Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "code_generator_arm_vixl.h"
     18 
     19 #include "arch/arm/asm_support_arm.h"
     20 #include "arch/arm/instruction_set_features_arm.h"
     21 #include "art_method.h"
     22 #include "base/bit_utils.h"
     23 #include "base/bit_utils_iterator.h"
     24 #include "code_generator_utils.h"
     25 #include "common_arm.h"
     26 #include "compiled_method.h"
     27 #include "entrypoints/quick/quick_entrypoints.h"
     28 #include "gc/accounting/card_table.h"
     29 #include "intrinsics_arm_vixl.h"
     30 #include "linker/arm/relative_patcher_thumb2.h"
     31 #include "mirror/array-inl.h"
     32 #include "mirror/class-inl.h"
     33 #include "thread.h"
     34 #include "utils/arm/assembler_arm_vixl.h"
     35 #include "utils/arm/managed_register_arm.h"
     36 #include "utils/assembler.h"
     37 #include "utils/stack_checks.h"
     38 
     39 namespace art {
     40 namespace arm {
     41 
     42 namespace vixl32 = vixl::aarch32;
     43 using namespace vixl32;  // NOLINT(build/namespaces)
     44 
     45 using helpers::DRegisterFrom;
     46 using helpers::DWARFReg;
     47 using helpers::HighDRegisterFrom;
     48 using helpers::HighRegisterFrom;
     49 using helpers::InputDRegisterAt;
     50 using helpers::InputOperandAt;
     51 using helpers::InputRegister;
     52 using helpers::InputRegisterAt;
     53 using helpers::InputSRegisterAt;
     54 using helpers::InputVRegister;
     55 using helpers::InputVRegisterAt;
     56 using helpers::Int32ConstantFrom;
     57 using helpers::Int64ConstantFrom;
     58 using helpers::LocationFrom;
     59 using helpers::LowRegisterFrom;
     60 using helpers::LowSRegisterFrom;
     61 using helpers::OperandFrom;
     62 using helpers::OutputRegister;
     63 using helpers::OutputSRegister;
     64 using helpers::OutputVRegister;
     65 using helpers::RegisterFrom;
     66 using helpers::SRegisterFrom;
     67 using helpers::Uint64ConstantFrom;
     68 
     69 using vixl::ExactAssemblyScope;
     70 using vixl::CodeBufferCheckScope;
     71 
     72 using RegisterList = vixl32::RegisterList;
     73 
     74 static bool ExpectedPairLayout(Location location) {
     75   // We expected this for both core and fpu register pairs.
     76   return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
     77 }
     78 // Use a local definition to prevent copying mistakes.
     79 static constexpr size_t kArmWordSize = static_cast<size_t>(kArmPointerSize);
     80 static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte;
     81 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
     82 
     83 // Reference load (except object array loads) is using LDR Rt, [Rn, #offset] which can handle
     84 // offset < 4KiB. For offsets >= 4KiB, the load shall be emitted as two or more instructions.
     85 // For the Baker read barrier implementation using link-generated thunks we need to split
     86 // the offset explicitly.
     87 constexpr uint32_t kReferenceLoadMinFarOffset = 4 * KB;
     88 
     89 // Flags controlling the use of link-time generated thunks for Baker read barriers.
     90 constexpr bool kBakerReadBarrierLinkTimeThunksEnableForFields = true;
     91 constexpr bool kBakerReadBarrierLinkTimeThunksEnableForArrays = true;
     92 constexpr bool kBakerReadBarrierLinkTimeThunksEnableForGcRoots = true;
     93 
     94 // The reserved entrypoint register for link-time generated thunks.
     95 const vixl32::Register kBakerCcEntrypointRegister = r4;
     96 
     97 #ifdef __
     98 #error "ARM Codegen VIXL macro-assembler macro already defined."
     99 #endif
    100 
    101 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
    102 #define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()->  // NOLINT
    103 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
    104 
    105 // Marker that code is yet to be, and must, be implemented.
    106 #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented "
    107 
    108 static inline void ExcludeIPAndBakerCcEntrypointRegister(UseScratchRegisterScope* temps,
    109                                                          HInstruction* instruction) {
    110   DCHECK(temps->IsAvailable(ip));
    111   temps->Exclude(ip);
    112   DCHECK(!temps->IsAvailable(kBakerCcEntrypointRegister));
    113   DCHECK_EQ(kBakerCcEntrypointRegister.GetCode(),
    114             linker::Thumb2RelativePatcher::kBakerCcEntrypointRegister);
    115   DCHECK_NE(instruction->GetLocations()->GetTempCount(), 0u);
    116   DCHECK(RegisterFrom(instruction->GetLocations()->GetTemp(
    117       instruction->GetLocations()->GetTempCount() - 1u)).Is(kBakerCcEntrypointRegister));
    118 }
    119 
    120 static inline void EmitPlaceholderBne(CodeGeneratorARMVIXL* codegen, vixl32::Label* patch_label) {
    121   ExactAssemblyScope eas(codegen->GetVIXLAssembler(), kMaxInstructionSizeInBytes);
    122   __ bind(patch_label);
    123   vixl32::Label placeholder_label;
    124   __ b(ne, EncodingSize(Wide), &placeholder_label);  // Placeholder, patched at link-time.
    125   __ bind(&placeholder_label);
    126 }
    127 
    128 static inline bool CanEmitNarrowLdr(vixl32::Register rt, vixl32::Register rn, uint32_t offset) {
    129   return rt.IsLow() && rn.IsLow() && offset < 32u;
    130 }
    131 
    132 class EmitAdrCode {
    133  public:
    134   EmitAdrCode(ArmVIXLMacroAssembler* assembler, vixl32::Register rd, vixl32::Label* label)
    135       : assembler_(assembler), rd_(rd), label_(label) {
    136     ExactAssemblyScope aas(assembler, kMaxInstructionSizeInBytes);
    137     adr_location_ = assembler->GetCursorOffset();
    138     assembler->adr(EncodingSize(Wide), rd, label);
    139   }
    140 
    141   ~EmitAdrCode() {
    142     DCHECK(label_->IsBound());
    143     // The ADR emitted by the assembler does not set the Thumb mode bit we need.
    144     // TODO: Maybe extend VIXL to allow ADR for return address?
    145     uint8_t* raw_adr = assembler_->GetBuffer()->GetOffsetAddress<uint8_t*>(adr_location_);
    146     // Expecting ADR encoding T3 with `(offset & 1) == 0`.
    147     DCHECK_EQ(raw_adr[1] & 0xfbu, 0xf2u);           // Check bits 24-31, except 26.
    148     DCHECK_EQ(raw_adr[0] & 0xffu, 0x0fu);           // Check bits 16-23.
    149     DCHECK_EQ(raw_adr[3] & 0x8fu, rd_.GetCode());   // Check bits 8-11 and 15.
    150     DCHECK_EQ(raw_adr[2] & 0x01u, 0x00u);           // Check bit 0, i.e. the `offset & 1`.
    151     // Add the Thumb mode bit.
    152     raw_adr[2] |= 0x01u;
    153   }
    154 
    155  private:
    156   ArmVIXLMacroAssembler* const assembler_;
    157   vixl32::Register rd_;
    158   vixl32::Label* const label_;
    159   int32_t adr_location_;
    160 };
    161 
    162 // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
    163 // for each live D registers they treat two corresponding S registers as live ones.
    164 //
    165 // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
    166 // from a list of contiguous S registers a list of contiguous D registers (processing first/last
    167 // S registers corner cases) and save/restore this new list treating them as D registers.
    168 // - decreasing code size
    169 // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
    170 //   restored and then used in regular non SlowPath code as D register.
    171 //
    172 // For the following example (v means the S register is live):
    173 //   D names: |    D0   |    D1   |    D2   |    D4   | ...
    174 //   S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
    175 //   Live?    |    |  v |  v |  v |  v |  v |  v |    | ...
    176 //
    177 // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
    178 // as D registers.
    179 //
    180 // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers
    181 // for lists of floating-point registers.
    182 static size_t SaveContiguousSRegisterList(size_t first,
    183                                           size_t last,
    184                                           CodeGenerator* codegen,
    185                                           size_t stack_offset) {
    186   static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
    187   static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
    188   DCHECK_LE(first, last);
    189   if ((first == last) && (first == 0)) {
    190     __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
    191     return stack_offset + kSRegSizeInBytes;
    192   }
    193   if (first % 2 == 1) {
    194     __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
    195     stack_offset += kSRegSizeInBytes;
    196   }
    197 
    198   bool save_last = false;
    199   if (last % 2 == 0) {
    200     save_last = true;
    201     --last;
    202   }
    203 
    204   if (first < last) {
    205     vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
    206     DCHECK_EQ((last - first + 1) % 2, 0u);
    207     size_t number_of_d_regs = (last - first + 1) / 2;
    208 
    209     if (number_of_d_regs == 1) {
    210       __ Vstr(d_reg, MemOperand(sp, stack_offset));
    211     } else if (number_of_d_regs > 1) {
    212       UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
    213       vixl32::Register base = sp;
    214       if (stack_offset != 0) {
    215         base = temps.Acquire();
    216         __ Add(base, sp, Operand::From(stack_offset));
    217       }
    218       __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
    219     }
    220     stack_offset += number_of_d_regs * kDRegSizeInBytes;
    221   }
    222 
    223   if (save_last) {
    224     __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
    225     stack_offset += kSRegSizeInBytes;
    226   }
    227 
    228   return stack_offset;
    229 }
    230 
    231 static size_t RestoreContiguousSRegisterList(size_t first,
    232                                              size_t last,
    233                                              CodeGenerator* codegen,
    234                                              size_t stack_offset) {
    235   static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
    236   static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
    237   DCHECK_LE(first, last);
    238   if ((first == last) && (first == 0)) {
    239     __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
    240     return stack_offset + kSRegSizeInBytes;
    241   }
    242   if (first % 2 == 1) {
    243     __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
    244     stack_offset += kSRegSizeInBytes;
    245   }
    246 
    247   bool restore_last = false;
    248   if (last % 2 == 0) {
    249     restore_last = true;
    250     --last;
    251   }
    252 
    253   if (first < last) {
    254     vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
    255     DCHECK_EQ((last - first + 1) % 2, 0u);
    256     size_t number_of_d_regs = (last - first + 1) / 2;
    257     if (number_of_d_regs == 1) {
    258       __ Vldr(d_reg, MemOperand(sp, stack_offset));
    259     } else if (number_of_d_regs > 1) {
    260       UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
    261       vixl32::Register base = sp;
    262       if (stack_offset != 0) {
    263         base = temps.Acquire();
    264         __ Add(base, sp, Operand::From(stack_offset));
    265       }
    266       __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
    267     }
    268     stack_offset += number_of_d_regs * kDRegSizeInBytes;
    269   }
    270 
    271   if (restore_last) {
    272     __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
    273     stack_offset += kSRegSizeInBytes;
    274   }
    275 
    276   return stack_offset;
    277 }
    278 
    279 void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
    280   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
    281   size_t orig_offset = stack_offset;
    282 
    283   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
    284   for (uint32_t i : LowToHighBits(core_spills)) {
    285     // If the register holds an object, update the stack mask.
    286     if (locations->RegisterContainsObject(i)) {
    287       locations->SetStackBit(stack_offset / kVRegSize);
    288     }
    289     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    290     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    291     saved_core_stack_offsets_[i] = stack_offset;
    292     stack_offset += kArmWordSize;
    293   }
    294 
    295   CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    296   arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset);
    297 
    298   uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
    299   orig_offset = stack_offset;
    300   for (uint32_t i : LowToHighBits(fp_spills)) {
    301     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    302     saved_fpu_stack_offsets_[i] = stack_offset;
    303     stack_offset += kArmWordSize;
    304   }
    305 
    306   stack_offset = orig_offset;
    307   while (fp_spills != 0u) {
    308     uint32_t begin = CTZ(fp_spills);
    309     uint32_t tmp = fp_spills + (1u << begin);
    310     fp_spills &= tmp;  // Clear the contiguous range of 1s.
    311     uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
    312     stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
    313   }
    314   DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    315 }
    316 
    317 void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
    318   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
    319   size_t orig_offset = stack_offset;
    320 
    321   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
    322   for (uint32_t i : LowToHighBits(core_spills)) {
    323     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    324     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    325     stack_offset += kArmWordSize;
    326   }
    327 
    328   // TODO(VIXL): Check the coherency of stack_offset after this with a test.
    329   CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    330   arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset);
    331 
    332   uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
    333   while (fp_spills != 0u) {
    334     uint32_t begin = CTZ(fp_spills);
    335     uint32_t tmp = fp_spills + (1u << begin);
    336     fp_spills &= tmp;  // Clear the contiguous range of 1s.
    337     uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
    338     stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
    339   }
    340   DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    341 }
    342 
    343 class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    344  public:
    345   explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {}
    346 
    347   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    348     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    349     __ Bind(GetEntryLabel());
    350     if (instruction_->CanThrowIntoCatchBlock()) {
    351       // Live registers will be restored in the catch block if caught.
    352       SaveLiveRegisters(codegen, instruction_->GetLocations());
    353     }
    354     arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
    355                                instruction_,
    356                                instruction_->GetDexPc(),
    357                                this);
    358     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
    359   }
    360 
    361   bool IsFatal() const OVERRIDE { return true; }
    362 
    363   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARMVIXL"; }
    364 
    365  private:
    366   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL);
    367 };
    368 
    369 class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    370  public:
    371   explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction)
    372       : SlowPathCodeARMVIXL(instruction) {}
    373 
    374   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    375     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    376     __ Bind(GetEntryLabel());
    377     arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
    378     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
    379   }
    380 
    381   bool IsFatal() const OVERRIDE { return true; }
    382 
    383   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARMVIXL"; }
    384 
    385  private:
    386   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL);
    387 };
    388 
    389 class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    390  public:
    391   SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor)
    392       : SlowPathCodeARMVIXL(instruction), successor_(successor) {}
    393 
    394   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    395     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    396     __ Bind(GetEntryLabel());
    397     arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
    398     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
    399     if (successor_ == nullptr) {
    400       __ B(GetReturnLabel());
    401     } else {
    402       __ B(arm_codegen->GetLabelOf(successor_));
    403     }
    404   }
    405 
    406   vixl32::Label* GetReturnLabel() {
    407     DCHECK(successor_ == nullptr);
    408     return &return_label_;
    409   }
    410 
    411   HBasicBlock* GetSuccessor() const {
    412     return successor_;
    413   }
    414 
    415   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARMVIXL"; }
    416 
    417  private:
    418   // If not null, the block to branch to after the suspend check.
    419   HBasicBlock* const successor_;
    420 
    421   // If `successor_` is null, the label to branch to after the suspend check.
    422   vixl32::Label return_label_;
    423 
    424   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL);
    425 };
    426 
    427 class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    428  public:
    429   explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction)
    430       : SlowPathCodeARMVIXL(instruction) {}
    431 
    432   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    433     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    434     LocationSummary* locations = instruction_->GetLocations();
    435 
    436     __ Bind(GetEntryLabel());
    437     if (instruction_->CanThrowIntoCatchBlock()) {
    438       // Live registers will be restored in the catch block if caught.
    439       SaveLiveRegisters(codegen, instruction_->GetLocations());
    440     }
    441     // We're moving two locations to locations that could overlap, so we need a parallel
    442     // move resolver.
    443     InvokeRuntimeCallingConventionARMVIXL calling_convention;
    444     codegen->EmitParallelMoves(
    445         locations->InAt(0),
    446         LocationFrom(calling_convention.GetRegisterAt(0)),
    447         Primitive::kPrimInt,
    448         locations->InAt(1),
    449         LocationFrom(calling_convention.GetRegisterAt(1)),
    450         Primitive::kPrimInt);
    451     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
    452         ? kQuickThrowStringBounds
    453         : kQuickThrowArrayBounds;
    454     arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
    455     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
    456     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
    457   }
    458 
    459   bool IsFatal() const OVERRIDE { return true; }
    460 
    461   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARMVIXL"; }
    462 
    463  private:
    464   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL);
    465 };
    466 
    467 class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    468  public:
    469   LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit)
    470       : SlowPathCodeARMVIXL(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) {
    471     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
    472   }
    473 
    474   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    475     LocationSummary* locations = instruction_->GetLocations();
    476     Location out = locations->Out();
    477     constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
    478 
    479     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    480     __ Bind(GetEntryLabel());
    481     SaveLiveRegisters(codegen, locations);
    482 
    483     InvokeRuntimeCallingConventionARMVIXL calling_convention;
    484     // For HLoadClass/kBssEntry/kSaveEverything, make sure we preserve the address of the entry.
    485     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
    486     bool is_load_class_bss_entry =
    487         (cls_ == instruction_) && (cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry);
    488     vixl32::Register entry_address;
    489     if (is_load_class_bss_entry && call_saves_everything_except_r0) {
    490       vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
    491       // In the unlucky case that the `temp` is R0, we preserve the address in `out` across
    492       // the kSaveEverything call.
    493       bool temp_is_r0 = temp.Is(calling_convention.GetRegisterAt(0));
    494       entry_address = temp_is_r0 ? RegisterFrom(out) : temp;
    495       DCHECK(!entry_address.Is(calling_convention.GetRegisterAt(0)));
    496       if (temp_is_r0) {
    497         __ Mov(entry_address, temp);
    498       }
    499     }
    500     dex::TypeIndex type_index = cls_->GetTypeIndex();
    501     __ Mov(calling_convention.GetRegisterAt(0), type_index.index_);
    502     QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
    503                                                 : kQuickInitializeType;
    504     arm_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this);
    505     if (do_clinit_) {
    506       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
    507     } else {
    508       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
    509     }
    510 
    511     // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry.
    512     if (is_load_class_bss_entry) {
    513       if (call_saves_everything_except_r0) {
    514         // The class entry address was preserved in `entry_address` thanks to kSaveEverything.
    515         __ Str(r0, MemOperand(entry_address));
    516       } else {
    517         // For non-Baker read barrier, we need to re-calculate the address of the string entry.
    518         UseScratchRegisterScope temps(
    519             down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
    520         vixl32::Register temp = temps.Acquire();
    521         CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
    522             arm_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index);
    523         arm_codegen->EmitMovwMovtPlaceholder(labels, temp);
    524         __ Str(r0, MemOperand(temp));
    525       }
    526     }
    527     // Move the class to the desired location.
    528     if (out.IsValid()) {
    529       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
    530       arm_codegen->Move32(locations->Out(), LocationFrom(r0));
    531     }
    532     RestoreLiveRegisters(codegen, locations);
    533     __ B(GetExitLabel());
    534   }
    535 
    536   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARMVIXL"; }
    537 
    538  private:
    539   // The class this slow path will load.
    540   HLoadClass* const cls_;
    541 
    542   // The dex PC of `at_`.
    543   const uint32_t dex_pc_;
    544 
    545   // Whether to initialize the class.
    546   const bool do_clinit_;
    547 
    548   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL);
    549 };
    550 
    551 class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    552  public:
    553   explicit LoadStringSlowPathARMVIXL(HLoadString* instruction)
    554       : SlowPathCodeARMVIXL(instruction) {}
    555 
    556   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    557     DCHECK(instruction_->IsLoadString());
    558     DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
    559     LocationSummary* locations = instruction_->GetLocations();
    560     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    561     HLoadString* load = instruction_->AsLoadString();
    562     const dex::StringIndex string_index = load->GetStringIndex();
    563     vixl32::Register out = OutputRegister(load);
    564     constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
    565 
    566     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    567     __ Bind(GetEntryLabel());
    568     SaveLiveRegisters(codegen, locations);
    569 
    570     InvokeRuntimeCallingConventionARMVIXL calling_convention;
    571     // In the unlucky case that the `temp` is R0, we preserve the address in `out` across
    572     // the kSaveEverything call.
    573     vixl32::Register entry_address;
    574     if (call_saves_everything_except_r0) {
    575       vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
    576       bool temp_is_r0 = (temp.Is(calling_convention.GetRegisterAt(0)));
    577       entry_address = temp_is_r0 ? out : temp;
    578       DCHECK(!entry_address.Is(calling_convention.GetRegisterAt(0)));
    579       if (temp_is_r0) {
    580         __ Mov(entry_address, temp);
    581       }
    582     }
    583 
    584     __ Mov(calling_convention.GetRegisterAt(0), string_index.index_);
    585     arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
    586     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
    587 
    588     // Store the resolved String to the .bss entry.
    589     if (call_saves_everything_except_r0) {
    590       // The string entry address was preserved in `entry_address` thanks to kSaveEverything.
    591       __ Str(r0, MemOperand(entry_address));
    592     } else {
    593       // For non-Baker read barrier, we need to re-calculate the address of the string entry.
    594       UseScratchRegisterScope temps(
    595           down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
    596       vixl32::Register temp = temps.Acquire();
    597       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
    598           arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
    599       arm_codegen->EmitMovwMovtPlaceholder(labels, temp);
    600       __ Str(r0, MemOperand(temp));
    601     }
    602 
    603     arm_codegen->Move32(locations->Out(), LocationFrom(r0));
    604     RestoreLiveRegisters(codegen, locations);
    605 
    606     __ B(GetExitLabel());
    607   }
    608 
    609   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARMVIXL"; }
    610 
    611  private:
    612   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL);
    613 };
    614 
    615 class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    616  public:
    617   TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal)
    618       : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {}
    619 
    620   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    621     LocationSummary* locations = instruction_->GetLocations();
    622     DCHECK(instruction_->IsCheckCast()
    623            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    624 
    625     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    626     __ Bind(GetEntryLabel());
    627 
    628     if (!is_fatal_) {
    629       SaveLiveRegisters(codegen, locations);
    630     }
    631 
    632     // We're moving two locations to locations that could overlap, so we need a parallel
    633     // move resolver.
    634     InvokeRuntimeCallingConventionARMVIXL calling_convention;
    635 
    636     codegen->EmitParallelMoves(locations->InAt(0),
    637                                LocationFrom(calling_convention.GetRegisterAt(0)),
    638                                Primitive::kPrimNot,
    639                                locations->InAt(1),
    640                                LocationFrom(calling_convention.GetRegisterAt(1)),
    641                                Primitive::kPrimNot);
    642     if (instruction_->IsInstanceOf()) {
    643       arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
    644                                  instruction_,
    645                                  instruction_->GetDexPc(),
    646                                  this);
    647       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
    648       arm_codegen->Move32(locations->Out(), LocationFrom(r0));
    649     } else {
    650       DCHECK(instruction_->IsCheckCast());
    651       arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
    652                                  instruction_,
    653                                  instruction_->GetDexPc(),
    654                                  this);
    655       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
    656     }
    657 
    658     if (!is_fatal_) {
    659       RestoreLiveRegisters(codegen, locations);
    660       __ B(GetExitLabel());
    661     }
    662   }
    663 
    664   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARMVIXL"; }
    665 
    666   bool IsFatal() const OVERRIDE { return is_fatal_; }
    667 
    668  private:
    669   const bool is_fatal_;
    670 
    671   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL);
    672 };
    673 
    674 class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    675  public:
    676   explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction)
    677       : SlowPathCodeARMVIXL(instruction) {}
    678 
    679   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    680     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    681     __ Bind(GetEntryLabel());
    682         LocationSummary* locations = instruction_->GetLocations();
    683     SaveLiveRegisters(codegen, locations);
    684     InvokeRuntimeCallingConventionARMVIXL calling_convention;
    685     __ Mov(calling_convention.GetRegisterAt(0),
    686            static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
    687 
    688     arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
    689     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
    690   }
    691 
    692   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARMVIXL"; }
    693 
    694  private:
    695   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL);
    696 };
    697 
    698 class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL {
    699  public:
    700   explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {}
    701 
    702   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    703     LocationSummary* locations = instruction_->GetLocations();
    704     __ Bind(GetEntryLabel());
    705     SaveLiveRegisters(codegen, locations);
    706 
    707     InvokeRuntimeCallingConventionARMVIXL calling_convention;
    708     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
    709     parallel_move.AddMove(
    710         locations->InAt(0),
    711         LocationFrom(calling_convention.GetRegisterAt(0)),
    712         Primitive::kPrimNot,
    713         nullptr);
    714     parallel_move.AddMove(
    715         locations->InAt(1),
    716         LocationFrom(calling_convention.GetRegisterAt(1)),
    717         Primitive::kPrimInt,
    718         nullptr);
    719     parallel_move.AddMove(
    720         locations->InAt(2),
    721         LocationFrom(calling_convention.GetRegisterAt(2)),
    722         Primitive::kPrimNot,
    723         nullptr);
    724     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    725 
    726     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    727     arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
    728     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
    729     RestoreLiveRegisters(codegen, locations);
    730     __ B(GetExitLabel());
    731   }
    732 
    733   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARMVIXL"; }
    734 
    735  private:
    736   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL);
    737 };
    738 
    739 // Abstract base class for read barrier slow paths marking a reference
    740 // `ref`.
    741 //
    742 // Argument `entrypoint` must be a register location holding the read
    743 // barrier marking runtime entry point to be invoked or an empty
    744 // location; in the latter case, the read barrier marking runtime
    745 // entry point will be loaded by the slow path code itself.
    746 class ReadBarrierMarkSlowPathBaseARMVIXL : public SlowPathCodeARMVIXL {
    747  protected:
    748   ReadBarrierMarkSlowPathBaseARMVIXL(HInstruction* instruction, Location ref, Location entrypoint)
    749       : SlowPathCodeARMVIXL(instruction), ref_(ref), entrypoint_(entrypoint) {
    750     DCHECK(kEmitCompilerReadBarrier);
    751   }
    752 
    753   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathBaseARMVIXL"; }
    754 
    755   // Generate assembly code calling the read barrier marking runtime
    756   // entry point (ReadBarrierMarkRegX).
    757   void GenerateReadBarrierMarkRuntimeCall(CodeGenerator* codegen) {
    758     vixl32::Register ref_reg = RegisterFrom(ref_);
    759 
    760     // No need to save live registers; it's taken care of by the
    761     // entrypoint. Also, there is no need to update the stack mask,
    762     // as this runtime call will not trigger a garbage collection.
    763     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    764     DCHECK(!ref_reg.Is(sp));
    765     DCHECK(!ref_reg.Is(lr));
    766     DCHECK(!ref_reg.Is(pc));
    767     // IP is used internally by the ReadBarrierMarkRegX entry point
    768     // as a temporary, it cannot be the entry point's input/output.
    769     DCHECK(!ref_reg.Is(ip));
    770     DCHECK(ref_reg.IsRegister()) << ref_reg;
    771     // "Compact" slow path, saving two moves.
    772     //
    773     // Instead of using the standard runtime calling convention (input
    774     // and output in R0):
    775     //
    776     //   R0 <- ref
    777     //   R0 <- ReadBarrierMark(R0)
    778     //   ref <- R0
    779     //
    780     // we just use rX (the register containing `ref`) as input and output
    781     // of a dedicated entrypoint:
    782     //
    783     //   rX <- ReadBarrierMarkRegX(rX)
    784     //
    785     if (entrypoint_.IsValid()) {
    786       arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
    787       __ Blx(RegisterFrom(entrypoint_));
    788     } else {
    789       // Entrypoint is not already loaded, load from the thread.
    790       int32_t entry_point_offset =
    791           Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg.GetCode());
    792       // This runtime call does not require a stack map.
    793       arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
    794     }
    795   }
    796 
    797   // The location (register) of the marked object reference.
    798   const Location ref_;
    799 
    800   // The location of the entrypoint if already loaded.
    801   const Location entrypoint_;
    802 
    803  private:
    804   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathBaseARMVIXL);
    805 };
    806 
    807 // Slow path marking an object reference `ref` during a read
    808 // barrier. The field `obj.field` in the object `obj` holding this
    809 // reference does not get updated by this slow path after marking.
    810 //
    811 // This means that after the execution of this slow path, `ref` will
    812 // always be up-to-date, but `obj.field` may not; i.e., after the
    813 // flip, `ref` will be a to-space reference, but `obj.field` will
    814 // probably still be a from-space reference (unless it gets updated by
    815 // another thread, or if another thread installed another object
    816 // reference (different from `ref`) in `obj.field`).
    817 //
    818 // Argument `entrypoint` must be a register location holding the read
    819 // barrier marking runtime entry point to be invoked or an empty
    820 // location; in the latter case, the read barrier marking runtime
    821 // entry point will be loaded by the slow path code itself.
    822 class ReadBarrierMarkSlowPathARMVIXL : public ReadBarrierMarkSlowPathBaseARMVIXL {
    823  public:
    824   ReadBarrierMarkSlowPathARMVIXL(HInstruction* instruction,
    825                                  Location ref,
    826                                  Location entrypoint = Location::NoLocation())
    827       : ReadBarrierMarkSlowPathBaseARMVIXL(instruction, ref, entrypoint) {
    828     DCHECK(kEmitCompilerReadBarrier);
    829   }
    830 
    831   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARMVIXL"; }
    832 
    833   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    834     LocationSummary* locations = instruction_->GetLocations();
    835     DCHECK(locations->CanCall());
    836     DCHECK(ref_.IsRegister()) << ref_;
    837     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg();
    838     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
    839         << "Unexpected instruction in read barrier marking slow path: "
    840         << instruction_->DebugName();
    841 
    842     __ Bind(GetEntryLabel());
    843     GenerateReadBarrierMarkRuntimeCall(codegen);
    844     __ B(GetExitLabel());
    845   }
    846 
    847  private:
    848   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARMVIXL);
    849 };
    850 
    851 // Slow path loading `obj`'s lock word, loading a reference from
    852 // object `*(obj + offset + (index << scale_factor))` into `ref`, and
    853 // marking `ref` if `obj` is gray according to the lock word (Baker
    854 // read barrier). The field `obj.field` in the object `obj` holding
    855 // this reference does not get updated by this slow path after marking
    856 // (see LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL
    857 // below for that).
    858 //
    859 // This means that after the execution of this slow path, `ref` will
    860 // always be up-to-date, but `obj.field` may not; i.e., after the
    861 // flip, `ref` will be a to-space reference, but `obj.field` will
    862 // probably still be a from-space reference (unless it gets updated by
    863 // another thread, or if another thread installed another object
    864 // reference (different from `ref`) in `obj.field`).
    865 //
    866 // Argument `entrypoint` must be a register location holding the read
    867 // barrier marking runtime entry point to be invoked or an empty
    868 // location; in the latter case, the read barrier marking runtime
    869 // entry point will be loaded by the slow path code itself.
    870 class LoadReferenceWithBakerReadBarrierSlowPathARMVIXL : public ReadBarrierMarkSlowPathBaseARMVIXL {
    871  public:
    872   LoadReferenceWithBakerReadBarrierSlowPathARMVIXL(HInstruction* instruction,
    873                                                    Location ref,
    874                                                    vixl32::Register obj,
    875                                                    uint32_t offset,
    876                                                    Location index,
    877                                                    ScaleFactor scale_factor,
    878                                                    bool needs_null_check,
    879                                                    vixl32::Register temp,
    880                                                    Location entrypoint = Location::NoLocation())
    881       : ReadBarrierMarkSlowPathBaseARMVIXL(instruction, ref, entrypoint),
    882         obj_(obj),
    883         offset_(offset),
    884         index_(index),
    885         scale_factor_(scale_factor),
    886         needs_null_check_(needs_null_check),
    887         temp_(temp) {
    888     DCHECK(kEmitCompilerReadBarrier);
    889     DCHECK(kUseBakerReadBarrier);
    890   }
    891 
    892   const char* GetDescription() const OVERRIDE {
    893     return "LoadReferenceWithBakerReadBarrierSlowPathARMVIXL";
    894   }
    895 
    896   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    897     LocationSummary* locations = instruction_->GetLocations();
    898     vixl32::Register ref_reg = RegisterFrom(ref_);
    899     DCHECK(locations->CanCall());
    900     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg.GetCode())) << ref_reg;
    901     DCHECK(instruction_->IsInstanceFieldGet() ||
    902            instruction_->IsStaticFieldGet() ||
    903            instruction_->IsArrayGet() ||
    904            instruction_->IsArraySet() ||
    905            instruction_->IsInstanceOf() ||
    906            instruction_->IsCheckCast() ||
    907            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
    908            (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
    909         << "Unexpected instruction in read barrier marking slow path: "
    910         << instruction_->DebugName();
    911     // The read barrier instrumentation of object ArrayGet
    912     // instructions does not support the HIntermediateAddress
    913     // instruction.
    914     DCHECK(!(instruction_->IsArrayGet() &&
    915              instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
    916 
    917     // Temporary register `temp_`, used to store the lock word, must
    918     // not be IP, as we may use it to emit the reference load (in the
    919     // call to GenerateRawReferenceLoad below), and we need the lock
    920     // word to still be in `temp_` after the reference load.
