case ARM::tADDrSP: { 6353 // If the non-SP source operand and the destination operand are not the 6354 // same, we need thumb2 (for the wide encoding), or we have an error. 6355 if (!isThumbTwo() && 6356 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6357 return Error(Operands[4]->getStartLoc(), 6358 "source register must be the same as destination"); 6359 } 6360 break; 6361 } 6362 // Final range checking for Thumb unconditional branch instructions. 6363 case ARM::tB: 6364 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6365 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6366 break; 6367 case ARM::t2B: { 6368 int op = (Operands[2]->isImm()) ? 2 : 3; 6369 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6370 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6371 break; 6372 } 6373 // Final range checking for Thumb conditional branch instructions. 6374 case ARM::tBcc: 6375 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6376 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6377 break; 6378 case ARM::t2Bcc: { 6379 int Op = (Operands[2]->isImm()) ? 2 : 3; 6380 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6381 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6382 break; 6383 } 6384 case ARM::MOVi16: 6385 case ARM::t2MOVi16: 6386 case ARM::t2MOVTi16: 6387 { 6388 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6389 // especially when we turn it into a movw and the expression <symbol> does 6390 // not have a :lower16: or :upper16 as part of the expression. We don't 6391 // want the behavior of silently truncating, which can be unexpected and 6392 // lead to bugs that are difficult to find since this is an easy mistake 6393 // to make. 6394 int i = (Operands[3]->isImm()) ? 3 : 4; 6395 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6396 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6397 if (CE) break; 6398 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6399 if (!E) break; 6400 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6401 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6402 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6403 return Error( 6404 Op.getStartLoc(), 6405 "immediate expression for mov requires :lower16: or :upper16"); 6406 break; 6407 } 6408 } 6409 6410 return false; 6411 } 6412 6413 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6414 switch(Opc) { 6415 default: llvm_unreachable("unexpected opcode!"); 6416 // VST1LN 6417 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6418 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6419 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6420 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6421 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6422 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6423 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6424 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6425 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6426 6427 // VST2LN 6428 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6429 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6430 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6431 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6432 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6433 6434 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6435 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6436 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6437 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6438 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6439 6440 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6441 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6442 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6443 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6444 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6445 6446 // VST3LN 6447 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6448 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6449 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6450 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6451 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6452 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6453 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6454 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6455 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6456 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6457 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6458 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6459 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6460 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6461 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6462 6463 // VST3 6464 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6465 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6466 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6467 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6468 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6469 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6470 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6471 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6472 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6473 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6474 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6475 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6476 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6477 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6478 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6479 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6480 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6481 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6482 6483 // VST4LN 6484 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6485 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6486 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6487 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6488 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6489 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6490 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6491 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6492 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6493 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6494 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6495 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6496 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6497 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6498 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6499 6500 // VST4 6501 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6502 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6503 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6504 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6505 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6506 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6507 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6508 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6509 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6510 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6511 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6512 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6513 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6514 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6515 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6516 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6517 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6518 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6519 } 6520 } 6521 6522 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6523 switch(Opc) { 6524 default: llvm_unreachable("unexpected opcode!"); 6525 // VLD1LN 6526 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6527 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6528 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6529 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6530 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6531 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6532 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6533 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6534 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6535 6536 // VLD2LN 6537 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6538 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6539 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6540 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6541 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6542 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6543 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6544 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6545 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6546 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6547 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6548 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6549 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6550 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6551 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6552 6553 // VLD3DUP 6554 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6555 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6556 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6557 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6558 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6559 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6560 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6561 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6562 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6563 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6564 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6565 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6566 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6567 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6568 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6569 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6570 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6571 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6572 6573 // VLD3LN 6574 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6575 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6576 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6577 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6578 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6579 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6580 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6581 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6582 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6583 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6584 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6585 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6586 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6587 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6588 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6589 6590 // VLD3 6591 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6592 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6593 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6594 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6595 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6596 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6597 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6598 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6599 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6600 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6601 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6602 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6603 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6604 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6605 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6606 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6607 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6608 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6609 6610 // VLD4LN 6611 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6612 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6613 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6614 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6615 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6616 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6617 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6618 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6619 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6620 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6621 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6622 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6623 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6624 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6625 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6626 6627 // VLD4DUP 6628 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6629 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6630 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6631 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6632 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6633 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6634 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6635 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6636 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6637 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6638 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6639 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6640 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6641 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6642 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6643 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6644 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6645 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6646 6647 // VLD4 6648 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6649 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6650 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6651 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6652 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6653 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6654 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6655 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6656 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6657 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6658 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6659 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6660 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6661 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6662 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6663 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6664 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6665 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6666 } 6667 } 6668 6669 bool ARMAsmParser::processInstruction(MCInst &Inst, 6670 const OperandVector &Operands, 6671 MCStreamer &Out) { 6672 switch (Inst.getOpcode()) { 6673 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6674 case ARM::LDRT_POST: 6675 case ARM::LDRBT_POST: { 6676 const unsigned Opcode = 6677 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6678 : ARM::LDRBT_POST_IMM; 6679 MCInst TmpInst; 6680 TmpInst.setOpcode(Opcode); 6681 TmpInst.addOperand(Inst.getOperand(0)); 6682 TmpInst.addOperand(Inst.getOperand(1)); 6683 TmpInst.addOperand(Inst.getOperand(1)); 6684 TmpInst.addOperand(MCOperand::createReg(0)); 6685 TmpInst.addOperand(MCOperand::createImm(0)); 6686 TmpInst.addOperand(Inst.getOperand(2)); 6687 TmpInst.addOperand(Inst.getOperand(3)); 6688 Inst = TmpInst; 6689 return true; 6690 } 6691 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6692 case ARM::STRT_POST: 6693 case ARM::STRBT_POST: { 6694 const unsigned Opcode = 6695 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6696 : ARM::STRBT_POST_IMM; 6697 MCInst TmpInst; 6698 TmpInst.setOpcode(Opcode); 6699 TmpInst.addOperand(Inst.getOperand(1)); 6700 TmpInst.addOperand(Inst.getOperand(0)); 6701 TmpInst.addOperand(Inst.getOperand(1)); 6702 TmpInst.addOperand(MCOperand::createReg(0)); 6703 TmpInst.addOperand(MCOperand::createImm(0)); 6704 TmpInst.addOperand(Inst.getOperand(2)); 6705 TmpInst.addOperand(Inst.getOperand(3)); 6706 Inst = TmpInst; 6707 return true; 6708 } 6709 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6710 case ARM::ADDri: { 6711 if (Inst.getOperand(1).getReg() != ARM::PC || 6712 Inst.getOperand(5).getReg() != 0 || 6713 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6714 return false; 6715 MCInst TmpInst; 6716 TmpInst.setOpcode(ARM::ADR); 6717 TmpInst.addOperand(Inst.getOperand(0)); 6718 if (Inst.getOperand(2).isImm()) { 6719 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6720 // before passing it to the ADR instruction. 