    921     DCHECK(!temp_.Is(ip));
    922 
    923     __ Bind(GetEntryLabel());
    924 
    925     // When using MaybeGenerateReadBarrierSlow, the read barrier call is
    926     // inserted after the original load. However, in fast path based
    927     // Baker's read barriers, we need to perform the load of
    928     // mirror::Object::monitor_ *before* the original reference load.
    929     // This load-load ordering is required by the read barrier.
    930     // The slow path (for Baker's algorithm) should look like:
    931     //
    932     //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
    933     //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
    934     //   HeapReference<mirror::Object> ref = *src;  // Original reference load.
    935     //   bool is_gray = (rb_state == ReadBarrier::GrayState());
    936     //   if (is_gray) {
    937     //     ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
    938     //   }
    939     //
    940     // Note: the original implementation in ReadBarrier::Barrier is
    941     // slightly more complex as it performs additional checks that we do
    942     // not do here for performance reasons.
    943 
    944     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
    945 
    946     // /* int32_t */ monitor = obj->monitor_
    947     uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
    948     arm_codegen->GetAssembler()->LoadFromOffset(kLoadWord, temp_, obj_, monitor_offset);
    949     if (needs_null_check_) {
    950       codegen->MaybeRecordImplicitNullCheck(instruction_);
    951     }
    952     // /* LockWord */ lock_word = LockWord(monitor)
    953     static_assert(sizeof(LockWord) == sizeof(int32_t),
    954                   "art::LockWord and int32_t have different sizes.");
    955 
    956     // Introduce a dependency on the lock_word including the rb_state,
    957     // which shall prevent load-load reordering without using
    958     // a memory barrier (which would be more expensive).
    959     // `obj` is unchanged by this operation, but its value now depends
    960     // on `temp`.
    961     __ Add(obj_, obj_, Operand(temp_, ShiftType::LSR, 32));
    962 
    963     // The actual reference load.
    964     // A possible implicit null check has already been handled above.
    965     arm_codegen->GenerateRawReferenceLoad(
    966         instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false);
    967 
    968     // Mark the object `ref` when `obj` is gray.
    969     //
    970     //   if (rb_state == ReadBarrier::GrayState())
    971     //     ref = ReadBarrier::Mark(ref);
    972     //
    973     // Given the numeric representation, it's enough to check the low bit of the
    974     // rb_state. We do that by shifting the bit out of the lock word with LSRS
    975     // which can be a 16-bit instruction unlike the TST immediate.
    976     static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
    977     static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
    978     __ Lsrs(temp_, temp_, LockWord::kReadBarrierStateShift + 1);
    979     __ B(cc, GetExitLabel());  // Carry flag is the last bit shifted out by LSRS.
    980     GenerateReadBarrierMarkRuntimeCall(codegen);
    981 
    982     __ B(GetExitLabel());
    983   }
    984 
    985  private:
    986   // The register containing the object holding the marked object reference field.
    987   vixl32::Register obj_;
    988   // The offset, index and scale factor to access the reference in `obj_`.
    989   uint32_t offset_;
    990   Location index_;
    991   ScaleFactor scale_factor_;
    992   // Is a null check required?
    993   bool needs_null_check_;
    994   // A temporary register used to hold the lock word of `obj_`.
    995   vixl32::Register temp_;
    996 
    997   DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierSlowPathARMVIXL);
    998 };
    999 
   1000 // Slow path loading `obj`'s lock word, loading a reference from
   1001 // object `*(obj + offset + (index << scale_factor))` into `ref`, and
   1002 // marking `ref` if `obj` is gray according to the lock word (Baker
   1003 // read barrier). If needed, this slow path also atomically updates
   1004 // the field `obj.field` in the object `obj` holding this reference
   1005 // after marking (contrary to
   1006 // LoadReferenceWithBakerReadBarrierSlowPathARMVIXL above, which never
   1007 // tries to update `obj.field`).
   1008 //
   1009 // This means that after the execution of this slow path, both `ref`
   1010 // and `obj.field` will be up-to-date; i.e., after the flip, both will
   1011 // hold the same to-space reference (unless another thread installed
   1012 // another object reference (different from `ref`) in `obj.field`).
   1013 //
   1014 // Argument `entrypoint` must be a register location holding the read
   1015 // barrier marking runtime entry point to be invoked or an empty
   1016 // location; in the latter case, the read barrier marking runtime
   1017 // entry point will be loaded by the slow path code itself.
   1018 class LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL
   1019     : public ReadBarrierMarkSlowPathBaseARMVIXL {
   1020  public:
   1021   LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL(
   1022       HInstruction* instruction,
   1023       Location ref,
   1024       vixl32::Register obj,
   1025       uint32_t offset,
   1026       Location index,
   1027       ScaleFactor scale_factor,
   1028       bool needs_null_check,
   1029       vixl32::Register temp1,
   1030       vixl32::Register temp2,
   1031       Location entrypoint = Location::NoLocation())
   1032       : ReadBarrierMarkSlowPathBaseARMVIXL(instruction, ref, entrypoint),
   1033         obj_(obj),
   1034         offset_(offset),
   1035         index_(index),
   1036         scale_factor_(scale_factor),
   1037         needs_null_check_(needs_null_check),
   1038         temp1_(temp1),
   1039         temp2_(temp2) {
   1040     DCHECK(kEmitCompilerReadBarrier);
   1041     DCHECK(kUseBakerReadBarrier);
   1042   }
   1043 
   1044   const char* GetDescription() const OVERRIDE {
   1045     return "LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL";
   1046   }
   1047 
   1048   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
   1049     LocationSummary* locations = instruction_->GetLocations();
   1050     vixl32::Register ref_reg = RegisterFrom(ref_);
   1051     DCHECK(locations->CanCall());
   1052     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg.GetCode())) << ref_reg;
   1053     DCHECK_NE(ref_.reg(), LocationFrom(temp1_).reg());
   1054 
   1055     // This slow path is only used by the UnsafeCASObject intrinsic at the moment.
   1056     DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
   1057         << "Unexpected instruction in read barrier marking and field updating slow path: "
   1058         << instruction_->DebugName();
   1059     DCHECK(instruction_->GetLocations()->Intrinsified());
   1060     DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
   1061     DCHECK_EQ(offset_, 0u);
   1062     DCHECK_EQ(scale_factor_, ScaleFactor::TIMES_1);
   1063     Location field_offset = index_;
   1064     DCHECK(field_offset.IsRegisterPair()) << field_offset;
   1065 
   1066     // Temporary register `temp1_`, used to store the lock word, must
   1067     // not be IP, as we may use it to emit the reference load (in the
   1068     // call to GenerateRawReferenceLoad below), and we need the lock
   1069     // word to still be in `temp1_` after the reference load.
   1070     DCHECK(!temp1_.Is(ip));
   1071 
   1072     __ Bind(GetEntryLabel());
   1073 
   1074     // The implementation is similar to LoadReferenceWithBakerReadBarrierSlowPathARMVIXL's:
   1075     //
   1076     //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
   1077     //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
   1078     //   HeapReference<mirror::Object> ref = *src;  // Original reference load.
   1079     //   bool is_gray = (rb_state == ReadBarrier::GrayState());
   1080     //   if (is_gray) {
   1081     //     old_ref = ref;
   1082     //     ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
   1083     //     compareAndSwapObject(obj, field_offset, old_ref, ref);
   1084     //   }
   1085 
   1086     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
   1087 
   1088     // /* int32_t */ monitor = obj->monitor_
   1089     uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
   1090     arm_codegen->GetAssembler()->LoadFromOffset(kLoadWord, temp1_, obj_, monitor_offset);
   1091     if (needs_null_check_) {
   1092       codegen->MaybeRecordImplicitNullCheck(instruction_);
   1093     }
   1094     // /* LockWord */ lock_word = LockWord(monitor)
   1095     static_assert(sizeof(LockWord) == sizeof(int32_t),
   1096                   "art::LockWord and int32_t have different sizes.");
   1097 
   1098     // Introduce a dependency on the lock_word including the rb_state,
   1099     // which shall prevent load-load reordering without using
   1100     // a memory barrier (which would be more expensive).
   1101     // `obj` is unchanged by this operation, but its value now depends
   1102     // on `temp`.
   1103     __ Add(obj_, obj_, Operand(temp1_, ShiftType::LSR, 32));
   1104 
   1105     // The actual reference load.
   1106     // A possible implicit null check has already been handled above.
   1107     arm_codegen->GenerateRawReferenceLoad(
   1108         instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false);
   1109 
   1110     // Mark the object `ref` when `obj` is gray.
   1111     //
   1112     //   if (rb_state == ReadBarrier::GrayState())
   1113     //     ref = ReadBarrier::Mark(ref);
   1114     //
   1115     // Given the numeric representation, it's enough to check the low bit of the
   1116     // rb_state. We do that by shifting the bit out of the lock word with LSRS
   1117     // which can be a 16-bit instruction unlike the TST immediate.
   1118     static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
   1119     static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
   1120     __ Lsrs(temp1_, temp1_, LockWord::kReadBarrierStateShift + 1);
   1121     __ B(cc, GetExitLabel());  // Carry flag is the last bit shifted out by LSRS.
   1122 
   1123     // Save the old value of the reference before marking it.
   1124     // Note that we cannot use IP to save the old reference, as IP is
   1125     // used internally by the ReadBarrierMarkRegX entry point, and we
   1126     // need the old reference after the call to that entry point.
   1127     DCHECK(!temp1_.Is(ip));
   1128     __ Mov(temp1_, ref_reg);
   1129 
   1130     GenerateReadBarrierMarkRuntimeCall(codegen);
   1131 
   1132     // If the new reference is different from the old reference,
   1133     // update the field in the holder (`*(obj_ + field_offset)`).
   1134     //
   1135     // Note that this field could also hold a different object, if
   1136     // another thread had concurrently changed it. In that case, the
   1137     // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set
   1138     // (CAS) operation below would abort the CAS, leaving the field
   1139     // as-is.
   1140     __ Cmp(temp1_, ref_reg);
   1141     __ B(eq, GetExitLabel());
   1142 
   1143     // Update the the holder's field atomically.  This may fail if
   1144     // mutator updates before us, but it's OK.  This is achieved
   1145     // using a strong compare-and-set (CAS) operation with relaxed
   1146     // memory synchronization ordering, where the expected value is
   1147     // the old reference and the desired value is the new reference.
   1148 
   1149     UseScratchRegisterScope temps(arm_codegen->GetVIXLAssembler());
   1150     // Convenience aliases.
   1151     vixl32::Register base = obj_;
   1152     // The UnsafeCASObject intrinsic uses a register pair as field
   1153     // offset ("long offset"), of which only the low part contains
   1154     // data.
   1155     vixl32::Register offset = LowRegisterFrom(field_offset);
   1156     vixl32::Register expected = temp1_;
   1157     vixl32::Register value = ref_reg;
   1158     vixl32::Register tmp_ptr = temps.Acquire();       // Pointer to actual memory.
   1159     vixl32::Register tmp = temp2_;                    // Value in memory.
   1160 
   1161     __ Add(tmp_ptr, base, offset);
   1162 
   1163     if (kPoisonHeapReferences) {
   1164       arm_codegen->GetAssembler()->PoisonHeapReference(expected);
   1165       if (value.Is(expected)) {
   1166         // Do not poison `value`, as it is the same register as
   1167         // `expected`, which has just been poisoned.
   1168       } else {
   1169         arm_codegen->GetAssembler()->PoisonHeapReference(value);
   1170       }
   1171     }
   1172 
   1173     // do {
   1174     //   tmp = [r_ptr] - expected;
   1175     // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
   1176 
   1177     vixl32::Label loop_head, exit_loop;
   1178     __ Bind(&loop_head);
   1179 
   1180     __ Ldrex(tmp, MemOperand(tmp_ptr));
   1181 
   1182     __ Subs(tmp, tmp, expected);
   1183 
   1184     {
   1185       ExactAssemblyScope aas(arm_codegen->GetVIXLAssembler(),
   1186                              2 * kMaxInstructionSizeInBytes,
   1187                              CodeBufferCheckScope::kMaximumSize);
   1188 
   1189       __ it(ne);
   1190       __ clrex(ne);
   1191     }
   1192 
   1193     __ B(ne, &exit_loop, /* far_target */ false);
   1194 
   1195     __ Strex(tmp, value, MemOperand(tmp_ptr));
   1196     __ Cmp(tmp, 1);
   1197     __ B(eq, &loop_head, /* far_target */ false);
   1198 
   1199     __ Bind(&exit_loop);
   1200 
   1201     if (kPoisonHeapReferences) {
   1202       arm_codegen->GetAssembler()->UnpoisonHeapReference(expected);
   1203       if (value.Is(expected)) {
   1204         // Do not unpoison `value`, as it is the same register as
   1205         // `expected`, which has just been unpoisoned.
   1206       } else {
   1207         arm_codegen->GetAssembler()->UnpoisonHeapReference(value);
   1208       }
   1209     }
   1210 
   1211     __ B(GetExitLabel());
   1212   }
   1213 
   1214  private:
   1215   // The register containing the object holding the marked object reference field.
   1216   const vixl32::Register obj_;
   1217   // The offset, index and scale factor to access the reference in `obj_`.
   1218   uint32_t offset_;
   1219   Location index_;
   1220   ScaleFactor scale_factor_;
   1221   // Is a null check required?
   1222   bool needs_null_check_;
   1223   // A temporary register used to hold the lock word of `obj_`; and
   1224   // also to hold the original reference value, when the reference is
   1225   // marked.
   1226   const vixl32::Register temp1_;
   1227   // A temporary register used in the implementation of the CAS, to
   1228   // update the object's reference field.
   1229   const vixl32::Register temp2_;
   1230 
   1231   DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL);
   1232 };
   1233 
   1234 // Slow path generating a read barrier for a heap reference.
   1235 class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL {
   1236  public:
   1237   ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction,
   1238                                              Location out,
   1239                                              Location ref,
   1240                                              Location obj,
   1241                                              uint32_t offset,
   1242                                              Location index)
   1243       : SlowPathCodeARMVIXL(instruction),
   1244         out_(out),
   1245         ref_(ref),
   1246         obj_(obj),
   1247         offset_(offset),
   1248         index_(index) {
   1249     DCHECK(kEmitCompilerReadBarrier);
   1250     // If `obj` is equal to `out` or `ref`, it means the initial object
   1251     // has been overwritten by (or after) the heap object reference load
   1252     // to be instrumented, e.g.:
   1253     //
   1254     //   __ LoadFromOffset(kLoadWord, out, out, offset);
   1255     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
   1256     //
   1257     // In that case, we have lost the information about the original
   1258     // object, and the emitted read barrier cannot work properly.
   1259     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
   1260     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
   1261   }
   1262 
   1263   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
   1264     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
   1265     LocationSummary* locations = instruction_->GetLocations();
   1266     vixl32::Register reg_out = RegisterFrom(out_);
   1267     DCHECK(locations->CanCall());
   1268     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
   1269     DCHECK(instruction_->IsInstanceFieldGet() ||
   1270            instruction_->IsStaticFieldGet() ||
   1271            instruction_->IsArrayGet() ||
   1272            instruction_->IsInstanceOf() ||
   1273            instruction_->IsCheckCast() ||
   1274            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
   1275         << "Unexpected instruction in read barrier for heap reference slow path: "
   1276         << instruction_->DebugName();
   1277     // The read barrier instrumentation of object ArrayGet
   1278     // instructions does not support the HIntermediateAddress
   1279     // instruction.
   1280     DCHECK(!(instruction_->IsArrayGet() &&
   1281              instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
   1282 
   1283     __ Bind(GetEntryLabel());
   1284     SaveLiveRegisters(codegen, locations);
   1285 
   1286     // We may have to change the index's value, but as `index_` is a
   1287     // constant member (like other "inputs" of this slow path),
   1288     // introduce a copy of it, `index`.
   1289     Location index = index_;
   1290     if (index_.IsValid()) {
   1291       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
   1292       if (instruction_->IsArrayGet()) {
   1293         // Compute the actual memory offset and store it in `index`.
   1294         vixl32::Register index_reg = RegisterFrom(index_);
   1295         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode()));
   1296         if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) {
   1297           // We are about to change the value of `index_reg` (see the
   1298           // calls to art::arm::ArmVIXLMacroAssembler::Lsl and
   1299           // art::arm::ArmVIXLMacroAssembler::Add below), but it has
   1300           // not been saved by the previous call to
   1301           // art::SlowPathCode::SaveLiveRegisters, as it is a
   1302           // callee-save register --
   1303           // art::SlowPathCode::SaveLiveRegisters does not consider
   1304           // callee-save registers, as it has been designed with the
   1305           // assumption that callee-save registers are supposed to be
   1306           // handled by the called function.  So, as a callee-save
   1307           // register, `index_reg` _would_ eventually be saved onto
   1308           // the stack, but it would be too late: we would have
   1309           // changed its value earlier.  Therefore, we manually save
   1310           // it here into another freely available register,
   1311           // `free_reg`, chosen of course among the caller-save
   1312           // registers (as a callee-save `free_reg` register would
   1313           // exhibit the same problem).
   1314           //
   1315           // Note we could have requested a temporary register from
   1316           // the register allocator instead; but we prefer not to, as
   1317           // this is a slow path, and we know we can find a
   1318           // caller-save register that is available.
   1319           vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen);
   1320           __ Mov(free_reg, index_reg);
   1321           index_reg = free_reg;
   1322           index = LocationFrom(index_reg);
   1323         } else {
   1324           // The initial register stored in `index_` has already been
   1325           // saved in the call to art::SlowPathCode::SaveLiveRegisters
   1326           // (as it is not a callee-save register), so we can freely
   1327           // use it.
   1328         }
   1329         // Shifting the index value contained in `index_reg` by the scale
   1330         // factor (2) cannot overflow in practice, as the runtime is
   1331         // unable to allocate object arrays with a size larger than
   1332         // 2^26 - 1 (that is, 2^28 - 4 bytes).
   1333         __ Lsl(index_reg, index_reg, TIMES_4);
   1334         static_assert(
   1335             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   1336             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   1337         __ Add(index_reg, index_reg, offset_);
   1338       } else {
   1339         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
   1340         // intrinsics, `index_` is not shifted by a scale factor of 2
   1341         // (as in the case of ArrayGet), as it is actually an offset
   1342         // to an object field within an object.
   1343         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
   1344         DCHECK(instruction_->GetLocations()->Intrinsified());
   1345         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
   1346                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
   1347             << instruction_->AsInvoke()->GetIntrinsic();
   1348         DCHECK_EQ(offset_, 0U);
   1349         DCHECK(index_.IsRegisterPair());
   1350         // UnsafeGet's offset location is a register pair, the low
   1351         // part contains the correct offset.
   1352         index = index_.ToLow();
   1353       }
   1354     }
   1355 
   1356     // We're moving two or three locations to locations that could
   1357     // overlap, so we need a parallel move resolver.
   1358     InvokeRuntimeCallingConventionARMVIXL calling_convention;
   1359     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
   1360     parallel_move.AddMove(ref_,
   1361                           LocationFrom(calling_convention.GetRegisterAt(0)),
   1362                           Primitive::kPrimNot,
   1363                           nullptr);
   1364     parallel_move.AddMove(obj_,
   1365                           LocationFrom(calling_convention.GetRegisterAt(1)),
   1366                           Primitive::kPrimNot,
   1367                           nullptr);
   1368     if (index.IsValid()) {
   1369       parallel_move.AddMove(index,
   1370                             LocationFrom(calling_convention.GetRegisterAt(2)),
   1371                             Primitive::kPrimInt,
   1372                             nullptr);
   1373       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
   1374     } else {
   1375       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
   1376       __ Mov(calling_convention.GetRegisterAt(2), offset_);
   1377     }
   1378     arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
   1379     CheckEntrypointTypes<
   1380         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
   1381     arm_codegen->Move32(out_, LocationFrom(r0));
   1382 
   1383     RestoreLiveRegisters(codegen, locations);
   1384     __ B(GetExitLabel());
   1385   }
   1386 
   1387   const char* GetDescription() const OVERRIDE {
   1388     return "ReadBarrierForHeapReferenceSlowPathARMVIXL";
   1389   }
   1390 
   1391  private:
   1392   vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
   1393     uint32_t ref = RegisterFrom(ref_).GetCode();
   1394     uint32_t obj = RegisterFrom(obj_).GetCode();
   1395     for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
   1396       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
   1397         return vixl32::Register(i);
   1398       }
   1399     }
   1400     // We shall never fail to find a free caller-save register, as
   1401     // there are more than two core caller-save registers on ARM
   1402     // (meaning it is possible to find one which is different from
   1403     // `ref` and `obj`).
   1404     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
   1405     LOG(FATAL) << "Could not find a free caller-save register";
   1406     UNREACHABLE();
   1407   }
   1408 
   1409   const Location out_;
   1410   const Location ref_;
   1411   const Location obj_;
   1412   const uint32_t offset_;
   1413   // An additional location containing an index to an array.
   1414   // Only used for HArrayGet and the UnsafeGetObject &
   1415   // UnsafeGetObjectVolatile intrinsics.
   1416   const Location index_;
   1417 
   1418   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL);
   1419 };
   1420 
   1421 // Slow path generating a read barrier for a GC root.
   1422 class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL {
   1423  public:
   1424   ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root)
   1425       : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) {
   1426     DCHECK(kEmitCompilerReadBarrier);
   1427   }
   1428 
   1429   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
   1430     LocationSummary* locations = instruction_->GetLocations();
   1431     vixl32::Register reg_out = RegisterFrom(out_);
   1432     DCHECK(locations->CanCall());
   1433     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
   1434     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
   1435         << "Unexpected instruction in read barrier for GC root slow path: "
   1436         << instruction_->DebugName();
   1437 
   1438     __ Bind(GetEntryLabel());
   1439     SaveLiveRegisters(codegen, locations);
   1440 
   1441     InvokeRuntimeCallingConventionARMVIXL calling_convention;
   1442     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
   1443     arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_);
   1444     arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
   1445                                instruction_,
   1446                                instruction_->GetDexPc(),
   1447                                this);
   1448     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
   1449     arm_codegen->Move32(out_, LocationFrom(r0));
   1450 
   1451     RestoreLiveRegisters(codegen, locations);
   1452     __ B(GetExitLabel());
   1453   }
   1454 
   1455   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARMVIXL"; }
   1456 
   1457  private:
   1458   const Location out_;
   1459   const Location root_;
   1460 
   1461   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL);
   1462 };
   1463 
   1464 inline vixl32::Condition ARMCondition(IfCondition cond) {
   1465   switch (cond) {
   1466     case kCondEQ: return eq;
   1467     case kCondNE: return ne;
   1468     case kCondLT: return lt;
   1469     case kCondLE: return le;
   1470     case kCondGT: return gt;
   1471     case kCondGE: return ge;
   1472     case kCondB:  return lo;
   1473     case kCondBE: return ls;
   1474     case kCondA:  return hi;
   1475     case kCondAE: return hs;
   1476   }
   1477   LOG(FATAL) << "Unreachable";
   1478   UNREACHABLE();
   1479 }
   1480 
   1481 // Maps signed condition to unsigned condition.
   1482 inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) {
   1483   switch (cond) {
   1484     case kCondEQ: return eq;
   1485     case kCondNE: return ne;
   1486     // Signed to unsigned.
   1487     case kCondLT: return lo;
   1488     case kCondLE: return ls;
   1489     case kCondGT: return hi;
   1490     case kCondGE: return hs;
   1491     // Unsigned remain unchanged.
   1492     case kCondB:  return lo;
   1493     case kCondBE: return ls;
   1494     case kCondA:  return hi;
   1495     case kCondAE: return hs;
   1496   }
   1497   LOG(FATAL) << "Unreachable";
   1498   UNREACHABLE();
   1499 }
   1500 
   1501 inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
   1502   // The ARM condition codes can express all the necessary branches, see the
   1503   // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
   1504   // There is no dex instruction or HIR that would need the missing conditions
   1505   // "equal or unordered" or "not equal".
   1506   switch (cond) {
   1507     case kCondEQ: return eq;
   1508     case kCondNE: return ne /* unordered */;
   1509     case kCondLT: return gt_bias ? cc : lt /* unordered */;
   1510     case kCondLE: return gt_bias ? ls : le /* unordered */;
   1511     case kCondGT: return gt_bias ? hi /* unordered */ : gt;
   1512     case kCondGE: return gt_bias ? cs /* unordered */ : ge;
   1513     default:
   1514       LOG(FATAL) << "UNREACHABLE";
   1515       UNREACHABLE();
   1516   }
   1517 }
   1518 
   1519 inline ShiftType ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
   1520   switch (op_kind) {
   1521     case HDataProcWithShifterOp::kASR: return ShiftType::ASR;
   1522     case HDataProcWithShifterOp::kLSL: return ShiftType::LSL;
   1523     case HDataProcWithShifterOp::kLSR: return ShiftType::LSR;
   1524     default:
   1525       LOG(FATAL) << "Unexpected op kind " << op_kind;
   1526       UNREACHABLE();
   1527   }
   1528 }
   1529 
   1530 void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const {
   1531   stream << vixl32::Register(reg);
   1532 }
   1533 
   1534 void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
   1535   stream << vixl32::SRegister(reg);
   1536 }
   1537 
   1538 static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) {
   1539   uint32_t mask = 0;
   1540   for (uint32_t i = regs.GetFirstSRegister().GetCode();
   1541        i <= regs.GetLastSRegister().GetCode();
   1542        ++i) {
   1543     mask |= (1 << i);
   1544   }
   1545   return mask;
   1546 }
   1547 
   1548 // Saves the register in the stack. Returns the size taken on stack.
   1549 size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
   1550                                               uint32_t reg_id ATTRIBUTE_UNUSED) {
   1551   TODO_VIXL32(FATAL);
   1552   return 0;
   1553 }
   1554 
   1555 // Restores the register from the stack. Returns the size taken on stack.
   1556 size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
   1557                                                  uint32_t reg_id ATTRIBUTE_UNUSED) {
   1558   TODO_VIXL32(FATAL);
   1559   return 0;
   1560 }
   1561 
   1562 size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
   1563                                                        uint32_t reg_id ATTRIBUTE_UNUSED) {
   1564   TODO_VIXL32(FATAL);
   1565   return 0;
   1566 }
   1567 
   1568 size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
   1569                                                           uint32_t reg_id ATTRIBUTE_UNUSED) {
   1570   TODO_VIXL32(FATAL);
   1571   return 0;
   1572 }
   1573 
   1574 static void GenerateDataProcInstruction(HInstruction::InstructionKind kind,
   1575                                         vixl32::Register out,
   1576                                         vixl32::Register first,
   1577                                         const Operand& second,
   1578                                         CodeGeneratorARMVIXL* codegen) {
   1579   if (second.IsImmediate() && second.GetImmediate() == 0) {
   1580     const Operand in = kind == HInstruction::kAnd
   1581         ? Operand(0)
   1582         : Operand(first);
   1583 
   1584     __ Mov(out, in);
   1585   } else {
   1586     switch (kind) {
   1587       case HInstruction::kAdd:
   1588         __ Add(out, first, second);
   1589         break;
   1590       case HInstruction::kAnd:
   1591         __ And(out, first, second);
   1592         break;
   1593       case HInstruction::kOr:
   1594         __ Orr(out, first, second);
   1595         break;
   1596       case HInstruction::kSub:
   1597         __ Sub(out, first, second);
   1598         break;
   1599       case HInstruction::kXor:
   1600         __ Eor(out, first, second);
   1601         break;
   1602       default:
   1603         LOG(FATAL) << "Unexpected instruction kind: " << kind;
   1604         UNREACHABLE();
   1605     }
   1606   }
   1607 }
   1608 
   1609 static void GenerateDataProc(HInstruction::InstructionKind kind,
   1610                              const Location& out,
   1611                              const Location& first,
   1612                              const Operand& second_lo,
   1613                              const Operand& second_hi,
   1614                              CodeGeneratorARMVIXL* codegen) {
   1615   const vixl32::Register first_hi = HighRegisterFrom(first);
   1616   const vixl32::Register first_lo = LowRegisterFrom(first);
   1617   const vixl32::Register out_hi = HighRegisterFrom(out);
   1618   const vixl32::Register out_lo = LowRegisterFrom(out);
   1619 
   1620   if (kind == HInstruction::kAdd) {
   1621     __ Adds(out_lo, first_lo, second_lo);
   1622     __ Adc(out_hi, first_hi, second_hi);
   1623   } else if (kind == HInstruction::kSub) {
   1624     __ Subs(out_lo, first_lo, second_lo);
   1625     __ Sbc(out_hi, first_hi, second_hi);
   1626   } else {
   1627     GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen);
   1628     GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen);
   1629   }
   1630 }
   1631 
   1632 static Operand GetShifterOperand(vixl32::Register rm, ShiftType shift, uint32_t shift_imm) {
   1633   return shift_imm == 0 ? Operand(rm) : Operand(rm, shift, shift_imm);
   1634 }
   1635 
   1636 static void GenerateLongDataProc(HDataProcWithShifterOp* instruction,
   1637                                  CodeGeneratorARMVIXL* codegen) {
   1638   DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
   1639   DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
   1640 
   1641   const LocationSummary* const locations = instruction->GetLocations();
   1642   const uint32_t shift_value = instruction->GetShiftAmount();
   1643   const HInstruction::InstructionKind kind = instruction->GetInstrKind();
   1644   const Location first = locations->InAt(0);
   1645   const Location second = locations->InAt(1);
   1646   const Location out = locations->Out();
   1647   const vixl32::Register first_hi = HighRegisterFrom(first);
   1648   const vixl32::Register first_lo = LowRegisterFrom(first);
   1649   const vixl32::Register out_hi = HighRegisterFrom(out);
   1650   const vixl32::Register out_lo = LowRegisterFrom(out);
   1651   const vixl32::Register second_hi = HighRegisterFrom(second);
   1652   const vixl32::Register second_lo = LowRegisterFrom(second);
   1653   const ShiftType shift = ShiftFromOpKind(instruction->GetOpKind());
   1654 
   1655   if (shift_value >= 32) {
   1656     if (shift == ShiftType::LSL) {
   1657       GenerateDataProcInstruction(kind,
   1658                                   out_hi,
   1659                                   first_hi,
   1660                                   Operand(second_lo, ShiftType::LSL, shift_value - 32),
   1661                                   codegen);
   1662       GenerateDataProcInstruction(kind, out_lo, first_lo, 0, codegen);
   1663     } else if (shift == ShiftType::ASR) {
   1664       GenerateDataProc(kind,
   1665                        out,
   1666                        first,
   1667                        GetShifterOperand(second_hi, ShiftType::ASR, shift_value - 32),
   1668                        Operand(second_hi, ShiftType::ASR, 31),
   1669                        codegen);
   1670     } else {
   1671       DCHECK_EQ(shift, ShiftType::LSR);
   1672       GenerateDataProc(kind,
   1673                        out,
   1674                        first,
   1675                        GetShifterOperand(second_hi, ShiftType::LSR, shift_value - 32),
   1676                        0,
   1677                        codegen);
   1678     }
   1679   } else {
   1680     DCHECK_GT(shift_value, 1U);
   1681     DCHECK_LT(shift_value, 32U);
   1682 
   1683     UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
   1684 
   1685     if (shift == ShiftType::LSL) {
   1686       // We are not doing this for HInstruction::kAdd because the output will require
   1687       // Location::kOutputOverlap; not applicable to other cases.
   1688       if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
   1689         GenerateDataProcInstruction(kind,
   1690                                     out_hi,
   1691                                     first_hi,
   1692                                     Operand(second_hi, ShiftType::LSL, shift_value),
   1693                                     codegen);
   1694         GenerateDataProcInstruction(kind,
   1695                                     out_hi,
   1696                                     out_hi,
   1697                                     Operand(second_lo, ShiftType::LSR, 32 - shift_value),
   1698                                     codegen);
   1699         GenerateDataProcInstruction(kind,
   1700                                     out_lo,
   1701                                     first_lo,
   1702                                     Operand(second_lo, ShiftType::LSL, shift_value),
   1703                                     codegen);
   1704       } else {
   1705         const vixl32::Register temp = temps.Acquire();
   1706 
   1707         __ Lsl(temp, second_hi, shift_value);
   1708         __ Orr(temp, temp, Operand(second_lo, ShiftType::LSR, 32 - shift_value));
   1709         GenerateDataProc(kind,
   1710                          out,
   1711                          first,
   1712                          Operand(second_lo, ShiftType::LSL, shift_value),
   1713                          temp,
   1714                          codegen);
   1715       }
   1716     } else {
   1717       DCHECK(shift == ShiftType::ASR || shift == ShiftType::LSR);
   1718 
   1719       // We are not doing this for HInstruction::kAdd because the output will require
   1720       // Location::kOutputOverlap; not applicable to other cases.
   1721       if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
   1722         GenerateDataProcInstruction(kind,
   1723                                     out_lo,
   1724                                     first_lo,
   1725                                     Operand(second_lo, ShiftType::LSR, shift_value),
   1726                                     codegen);
   1727         GenerateDataProcInstruction(kind,
   1728                                     out_lo,
   1729                                     out_lo,
   1730                                     Operand(second_hi, ShiftType::LSL, 32 - shift_value),
   1731                                     codegen);
   1732         GenerateDataProcInstruction(kind,
   1733                                     out_hi,
   1734                                     first_hi,
   1735                                     Operand(second_hi, shift, shift_value),
   1736                                     codegen);
   1737       } else {
   1738         const vixl32::Register temp = temps.Acquire();
   1739 
   1740         __ Lsr(temp, second_lo, shift_value);
   1741         __ Orr(temp, temp, Operand(second_hi, ShiftType::LSL, 32 - shift_value));
   1742         GenerateDataProc(kind,
   1743                          out,
   1744                          first,
   1745                          temp,
   1746                          Operand(second_hi, shift, shift_value),
   1747                          codegen);
   1748       }
   1749     }
   1750   }
   1751 }
   1752 
   1753 static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARMVIXL* codegen) {
   1754   const Location rhs_loc = instruction->GetLocations()->InAt(1);
   1755   if (rhs_loc.IsConstant()) {
   1756     // 0.0 is the only immediate that can be encoded directly in
   1757     // a VCMP instruction.
   1758     //
   1759     // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
   1760     // specify that in a floating-point comparison, positive zero
   1761     // and negative zero are considered equal, so we can use the
   1762     // literal 0.0 for both cases here.
   1763     //
   1764     // Note however that some methods (Float.equal, Float.compare,
   1765     // Float.compareTo, Double.equal, Double.compare,
   1766     // Double.compareTo, Math.max, Math.min, StrictMath.max,
   1767     // StrictMath.min) consider 0.0 to be (strictly) greater than
   1768     // -0.0. So if we ever translate calls to these methods into a
   1769     // HCompare instruction, we must handle the -0.0 case with
   1770     // care here.
   1771     DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
   1772 
   1773     const Primitive::Type type = instruction->InputAt(0)->GetType();
   1774 
   1775     if (type == Primitive::kPrimFloat) {
   1776       __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0);
   1777     } else {
   1778       DCHECK_EQ(type, Primitive::kPrimDouble);
   1779       __ Vcmp(F64, InputDRegisterAt(instruction, 0), 0.0);
   1780     }
   1781   } else {
   1782     __ Vcmp(InputVRegisterAt(instruction, 0), InputVRegisterAt(instruction, 1));
   1783   }
   1784 }
   1785 
   1786 static int64_t AdjustConstantForCondition(int64_t value,
   1787                                           IfCondition* condition,
   1788                                           IfCondition* opposite) {
   1789   if (value == 1) {
   1790     if (*condition == kCondB) {
   1791       value = 0;
   1792       *condition = kCondEQ;
   1793       *opposite = kCondNE;
   1794     } else if (*condition == kCondAE) {
   1795       value = 0;
   1796       *condition = kCondNE;
   1797       *opposite = kCondEQ;
   1798     }
   1799   } else if (value == -1) {
   1800     if (*condition == kCondGT) {
   1801       value = 0;
   1802       *condition = kCondGE;
   1803       *opposite = kCondLT;
   1804     } else if (*condition == kCondLE) {
   1805       value = 0;
   1806       *condition = kCondLT;
   1807       *opposite = kCondGE;
   1808     }
   1809   }
   1810 
   1811   return value;
   1812 }
   1813 
   1814 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTestConstant(
   1815     HCondition* condition,
   1816     bool invert,
   1817     CodeGeneratorARMVIXL* codegen) {
   1818   DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong);
   1819 
   1820   const LocationSummary* const locations = condition->GetLocations();
   1821   IfCondition cond = condition->GetCondition();
   1822   IfCondition opposite = condition->GetOppositeCondition();
   1823 
   1824   if (invert) {
   1825     std::swap(cond, opposite);
   1826   }
   1827 
   1828   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
   1829   const Location left = locations->InAt(0);
   1830   const Location right = locations->InAt(1);
   1831 
   1832   DCHECK(right.IsConstant());
   1833 
   1834   const vixl32::Register left_high = HighRegisterFrom(left);
   1835   const vixl32::Register left_low = LowRegisterFrom(left);
   1836   int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right), &cond, &opposite);
   1837   UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
   1838 
   1839   // Comparisons against 0 are common enough to deserve special attention.
   1840   if (value == 0) {
   1841     switch (cond) {
   1842       case kCondNE:
   1843       // x > 0 iff x != 0 when the comparison is unsigned.
   1844       case kCondA:
   1845         ret = std::make_pair(ne, eq);
   1846         FALLTHROUGH_INTENDED;
   1847       case kCondEQ:
   1848       // x <= 0 iff x == 0 when the comparison is unsigned.
   1849       case kCondBE:
   1850         __ Orrs(temps.Acquire(), left_low, left_high);
   1851         return ret;
   1852       case kCondLT:
   1853       case kCondGE:
   1854         __ Cmp(left_high, 0);
   1855         return std::make_pair(ARMCondition(cond), ARMCondition(opposite));
   1856       // Trivially true or false.
   1857       case kCondB:
   1858         ret = std::make_pair(ne, eq);
   1859         FALLTHROUGH_INTENDED;
   1860       case kCondAE:
   1861         __ Cmp(left_low, left_low);
   1862         return ret;
   1863       default:
   1864         break;
   1865     }
   1866   }
   1867 
   1868   switch (cond) {
   1869     case kCondEQ:
   1870     case kCondNE:
   1871     case kCondB:
   1872     case kCondBE:
   1873     case kCondA:
   1874     case kCondAE: {
   1875       __ Cmp(left_high, High32Bits(value));
   1876 
   1877       // We use the scope because of the IT block that follows.
   1878       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
   1879                                2 * vixl32::k16BitT32InstructionSizeInBytes,
   1880                                CodeBufferCheckScope::kExactSize);
   1881 
   1882       __ it(eq);
   1883       __ cmp(eq, left_low, Low32Bits(value));
   1884       ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
   1885       break;
   1886     }
   1887     case kCondLE:
   1888     case kCondGT:
   1889       // Trivially true or false.
   1890       if (value == std::numeric_limits<int64_t>::max()) {
   1891         __ Cmp(left_low, left_low);
   1892         ret = cond == kCondLE ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
   1893         break;
   1894       }
   1895 
   1896       if (cond == kCondLE) {
   1897         DCHECK_EQ(opposite, kCondGT);
   1898         cond = kCondLT;
   1899         opposite = kCondGE;
   1900       } else {
   1901         DCHECK_EQ(cond, kCondGT);
   1902         DCHECK_EQ(opposite, kCondLE);
   1903         cond = kCondGE;
   1904         opposite = kCondLT;
   1905       }
   1906 
   1907       value++;
   1908       FALLTHROUGH_INTENDED;
   1909     case kCondGE:
   1910     case kCondLT: {
   1911       __ Cmp(left_low, Low32Bits(value));
   1912       __ Sbcs(temps.Acquire(), left_high, High32Bits(value));
   1913       ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
   1914       break;
   1915     }
   1916     default:
   1917       LOG(FATAL) << "Unreachable";
   1918       UNREACHABLE();
   1919   }
   1920 
   1921   return ret;
   1922 }
   1923 
   1924 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTest(
   1925     HCondition* condition,
   1926     bool invert,
   1927     CodeGeneratorARMVIXL* codegen) {
   1928   DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong);
   1929 
   1930   const LocationSummary* const locations = condition->GetLocations();
   1931   IfCondition cond = condition->GetCondition();
   1932   IfCondition opposite = condition->GetOppositeCondition();
   1933 
   1934   if (invert) {
   1935     std::swap(cond, opposite);
   1936   }
   1937 
   1938   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
   1939   Location left = locations->InAt(0);
   1940   Location right = locations->InAt(1);
   1941 
   1942   DCHECK(right.IsRegisterPair());
   1943 
   1944   switch (cond) {
   1945     case kCondEQ:
   1946     case kCondNE:
   1947     case kCondB:
   1948     case kCondBE:
   1949     case kCondA:
   1950     case kCondAE: {
   1951       __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));
   1952 
   1953       // We use the scope because of the IT block that follows.
   1954       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
   1955                                2 * vixl32::k16BitT32InstructionSizeInBytes,
   1956                                CodeBufferCheckScope::kExactSize);
   1957 
   1958       __ it(eq);
   1959       __ cmp(eq, LowRegisterFrom(left), LowRegisterFrom(right));
   1960       ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
   1961       break;
   1962     }
   1963     case kCondLE:
   1964     case kCondGT:
   1965       if (cond == kCondLE) {
   1966         DCHECK_EQ(opposite, kCondGT);
   1967         cond = kCondGE;
   1968         opposite = kCondLT;
   1969       } else {
   1970         DCHECK_EQ(cond, kCondGT);
   1971         DCHECK_EQ(opposite, kCondLE);
   1972         cond = kCondLT;
   1973         opposite = kCondGE;
   1974       }
   1975 
   1976       std::swap(left, right);
   1977       FALLTHROUGH_INTENDED;
   1978     case kCondGE:
   1979     case kCondLT: {
   1980       UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
   1981 
   1982       __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));
   1983       __ Sbcs(temps.Acquire(), HighRegisterFrom(left), HighRegisterFrom(right));
   1984       ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
   1985       break;
   1986     }
   1987     default:
   1988       LOG(FATAL) << "Unreachable";
   1989       UNREACHABLE();
   1990   }
   1991 
   1992   return ret;
   1993 }
   1994 
   1995 static std::pair<vixl32::Condition, vixl32::Condition> GenerateTest(HCondition* condition,
   1996                                                                     bool invert,
   1997                                                                     CodeGeneratorARMVIXL* codegen) {
   1998   const Primitive::Type type = condition->GetLeft()->GetType();
   1999   IfCondition cond = condition->GetCondition();
   2000   IfCondition opposite = condition->GetOppositeCondition();
   2001   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
   2002 
   2003   if (invert) {
   2004     std::swap(cond, opposite);
   2005   }
   2006 
   2007   if (type == Primitive::kPrimLong) {
   2008     ret = condition->GetLocations()->InAt(1).IsConstant()
   2009         ? GenerateLongTestConstant(condition, invert, codegen)
   2010         : GenerateLongTest(condition, invert, codegen);
   2011   } else if (Primitive::IsFloatingPointType(type)) {
   2012     GenerateVcmp(condition, codegen);
   2013     __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
   2014     ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()),
   2015                          ARMFPCondition(opposite, condition->IsGtBias()));
   2016   } else {
   2017     DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
   2018     __ Cmp(InputRegisterAt(condition, 0), InputOperandAt(condition, 1));
   2019     ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
   2020   }
   2021 
   2022   return ret;
   2023 }
   2024 
   2025 static bool CanGenerateTest(HCondition* condition, ArmVIXLAssembler* assembler) {
   2026   if (condition->GetLeft()->GetType() == Primitive::kPrimLong) {
   2027     const LocationSummary* const locations = condition->GetLocations();
   2028 
   2029     if (locations->InAt(1).IsConstant()) {
   2030       IfCondition c = condition->GetCondition();
   2031       IfCondition opposite = condition->GetOppositeCondition();
   2032       const int64_t value =
   2033           AdjustConstantForCondition(Int64ConstantFrom(locations->InAt(1)), &c, &opposite);
   2034 
   2035       if (c < kCondLT || c > kCondGE) {
   2036         // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
   2037         // we check that the least significant half of the first input to be compared
   2038         // is in a low register (the other half is read outside an IT block), and
   2039         // the constant fits in an 8-bit unsigned integer, so that a 16-bit CMP
   2040         // encoding can be used; 0 is always handled, no matter what registers are
   2041         // used by the first input.
   2042         if (value != 0 &&
   2043             (!LowRegisterFrom(locations->InAt(0)).IsLow() || !IsUint<8>(Low32Bits(value)))) {
   2044           return false;
   2045         }
   2046       // TODO(VIXL): The rest of the checks are there to keep the backend in sync with
   2047       // the previous one, but are not strictly necessary.
   2048       } else if (c == kCondLE || c == kCondGT) {
   2049         if (value < std::numeric_limits<int64_t>::max() &&
   2050             !assembler->ShifterOperandCanHold(SBC, High32Bits(value + 1), kCcSet)) {
   2051           return false;
   2052         }
   2053       } else if (!assembler->ShifterOperandCanHold(SBC, High32Bits(value), kCcSet)) {
   2054         return false;
   2055       }
   2056     }
   2057   }
   2058 
   2059   return true;
   2060 }
   2061 
   2062 static void GenerateConditionGeneric(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
   2063   DCHECK(CanGenerateTest(cond, codegen->GetAssembler()));
   2064 
   2065   const vixl32::Register out = OutputRegister(cond);
   2066   const auto condition = GenerateTest(cond, false, codegen);
   2067 
   2068   __ Mov(LeaveFlags, out, 0);
   2069 
   2070   if (out.IsLow()) {
   2071     // We use the scope because of the IT block that follows.
   2072     ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
   2073                              2 * vixl32::k16BitT32InstructionSizeInBytes,
   2074                              CodeBufferCheckScope::kExactSize);
   2075 
   2076     __ it(condition.first);
   2077     __ mov(condition.first, out, 1);
   2078   } else {
   2079     vixl32::Label done_label;
   2080     vixl32::Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
   2081 
   2082     __ B(condition.second, final_label, /* far_target */ false);
   2083     __ Mov(out, 1);
   2084 
   2085     if (done_label.IsReferenced()) {
   2086       __ Bind(&done_label);
   2087     }
   2088   }
   2089 }
   2090 
   2091 static void GenerateEqualLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
   2092   DCHECK_EQ(cond->GetLeft()->GetType(), Primitive::kPrimLong);
   2093 
   2094   const LocationSummary* const locations = cond->GetLocations();
   2095   IfCondition condition = cond->GetCondition();
   2096   const vixl32::Register out = OutputRegister(cond);
   2097   const Location left = locations->InAt(0);
   2098   const Location right = locations->InAt(1);
   2099   vixl32::Register left_high = HighRegisterFrom(left);
   2100   vixl32::Register left_low = LowRegisterFrom(left);
   2101   vixl32::Register temp;
   2102   UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
   2103 
   2104   if (right.IsConstant()) {
   2105     IfCondition opposite = cond->GetOppositeCondition();
   2106     const int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right),
   2107                                                      &condition,
   2108                                                      &opposite);
   2109     Operand right_high = High32Bits(value);
   2110     Operand right_low = Low32Bits(value);
   2111 
   2112     // The output uses Location::kNoOutputOverlap.
   2113     if (out.Is(left_high)) {
   2114       std::swap(left_low, left_high);
   2115       std::swap(right_low, right_high);
   2116     }
   2117 
   2118     __ Sub(out, left_low, right_low);
   2119     temp = temps.Acquire();
   2120     __ Sub(temp, left_high, right_high);
   2121   } else {
   2122     DCHECK(right.IsRegisterPair());
   2123     temp = temps.Acquire();
   2124     __ Sub(temp, left_high, HighRegisterFrom(right));
   2125     __ Sub(out, left_low, LowRegisterFrom(right));
   2126   }
   2127 
   2128   // Need to check after calling AdjustConstantForCondition().
   2129   DCHECK(condition == kCondEQ || condition == kCondNE) << condition;
   2130 
   2131   if (condition == kCondNE && out.IsLow()) {
   2132     __ Orrs(out, out, temp);
   2133 
   2134     // We use the scope because of the IT block that follows.
   2135     ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
   2136                              2 * vixl32::k16BitT32InstructionSizeInBytes,
   2137                              CodeBufferCheckScope::kExactSize);
   2138 
   2139     __ it(ne);
   2140     __ mov(ne, out, 1);
   2141   } else {
   2142     __ Orr(out, out, temp);
   2143     codegen->GenerateConditionWithZero(condition, out, out, temp);
   2144   }
   2145 }
   2146 
   2147 static void GenerateLongComparesAndJumps(HCondition* cond,
   2148                                          vixl32::Label* true_label,
   2149                                          vixl32::Label* false_label,
   2150                                          CodeGeneratorARMVIXL* codegen,
   2151                                          bool is_far_target = true) {
   2152   LocationSummary* locations = cond->GetLocations();
   2153   Location left = locations->InAt(0);
   2154   Location right = locations->InAt(1);
   2155   IfCondition if_cond = cond->GetCondition();
   2156 
   2157   vixl32::Register left_high = HighRegisterFrom(left);
   2158   vixl32::Register left_low = LowRegisterFrom(left);
   2159   IfCondition true_high_cond = if_cond;
   2160   IfCondition false_high_cond = cond->GetOppositeCondition();
   2161   vixl32::Condition final_condition = ARMUnsignedCondition(if_cond);  // unsigned on lower part
   2162 
   2163   // Set the conditions for the test, remembering that == needs to be
   2164   // decided using the low words.
   2165   switch (if_cond) {
   2166     case kCondEQ:
   2167     case kCondNE:
   2168       // Nothing to do.
   2169       break;
   2170     case kCondLT:
   2171       false_high_cond = kCondGT;
   2172       break;
   2173     case kCondLE:
   2174       true_high_cond = kCondLT;
   2175       break;
   2176     case kCondGT:
   2177       false_high_cond = kCondLT;
   2178       break;
   2179     case kCondGE:
   2180       true_high_cond = kCondGT;
   2181       break;
   2182     case kCondB:
   2183       false_high_cond = kCondA;
   2184       break;
   2185     case kCondBE:
   2186       true_high_cond = kCondB;
   2187       break;
   2188     case kCondA:
   2189       false_high_cond = kCondB;
   2190       break;
   2191     case kCondAE:
   2192       true_high_cond = kCondA;
   2193       break;
   2194   }
   2195   if (right.IsConstant()) {
   2196     int64_t value = Int64ConstantFrom(right);
   2197     int32_t val_low = Low32Bits(value);
   2198     int32_t val_high = High32Bits(value);
   2199 
   2200     __ Cmp(left_high, val_high);
   2201     if (if_cond == kCondNE) {
   2202       __ B(ARMCondition(true_high_cond), true_label, is_far_target);
   2203     } else if (if_cond == kCondEQ) {
   2204       __ B(ARMCondition(false_high_cond), false_label, is_far_target);
   2205     } else {
   2206       __ B(ARMCondition(true_high_cond), true_label, is_far_target);
   2207       __ B(ARMCondition(false_high_cond), false_label, is_far_target);
   2208     }
   2209     // Must be equal high, so compare the lows.
   2210     __ Cmp(left_low, val_low);
   2211   } else {
   2212     vixl32::Register right_high = HighRegisterFrom(right);
   2213     vixl32::Register right_low = LowRegisterFrom(right);
   2214 
   2215     __ Cmp(left_high, right_high);
   2216     if (if_cond == kCondNE) {
   2217       __ B(ARMCondition(true_high_cond), true_label, is_far_target);
   2218     } else if (if_cond == kCondEQ) {
   2219       __ B(ARMCondition(false_high_cond), false_label, is_far_target);
   2220     } else {
   2221       __ B(ARMCondition(true_high_cond), true_label, is_far_target);
   2222       __ B(ARMCondition(false_high_cond), false_label, is_far_target);
   2223     }
   2224     // Must be equal high, so compare the lows.
   2225     __ Cmp(left_low, right_low);
   2226   }
   2227   // The last comparison might be unsigned.
   2228   // TODO: optimize cases where this is always true/false
   2229   __ B(final_condition, true_label, is_far_target);
   2230 }
   2231 
   2232 static void GenerateConditionLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
   2233   DCHECK_EQ(cond->GetLeft()->GetType(), Primitive::kPrimLong);
   2234 
   2235   const LocationSummary* const locations = cond->GetLocations();
   2236   IfCondition condition = cond->GetCondition();
   2237   const vixl32::Register out = OutputRegister(cond);
   2238   const Location left = locations->InAt(0);
   2239   const Location right = locations->InAt(1);
   2240 
   2241   if (right.IsConstant()) {
   2242     IfCondition opposite = cond->GetOppositeCondition();
   2243 
   2244     // Comparisons against 0 are common enough to deserve special attention.
   2245     if (AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite) == 0) {
   2246       switch (condition) {
   2247         case kCondNE:
   2248         case kCondA:
   2249           if (out.IsLow()) {
   2250             // We only care if both input registers are 0 or not.
   2251             __ Orrs(out, LowRegisterFrom(left), HighRegisterFrom(left));
   2252 
   2253             // We use the scope because of the IT block that follows.
   2254             ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
   2255                                      2 * vixl32::k16BitT32InstructionSizeInBytes,
   2256                                      CodeBufferCheckScope::kExactSize);
   2257 
   2258             __ it(ne);
   2259             __ mov(ne, out, 1);
   2260             return;
   2261           }
   2262 
   2263           FALLTHROUGH_INTENDED;
   2264         case kCondEQ:
   2265         case kCondBE:
   2266           // We only care if both input registers are 0 or not.
   2267           __ Orr(out, LowRegisterFrom(left), HighRegisterFrom(left));
   2268           codegen->GenerateConditionWithZero(condition, out, out);
   2269           return;
   2270         case kCondLT:
   2271         case kCondGE:
   2272           // We only care about the sign bit.
   2273           FALLTHROUGH_INTENDED;
   2274         case kCondAE:
   2275         case kCondB:
   2276           codegen->GenerateConditionWithZero(condition, out, HighRegisterFrom(left));
   2277           return;
   2278         case kCondLE:
   2279         case kCondGT:
   2280         default:
   2281           break;
   2282       }
   2283     }
   2284   }
   2285 
   2286   if ((condition == kCondEQ || condition == kCondNE) &&
   2287       // If `out` is a low register, then the GenerateConditionGeneric()
   2288       // function generates a shorter code sequence that is still branchless.
   2289       (!out.IsLow() || !CanGenerateTest(cond, codegen->GetAssembler()))) {
   2290     GenerateEqualLong(cond, codegen);
   2291     return;
   2292   }
   2293 
   2294   if (CanGenerateTest(cond, codegen->GetAssembler())) {
   2295     GenerateConditionGeneric(cond, codegen);
   2296     return;
   2297   }
   2298 
   2299   // Convert the jumps into the result.
   2300   vixl32::Label done_label;
   2301   vixl32::Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
   2302   vixl32::Label true_label, false_label;
   2303 
   2304   GenerateLongComparesAndJumps(cond, &true_label, &false_label, codegen, /* is_far_target */ false);
   2305 
   2306   // False case: result = 0.
   2307   __ Bind(&false_label);
   2308   __ Mov(out, 0);
   2309   __ B(final_label);
   2310 
   2311   // True case: result = 1.
   2312   __ Bind(&true_label);
   2313   __ Mov(out, 1);
   2314 
   2315   if (done_label.IsReferenced()) {
   2316     __ Bind(&done_label);
   2317   }
   2318 }
   2319 
   2320 static void GenerateConditionIntegralOrNonPrimitive(HCondition* cond,
   2321                                                     CodeGeneratorARMVIXL* codegen) {
   2322   const Primitive::Type type = cond->GetLeft()->GetType();
   2323 
   2324   DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
   2325 
   2326   if (type == Primitive::kPrimLong) {
   2327     GenerateConditionLong(cond, codegen);
   2328     return;
   2329   }
   2330 
   2331   IfCondition condition = cond->GetCondition();
   2332   vixl32::Register in = InputRegisterAt(cond, 0);
   2333   const vixl32::Register out = OutputRegister(cond);
   2334   const Location right = cond->GetLocations()->InAt(1);
   2335   int64_t value;
   2336 
   2337   if (right.IsConstant()) {
   2338     IfCondition opposite = cond->GetOppositeCondition();
   2339 
   2340     value = AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite);
   2341 
   2342     // Comparisons against 0 are common enough to deserve special attention.
   2343     if (value == 0) {
   2344       switch (condition) {
   2345         case kCondNE:
   2346         case kCondA:
   2347           if (out.IsLow() && out.Is(in)) {
   2348             __ Cmp(out, 0);
   2349 
   2350             // We use the scope because of the IT block that follows.
   2351             ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
   2352                                      2 * vixl32::k16BitT32InstructionSizeInBytes,
   2353                                      CodeBufferCheckScope::kExactSize);
   2354 
   2355             __ it(ne);
   2356             __ mov(ne, out, 1);
   2357             return;
   2358           }
   2359 
   2360           FALLTHROUGH_INTENDED;
   2361         case kCondEQ:
   2362         case kCondBE:
   2363         case kCondLT:
   2364         case kCondGE:
   2365         case kCondAE:
   2366         case kCondB:
   2367           codegen->GenerateConditionWithZero(condition, out, in);
   2368           return;
   2369         case kCondLE:
   2370         case kCondGT:
   2371         default:
   2372           break;
   2373       }
   2374     }
   2375   }
   2376 
   2377   if (condition == kCondEQ || condition == kCondNE) {
   2378     Operand operand(0);
   2379 
   2380     if (right.IsConstant()) {
   2381       operand = Operand::From(value);
   2382     } else if (out.Is(RegisterFrom(right))) {
   2383       // Avoid 32-bit instructions if possible.
   2384       operand = InputOperandAt(cond, 0);
   2385       in = RegisterFrom(right);
   2386     } else {
   2387       operand = InputOperandAt(cond, 1);
   2388     }
   2389 
   2390     if (condition == kCondNE && out.IsLow()) {
   2391       __ Subs(out, in, operand);
   2392 
   2393       // We use the scope because of the IT block that follows.
   2394       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
   2395                                2 * vixl32::k16BitT32InstructionSizeInBytes,
   2396                                CodeBufferCheckScope::kExactSize);
   2397 
   2398       __ it(ne);
   2399       __ mov(ne, out, 1);
   2400     } else {
   2401       __ Sub(out, in, operand);
   2402       codegen->GenerateConditionWithZero(condition, out, out);
   2403     }
   2404 
   2405     return;
   2406   }
   2407 
   2408   GenerateConditionGeneric(cond, codegen);
   2409 }
   2410 
   2411 static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) {
   2412   const Primitive::Type type = constant->GetType();
   2413   bool ret = false;
   2414 
   2415   DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
   2416 
   2417   if (type == Primitive::kPrimLong) {
   2418     const uint64_t value = Uint64ConstantFrom(constant);
   2419 
   2420     ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value));
   2421   } else {
   2422     ret = IsUint<8>(Int32ConstantFrom(constant));
   2423   }
   2424 
   2425   return ret;
   2426 }
   2427 
   2428 static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) {
   2429   DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
   2430 
   2431   if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) {
   2432     return Location::ConstantLocation(constant->AsConstant());
   2433   }
   2434 
   2435   return Location::RequiresRegister();
   2436 }
   2437 
   2438 static bool CanGenerateConditionalMove(const Location& out, const Location& src) {
   2439   // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
   2440   // we check that we are not dealing with floating-point output (there is no
   2441   // 16-bit VMOV encoding).
   2442   if (!out.IsRegister() && !out.IsRegisterPair()) {
   2443     return false;
   2444   }
   2445 
   2446   // For constants, we also check that the output is in one or two low registers,
   2447   // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit
   2448   // MOV encoding can be used.
   2449   if (src.IsConstant()) {
   2450     if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) {
   2451       return false;
   2452     }
   2453 
   2454     if (out.IsRegister()) {
   2455       if (!RegisterFrom(out).IsLow()) {
   2456         return false;
   2457       }
   2458     } else {
   2459       DCHECK(out.IsRegisterPair());
   2460 
   2461       if (!HighRegisterFrom(out).IsLow()) {
   2462         return false;
   2463       }
   2464     }
   2465   }
   2466 
   2467   return true;
   2468 }
   2469 
   2470 #undef __
   2471 
   2472 vixl32::Label* CodeGeneratorARMVIXL::GetFinalLabel(HInstruction* instruction,
   2473                                                    vixl32::Label* final_label) {
   2474   DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck());
   2475   DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall());
   2476 
   2477   const HBasicBlock* const block = instruction->GetBlock();
   2478   const HLoopInformation* const info = block->GetLoopInformation();
   2479   HInstruction* const next = instruction->GetNext();
   2480 
   2481   // Avoid a branch to a branch.
   2482   if (next->IsGoto() && (info == nullptr ||
   2483                          !info->IsBackEdge(*block) ||
   2484                          !info->HasSuspendCheck())) {
   2485     final_label = GetLabelOf(next->AsGoto()->GetSuccessor());
   2486   }
   2487 
   2488   return final_label;
   2489 }
   2490 
   2491 CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph,
   2492                                            const ArmInstructionSetFeatures& isa_features,
   2493                                            const CompilerOptions& compiler_options,
   2494                                            OptimizingCompilerStats* stats)
   2495     : CodeGenerator(graph,
   2496                     kNumberOfCoreRegisters,
   2497                     kNumberOfSRegisters,
   2498                     kNumberOfRegisterPairs,
   2499                     kCoreCalleeSaves.GetList(),
   2500                     ComputeSRegisterListMask(kFpuCalleeSaves),
   2501                     compiler_options,
   2502                     stats),
   2503       block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2504       jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2505       location_builder_(graph, this),
   2506       instruction_visitor_(graph, this),
   2507       move_resolver_(graph->GetArena(), this),
   2508       assembler_(graph->GetArena()),
   2509       isa_features_(isa_features),
   2510       uint32_literals_(std::less<uint32_t>(),
   2511                        graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2512       pc_relative_method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2513       method_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2514       pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2515       type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2516       pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2517       baker_read_barrier_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2518       jit_string_patches_(StringReferenceValueComparator(),
   2519                           graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   2520       jit_class_patches_(TypeReferenceValueComparator(),
   2521                          graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
   2522   // Always save the LR register to mimic Quick.
   2523   AddAllocatedRegister(Location::RegisterLocation(LR));
   2524   // Give D30 and D31 as scratch register to VIXL. The register allocator only works on
   2525   // S0-S31, which alias to D0-D15.
   2526   GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d31);
   2527   GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d30);
   2528 }
   2529 
   2530 void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) {
   2531   uint32_t num_entries = switch_instr_->GetNumEntries();
   2532   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
   2533 
   2534   // We are about to use the assembler to place literals directly. Make sure we have enough
   2535   // underlying code buffer and we have generated a jump table of the right size, using
   2536   // codegen->GetVIXLAssembler()->GetBuffer().Align();
   2537   ExactAssemblyScope aas(codegen->GetVIXLAssembler(),
   2538                          num_entries * sizeof(int32_t),
   2539                          CodeBufferCheckScope::kMaximumSize);
   2540   // TODO(VIXL): Check that using lower case bind is fine here.
   2541   codegen->GetVIXLAssembler()->bind(&table_start_);
   2542   for (uint32_t i = 0; i < num_entries; i++) {
   2543     codegen->GetVIXLAssembler()->place(bb_addresses_[i].get());
   2544   }
   2545 }
   2546 
   2547 void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) {
   2548   uint32_t num_entries = switch_instr_->GetNumEntries();
   2549   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
   2550 
   2551   const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
   2552   for (uint32_t i = 0; i < num_entries; i++) {
   2553     vixl32::Label* target_label = codegen->GetLabelOf(successors[i]);
   2554     DCHECK(target_label->IsBound());
   2555     int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
   2556     // When doing BX to address we need to have lower bit set to 1 in T32.
   2557     if (codegen->GetVIXLAssembler()->IsUsingT32()) {
   2558       jump_offset++;
   2559     }
   2560     DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
   2561     DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
   2562 
   2563     bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer());
   2564   }
   2565 }
   2566 
   2567 void CodeGeneratorARMVIXL::FixJumpTables() {
   2568   for (auto&& jump_table : jump_tables_) {
   2569     jump_table->FixTable(this);
   2570   }
   2571 }
   2572 
   2573 #define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()->  // NOLINT
   2574 
   2575 void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) {
   2576   FixJumpTables();
   2577   GetAssembler()->FinalizeCode();
   2578   CodeGenerator::Finalize(allocator);
   2579 }
   2580 
   2581 void CodeGeneratorARMVIXL::SetupBlockedRegisters() const {
   2582   // Stack register, LR and PC are always reserved.
   2583   blocked_core_registers_[SP] = true;
   2584   blocked_core_registers_[LR] = true;
   2585   blocked_core_registers_[PC] = true;
   2586 
   2587   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   2588     // Reserve marking register.
   2589     blocked_core_registers_[MR] = true;
   2590   }
   2591 
   2592   // Reserve thread register.
   2593   blocked_core_registers_[TR] = true;
   2594 
   2595   // Reserve temp register.
   2596   blocked_core_registers_[IP] = true;
   2597 
   2598   if (GetGraph()->IsDebuggable()) {
   2599     // Stubs do not save callee-save floating point registers. If the graph
   2600     // is debuggable, we need to deal with these registers differently. For
   2601     // now, just block them.