6721 unsigned Enc = Inst.getOperand(2).getImm(); 6722 TmpInst.addOperand(MCOperand::createImm( 6723 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6724 } else { 6725 // Turn PC-relative expression into absolute expression. 6726 // Reading PC provides the start of the current instruction + 8 and 6727 // the transform to adr is biased by that. 6728 MCSymbol *Dot = getContext().createTempSymbol(); 6729 Out.EmitLabel(Dot); 6730 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6731 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6732 MCSymbolRefExpr::VK_None, 6733 getContext()); 6734 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6735 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6736 getContext()); 6737 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6738 getContext()); 6739 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6740 } 6741 TmpInst.addOperand(Inst.getOperand(3)); 6742 TmpInst.addOperand(Inst.getOperand(4)); 6743 Inst = TmpInst; 6744 return true; 6745 } 6746 // Aliases for alternate PC+imm syntax of LDR instructions. 6747 case ARM::t2LDRpcrel: 6748 // Select the narrow version if the immediate will fit. 6749 if (Inst.getOperand(1).getImm() > 0 && 6750 Inst.getOperand(1).getImm() <= 0xff && 6751 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6752 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6753 Inst.setOpcode(ARM::tLDRpci); 6754 else 6755 Inst.setOpcode(ARM::t2LDRpci); 6756 return true; 6757 case ARM::t2LDRBpcrel: 6758 Inst.setOpcode(ARM::t2LDRBpci); 6759 return true; 6760 case ARM::t2LDRHpcrel: 6761 Inst.setOpcode(ARM::t2LDRHpci); 6762 return true; 6763 case ARM::t2LDRSBpcrel: 6764 Inst.setOpcode(ARM::t2LDRSBpci); 6765 return true; 6766 case ARM::t2LDRSHpcrel: 6767 Inst.setOpcode(ARM::t2LDRSHpci); 6768 return true; 6769 // Handle NEON VST complex aliases. 6770 case ARM::VST1LNdWB_register_Asm_8: 6771 case ARM::VST1LNdWB_register_Asm_16: 6772 case ARM::VST1LNdWB_register_Asm_32: { 6773 MCInst TmpInst; 6774 // Shuffle the operands around so the lane index operand is in the 6775 // right place. 6776 unsigned Spacing; 6777 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6778 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6779 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6780 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6781 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6782 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6783 TmpInst.addOperand(Inst.getOperand(1)); // lane 6784 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6785 TmpInst.addOperand(Inst.getOperand(6)); 6786 Inst = TmpInst; 6787 return true; 6788 } 6789 6790 case ARM::VST2LNdWB_register_Asm_8: 6791 case ARM::VST2LNdWB_register_Asm_16: 6792 case ARM::VST2LNdWB_register_Asm_32: 6793 case ARM::VST2LNqWB_register_Asm_16: 6794 case ARM::VST2LNqWB_register_Asm_32: { 6795 MCInst TmpInst; 6796 // Shuffle the operands around so the lane index operand is in the 6797 // right place. 6798 unsigned Spacing; 6799 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6800 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6801 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6802 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6803 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6804 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6806 Spacing)); 6807 TmpInst.addOperand(Inst.getOperand(1)); // lane 6808 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6809 TmpInst.addOperand(Inst.getOperand(6)); 6810 Inst = TmpInst; 6811 return true; 6812 } 6813 6814 case ARM::VST3LNdWB_register_Asm_8: 6815 case ARM::VST3LNdWB_register_Asm_16: 6816 case ARM::VST3LNdWB_register_Asm_32: 6817 case ARM::VST3LNqWB_register_Asm_16: 6818 case ARM::VST3LNqWB_register_Asm_32: { 6819 MCInst TmpInst; 6820 // Shuffle the operands around so the lane index operand is in the 6821 // right place. 6822 unsigned Spacing; 6823 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6824 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6825 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6826 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6827 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6828 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6829 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6830 Spacing)); 6831 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6832 Spacing * 2)); 6833 TmpInst.addOperand(Inst.getOperand(1)); // lane 6834 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6835 TmpInst.addOperand(Inst.getOperand(6)); 6836 Inst = TmpInst; 6837 return true; 6838 } 6839 6840 case ARM::VST4LNdWB_register_Asm_8: 6841 case ARM::VST4LNdWB_register_Asm_16: 6842 case ARM::VST4LNdWB_register_Asm_32: 6843 case ARM::VST4LNqWB_register_Asm_16: 6844 case ARM::VST4LNqWB_register_Asm_32: { 6845 MCInst TmpInst; 6846 // Shuffle the operands around so the lane index operand is in the 6847 // right place. 6848 unsigned Spacing; 6849 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6850 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6851 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6852 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6853 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6854 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6855 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6856 Spacing)); 6857 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6858 Spacing * 2)); 6859 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6860 Spacing * 3)); 6861 TmpInst.addOperand(Inst.getOperand(1)); // lane 6862 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6863 TmpInst.addOperand(Inst.getOperand(6)); 6864 Inst = TmpInst; 6865 return true; 6866 } 6867 6868 case ARM::VST1LNdWB_fixed_Asm_8: 6869 case ARM::VST1LNdWB_fixed_Asm_16: 6870 case ARM::VST1LNdWB_fixed_Asm_32: { 6871 MCInst TmpInst; 6872 // Shuffle the operands around so the lane index operand is in the 6873 // right place. 6874 unsigned Spacing; 6875 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6876 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6877 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6878 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6879 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6880 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6881 TmpInst.addOperand(Inst.getOperand(1)); // lane 6882 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6883 TmpInst.addOperand(Inst.getOperand(5)); 6884 Inst = TmpInst; 6885 return true; 6886 } 6887 6888 case ARM::VST2LNdWB_fixed_Asm_8: 6889 case ARM::VST2LNdWB_fixed_Asm_16: 6890 case ARM::VST2LNdWB_fixed_Asm_32: 6891 case ARM::VST2LNqWB_fixed_Asm_16: 6892 case ARM::VST2LNqWB_fixed_Asm_32: { 6893 MCInst TmpInst; 6894 // Shuffle the operands around so the lane index operand is in the 6895 // right place. 6896 unsigned Spacing; 6897 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6898 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6899 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6900 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6901 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6902 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6903 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6904 Spacing)); 6905 TmpInst.addOperand(Inst.getOperand(1)); // lane 6906 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6907 TmpInst.addOperand(Inst.getOperand(5)); 6908 Inst = TmpInst; 6909 return true; 6910 } 6911 6912 case ARM::VST3LNdWB_fixed_Asm_8: 6913 case ARM::VST3LNdWB_fixed_Asm_16: 6914 case ARM::VST3LNdWB_fixed_Asm_32: 6915 case ARM::VST3LNqWB_fixed_Asm_16: 6916 case ARM::VST3LNqWB_fixed_Asm_32: { 6917 MCInst TmpInst; 6918 // Shuffle the operands around so the lane index operand is in the 6919 // right place. 6920 unsigned Spacing; 6921 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6922 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6923 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6924 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6925 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6926 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6927 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6928 Spacing)); 6929 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6930 Spacing * 2)); 6931 TmpInst.addOperand(Inst.getOperand(1)); // lane 6932 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6933 TmpInst.addOperand(Inst.getOperand(5)); 6934 Inst = TmpInst; 6935 return true; 6936 } 6937 6938 case ARM::VST4LNdWB_fixed_Asm_8: 6939 case ARM::VST4LNdWB_fixed_Asm_16: 6940 case ARM::VST4LNdWB_fixed_Asm_32: 6941 case ARM::VST4LNqWB_fixed_Asm_16: 6942 case ARM::VST4LNqWB_fixed_Asm_32: { 6943 MCInst TmpInst; 6944 // Shuffle the operands around so the lane index operand is in the 6945 // right place. 6946 unsigned Spacing; 6947 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6948 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6949 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6950 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6951 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6952 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6953 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6954 Spacing)); 6955 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6956 Spacing * 2)); 6957 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6958 Spacing * 3)); 6959 TmpInst.addOperand(Inst.getOperand(1)); // lane 6960 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6961 TmpInst.addOperand(Inst.getOperand(5)); 6962 Inst = TmpInst; 6963 return true; 6964 } 6965 6966 case ARM::VST1LNdAsm_8: 6967 case ARM::VST1LNdAsm_16: 6968 case ARM::VST1LNdAsm_32: { 6969 MCInst TmpInst; 6970 // Shuffle the operands around so the lane index operand is in the 6971 // right place. 6972 unsigned Spacing; 6973 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6974 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6975 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6976 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6977 TmpInst.addOperand(Inst.getOperand(1)); // lane 6978 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6979 TmpInst.addOperand(Inst.getOperand(5)); 6980 Inst = TmpInst; 6981 return true; 6982 } 6983 6984 case ARM::VST2LNdAsm_8: 6985 case ARM::VST2LNdAsm_16: 6986 case ARM::VST2LNdAsm_32: 6987 case ARM::VST2LNqAsm_16: 6988 case ARM::VST2LNqAsm_32: { 6989 MCInst TmpInst; 6990 // Shuffle the operands around so the lane index operand is in the 6991 // right place. 6992 unsigned Spacing; 6993 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6994 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6995 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6996 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6997 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6998 Spacing)); 6999 TmpInst.addOperand(Inst.getOperand(1)); // lane 7000 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7001 TmpInst.addOperand(Inst.getOperand(5)); 7002 Inst = TmpInst; 7003 return true; 7004 } 7005 7006 case ARM::VST3LNdAsm_8: 7007 case ARM::VST3LNdAsm_16: 7008 case ARM::VST3LNdAsm_32: 7009 case ARM::VST3LNqAsm_16: 7010 case ARM::VST3LNqAsm_32: { 7011 MCInst TmpInst; 7012 // Shuffle the operands around so the lane index operand is in the 7013 // right place. 7014 unsigned Spacing; 7015 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7016 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7017 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7018 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7019 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7020 Spacing)); 7021 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7022 Spacing * 2)); 7023 TmpInst.addOperand(Inst.getOperand(1)); // lane 7024 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7025 TmpInst.addOperand(Inst.getOperand(5)); 7026 Inst = TmpInst; 7027 return true; 7028 } 7029 7030 case ARM::VST4LNdAsm_8: 7031 case ARM::VST4LNdAsm_16: 7032 case ARM::VST4LNdAsm_32: 7033 case ARM::VST4LNqAsm_16: 7034 case ARM::VST4LNqAsm_32: { 7035 MCInst TmpInst; 7036 // Shuffle the operands around so the lane index operand is in the 7037 // right place. 7038 unsigned Spacing; 7039 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7040 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7041 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7042 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7043 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7044 Spacing)); 7045 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7046 Spacing * 2)); 7047 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7048 Spacing * 3)); 7049 TmpInst.addOperand(Inst.getOperand(1)); // lane 7050 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7051 TmpInst.addOperand(Inst.getOperand(5)); 7052 Inst = TmpInst; 7053 return true; 7054 } 7055 7056 // Handle NEON VLD complex aliases. 7057 case ARM::VLD1LNdWB_register_Asm_8: 7058 case ARM::VLD1LNdWB_register_Asm_16: 7059 case ARM::VLD1LNdWB_register_Asm_32: { 7060 MCInst TmpInst; 7061 // Shuffle the operands around so the lane index operand is in the 7062 // right place. 7063 unsigned Spacing; 7064 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7065 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7066 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7067 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7068 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7069 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7070 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7071 TmpInst.addOperand(Inst.getOperand(1)); // lane 7072 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7073 TmpInst.addOperand(Inst.getOperand(6)); 7074 Inst = TmpInst; 7075 return true; 7076 } 7077 7078 case ARM::VLD2LNdWB_register_Asm_8: 7079 case ARM::VLD2LNdWB_register_Asm_16: 7080 case ARM::VLD2LNdWB_register_Asm_32: 7081 case ARM::VLD2LNqWB_register_Asm_16: 7082 case ARM::VLD2LNqWB_register_Asm_32: { 7083 MCInst TmpInst; 7084 // Shuffle the operands around so the lane index operand is in the 7085 // right place. 7086 unsigned Spacing; 7087 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7088 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7089 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7090 Spacing)); 7091 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7092 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7093 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7094 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7095 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7096 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7097 Spacing)); 7098 TmpInst.addOperand(Inst.getOperand(1)); // lane 7099 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7100 TmpInst.addOperand(Inst.getOperand(6)); 7101 Inst = TmpInst; 7102 return true; 7103 } 7104 7105 case ARM::VLD3LNdWB_register_Asm_8: 7106 case ARM::VLD3LNdWB_register_Asm_16: 7107 case ARM::VLD3LNdWB_register_Asm_32: 7108 case ARM::VLD3LNqWB_register_Asm_16: 7109 case ARM::VLD3LNqWB_register_Asm_32: { 7110 MCInst TmpInst; 7111 // Shuffle the operands around so the lane index operand is in the 7112 // right place. 7113 unsigned Spacing; 7114 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7115 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7116 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7117 Spacing)); 7118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7119 Spacing * 2)); 7120 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7121 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7122 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7123 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7124 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7125 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7126 Spacing)); 7127 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7128 Spacing * 2)); 7129 TmpInst.addOperand(Inst.getOperand(1)); // lane 7130 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7131 TmpInst.addOperand(Inst.getOperand(6)); 7132 Inst = TmpInst; 7133 return true; 7134 } 7135 7136 case ARM::VLD4LNdWB_register_Asm_8: 7137 case ARM::VLD4LNdWB_register_Asm_16: 7138 case ARM::VLD4LNdWB_register_Asm_32: 7139 case ARM::VLD4LNqWB_register_Asm_16: 7140 case ARM::VLD4LNqWB_register_Asm_32: { 7141 MCInst TmpInst; 7142 // Shuffle the operands around so the lane index operand is in the 7143 // right place. 7144 unsigned Spacing; 7145 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7146 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7147 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7148 Spacing)); 7149 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7150 Spacing * 2)); 7151 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7152 Spacing * 3)); 7153 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7154 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7155 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7156 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7157 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7158 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7159 Spacing)); 7160 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7161 Spacing * 2)); 7162 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7163 Spacing * 3)); 7164 TmpInst.addOperand(Inst.getOperand(1)); // lane 7165 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7166 TmpInst.addOperand(Inst.getOperand(6)); 7167 Inst = TmpInst; 7168 return true; 7169 } 7170 7171 case ARM::VLD1LNdWB_fixed_Asm_8: 7172 case ARM::VLD1LNdWB_fixed_Asm_16: 7173 case ARM::VLD1LNdWB_fixed_Asm_32: { 7174 MCInst TmpInst; 7175 // Shuffle the operands around so the lane index operand is in the 7176 // right place. 7177 unsigned Spacing; 7178 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7179 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7180 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7181 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7182 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7183 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7184 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7185 TmpInst.addOperand(Inst.getOperand(1)); // lane 7186 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7187 TmpInst.addOperand(Inst.getOperand(5)); 7188 Inst = TmpInst; 7189 return true; 7190 } 7191 7192 case ARM::VLD2LNdWB_fixed_Asm_8: 7193 case ARM::VLD2LNdWB_fixed_Asm_16: 7194 case ARM::VLD2LNdWB_fixed_Asm_32: 7195 case ARM::VLD2LNqWB_fixed_Asm_16: 7196 case ARM::VLD2LNqWB_fixed_Asm_32: { 7197 MCInst TmpInst; 7198 // Shuffle the operands around so the lane index operand is in the 7199 // right place. 7200 unsigned Spacing; 7201 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7202 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7204 Spacing)); 7205 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7206 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7207 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7208 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7209 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7210 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7211 Spacing)); 7212 TmpInst.addOperand(Inst.getOperand(1)); // lane 7213 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7214 TmpInst.addOperand(Inst.getOperand(5)); 7215 Inst = TmpInst; 7216 return true; 7217 } 7218 7219 case ARM::VLD3LNdWB_fixed_Asm_8: 7220 case ARM::VLD3LNdWB_fixed_Asm_16: 7221 case ARM::VLD3LNdWB_fixed_Asm_32: 7222 case ARM::VLD3LNqWB_fixed_Asm_16: 7223 case ARM::VLD3LNqWB_fixed_Asm_32: { 7224 MCInst TmpInst; 7225 // Shuffle the operands around so the lane index operand is in the 7226 // right place. 7227 unsigned Spacing; 7228 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7229 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7231 Spacing)); 7232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7233 Spacing * 2)); 7234 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7235 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7236 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7237 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7238 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7239 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7240 Spacing)); 7241 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7242 Spacing * 2)); 7243 TmpInst.addOperand(Inst.getOperand(1)); // lane 7244 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7245 TmpInst.addOperand(Inst.getOperand(5)); 7246 Inst = TmpInst; 7247 return true; 7248 } 7249 7250 case ARM::VLD4LNdWB_fixed_Asm_8: 7251 case ARM::VLD4LNdWB_fixed_Asm_16: 7252 case ARM::VLD4LNdWB_fixed_Asm_32: 7253 case ARM::VLD4LNqWB_fixed_Asm_16: 7254 case ARM::VLD4LNqWB_fixed_Asm_32: { 7255 MCInst TmpInst; 7256 // Shuffle the operands around so the lane index operand is in the 7257 // right place. 7258 unsigned Spacing; 7259 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7260 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7262 Spacing)); 7263 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7264 Spacing * 2)); 7265 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7266 Spacing * 3)); 7267 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7268 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7269 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7270 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7271 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7272 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7273 Spacing)); 7274 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7275 Spacing * 2)); 7276 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7277 Spacing * 3)); 7278 TmpInst.addOperand(Inst.getOperand(1)); // lane 7279 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7280 TmpInst.addOperand(Inst.getOperand(5)); 7281 Inst = TmpInst; 7282 return true; 7283 } 7284 7285 case ARM::VLD1LNdAsm_8: 7286 case ARM::VLD1LNdAsm_16: 7287 case ARM::VLD1LNdAsm_32: { 7288 MCInst TmpInst; 7289 // Shuffle the operands around so the lane index operand is in the 7290 // right place. 7291 unsigned Spacing; 7292 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7293 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7294 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7295 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7296 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7297 TmpInst.addOperand(Inst.getOperand(1)); // lane 7298 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7299 TmpInst.addOperand(Inst.getOperand(5)); 7300 Inst = TmpInst; 7301 return true; 7302 } 7303 7304 case ARM::VLD2LNdAsm_8: 7305 case ARM::VLD2LNdAsm_16: 7306 case ARM::VLD2LNdAsm_32: 7307 case ARM::VLD2LNqAsm_16: 7308 case ARM::VLD2LNqAsm_32: { 7309 MCInst TmpInst; 7310 // Shuffle the operands around so the lane index operand is in the 7311 // right place. 7312 unsigned Spacing; 7313 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7314 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7315 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7316 Spacing)); 7317 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7318 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7319 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7320 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7321 Spacing)); 7322 TmpInst.addOperand(Inst.getOperand(1)); // lane 7323 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7324 TmpInst.addOperand(Inst.getOperand(5)); 7325 Inst = TmpInst; 7326 return true; 7327 } 7328 7329 case ARM::VLD3LNdAsm_8: 7330 case ARM::VLD3LNdAsm_16: 7331 case ARM::VLD3LNdAsm_32: 7332 case ARM::VLD3LNqAsm_16: 7333 case ARM::VLD3LNqAsm_32: { 7334 MCInst TmpInst; 7335 // Shuffle the operands around so the lane index operand is in the 7336 // right place. 7337 unsigned Spacing; 7338 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7339 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7341 Spacing)); 7342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7343 Spacing * 2)); 7344 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7345 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7346 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7347 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7348 Spacing)); 7349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7350 Spacing * 2)); 7351 TmpInst.addOperand(Inst.getOperand(1)); // lane 7352 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7353 TmpInst.addOperand(Inst.getOperand(5)); 7354 Inst = TmpInst; 7355 return true; 7356 } 7357 7358 case ARM::VLD4LNdAsm_8: 7359 case ARM::VLD4LNdAsm_16: 7360 case ARM::VLD4LNdAsm_32: 7361 case ARM::VLD4LNqAsm_16: 7362 case ARM::VLD4LNqAsm_32: { 7363 MCInst TmpInst; 7364 // Shuffle the operands around so the lane index operand is in the 7365 // right place. 7366 unsigned Spacing; 7367 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7368 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7369 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7370 Spacing)); 7371 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7372 Spacing * 2)); 7373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7374 Spacing * 3)); 7375 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7376 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7377 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7378 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7379 Spacing)); 7380 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7381 Spacing * 2)); 7382 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7383 Spacing * 3)); 7384 TmpInst.addOperand(Inst.getOperand(1)); // lane 7385 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7386 TmpInst.addOperand(Inst.getOperand(5)); 7387 Inst = TmpInst; 7388 return true; 7389 } 7390 7391 // VLD3DUP single 3-element structure to all lanes instructions. 7392 case ARM::VLD3DUPdAsm_8: 7393 case ARM::VLD3DUPdAsm_16: 7394 case ARM::VLD3DUPdAsm_32: 7395 case ARM::VLD3DUPqAsm_8: 7396 case ARM::VLD3DUPqAsm_16: 7397 case ARM::VLD3DUPqAsm_32: { 7398 MCInst TmpInst; 7399 unsigned Spacing; 7400 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7401 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7402 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7403 Spacing)); 7404 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7405 Spacing * 2)); 7406 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7407 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7408 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7409 TmpInst.addOperand(Inst.getOperand(4)); 7410 Inst = TmpInst; 7411 return true; 7412 } 7413 7414 case ARM::VLD3DUPdWB_fixed_Asm_8: 7415 case ARM::VLD3DUPdWB_fixed_Asm_16: 7416 case ARM::VLD3DUPdWB_fixed_Asm_32: 7417 case ARM::VLD3DUPqWB_fixed_Asm_8: 7418 case ARM::VLD3DUPqWB_fixed_Asm_16: 7419 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7420 MCInst TmpInst; 7421 unsigned Spacing; 7422 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7423 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7424 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7425 Spacing)); 7426 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7427 Spacing * 2)); 7428 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7429 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7430 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7431 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7432 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7433 TmpInst.addOperand(Inst.getOperand(4)); 7434 Inst = TmpInst; 7435 return true; 7436 } 7437 7438 case ARM::VLD3DUPdWB_register_Asm_8: 7439 case ARM::VLD3DUPdWB_register_Asm_16: 7440 case ARM::VLD3DUPdWB_register_Asm_32: 7441 case ARM::VLD3DUPqWB_register_Asm_8: 7442 case ARM::VLD3DUPqWB_register_Asm_16: 7443 case ARM::VLD3DUPqWB_register_Asm_32: { 7444 MCInst TmpInst; 7445 unsigned Spacing; 7446 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7447 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7448 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7449 Spacing)); 7450 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7451 Spacing * 2)); 7452 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7453 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7454 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7455 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7456 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7457 TmpInst.addOperand(Inst.getOperand(5)); 7458 Inst = TmpInst; 7459 return true; 7460 } 7461 7462 // VLD3 multiple 3-element structure instructions. 7463 case ARM::VLD3dAsm_8: 7464 case ARM::VLD3dAsm_16: 7465 case ARM::VLD3dAsm_32: 7466 case ARM::VLD3qAsm_8: 7467 case ARM::VLD3qAsm_16: 7468 case ARM::VLD3qAsm_32: { 7469 MCInst TmpInst; 7470 unsigned Spacing; 7471 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7472 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7473 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7474 Spacing)); 7475 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7476 Spacing * 2)); 7477 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7478 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7479 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7480 TmpInst.addOperand(Inst.getOperand(4)); 7481 Inst = TmpInst; 7482 return true; 7483 } 7484 7485 case ARM::VLD3dWB_fixed_Asm_8: 7486 case ARM::VLD3dWB_fixed_Asm_16: 7487 case ARM::VLD3dWB_fixed_Asm_32: 7488 case ARM::VLD3qWB_fixed_Asm_8: 7489 case ARM::VLD3qWB_fixed_Asm_16: 7490 case ARM::VLD3qWB_fixed_Asm_32: { 7491 MCInst TmpInst; 7492 unsigned Spacing; 7493 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7494 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7495 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7496 Spacing)); 7497 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7498 Spacing * 2)); 7499 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7500 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7501 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7502 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7503 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7504 TmpInst.addOperand(Inst.getOperand(4)); 7505 Inst = TmpInst; 7506 return true; 7507 } 7508 7509 case ARM::VLD3dWB_register_Asm_8: 7510 case ARM::VLD3dWB_register_Asm_16: 7511 case ARM::VLD3dWB_register_Asm_32: 7512 case ARM::VLD3qWB_register_Asm_8: 7513 case ARM::VLD3qWB_register_Asm_16: 7514 case ARM::VLD3qWB_register_Asm_32: { 7515 MCInst TmpInst; 7516 unsigned Spacing; 7517 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7518 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7519 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7520 Spacing)); 7521 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7522 Spacing * 2)); 7523 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7524 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7525 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7526 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7527 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7528 TmpInst.addOperand(Inst.getOperand(5)); 7529 Inst = TmpInst; 7530 return true; 7531 } 7532 7533 // VLD4DUP single 3-element structure to all lanes instructions. 7534 case ARM::VLD4DUPdAsm_8: 7535 case ARM::VLD4DUPdAsm_16: 7536 case ARM::VLD4DUPdAsm_32: 7537 case ARM::VLD4DUPqAsm_8: 7538 case ARM::VLD4DUPqAsm_16: 7539 case ARM::VLD4DUPqAsm_32: { 7540 MCInst TmpInst; 7541 unsigned Spacing; 7542 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7543 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7544 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7545 Spacing)); 7546 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7547 Spacing * 2)); 7548 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7549 Spacing * 3)); 7550 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7551 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7552 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7553 TmpInst.addOperand(Inst.getOperand(4)); 7554 Inst = TmpInst; 7555 return true; 7556 } 7557 7558 case ARM::VLD4DUPdWB_fixed_Asm_8: 7559 case ARM::VLD4DUPdWB_fixed_Asm_16: 7560 case ARM::VLD4DUPdWB_fixed_Asm_32: 7561 case ARM::VLD4DUPqWB_fixed_Asm_8: 7562 case ARM::VLD4DUPqWB_fixed_Asm_16: 7563 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7564 MCInst TmpInst; 7565 unsigned Spacing; 7566 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7567 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7568 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7569 Spacing)); 7570 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7571 Spacing * 2)); 7572 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7573 Spacing * 3)); 7574 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7575 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7576 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7577 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7578 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7579 TmpInst.addOperand(Inst.getOperand(4)); 7580 Inst = TmpInst; 7581 return true; 7582 } 7583 7584 case ARM::VLD4DUPdWB_register_Asm_8: 7585 case ARM::VLD4DUPdWB_register_Asm_16: 7586 case ARM::VLD4DUPdWB_register_Asm_32: 7587 case ARM::VLD4DUPqWB_register_Asm_8: 7588 case ARM::VLD4DUPqWB_register_Asm_16: 7589 case ARM::VLD4DUPqWB_register_Asm_32: { 7590 MCInst TmpInst; 7591 unsigned Spacing; 7592 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7593 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7594 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7595 Spacing)); 7596 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7597 Spacing * 2)); 7598 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7599 Spacing * 3)); 7600 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7601 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7602 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7603 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7604 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7605 TmpInst.addOperand(Inst.getOperand(5)); 7606 Inst = TmpInst; 7607 return true; 7608 } 7609 7610 // VLD4 multiple 4-element structure instructions. 