   2602     for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode();
   2603          i <= kFpuCalleeSaves.GetLastSRegister().GetCode();
   2604          ++i) {
   2605       blocked_fpu_registers_[i] = true;
   2606     }
   2607   }
   2608 }
   2609 
   2610 InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph,
   2611                                                                  CodeGeneratorARMVIXL* codegen)
   2612       : InstructionCodeGenerator(graph, codegen),
   2613         assembler_(codegen->GetAssembler()),
   2614         codegen_(codegen) {}
   2615 
   2616 void CodeGeneratorARMVIXL::ComputeSpillMask() {
   2617   core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
   2618   DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
   2619   // There is no easy instruction to restore just the PC on thumb2. We spill and
   2620   // restore another arbitrary register.
   2621   core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister.GetCode());
   2622   fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
   2623   // We use vpush and vpop for saving and restoring floating point registers, which take
   2624   // a SRegister and the number of registers to save/restore after that SRegister. We
   2625   // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
   2626   // but in the range.
   2627   if (fpu_spill_mask_ != 0) {
   2628     uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
   2629     uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
   2630     for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
   2631       fpu_spill_mask_ |= (1 << i);
   2632     }
   2633   }
   2634 }
   2635 
   2636 void CodeGeneratorARMVIXL::GenerateFrameEntry() {
   2637   bool skip_overflow_check =
   2638       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
   2639   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
   2640   __ Bind(&frame_entry_label_);
   2641 
   2642   if (HasEmptyFrame()) {
   2643     return;
   2644   }
   2645 
   2646   if (!skip_overflow_check) {
   2647     UseScratchRegisterScope temps(GetVIXLAssembler());
   2648     vixl32::Register temp = temps.Acquire();
   2649     __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(kArm)));
   2650     // The load must immediately precede RecordPcInfo.
   2651     ExactAssemblyScope aas(GetVIXLAssembler(),
   2652                            vixl32::kMaxInstructionSizeInBytes,
   2653                            CodeBufferCheckScope::kMaximumSize);
   2654     __ ldr(temp, MemOperand(temp));
   2655     RecordPcInfo(nullptr, 0);
   2656   }
   2657 
   2658   __ Push(RegisterList(core_spill_mask_));
   2659   GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
   2660   GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
   2661                                          0,
   2662                                          core_spill_mask_,
   2663                                          kArmWordSize);
   2664   if (fpu_spill_mask_ != 0) {
   2665     uint32_t first = LeastSignificantBit(fpu_spill_mask_);
   2666 
   2667     // Check that list is contiguous.
   2668     DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
   2669 
   2670     __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
   2671     GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
   2672     GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0), 0, fpu_spill_mask_, kArmWordSize);
   2673   }
   2674 
   2675   int adjust = GetFrameSize() - FrameEntrySpillSize();
   2676   __ Sub(sp, sp, adjust);
   2677   GetAssembler()->cfi().AdjustCFAOffset(adjust);
   2678 
   2679   // Save the current method if we need it. Note that we do not
   2680   // do this in HCurrentMethod, as the instruction might have been removed
   2681   // in the SSA graph.
   2682   if (RequiresCurrentMethod()) {
   2683     GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
   2684   }
   2685 
   2686   if (GetGraph()->HasShouldDeoptimizeFlag()) {
   2687     UseScratchRegisterScope temps(GetVIXLAssembler());
   2688     vixl32::Register temp = temps.Acquire();
   2689     // Initialize should_deoptimize flag to 0.
   2690     __ Mov(temp, 0);
   2691     GetAssembler()->StoreToOffset(kStoreWord, temp, sp, GetStackOffsetOfShouldDeoptimizeFlag());
   2692   }
   2693 }
   2694 
   2695 void CodeGeneratorARMVIXL::GenerateFrameExit() {
   2696   if (HasEmptyFrame()) {
   2697     __ Bx(lr);
   2698     return;
   2699   }
   2700   GetAssembler()->cfi().RememberState();
   2701   int adjust = GetFrameSize() - FrameEntrySpillSize();
   2702   __ Add(sp, sp, adjust);
   2703   GetAssembler()->cfi().AdjustCFAOffset(-adjust);
   2704   if (fpu_spill_mask_ != 0) {
   2705     uint32_t first = LeastSignificantBit(fpu_spill_mask_);
   2706 
   2707     // Check that list is contiguous.
   2708     DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
   2709 
   2710     __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
   2711     GetAssembler()->cfi().AdjustCFAOffset(
   2712         -static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_));
   2713     GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_);
   2714   }
   2715   // Pop LR into PC to return.
   2716   DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U);
   2717   uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode;
   2718   __ Pop(RegisterList(pop_mask));
   2719   GetAssembler()->cfi().RestoreState();
   2720   GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
   2721 }
   2722 
   2723 void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) {
   2724   __ Bind(GetLabelOf(block));
   2725 }
   2726 
   2727 Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(Primitive::Type type) {
   2728   switch (type) {
   2729     case Primitive::kPrimBoolean:
   2730     case Primitive::kPrimByte:
   2731     case Primitive::kPrimChar:
   2732     case Primitive::kPrimShort:
   2733     case Primitive::kPrimInt:
   2734     case Primitive::kPrimNot: {
   2735       uint32_t index = gp_index_++;
   2736       uint32_t stack_index = stack_index_++;
   2737       if (index < calling_convention.GetNumberOfRegisters()) {
   2738         return LocationFrom(calling_convention.GetRegisterAt(index));
   2739       } else {
   2740         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
   2741       }
   2742     }
   2743 
   2744     case Primitive::kPrimLong: {
   2745       uint32_t index = gp_index_;
   2746       uint32_t stack_index = stack_index_;
   2747       gp_index_ += 2;
   2748       stack_index_ += 2;
   2749       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
   2750         if (calling_convention.GetRegisterAt(index).Is(r1)) {
   2751           // Skip R1, and use R2_R3 instead.
   2752           gp_index_++;
   2753           index++;
   2754         }
   2755       }
   2756       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
   2757         DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1,
   2758                   calling_convention.GetRegisterAt(index + 1).GetCode());
   2759 
   2760         return LocationFrom(calling_convention.GetRegisterAt(index),
   2761                             calling_convention.GetRegisterAt(index + 1));
   2762       } else {
   2763         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
   2764       }
   2765     }
   2766 
   2767     case Primitive::kPrimFloat: {
   2768       uint32_t stack_index = stack_index_++;
   2769       if (float_index_ % 2 == 0) {
   2770         float_index_ = std::max(double_index_, float_index_);
   2771       }
   2772       if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
   2773         return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
   2774       } else {
   2775         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
   2776       }
   2777     }
   2778 
   2779     case Primitive::kPrimDouble: {
   2780       double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
   2781       uint32_t stack_index = stack_index_;
   2782       stack_index_ += 2;
   2783       if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
   2784         uint32_t index = double_index_;
   2785         double_index_ += 2;
   2786         Location result = LocationFrom(
   2787           calling_convention.GetFpuRegisterAt(index),
   2788           calling_convention.GetFpuRegisterAt(index + 1));
   2789         DCHECK(ExpectedPairLayout(result));
   2790         return result;
   2791       } else {
   2792         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
   2793       }
   2794     }
   2795 
   2796     case Primitive::kPrimVoid:
   2797       LOG(FATAL) << "Unexpected parameter type " << type;
   2798       break;
   2799   }
   2800   return Location::NoLocation();
   2801 }
   2802 
   2803 Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(Primitive::Type type) const {
   2804   switch (type) {
   2805     case Primitive::kPrimBoolean:
   2806     case Primitive::kPrimByte:
   2807     case Primitive::kPrimChar:
   2808     case Primitive::kPrimShort:
   2809     case Primitive::kPrimInt:
   2810     case Primitive::kPrimNot: {
   2811       return LocationFrom(r0);
   2812     }
   2813 
   2814     case Primitive::kPrimFloat: {
   2815       return LocationFrom(s0);
   2816     }
   2817 
   2818     case Primitive::kPrimLong: {
   2819       return LocationFrom(r0, r1);
   2820     }
   2821 
   2822     case Primitive::kPrimDouble: {
   2823       return LocationFrom(s0, s1);
   2824     }
   2825 
   2826     case Primitive::kPrimVoid:
   2827       return Location::NoLocation();
   2828   }
   2829 
   2830   UNREACHABLE();
   2831 }
   2832 
   2833 Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const {
   2834   return LocationFrom(kMethodRegister);
   2835 }
   2836 
   2837 void CodeGeneratorARMVIXL::Move32(Location destination, Location source) {
   2838   if (source.Equals(destination)) {
   2839     return;
   2840   }
   2841   if (destination.IsRegister()) {
   2842     if (source.IsRegister()) {
   2843       __ Mov(RegisterFrom(destination), RegisterFrom(source));
   2844     } else if (source.IsFpuRegister()) {
   2845       __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
   2846     } else {
   2847       GetAssembler()->LoadFromOffset(kLoadWord,
   2848                                      RegisterFrom(destination),
   2849                                      sp,
   2850                                      source.GetStackIndex());
   2851     }
   2852   } else if (destination.IsFpuRegister()) {
   2853     if (source.IsRegister()) {
   2854       __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
   2855     } else if (source.IsFpuRegister()) {
   2856       __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
   2857     } else {
   2858       GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
   2859     }
   2860   } else {
   2861     DCHECK(destination.IsStackSlot()) << destination;
   2862     if (source.IsRegister()) {
   2863       GetAssembler()->StoreToOffset(kStoreWord,
   2864                                     RegisterFrom(source),
   2865                                     sp,
   2866                                     destination.GetStackIndex());
   2867     } else if (source.IsFpuRegister()) {
   2868       GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
   2869     } else {
   2870       DCHECK(source.IsStackSlot()) << source;
   2871       UseScratchRegisterScope temps(GetVIXLAssembler());
   2872       vixl32::Register temp = temps.Acquire();
   2873       GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
   2874       GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
   2875     }
   2876   }
   2877 }
   2878 
   2879 void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) {
   2880   DCHECK(location.IsRegister());
   2881   __ Mov(RegisterFrom(location), value);
   2882 }
   2883 
   2884 void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
   2885   // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in
   2886   // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend.
   2887   HParallelMove move(GetGraph()->GetArena());
   2888   move.AddMove(src, dst, dst_type, nullptr);
   2889   GetMoveResolver()->EmitNativeCode(&move);
   2890 }
   2891 
   2892 void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) {
   2893   if (location.IsRegister()) {
   2894     locations->AddTemp(location);
   2895   } else if (location.IsRegisterPair()) {
   2896     locations->AddTemp(LocationFrom(LowRegisterFrom(location)));
   2897     locations->AddTemp(LocationFrom(HighRegisterFrom(location)));
   2898   } else {
   2899     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
   2900   }
   2901 }
   2902 
   2903 void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint,
   2904                                          HInstruction* instruction,
   2905                                          uint32_t dex_pc,
   2906                                          SlowPathCode* slow_path) {
   2907   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
   2908   __ Ldr(lr, MemOperand(tr, GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value()));
   2909   // Ensure the pc position is recorded immediately after the `blx` instruction.
   2910   // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
   2911   ExactAssemblyScope aas(GetVIXLAssembler(),
   2912                          vixl32::k16BitT32InstructionSizeInBytes,
   2913                          CodeBufferCheckScope::kExactSize);
   2914   __ blx(lr);
   2915   if (EntrypointRequiresStackMap(entrypoint)) {
   2916     RecordPcInfo(instruction, dex_pc, slow_path);
   2917   }
   2918 }
   2919 
   2920 void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
   2921                                                                HInstruction* instruction,
   2922                                                                SlowPathCode* slow_path) {
   2923   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
   2924   __ Ldr(lr, MemOperand(tr, entry_point_offset));
   2925   __ Blx(lr);
   2926 }
   2927 
   2928 void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) {
   2929   DCHECK(!successor->IsExitBlock());
   2930   HBasicBlock* block = got->GetBlock();
   2931   HInstruction* previous = got->GetPrevious();
   2932   HLoopInformation* info = block->GetLoopInformation();
   2933 
   2934   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
   2935     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
   2936     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
   2937     return;
   2938   }
   2939   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
   2940     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
   2941   }
   2942   if (!codegen_->GoesToNextBlock(block, successor)) {
   2943     __ B(codegen_->GetLabelOf(successor));
   2944   }
   2945 }
   2946 
   2947 void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) {
   2948   got->SetLocations(nullptr);
   2949 }
   2950 
   2951 void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) {
   2952   HandleGoto(got, got->GetSuccessor());
   2953 }
   2954 
   2955 void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
   2956   try_boundary->SetLocations(nullptr);
   2957 }
   2958 
   2959 void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
   2960   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
   2961   if (!successor->IsExitBlock()) {
   2962     HandleGoto(try_boundary, successor);
   2963   }
   2964 }
   2965 
   2966 void LocationsBuilderARMVIXL::VisitExit(HExit* exit) {
   2967   exit->SetLocations(nullptr);
   2968 }
   2969 
   2970 void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
   2971 }
   2972 
   2973 void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition,
   2974                                                                    vixl32::Label* true_target_in,
   2975                                                                    vixl32::Label* false_target_in,
   2976                                                                    bool is_far_target) {
   2977   if (CanGenerateTest(condition, codegen_->GetAssembler())) {
   2978     vixl32::Label* non_fallthrough_target;
   2979     bool invert;
   2980     bool emit_both_branches;
   2981 
   2982     if (true_target_in == nullptr) {
   2983       // The true target is fallthrough.
   2984       DCHECK(false_target_in != nullptr);
   2985       non_fallthrough_target = false_target_in;
   2986       invert = true;
   2987       emit_both_branches = false;
   2988     } else {
   2989       non_fallthrough_target = true_target_in;
   2990       invert = false;
   2991       // Either the false target is fallthrough, or there is no fallthrough
   2992       // and both branches must be emitted.
   2993       emit_both_branches = (false_target_in != nullptr);
   2994     }
   2995 
   2996     const auto cond = GenerateTest(condition, invert, codegen_);
   2997 
   2998     __ B(cond.first, non_fallthrough_target, is_far_target);
   2999 
   3000     if (emit_both_branches) {
   3001       // No target falls through, we need to branch.
   3002       __ B(false_target_in);
   3003     }
   3004 
   3005     return;
   3006   }
   3007 
   3008   // Generated branching requires both targets to be explicit. If either of the
   3009   // targets is nullptr (fallthrough) use and bind `fallthrough` instead.
   3010   vixl32::Label fallthrough;
   3011   vixl32::Label* true_target = (true_target_in == nullptr) ? &fallthrough : true_target_in;
   3012   vixl32::Label* false_target = (false_target_in == nullptr) ? &fallthrough : false_target_in;
   3013 
   3014   DCHECK_EQ(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
   3015   GenerateLongComparesAndJumps(condition, true_target, false_target, codegen_, is_far_target);
   3016 
   3017   if (false_target != &fallthrough) {
   3018     __ B(false_target);
   3019   }
   3020 
   3021   if (fallthrough.IsReferenced()) {
   3022     __ Bind(&fallthrough);
   3023   }
   3024 }
   3025 
   3026 void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction,
   3027                                                             size_t condition_input_index,
   3028                                                             vixl32::Label* true_target,
   3029                                                             vixl32::Label* false_target,
   3030                                                             bool far_target) {
   3031   HInstruction* cond = instruction->InputAt(condition_input_index);
   3032 
   3033   if (true_target == nullptr && false_target == nullptr) {
   3034     // Nothing to do. The code always falls through.
   3035     return;
   3036   } else if (cond->IsIntConstant()) {
   3037     // Constant condition, statically compared against "true" (integer value 1).
   3038     if (cond->AsIntConstant()->IsTrue()) {
   3039       if (true_target != nullptr) {
   3040         __ B(true_target);
   3041       }
   3042     } else {
   3043       DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond);
   3044       if (false_target != nullptr) {
   3045         __ B(false_target);
   3046       }
   3047     }
   3048     return;
   3049   }
   3050 
   3051   // The following code generates these patterns:
   3052   //  (1) true_target == nullptr && false_target != nullptr
   3053   //        - opposite condition true => branch to false_target
   3054   //  (2) true_target != nullptr && false_target == nullptr
   3055   //        - condition true => branch to true_target
   3056   //  (3) true_target != nullptr && false_target != nullptr
   3057   //        - condition true => branch to true_target
   3058   //        - branch to false_target
   3059   if (IsBooleanValueOrMaterializedCondition(cond)) {
   3060     // Condition has been materialized, compare the output to 0.
   3061     if (kIsDebugBuild) {
   3062       Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
   3063       DCHECK(cond_val.IsRegister());
   3064     }
   3065     if (true_target == nullptr) {
   3066       __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index),
   3067                                 false_target,
   3068                                 far_target);
   3069     } else {
   3070       __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index),
   3071                                    true_target,
   3072                                    far_target);
   3073     }
   3074   } else {
   3075     // Condition has not been materialized. Use its inputs as the comparison and
   3076     // its condition as the branch condition.
   3077     HCondition* condition = cond->AsCondition();
   3078 
   3079     // If this is a long or FP comparison that has been folded into
   3080     // the HCondition, generate the comparison directly.
   3081     Primitive::Type type = condition->InputAt(0)->GetType();
   3082     if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
   3083       GenerateCompareTestAndBranch(condition, true_target, false_target, far_target);
   3084       return;
   3085     }
   3086 
   3087     vixl32::Label* non_fallthrough_target;
   3088     vixl32::Condition arm_cond = vixl32::Condition::None();
   3089     const vixl32::Register left = InputRegisterAt(cond, 0);
   3090     const Operand right = InputOperandAt(cond, 1);
   3091 
   3092     if (true_target == nullptr) {
   3093       arm_cond = ARMCondition(condition->GetOppositeCondition());
   3094       non_fallthrough_target = false_target;
   3095     } else {
   3096       arm_cond = ARMCondition(condition->GetCondition());
   3097       non_fallthrough_target = true_target;
   3098     }
   3099 
   3100     if (right.IsImmediate() && right.GetImmediate() == 0 && (arm_cond.Is(ne) || arm_cond.Is(eq))) {
   3101       if (arm_cond.Is(eq)) {
   3102         __ CompareAndBranchIfZero(left, non_fallthrough_target, far_target);
   3103       } else {
   3104         DCHECK(arm_cond.Is(ne));
   3105         __ CompareAndBranchIfNonZero(left, non_fallthrough_target, far_target);
   3106       }
   3107     } else {
   3108       __ Cmp(left, right);
   3109       __ B(arm_cond, non_fallthrough_target, far_target);
   3110     }
   3111   }
   3112 
   3113   // If neither branch falls through (case 3), the conditional branch to `true_target`
   3114   // was already emitted (case 2) and we need to emit a jump to `false_target`.
   3115   if (true_target != nullptr && false_target != nullptr) {
   3116     __ B(false_target);
   3117   }
   3118 }
   3119 
   3120 void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) {
   3121   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
   3122   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
   3123     locations->SetInAt(0, Location::RequiresRegister());
   3124   }
   3125 }
   3126 
   3127 void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) {
   3128   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
   3129   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
   3130   vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
   3131       nullptr : codegen_->GetLabelOf(true_successor);
   3132   vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
   3133       nullptr : codegen_->GetLabelOf(false_successor);
   3134   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
   3135 }
   3136 
   3137 void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
   3138   LocationSummary* locations = new (GetGraph()->GetArena())
   3139       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
   3140   InvokeRuntimeCallingConventionARMVIXL calling_convention;
   3141   RegisterSet caller_saves = RegisterSet::Empty();
   3142   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
   3143   locations->SetCustomSlowPathCallerSaves(caller_saves);
   3144   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
   3145     locations->SetInAt(0, Location::RequiresRegister());
   3146   }
   3147 }
   3148 
   3149 void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
   3150   SlowPathCodeARMVIXL* slow_path =
   3151       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARMVIXL>(deoptimize);
   3152   GenerateTestAndBranch(deoptimize,
   3153                         /* condition_input_index */ 0,
   3154                         slow_path->GetEntryLabel(),
   3155                         /* false_target */ nullptr);
   3156 }
   3157 
   3158 void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
   3159   LocationSummary* locations = new (GetGraph()->GetArena())
   3160       LocationSummary(flag, LocationSummary::kNoCall);
   3161   locations->SetOut(Location::RequiresRegister());
   3162 }
   3163 
   3164 void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
   3165   GetAssembler()->LoadFromOffset(kLoadWord,
   3166                                  OutputRegister(flag),
   3167                                  sp,
   3168                                  codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
   3169 }
   3170 
   3171 void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) {
   3172   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
   3173   const bool is_floating_point = Primitive::IsFloatingPointType(select->GetType());
   3174 
   3175   if (is_floating_point) {
   3176     locations->SetInAt(0, Location::RequiresFpuRegister());
   3177     locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue()));
   3178   } else {
   3179     locations->SetInAt(0, Location::RequiresRegister());
   3180     locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue()));
   3181   }
   3182 
   3183   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
   3184     locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition()));
   3185     // The code generator handles overlap with the values, but not with the condition.
   3186     locations->SetOut(Location::SameAsFirstInput());
   3187   } else if (is_floating_point) {
   3188     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   3189   } else {
   3190     if (!locations->InAt(1).IsConstant()) {
   3191       locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue()));
   3192     }
   3193 
   3194     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3195   }
   3196 }
   3197 
   3198 void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) {
   3199   HInstruction* const condition = select->GetCondition();
   3200   const LocationSummary* const locations = select->GetLocations();
   3201   const Primitive::Type type = select->GetType();
   3202   const Location first = locations->InAt(0);
   3203   const Location out = locations->Out();
   3204   const Location second = locations->InAt(1);
   3205   Location src;
   3206 
   3207   if (condition->IsIntConstant()) {
   3208     if (condition->AsIntConstant()->IsFalse()) {
   3209       src = first;
   3210     } else {
   3211       src = second;
   3212     }
   3213 
   3214     codegen_->MoveLocation(out, src, type);
   3215     return;
   3216   }
   3217 
   3218   if (!Primitive::IsFloatingPointType(type) &&
   3219       (IsBooleanValueOrMaterializedCondition(condition) ||
   3220        CanGenerateTest(condition->AsCondition(), codegen_->GetAssembler()))) {
   3221     bool invert = false;
   3222 
   3223     if (out.Equals(second)) {
   3224       src = first;
   3225       invert = true;
   3226     } else if (out.Equals(first)) {
   3227       src = second;
   3228     } else if (second.IsConstant()) {
   3229       DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant()));
   3230       src = second;
   3231     } else if (first.IsConstant()) {
   3232       DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant()));
   3233       src = first;
   3234       invert = true;
   3235     } else {
   3236       src = second;
   3237     }
   3238 
   3239     if (CanGenerateConditionalMove(out, src)) {
   3240       if (!out.Equals(first) && !out.Equals(second)) {
   3241         codegen_->MoveLocation(out, src.Equals(first) ? second : first, type);
   3242       }
   3243 
   3244       std::pair<vixl32::Condition, vixl32::Condition> cond(eq, ne);
   3245 
   3246       if (IsBooleanValueOrMaterializedCondition(condition)) {
   3247         __ Cmp(InputRegisterAt(select, 2), 0);
   3248         cond = invert ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
   3249       } else {
   3250         cond = GenerateTest(condition->AsCondition(), invert, codegen_);
   3251       }
   3252 
   3253       const size_t instr_count = out.IsRegisterPair() ? 4 : 2;
   3254       // We use the scope because of the IT block that follows.
   3255       ExactAssemblyScope guard(GetVIXLAssembler(),
   3256                                instr_count * vixl32::k16BitT32InstructionSizeInBytes,
   3257                                CodeBufferCheckScope::kExactSize);
   3258 
   3259       if (out.IsRegister()) {
   3260         __ it(cond.first);
   3261         __ mov(cond.first, RegisterFrom(out), OperandFrom(src, type));
   3262       } else {
   3263         DCHECK(out.IsRegisterPair());
   3264 
   3265         Operand operand_high(0);
   3266         Operand operand_low(0);
   3267 
   3268         if (src.IsConstant()) {
   3269           const int64_t value = Int64ConstantFrom(src);
   3270 
   3271           operand_high = High32Bits(value);
   3272           operand_low = Low32Bits(value);
   3273         } else {
   3274           DCHECK(src.IsRegisterPair());
   3275           operand_high = HighRegisterFrom(src);
   3276           operand_low = LowRegisterFrom(src);
   3277         }
   3278 
   3279         __ it(cond.first);
   3280         __ mov(cond.first, LowRegisterFrom(out), operand_low);
   3281         __ it(cond.first);
   3282         __ mov(cond.first, HighRegisterFrom(out), operand_high);
   3283       }
   3284 
   3285       return;
   3286     }
   3287   }
   3288 
   3289   vixl32::Label* false_target = nullptr;
   3290   vixl32::Label* true_target = nullptr;
   3291   vixl32::Label select_end;
   3292   vixl32::Label* const target = codegen_->GetFinalLabel(select, &select_end);
   3293 
   3294   if (out.Equals(second)) {
   3295     true_target = target;
   3296     src = first;
   3297   } else {
   3298     false_target = target;
   3299     src = second;
   3300 
   3301     if (!out.Equals(first)) {
   3302       codegen_->MoveLocation(out, first, type);
   3303     }
   3304   }
   3305 
   3306   GenerateTestAndBranch(select, 2, true_target, false_target, /* far_target */ false);
   3307   codegen_->MoveLocation(out, src, type);
   3308 
   3309   if (select_end.IsReferenced()) {
   3310     __ Bind(&select_end);
   3311   }
   3312 }
   3313 
   3314 void LocationsBuilderARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo* info) {
   3315   new (GetGraph()->GetArena()) LocationSummary(info);
   3316 }
   3317 
   3318 void InstructionCodeGeneratorARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo*) {
   3319   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
   3320 }
   3321 
   3322 void CodeGeneratorARMVIXL::GenerateNop() {
   3323   __ Nop();
   3324 }
   3325 
   3326 // `temp` is an extra temporary register that is used for some conditions;
   3327 // callers may not specify it, in which case the method will use a scratch
   3328 // register instead.
   3329 void CodeGeneratorARMVIXL::GenerateConditionWithZero(IfCondition condition,
   3330                                                      vixl32::Register out,
   3331                                                      vixl32::Register in,
   3332                                                      vixl32::Register temp) {
   3333   switch (condition) {
   3334     case kCondEQ:
   3335     // x <= 0 iff x == 0 when the comparison is unsigned.
   3336     case kCondBE:
   3337       if (!temp.IsValid() || (out.IsLow() && !out.Is(in))) {
   3338         temp = out;
   3339       }
   3340 
   3341       // Avoid 32-bit instructions if possible; note that `in` and `temp` must be
   3342       // different as well.
   3343       if (in.IsLow() && temp.IsLow() && !in.Is(temp)) {
   3344         // temp = - in; only 0 sets the carry flag.
   3345         __ Rsbs(temp, in, 0);
   3346 
   3347         if (out.Is(in)) {
   3348           std::swap(in, temp);
   3349         }
   3350 
   3351         // out = - in + in + carry = carry
   3352         __ Adc(out, temp, in);
   3353       } else {
   3354         // If `in` is 0, then it has 32 leading zeros, and less than that otherwise.
   3355         __ Clz(out, in);
   3356         // Any number less than 32 logically shifted right by 5 bits results in 0;
   3357         // the same operation on 32 yields 1.
   3358         __ Lsr(out, out, 5);
   3359       }
   3360 
   3361       break;
   3362     case kCondNE:
   3363     // x > 0 iff x != 0 when the comparison is unsigned.
   3364     case kCondA: {
   3365       UseScratchRegisterScope temps(GetVIXLAssembler());
   3366 
   3367       if (out.Is(in)) {
   3368         if (!temp.IsValid() || in.Is(temp)) {
   3369           temp = temps.Acquire();
   3370         }
   3371       } else if (!temp.IsValid() || !temp.IsLow()) {
   3372         temp = out;
   3373       }
   3374 
   3375       // temp = in - 1; only 0 does not set the carry flag.
   3376       __ Subs(temp, in, 1);
   3377       // out = in + ~temp + carry = in + (-(in - 1) - 1) + carry = in - in + 1 - 1 + carry = carry
   3378       __ Sbc(out, in, temp);
   3379       break;
   3380     }
   3381     case kCondGE:
   3382       __ Mvn(out, in);
   3383       in = out;
   3384       FALLTHROUGH_INTENDED;
   3385     case kCondLT:
   3386       // We only care about the sign bit.
   3387       __ Lsr(out, in, 31);
   3388       break;
   3389     case kCondAE:
   3390       // Trivially true.
   3391       __ Mov(out, 1);
   3392       break;
   3393     case kCondB:
   3394       // Trivially false.
   3395       __ Mov(out, 0);
   3396       break;
   3397     default:
   3398       LOG(FATAL) << "Unexpected condition " << condition;
   3399       UNREACHABLE();
   3400   }
   3401 }
   3402 
   3403 void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) {
   3404   LocationSummary* locations =
   3405       new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
   3406   // Handle the long/FP comparisons made in instruction simplification.
   3407   switch (cond->InputAt(0)->GetType()) {
   3408     case Primitive::kPrimLong:
   3409       locations->SetInAt(0, Location::RequiresRegister());
   3410       locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
   3411       if (!cond->IsEmittedAtUseSite()) {
   3412         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3413       }
   3414       break;
   3415 
   3416     case Primitive::kPrimFloat:
   3417     case Primitive::kPrimDouble:
   3418       locations->SetInAt(0, Location::RequiresFpuRegister());
   3419       locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
   3420       if (!cond->IsEmittedAtUseSite()) {
   3421         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3422       }
   3423       break;
   3424 
   3425     default:
   3426       locations->SetInAt(0, Location::RequiresRegister());
   3427       locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
   3428       if (!cond->IsEmittedAtUseSite()) {
   3429         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3430       }
   3431   }
   3432 }
   3433 
   3434 void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) {
   3435   if (cond->IsEmittedAtUseSite()) {
   3436     return;
   3437   }
   3438 
   3439   const Primitive::Type type = cond->GetLeft()->GetType();
   3440 
   3441   if (Primitive::IsFloatingPointType(type)) {
   3442     GenerateConditionGeneric(cond, codegen_);
   3443     return;
   3444   }
   3445 
   3446   DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
   3447 
   3448   const IfCondition condition = cond->GetCondition();
   3449 
   3450   // A condition with only one boolean input, or two boolean inputs without being equality or
   3451   // inequality results from transformations done by the instruction simplifier, and is handled
   3452   // as a regular condition with integral inputs.
   3453   if (type == Primitive::kPrimBoolean &&
   3454       cond->GetRight()->GetType() == Primitive::kPrimBoolean &&
   3455       (condition == kCondEQ || condition == kCondNE)) {
   3456     vixl32::Register left = InputRegisterAt(cond, 0);
   3457     const vixl32::Register out = OutputRegister(cond);
   3458     const Location right_loc = cond->GetLocations()->InAt(1);
   3459 
   3460     // The constant case is handled by the instruction simplifier.
   3461     DCHECK(!right_loc.IsConstant());
   3462 
   3463     vixl32::Register right = RegisterFrom(right_loc);
   3464 
   3465     // Avoid 32-bit instructions if possible.
   3466     if (out.Is(right)) {
   3467       std::swap(left, right);
   3468     }
   3469 
   3470     __ Eor(out, left, right);
   3471 
   3472     if (condition == kCondEQ) {
   3473       __ Eor(out, out, 1);
   3474     }
   3475 
   3476     return;
   3477   }
   3478 
   3479   GenerateConditionIntegralOrNonPrimitive(cond, codegen_);
   3480 }
   3481 
   3482 void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) {
   3483   HandleCondition(comp);
   3484 }
   3485 
   3486 void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) {
   3487   HandleCondition(comp);
   3488 }
   3489 
   3490 void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) {
   3491   HandleCondition(comp);
   3492 }
   3493 
   3494 void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) {
   3495   HandleCondition(comp);
   3496 }
   3497 
   3498 void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) {
   3499   HandleCondition(comp);
   3500 }
   3501 
   3502 void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) {
   3503   HandleCondition(comp);
   3504 }
   3505 
   3506 void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
   3507   HandleCondition(comp);
   3508 }
   3509 
   3510 void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
   3511   HandleCondition(comp);
   3512 }
   3513 
   3514 void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
   3515   HandleCondition(comp);
   3516 }
   3517 
   3518 void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
   3519   HandleCondition(comp);
   3520 }
   3521 
   3522 void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
   3523   HandleCondition(comp);
   3524 }
   3525 
   3526 void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
   3527   HandleCondition(comp);
   3528 }
   3529 
   3530 void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) {
   3531   HandleCondition(comp);
   3532 }
   3533 
   3534 void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) {
   3535   HandleCondition(comp);
   3536 }
   3537 
   3538 void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
   3539   HandleCondition(comp);
   3540 }
   3541 
   3542 void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
   3543   HandleCondition(comp);
   3544 }
   3545 
   3546 void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) {
   3547   HandleCondition(comp);
   3548 }
   3549 
   3550 void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) {
   3551   HandleCondition(comp);
   3552 }
   3553 
   3554 void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
   3555   HandleCondition(comp);
   3556 }
   3557 
   3558 void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
   3559   HandleCondition(comp);
   3560 }
   3561 
   3562 void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) {
   3563   LocationSummary* locations =
   3564       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   3565   locations->SetOut(Location::ConstantLocation(constant));
   3566 }
   3567 
   3568 void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
   3569   // Will be generated at use site.