7611 case ARM::VLD4dAsm_8: 7612 case ARM::VLD4dAsm_16: 7613 case ARM::VLD4dAsm_32: 7614 case ARM::VLD4qAsm_8: 7615 case ARM::VLD4qAsm_16: 7616 case ARM::VLD4qAsm_32: { 7617 MCInst TmpInst; 7618 unsigned Spacing; 7619 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7620 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7621 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7622 Spacing)); 7623 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7624 Spacing * 2)); 7625 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7626 Spacing * 3)); 7627 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7628 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7629 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7630 TmpInst.addOperand(Inst.getOperand(4)); 7631 Inst = TmpInst; 7632 return true; 7633 } 7634 7635 case ARM::VLD4dWB_fixed_Asm_8: 7636 case ARM::VLD4dWB_fixed_Asm_16: 7637 case ARM::VLD4dWB_fixed_Asm_32: 7638 case ARM::VLD4qWB_fixed_Asm_8: 7639 case ARM::VLD4qWB_fixed_Asm_16: 7640 case ARM::VLD4qWB_fixed_Asm_32: { 7641 MCInst TmpInst; 7642 unsigned Spacing; 7643 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7644 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7645 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7646 Spacing)); 7647 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7648 Spacing * 2)); 7649 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7650 Spacing * 3)); 7651 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7652 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7653 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7654 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7655 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7656 TmpInst.addOperand(Inst.getOperand(4)); 7657 Inst = TmpInst; 7658 return true; 7659 } 7660 7661 case ARM::VLD4dWB_register_Asm_8: 7662 case ARM::VLD4dWB_register_Asm_16: 7663 case ARM::VLD4dWB_register_Asm_32: 7664 case ARM::VLD4qWB_register_Asm_8: 7665 case ARM::VLD4qWB_register_Asm_16: 7666 case ARM::VLD4qWB_register_Asm_32: { 7667 MCInst TmpInst; 7668 unsigned Spacing; 7669 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7670 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7671 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7672 Spacing)); 7673 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7674 Spacing * 2)); 7675 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7676 Spacing * 3)); 7677 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7678 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7679 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7680 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7681 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7682 TmpInst.addOperand(Inst.getOperand(5)); 7683 Inst = TmpInst; 7684 return true; 7685 } 7686 7687 // VST3 multiple 3-element structure instructions. 7688 case ARM::VST3dAsm_8: 7689 case ARM::VST3dAsm_16: 7690 case ARM::VST3dAsm_32: 7691 case ARM::VST3qAsm_8: 7692 case ARM::VST3qAsm_16: 7693 case ARM::VST3qAsm_32: { 7694 MCInst TmpInst; 7695 unsigned Spacing; 7696 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7697 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7698 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7699 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7700 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7701 Spacing)); 7702 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7703 Spacing * 2)); 7704 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7705 TmpInst.addOperand(Inst.getOperand(4)); 7706 Inst = TmpInst; 7707 return true; 7708 } 7709 7710 case ARM::VST3dWB_fixed_Asm_8: 7711 case ARM::VST3dWB_fixed_Asm_16: 7712 case ARM::VST3dWB_fixed_Asm_32: 7713 case ARM::VST3qWB_fixed_Asm_8: 7714 case ARM::VST3qWB_fixed_Asm_16: 7715 case ARM::VST3qWB_fixed_Asm_32: { 7716 MCInst TmpInst; 7717 unsigned Spacing; 7718 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7719 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7720 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7721 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7722 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7723 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7724 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7725 Spacing)); 7726 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7727 Spacing * 2)); 7728 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7729 TmpInst.addOperand(Inst.getOperand(4)); 7730 Inst = TmpInst; 7731 return true; 7732 } 7733 7734 case ARM::VST3dWB_register_Asm_8: 7735 case ARM::VST3dWB_register_Asm_16: 7736 case ARM::VST3dWB_register_Asm_32: 7737 case ARM::VST3qWB_register_Asm_8: 7738 case ARM::VST3qWB_register_Asm_16: 7739 case ARM::VST3qWB_register_Asm_32: { 7740 MCInst TmpInst; 7741 unsigned Spacing; 7742 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7743 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7744 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7745 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7746 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7747 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7748 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7749 Spacing)); 7750 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7751 Spacing * 2)); 7752 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7753 TmpInst.addOperand(Inst.getOperand(5)); 7754 Inst = TmpInst; 7755 return true; 7756 } 7757 7758 // VST4 multiple 3-element structure instructions. 7759 case ARM::VST4dAsm_8: 7760 case ARM::VST4dAsm_16: 7761 case ARM::VST4dAsm_32: 7762 case ARM::VST4qAsm_8: 7763 case ARM::VST4qAsm_16: 7764 case ARM::VST4qAsm_32: { 7765 MCInst TmpInst; 7766 unsigned Spacing; 7767 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7768 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7769 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7770 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7772 Spacing)); 7773 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7774 Spacing * 2)); 7775 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7776 Spacing * 3)); 7777 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7778 TmpInst.addOperand(Inst.getOperand(4)); 7779 Inst = TmpInst; 7780 return true; 7781 } 7782 7783 case ARM::VST4dWB_fixed_Asm_8: 7784 case ARM::VST4dWB_fixed_Asm_16: 7785 case ARM::VST4dWB_fixed_Asm_32: 7786 case ARM::VST4qWB_fixed_Asm_8: 7787 case ARM::VST4qWB_fixed_Asm_16: 7788 case ARM::VST4qWB_fixed_Asm_32: { 7789 MCInst TmpInst; 7790 unsigned Spacing; 7791 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7792 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7793 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7794 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7795 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7796 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7797 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7798 Spacing)); 7799 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7800 Spacing * 2)); 7801 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7802 Spacing * 3)); 7803 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7804 TmpInst.addOperand(Inst.getOperand(4)); 7805 Inst = TmpInst; 7806 return true; 7807 } 7808 7809 case ARM::VST4dWB_register_Asm_8: 7810 case ARM::VST4dWB_register_Asm_16: 7811 case ARM::VST4dWB_register_Asm_32: 7812 case ARM::VST4qWB_register_Asm_8: 7813 case ARM::VST4qWB_register_Asm_16: 7814 case ARM::VST4qWB_register_Asm_32: { 7815 MCInst TmpInst; 7816 unsigned Spacing; 7817 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7818 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7819 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7820 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7821 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7822 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7823 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7824 Spacing)); 7825 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7826 Spacing * 2)); 7827 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7828 Spacing * 3)); 7829 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7830 TmpInst.addOperand(Inst.getOperand(5)); 7831 Inst = TmpInst; 7832 return true; 7833 } 7834 7835 // Handle encoding choice for the shift-immediate instructions. 7836 case ARM::t2LSLri: 7837 case ARM::t2LSRri: 7838 case ARM::t2ASRri: { 7839 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7840 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7841 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7842 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7843 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7844 unsigned NewOpc; 7845 switch (Inst.getOpcode()) { 7846 default: llvm_unreachable("unexpected opcode"); 7847 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7848 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7849 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7850 } 7851 // The Thumb1 operands aren't in the same order. Awesome, eh? 7852 MCInst TmpInst; 7853 TmpInst.setOpcode(NewOpc); 7854 TmpInst.addOperand(Inst.getOperand(0)); 7855 TmpInst.addOperand(Inst.getOperand(5)); 7856 TmpInst.addOperand(Inst.getOperand(1)); 7857 TmpInst.addOperand(Inst.getOperand(2)); 7858 TmpInst.addOperand(Inst.getOperand(3)); 7859 TmpInst.addOperand(Inst.getOperand(4)); 7860 Inst = TmpInst; 7861 return true; 7862 } 7863 return false; 7864 } 7865 7866 // Handle the Thumb2 mode MOV complex aliases. 7867 case ARM::t2MOVsr: 7868 case ARM::t2MOVSsr: { 7869 // Which instruction to expand to depends on the CCOut operand and 7870 // whether we're in an IT block if the register operands are low 7871 // registers. 7872 bool isNarrow = false; 7873 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7874 isARMLowRegister(Inst.getOperand(1).getReg()) && 7875 isARMLowRegister(Inst.getOperand(2).getReg()) && 7876 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7877 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7878 isNarrow = true; 7879 MCInst TmpInst; 7880 unsigned newOpc; 7881 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7882 default: llvm_unreachable("unexpected opcode!"); 7883 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7884 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7885 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7886 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7887 } 7888 TmpInst.setOpcode(newOpc); 7889 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7890 if (isNarrow) 7891 TmpInst.addOperand(MCOperand::createReg( 7892 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7893 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7894 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7895 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7896 TmpInst.addOperand(Inst.getOperand(5)); 7897 if (!isNarrow) 7898 TmpInst.addOperand(MCOperand::createReg( 7899 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7900 Inst = TmpInst; 7901 return true; 7902 } 7903 case ARM::t2MOVsi: 7904 case ARM::t2MOVSsi: { 7905 // Which instruction to expand to depends on the CCOut operand and 7906 // whether we're in an IT block if the register operands are low 7907 // registers. 7908 bool isNarrow = false; 7909 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7910 isARMLowRegister(Inst.getOperand(1).getReg()) && 7911 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7912 isNarrow = true; 7913 MCInst TmpInst; 7914 unsigned newOpc; 7915 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7916 default: llvm_unreachable("unexpected opcode!"); 7917 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7918 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7919 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7920 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7921 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7922 } 7923 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7924 if (Amount == 32) Amount = 0; 7925 TmpInst.setOpcode(newOpc); 7926 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7927 if (isNarrow) 7928 TmpInst.addOperand(MCOperand::createReg( 7929 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7930 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7931 if (newOpc != ARM::t2RRX) 7932 TmpInst.addOperand(MCOperand::createImm(Amount)); 7933 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7934 TmpInst.addOperand(Inst.getOperand(4)); 7935 if (!isNarrow) 7936 TmpInst.addOperand(MCOperand::createReg( 7937 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7938 Inst = TmpInst; 7939 return true; 7940 } 7941 // Handle the ARM mode MOV complex aliases. 7942 case ARM::ASRr: 7943 case ARM::LSRr: 7944 case ARM::LSLr: 7945 case ARM::RORr: { 7946 ARM_AM::ShiftOpc ShiftTy; 7947 switch(Inst.getOpcode()) { 7948 default: llvm_unreachable("unexpected opcode!"); 7949 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 7950 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 7951 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 7952 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 7953 } 7954 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 7955 MCInst TmpInst; 7956 TmpInst.setOpcode(ARM::MOVsr); 7957 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7958 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7959 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7960 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7961 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7962 TmpInst.addOperand(Inst.getOperand(4)); 7963 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7964 Inst = TmpInst; 7965 return true; 7966 } 7967 case ARM::ASRi: 7968 case ARM::LSRi: 7969 case ARM::LSLi: 7970 case ARM::RORi: { 7971 ARM_AM::ShiftOpc ShiftTy; 7972 switch(Inst.getOpcode()) { 7973 default: llvm_unreachable("unexpected opcode!"); 7974 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 7975 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 7976 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 7977 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 7978 } 7979 // A shift by zero is a plain MOVr, not a MOVsi. 