   3570 }
   3571 
   3572 void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) {
   3573   LocationSummary* locations =
   3574       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   3575   locations->SetOut(Location::ConstantLocation(constant));
   3576 }
   3577 
   3578 void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
   3579   // Will be generated at use site.
   3580 }
   3581 
   3582 void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) {
   3583   LocationSummary* locations =
   3584       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   3585   locations->SetOut(Location::ConstantLocation(constant));
   3586 }
   3587 
   3588 void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
   3589   // Will be generated at use site.
   3590 }
   3591 
   3592 void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) {
   3593   LocationSummary* locations =
   3594       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   3595   locations->SetOut(Location::ConstantLocation(constant));
   3596 }
   3597 
   3598 void InstructionCodeGeneratorARMVIXL::VisitFloatConstant(
   3599     HFloatConstant* constant ATTRIBUTE_UNUSED) {
   3600   // Will be generated at use site.
   3601 }
   3602 
   3603 void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) {
   3604   LocationSummary* locations =
   3605       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   3606   locations->SetOut(Location::ConstantLocation(constant));
   3607 }
   3608 
   3609 void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant(
   3610     HDoubleConstant* constant ATTRIBUTE_UNUSED) {
   3611   // Will be generated at use site.
   3612 }
   3613 
   3614 void LocationsBuilderARMVIXL::VisitConstructorFence(HConstructorFence* constructor_fence) {
   3615   constructor_fence->SetLocations(nullptr);
   3616 }
   3617 
   3618 void InstructionCodeGeneratorARMVIXL::VisitConstructorFence(
   3619     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
   3620   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
   3621 }
   3622 
   3623 void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   3624   memory_barrier->SetLocations(nullptr);
   3625 }
   3626 
   3627 void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   3628   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
   3629 }
   3630 
   3631 void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) {
   3632   ret->SetLocations(nullptr);
   3633 }
   3634 
   3635 void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
   3636   codegen_->GenerateFrameExit();
   3637 }
   3638 
   3639 void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) {
   3640   LocationSummary* locations =
   3641       new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
   3642   locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
   3643 }
   3644 
   3645 void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
   3646   codegen_->GenerateFrameExit();
   3647 }
   3648 
   3649 void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   3650   // The trampoline uses the same calling convention as dex calling conventions,
   3651   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
   3652   // the method_idx.
   3653   HandleInvoke(invoke);
   3654 }
   3655 
   3656 void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   3657   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
   3658 }
   3659 
   3660 void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   3661   // Explicit clinit checks triggered by static invokes must have been pruned by
   3662   // art::PrepareForRegisterAllocation.
   3663   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   3664 
   3665   IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
   3666   if (intrinsic.TryDispatch(invoke)) {
   3667     return;
   3668   }
   3669 
   3670   HandleInvoke(invoke);
   3671 }
   3672 
   3673 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) {
   3674   if (invoke->GetLocations()->Intrinsified()) {
   3675     IntrinsicCodeGeneratorARMVIXL intrinsic(codegen);
   3676     intrinsic.Dispatch(invoke);
   3677     return true;
   3678   }
   3679   return false;
   3680 }
   3681 
   3682 void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   3683   // Explicit clinit checks triggered by static invokes must have been pruned by
   3684   // art::PrepareForRegisterAllocation.
   3685   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   3686 
   3687   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   3688     return;
   3689   }
   3690 
   3691   LocationSummary* locations = invoke->GetLocations();
   3692   codegen_->GenerateStaticOrDirectCall(
   3693       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
   3694 }
   3695 
   3696 void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) {
   3697   InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
   3698   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
   3699 }
   3700 
   3701 void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   3702   IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
   3703   if (intrinsic.TryDispatch(invoke)) {
   3704     return;
   3705   }
   3706 
   3707   HandleInvoke(invoke);
   3708 }
   3709 
   3710 void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   3711   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   3712     return;
   3713   }
   3714 
   3715   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
   3716   DCHECK(!codegen_->IsLeafMethod());
   3717 }
   3718 
   3719 void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
   3720   HandleInvoke(invoke);
   3721   // Add the hidden argument.
   3722   invoke->GetLocations()->AddTemp(LocationFrom(r12));
   3723 }
   3724 
   3725 void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
   3726   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
   3727   LocationSummary* locations = invoke->GetLocations();
   3728   vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
   3729   vixl32::Register hidden_reg = RegisterFrom(locations->GetTemp(1));
   3730   Location receiver = locations->InAt(0);
   3731   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   3732 
   3733   DCHECK(!receiver.IsStackSlot());
   3734 
   3735   // Ensure the pc position is recorded immediately after the `ldr` instruction.
   3736   {
   3737     ExactAssemblyScope aas(GetVIXLAssembler(),
   3738                            vixl32::kMaxInstructionSizeInBytes,
   3739                            CodeBufferCheckScope::kMaximumSize);
   3740     // /* HeapReference<Class> */ temp = receiver->klass_
   3741     __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset));
   3742     codegen_->MaybeRecordImplicitNullCheck(invoke);
   3743   }
   3744   // Instead of simply (possibly) unpoisoning `temp` here, we should
   3745   // emit a read barrier for the previous class reference load.
   3746   // However this is not required in practice, as this is an
   3747   // intermediate/temporary reference and because the current
   3748   // concurrent copying collector keeps the from-space memory
   3749   // intact/accessible until the end of the marking phase (the
   3750   // concurrent copying collector may not in the future).
   3751   GetAssembler()->MaybeUnpoisonHeapReference(temp);
   3752   GetAssembler()->LoadFromOffset(kLoadWord,
   3753                                  temp,
   3754                                  temp,
   3755                                  mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
   3756   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   3757       invoke->GetImtIndex(), kArmPointerSize));
   3758   // temp = temp->GetImtEntryAt(method_offset);
   3759   GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
   3760   uint32_t entry_point =
   3761       ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
   3762   // LR = temp->GetEntryPoint();
   3763   GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
   3764 
   3765   // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other
   3766   // instruction from clobbering it as they might use r12 as a scratch register.
   3767   DCHECK(hidden_reg.Is(r12));
   3768 
   3769   {
   3770     // The VIXL macro assembler may clobber any of the scratch registers that are available to it,
   3771     // so it checks if the application is using them (by passing them to the macro assembler
   3772     // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of
   3773     // what is available, and is the opposite of the standard usage: Instead of requesting a
   3774     // temporary location, it imposes an external constraint (i.e. a specific register is reserved
   3775     // for the hidden argument). Note that this works even if VIXL needs a scratch register itself
   3776     // (to materialize the constant), since the destination register becomes available for such use
   3777     // internally for the duration of the macro instruction.
   3778     UseScratchRegisterScope temps(GetVIXLAssembler());
   3779     temps.Exclude(hidden_reg);
   3780     __ Mov(hidden_reg, invoke->GetDexMethodIndex());
   3781   }
   3782   {
   3783     // Ensure the pc position is recorded immediately after the `blx` instruction.
   3784     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
   3785     ExactAssemblyScope aas(GetVIXLAssembler(),
   3786                            vixl32::k16BitT32InstructionSizeInBytes,
   3787                            CodeBufferCheckScope::kExactSize);
   3788     // LR();
   3789     __ blx(lr);
   3790     codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   3791     DCHECK(!codegen_->IsLeafMethod());
   3792   }
   3793 }
   3794 
   3795 void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
   3796   HandleInvoke(invoke);
   3797 }
   3798 
   3799 void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
   3800   codegen_->GenerateInvokePolymorphicCall(invoke);
   3801 }
   3802 
   3803 void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) {
   3804   LocationSummary* locations =
   3805       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
   3806   switch (neg->GetResultType()) {
   3807     case Primitive::kPrimInt: {
   3808       locations->SetInAt(0, Location::RequiresRegister());
   3809       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3810       break;
   3811     }
   3812     case Primitive::kPrimLong: {
   3813       locations->SetInAt(0, Location::RequiresRegister());
   3814       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   3815       break;
   3816     }
   3817 
   3818     case Primitive::kPrimFloat:
   3819     case Primitive::kPrimDouble:
   3820       locations->SetInAt(0, Location::RequiresFpuRegister());
   3821       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   3822       break;
   3823 
   3824     default:
   3825       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   3826   }
   3827 }
   3828 
   3829 void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) {
   3830   LocationSummary* locations = neg->GetLocations();
   3831   Location out = locations->Out();
   3832   Location in = locations->InAt(0);
   3833   switch (neg->GetResultType()) {
   3834     case Primitive::kPrimInt:
   3835       __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0);
   3836       break;
   3837 
   3838     case Primitive::kPrimLong:
   3839       // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
   3840       __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0);
   3841       // We cannot emit an RSC (Reverse Subtract with Carry)
   3842       // instruction here, as it does not exist in the Thumb-2
   3843       // instruction set.  We use the following approach
   3844       // using SBC and SUB instead.
   3845       //
   3846       // out.hi = -C
   3847       __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out));
   3848       // out.hi = out.hi - in.hi
   3849       __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in));
   3850       break;
   3851 
   3852     case Primitive::kPrimFloat:
   3853     case Primitive::kPrimDouble:
   3854       __ Vneg(OutputVRegister(neg), InputVRegister(neg));
   3855       break;
   3856 
   3857     default:
   3858       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   3859   }
   3860 }
   3861 
   3862 void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
   3863   Primitive::Type result_type = conversion->GetResultType();
   3864   Primitive::Type input_type = conversion->GetInputType();
   3865   DCHECK_NE(result_type, input_type);
   3866 
   3867   // The float-to-long, double-to-long and long-to-float type conversions
   3868   // rely on a call to the runtime.
   3869   LocationSummary::CallKind call_kind =
   3870       (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
   3871         && result_type == Primitive::kPrimLong)
   3872        || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
   3873       ? LocationSummary::kCallOnMainOnly
   3874       : LocationSummary::kNoCall;
   3875   LocationSummary* locations =
   3876       new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
   3877 
   3878   // The Java language does not allow treating boolean as an integral type but
   3879   // our bit representation makes it safe.
   3880 
   3881   switch (result_type) {
   3882     case Primitive::kPrimByte:
   3883       switch (input_type) {
   3884         case Primitive::kPrimLong:
   3885           // Type conversion from long to byte is a result of code transformations.
   3886         case Primitive::kPrimBoolean:
   3887           // Boolean input is a result of code transformations.
   3888         case Primitive::kPrimShort:
   3889         case Primitive::kPrimInt:
   3890         case Primitive::kPrimChar:
   3891           // Processing a Dex `int-to-byte' instruction.
   3892           locations->SetInAt(0, Location::RequiresRegister());
   3893           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3894           break;
   3895 
   3896         default:
   3897           LOG(FATAL) << "Unexpected type conversion from " << input_type
   3898                      << " to " << result_type;
   3899       }
   3900       break;
   3901 
   3902     case Primitive::kPrimShort:
   3903       switch (input_type) {
   3904         case Primitive::kPrimLong:
   3905           // Type conversion from long to short is a result of code transformations.
   3906         case Primitive::kPrimBoolean:
   3907           // Boolean input is a result of code transformations.
   3908         case Primitive::kPrimByte:
   3909         case Primitive::kPrimInt:
   3910         case Primitive::kPrimChar:
   3911           // Processing a Dex `int-to-short' instruction.
   3912           locations->SetInAt(0, Location::RequiresRegister());
   3913           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3914           break;
   3915 
   3916         default:
   3917           LOG(FATAL) << "Unexpected type conversion from " << input_type
   3918                      << " to " << result_type;
   3919       }
   3920       break;
   3921 
   3922     case Primitive::kPrimInt:
   3923       switch (input_type) {
   3924         case Primitive::kPrimLong:
   3925           // Processing a Dex `long-to-int' instruction.
   3926           locations->SetInAt(0, Location::Any());
   3927           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3928           break;
   3929 
   3930         case Primitive::kPrimFloat:
   3931           // Processing a Dex `float-to-int' instruction.
   3932           locations->SetInAt(0, Location::RequiresFpuRegister());
   3933           locations->SetOut(Location::RequiresRegister());
   3934           locations->AddTemp(Location::RequiresFpuRegister());
   3935           break;
   3936 
   3937         case Primitive::kPrimDouble:
   3938           // Processing a Dex `double-to-int' instruction.
   3939           locations->SetInAt(0, Location::RequiresFpuRegister());
   3940           locations->SetOut(Location::RequiresRegister());
   3941           locations->AddTemp(Location::RequiresFpuRegister());
   3942           break;
   3943 
   3944         default:
   3945           LOG(FATAL) << "Unexpected type conversion from " << input_type
   3946                      << " to " << result_type;
   3947       }
   3948       break;
   3949 
   3950     case Primitive::kPrimLong:
   3951       switch (input_type) {
   3952         case Primitive::kPrimBoolean:
   3953           // Boolean input is a result of code transformations.
   3954         case Primitive::kPrimByte:
   3955         case Primitive::kPrimShort:
   3956         case Primitive::kPrimInt:
   3957         case Primitive::kPrimChar:
   3958           // Processing a Dex `int-to-long' instruction.
   3959           locations->SetInAt(0, Location::RequiresRegister());
   3960           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3961           break;
   3962 
   3963         case Primitive::kPrimFloat: {
   3964           // Processing a Dex `float-to-long' instruction.
   3965           InvokeRuntimeCallingConventionARMVIXL calling_convention;
   3966           locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
   3967           locations->SetOut(LocationFrom(r0, r1));
   3968           break;
   3969         }
   3970 
   3971         case Primitive::kPrimDouble: {
   3972           // Processing a Dex `double-to-long' instruction.
   3973           InvokeRuntimeCallingConventionARMVIXL calling_convention;
   3974           locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0),
   3975                                              calling_convention.GetFpuRegisterAt(1)));
   3976           locations->SetOut(LocationFrom(r0, r1));
   3977           break;
   3978         }
   3979 
   3980         default:
   3981           LOG(FATAL) << "Unexpected type conversion from " << input_type
   3982                      << " to " << result_type;
   3983       }
   3984       break;
   3985 
   3986     case Primitive::kPrimChar:
   3987       switch (input_type) {
   3988         case Primitive::kPrimLong:
   3989           // Type conversion from long to char is a result of code transformations.
   3990         case Primitive::kPrimBoolean:
   3991           // Boolean input is a result of code transformations.
   3992         case Primitive::kPrimByte:
   3993         case Primitive::kPrimShort:
   3994         case Primitive::kPrimInt:
   3995           // Processing a Dex `int-to-char' instruction.
   3996           locations->SetInAt(0, Location::RequiresRegister());
   3997           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3998           break;
   3999 
   4000         default:
   4001           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4002                      << " to " << result_type;
   4003       }
   4004       break;
   4005 
   4006     case Primitive::kPrimFloat:
   4007       switch (input_type) {
   4008         case Primitive::kPrimBoolean:
   4009           // Boolean input is a result of code transformations.
   4010         case Primitive::kPrimByte:
   4011         case Primitive::kPrimShort:
   4012         case Primitive::kPrimInt:
   4013         case Primitive::kPrimChar:
   4014           // Processing a Dex `int-to-float' instruction.
   4015           locations->SetInAt(0, Location::RequiresRegister());
   4016           locations->SetOut(Location::RequiresFpuRegister());
   4017           break;
   4018 
   4019         case Primitive::kPrimLong: {
   4020           // Processing a Dex `long-to-float' instruction.
   4021           InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4022           locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0),
   4023                                              calling_convention.GetRegisterAt(1)));
   4024           locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0)));
   4025           break;
   4026         }
   4027 
   4028         case Primitive::kPrimDouble:
   4029           // Processing a Dex `double-to-float' instruction.
   4030           locations->SetInAt(0, Location::RequiresFpuRegister());
   4031           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4032           break;
   4033 
   4034         default:
   4035           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4036                      << " to " << result_type;
   4037       };
   4038       break;
   4039 
   4040     case Primitive::kPrimDouble:
   4041       switch (input_type) {
   4042         case Primitive::kPrimBoolean:
   4043           // Boolean input is a result of code transformations.
   4044         case Primitive::kPrimByte:
   4045         case Primitive::kPrimShort:
   4046         case Primitive::kPrimInt:
   4047         case Primitive::kPrimChar:
   4048           // Processing a Dex `int-to-double' instruction.
   4049           locations->SetInAt(0, Location::RequiresRegister());
   4050           locations->SetOut(Location::RequiresFpuRegister());
   4051           break;
   4052 
   4053         case Primitive::kPrimLong:
   4054           // Processing a Dex `long-to-double' instruction.
   4055           locations->SetInAt(0, Location::RequiresRegister());
   4056           locations->SetOut(Location::RequiresFpuRegister());
   4057           locations->AddTemp(Location::RequiresFpuRegister());
   4058           locations->AddTemp(Location::RequiresFpuRegister());
   4059           break;
   4060 
   4061         case Primitive::kPrimFloat:
   4062           // Processing a Dex `float-to-double' instruction.
   4063           locations->SetInAt(0, Location::RequiresFpuRegister());
   4064           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4065           break;
   4066 
   4067         default:
   4068           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4069                      << " to " << result_type;
   4070       };
   4071       break;
   4072 
   4073     default:
   4074       LOG(FATAL) << "Unexpected type conversion from " << input_type
   4075                  << " to " << result_type;
   4076   }
   4077 }
   4078 
   4079 void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
   4080   LocationSummary* locations = conversion->GetLocations();
   4081   Location out = locations->Out();
   4082   Location in = locations->InAt(0);
   4083   Primitive::Type result_type = conversion->GetResultType();
   4084   Primitive::Type input_type = conversion->GetInputType();
   4085   DCHECK_NE(result_type, input_type);
   4086   switch (result_type) {
   4087     case Primitive::kPrimByte:
   4088       switch (input_type) {
   4089         case Primitive::kPrimLong:
   4090           // Type conversion from long to byte is a result of code transformations.
   4091           __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
   4092           break;
   4093         case Primitive::kPrimBoolean:
   4094           // Boolean input is a result of code transformations.
   4095         case Primitive::kPrimShort:
   4096         case Primitive::kPrimInt:
   4097         case Primitive::kPrimChar:
   4098           // Processing a Dex `int-to-byte' instruction.
   4099           __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
   4100           break;
   4101 
   4102         default:
   4103           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4104                      << " to " << result_type;
   4105       }
   4106       break;
   4107 
   4108     case Primitive::kPrimShort:
   4109       switch (input_type) {
   4110         case Primitive::kPrimLong:
   4111           // Type conversion from long to short is a result of code transformations.
   4112           __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
   4113           break;
   4114         case Primitive::kPrimBoolean:
   4115           // Boolean input is a result of code transformations.
   4116         case Primitive::kPrimByte:
   4117         case Primitive::kPrimInt:
   4118         case Primitive::kPrimChar:
   4119           // Processing a Dex `int-to-short' instruction.
   4120           __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
   4121           break;
   4122 
   4123         default:
   4124           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4125                      << " to " << result_type;
   4126       }
   4127       break;
   4128 
   4129     case Primitive::kPrimInt:
   4130       switch (input_type) {
   4131         case Primitive::kPrimLong:
   4132           // Processing a Dex `long-to-int' instruction.
   4133           DCHECK(out.IsRegister());
   4134           if (in.IsRegisterPair()) {
   4135             __ Mov(OutputRegister(conversion), LowRegisterFrom(in));
   4136           } else if (in.IsDoubleStackSlot()) {
   4137             GetAssembler()->LoadFromOffset(kLoadWord,
   4138                                            OutputRegister(conversion),
   4139                                            sp,
   4140                                            in.GetStackIndex());
   4141           } else {
   4142             DCHECK(in.IsConstant());
   4143             DCHECK(in.GetConstant()->IsLongConstant());
   4144             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
   4145             __ Mov(OutputRegister(conversion), static_cast<int32_t>(value));
   4146           }
   4147           break;
   4148 
   4149         case Primitive::kPrimFloat: {
   4150           // Processing a Dex `float-to-int' instruction.
   4151           vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0));
   4152           __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0));
   4153           __ Vmov(OutputRegister(conversion), temp);
   4154           break;
   4155         }
   4156 
   4157         case Primitive::kPrimDouble: {
   4158           // Processing a Dex `double-to-int' instruction.
   4159           vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
   4160           __ Vcvt(S32, F64, temp_s, DRegisterFrom(in));
   4161           __ Vmov(OutputRegister(conversion), temp_s);
   4162           break;
   4163         }
   4164 
   4165         default:
   4166           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4167                      << " to " << result_type;
   4168       }
   4169       break;
   4170 
   4171     case Primitive::kPrimLong:
   4172       switch (input_type) {
   4173         case Primitive::kPrimBoolean:
   4174           // Boolean input is a result of code transformations.
   4175         case Primitive::kPrimByte:
   4176         case Primitive::kPrimShort:
   4177         case Primitive::kPrimInt:
   4178         case Primitive::kPrimChar:
   4179           // Processing a Dex `int-to-long' instruction.
   4180           DCHECK(out.IsRegisterPair());
   4181           DCHECK(in.IsRegister());
   4182           __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0));
   4183           // Sign extension.
   4184           __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31);
   4185           break;
   4186 
   4187         case Primitive::kPrimFloat:
   4188           // Processing a Dex `float-to-long' instruction.
   4189           codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
   4190           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
   4191           break;
   4192 
   4193         case Primitive::kPrimDouble:
   4194           // Processing a Dex `double-to-long' instruction.
   4195           codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
   4196           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
   4197           break;
   4198 
   4199         default:
   4200           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4201                      << " to " << result_type;
   4202       }
   4203       break;
   4204 
   4205     case Primitive::kPrimChar:
   4206       switch (input_type) {
   4207         case Primitive::kPrimLong:
   4208           // Type conversion from long to char is a result of code transformations.
   4209           __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
   4210           break;
   4211         case Primitive::kPrimBoolean:
   4212           // Boolean input is a result of code transformations.
   4213         case Primitive::kPrimByte:
   4214         case Primitive::kPrimShort:
   4215         case Primitive::kPrimInt:
   4216           // Processing a Dex `int-to-char' instruction.
   4217           __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
   4218           break;
   4219 
   4220         default:
   4221           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4222                      << " to " << result_type;
   4223       }
   4224       break;
   4225 
   4226     case Primitive::kPrimFloat:
   4227       switch (input_type) {
   4228         case Primitive::kPrimBoolean:
   4229           // Boolean input is a result of code transformations.
   4230         case Primitive::kPrimByte:
   4231         case Primitive::kPrimShort:
   4232         case Primitive::kPrimInt:
   4233         case Primitive::kPrimChar: {
   4234           // Processing a Dex `int-to-float' instruction.
   4235           __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0));
   4236           __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion));
   4237           break;
   4238         }
   4239 
   4240         case Primitive::kPrimLong:
   4241           // Processing a Dex `long-to-float' instruction.
   4242           codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
   4243           CheckEntrypointTypes<kQuickL2f, float, int64_t>();
   4244           break;
   4245 
   4246         case Primitive::kPrimDouble:
   4247           // Processing a Dex `double-to-float' instruction.
   4248           __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in));
   4249           break;
   4250 
   4251         default:
   4252           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4253                      << " to " << result_type;
   4254       };
   4255       break;
   4256 
   4257     case Primitive::kPrimDouble:
   4258       switch (input_type) {
   4259         case Primitive::kPrimBoolean:
   4260           // Boolean input is a result of code transformations.
   4261         case Primitive::kPrimByte:
   4262         case Primitive::kPrimShort:
   4263         case Primitive::kPrimInt:
   4264         case Primitive::kPrimChar: {
   4265           // Processing a Dex `int-to-double' instruction.
   4266           __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0));
   4267           __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out));
   4268           break;
   4269         }
   4270 
   4271         case Primitive::kPrimLong: {
   4272           // Processing a Dex `long-to-double' instruction.
   4273           vixl32::Register low = LowRegisterFrom(in);
   4274           vixl32::Register high = HighRegisterFrom(in);
   4275           vixl32::SRegister out_s = LowSRegisterFrom(out);
   4276           vixl32::DRegister out_d = DRegisterFrom(out);
   4277           vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
   4278           vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0));
   4279           vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1));
   4280 
   4281           // temp_d = int-to-double(high)
   4282           __ Vmov(temp_s, high);
   4283           __ Vcvt(F64, S32, temp_d, temp_s);
   4284           // constant_d = k2Pow32EncodingForDouble
   4285           __ Vmov(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
   4286           // out_d = unsigned-to-double(low)
   4287           __ Vmov(out_s, low);
   4288           __ Vcvt(F64, U32, out_d, out_s);
   4289           // out_d += temp_d * constant_d
   4290           __ Vmla(F64, out_d, temp_d, constant_d);
   4291           break;
   4292         }
   4293 
   4294         case Primitive::kPrimFloat:
   4295           // Processing a Dex `float-to-double' instruction.
   4296           __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0));
   4297           break;
   4298 
   4299         default:
   4300           LOG(FATAL) << "Unexpected type conversion from " << input_type
   4301                      << " to " << result_type;
   4302       };
   4303       break;
   4304 
   4305     default:
   4306       LOG(FATAL) << "Unexpected type conversion from " << input_type
   4307                  << " to " << result_type;
   4308   }
   4309 }
   4310 
   4311 void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) {
   4312   LocationSummary* locations =
   4313       new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
   4314   switch (add->GetResultType()) {
   4315     case Primitive::kPrimInt: {
   4316       locations->SetInAt(0, Location::RequiresRegister());
   4317       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
   4318       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4319       break;
   4320     }
   4321 
   4322     case Primitive::kPrimLong: {
   4323       locations->SetInAt(0, Location::RequiresRegister());
   4324       locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
   4325       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4326       break;
   4327     }
   4328 
   4329     case Primitive::kPrimFloat:
   4330     case Primitive::kPrimDouble: {
   4331       locations->SetInAt(0, Location::RequiresFpuRegister());
   4332       locations->SetInAt(1, Location::RequiresFpuRegister());
   4333       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4334       break;
   4335     }
   4336 
   4337     default:
   4338       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
   4339   }
   4340 }
   4341 
   4342 void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) {
   4343   LocationSummary* locations = add->GetLocations();
   4344   Location out = locations->Out();
   4345   Location first = locations->InAt(0);
   4346   Location second = locations->InAt(1);
   4347 
   4348   switch (add->GetResultType()) {
   4349     case Primitive::kPrimInt: {
   4350       __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1));
   4351       }
   4352       break;
   4353 
   4354     case Primitive::kPrimLong: {
   4355       if (second.IsConstant()) {
   4356         uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
   4357         GenerateAddLongConst(out, first, value);
   4358       } else {
   4359         DCHECK(second.IsRegisterPair());
   4360         __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
   4361         __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
   4362       }
   4363       break;
   4364     }
   4365 
   4366     case Primitive::kPrimFloat:
   4367     case Primitive::kPrimDouble:
   4368       __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1));
   4369       break;
   4370 
   4371     default:
   4372       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
   4373   }
   4374 }
   4375 
   4376 void LocationsBuilderARMVIXL::VisitSub(HSub* sub) {
   4377   LocationSummary* locations =
   4378       new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
   4379   switch (sub->GetResultType()) {
   4380     case Primitive::kPrimInt: {
   4381       locations->SetInAt(0, Location::RequiresRegister());
   4382       locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
   4383       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4384       break;
   4385     }
   4386 
   4387     case Primitive::kPrimLong: {
   4388       locations->SetInAt(0, Location::RequiresRegister());
   4389       locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
   4390       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4391       break;
   4392     }
   4393     case Primitive::kPrimFloat:
   4394     case Primitive::kPrimDouble: {
   4395       locations->SetInAt(0, Location::RequiresFpuRegister());
   4396       locations->SetInAt(1, Location::RequiresFpuRegister());
   4397       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4398       break;
   4399     }
   4400     default:
   4401       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
   4402   }
   4403 }
   4404 
   4405 void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) {
   4406   LocationSummary* locations = sub->GetLocations();
   4407   Location out = locations->Out();
   4408   Location first = locations->InAt(0);
   4409   Location second = locations->InAt(1);
   4410   switch (sub->GetResultType()) {
   4411     case Primitive::kPrimInt: {
   4412       __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1));
   4413       break;
   4414     }
   4415 
   4416     case Primitive::kPrimLong: {
   4417       if (second.IsConstant()) {
   4418         uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
   4419         GenerateAddLongConst(out, first, -value);
   4420       } else {
   4421         DCHECK(second.IsRegisterPair());
   4422         __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
   4423         __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
   4424       }
   4425       break;
   4426     }
   4427 
   4428     case Primitive::kPrimFloat:
   4429     case Primitive::kPrimDouble:
   4430       __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1));
   4431       break;
   4432 
   4433     default:
   4434       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
   4435   }
   4436 }
   4437 
   4438 void LocationsBuilderARMVIXL::VisitMul(HMul* mul) {
   4439   LocationSummary* locations =
   4440       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
   4441   switch (mul->GetResultType()) {
   4442     case Primitive::kPrimInt:
   4443     case Primitive::kPrimLong:  {
   4444       locations->SetInAt(0, Location::RequiresRegister());
   4445       locations->SetInAt(1, Location::RequiresRegister());
   4446       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4447       break;
   4448     }
   4449 
   4450     case Primitive::kPrimFloat:
   4451     case Primitive::kPrimDouble: {
   4452       locations->SetInAt(0, Location::RequiresFpuRegister());
   4453       locations->SetInAt(1, Location::RequiresFpuRegister());
   4454       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4455       break;
   4456     }
   4457 
   4458     default:
   4459       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   4460   }
   4461 }
   4462 
   4463 void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) {
   4464   LocationSummary* locations = mul->GetLocations();
   4465   Location out = locations->Out();
   4466   Location first = locations->InAt(0);
   4467   Location second = locations->InAt(1);
   4468   switch (mul->GetResultType()) {
   4469     case Primitive::kPrimInt: {
   4470       __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
   4471       break;
   4472     }
   4473     case Primitive::kPrimLong: {
   4474       vixl32::Register out_hi = HighRegisterFrom(out);
   4475       vixl32::Register out_lo = LowRegisterFrom(out);
   4476       vixl32::Register in1_hi = HighRegisterFrom(first);
   4477       vixl32::Register in1_lo = LowRegisterFrom(first);
   4478       vixl32::Register in2_hi = HighRegisterFrom(second);
   4479       vixl32::Register in2_lo = LowRegisterFrom(second);
   4480 
   4481       // Extra checks to protect caused by the existence of R1_R2.
   4482       // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
   4483       // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
   4484       DCHECK(!out_hi.Is(in1_lo));
   4485       DCHECK(!out_hi.Is(in2_lo));
   4486 
   4487       // input: in1 - 64 bits, in2 - 64 bits
   4488       // output: out
   4489       // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
   4490       // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
   4491       // parts: out.lo = (in1.lo * in2.lo)[31:0]
   4492 
   4493       UseScratchRegisterScope temps(GetVIXLAssembler());
   4494       vixl32::Register temp = temps.Acquire();
   4495       // temp <- in1.lo * in2.hi
   4496       __ Mul(temp, in1_lo, in2_hi);
   4497       // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
   4498       __ Mla(out_hi, in1_hi, in2_lo, temp);
   4499       // out.lo <- (in1.lo * in2.lo)[31:0];
   4500       __ Umull(out_lo, temp, in1_lo, in2_lo);
   4501       // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
   4502       __ Add(out_hi, out_hi, temp);
   4503       break;
   4504     }
   4505 
   4506     case Primitive::kPrimFloat:
   4507     case Primitive::kPrimDouble:
   4508       __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1));
   4509       break;
   4510 
   4511     default:
   4512       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   4513   }
   4514 }
   4515 
   4516 void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
   4517   DCHECK(instruction->IsDiv() || instruction->IsRem());
   4518   DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
   4519 
   4520   Location second = instruction->GetLocations()->InAt(1);
   4521   DCHECK(second.IsConstant());
   4522 
   4523   vixl32::Register out = OutputRegister(instruction);
   4524   vixl32::Register dividend = InputRegisterAt(instruction, 0);
   4525   int32_t imm = Int32ConstantFrom(second);
   4526   DCHECK(imm == 1 || imm == -1);
   4527 
   4528   if (instruction->IsRem()) {
   4529     __ Mov(out, 0);
   4530   } else {
   4531     if (imm == 1) {
   4532       __ Mov(out, dividend);
   4533     } else {
   4534       __ Rsb(out, dividend, 0);
   4535     }
   4536   }
   4537 }
   4538 
   4539 void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
   4540   DCHECK(instruction->IsDiv() || instruction->IsRem());
   4541   DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
   4542 
   4543   LocationSummary* locations = instruction->GetLocations();
   4544   Location second = locations->InAt(1);
   4545   DCHECK(second.IsConstant());
   4546 
   4547   vixl32::Register out = OutputRegister(instruction);
   4548   vixl32::Register dividend = InputRegisterAt(instruction, 0);
   4549   vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
   4550   int32_t imm = Int32ConstantFrom(second);
   4551   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
   4552   int ctz_imm = CTZ(abs_imm);
   4553 
   4554   if (ctz_imm == 1) {
   4555     __ Lsr(temp, dividend, 32 - ctz_imm);
   4556   } else {
   4557     __ Asr(temp, dividend, 31);
   4558     __ Lsr(temp, temp, 32 - ctz_imm);
   4559   }
   4560   __ Add(out, temp, dividend);
   4561 
   4562   if (instruction->IsDiv()) {
   4563     __ Asr(out, out, ctz_imm);
   4564     if (imm < 0) {
   4565       __ Rsb(out, out, 0);
   4566     }
   4567   } else {
   4568     __ Ubfx(out, out, 0, ctz_imm);
   4569     __ Sub(out, out, temp);
   4570   }
   4571 }
   4572 
   4573 void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
   4574   DCHECK(instruction->IsDiv() || instruction->IsRem());
   4575   DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
   4576 
   4577   LocationSummary* locations = instruction->GetLocations();
   4578   Location second = locations->InAt(1);
   4579   DCHECK(second.IsConstant());
   4580 
   4581   vixl32::Register out = OutputRegister(instruction);
   4582   vixl32::Register dividend = InputRegisterAt(instruction, 0);
   4583   vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0));
   4584   vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1));
   4585   int32_t imm = Int32ConstantFrom(second);
   4586 
   4587   int64_t magic;
   4588   int shift;
   4589   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
   4590 
   4591   // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
   4592   __ Mov(temp1, static_cast<int32_t>(magic));
   4593   __ Smull(temp2, temp1, dividend, temp1);
   4594 
   4595   if (imm > 0 && magic < 0) {
   4596     __ Add(temp1, temp1, dividend);
   4597   } else if (imm < 0 && magic > 0) {
   4598     __ Sub(temp1, temp1, dividend);
   4599   }
   4600 
   4601   if (shift != 0) {
   4602     __ Asr(temp1, temp1, shift);
   4603   }
   4604 
   4605   if (instruction->IsDiv()) {
   4606     __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
   4607   } else {
   4608     __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
   4609     // TODO: Strength reduction for mls.
   4610     __ Mov(temp2, imm);
   4611     __ Mls(out, temp1, temp2, dividend);
   4612   }
   4613 }
   4614 
   4615 void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral(
   4616     HBinaryOperation* instruction) {
   4617   DCHECK(instruction->IsDiv() || instruction->IsRem());
   4618   DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
   4619 
   4620   Location second = instruction->GetLocations()->InAt(1);
   4621   DCHECK(second.IsConstant());
   4622 
   4623   int32_t imm = Int32ConstantFrom(second);
   4624   if (imm == 0) {
   4625     // Do not generate anything. DivZeroCheck would prevent any code to be executed.
   4626   } else if (imm == 1 || imm == -1) {
   4627     DivRemOneOrMinusOne(instruction);
   4628   } else if (IsPowerOfTwo(AbsOrMin(imm))) {
   4629     DivRemByPowerOfTwo(instruction);
   4630   } else {
   4631     DCHECK(imm <= -2 || imm >= 2);
   4632     GenerateDivRemWithAnyConstant(instruction);
   4633   }
   4634 }
   4635 
   4636 void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) {
   4637   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   4638   if (div->GetResultType() == Primitive::kPrimLong) {
   4639     // pLdiv runtime call.
   4640     call_kind = LocationSummary::kCallOnMainOnly;
   4641   } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
   4642     // sdiv will be replaced by other instruction sequence.
   4643   } else if (div->GetResultType() == Primitive::kPrimInt &&
   4644              !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
   4645     // pIdivmod runtime call.
   4646     call_kind = LocationSummary::kCallOnMainOnly;
   4647   }
   4648 
   4649   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
   4650 
   4651   switch (div->GetResultType()) {
   4652     case Primitive::kPrimInt: {
   4653       if (div->InputAt(1)->IsConstant()) {
   4654         locations->SetInAt(0, Location::RequiresRegister());
   4655         locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
   4656         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4657         int32_t value = Int32ConstantFrom(div->InputAt(1));
   4658         if (value == 1 || value == 0 || value == -1) {
   4659           // No temp register required.
   4660         } else {
   4661           locations->AddTemp(Location::RequiresRegister());
   4662           if (!IsPowerOfTwo(AbsOrMin(value))) {
   4663             locations->AddTemp(Location::RequiresRegister());
   4664           }
   4665         }
   4666       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
   4667         locations->SetInAt(0, Location::RequiresRegister());
   4668         locations->SetInAt(1, Location::RequiresRegister());
   4669         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4670       } else {
   4671         InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4672         locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   4673         locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
   4674         // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
   4675         //       we only need the former.
   4676         locations->SetOut(LocationFrom(r0));
   4677       }
   4678       break;
   4679     }
   4680     case Primitive::kPrimLong: {
   4681       InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4682       locations->SetInAt(0, LocationFrom(
   4683           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   4684       locations->SetInAt(1, LocationFrom(
   4685           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   4686       locations->SetOut(LocationFrom(r0, r1));
   4687       break;
   4688     }
   4689     case Primitive::kPrimFloat:
   4690     case Primitive::kPrimDouble: {
   4691       locations->SetInAt(0, Location::RequiresFpuRegister());
   4692       locations->SetInAt(1, Location::RequiresFpuRegister());
   4693       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4694       break;
   4695     }
   4696 
   4697     default:
   4698       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
   4699   }
   4700 }
   4701 
   4702 void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) {
   4703   Location lhs = div->GetLocations()->InAt(0);
   4704   Location rhs = div->GetLocations()->InAt(1);
   4705 
   4706   switch (div->GetResultType()) {
   4707     case Primitive::kPrimInt: {
   4708       if (rhs.IsConstant()) {
   4709         GenerateDivRemConstantIntegral(div);
   4710       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
   4711         __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
   4712       } else {
   4713         InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4714         DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs)));
   4715         DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs)));
   4716         DCHECK(r0.Is(OutputRegister(div)));
   4717 
   4718         codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
   4719         CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
   4720       }
   4721       break;
   4722     }
   4723 
   4724     case Primitive::kPrimLong: {
   4725       InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4726       DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs)));
   4727       DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs)));
   4728       DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs)));
   4729       DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs)));
   4730       DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0));
   4731       DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1));
   4732 
   4733       codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
   4734       CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
   4735       break;
   4736     }
   4737 
   4738     case Primitive::kPrimFloat:
   4739     case Primitive::kPrimDouble:
   4740       __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1));
   4741       break;
   4742 
   4743     default:
   4744       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
   4745   }
   4746 }
   4747 
   4748 void LocationsBuilderARMVIXL::VisitRem(HRem* rem) {
   4749   Primitive::Type type = rem->GetResultType();
   4750 
   4751   // Most remainders are implemented in the runtime.
   4752   LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
   4753   if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
   4754     // sdiv will be replaced by other instruction sequence.
   4755     call_kind = LocationSummary::kNoCall;
   4756   } else if ((rem->GetResultType() == Primitive::kPrimInt)
   4757              && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
   4758     // Have hardware divide instruction for int, do it with three instructions.
   4759     call_kind = LocationSummary::kNoCall;
   4760   }
   4761 
   4762   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
   4763 
   4764   switch (type) {
   4765     case Primitive::kPrimInt: {
   4766       if (rem->InputAt(1)->IsConstant()) {
   4767         locations->SetInAt(0, Location::RequiresRegister());
   4768         locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
   4769         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4770         int32_t value = Int32ConstantFrom(rem->InputAt(1));
   4771         if (value == 1 || value == 0 || value == -1) {
   4772           // No temp register required.
   4773         } else {
   4774           locations->AddTemp(Location::RequiresRegister());
   4775           if (!IsPowerOfTwo(AbsOrMin(value))) {
   4776             locations->AddTemp(Location::RequiresRegister());
   4777           }
   4778         }
   4779       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
   4780         locations->SetInAt(0, Location::RequiresRegister());
   4781         locations->SetInAt(1, Location::RequiresRegister());
   4782         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4783         locations->AddTemp(Location::RequiresRegister());
   4784       } else {
   4785         InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4786         locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   4787         locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
   4788         // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
   4789         //       we only need the latter.
   4790         locations->SetOut(LocationFrom(r1));
   4791       }
   4792       break;
   4793     }
   4794     case Primitive::kPrimLong: {
   4795       InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4796       locations->SetInAt(0, LocationFrom(
   4797           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   4798       locations->SetInAt(1, LocationFrom(
   4799           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   4800       // The runtime helper puts the output in R2,R3.
   4801       locations->SetOut(LocationFrom(r2, r3));
   4802       break;
   4803     }
   4804     case Primitive::kPrimFloat: {
   4805       InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4806       locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
   4807       locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
   4808       locations->SetOut(LocationFrom(s0));
   4809       break;
   4810     }
   4811 
   4812     case Primitive::kPrimDouble: {
   4813       InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4814       locations->SetInAt(0, LocationFrom(
   4815           calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
   4816       locations->SetInAt(1, LocationFrom(
   4817           calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
   4818       locations->SetOut(LocationFrom(s0, s1));
   4819       break;
   4820     }
   4821 
   4822     default:
   4823       LOG(FATAL) << "Unexpected rem type " << type;
   4824   }
   4825 }
   4826 
   4827 void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) {
   4828   LocationSummary* locations = rem->GetLocations();
   4829   Location second = locations->InAt(1);
   4830 
   4831   Primitive::Type type = rem->GetResultType();
   4832   switch (type) {
   4833     case Primitive::kPrimInt: {
   4834         vixl32::Register reg1 = InputRegisterAt(rem, 0);
   4835         vixl32::Register out_reg = OutputRegister(rem);
   4836         if (second.IsConstant()) {
   4837           GenerateDivRemConstantIntegral(rem);
   4838         } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
   4839         vixl32::Register reg2 = RegisterFrom(second);
   4840         vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
   4841 
   4842         // temp = reg1 / reg2  (integer division)
   4843         // dest = reg1 - temp * reg2
   4844         __ Sdiv(temp, reg1, reg2);
   4845         __ Mls(out_reg, temp, reg2, reg1);
   4846       } else {
   4847         InvokeRuntimeCallingConventionARMVIXL calling_convention;
   4848         DCHECK(reg1.Is(calling_convention.GetRegisterAt(0)));
   4849         DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1)));
   4850         DCHECK(out_reg.Is(r1));
   4851 
   4852         codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
   4853         CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
   4854       }
   4855       break;
   4856     }
   4857 
   4858     case Primitive::kPrimLong: {
   4859       codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
   4860         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
   4861       break;
   4862     }
   4863 
   4864     case Primitive::kPrimFloat: {
   4865       codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
   4866       CheckEntrypointTypes<kQuickFmodf, float, float, float>();
   4867       break;
   4868     }
   4869 
   4870     case Primitive::kPrimDouble: {
   4871       codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
   4872       CheckEntrypointTypes<kQuickFmod, double, double, double>();
   4873       break;
   4874     }
   4875 
   4876     default:
   4877       LOG(FATAL) << "Unexpected rem type " << type;
   4878   }
   4879 }
   4880 
   4881 
   4882 void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   4883   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
   4884   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
   4885 }
   4886 
   4887 void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   4888   DivZeroCheckSlowPathARMVIXL* slow_path =
   4889       new (GetGraph()->GetArena()) DivZeroCheckSlowPathARMVIXL(instruction);
   4890   codegen_->AddSlowPath(slow_path);
   4891 
   4892   LocationSummary* locations = instruction->GetLocations();
   4893   Location value = locations->InAt(0);
   4894 
   4895   switch (instruction->GetType()) {
   4896     case Primitive::kPrimBoolean:
   4897     case Primitive::kPrimByte:
   4898     case Primitive::kPrimChar:
   4899     case Primitive::kPrimShort:
   4900     case Primitive::kPrimInt: {
   4901       if (value.IsRegister()) {
   4902         __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
   4903       } else {
   4904         DCHECK(value.IsConstant()) << value;
   4905         if (Int32ConstantFrom(value) == 0) {
   4906           __ B(slow_path->GetEntryLabel());
   4907         }
   4908       }
   4909       break;
   4910     }
   4911     case Primitive::kPrimLong: {
   4912       if (value.IsRegisterPair()) {
   4913         UseScratchRegisterScope temps(GetVIXLAssembler());
   4914         vixl32::Register temp = temps.Acquire();
   4915         __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value));
   4916         __ B(eq, slow_path->GetEntryLabel());
   4917       } else {
   4918         DCHECK(value.IsConstant()) << value;
   4919         if (Int64ConstantFrom(value) == 0) {
   4920           __ B(slow_path->GetEntryLabel());
   4921         }
   4922       }
   4923       break;
   4924     }
   4925     default:
   4926       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
   4927   }
   4928 }
   4929 
   4930 void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) {
   4931   LocationSummary* locations = ror->GetLocations();
   4932   vixl32::Register in = InputRegisterAt(ror, 0);
   4933   Location rhs = locations->InAt(1);
   4934   vixl32::Register out = OutputRegister(ror);
   4935 
   4936   if (rhs.IsConstant()) {
   4937     // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
   4938     // so map all rotations to a +ve. equivalent in that range.
   4939     // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
   4940     uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
   4941     if (rot) {
   4942       // Rotate, mapping left rotations to right equivalents if necessary.
   4943       // (e.g. left by 2 bits == right by 30.)
   4944       __ Ror(out, in, rot);
   4945     } else if (!out.Is(in)) {
   4946       __ Mov(out, in);
   4947     }
   4948   } else {
   4949     __ Ror(out, in, RegisterFrom(rhs));
   4950   }
   4951 }
   4952 
   4953 // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
   4954 // rotates by swapping input regs (effectively rotating by the first 32-bits of
   4955 // a larger rotation) or flipping direction (thus treating larger right/left
   4956 // rotations as sub-word sized rotations in the other direction) as appropriate.
   4957 void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) {
   4958   LocationSummary* locations = ror->GetLocations();
   4959   vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
   4960   vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
   4961   Location rhs = locations->InAt(1);
   4962   vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
   4963   vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
   4964 
   4965   if (rhs.IsConstant()) {
   4966     uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
   4967     // Map all rotations to +ve. equivalents on the interval [0,63].
   4968     rot &= kMaxLongShiftDistance;
   4969     // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
   4970     // logic below to a simple pair of binary orr.
   4971     // (e.g. 34 bits == in_reg swap + 2 bits right.)
   4972     if (rot >= kArmBitsPerWord) {
   4973       rot -= kArmBitsPerWord;
   4974       std::swap(in_reg_hi, in_reg_lo);
   4975     }
   4976     // Rotate, or mov to out for zero or word size rotations.
   4977     if (rot != 0u) {
   4978       __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot));
   4979       __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot));
   4980       __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot));
   4981       __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot));
   4982     } else {
   4983       __ Mov(out_reg_lo, in_reg_lo);
   4984       __ Mov(out_reg_hi, in_reg_hi);
   4985     }
   4986   } else {
   4987     vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0));
   4988     vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1));
   4989     vixl32::Label end;
   4990     vixl32::Label shift_by_32_plus_shift_right;
   4991     vixl32::Label* final_label = codegen_->GetFinalLabel(ror, &end);
   4992 
   4993     __ And(shift_right, RegisterFrom(rhs), 0x1F);
   4994     __ Lsrs(shift_left, RegisterFrom(rhs), 6);
   4995     __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord));
   4996     __ B(cc, &shift_by_32_plus_shift_right, /* far_target */ false);
   4997 
   4998     // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
   4999     // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
   5000     __ Lsl(out_reg_hi, in_reg_hi, shift_left);
   5001     __ Lsr(out_reg_lo, in_reg_lo, shift_right);
   5002     __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
   5003     __ Lsl(out_reg_lo, in_reg_lo, shift_left);
   5004     __ Lsr(shift_left, in_reg_hi, shift_right);
   5005     __ Add(out_reg_lo, out_reg_lo, shift_left);
   5006     __ B(final_label);
   5007 
   5008     __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
   5009     // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
   5010     // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
   5011     __ Lsr(out_reg_hi, in_reg_hi, shift_right);
   5012     __ Lsl(out_reg_lo, in_reg_lo, shift_left);
   5013     __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
   5014     __ Lsr(out_reg_lo, in_reg_lo, shift_right);
   5015     __ Lsl(shift_right, in_reg_hi, shift_left);
   5016     __ Add(out_reg_lo, out_reg_lo, shift_right);
   5017 
   5018     if (end.IsReferenced()) {
   5019       __ Bind(&end);
   5020     }
   5021   }
   5022 }
   5023 
   5024 void LocationsBuilderARMVIXL::VisitRor(HRor* ror) {
   5025   LocationSummary* locations =
   5026       new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
   5027   switch (ror->GetResultType()) {
   5028     case Primitive::kPrimInt: {
   5029       locations->SetInAt(0, Location::RequiresRegister());
   5030       locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
   5031       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5032       break;
   5033     }
   5034     case Primitive::kPrimLong: {
   5035       locations->SetInAt(0, Location::RequiresRegister());
   5036       if (ror->InputAt(1)->IsConstant()) {
   5037         locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
   5038       } else {
   5039         locations->SetInAt(1, Location::RequiresRegister());
   5040         locations->AddTemp(Location::RequiresRegister());
   5041         locations->AddTemp(Location::RequiresRegister());
   5042       }
   5043       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   5044       break;
   5045     }
   5046     default:
   5047       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
   5048   }
   5049 }
   5050 
   5051 void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) {
   5052   Primitive::Type type = ror->GetResultType();
   5053   switch (type) {
   5054     case Primitive::kPrimInt: {
   5055       HandleIntegerRotate(ror);
   5056       break;
   5057     }
   5058     case Primitive::kPrimLong: {
   5059       HandleLongRotate(ror);
   5060       break;
   5061     }
   5062     default:
   5063       LOG(FATAL) << "Unexpected operation type " << type;
   5064       UNREACHABLE();
   5065   }
   5066 }
   5067 
   5068 void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) {
   5069   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
   5070 
   5071   LocationSummary* locations =
   5072       new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
   5073 
   5074   switch (op->GetResultType()) {
   5075     case Primitive::kPrimInt: {
   5076       locations->SetInAt(0, Location::RequiresRegister());
   5077       if (op->InputAt(1)->IsConstant()) {
   5078         locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
   5079         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5080       } else {
   5081         locations->SetInAt(1, Location::RequiresRegister());
   5082         // Make the output overlap, as it will be used to hold the masked
   5083         // second input.
   5084         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   5085       }
   5086       break;
   5087     }
   5088     case Primitive::kPrimLong: {
   5089       locations->SetInAt(0, Location::RequiresRegister());
   5090       if (op->InputAt(1)->IsConstant()) {
   5091         locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
   5092         // For simplicity, use kOutputOverlap even though we only require that low registers
   5093         // don't clash with high registers which the register allocator currently guarantees.
   5094         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   5095       } else {
   5096         locations->SetInAt(1, Location::RequiresRegister());
   5097         locations->AddTemp(Location::RequiresRegister());
   5098         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   5099       }
   5100       break;
   5101     }
   5102     default:
   5103       LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
   5104   }
   5105 }
   5106 
   5107 void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) {
   5108   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
   5109 
   5110   LocationSummary* locations = op->GetLocations();
   5111   Location out = locations->Out();
   5112   Location first = locations->InAt(0);
   5113   Location second = locations->InAt(1);
   5114 
   5115   Primitive::Type type = op->GetResultType();
   5116   switch (type) {
   5117     case Primitive::kPrimInt: {
   5118       vixl32::Register out_reg = OutputRegister(op);
   5119       vixl32::Register first_reg = InputRegisterAt(op, 0);
   5120       if (second.IsRegister()) {
   5121         vixl32::Register second_reg = RegisterFrom(second);
   5122         // ARM doesn't mask the shift count so we need to do it ourselves.
   5123         __ And(out_reg, second_reg, kMaxIntShiftDistance);
   5124         if (op->IsShl()) {
   5125           __ Lsl(out_reg, first_reg, out_reg);
   5126         } else if (op->IsShr()) {
   5127           __ Asr(out_reg, first_reg, out_reg);
   5128         } else {
   5129           __ Lsr(out_reg, first_reg, out_reg);
   5130         }
   5131       } else {
   5132         int32_t cst = Int32ConstantFrom(second);
   5133         uint32_t shift_value = cst & kMaxIntShiftDistance;
   5134         if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
   5135           __ Mov(out_reg, first_reg);
   5136         } else if (op->IsShl()) {
   5137           __ Lsl(out_reg, first_reg, shift_value);
   5138         } else if (op->IsShr()) {
   5139           __ Asr(out_reg, first_reg, shift_value);
   5140         } else {
   5141           __ Lsr(out_reg, first_reg, shift_value);
   5142         }
   5143       }
   5144       break;
   5145     }
   5146     case Primitive::kPrimLong: {
   5147       vixl32::Register o_h = HighRegisterFrom(out);
   5148       vixl32::Register o_l = LowRegisterFrom(out);
   5149 
   5150       vixl32::Register high = HighRegisterFrom(first);
   5151       vixl32::Register low = LowRegisterFrom(first);
   5152 
   5153       if (second.IsRegister()) {
   5154         vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
   5155 
   5156         vixl32::Register second_reg = RegisterFrom(second);
   5157 
   5158         if (op->IsShl()) {
   5159           __ And(o_l, second_reg, kMaxLongShiftDistance);
   5160           // Shift the high part
   5161           __ Lsl(o_h, high, o_l);
   5162           // Shift the low part and `or` what overflew on the high part
   5163           __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord));
   5164           __ Lsr(temp, low, temp);
   5165           __ Orr(o_h, o_h, temp);
   5166           // If the shift is > 32 bits, override the high part
   5167           __ Subs(temp, o_l, Operand::From(kArmBitsPerWord));
   5168           {
   5169             ExactAssemblyScope guard(GetVIXLAssembler(),
   5170                                      2 * vixl32::kMaxInstructionSizeInBytes,
   5171                                      CodeBufferCheckScope::kMaximumSize);
   5172             __ it(pl);
   5173             __ lsl(pl, o_h, low, temp);
   5174           }
   5175           // Shift the low part
   5176           __ Lsl(o_l, low, o_l);
   5177         } else if (op->IsShr()) {
   5178           __ And(o_h, second_reg, kMaxLongShiftDistance);
   5179           // Shift the low part
   5180           __ Lsr(o_l, low, o_h);
   5181           // Shift the high part and `or` what underflew on the low part
   5182           __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
   5183           __ Lsl(temp, high, temp);
   5184           __ Orr(o_l, o_l, temp);
   5185           // If the shift is > 32 bits, override the low part
   5186           __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
   5187           {
   5188             ExactAssemblyScope guard(GetVIXLAssembler(),
   5189                                      2 * vixl32::kMaxInstructionSizeInBytes,
   5190                                      CodeBufferCheckScope::kMaximumSize);
   5191             __ it(pl);
   5192             __ asr(pl, o_l, high, temp);
   5193           }
   5194           // Shift the high part
   5195           __ Asr(o_h, high, o_h);
   5196         } else {
   5197           __ And(o_h, second_reg, kMaxLongShiftDistance);
   5198           // same as Shr except we use `Lsr`s and not `Asr`s
   5199           __ Lsr(o_l, low, o_h);
   5200           __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
   5201           __ Lsl(temp, high, temp);
   5202           __ Orr(o_l, o_l, temp);
   5203           __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
   5204           {
   5205             ExactAssemblyScope guard(GetVIXLAssembler(),
   5206                                      2 * vixl32::kMaxInstructionSizeInBytes,
   5207                                      CodeBufferCheckScope::kMaximumSize);
   5208           __ it(pl);
   5209           __ lsr(pl, o_l, high, temp);
   5210           }
   5211           __ Lsr(o_h, high, o_h);
   5212         }
   5213       } else {
   5214         // Register allocator doesn't create partial overlap.
   5215         DCHECK(!o_l.Is(high));
   5216         DCHECK(!o_h.Is(low));
   5217         int32_t cst = Int32ConstantFrom(second);
   5218         uint32_t shift_value = cst & kMaxLongShiftDistance;
   5219         if (shift_value > 32) {
   5220           if (op->IsShl()) {
   5221             __ Lsl(o_h, low, shift_value - 32);
   5222             __ Mov(o_l, 0);
   5223           } else if (op->IsShr()) {
   5224             __ Asr(o_l, high, shift_value - 32);
   5225             __ Asr(o_h, high, 31);
   5226           } else {
   5227             __ Lsr(o_l, high, shift_value - 32);
   5228             __ Mov(o_h, 0);
   5229           }
   5230         } else if (shift_value == 32) {
   5231           if (op->IsShl()) {
   5232             __ Mov(o_h, low);
   5233             __ Mov(o_l, 0);
   5234           } else if (op->IsShr()) {
   5235             __ Mov(o_l, high);
   5236             __ Asr(o_h, high, 31);
   5237           } else {
   5238             __ Mov(o_l, high);
   5239             __ Mov(o_h, 0);
   5240           }
   5241         } else if (shift_value == 1) {
   5242           if (op->IsShl()) {
   5243             __ Lsls(o_l, low, 1);
   5244             __ Adc(o_h, high, high);
   5245           } else if (op->IsShr()) {
   5246             __ Asrs(o_h, high, 1);
   5247             __ Rrx(o_l, low);
   5248           } else {
   5249             __ Lsrs(o_h, high, 1);
   5250             __ Rrx(o_l, low);
   5251           }
   5252         } else {
   5253           DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
   5254           if (op->IsShl()) {
   5255             __ Lsl(o_h, high, shift_value);
   5256             __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value));
   5257             __ Lsl(o_l, low, shift_value);
   5258           } else if (op->IsShr()) {
   5259             __ Lsr(o_l, low, shift_value);
   5260             __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
   5261             __ Asr(o_h, high, shift_value);
   5262           } else {
   5263             __ Lsr(o_l, low, shift_value);
   5264             __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
   5265             __ Lsr(o_h, high, shift_value);
   5266           }
   5267         }
   5268       }
   5269       break;
   5270     }
   5271     default:
   5272       LOG(FATAL) << "Unexpected operation type " << type;
   5273       UNREACHABLE();
   5274   }
   5275 }
   5276 
   5277 void LocationsBuilderARMVIXL::VisitShl(HShl* shl) {
   5278   HandleShift(shl);
   5279 }
   5280 
   5281 void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) {
   5282   HandleShift(shl);
   5283 }
   5284 
   5285 void LocationsBuilderARMVIXL::VisitShr(HShr* shr) {
   5286   HandleShift(shr);
   5287 }
   5288 
   5289 void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) {
   5290   HandleShift(shr);
   5291 }
   5292 
   5293 void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) {
   5294   HandleShift(ushr);
   5295 }
   5296 
   5297 void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) {
   5298   HandleShift(ushr);
   5299 }
   5300 
   5301 void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) {
   5302   LocationSummary* locations =
   5303       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   5304   if (instruction->IsStringAlloc()) {
   5305     locations->AddTemp(LocationFrom(kMethodRegister));
   5306   } else {
   5307     InvokeRuntimeCallingConventionARMVIXL calling_convention;
   5308     locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   5309   }
   5310   locations->SetOut(LocationFrom(r0));
   5311 }
   5312 
   5313 void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) {
   5314   // Note: if heap poisoning is enabled, the entry point takes cares
   5315   // of poisoning the reference.
   5316   if (instruction->IsStringAlloc()) {
   5317     // String is allocated through StringFactory. Call NewEmptyString entry point.
   5318     vixl32::Register temp = RegisterFrom(instruction->GetLocations()->GetTemp(0));
   5319     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
   5320     GetAssembler()->LoadFromOffset(kLoadWord, temp, tr, QUICK_ENTRY_POINT(pNewEmptyString));
   5321     GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, code_offset.Int32Value());
   5322     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
   5323     ExactAssemblyScope aas(GetVIXLAssembler(),
   5324                            vixl32::k16BitT32InstructionSizeInBytes,
   5325                            CodeBufferCheckScope::kExactSize);
   5326     __ blx(lr);
   5327     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   5328   } else {
   5329     codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
   5330     CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
   5331   }
   5332 }
   5333 
   5334 void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) {
   5335   LocationSummary* locations =
   5336       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   5337   InvokeRuntimeCallingConventionARMVIXL calling_convention;
   5338   locations->SetOut(LocationFrom(r0));
   5339   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   5340   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
   5341 }
   5342 
   5343 void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) {
   5344   // Note: if heap poisoning is enabled, the entry point takes cares
   5345   // of poisoning the reference.
   5346   QuickEntrypointEnum entrypoint =
   5347       CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass());
   5348   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
   5349   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
   5350   DCHECK(!codegen_->IsLeafMethod());
   5351 }
   5352 
   5353 void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) {
   5354   LocationSummary* locations =
   5355       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   5356   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
   5357   if (location.IsStackSlot()) {
   5358     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   5359   } else if (location.IsDoubleStackSlot()) {
   5360     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   5361   }
   5362   locations->SetOut(location);
   5363 }
   5364 
   5365 void InstructionCodeGeneratorARMVIXL::VisitParameterValue(
   5366     HParameterValue* instruction ATTRIBUTE_UNUSED) {
   5367   // Nothing to do, the parameter is already at its location.
   5368 }
   5369 
   5370 void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) {
   5371   LocationSummary* locations =
   5372       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   5373   locations->SetOut(LocationFrom(kMethodRegister));
   5374 }
   5375 
   5376 void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod(
   5377     HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
   5378   // Nothing to do, the method is already at its location.
   5379 }
   5380 
   5381 void LocationsBuilderARMVIXL::VisitNot(HNot* not_) {
   5382   LocationSummary* locations =
   5383       new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
   5384   locations->SetInAt(0, Location::RequiresRegister());
   5385   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5386 }
   5387 
   5388 void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) {
   5389   LocationSummary* locations = not_->GetLocations();
   5390   Location out = locations->Out();
   5391   Location in = locations->InAt(0);
   5392   switch (not_->GetResultType()) {
   5393     case Primitive::kPrimInt:
   5394       __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0));
   5395       break;
   5396 
   5397     case Primitive::kPrimLong:
   5398       __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in));
   5399       __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in));
   5400       break;
   5401 
   5402     default:
   5403       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
   5404   }
   5405 }
   5406 
   5407 void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
   5408   LocationSummary* locations =
   5409       new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
   5410   locations->SetInAt(0, Location::RequiresRegister());
   5411   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5412 }
   5413 
   5414 void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
   5415   __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1);
   5416 }
   5417 
   5418 void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) {
   5419   LocationSummary* locations =
   5420       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
   5421   switch (compare->InputAt(0)->GetType()) {
   5422     case Primitive::kPrimBoolean:
   5423     case Primitive::kPrimByte:
   5424     case Primitive::kPrimShort:
   5425     case Primitive::kPrimChar:
   5426     case Primitive::kPrimInt:
   5427     case Primitive::kPrimLong: {
   5428       locations->SetInAt(0, Location::RequiresRegister());
   5429       locations->SetInAt(1, Location::RequiresRegister());
   5430       // Output overlaps because it is written before doing the low comparison.
   5431       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   5432       break;
   5433     }
   5434     case Primitive::kPrimFloat:
   5435     case Primitive::kPrimDouble: {
   5436       locations->SetInAt(0, Location::RequiresFpuRegister());
   5437       locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
   5438       locations->SetOut(Location::RequiresRegister());
   5439       break;
   5440     }
   5441     default:
   5442       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
   5443   }
   5444 }
   5445 
   5446 void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) {
   5447   LocationSummary* locations = compare->GetLocations();
   5448   vixl32::Register out = OutputRegister(compare);
   5449   Location left = locations->InAt(0);
   5450   Location right = locations->InAt(1);
   5451 
   5452   vixl32::Label less, greater, done;
   5453   vixl32::Label* final_label = codegen_->GetFinalLabel(compare, &done);
   5454   Primitive::Type type = compare->InputAt(0)->GetType();
   5455   vixl32::Condition less_cond = vixl32::Condition(kNone);
   5456   switch (type) {
   5457     case Primitive::kPrimBoolean:
   5458     case Primitive::kPrimByte:
   5459     case Primitive::kPrimShort:
   5460     case Primitive::kPrimChar:
   5461     case Primitive::kPrimInt: {
   5462       // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags.