7980 unsigned Amt = Inst.getOperand(2).getImm(); 7981 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 7982 // A shift by 32 should be encoded as 0 when permitted 7983 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 7984 Amt = 0; 7985 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 7986 MCInst TmpInst; 7987 TmpInst.setOpcode(Opc); 7988 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7989 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7990 if (Opc == ARM::MOVsi) 7991 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7992 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7993 TmpInst.addOperand(Inst.getOperand(4)); 7994 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7995 Inst = TmpInst; 7996 return true; 7997 } 7998 case ARM::RRXi: { 7999 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8000 MCInst TmpInst; 8001 TmpInst.setOpcode(ARM::MOVsi); 8002 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8003 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8004 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8005 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8006 TmpInst.addOperand(Inst.getOperand(3)); 8007 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8008 Inst = TmpInst; 8009 return true; 8010 } 8011 case ARM::t2LDMIA_UPD: { 8012 // If this is a load of a single register, then we should use 8013 // a post-indexed LDR instruction instead, per the ARM ARM. 8014 if (Inst.getNumOperands() != 5) 8015 return false; 8016 MCInst TmpInst; 8017 TmpInst.setOpcode(ARM::t2LDR_POST); 8018 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8019 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8020 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8021 TmpInst.addOperand(MCOperand::createImm(4)); 8022 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8023 TmpInst.addOperand(Inst.getOperand(3)); 8024 Inst = TmpInst; 8025 return true; 8026 } 8027 case ARM::t2STMDB_UPD: { 8028 // If this is a store of a single register, then we should use 8029 // a pre-indexed STR instruction instead, per the ARM ARM. 8030 if (Inst.getNumOperands() != 5) 8031 return false; 8032 MCInst TmpInst; 8033 TmpInst.setOpcode(ARM::t2STR_PRE); 8034 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8035 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8036 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8037 TmpInst.addOperand(MCOperand::createImm(-4)); 8038 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8039 TmpInst.addOperand(Inst.getOperand(3)); 8040 Inst = TmpInst; 8041 return true; 8042 } 8043 case ARM::LDMIA_UPD: 8044 // If this is a load of a single register via a 'pop', then we should use 8045 // a post-indexed LDR instruction instead, per the ARM ARM. 8046 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8047 Inst.getNumOperands() == 5) { 8048 MCInst TmpInst; 8049 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8050 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8051 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8052 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8053 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8054 TmpInst.addOperand(MCOperand::createImm(4)); 8055 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8056 TmpInst.addOperand(Inst.getOperand(3)); 8057 Inst = TmpInst; 8058 return true; 8059 } 8060 break; 8061 case ARM::STMDB_UPD: 8062 // If this is a store of a single register via a 'push', then we should use 8063 // a pre-indexed STR instruction instead, per the ARM ARM. 8064 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8065 Inst.getNumOperands() == 5) { 8066 MCInst TmpInst; 8067 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8068 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8069 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8070 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8071 TmpInst.addOperand(MCOperand::createImm(-4)); 8072 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8073 TmpInst.addOperand(Inst.getOperand(3)); 8074 Inst = TmpInst; 8075 } 8076 break; 8077 case ARM::t2ADDri12: 8078 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8079 // mnemonic was used (not "addw"), encoding T3 is preferred. 8080 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8081 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8082 break; 8083 Inst.setOpcode(ARM::t2ADDri); 8084 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8085 break; 8086 case ARM::t2SUBri12: 8087 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8088 // mnemonic was used (not "subw"), encoding T3 is preferred. 8089 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8090 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8091 break; 8092 Inst.setOpcode(ARM::t2SUBri); 8093 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8094 break; 8095 case ARM::tADDi8: 8096 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8097 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8098 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8099 // to encoding T1 if <Rd> is omitted." 8100 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8101 Inst.setOpcode(ARM::tADDi3); 8102 return true; 8103 } 8104 break; 8105 case ARM::tSUBi8: 8106 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8107 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8108 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8109 // to encoding T1 if <Rd> is omitted." 8110 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8111 Inst.setOpcode(ARM::tSUBi3); 8112 return true; 8113 } 8114 break; 8115 case ARM::t2ADDri: 8116 case ARM::t2SUBri: { 8117 // If the destination and first source operand are the same, and 8118 // the flags are compatible with the current IT status, use encoding T2 8119 // instead of T3. For compatibility with the system 'as'. Make sure the 8120 // wide encoding wasn't explicit. 8121 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8122 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8123 (unsigned)Inst.getOperand(2).getImm() > 255 || 8124 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8125 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8126 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8127 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8128 break; 8129 MCInst TmpInst; 8130 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8131 ARM::tADDi8 : ARM::tSUBi8); 8132 TmpInst.addOperand(Inst.getOperand(0)); 8133 TmpInst.addOperand(Inst.getOperand(5)); 8134 TmpInst.addOperand(Inst.getOperand(0)); 8135 TmpInst.addOperand(Inst.getOperand(2)); 8136 TmpInst.addOperand(Inst.getOperand(3)); 8137 TmpInst.addOperand(Inst.getOperand(4)); 8138 Inst = TmpInst; 8139 return true; 8140 } 8141 case ARM::t2ADDrr: { 8142 // If the destination and first source operand are the same, and 8143 // there's no setting of the flags, use encoding T2 instead of T3. 8144 // Note that this is only for ADD, not SUB. This mirrors the system 8145 // 'as' behaviour. Also take advantage of ADD being commutative. 8146 // Make sure the wide encoding wasn't explicit. 8147 bool Swap = false; 8148 auto DestReg = Inst.getOperand(0).getReg(); 8149 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8150 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8151 Transform = true; 8152 Swap = true; 8153 } 8154 if (!Transform || 8155 Inst.getOperand(5).getReg() != 0 || 8156 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8157 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8158 break; 8159 MCInst TmpInst; 8160 TmpInst.setOpcode(ARM::tADDhirr); 8161 TmpInst.addOperand(Inst.getOperand(0)); 8162 TmpInst.addOperand(Inst.getOperand(0)); 8163 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8164 TmpInst.addOperand(Inst.getOperand(3)); 8165 TmpInst.addOperand(Inst.getOperand(4)); 8166 Inst = TmpInst; 8167 return true; 8168 } 8169 case ARM::tADDrSP: { 8170 // If the non-SP source operand and the destination operand are not the 8171 // same, we need to use the 32-bit encoding if it's available. 8172 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8173 Inst.setOpcode(ARM::t2ADDrr); 8174 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8175 return true; 8176 } 8177 break; 8178 } 8179 case ARM::tB: 8180 // A Thumb conditional branch outside of an IT block is a tBcc. 8181 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8182 Inst.setOpcode(ARM::tBcc); 8183 return true; 8184 } 8185 break; 8186 case ARM::t2B: 8187 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8188 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8189 Inst.setOpcode(ARM::t2Bcc); 8190 return true; 8191 } 8192 break; 8193 case ARM::t2Bcc: 8194 // If the conditional is AL or we're in an IT block, we really want t2B. 8195 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8196 Inst.setOpcode(ARM::t2B); 8197 return true; 8198 } 8199 break; 8200 case ARM::tBcc: 8201 // If the conditional is AL, we really want tB. 8202 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8203 Inst.setOpcode(ARM::tB); 8204 return true; 8205 } 8206 break; 8207 case ARM::tLDMIA: { 8208 // If the register list contains any high registers, or if the writeback 8209 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8210 // instead if we're in Thumb2. Otherwise, this should have generated 8211 // an error in validateInstruction(). 8212 unsigned Rn = Inst.getOperand(0).getReg(); 8213 bool hasWritebackToken = 8214 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8215 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8216 bool listContainsBase; 8217 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8218 (!listContainsBase && !hasWritebackToken) || 8219 (listContainsBase && hasWritebackToken)) { 8220 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8221 assert (isThumbTwo()); 8222 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8223 // If we're switching to the updating version, we need to insert 8224 // the writeback tied operand. 8225 if (hasWritebackToken) 8226 Inst.insert(Inst.begin(), 8227 MCOperand::createReg(Inst.getOperand(0).getReg())); 8228 return true; 8229 } 8230 break; 8231 } 8232 case ARM::tSTMIA_UPD: { 8233 // If the register list contains any high registers, we need to use 8234 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8235 // should have generated an error in validateInstruction(). 8236 unsigned Rn = Inst.getOperand(0).getReg(); 8237 bool listContainsBase; 8238 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8239 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8240 assert (isThumbTwo()); 8241 Inst.setOpcode(ARM::t2STMIA_UPD); 8242 return true; 8243 } 8244 break; 8245 } 8246 case ARM::tPOP: { 8247 bool listContainsBase; 8248 // If the register list contains any high registers, we need to use 8249 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8250 // should have generated an error in validateInstruction(). 8251 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8252 return false; 8253 assert (isThumbTwo()); 8254 Inst.setOpcode(ARM::t2LDMIA_UPD); 8255 // Add the base register and writeback operands. 8256 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8257 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8258 return true; 8259 } 8260 case ARM::tPUSH: { 8261 bool listContainsBase; 8262 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8263 return false; 8264 assert (isThumbTwo()); 8265 Inst.setOpcode(ARM::t2STMDB_UPD); 8266 // Add the base register and writeback operands. 8267 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8268 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8269 return true; 8270 } 8271 case ARM::t2MOVi: { 8272 // If we can use the 16-bit encoding and the user didn't explicitly 8273 // request the 32-bit variant, transform it here. 8274 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8275 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8276 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8277 Inst.getOperand(4).getReg() == ARM::CPSR) || 8278 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8279 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8280 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8281 // The operands aren't in the same order for tMOVi8... 8282 MCInst TmpInst; 8283 TmpInst.setOpcode(ARM::tMOVi8); 8284 TmpInst.addOperand(Inst.getOperand(0)); 8285 TmpInst.addOperand(Inst.getOperand(4)); 8286 TmpInst.addOperand(Inst.getOperand(1)); 8287 TmpInst.addOperand(Inst.getOperand(2)); 8288 TmpInst.addOperand(Inst.getOperand(3)); 8289 Inst = TmpInst; 8290 return true; 8291 } 8292 break; 8293 } 8294 case ARM::t2MOVr: { 8295 // If we can use the 16-bit encoding and the user didn't explicitly 8296 // request the 32-bit variant, transform it here. 8297 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8298 isARMLowRegister(Inst.getOperand(1).getReg()) && 8299 Inst.getOperand(2).getImm() == ARMCC::AL && 8300 Inst.getOperand(4).getReg() == ARM::CPSR && 8301 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8302 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8303 // The operands aren't the same for tMOV[S]r... (no cc_out) 8304 MCInst TmpInst; 8305 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8306 TmpInst.addOperand(Inst.getOperand(0)); 8307 TmpInst.addOperand(Inst.getOperand(1)); 8308 TmpInst.addOperand(Inst.getOperand(2)); 8309 TmpInst.addOperand(Inst.getOperand(3)); 8310 Inst = TmpInst; 8311 return true; 8312 } 8313 break; 8314 } 8315 case ARM::t2SXTH: 8316 case ARM::t2SXTB: 8317 case ARM::t2UXTH: 8318 case ARM::t2UXTB: { 8319 // If we can use the 16-bit encoding and the user didn't explicitly 8320 // request the 32-bit variant, transform it here. 8321 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8322 isARMLowRegister(Inst.getOperand(1).getReg()) && 8323 Inst.getOperand(2).getImm() == 0 && 8324 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8325 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8326 unsigned NewOpc; 8327 switch (Inst.getOpcode()) { 8328 default: llvm_unreachable("Illegal opcode!"); 8329 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8330 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8331 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8332 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8333 } 8334 // The operands aren't the same for thumb1 (no rotate operand). 8335 MCInst TmpInst; 8336 TmpInst.setOpcode(NewOpc); 8337 TmpInst.addOperand(Inst.getOperand(0)); 8338 TmpInst.addOperand(Inst.getOperand(1)); 8339 TmpInst.addOperand(Inst.getOperand(3)); 8340 TmpInst.addOperand(Inst.getOperand(4)); 8341 Inst = TmpInst; 8342 return true; 8343 } 8344 break; 8345 } 8346 case ARM::MOVsi: { 8347 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8348 // rrx shifts and asr/lsr of #32 is encoded as 0 8349 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8350 return false; 8351 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8352 // Shifting by zero is accepted as a vanilla 'MOVr' 8353 MCInst TmpInst; 8354 TmpInst.setOpcode(ARM::MOVr); 8355 TmpInst.addOperand(Inst.getOperand(0)); 8356 TmpInst.addOperand(Inst.getOperand(1)); 8357 TmpInst.addOperand(Inst.getOperand(3)); 8358 TmpInst.addOperand(Inst.getOperand(4)); 8359 TmpInst.addOperand(Inst.getOperand(5)); 8360 Inst = TmpInst; 8361 return true; 8362 } 8363 return false; 8364 } 8365 case ARM::ANDrsi: 8366 case ARM::ORRrsi: 8367 case ARM::EORrsi: 8368 case ARM::BICrsi: 8369 case ARM::SUBrsi: 8370 case ARM::ADDrsi: { 8371 unsigned newOpc; 8372 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8373 if (SOpc == ARM_AM::rrx) return false; 8374 switch (Inst.getOpcode()) { 8375 default: llvm_unreachable("unexpected opcode!"); 8376 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8377 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8378 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8379 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8380 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8381 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8382 } 8383 // If the shift is by zero, use the non-shifted instruction definition. 8384 // The exception is for right shifts, where 0 == 32 8385 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8386 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8387 MCInst TmpInst; 8388 TmpInst.setOpcode(newOpc); 8389 TmpInst.addOperand(Inst.getOperand(0)); 8390 TmpInst.addOperand(Inst.getOperand(1)); 8391 TmpInst.addOperand(Inst.getOperand(2)); 8392 TmpInst.addOperand(Inst.getOperand(4)); 8393 TmpInst.addOperand(Inst.getOperand(5)); 8394 TmpInst.addOperand(Inst.getOperand(6)); 8395 Inst = TmpInst; 8396 return true; 8397 } 8398 return false; 8399 } 8400 case ARM::ITasm: 8401 case ARM::t2IT: { 8402 // The mask bits for all but the first condition are represented as 8403 // the low bit of the condition code value implies 't'. We currently 8404 // always have 1 implies 't', so XOR toggle the bits if the low bit 8405 // of the condition code is zero. 8406 MCOperand &MO = Inst.getOperand(1); 8407 unsigned Mask = MO.getImm(); 8408 unsigned OrigMask = Mask; 8409 unsigned TZ = countTrailingZeros(Mask); 8410 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8411 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8412 Mask ^= (0xE << TZ) & 0xF; 8413 } 8414 MO.setImm(Mask); 8415 8416 // Set up the IT block state according to the IT instruction we just 8417 // matched. 8418 assert(!inITBlock() && "nested IT blocks?!"); 8419 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8420 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8421 ITState.CurPosition = 0; 8422 ITState.FirstCond = true; 8423 break; 8424 } 8425 case ARM::t2LSLrr: 8426 case ARM::t2LSRrr: 8427 case ARM::t2ASRrr: 8428 case ARM::t2SBCrr: 8429 case ARM::t2RORrr: 8430 case ARM::t2BICrr: 8431 { 8432 // Assemblers should use the narrow encodings of these instructions when permissible. 