   5463       __ Mov(out, 0);
   5464       __ Cmp(RegisterFrom(left), RegisterFrom(right));  // Signed compare.
   5465       less_cond = lt;
   5466       break;
   5467     }
   5468     case Primitive::kPrimLong: {
   5469       __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));  // Signed compare.
   5470       __ B(lt, &less, /* far_target */ false);
   5471       __ B(gt, &greater, /* far_target */ false);
   5472       // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags.
   5473       __ Mov(out, 0);
   5474       __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));  // Unsigned compare.
   5475       less_cond = lo;
   5476       break;
   5477     }
   5478     case Primitive::kPrimFloat:
   5479     case Primitive::kPrimDouble: {
   5480       __ Mov(out, 0);
   5481       GenerateVcmp(compare, codegen_);
   5482       // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS).
   5483       __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
   5484       less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
   5485       break;
   5486     }
   5487     default:
   5488       LOG(FATAL) << "Unexpected compare type " << type;
   5489       UNREACHABLE();
   5490   }
   5491 
   5492   __ B(eq, final_label, /* far_target */ false);
   5493   __ B(less_cond, &less, /* far_target */ false);
   5494 
   5495   __ Bind(&greater);
   5496   __ Mov(out, 1);
   5497   __ B(final_label);
   5498 
   5499   __ Bind(&less);
   5500   __ Mov(out, -1);
   5501 
   5502   if (done.IsReferenced()) {
   5503     __ Bind(&done);
   5504   }
   5505 }
   5506 
   5507 void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) {
   5508   LocationSummary* locations =
   5509       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   5510   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
   5511     locations->SetInAt(i, Location::Any());
   5512   }
   5513   locations->SetOut(Location::Any());
   5514 }
   5515 
   5516 void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
   5517   LOG(FATAL) << "Unreachable";
   5518 }
   5519 
   5520 void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) {
   5521   // TODO (ported from quick): revisit ARM barrier kinds.
   5522   DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
   5523   switch (kind) {
   5524     case MemBarrierKind::kAnyStore:
   5525     case MemBarrierKind::kLoadAny:
   5526     case MemBarrierKind::kAnyAny: {
   5527       flavor = DmbOptions::ISH;
   5528       break;
   5529     }
   5530     case MemBarrierKind::kStoreStore: {
   5531       flavor = DmbOptions::ISHST;
   5532       break;
   5533     }
   5534     default:
   5535       LOG(FATAL) << "Unexpected memory barrier " << kind;
   5536   }
   5537   __ Dmb(flavor);
   5538 }
   5539 
   5540 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr,
   5541                                                              uint32_t offset,
   5542                                                              vixl32::Register out_lo,
   5543                                                              vixl32::Register out_hi) {
   5544   UseScratchRegisterScope temps(GetVIXLAssembler());
   5545   if (offset != 0) {
   5546     vixl32::Register temp = temps.Acquire();
   5547     __ Add(temp, addr, offset);
   5548     addr = temp;
   5549   }
   5550   __ Ldrexd(out_lo, out_hi, MemOperand(addr));
   5551 }
   5552 
   5553 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr,
   5554                                                               uint32_t offset,
   5555                                                               vixl32::Register value_lo,
   5556                                                               vixl32::Register value_hi,
   5557                                                               vixl32::Register temp1,
   5558                                                               vixl32::Register temp2,
   5559                                                               HInstruction* instruction) {
   5560   UseScratchRegisterScope temps(GetVIXLAssembler());
   5561   vixl32::Label fail;
   5562   if (offset != 0) {
   5563     vixl32::Register temp = temps.Acquire();
   5564     __ Add(temp, addr, offset);
   5565     addr = temp;
   5566   }
   5567   __ Bind(&fail);
   5568   {
   5569     // Ensure the pc position is recorded immediately after the `ldrexd` instruction.
   5570     ExactAssemblyScope aas(GetVIXLAssembler(),
   5571                            vixl32::kMaxInstructionSizeInBytes,
   5572                            CodeBufferCheckScope::kMaximumSize);
   5573     // We need a load followed by store. (The address used in a STREX instruction must
   5574     // be the same as the address in the most recently executed LDREX instruction.)
   5575     __ ldrexd(temp1, temp2, MemOperand(addr));
   5576     codegen_->MaybeRecordImplicitNullCheck(instruction);
   5577   }
   5578   __ Strexd(temp1, value_lo, value_hi, MemOperand(addr));
   5579   __ CompareAndBranchIfNonZero(temp1, &fail);
   5580 }
   5581 
   5582 void LocationsBuilderARMVIXL::HandleFieldSet(
   5583     HInstruction* instruction, const FieldInfo& field_info) {
   5584   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
   5585 
   5586   LocationSummary* locations =
   5587       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   5588   locations->SetInAt(0, Location::RequiresRegister());
   5589 
   5590   Primitive::Type field_type = field_info.GetFieldType();
   5591   if (Primitive::IsFloatingPointType(field_type)) {
   5592     locations->SetInAt(1, Location::RequiresFpuRegister());
   5593   } else {
   5594     locations->SetInAt(1, Location::RequiresRegister());
   5595   }
   5596 
   5597   bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
   5598   bool generate_volatile = field_info.IsVolatile()
   5599       && is_wide
   5600       && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
   5601   bool needs_write_barrier =
   5602       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
   5603   // Temporary registers for the write barrier.
   5604   // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
   5605   if (needs_write_barrier) {
   5606     locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
   5607     locations->AddTemp(Location::RequiresRegister());
   5608   } else if (generate_volatile) {
   5609     // ARM encoding have some additional constraints for ldrexd/strexd:
   5610     // - registers need to be consecutive
   5611     // - the first register should be even but not R14.
   5612     // We don't test for ARM yet, and the assertion makes sure that we
   5613     // revisit this if we ever enable ARM encoding.
   5614     DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
   5615 
   5616     locations->AddTemp(Location::RequiresRegister());
   5617     locations->AddTemp(Location::RequiresRegister());
   5618     if (field_type == Primitive::kPrimDouble) {
   5619       // For doubles we need two more registers to copy the value.
   5620       locations->AddTemp(LocationFrom(r2));
   5621       locations->AddTemp(LocationFrom(r3));
   5622     }
   5623   }
   5624 }
   5625 
   5626 void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction,
   5627                                                      const FieldInfo& field_info,
   5628                                                      bool value_can_be_null) {
   5629   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
   5630 
   5631   LocationSummary* locations = instruction->GetLocations();
   5632   vixl32::Register base = InputRegisterAt(instruction, 0);
   5633   Location value = locations->InAt(1);
   5634 
   5635   bool is_volatile = field_info.IsVolatile();
   5636   bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
   5637   Primitive::Type field_type = field_info.GetFieldType();
   5638   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   5639   bool needs_write_barrier =
   5640       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
   5641 
   5642   if (is_volatile) {
   5643     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
   5644   }
   5645 
   5646   switch (field_type) {
   5647     case Primitive::kPrimBoolean:
   5648     case Primitive::kPrimByte: {
   5649       GetAssembler()->StoreToOffset(kStoreByte, RegisterFrom(value), base, offset);
   5650       break;
   5651     }
   5652 
   5653     case Primitive::kPrimShort:
   5654     case Primitive::kPrimChar: {
   5655       GetAssembler()->StoreToOffset(kStoreHalfword, RegisterFrom(value), base, offset);
   5656       break;
   5657     }
   5658 
   5659     case Primitive::kPrimInt:
   5660     case Primitive::kPrimNot: {
   5661       if (kPoisonHeapReferences && needs_write_barrier) {
   5662         // Note that in the case where `value` is a null reference,
   5663         // we do not enter this block, as a null reference does not
   5664         // need poisoning.
   5665         DCHECK_EQ(field_type, Primitive::kPrimNot);
   5666         vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
   5667         __ Mov(temp, RegisterFrom(value));
   5668         GetAssembler()->PoisonHeapReference(temp);
   5669         GetAssembler()->StoreToOffset(kStoreWord, temp, base, offset);
   5670       } else {
   5671         GetAssembler()->StoreToOffset(kStoreWord, RegisterFrom(value), base, offset);
   5672       }
   5673       break;
   5674     }
   5675 
   5676     case Primitive::kPrimLong: {
   5677       if (is_volatile && !atomic_ldrd_strd) {
   5678         GenerateWideAtomicStore(base,
   5679                                 offset,
   5680                                 LowRegisterFrom(value),
   5681                                 HighRegisterFrom(value),
   5682                                 RegisterFrom(locations->GetTemp(0)),
   5683                                 RegisterFrom(locations->GetTemp(1)),
   5684                                 instruction);
   5685       } else {
   5686         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset);
   5687         codegen_->MaybeRecordImplicitNullCheck(instruction);
   5688       }
   5689       break;
   5690     }
   5691 
   5692     case Primitive::kPrimFloat: {
   5693       GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset);
   5694       break;
   5695     }
   5696 
   5697     case Primitive::kPrimDouble: {
   5698       vixl32::DRegister value_reg = DRegisterFrom(value);
   5699       if (is_volatile && !atomic_ldrd_strd) {
   5700         vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0));
   5701         vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1));
   5702 
   5703         __ Vmov(value_reg_lo, value_reg_hi, value_reg);
   5704 
   5705         GenerateWideAtomicStore(base,
   5706                                 offset,
   5707                                 value_reg_lo,
   5708                                 value_reg_hi,
   5709                                 RegisterFrom(locations->GetTemp(2)),
   5710                                 RegisterFrom(locations->GetTemp(3)),
   5711                                 instruction);
   5712       } else {
   5713         GetAssembler()->StoreDToOffset(value_reg, base, offset);
   5714         codegen_->MaybeRecordImplicitNullCheck(instruction);
   5715       }
   5716       break;
   5717     }
   5718 
   5719     case Primitive::kPrimVoid:
   5720       LOG(FATAL) << "Unreachable type " << field_type;
   5721       UNREACHABLE();
   5722   }
   5723 
   5724   // Longs and doubles are handled in the switch.
   5725   if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
   5726     // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method, we
   5727     // should use a scope and the assembler to emit the store instruction to guarantee that we
   5728     // record the pc at the correct position. But the `Assembler` does not automatically handle
   5729     // unencodable offsets. Practically, everything is fine because the helper and VIXL, at the time
   5730     // of writing, do generate the store instruction last.
   5731     codegen_->MaybeRecordImplicitNullCheck(instruction);
   5732   }
   5733 
   5734   if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
   5735     vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
   5736     vixl32::Register card = RegisterFrom(locations->GetTemp(1));
   5737     codegen_->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null);
   5738   }
   5739 
   5740   if (is_volatile) {
   5741     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
   5742   }
   5743 }
   5744 
   5745 void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction,
   5746                                              const FieldInfo& field_info) {
   5747   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
   5748 
   5749   bool object_field_get_with_read_barrier =
   5750       kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
   5751   LocationSummary* locations =
   5752       new (GetGraph()->GetArena()) LocationSummary(instruction,
   5753                                                    object_field_get_with_read_barrier ?
   5754                                                        LocationSummary::kCallOnSlowPath :
   5755                                                        LocationSummary::kNoCall);
   5756   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
   5757     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   5758   }
   5759   locations->SetInAt(0, Location::RequiresRegister());
   5760 
   5761   bool volatile_for_double = field_info.IsVolatile()
   5762       && (field_info.GetFieldType() == Primitive::kPrimDouble)
   5763       && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
   5764   // The output overlaps in case of volatile long: we don't want the
   5765   // code generated by GenerateWideAtomicLoad to overwrite the
   5766   // object's location.  Likewise, in the case of an object field get
   5767   // with read barriers enabled, we do not want the load to overwrite
   5768   // the object's location, as we need it to emit the read barrier.
   5769   bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
   5770       object_field_get_with_read_barrier;
   5771 
   5772   if (Primitive::IsFloatingPointType(instruction->GetType())) {
   5773     locations->SetOut(Location::RequiresFpuRegister());
   5774   } else {
   5775     locations->SetOut(Location::RequiresRegister(),
   5776                       (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
   5777   }
   5778   if (volatile_for_double) {
   5779     // ARM encoding have some additional constraints for ldrexd/strexd:
   5780     // - registers need to be consecutive
   5781     // - the first register should be even but not R14.
   5782     // We don't test for ARM yet, and the assertion makes sure that we
   5783     // revisit this if we ever enable ARM encoding.
   5784     DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
   5785     locations->AddTemp(Location::RequiresRegister());
   5786     locations->AddTemp(Location::RequiresRegister());
   5787   } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
   5788     // We need a temporary register for the read barrier marking slow
   5789     // path in CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier.
   5790     if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
   5791         !Runtime::Current()->UseJitCompilation()) {
   5792       // If link-time thunks for the Baker read barrier are enabled, for AOT
   5793       // loads we need a temporary only if the offset is too big.
   5794       if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
   5795         locations->AddTemp(Location::RequiresRegister());
   5796       }
   5797       // And we always need the reserved entrypoint register.
   5798       locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister.GetCode()));
   5799     } else {
   5800       locations->AddTemp(Location::RequiresRegister());
   5801     }
   5802   }
   5803 }
   5804 
   5805 Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) {
   5806   DCHECK(Primitive::IsFloatingPointType(input->GetType())) << input->GetType();
   5807   if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
   5808       (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
   5809     return Location::ConstantLocation(input->AsConstant());
   5810   } else {
   5811     return Location::RequiresFpuRegister();
   5812   }
   5813 }
   5814 
   5815 Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant,
   5816                                                                  Opcode opcode) {
   5817   DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
   5818   if (constant->IsConstant() &&
   5819       CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
   5820     return Location::ConstantLocation(constant->AsConstant());
   5821   }
   5822   return Location::RequiresRegister();
   5823 }
   5824 
   5825 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst,
   5826                                                            Opcode opcode) {
   5827   uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
   5828   if (Primitive::Is64BitType(input_cst->GetType())) {
   5829     Opcode high_opcode = opcode;
   5830     SetCc low_set_cc = kCcDontCare;
   5831     switch (opcode) {
   5832       case SUB:
   5833         // Flip the operation to an ADD.
   5834         value = -value;
   5835         opcode = ADD;
   5836         FALLTHROUGH_INTENDED;
   5837       case ADD:
   5838         if (Low32Bits(value) == 0u) {
   5839           return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare);
   5840         }
   5841         high_opcode = ADC;
   5842         low_set_cc = kCcSet;
   5843         break;
   5844       default:
   5845         break;
   5846     }
   5847     return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) &&
   5848         CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare);
   5849   } else {
   5850     return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
   5851   }
   5852 }
   5853 
   5854 // TODO(VIXL): Replace art::arm::SetCc` with `vixl32::FlagsUpdate after flags set optimization
   5855 // enabled.
   5856 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(uint32_t value,
   5857                                                            Opcode opcode,
   5858                                                            SetCc set_cc) {
   5859   ArmVIXLAssembler* assembler = codegen_->GetAssembler();
   5860   if (assembler->ShifterOperandCanHold(opcode, value, set_cc)) {
   5861     return true;
   5862   }
   5863   Opcode neg_opcode = kNoOperand;
   5864   uint32_t neg_value = 0;
   5865   switch (opcode) {
   5866     case AND: neg_opcode = BIC; neg_value = ~value; break;
   5867     case ORR: neg_opcode = ORN; neg_value = ~value; break;
   5868     case ADD: neg_opcode = SUB; neg_value = -value; break;
   5869     case ADC: neg_opcode = SBC; neg_value = ~value; break;
   5870     case SUB: neg_opcode = ADD; neg_value = -value; break;
   5871     case SBC: neg_opcode = ADC; neg_value = ~value; break;
   5872     case MOV: neg_opcode = MVN; neg_value = ~value; break;
   5873     default:
   5874       return false;
   5875   }
   5876 
   5877   if (assembler->ShifterOperandCanHold(neg_opcode, neg_value, set_cc)) {
   5878     return true;
   5879   }
   5880 
   5881   return opcode == AND && IsPowerOfTwo(value + 1);
   5882 }
   5883 
   5884 void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction,
   5885                                                      const FieldInfo& field_info) {
   5886   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
   5887 
   5888   LocationSummary* locations = instruction->GetLocations();
   5889   vixl32::Register base = InputRegisterAt(instruction, 0);
   5890   Location out = locations->Out();
   5891   bool is_volatile = field_info.IsVolatile();
   5892   bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
   5893   Primitive::Type field_type = field_info.GetFieldType();
   5894   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   5895 
   5896   switch (field_type) {
   5897     case Primitive::kPrimBoolean:
   5898       GetAssembler()->LoadFromOffset(kLoadUnsignedByte, RegisterFrom(out), base, offset);
   5899       break;
   5900 
   5901     case Primitive::kPrimByte:
   5902       GetAssembler()->LoadFromOffset(kLoadSignedByte, RegisterFrom(out), base, offset);
   5903       break;
   5904 
   5905     case Primitive::kPrimShort:
   5906       GetAssembler()->LoadFromOffset(kLoadSignedHalfword, RegisterFrom(out), base, offset);
   5907       break;
   5908 
   5909     case Primitive::kPrimChar:
   5910       GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, RegisterFrom(out), base, offset);
   5911       break;
   5912 
   5913     case Primitive::kPrimInt:
   5914       GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
   5915       break;
   5916 
   5917     case Primitive::kPrimNot: {
   5918       // /* HeapReference<Object> */ out = *(base + offset)
   5919       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   5920         Location temp_loc = locations->GetTemp(0);
   5921         // Note that a potential implicit null check is handled in this
   5922         // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call.
   5923         codegen_->GenerateFieldLoadWithBakerReadBarrier(
   5924             instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
   5925         if (is_volatile) {
   5926           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
   5927         }
   5928       } else {
   5929         GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
   5930         codegen_->MaybeRecordImplicitNullCheck(instruction);
   5931         if (is_volatile) {
   5932           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
   5933         }
   5934         // If read barriers are enabled, emit read barriers other than
   5935         // Baker's using a slow path (and also unpoison the loaded
   5936         // reference, if heap poisoning is enabled).
   5937         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, locations->InAt(0), offset);
   5938       }
   5939       break;
   5940     }
   5941 
   5942     case Primitive::kPrimLong:
   5943       if (is_volatile && !atomic_ldrd_strd) {
   5944         GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out));
   5945       } else {
   5946         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset);
   5947       }
   5948       break;
   5949 
   5950     case Primitive::kPrimFloat:
   5951       GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset);
   5952       break;
   5953 
   5954     case Primitive::kPrimDouble: {
   5955       vixl32::DRegister out_dreg = DRegisterFrom(out);
   5956       if (is_volatile && !atomic_ldrd_strd) {
   5957         vixl32::Register lo = RegisterFrom(locations->GetTemp(0));
   5958         vixl32::Register hi = RegisterFrom(locations->GetTemp(1));
   5959         GenerateWideAtomicLoad(base, offset, lo, hi);
   5960         // TODO(VIXL): Do we need to be immediately after the ldrexd instruction? If so we need a
   5961         // scope.
   5962         codegen_->MaybeRecordImplicitNullCheck(instruction);
   5963         __ Vmov(out_dreg, lo, hi);
   5964       } else {
   5965         GetAssembler()->LoadDFromOffset(out_dreg, base, offset);
   5966         codegen_->MaybeRecordImplicitNullCheck(instruction);
   5967       }
   5968       break;
   5969     }
   5970 
   5971     case Primitive::kPrimVoid:
   5972       LOG(FATAL) << "Unreachable type " << field_type;
   5973       UNREACHABLE();
   5974   }
   5975 
   5976   if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
   5977     // Potential implicit null checks, in the case of reference or
   5978     // double fields, are handled in the previous switch statement.
   5979   } else {
   5980     // Address cases other than reference and double that may require an implicit null check.
   5981     // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method, we
   5982     // should use a scope and the assembler to emit the load instruction to guarantee that we
   5983     // record the pc at the correct position. But the `Assembler` does not automatically handle
   5984     // unencodable offsets. Practically, everything is fine because the helper and VIXL, at the time
   5985     // of writing, do generate the store instruction last.
   5986     codegen_->MaybeRecordImplicitNullCheck(instruction);
   5987   }
   5988 
   5989   if (is_volatile) {
   5990     if (field_type == Primitive::kPrimNot) {
   5991       // Memory barriers, in the case of references, are also handled
   5992       // in the previous switch statement.
   5993     } else {
   5994       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
   5995     }
   5996   }
   5997 }
   5998 
   5999 void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   6000   HandleFieldSet(instruction, instruction->GetFieldInfo());
   6001 }
   6002 
   6003 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   6004   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
   6005 }
   6006 
   6007 void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   6008   HandleFieldGet(instruction, instruction->GetFieldInfo());
   6009 }
   6010 
   6011 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   6012   HandleFieldGet(instruction, instruction->GetFieldInfo());
   6013 }
   6014 
   6015 void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   6016   HandleFieldGet(instruction, instruction->GetFieldInfo());
   6017 }
   6018 
   6019 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   6020   HandleFieldGet(instruction, instruction->GetFieldInfo());
   6021 }
   6022 
   6023 void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   6024   HandleFieldSet(instruction, instruction->GetFieldInfo());
   6025 }
   6026 
   6027 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   6028   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
   6029 }
   6030 
   6031 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet(
   6032     HUnresolvedInstanceFieldGet* instruction) {
   6033   FieldAccessCallingConventionARMVIXL calling_convention;
   6034   codegen_->CreateUnresolvedFieldLocationSummary(
   6035       instruction, instruction->GetFieldType(), calling_convention);
   6036 }
   6037 
   6038 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet(
   6039     HUnresolvedInstanceFieldGet* instruction) {
   6040   FieldAccessCallingConventionARMVIXL calling_convention;
   6041   codegen_->GenerateUnresolvedFieldAccess(instruction,
   6042                                           instruction->GetFieldType(),
   6043                                           instruction->GetFieldIndex(),
   6044                                           instruction->GetDexPc(),
   6045                                           calling_convention);
   6046 }
   6047 
   6048 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet(
   6049     HUnresolvedInstanceFieldSet* instruction) {
   6050   FieldAccessCallingConventionARMVIXL calling_convention;
   6051   codegen_->CreateUnresolvedFieldLocationSummary(
   6052       instruction, instruction->GetFieldType(), calling_convention);
   6053 }
   6054 
   6055 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet(
   6056     HUnresolvedInstanceFieldSet* instruction) {
   6057   FieldAccessCallingConventionARMVIXL calling_convention;
   6058   codegen_->GenerateUnresolvedFieldAccess(instruction,
   6059                                           instruction->GetFieldType(),
   6060                                           instruction->GetFieldIndex(),
   6061                                           instruction->GetDexPc(),
   6062                                           calling_convention);
   6063 }
   6064 
   6065 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet(
   6066     HUnresolvedStaticFieldGet* instruction) {
   6067   FieldAccessCallingConventionARMVIXL calling_convention;
   6068   codegen_->CreateUnresolvedFieldLocationSummary(
   6069       instruction, instruction->GetFieldType(), calling_convention);
   6070 }
   6071 
   6072 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet(
   6073     HUnresolvedStaticFieldGet* instruction) {
   6074   FieldAccessCallingConventionARMVIXL calling_convention;
   6075   codegen_->GenerateUnresolvedFieldAccess(instruction,
   6076                                           instruction->GetFieldType(),
   6077                                           instruction->GetFieldIndex(),
   6078                                           instruction->GetDexPc(),
   6079                                           calling_convention);
   6080 }
   6081 
   6082 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet(
   6083     HUnresolvedStaticFieldSet* instruction) {
   6084   FieldAccessCallingConventionARMVIXL calling_convention;
   6085   codegen_->CreateUnresolvedFieldLocationSummary(
   6086       instruction, instruction->GetFieldType(), calling_convention);
   6087 }
   6088 
   6089 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet(
   6090     HUnresolvedStaticFieldSet* instruction) {
   6091   FieldAccessCallingConventionARMVIXL calling_convention;
   6092   codegen_->GenerateUnresolvedFieldAccess(instruction,
   6093                                           instruction->GetFieldType(),
   6094                                           instruction->GetFieldIndex(),
   6095                                           instruction->GetDexPc(),
   6096                                           calling_convention);
   6097 }
   6098 
   6099 void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) {
   6100   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
   6101   locations->SetInAt(0, Location::RequiresRegister());
   6102 }
   6103 
   6104 void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) {
   6105   if (CanMoveNullCheckToUser(instruction)) {
   6106     return;
   6107   }
   6108 
   6109   UseScratchRegisterScope temps(GetVIXLAssembler());
   6110   // Ensure the pc position is recorded immediately after the `ldr` instruction.
   6111   ExactAssemblyScope aas(GetVIXLAssembler(),
   6112                          vixl32::kMaxInstructionSizeInBytes,
   6113                          CodeBufferCheckScope::kMaximumSize);
   6114   __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0)));
   6115   RecordPcInfo(instruction, instruction->GetDexPc());
   6116 }
   6117 
   6118 void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) {
   6119   NullCheckSlowPathARMVIXL* slow_path =
   6120       new (GetGraph()->GetArena()) NullCheckSlowPathARMVIXL(instruction);
   6121   AddSlowPath(slow_path);
   6122   __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
   6123 }
   6124 
   6125 void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) {
   6126   codegen_->GenerateNullCheck(instruction);
   6127 }
   6128 
   6129 static LoadOperandType GetLoadOperandType(Primitive::Type type) {
   6130   switch (type) {
   6131     case Primitive::kPrimNot:
   6132       return kLoadWord;
   6133     case Primitive::kPrimBoolean:
   6134       return kLoadUnsignedByte;
   6135     case Primitive::kPrimByte:
   6136       return kLoadSignedByte;
   6137     case Primitive::kPrimChar:
   6138       return kLoadUnsignedHalfword;
   6139     case Primitive::kPrimShort:
   6140       return kLoadSignedHalfword;
   6141     case Primitive::kPrimInt:
   6142       return kLoadWord;
   6143     case Primitive::kPrimLong:
   6144       return kLoadWordPair;
   6145     case Primitive::kPrimFloat:
   6146       return kLoadSWord;
   6147     case Primitive::kPrimDouble:
   6148       return kLoadDWord;
   6149     default:
   6150       LOG(FATAL) << "Unreachable type " << type;
   6151       UNREACHABLE();
   6152   }
   6153 }
   6154 
   6155 static StoreOperandType GetStoreOperandType(Primitive::Type type) {
   6156   switch (type) {
   6157     case Primitive::kPrimNot:
   6158       return kStoreWord;
   6159     case Primitive::kPrimBoolean:
   6160     case Primitive::kPrimByte:
   6161       return kStoreByte;
   6162     case Primitive::kPrimChar:
   6163     case Primitive::kPrimShort:
   6164       return kStoreHalfword;
   6165     case Primitive::kPrimInt:
   6166       return kStoreWord;
   6167     case Primitive::kPrimLong:
   6168       return kStoreWordPair;
   6169     case Primitive::kPrimFloat:
   6170       return kStoreSWord;
   6171     case Primitive::kPrimDouble:
   6172       return kStoreDWord;
   6173     default:
   6174       LOG(FATAL) << "Unreachable type " << type;
   6175       UNREACHABLE();
   6176   }
   6177 }
   6178 
   6179 void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(Primitive::Type type,
   6180                                                     Location out_loc,
   6181                                                     vixl32::Register base,
   6182                                                     vixl32::Register reg_index,
   6183                                                     vixl32::Condition cond) {
   6184   uint32_t shift_count = Primitive::ComponentSizeShift(type);
   6185   MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
   6186 
   6187   switch (type) {
   6188     case Primitive::kPrimByte:
   6189       __ Ldrsb(cond, RegisterFrom(out_loc), mem_address);
   6190       break;
   6191     case Primitive::kPrimBoolean:
   6192       __ Ldrb(cond, RegisterFrom(out_loc), mem_address);
   6193       break;
   6194     case Primitive::kPrimShort:
   6195       __ Ldrsh(cond, RegisterFrom(out_loc), mem_address);
   6196       break;
   6197     case Primitive::kPrimChar:
   6198       __ Ldrh(cond, RegisterFrom(out_loc), mem_address);
   6199       break;
   6200     case Primitive::kPrimNot:
   6201     case Primitive::kPrimInt:
   6202       __ Ldr(cond, RegisterFrom(out_loc), mem_address);
   6203       break;
   6204     // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
   6205     case Primitive::kPrimLong:
   6206     case Primitive::kPrimFloat:
   6207     case Primitive::kPrimDouble:
   6208     default:
   6209       LOG(FATAL) << "Unreachable type " << type;
   6210       UNREACHABLE();
   6211   }
   6212 }
   6213 
   6214 void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(Primitive::Type type,
   6215                                                    Location loc,
   6216                                                    vixl32::Register base,
   6217                                                    vixl32::Register reg_index,
   6218                                                    vixl32::Condition cond) {
   6219   uint32_t shift_count = Primitive::ComponentSizeShift(type);
   6220   MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
   6221 
   6222   switch (type) {
   6223     case Primitive::kPrimByte:
   6224     case Primitive::kPrimBoolean:
   6225       __ Strb(cond, RegisterFrom(loc), mem_address);
   6226       break;
   6227     case Primitive::kPrimShort:
   6228     case Primitive::kPrimChar:
   6229       __ Strh(cond, RegisterFrom(loc), mem_address);
   6230       break;
   6231     case Primitive::kPrimNot:
   6232     case Primitive::kPrimInt:
   6233       __ Str(cond, RegisterFrom(loc), mem_address);
   6234       break;
   6235     // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
   6236     case Primitive::kPrimLong:
   6237     case Primitive::kPrimFloat:
   6238     case Primitive::kPrimDouble:
   6239     default:
   6240       LOG(FATAL) << "Unreachable type " << type;
   6241       UNREACHABLE();
   6242   }
   6243 }
   6244 
   6245 void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) {
   6246   bool object_array_get_with_read_barrier =
   6247       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
   6248   LocationSummary* locations =
   6249       new (GetGraph()->GetArena()) LocationSummary(instruction,
   6250                                                    object_array_get_with_read_barrier ?
   6251                                                        LocationSummary::kCallOnSlowPath :
   6252                                                        LocationSummary::kNoCall);
   6253   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
   6254     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   6255   }
   6256   locations->SetInAt(0, Location::RequiresRegister());
   6257   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   6258   if (Primitive::IsFloatingPointType(instruction->GetType())) {
   6259     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   6260   } else {
   6261     // The output overlaps in the case of an object array get with
   6262     // read barriers enabled: we do not want the move to overwrite the
   6263     // array's location, as we need it to emit the read barrier.
   6264     locations->SetOut(
   6265         Location::RequiresRegister(),
   6266         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
   6267   }
   6268   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
   6269     // We need a temporary register for the read barrier marking slow
   6270     // path in CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier.
   6271     if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
   6272         !Runtime::Current()->UseJitCompilation() &&
   6273         instruction->GetIndex()->IsConstant()) {
   6274       // Array loads with constant index are treated as field loads.
   6275       // If link-time thunks for the Baker read barrier are enabled, for AOT
   6276       // constant index loads we need a temporary only if the offset is too big.
   6277       uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
   6278       uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
   6279       offset += index << Primitive::ComponentSizeShift(Primitive::kPrimNot);
   6280       if (offset >= kReferenceLoadMinFarOffset) {
   6281         locations->AddTemp(Location::RequiresRegister());
   6282       }
   6283       // And we always need the reserved entrypoint register.
   6284       locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister.GetCode()));
   6285     } else if (kBakerReadBarrierLinkTimeThunksEnableForArrays &&
   6286                !Runtime::Current()->UseJitCompilation() &&
   6287                !instruction->GetIndex()->IsConstant()) {
   6288       // We need a non-scratch temporary for the array data pointer.
   6289       locations->AddTemp(Location::RequiresRegister());
   6290       // And we always need the reserved entrypoint register.
   6291       locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister.GetCode()));
   6292     } else {
   6293       locations->AddTemp(Location::RequiresRegister());
   6294     }
   6295   } else if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
   6296     // Also need a temporary for String compression feature.