8433 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8434 isARMLowRegister(Inst.getOperand(2).getReg())) && 8435 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8436 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8437 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8438 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8439 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8440 ".w"))) { 8441 unsigned NewOpc; 8442 switch (Inst.getOpcode()) { 8443 default: llvm_unreachable("unexpected opcode"); 8444 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8445 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8446 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8447 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8448 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8449 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8450 } 8451 MCInst TmpInst; 8452 TmpInst.setOpcode(NewOpc); 8453 TmpInst.addOperand(Inst.getOperand(0)); 8454 TmpInst.addOperand(Inst.getOperand(5)); 8455 TmpInst.addOperand(Inst.getOperand(1)); 8456 TmpInst.addOperand(Inst.getOperand(2)); 8457 TmpInst.addOperand(Inst.getOperand(3)); 8458 TmpInst.addOperand(Inst.getOperand(4)); 8459 Inst = TmpInst; 8460 return true; 8461 } 8462 return false; 8463 } 8464 case ARM::t2ANDrr: 8465 case ARM::t2EORrr: 8466 case ARM::t2ADCrr: 8467 case ARM::t2ORRrr: 8468 { 8469 // Assemblers should use the narrow encodings of these instructions when permissible. 8470 // These instructions are special in that they are commutable, so shorter encodings 8471 // are available more often. 8472 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8473 isARMLowRegister(Inst.getOperand(2).getReg())) && 8474 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8475 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8476 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8477 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8478 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8479 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8480 ".w"))) { 8481 unsigned NewOpc; 8482 switch (Inst.getOpcode()) { 8483 default: llvm_unreachable("unexpected opcode"); 8484 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8485 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8486 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8487 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8488 } 8489 MCInst TmpInst; 8490 TmpInst.setOpcode(NewOpc); 8491 TmpInst.addOperand(Inst.getOperand(0)); 8492 TmpInst.addOperand(Inst.getOperand(5)); 8493 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8494 TmpInst.addOperand(Inst.getOperand(1)); 8495 TmpInst.addOperand(Inst.getOperand(2)); 8496 } else { 8497 TmpInst.addOperand(Inst.getOperand(2)); 8498 TmpInst.addOperand(Inst.getOperand(1)); 8499 } 8500 TmpInst.addOperand(Inst.getOperand(3)); 8501 TmpInst.addOperand(Inst.getOperand(4)); 8502 Inst = TmpInst; 8503 return true; 8504 } 8505 return false; 8506 } 8507 } 8508 return false; 8509 } 8510 8511 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8512 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8513 // suffix depending on whether they're in an IT block or not. 8514 unsigned Opc = Inst.getOpcode(); 8515 const MCInstrDesc &MCID = MII.get(Opc); 8516 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8517 assert(MCID.hasOptionalDef() && 8518 "optionally flag setting instruction missing optional def operand"); 8519 assert(MCID.NumOperands == Inst.getNumOperands() && 8520 "operand count mismatch!"); 8521 // Find the optional-def operand (cc_out). 8522 unsigned OpNo; 8523 for (OpNo = 0; 8524 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8525 ++OpNo) 8526 ; 8527 // If we're parsing Thumb1, reject it completely. 8528 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8529 return Match_MnemonicFail; 8530 // If we're parsing Thumb2, which form is legal depends on whether we're 8531 // in an IT block. 8532 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8533 !inITBlock()) 8534 return Match_RequiresITBlock; 8535 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8536 inITBlock()) 8537 return Match_RequiresNotITBlock; 8538 } else if (isThumbOne()) { 8539 // Some high-register supporting Thumb1 encodings only allow both registers 8540 // to be from r0-r7 when in Thumb2. 8541 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8542 isARMLowRegister(Inst.getOperand(1).getReg()) && 8543 isARMLowRegister(Inst.getOperand(2).getReg())) 8544 return Match_RequiresThumb2; 8545 // Others only require ARMv6 or later. 8546 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8547 isARMLowRegister(Inst.getOperand(0).getReg()) && 8548 isARMLowRegister(Inst.getOperand(1).getReg())) 8549 return Match_RequiresV6; 8550 } 8551 8552 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8553 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8554 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8555 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8556 return Match_RequiresV8; 8557 else if (Inst.getOperand(I).getReg() == ARM::PC) 8558 return Match_InvalidOperand; 8559 } 8560 8561 return Match_Success; 8562 } 8563 8564 namespace llvm { 8565 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8566 return true; // In an assembly source, no need to second-guess 8567 } 8568 } 8569 8570 static const char *getSubtargetFeatureName(uint64_t Val); 8571 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8572 OperandVector &Operands, 8573 MCStreamer &Out, uint64_t &ErrorInfo, 8574 bool MatchingInlineAsm) { 8575 MCInst Inst; 8576 unsigned MatchResult; 8577 8578 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8579 MatchingInlineAsm); 8580 switch (MatchResult) { 8581 case Match_Success: 8582 // Context sensitive operand constraints aren't handled by the matcher, 8583 // so check them here. 8584 if (validateInstruction(Inst, Operands)) { 8585 // Still progress the IT block, otherwise one wrong condition causes 8586 // nasty cascading errors. 8587 forwardITPosition(); 8588 return true; 8589 } 8590 8591 { // processInstruction() updates inITBlock state, we need to save it away 8592 bool wasInITBlock = inITBlock(); 8593 8594 // Some instructions need post-processing to, for example, tweak which 8595 // encoding is selected. Loop on it while changes happen so the 8596 // individual transformations can chain off each other. E.g., 8597 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8598 while (processInstruction(Inst, Operands, Out)) 8599 ; 8600 8601 // Only after the instruction is fully processed, we can validate it 8602 if (wasInITBlock && hasV8Ops() && isThumb() && 8603 !isV8EligibleForIT(&Inst)) { 8604 Warning(IDLoc, "deprecated instruction in IT block"); 8605 } 8606 } 8607 8608 // Only move forward at the very end so that everything in validate 8609 // and process gets a consistent answer about whether we're in an IT 8610 // block. 8611 forwardITPosition(); 8612 8613 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8614 // doesn't actually encode. 8615 if (Inst.getOpcode() == ARM::ITasm) 8616 return false; 8617 8618 Inst.setLoc(IDLoc); 8619 Out.EmitInstruction(Inst, getSTI()); 8620 return false; 8621 case Match_MissingFeature: { 8622 assert(ErrorInfo && "Unknown missing feature!"); 8623 // Special case the error message for the very common case where only 8624 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8625 std::string Msg = "instruction requires:"; 8626 uint64_t Mask = 1; 8627 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8628 if (ErrorInfo & Mask) { 8629 Msg += " "; 8630 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8631 } 8632 Mask <<= 1; 8633 } 8634 return Error(IDLoc, Msg); 8635 } 8636 case Match_InvalidOperand: { 8637 SMLoc ErrorLoc = IDLoc; 8638 if (ErrorInfo != ~0ULL) { 8639 if (ErrorInfo >= Operands.size()) 8640 return Error(IDLoc, "too few operands for instruction"); 8641 8642 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8643 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8644 } 8645 8646 return Error(ErrorLoc, "invalid operand for instruction"); 8647 } 8648 case Match_MnemonicFail: 8649 return Error(IDLoc, "invalid instruction", 8650 ((ARMOperand &)*Operands[0]).getLocRange()); 8651 case Match_RequiresNotITBlock: 8652 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8653 case Match_RequiresITBlock: 8654 return Error(IDLoc, "instruction only valid inside IT block"); 8655 case Match_RequiresV6: 8656 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8657 case Match_RequiresThumb2: 8658 return Error(IDLoc, "instruction variant requires Thumb2"); 8659 case Match_RequiresV8: 8660 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 8661 case Match_ImmRange0_15: { 8662 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8663 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8664 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8665 } 8666 case Match_ImmRange0_239: { 8667 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8668 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8669 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8670 } 8671 case Match_AlignedMemoryRequiresNone: 8672 case Match_DupAlignedMemoryRequiresNone: 8673 case Match_AlignedMemoryRequires16: 8674 case Match_DupAlignedMemoryRequires16: 8675 case Match_AlignedMemoryRequires32: 8676 case Match_DupAlignedMemoryRequires32: 8677 case Match_AlignedMemoryRequires64: 8678 case Match_DupAlignedMemoryRequires64: 8679 case Match_AlignedMemoryRequires64or128: 8680 case Match_DupAlignedMemoryRequires64or128: 8681 case Match_AlignedMemoryRequires64or128or256: 8682 { 8683 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8684 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8685 switch (MatchResult) { 8686 default: 8687 llvm_unreachable("Missing Match_Aligned type"); 8688 case Match_AlignedMemoryRequiresNone: 8689 case Match_DupAlignedMemoryRequiresNone: 8690 return Error(ErrorLoc, "alignment must be omitted"); 8691 case Match_AlignedMemoryRequires16: 8692 case Match_DupAlignedMemoryRequires16: 8693 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8694 case Match_AlignedMemoryRequires32: 8695 case Match_DupAlignedMemoryRequires32: 8696 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8697 case Match_AlignedMemoryRequires64: 8698 case Match_DupAlignedMemoryRequires64: 8699 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8700 case Match_AlignedMemoryRequires64or128: 8701 case Match_DupAlignedMemoryRequires64or128: 8702 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8703 case Match_AlignedMemoryRequires64or128or256: 8704 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8705 } 8706 } 8707 } 8708 8709 llvm_unreachable("Implement any new match types added!"); 8710 } 8711 8712 /// parseDirective parses the arm specific directives 8713 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8714 const MCObjectFileInfo::Environment Format = 8715 getContext().getObjectFileInfo()->getObjectFileType(); 8716 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8717 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8718 8719 StringRef IDVal = DirectiveID.getIdentifier(); 8720 if (IDVal == ".word") 8721 return parseLiteralValues(4, DirectiveID.getLoc()); 8722 else if (IDVal == ".short" || IDVal == ".hword") 8723 return parseLiteralValues(2, DirectiveID.getLoc()); 8724 else if (IDVal == ".thumb") 8725 return parseDirectiveThumb(DirectiveID.getLoc()); 8726 else if (IDVal == ".arm") 8727 return parseDirectiveARM(DirectiveID.getLoc()); 8728 else if (IDVal == ".thumb_func") 8729 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8730 else if (IDVal == ".code") 8731 return parseDirectiveCode(DirectiveID.getLoc()); 8732 else if (IDVal == ".syntax") 8733 return parseDirectiveSyntax(DirectiveID.getLoc()); 8734 else if (IDVal == ".unreq") 8735 return parseDirectiveUnreq(DirectiveID.getLoc()); 8736 else if (IDVal == ".fnend") 8737 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8738 else if (IDVal == ".cantunwind") 8739 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8740 else if (IDVal == ".personality") 8741 return parseDirectivePersonality(DirectiveID.getLoc()); 8742 else if (IDVal == ".handlerdata") 8743 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8744 else if (IDVal == ".setfp") 8745 return parseDirectiveSetFP(DirectiveID.getLoc()); 8746 else if (IDVal == ".pad") 8747 return parseDirectivePad(DirectiveID.getLoc()); 8748 else if (IDVal == ".save") 8749 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8750 else if (IDVal == ".vsave") 8751 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8752 else if (IDVal == ".ltorg" || IDVal == ".pool") 8753 return parseDirectiveLtorg(DirectiveID.getLoc()); 8754 else if (IDVal == ".even") 8755 return parseDirectiveEven(DirectiveID.getLoc()); 8756 else if (IDVal == ".personalityindex") 8757 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8758 else if (IDVal == ".unwind_raw") 8759 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8760 else if (IDVal == ".movsp") 8761 return parseDirectiveMovSP(DirectiveID.getLoc()); 8762 else if (IDVal == ".arch_extension") 8763 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8764 else if (IDVal == ".align") 8765 return parseDirectiveAlign(DirectiveID.getLoc()); 8766 else if (IDVal == ".thumb_set") 8767 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8768 8769 if (!IsMachO && !IsCOFF) { 8770 if (IDVal == ".arch") 8771 return parseDirectiveArch(DirectiveID.getLoc()); 8772 else if (IDVal == ".cpu") 8773 return parseDirectiveCPU(DirectiveID.getLoc()); 8774 else if (IDVal == ".eabi_attribute") 8775 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8776 else if (IDVal == ".fpu") 8777 return parseDirectiveFPU(DirectiveID.getLoc()); 8778 else if (IDVal == ".fnstart") 8779 return parseDirectiveFnStart(DirectiveID.getLoc()); 8780 else if (IDVal == ".inst") 8781 return parseDirectiveInst(DirectiveID.getLoc()); 8782 else if (IDVal == ".inst.n") 8783 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8784 else if (IDVal == ".inst.w") 8785 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8786 else if (IDVal == ".object_arch") 8787 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8788 else if (IDVal == ".tlsdescseq") 8789 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8790 } 8791 8792 return true; 8793 } 8794 8795 /// parseLiteralValues 8796 /// ::= .hword expression [, expression]* 8797 /// ::= .short expression [, expression]* 8798 /// ::= .word expression [, expression]* 8799 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8800 MCAsmParser &Parser = getParser(); 8801 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8802 for (;;) { 8803 const MCExpr *Value; 8804 if (getParser().parseExpression(Value)) { 8805 Parser.eatToEndOfStatement(); 8806 return false; 8807 } 8808 8809 getParser().getStreamer().EmitValue(Value, Size, L); 8810 8811 if (getLexer().is(AsmToken::EndOfStatement)) 8812 break; 8813 8814 // FIXME: Improve diagnostic. 8815 if (getLexer().isNot(AsmToken::Comma)) { 8816 Error(L, "unexpected token in directive"); 8817 return false; 8818 } 8819 Parser.Lex(); 8820 } 8821 } 8822 8823 Parser.Lex(); 8824 return false; 8825 } 8826 8827 /// parseDirectiveThumb 8828 /// ::= .thumb 8829 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8830 MCAsmParser &Parser = getParser(); 8831 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8832 Error(L, "unexpected token in directive"); 8833 return false; 8834 } 8835 Parser.Lex(); 8836 8837 if (!hasThumb()) { 8838 Error(L, "target does not support Thumb mode"); 8839 return false; 8840 } 8841 8842 if (!isThumb()) 8843 SwitchMode(); 8844 8845 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8846 return false; 8847 } 8848 8849 /// parseDirectiveARM 8850 /// ::= .arm 8851 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8852 MCAsmParser &Parser = getParser(); 8853 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8854 Error(L, "unexpected token in directive"); 8855 return false; 8856 } 8857 Parser.Lex(); 8858 8859 if (!hasARM()) { 8860 Error(L, "target does not support ARM mode"); 8861 return false; 8862 } 8863 8864 if (isThumb()) 8865 SwitchMode(); 8866 8867 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8868 return false; 8869 } 8870 8871 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8872 if (NextSymbolIsThumb) { 8873 getParser().getStreamer().EmitThumbFunc(Symbol); 8874 NextSymbolIsThumb = false; 8875 } 8876 } 8877 8878 /// parseDirectiveThumbFunc 8879 /// ::= .thumbfunc symbol_name 8880 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8881 MCAsmParser &Parser = getParser(); 8882 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 8883 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8884 8885 // Darwin asm has (optionally) function name after .thumb_func direction 8886 // ELF doesn't 8887 if (IsMachO) { 8888 const AsmToken &Tok = Parser.getTok(); 8889 if (Tok.isNot(AsmToken::EndOfStatement)) { 8890 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8891 Error(L, "unexpected token in .thumb_func directive"); 8892 return false; 8893 } 8894 8895 MCSymbol *Func = 8896 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 8897 getParser().getStreamer().EmitThumbFunc(Func); 8898 Parser.Lex(); // Consume the identifier token. 8899 return false; 8900 } 8901 } 8902 8903 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8904 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8905 Parser.eatToEndOfStatement(); 8906 return false; 8907 } 8908 8909 NextSymbolIsThumb = true; 8910 return false; 8911 } 8912 8913 /// parseDirectiveSyntax 8914 /// ::= .syntax unified | divided 8915 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8916 MCAsmParser &Parser = getParser(); 8917 const AsmToken &Tok = Parser.getTok(); 8918 if (Tok.isNot(AsmToken::Identifier)) { 8919 Error(L, "unexpected token in .syntax directive"); 8920 return false; 8921 } 8922 8923 StringRef Mode = Tok.getString(); 8924 if (Mode == "unified" || Mode == "UNIFIED") { 8925 Parser.Lex(); 8926 } else if (Mode == "divided" || Mode == "DIVIDED") { 8927 Error(L, "'.syntax divided' arm asssembly not supported"); 8928 return false; 8929 } else { 8930 Error(L, "unrecognized syntax mode in .syntax directive"); 8931 return false; 8932 } 8933 8934 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8935 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8936 return false; 8937 } 8938 Parser.Lex(); 8939 8940 // TODO tell the MC streamer the mode 8941 // getParser().getStreamer().Emit???(); 8942 return false; 8943 } 8944 8945 /// parseDirectiveCode 8946 /// ::= .code 16 | 32 8947 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 8948 MCAsmParser &Parser = getParser(); 8949 const AsmToken &Tok = Parser.getTok(); 8950 if (Tok.isNot(AsmToken::Integer)) { 8951 Error(L, "unexpected token in .code directive"); 8952 return false; 8953 } 8954 int64_t Val = Parser.getTok().getIntVal(); 8955 if (Val != 16 && Val != 32) { 8956 Error(L, "invalid operand to .code directive"); 8957 return false; 8958 } 8959 Parser.Lex(); 8960 8961 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8962 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8963 return false; 8964 } 8965 Parser.Lex(); 8966 8967 if (Val == 16) { 8968 if (!hasThumb()) { 8969 Error(L, "target does not support Thumb mode"); 8970 return false; 8971 } 8972 8973 if (!isThumb()) 8974 SwitchMode(); 8975 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8976 } else { 8977 if (!hasARM()) { 8978 Error(L, "target does not support ARM mode"); 8979 return false; 8980 } 8981 8982 if (isThumb()) 8983 SwitchMode(); 8984 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8985 } 8986 8987 return false; 8988 } 8989 8990 /// parseDirectiveReq 8991 /// ::= name .req registername 8992 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 8993 MCAsmParser &Parser = getParser(); 8994 Parser.Lex(); // Eat the '.req' token. 8995 unsigned Reg; 8996 SMLoc SRegLoc, ERegLoc; 8997 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 8998 Parser.eatToEndOfStatement(); 8999 Error(SRegLoc, "register name expected"); 9000 return false; 9001 } 9002 9003 // Shouldn't be anything else. 9004 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9005 Parser.eatToEndOfStatement(); 9006 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9007 return false; 9008 } 9009 9010 Parser.Lex(); // Consume the EndOfStatement 9011 9012 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9013 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9014 return false; 9015 } 9016 9017 return false; 9018 } 9019 9020 /// parseDirectiveUneq 9021 /// ::= .unreq registername 9022 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9023 MCAsmParser &Parser = getParser(); 9024 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9025 Parser.eatToEndOfStatement(); 9026 Error(L, "unexpected input in .unreq directive."); 9027 return false; 9028 } 9029 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9030 Parser.Lex(); // Eat the identifier. 9031 return false; 9032 } 9033 9034 /// parseDirectiveArch 9035 /// ::= .arch token 9036 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9037 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9038 9039 unsigned ID = ARM::parseArch(Arch); 9040 9041 if (ID == ARM::AK_INVALID) { 9042 Error(L, "Unknown arch name"); 9043 return false; 9044 } 9045 9046 Triple T; 9047 MCSubtargetInfo &STI = copySTI(); 9048 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9049 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9050 9051 getTargetStreamer().emitArch(ID); 9052 return false; 9053 } 9054 9055 /// parseDirectiveEabiAttr 9056 /// ::= .eabi_attribute int, int [, "str"] 9057 /// ::= .eabi_attribute Tag_name, int [, "str"] 9058 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9059 MCAsmParser &Parser = getParser(); 9060 int64_t Tag; 9061 SMLoc TagLoc; 9062 TagLoc = Parser.getTok().getLoc(); 9063 if (Parser.getTok().is(AsmToken::Identifier)) { 9064 StringRef Name = Parser.getTok().getIdentifier(); 9065 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9066 if (Tag == -1) { 9067 Error(TagLoc, "attribute name not recognised: " + Name); 9068 Parser.eatToEndOfStatement(); 9069 return false; 9070 } 9071 Parser.Lex(); 9072 } else { 9073 const MCExpr *AttrExpr; 9074 9075 TagLoc = Parser.getTok().getLoc(); 9076 if (Parser.parseExpression(AttrExpr)) { 9077 Parser.eatToEndOfStatement(); 9078 return false; 9079 } 9080 9081 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9082 if (!CE) { 9083 Error(TagLoc, "expected numeric constant"); 9084 Parser.eatToEndOfStatement(); 9085 return false; 9086 } 9087 9088 Tag = CE->getValue(); 9089 } 9090 9091 if (Parser.getTok().isNot(AsmToken::Comma)) { 9092 Error(Parser.getTok().getLoc(), "comma expected"); 9093 Parser.eatToEndOfStatement(); 9094 return false; 9095 } 9096 Parser.Lex(); // skip comma 9097 9098 StringRef StringValue = ""; 9099 bool IsStringValue = false; 9100 9101 int64_t IntegerValue = 0; 9102 bool IsIntegerValue = false; 9103 9104 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9105 IsStringValue = true; 9106 else if (Tag == ARMBuildAttrs::compatibility) { 9107 IsStringValue = true; 9108 IsIntegerValue = true; 9109 } else if (Tag < 32 || Tag % 2 == 0) 9110 IsIntegerValue = true; 9111 else if (Tag % 2 == 1) 9112 IsStringValue = true; 9113 else 9114 llvm_unreachable("invalid tag type"); 9115 9116 if (IsIntegerValue) { 9117 const MCExpr *ValueExpr; 9118 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9119 if (Parser.parseExpression(ValueExpr)) { 9120 Parser.eatToEndOfStatement(); 9121 return false; 9122 } 9123 9124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9125 if (!CE) { 9126 Error(ValueExprLoc, "expected numeric constant"); 9127 Parser.eatToEndOfStatement(); 9128 return false; 9129 } 9130 9131 IntegerValue = CE->getValue(); 9132 } 9133 9134 if (Tag == ARMBuildAttrs::compatibility) { 9135 if (Parser.getTok().isNot(AsmToken::Comma)) 9136 IsStringValue = false; 9137 if (Parser.getTok().isNot(AsmToken::Comma)) { 9138 Error(Parser.getTok().getLoc(), "comma expected"); 9139 Parser.eatToEndOfStatement(); 9140 return false; 9141 } else { 9142 Parser.Lex(); 9143 } 9144 } 9145 9146 if (IsStringValue) { 9147 if (Parser.getTok().isNot(AsmToken::String)) { 9148 Error(Parser.getTok().getLoc(), "bad string constant"); 9149 Parser.eatToEndOfStatement(); 9150 return false; 9151 } 9152 9153 StringValue = Parser.getTok().getStringContents(); 9154 Parser.Lex(); 9155 } 9156 9157 if (IsIntegerValue && IsStringValue) { 9158 assert(Tag == ARMBuildAttrs::compatibility); 9159 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9160 } else if (IsIntegerValue) 9161 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9162 else if (IsStringValue) 9163 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9164 return false; 9165 } 9166 9167 /// parseDirectiveCPU 9168 /// ::= .cpu str 9169 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9170 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9171 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9172 9173 // FIXME: This is using table-gen data, but should be moved to 9174 // ARMTargetParser once that is table-gen'd. 9175 if (!getSTI().isCPUStringValid(CPU)) { 9176 Error(L, "Unknown CPU name"); 9177 return false; 9178 } 9179 9180 MCSubtargetInfo &STI = copySTI(); 9181 STI.setDefaultFeatures(CPU, ""); 9182 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9183 9184 return false; 9185 } 9186 /// parseDirectiveFPU 9187 /// ::= .fpu str 9188 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9189 SMLoc FPUNameLoc = getTok().getLoc(); 9190 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9191 9192 unsigned ID = ARM::parseFPU(FPU); 9193 std::vector<const char *> Features; 9194 if (!ARM::getFPUFeatures(ID, Features)) { 9195 Error(FPUNameLoc, "Unknown FPU name"); 9196 return false; 9197 } 9198 9199 MCSubtargetInfo &STI = copySTI(); 9200 for (auto Feature : Features) 9201 STI.ApplyFeatureFlag(Feature); 9202 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9203 9204 getTargetStreamer().emitFPU(ID); 9205 return false; 9206 } 9207 9208 /// parseDirectiveFnStart 9209 /// ::= .fnstart 9210 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9211 if (UC.hasFnStart()) { 9212 Error(L, ".fnstart starts before the end of previous one"); 9213 UC.emitFnStartLocNotes(); 9214 return false; 9215 } 9216 9217 // Reset the unwind directives parser state 9218 UC.reset(); 9219 9220 getTargetStreamer().emitFnStart(); 9221 9222 UC.recordFnStart(L); 9223 return false; 9224 } 9225 9226 /// parseDirectiveFnEnd 9227 /// ::= .fnend 9228 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9229 // Check the ordering of unwind directives 9230 if (!UC.hasFnStart()) { 9231 Error(L, ".fnstart must precede .fnend directive"); 9232 return false; 9233 } 9234 9235 // Reset the unwind directives parser state 9236 getTargetStreamer().emitFnEnd(); 9237 9238 UC.reset(); 9239 return false; 9240 } 9241 9242 /// parseDirectiveCantUnwind 9243 /// ::= .cantunwind 9244 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9245 UC.recordCantUnwind(L); 9246 9247 // Check the ordering of unwind directives 9248 if (!UC.hasFnStart()) { 9249 Error(L, ".fnstart must precede .cantunwind directive"); 9250 return false; 9251 } 9252 if (UC.hasHandlerData()) { 9253 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9254 UC.emitHandlerDataLocNotes(); 9255 return false; 9256 } 9257 if (UC.hasPersonality()) { 9258 Error(L, ".cantunwind can't be used with .personality directive"); 9259 UC.emitPersonalityLocNotes(); 9260 return false; 9261 } 9262 9263 getTargetStreamer().emitCantUnwind(); 9264 return false; 9265 } 9266 9267 /// parseDirectivePersonality 9268 /// ::= .personality name 9269 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9270 MCAsmParser &Parser = getParser(); 9271 bool HasExistingPersonality = UC.hasPersonality(); 9272 9273 UC.recordPersonality(L); 9274 9275 // Check the ordering of unwind directives 9276 if (!UC.hasFnStart()) { 9277 Error(L, ".fnstart must precede .personality directive"); 9278 return false; 9279 } 9280 if (UC.cantUnwind()) { 9281 Error(L, ".personality can't be used with .cantunwind directive"); 9282 UC.emitCantUnwindLocNotes(); 9283 return false; 9284 } 9285 if (UC.hasHandlerData()) { 9286 Error(L, ".personality must precede .handlerdata directive"); 9287 UC.emitHandlerDataLocNotes(); 9288 return false; 9289 } 9290 if (HasExistingPersonality) { 9291 Parser.eatToEndOfStatement(); 9292 Error(L, "multiple personality directives"); 9293 UC.emitPersonalityLocNotes(); 9294 return false; 9295 } 9296 9297 // Parse the name of the personality routine 9298 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9299 Parser.eatToEndOfStatement(); 9300 Error(L, "unexpected input in .personality directive."); 9301 return false; 9302 } 9303 StringRef Name(Parser.getTok().getIdentifier()); 9304 Parser.Lex(); 9305 9306 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9307 getTargetStreamer().emitPersonality(PR); 9308 return false; 9309 } 9310 9311 /// parseDirectiveHandlerData 9312 /// ::= .handlerdata 9313 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9314 UC.recordHandlerData(L); 9315 9316 // Check the ordering of unwind directives 9317 if (!UC.hasFnStart()) { 9318 Error(L, ".fnstart must precede .personality directive"); 9319 return false; 9320 } 9321 if (UC.cantUnwind()) { 9322 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9323 UC.emitCantUnwindLocNotes(); 9324 return false; 9325 } 9326 9327 getTargetStreamer().emitHandlerData(); 9328 return false; 9329 } 9330 9331 /// parseDirectiveSetFP 9332 /// ::= .setfp fpreg, spreg [, offset] 9333 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9334 MCAsmParser &Parser = getParser(); 9335 // Check the ordering of unwind directives 9336 if (!UC.hasFnStart()) { 9337 Error(L, ".fnstart must precede .setfp directive"); 9338 return false; 9339 } 9340 if (UC.hasHandlerData()) { 9341 Error(L, ".setfp must precede .handlerdata directive"); 9342 return false; 9343 } 9344 9345 // Parse fpreg 9346 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9347 int FPReg = tryParseRegister(); 9348 if (FPReg == -1) { 9349 Error(FPRegLoc, "frame pointer register expected"); 9350 return false; 9351 } 9352 9353 // Consume comma 9354 if (Parser.getTok().isNot(AsmToken::Comma)) { 9355 Error(Parser.getTok().getLoc(), "comma expected"); 9356 return false; 9357 } 9358 Parser.Lex(); // skip comma 9359 9360 // Parse spreg 9361 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9362 int SPReg = tryParseRegister(); 9363 if (SPReg == -1) { 9364 Error(SPRegLoc, "stack pointer register expected"); 9365 return false; 9366 } 9367 9368 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9369 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9370 return false; 9371 } 9372 9373 // Update the frame pointer register 9374 UC.saveFPReg(FPReg); 9375 9376 // Parse offset 9377 int64_t Offset = 0; 9378 if (Parser.getTok().is(AsmToken::Comma)) { 9379 Parser.Lex(); // skip comma 9380 9381 if (Parser.getTok().isNot(AsmToken::Hash) && 9382 Parser.getTok().isNot(AsmToken::Dollar)) { 9383 Error(Parser.getTok().getLoc(), "'#' expected"); 9384 return false; 9385 } 9386 Parser.Lex(); // skip hash token. 9387 9388 const MCExpr *OffsetExpr; 9389 SMLoc ExLoc = Parser.getTok().getLoc(); 9390 SMLoc EndLoc; 9391 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9392 Error(ExLoc, "malformed setfp offset"); 9393 return false; 9394 } 9395 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9396 if (!CE) { 9397 Error(ExLoc, "setfp offset must be an immediate"); 9398 return false; 9399 } 9400 9401 Offset = CE->getValue(); 9402 } 9403 9404 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9405 static_cast<unsigned>(SPReg), Offset); 9406 return false; 9407 } 9408 9409 /// parseDirective 9410 /// ::= .pad offset 9411 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9412 MCAsmParser &Parser = getParser(); 9413 // Check the ordering of unwind directives 9414 if (!UC.hasFnStart()) { 9415 Error(L, ".fnstart must precede .pad directive"); 9416 return false; 9417 } 9418 if (UC.hasHandlerData()) { 9419 Error(L, ".pad must precede .handlerdata directive"); 9420 return false; 9421 } 9422 9423 // Parse the offset 9424 if (Parser.getTok().isNot(AsmToken::Hash) && 9425 Parser.getTok().isNot(AsmToken::Dollar)) { 9426 Error(Parser.getTok().getLoc(), "'#' expected"); 9427 return false; 9428 } 9429 Parser.Lex(); // skip hash token. 9430 9431 const MCExpr *OffsetExpr; 9432 SMLoc ExLoc = Parser.getTok().getLoc(); 9433 SMLoc EndLoc; 9434 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9435 Error(ExLoc, "malformed pad offset"); 9436 return false; 9437 } 9438 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9439 if (!CE) { 9440 Error(ExLoc, "pad offset must be an immediate"); 9441 return false; 9442 } 9443 9444 getTargetStreamer().emitPad(CE->getValue()); 9445 return false; 9446 } 9447 9448 /// parseDirectiveRegSave 9449 /// ::= .save { registers } 9450 /// ::= .vsave { registers } 9451 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9452 // Check the ordering of unwind directives 9453 if (!UC.hasFnStart()) { 9454 Error(L, ".fnstart must precede .save or .vsave directives"); 9455 return false; 9456 } 9457 if (UC.hasHandlerData()) { 9458 Error(L, ".save or .vsave must precede .handlerdata directive"); 9459 return false; 9460 } 9461 9462 // RAII object to make sure parsed operands are deleted. 9463 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9464 9465 // Parse the register list 9466 if (parseRegisterList(Operands)) 9467 return false; 9468 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9469 if (!IsVector && !Op.isRegList()) { 9470 Error(L, ".save expects GPR registers"); 9471 return false; 9472 } 9473 if (IsVector && !Op.isDPRRegList()) { 9474 Error(L, ".vsave expects DPR registers"); 9475 return false; 9476 } 9477 9478 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9479 return false; 9480 } 9481 9482 /// parseDirectiveInst 9483 /// ::= .inst opcode [, ...] 9484 /// ::= .inst.n opcode [, ...] 9485 /// ::= .inst.w opcode [, ...] 9486 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9487 MCAsmParser &Parser = getParser(); 9488 int Width; 9489 9490 if (isThumb()) { 9491 switch (Suffix) { 9492 case 'n': 9493 Width = 2; 9494 break; 9495 case 'w': 9496 Width = 4; 9497 break; 9498 default: 9499 Parser.eatToEndOfStatement(); 9500 Error(Loc, "cannot determine Thumb instruction size, " 9501 "use inst.n/inst.w instead"); 9502 return false; 9503 } 9504 } else { 9505 if (Suffix) { 9506 Parser.eatToEndOfStatement(); 9507 Error(Loc, "width suffixes are invalid in ARM mode"); 9508 return false; 9509 } 9510 Width = 4; 9511 } 9512 9513 if (getLexer().is(AsmToken::EndOfStatement)) { 9514 Parser.eatToEndOfStatement(); 9515 Error(Loc, "expected expression following directive"); 9516 return false; 9517 } 9518 9519 for (;;) { 9520 const MCExpr *Expr; 9521 9522 if (getParser().parseExpression(Expr)) { 9523 Error(Loc, "expected expression"); 9524 return false; 9525 } 9526 9527 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9528 if (!Value) { 9529 Error(Loc, "expected constant expression"); 9530 return false; 9531 } 9532 9533 switch (Width) { 9534 case 2: 9535 if (Value->getValue() > 0xffff) { 9536 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9537 return false; 9538 } 9539 break; 9540 case 4: 9541 if (Value->getValue() > 0xffffffff) { 9542 Error(Loc, 9543 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9544 return false; 9545 } 9546 break; 9547 default: 9548 llvm_unreachable("only supported widths are 2 and 4"); 9549 } 9550 9551 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9552 9553 if (getLexer().is(AsmToken::EndOfStatement)) 9554 break; 9555 9556 if (getLexer().isNot(AsmToken::Comma)) { 9557 Error(Loc, "unexpected token in directive"); 9558 return false; 9559 } 9560 9561 Parser.Lex(); 9562 } 9563 9564 Parser.Lex(); 9565 return false; 9566 } 9567 9568 /// parseDirectiveLtorg 9569 /// ::= .ltorg | .pool 9570 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9571 getTargetStreamer().emitCurrentConstantPool(); 9572 return false; 9573 } 9574 9575 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9576 const MCSection *Section = getStreamer().getCurrentSection().first; 9577 9578 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9579 TokError("unexpected token in directive"); 9580 return false; 9581 } 9582 9583 if (!Section) { 9584 getStreamer().InitSections(false); 9585 Section = getStreamer().getCurrentSection().first; 9586 } 9587 9588 assert(Section && "must have section to emit alignment"); 9589 if (Section->UseCodeAlign()) 9590 getStreamer().EmitCodeAlignment(2); 9591 else 9592 getStreamer().EmitValueToAlignment(2); 9593 9594 return false; 9595 } 9596 9597 /// parseDirectivePersonalityIndex 9598 /// ::= .personalityindex index 9599 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9600 MCAsmParser &Parser = getParser(); 9601 bool HasExistingPersonality = UC.hasPersonality(); 9602 9603 UC.recordPersonalityIndex(L); 9604 9605 if (!UC.hasFnStart()) { 9606 Parser.eatToEndOfStatement(); 9607 Error(L, ".fnstart must precede .personalityindex directive"); 9608 return false; 9609 } 9610 if (UC.cantUnwind()) { 9611 Parser.eatToEndOfStatement(); 9612 Error(L, ".personalityindex cannot be used with .cantunwind"); 9613 UC.emitCantUnwindLocNotes(); 9614 return false; 9615 } 9616 if (UC.hasHandlerData()) { 9617 Parser.eatToEndOfStatement(); 9618 Error(L, ".personalityindex must precede .handlerdata directive"); 9619 UC.emitHandlerDataLocNotes(); 9620 return false; 9621 } 9622 if (HasExistingPersonality) { 9623 Parser.eatToEndOfStatement(); 9624 Error(L, "multiple personality directives"); 9625 UC.emitPersonalityLocNotes(); 9626 return false; 9627 } 9628 9629 const MCExpr *IndexExpression; 9630 SMLoc IndexLoc = Parser.getTok().getLoc(); 9631 if (Parser.parseExpression(IndexExpression)) { 9632 Parser.eatToEndOfStatement(); 9633 return false; 9634 } 9635 9636 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9637 if (!CE) { 9638 Parser.eatToEndOfStatement(); 9639 Error(IndexLoc, "index must be a constant number"); 9640 return false; 9641 } 9642 if (CE->getValue() < 0 || 9643 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9644 Parser.eatToEndOfStatement(); 9645 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9646 return false; 9647 } 9648 9649 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9650 return false; 9651 } 9652 9653 /// parseDirectiveUnwindRaw 9654 /// ::= .unwind_raw offset, opcode [, opcode...] 9655 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9656 MCAsmParser &Parser = getParser(); 9657 if (!UC.hasFnStart()) { 9658 Parser.eatToEndOfStatement(); 9659 Error(L, ".fnstart must precede .unwind_raw directives"); 9660 return false; 9661 } 9662 9663 int64_t StackOffset; 9664 9665 const MCExpr *OffsetExpr; 9666 SMLoc OffsetLoc = getLexer().getLoc(); 9667 if (getLexer().is(AsmToken::EndOfStatement) || 9668 getParser().parseExpression(OffsetExpr)) { 9669 Error(OffsetLoc, "expected expression"); 9670 Parser.eatToEndOfStatement(); 9671 return false; 9672 } 9673 9674 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9675 if (!CE) { 9676 Error(OffsetLoc, "offset must be a constant"); 9677 Parser.eatToEndOfStatement(); 9678 return false; 9679 } 9680 9681 StackOffset = CE->getValue(); 9682 9683 if (getLexer().isNot(AsmToken::Comma)) { 9684 Error(getLexer().getLoc(), "expected comma"); 9685 Parser.eatToEndOfStatement(); 9686 return false; 9687 } 9688 Parser.Lex(); 9689 9690 SmallVector<uint8_t, 16> Opcodes; 9691 for (;;) { 9692 const MCExpr *OE; 9693 9694 SMLoc OpcodeLoc = getLexer().getLoc(); 9695 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9696 Error(OpcodeLoc, "expected opcode expression"); 9697 Parser.eatToEndOfStatement(); 9698 return false; 9699 } 9700 9701 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9702 if (!OC) { 9703 Error(OpcodeLoc, "opcode value must be a constant"); 9704 Parser.eatToEndOfStatement(); 9705 return false; 9706 } 9707 9708 const int64_t Opcode = OC->getValue(); 9709 if (Opcode & ~0xff) { 9710 Error(OpcodeLoc, "invalid opcode"); 9711 Parser.eatToEndOfStatement(); 9712 return false; 9713 } 9714 9715 Opcodes.push_back(uint8_t(Opcode)); 9716 9717 if (getLexer().is(AsmToken::EndOfStatement)) 9718 break; 9719 9720 if (getLexer().isNot(AsmToken::Comma)) { 9721 Error(getLexer().getLoc(), "unexpected token in directive"); 9722 Parser.eatToEndOfStatement(); 9723 return false; 9724 } 9725 9726 Parser.Lex(); 9727 } 9728 9729 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9730 9731 Parser.Lex(); 9732 return false; 9733 } 9734 9735 /// parseDirectiveTLSDescSeq 9736 /// ::= .tlsdescseq tls-variable 9737 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9738 MCAsmParser &Parser = getParser(); 9739 9740 if (getLexer().isNot(AsmToken::Identifier)) { 9741 TokError("expected variable after '.tlsdescseq' directive"); 9742 Parser.eatToEndOfStatement(); 9743 return false; 9744 } 9745 9746 const MCSymbolRefExpr *SRE = 9747 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9748 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9749 Lex(); 9750 9751 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9752 Error(Parser.getTok().getLoc(), "unexpected token"); 9753 Parser.eatToEndOfStatement(); 9754 return false; 9755 } 9756 9757 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9758 return false; 9759 } 9760 9761 /// parseDirectiveMovSP 9762 /// ::= .movsp reg [, #offset] 9763 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9764 MCAsmParser &Parser = getParser(); 9765 if (!UC.hasFnStart()) { 9766 Parser.eatToEndOfStatement(); 9767 Error(L, ".fnstart must precede .movsp directives"); 9768 return false; 9769 } 9770 if (UC.getFPReg() != ARM::SP) { 9771 Parser.eatToEndOfStatement(); 9772 Error(L, "unexpected .movsp directive"); 9773 return false; 9774 } 9775 9776 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9777 int SPReg = tryParseRegister(); 9778 if (SPReg == -1) { 9779 Parser.eatToEndOfStatement(); 9780 Error(SPRegLoc, "register expected"); 9781 return false; 9782 } 9783 9784 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9785 Parser.eatToEndOfStatement(); 9786 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9787 return false; 9788 } 9789 9790 int64_t Offset = 0; 9791 if (Parser.getTok().is(AsmToken::Comma)) { 9792 Parser.Lex(); 9793 9794 if (Parser.getTok().isNot(AsmToken::Hash)) { 9795 Error(Parser.getTok().getLoc(), "expected #constant"); 9796 Parser.eatToEndOfStatement(); 9797 return false; 9798 } 9799 Parser.Lex(); 9800 9801 const MCExpr *OffsetExpr; 9802 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9803 if (Parser.parseExpression(OffsetExpr)) { 9804 Parser.eatToEndOfStatement(); 9805 Error(OffsetLoc, "malformed offset expression"); 9806 return false; 9807 } 9808 9809 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9810 if (!CE) { 9811 Parser.eatToEndOfStatement(); 9812 Error(OffsetLoc, "offset must be an immediate constant"); 9813 return false; 9814 } 9815 9816 Offset = CE->getValue(); 9817 } 9818 9819 getTargetStreamer().emitMovSP(SPReg, Offset); 9820 UC.saveFPReg(SPReg); 9821 9822 return false; 9823 } 9824 9825 /// parseDirectiveObjectArch 9826 /// ::= .object_arch name 9827 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9828 MCAsmParser &Parser = getParser(); 9829 if (getLexer().isNot(AsmToken::Identifier)) { 9830 Error(getLexer().getLoc(), "unexpected token"); 9831 Parser.eatToEndOfStatement(); 9832 return false; 9833 } 9834 9835 StringRef Arch = Parser.getTok().getString(); 9836 SMLoc ArchLoc = Parser.getTok().getLoc(); 9837 getLexer().Lex(); 9838 9839 unsigned ID = ARM::parseArch(Arch); 9840 9841 if (ID == ARM::AK_INVALID) { 9842 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9843 Parser.eatToEndOfStatement(); 9844 return false; 9845 } 9846 9847 getTargetStreamer().emitObjectArch(ID); 9848 9849 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9850 Error(getLexer().getLoc(), "unexpected token"); 9851 Parser.eatToEndOfStatement(); 9852 } 9853 9854 return false; 9855 } 9856 9857 /// parseDirectiveAlign 9858 /// ::= .align 9859 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9860 // NOTE: if this is not the end of the statement, fall back to the target 9861 // agnostic handling for this directive which will correctly handle this. 9862 if (getLexer().isNot(AsmToken::EndOfStatement)) 9863 return true; 9864 9865 // '.align' is target specifically handled to mean 2**2 byte alignment. 9866 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9867 getStreamer().EmitCodeAlignment(4, 0); 9868 else 9869 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9870 9871 return false; 9872 } 9873 9874 /// parseDirectiveThumbSet 9875 /// ::= .thumb_set name, value 9876 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9877 MCAsmParser &Parser = getParser(); 9878 9879 StringRef Name; 9880 if (Parser.parseIdentifier(Name)) { 9881 TokError("expected identifier after '.thumb_set'"); 9882 Parser.eatToEndOfStatement(); 9883 return false; 9884 } 9885 9886 if (getLexer().isNot(AsmToken::Comma)) { 9887 TokError("expected comma after name '" + Name + "'"); 9888 Parser.eatToEndOfStatement(); 9889 return false; 9890 } 9891 Lex(); 9892 9893 MCSymbol *Sym; 9894 const MCExpr *Value; 9895 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 9896 Parser, Sym, Value)) 9897 return true; 9898 9899 getTargetStreamer().emitThumbSet(Sym, Value); 9900 return false; 9901 } 9902 9903 /// Force static initialization. 9904 extern "C" void LLVMInitializeARMAsmParser() { 9905 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 9906 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 9907 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 9908 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 9909 } 9910 9911 #define GET_REGISTER_MATCHER 9912 #define GET_SUBTARGET_FEATURE_NAME 9913 #define GET_MATCHER_IMPLEMENTATION 9914 #include "ARMGenAsmMatcher.inc" 9915 9916 // FIXME: This structure should be moved inside ARMTargetParser 9917 // when we start to table-generate them, and we can use the ARM 9918 // flags below, that were generated by table-gen. 9919 static const struct { 9920 const unsigned Kind; 9921 const uint64_t ArchCheck; 9922 const FeatureBitset Features; 9923 } Extensions[] = { 9924 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 9925 { ARM::AEK_CRYPTO, Feature_HasV8, 9926 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9927 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 9928 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 9929 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 9930 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 9931 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9932 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 9933 // FIXME: Only available in A-class, isel not predicated 9934 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 9935 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 9936 // FIXME: Unsupported extensions. 9937 { ARM::AEK_OS, Feature_None, {} }, 9938 { ARM::AEK_IWMMXT, Feature_None, {} }, 9939 { ARM::AEK_IWMMXT2, Feature_None, {} }, 9940 { ARM::AEK_MAVERICK, Feature_None, {} }, 9941 { ARM::AEK_XSCALE, Feature_None, {} }, 9942 }; 9943 9944 /// parseDirectiveArchExtension 9945 /// ::= .arch_extension [no]feature 9946 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 9947 MCAsmParser &Parser = getParser(); 9948 9949 if (getLexer().isNot(AsmToken::Identifier)) { 9950 Error(getLexer().getLoc(), "unexpected token"); 9951 Parser.eatToEndOfStatement(); 9952 return false; 9953 } 9954 9955 StringRef Name = Parser.getTok().getString(); 9956 SMLoc ExtLoc = Parser.getTok().getLoc(); 9957 getLexer().Lex(); 9958 9959 bool EnableFeature = true; 9960 if (Name.startswith_lower("no")) { 9961 EnableFeature = false; 9962 Name = Name.substr(2); 9963 } 9964 unsigned FeatureKind = ARM::parseArchExt(Name); 9965 if (FeatureKind == ARM::AEK_INVALID) 9966 Error(ExtLoc, "unknown architectural extension: " + Name); 9967 9968 for (const auto &Extension : Extensions) { 9969 if (Extension.Kind != FeatureKind) 9970 continue; 9971 9972 if (Extension.Features.none()) 9973 report_fatal_error("unsupported architectural extension: " + Name); 9974 9975 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 9976 Error(ExtLoc, "architectural extension '" + Name + "' is not " 9977 "allowed for the current base architecture"); 9978 return false; 9979 } 9980 9981 MCSubtargetInfo &STI = copySTI(); 9982 FeatureBitset ToggleFeatures = EnableFeature 9983 ? (~STI.getFeatureBits() & Extension.Features) 9984 : ( STI.getFeatureBits() & Extension.Features); 9985 9986 uint64_t Features = 9987 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 9988 setAvailableFeatures(Features); 9989 return false; 9990 } 9991 9992 Error(ExtLoc, "unknown architectural extension: " + Name); 9993 Parser.eatToEndOfStatement(); 9994 return false; 9995 } 9996 9997 // Define this matcher function after the auto-generated include so we 9998 // have the match class enum definitions. 9999 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10000 unsigned Kind) { 10001 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10002 // If the kind is a token for a literal immediate, check if our asm 10003 // operand matches. This is for InstAliases which have a fixed-value 10004 // immediate in the syntax. 10005 switch (Kind) { 10006 default: break; 10007 case MCK__35_0: 10008 if (Op.isImm()) 10009 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10010 if (CE->getValue() == 0) 10011 return Match_Success; 10012 break; 10013 case MCK_ModImm: 10014 if (Op.isImm()) { 10015 const MCExpr *SOExpr = Op.getImm(); 10016 int64_t Value; 10017 if (!SOExpr->evaluateAsAbsolute(Value)) 10018 return Match_Success; 10019 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10020 "expression value must be representable in 32 bits"); 10021 } 10022 break; 10023 case MCK_rGPR: 10024 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10025 return Match_Success; 10026 break; 10027 case MCK_GPRPair: 10028 if (Op.isReg() && 10029 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10030 return Match_Success; 10031 break; 10032 } 10033 return Match_InvalidOperand; 10034 } 10035