   6297     locations->AddTemp(Location::RequiresRegister());
   6298   }
   6299 }
   6300 
   6301 void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) {
   6302   LocationSummary* locations = instruction->GetLocations();
   6303   Location obj_loc = locations->InAt(0);
   6304   vixl32::Register obj = InputRegisterAt(instruction, 0);
   6305   Location index = locations->InAt(1);
   6306   Location out_loc = locations->Out();
   6307   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
   6308   Primitive::Type type = instruction->GetType();
   6309   const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
   6310                                         instruction->IsStringCharAt();
   6311   HInstruction* array_instr = instruction->GetArray();
   6312   bool has_intermediate_address = array_instr->IsIntermediateAddress();
   6313 
   6314   switch (type) {
   6315     case Primitive::kPrimBoolean:
   6316     case Primitive::kPrimByte:
   6317     case Primitive::kPrimShort:
   6318     case Primitive::kPrimChar:
   6319     case Primitive::kPrimInt: {
   6320       vixl32::Register length;
   6321       if (maybe_compressed_char_at) {
   6322         length = RegisterFrom(locations->GetTemp(0));
   6323         uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
   6324         GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset);
   6325         codegen_->MaybeRecordImplicitNullCheck(instruction);
   6326       }
   6327       if (index.IsConstant()) {
   6328         int32_t const_index = Int32ConstantFrom(index);
   6329         if (maybe_compressed_char_at) {
   6330           vixl32::Label uncompressed_load, done;
   6331           vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
   6332           __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
   6333           static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
   6334                         "Expecting 0=compressed, 1=uncompressed");
   6335           __ B(cs, &uncompressed_load, /* far_target */ false);
   6336           GetAssembler()->LoadFromOffset(kLoadUnsignedByte,
   6337                                          RegisterFrom(out_loc),
   6338                                          obj,
   6339                                          data_offset + const_index);
   6340           __ B(final_label);
   6341           __ Bind(&uncompressed_load);
   6342           GetAssembler()->LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar),
   6343                                          RegisterFrom(out_loc),
   6344                                          obj,
   6345                                          data_offset + (const_index << 1));
   6346           if (done.IsReferenced()) {
   6347             __ Bind(&done);
   6348           }
   6349         } else {
   6350           uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type));
   6351 
   6352           LoadOperandType load_type = GetLoadOperandType(type);
   6353           GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset);
   6354         }
   6355       } else {
   6356         UseScratchRegisterScope temps(GetVIXLAssembler());
   6357         vixl32::Register temp = temps.Acquire();
   6358 
   6359         if (has_intermediate_address) {
   6360           // We do not need to compute the intermediate address from the array: the
   6361           // input instruction has done it already. See the comment in
   6362           // `TryExtractArrayAccessAddress()`.
   6363           if (kIsDebugBuild) {
   6364             HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
   6365             DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
   6366           }
   6367           temp = obj;
   6368         } else {
   6369           __ Add(temp, obj, data_offset);
   6370         }
   6371         if (maybe_compressed_char_at) {
   6372           vixl32::Label uncompressed_load, done;
   6373           vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
   6374           __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
   6375           static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
   6376                         "Expecting 0=compressed, 1=uncompressed");
   6377           __ B(cs, &uncompressed_load, /* far_target */ false);
   6378           __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0));
   6379           __ B(final_label);
   6380           __ Bind(&uncompressed_load);
   6381           __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1));
   6382           if (done.IsReferenced()) {
   6383             __ Bind(&done);
   6384           }
   6385         } else {
   6386           codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
   6387         }
   6388       }
   6389       break;
   6390     }
   6391 
   6392     case Primitive::kPrimNot: {
   6393       // The read barrier instrumentation of object ArrayGet
   6394       // instructions does not support the HIntermediateAddress
   6395       // instruction.
   6396       DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
   6397 
   6398       static_assert(
   6399           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   6400           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   6401       // /* HeapReference<Object> */ out =
   6402       //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
   6403       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   6404         Location temp = locations->GetTemp(0);
   6405         // Note that a potential implicit null check is handled in this
   6406         // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call.
   6407         DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
   6408         if (index.IsConstant()) {
   6409           // Array load with a constant index can be treated as a field load.
   6410           data_offset += Int32ConstantFrom(index) << Primitive::ComponentSizeShift(type);
   6411           codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   6412                                                           out_loc,
   6413                                                           obj,
   6414                                                           data_offset,
   6415                                                           locations->GetTemp(0),
   6416                                                           /* needs_null_check */ false);
   6417         } else {
   6418           codegen_->GenerateArrayLoadWithBakerReadBarrier(
   6419               instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ false);
   6420         }
   6421       } else {
   6422         vixl32::Register out = OutputRegister(instruction);
   6423         if (index.IsConstant()) {
   6424           size_t offset =
   6425               (Int32ConstantFrom(index) << TIMES_4) + data_offset;
   6426           GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset);
   6427           // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method,
   6428           // we should use a scope and the assembler to emit the load instruction to guarantee that
   6429           // we record the pc at the correct position. But the `Assembler` does not automatically
   6430           // handle unencodable offsets. Practically, everything is fine because the helper and
   6431           // VIXL, at the time of writing, do generate the store instruction last.
   6432           codegen_->MaybeRecordImplicitNullCheck(instruction);
   6433           // If read barriers are enabled, emit read barriers other than
   6434           // Baker's using a slow path (and also unpoison the loaded
   6435           // reference, if heap poisoning is enabled).
   6436           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
   6437         } else {
   6438           UseScratchRegisterScope temps(GetVIXLAssembler());
   6439           vixl32::Register temp = temps.Acquire();
   6440 
   6441           if (has_intermediate_address) {
   6442             // We do not need to compute the intermediate address from the array: the
   6443             // input instruction has done it already. See the comment in
   6444             // `TryExtractArrayAccessAddress()`.
   6445             if (kIsDebugBuild) {
   6446               HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
   6447               DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
   6448             }
   6449             temp = obj;
   6450           } else {
   6451             __ Add(temp, obj, data_offset);
   6452           }
   6453           codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
   6454           temps.Close();
   6455           // TODO(VIXL): Use a scope to ensure that we record the pc position immediately after the
   6456           // load instruction. Practically, everything is fine because the helper and VIXL, at the
   6457           // time of writing, do generate the store instruction last.
   6458           codegen_->MaybeRecordImplicitNullCheck(instruction);
   6459           // If read barriers are enabled, emit read barriers other than
   6460           // Baker's using a slow path (and also unpoison the loaded
   6461           // reference, if heap poisoning is enabled).
   6462           codegen_->MaybeGenerateReadBarrierSlow(
   6463               instruction, out_loc, out_loc, obj_loc, data_offset, index);
   6464         }
   6465       }
   6466       break;
   6467     }
   6468 
   6469     case Primitive::kPrimLong: {
   6470       if (index.IsConstant()) {
   6471         size_t offset =
   6472             (Int32ConstantFrom(index) << TIMES_8) + data_offset;
   6473         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset);
   6474       } else {
   6475         UseScratchRegisterScope temps(GetVIXLAssembler());
   6476         vixl32::Register temp = temps.Acquire();
   6477         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
   6478         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset);
   6479       }
   6480       break;
   6481     }
   6482 
   6483     case Primitive::kPrimFloat: {
   6484       vixl32::SRegister out = SRegisterFrom(out_loc);
   6485       if (index.IsConstant()) {
   6486         size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
   6487         GetAssembler()->LoadSFromOffset(out, obj, offset);
   6488       } else {
   6489         UseScratchRegisterScope temps(GetVIXLAssembler());
   6490         vixl32::Register temp = temps.Acquire();
   6491         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
   6492         GetAssembler()->LoadSFromOffset(out, temp, data_offset);
   6493       }
   6494       break;
   6495     }
   6496 
   6497     case Primitive::kPrimDouble: {
   6498       if (index.IsConstant()) {
   6499         size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
   6500         GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset);
   6501       } else {
   6502         UseScratchRegisterScope temps(GetVIXLAssembler());
   6503         vixl32::Register temp = temps.Acquire();
   6504         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
   6505         GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset);
   6506       }
   6507       break;
   6508     }
   6509 
   6510     case Primitive::kPrimVoid:
   6511       LOG(FATAL) << "Unreachable type " << type;
   6512       UNREACHABLE();
   6513   }
   6514 
   6515   if (type == Primitive::kPrimNot) {
   6516     // Potential implicit null checks, in the case of reference
   6517     // arrays, are handled in the previous switch statement.
   6518   } else if (!maybe_compressed_char_at) {
   6519     // TODO(VIXL): Use a scope to ensure we record the pc info immediately after
   6520     // the preceding load instruction.
   6521     codegen_->MaybeRecordImplicitNullCheck(instruction);
   6522   }
   6523 }
   6524 
   6525 void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) {
   6526   Primitive::Type value_type = instruction->GetComponentType();
   6527 
   6528   bool needs_write_barrier =
   6529       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
   6530   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   6531 
   6532   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   6533       instruction,
   6534       may_need_runtime_call_for_type_check ?
   6535           LocationSummary::kCallOnSlowPath :
   6536           LocationSummary::kNoCall);
   6537 
   6538   locations->SetInAt(0, Location::RequiresRegister());
   6539   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   6540   if (Primitive::IsFloatingPointType(value_type)) {
   6541     locations->SetInAt(2, Location::RequiresFpuRegister());
   6542   } else {
   6543     locations->SetInAt(2, Location::RequiresRegister());
   6544   }
   6545   if (needs_write_barrier) {
   6546     // Temporary registers for the write barrier.
   6547     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
   6548     locations->AddTemp(Location::RequiresRegister());
   6549   }
   6550 }
   6551 
   6552 void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) {
   6553   LocationSummary* locations = instruction->GetLocations();
   6554   vixl32::Register array = InputRegisterAt(instruction, 0);
   6555   Location index = locations->InAt(1);
   6556   Primitive::Type value_type = instruction->GetComponentType();
   6557   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   6558   bool needs_write_barrier =
   6559       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
   6560   uint32_t data_offset =
   6561       mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
   6562   Location value_loc = locations->InAt(2);
   6563   HInstruction* array_instr = instruction->GetArray();
   6564   bool has_intermediate_address = array_instr->IsIntermediateAddress();
   6565 
   6566   switch (value_type) {
   6567     case Primitive::kPrimBoolean:
   6568     case Primitive::kPrimByte:
   6569     case Primitive::kPrimShort:
   6570     case Primitive::kPrimChar:
   6571     case Primitive::kPrimInt: {
   6572       if (index.IsConstant()) {
   6573         int32_t const_index = Int32ConstantFrom(index);
   6574         uint32_t full_offset =
   6575             data_offset + (const_index << Primitive::ComponentSizeShift(value_type));
   6576         StoreOperandType store_type = GetStoreOperandType(value_type);
   6577         GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset);
   6578       } else {
   6579         UseScratchRegisterScope temps(GetVIXLAssembler());
   6580         vixl32::Register temp = temps.Acquire();
   6581 
   6582         if (has_intermediate_address) {
   6583           // We do not need to compute the intermediate address from the array: the
   6584           // input instruction has done it already. See the comment in
   6585           // `TryExtractArrayAccessAddress()`.
   6586           if (kIsDebugBuild) {
   6587             HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
   6588             DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
   6589           }
   6590           temp = array;
   6591         } else {
   6592           __ Add(temp, array, data_offset);
   6593         }
   6594         codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
   6595       }
   6596       break;
   6597     }
   6598 
   6599     case Primitive::kPrimNot: {
   6600       vixl32::Register value = RegisterFrom(value_loc);
   6601       // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
   6602       // See the comment in instruction_simplifier_shared.cc.
   6603       DCHECK(!has_intermediate_address);
   6604 
   6605       if (instruction->InputAt(2)->IsNullConstant()) {
   6606         // Just setting null.
   6607         if (index.IsConstant()) {
   6608           size_t offset =
   6609               (Int32ConstantFrom(index) << TIMES_4) + data_offset;
   6610           GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
   6611         } else {
   6612           DCHECK(index.IsRegister()) << index;
   6613           UseScratchRegisterScope temps(GetVIXLAssembler());
   6614           vixl32::Register temp = temps.Acquire();
   6615           __ Add(temp, array, data_offset);
   6616           codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
   6617         }
   6618         // TODO(VIXL): Use a scope to ensure we record the pc info immediately after the preceding
   6619         // store instruction.
   6620         codegen_->MaybeRecordImplicitNullCheck(instruction);
   6621         DCHECK(!needs_write_barrier);
   6622         DCHECK(!may_need_runtime_call_for_type_check);
   6623         break;
   6624       }
   6625 
   6626       DCHECK(needs_write_barrier);
   6627       Location temp1_loc = locations->GetTemp(0);
   6628       vixl32::Register temp1 = RegisterFrom(temp1_loc);
   6629       Location temp2_loc = locations->GetTemp(1);
   6630       vixl32::Register temp2 = RegisterFrom(temp2_loc);
   6631       uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   6632       uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   6633       uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   6634       vixl32::Label done;
   6635       vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
   6636       SlowPathCodeARMVIXL* slow_path = nullptr;
   6637 
   6638       if (may_need_runtime_call_for_type_check) {
   6639         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARMVIXL(instruction);
   6640         codegen_->AddSlowPath(slow_path);
   6641         if (instruction->GetValueCanBeNull()) {
   6642           vixl32::Label non_zero;
   6643           __ CompareAndBranchIfNonZero(value, &non_zero);
   6644           if (index.IsConstant()) {
   6645             size_t offset =
   6646                (Int32ConstantFrom(index) << TIMES_4) + data_offset;
   6647             GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
   6648           } else {
   6649             DCHECK(index.IsRegister()) << index;
   6650             UseScratchRegisterScope temps(GetVIXLAssembler());
   6651             vixl32::Register temp = temps.Acquire();
   6652             __ Add(temp, array, data_offset);
   6653             codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
   6654           }
   6655           // TODO(VIXL): Use a scope to ensure we record the pc info immediately after the preceding
   6656           // store instruction.
   6657           codegen_->MaybeRecordImplicitNullCheck(instruction);
   6658           __ B(final_label);
   6659           __ Bind(&non_zero);
   6660         }
   6661 
   6662         // Note that when read barriers are enabled, the type checks
   6663         // are performed without read barriers.  This is fine, even in
   6664         // the case where a class object is in the from-space after
   6665         // the flip, as a comparison involving such a type would not
   6666         // produce a false positive; it may of course produce a false
   6667         // negative, in which case we would take the ArraySet slow
   6668         // path.
   6669 
   6670         {
   6671           // Ensure we record the pc position immediately after the `ldr` instruction.
   6672           ExactAssemblyScope aas(GetVIXLAssembler(),
   6673                                  vixl32::kMaxInstructionSizeInBytes,
   6674                                  CodeBufferCheckScope::kMaximumSize);
   6675           // /* HeapReference<Class> */ temp1 = array->klass_
   6676           __ ldr(temp1, MemOperand(array, class_offset));
   6677           codegen_->MaybeRecordImplicitNullCheck(instruction);
   6678         }
   6679         GetAssembler()->MaybeUnpoisonHeapReference(temp1);
   6680 
   6681         // /* HeapReference<Class> */ temp1 = temp1->component_type_
   6682         GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
   6683         // /* HeapReference<Class> */ temp2 = value->klass_
   6684         GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset);
   6685         // If heap poisoning is enabled, no need to unpoison `temp1`
   6686         // nor `temp2`, as we are comparing two poisoned references.
   6687         __ Cmp(temp1, temp2);
   6688 
   6689         if (instruction->StaticTypeOfArrayIsObjectArray()) {
   6690           vixl32::Label do_put;
   6691           __ B(eq, &do_put, /* far_target */ false);
   6692           // If heap poisoning is enabled, the `temp1` reference has
   6693           // not been unpoisoned yet; unpoison it now.
   6694           GetAssembler()->MaybeUnpoisonHeapReference(temp1);
   6695 
   6696           // /* HeapReference<Class> */ temp1 = temp1->super_class_
   6697           GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
   6698           // If heap poisoning is enabled, no need to unpoison
   6699           // `temp1`, as we are comparing against null below.
   6700           __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
   6701           __ Bind(&do_put);
   6702         } else {
   6703           __ B(ne, slow_path->GetEntryLabel());
   6704         }
   6705       }
   6706 
   6707       vixl32::Register source = value;
   6708       if (kPoisonHeapReferences) {
   6709         // Note that in the case where `value` is a null reference,
   6710         // we do not enter this block, as a null reference does not
   6711         // need poisoning.
   6712         DCHECK_EQ(value_type, Primitive::kPrimNot);
   6713         __ Mov(temp1, value);
   6714         GetAssembler()->PoisonHeapReference(temp1);
   6715         source = temp1;
   6716       }
   6717 
   6718       if (index.IsConstant()) {
   6719         size_t offset =
   6720             (Int32ConstantFrom(index) << TIMES_4) + data_offset;
   6721         GetAssembler()->StoreToOffset(kStoreWord, source, array, offset);
   6722       } else {
   6723         DCHECK(index.IsRegister()) << index;
   6724 
   6725         UseScratchRegisterScope temps(GetVIXLAssembler());
   6726         vixl32::Register temp = temps.Acquire();
   6727         __ Add(temp, array, data_offset);
   6728         codegen_->StoreToShiftedRegOffset(value_type,
   6729                                           LocationFrom(source),
   6730                                           temp,
   6731                                           RegisterFrom(index));
   6732       }
   6733 
   6734       if (!may_need_runtime_call_for_type_check) {
   6735         // TODO(VIXL): Ensure we record the pc position immediately after the preceding store
   6736         // instruction.
   6737         codegen_->MaybeRecordImplicitNullCheck(instruction);
   6738       }
   6739 
   6740       codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());
   6741 
   6742       if (done.IsReferenced()) {
   6743         __ Bind(&done);
   6744       }
   6745 
   6746       if (slow_path != nullptr) {
   6747         __ Bind(slow_path->GetExitLabel());
   6748       }
   6749 
   6750       break;
   6751     }
   6752 
   6753     case Primitive::kPrimLong: {
   6754       Location value = locations->InAt(2);
   6755       if (index.IsConstant()) {
   6756         size_t offset =
   6757             (Int32ConstantFrom(index) << TIMES_8) + data_offset;
   6758         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset);
   6759       } else {
   6760         UseScratchRegisterScope temps(GetVIXLAssembler());
   6761         vixl32::Register temp = temps.Acquire();
   6762         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
   6763         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset);
   6764       }
   6765       break;
   6766     }
   6767 
   6768     case Primitive::kPrimFloat: {
   6769       Location value = locations->InAt(2);
   6770       DCHECK(value.IsFpuRegister());
   6771       if (index.IsConstant()) {
   6772         size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
   6773         GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset);
   6774       } else {
   6775         UseScratchRegisterScope temps(GetVIXLAssembler());
   6776         vixl32::Register temp = temps.Acquire();
   6777         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
   6778         GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset);
   6779       }
   6780       break;
   6781     }
   6782 
   6783     case Primitive::kPrimDouble: {
   6784       Location value = locations->InAt(2);
   6785       DCHECK(value.IsFpuRegisterPair());
   6786       if (index.IsConstant()) {
   6787         size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
   6788         GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset);
   6789       } else {
   6790         UseScratchRegisterScope temps(GetVIXLAssembler());
   6791         vixl32::Register temp = temps.Acquire();
   6792         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
   6793         GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset);
   6794       }
   6795       break;
   6796     }
   6797 
   6798     case Primitive::kPrimVoid:
   6799       LOG(FATAL) << "Unreachable type " << value_type;
   6800       UNREACHABLE();
   6801   }
   6802 
   6803   // Objects are handled in the switch.
   6804   if (value_type != Primitive::kPrimNot) {
   6805     // TODO(VIXL): Ensure we record the pc position immediately after the preceding store
   6806     // instruction.
   6807     codegen_->MaybeRecordImplicitNullCheck(instruction);
   6808   }
   6809 }
   6810 
   6811 void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) {
   6812   LocationSummary* locations =
   6813       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   6814   locations->SetInAt(0, Location::RequiresRegister());
   6815   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   6816 }
   6817 
   6818 void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) {
   6819   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
   6820   vixl32::Register obj = InputRegisterAt(instruction, 0);
   6821   vixl32::Register out = OutputRegister(instruction);
   6822   {
   6823     ExactAssemblyScope aas(GetVIXLAssembler(),
   6824                            vixl32::kMaxInstructionSizeInBytes,
   6825                            CodeBufferCheckScope::kMaximumSize);
   6826     __ ldr(out, MemOperand(obj, offset));
   6827     codegen_->MaybeRecordImplicitNullCheck(instruction);
   6828   }
   6829   // Mask out compression flag from String's array length.
   6830   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
   6831     __ Lsr(out, out, 1u);
   6832   }
   6833 }
   6834 
   6835 void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
   6836   LocationSummary* locations =
   6837       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   6838 
   6839   locations->SetInAt(0, Location::RequiresRegister());
   6840   locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
   6841   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   6842 }
   6843 
   6844 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
   6845   vixl32::Register out = OutputRegister(instruction);
   6846   vixl32::Register first = InputRegisterAt(instruction, 0);
   6847   Location second = instruction->GetLocations()->InAt(1);
   6848 
   6849   if (second.IsRegister()) {
   6850     __ Add(out, first, RegisterFrom(second));
   6851   } else {
   6852     __ Add(out, first, Int32ConstantFrom(second));
   6853   }
   6854 }
   6855 
   6856 void LocationsBuilderARMVIXL::VisitIntermediateAddressIndex(
   6857     HIntermediateAddressIndex* instruction) {
   6858   LOG(FATAL) << "Unreachable " << instruction->GetId();
   6859 }
   6860 
   6861 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddressIndex(
   6862     HIntermediateAddressIndex* instruction) {
   6863   LOG(FATAL) << "Unreachable " << instruction->GetId();
   6864 }
   6865 
   6866 void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
   6867   RegisterSet caller_saves = RegisterSet::Empty();
   6868   InvokeRuntimeCallingConventionARMVIXL calling_convention;
   6869   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
   6870   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1)));
   6871   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
   6872 
   6873   HInstruction* index = instruction->InputAt(0);
   6874   HInstruction* length = instruction->InputAt(1);
   6875   // If both index and length are constants we can statically check the bounds. But if at least one
   6876   // of them is not encodable ArmEncodableConstantOrRegister will create
   6877   // Location::RequiresRegister() which is not desired to happen. Instead we create constant
   6878   // locations.
   6879   bool both_const = index->IsConstant() && length->IsConstant();
   6880   locations->SetInAt(0, both_const
   6881       ? Location::ConstantLocation(index->AsConstant())
   6882       : ArmEncodableConstantOrRegister(index, CMP));
   6883   locations->SetInAt(1, both_const
   6884       ? Location::ConstantLocation(length->AsConstant())
   6885       : ArmEncodableConstantOrRegister(length, CMP));
   6886 }
   6887 
   6888 void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
   6889   LocationSummary* locations = instruction->GetLocations();
   6890   Location index_loc = locations->InAt(0);
   6891   Location length_loc = locations->InAt(1);
   6892 
   6893   if (length_loc.IsConstant()) {
   6894     int32_t length = Int32ConstantFrom(length_loc);
   6895     if (index_loc.IsConstant()) {
   6896       // BCE will remove the bounds check if we are guaranteed to pass.
   6897       int32_t index = Int32ConstantFrom(index_loc);
   6898       if (index < 0 || index >= length) {
   6899         SlowPathCodeARMVIXL* slow_path =
   6900             new (GetGraph()->GetArena()) BoundsCheckSlowPathARMVIXL(instruction);
   6901         codegen_->AddSlowPath(slow_path);
   6902         __ B(slow_path->GetEntryLabel());
   6903       } else {
   6904         // Some optimization after BCE may have generated this, and we should not
   6905         // generate a bounds check if it is a valid range.
   6906       }
   6907       return;
   6908     }
   6909 
   6910     SlowPathCodeARMVIXL* slow_path =
   6911         new (GetGraph()->GetArena()) BoundsCheckSlowPathARMVIXL(instruction);
   6912     __ Cmp(RegisterFrom(index_loc), length);
   6913     codegen_->AddSlowPath(slow_path);
   6914     __ B(hs, slow_path->GetEntryLabel());
   6915   } else {
   6916     SlowPathCodeARMVIXL* slow_path =
   6917         new (GetGraph()->GetArena()) BoundsCheckSlowPathARMVIXL(instruction);
   6918     __ Cmp(RegisterFrom(length_loc), InputOperandAt(instruction, 0));
   6919     codegen_->AddSlowPath(slow_path);
   6920     __ B(ls, slow_path->GetEntryLabel());
   6921   }
   6922 }
   6923 
   6924 void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp,
   6925                                       vixl32::Register card,
   6926                                       vixl32::Register object,
   6927                                       vixl32::Register value,
   6928                                       bool can_be_null) {
   6929   vixl32::Label is_null;
   6930   if (can_be_null) {
   6931     __ CompareAndBranchIfZero(value, &is_null);
   6932   }
   6933   GetAssembler()->LoadFromOffset(
   6934       kLoadWord, card, tr, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
   6935   __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift));
   6936   __ Strb(card, MemOperand(card, temp));
   6937   if (can_be_null) {
   6938     __ Bind(&is_null);
   6939   }
   6940 }
   6941 
   6942 void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
   6943   LOG(FATAL) << "Unreachable";
   6944 }
   6945 
   6946 void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) {
   6947   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
   6948 }
   6949 
   6950 void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
   6951   LocationSummary* locations =
   6952       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
   6953   locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   6954 }
   6955 
   6956 void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
   6957   HBasicBlock* block = instruction->GetBlock();
   6958   if (block->GetLoopInformation() != nullptr) {
   6959     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
   6960     // The back edge will generate the suspend check.
   6961     return;
   6962   }
   6963   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
   6964     // The goto will generate the suspend check.
   6965     return;
   6966   }
   6967   GenerateSuspendCheck(instruction, nullptr);
   6968 }
   6969 
   6970 void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction,
   6971                                                            HBasicBlock* successor) {
   6972   SuspendCheckSlowPathARMVIXL* slow_path =
   6973       down_cast<SuspendCheckSlowPathARMVIXL*>(instruction->GetSlowPath());
   6974   if (slow_path == nullptr) {
   6975     slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARMVIXL(instruction, successor);
   6976     instruction->SetSlowPath(slow_path);
   6977     codegen_->AddSlowPath(slow_path);
   6978     if (successor != nullptr) {
   6979       DCHECK(successor->IsLoopHeader());
   6980       codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
   6981     }
   6982   } else {
   6983     DCHECK_EQ(slow_path->GetSuccessor(), successor);
   6984   }
   6985 
   6986   UseScratchRegisterScope temps(GetVIXLAssembler());
   6987   vixl32::Register temp = temps.Acquire();
   6988   GetAssembler()->LoadFromOffset(
   6989       kLoadUnsignedHalfword, temp, tr, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
   6990   if (successor == nullptr) {
   6991     __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel());
   6992     __ Bind(slow_path->GetReturnLabel());
   6993   } else {
   6994     __ CompareAndBranchIfZero(temp, codegen_->GetLabelOf(successor));
   6995     __ B(slow_path->GetEntryLabel());
   6996   }
   6997 }
   6998 
   6999 ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const {
   7000   return codegen_->GetAssembler();
   7001 }
   7002 
   7003 void ParallelMoveResolverARMVIXL::EmitMove(size_t index) {
   7004   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
   7005   MoveOperands* move = moves_[index];
   7006   Location source = move->GetSource();
   7007   Location destination = move->GetDestination();
   7008 
   7009   if (source.IsRegister()) {
   7010     if (destination.IsRegister()) {
   7011       __ Mov(RegisterFrom(destination), RegisterFrom(source));
   7012     } else if (destination.IsFpuRegister()) {
   7013       __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
   7014     } else {
   7015       DCHECK(destination.IsStackSlot());
   7016       GetAssembler()->StoreToOffset(kStoreWord,
   7017                                     RegisterFrom(source),
   7018                                     sp,
   7019                                     destination.GetStackIndex());
   7020     }
   7021   } else if (source.IsStackSlot()) {
   7022     if (destination.IsRegister()) {
   7023       GetAssembler()->LoadFromOffset(kLoadWord,
   7024                                      RegisterFrom(destination),
   7025                                      sp,
   7026                                      source.GetStackIndex());
   7027     } else if (destination.IsFpuRegister()) {
   7028       GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
   7029     } else {
   7030       DCHECK(destination.IsStackSlot());
   7031       vixl32::Register temp = temps.Acquire();
   7032       GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
   7033       GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
   7034     }
   7035   } else if (source.IsFpuRegister()) {
   7036     if (destination.IsRegister()) {
   7037       __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
   7038     } else if (destination.IsFpuRegister()) {
   7039       __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
   7040     } else {
   7041       DCHECK(destination.IsStackSlot());
   7042       GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
   7043     }
   7044   } else if (source.IsDoubleStackSlot()) {
   7045     if (destination.IsDoubleStackSlot()) {
   7046       vixl32::DRegister temp = temps.AcquireD();
   7047       GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex());
   7048       GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex());
   7049     } else if (destination.IsRegisterPair()) {
   7050       DCHECK(ExpectedPairLayout(destination));
   7051       GetAssembler()->LoadFromOffset(
   7052           kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex());
   7053     } else {
   7054       DCHECK(destination.IsFpuRegisterPair()) << destination;
   7055       GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex());
   7056     }
   7057   } else if (source.IsRegisterPair()) {
   7058     if (destination.IsRegisterPair()) {
   7059       __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source));
   7060       __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source));
   7061     } else if (destination.IsFpuRegisterPair()) {
   7062       __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source));
   7063     } else {
   7064       DCHECK(destination.IsDoubleStackSlot()) << destination;
   7065       DCHECK(ExpectedPairLayout(source));
   7066       GetAssembler()->StoreToOffset(kStoreWordPair,
   7067                                     LowRegisterFrom(source),
   7068                                     sp,
   7069                                     destination.GetStackIndex());
   7070     }
   7071   } else if (source.IsFpuRegisterPair()) {
   7072     if (destination.IsRegisterPair()) {
   7073       __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source));
   7074     } else if (destination.IsFpuRegisterPair()) {
   7075       __ Vmov(DRegisterFrom(destination), DRegisterFrom(source));
   7076     } else {
   7077       DCHECK(destination.IsDoubleStackSlot()) << destination;
   7078       GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex());
   7079     }
   7080   } else {
   7081     DCHECK(source.IsConstant()) << source;
   7082     HConstant* constant = source.GetConstant();
   7083     if (constant->IsIntConstant() || constant->IsNullConstant()) {
   7084       int32_t value = CodeGenerator::GetInt32ValueOf(constant);
   7085       if (destination.IsRegister()) {
   7086         __ Mov(RegisterFrom(destination), value);
   7087       } else {
   7088         DCHECK(destination.IsStackSlot());
   7089         vixl32::Register temp = temps.Acquire();
   7090         __ Mov(temp, value);
   7091         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
   7092       }
   7093     } else if (constant->IsLongConstant()) {
   7094       int64_t value = Int64ConstantFrom(source);
   7095       if (destination.IsRegisterPair()) {
   7096         __ Mov(LowRegisterFrom(destination), Low32Bits(value));
   7097         __ Mov(HighRegisterFrom(destination), High32Bits(value));
   7098       } else {
   7099         DCHECK(destination.IsDoubleStackSlot()) << destination;
   7100         vixl32::Register temp = temps.Acquire();
   7101         __ Mov(temp, Low32Bits(value));
   7102         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
   7103         __ Mov(temp, High32Bits(value));
   7104         GetAssembler()->StoreToOffset(kStoreWord,
   7105                                       temp,
   7106                                       sp,
   7107                                       destination.GetHighStackIndex(kArmWordSize));
   7108       }
   7109     } else if (constant->IsDoubleConstant()) {
   7110       double value = constant->AsDoubleConstant()->GetValue();
   7111       if (destination.IsFpuRegisterPair()) {
   7112         __ Vmov(DRegisterFrom(destination), value);
   7113       } else {
   7114         DCHECK(destination.IsDoubleStackSlot()) << destination;
   7115         uint64_t int_value = bit_cast<uint64_t, double>(value);
   7116         vixl32::Register temp = temps.Acquire();
   7117         __ Mov(temp, Low32Bits(int_value));
   7118         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
   7119         __ Mov(temp, High32Bits(int_value));
   7120         GetAssembler()->StoreToOffset(kStoreWord,
   7121                                       temp,
   7122                                       sp,
   7123                                       destination.GetHighStackIndex(kArmWordSize));
   7124       }
   7125     } else {
   7126       DCHECK(constant->IsFloatConstant()) << constant->DebugName();
   7127       float value = constant->AsFloatConstant()->GetValue();
   7128       if (destination.IsFpuRegister()) {
   7129         __ Vmov(SRegisterFrom(destination), value);
   7130       } else {
   7131         DCHECK(destination.IsStackSlot());
   7132         vixl32::Register temp = temps.Acquire();
   7133         __ Mov(temp, bit_cast<int32_t, float>(value));
   7134         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
   7135       }
   7136     }
   7137   }
   7138 }
   7139 
   7140 void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) {
   7141   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
   7142   vixl32::Register temp = temps.Acquire();
   7143   __ Mov(temp, reg);
   7144   GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem);
   7145   GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
   7146 }
   7147 
   7148 void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) {
   7149   // TODO(VIXL32): Double check the performance of this implementation.
   7150   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
   7151   vixl32::Register temp1 = temps.Acquire();
   7152   ScratchRegisterScope ensure_scratch(
   7153       this, temp1.GetCode(), r0.GetCode(), codegen_->GetNumberOfCoreRegisters());
   7154   vixl32::Register temp2(ensure_scratch.GetRegister());
   7155 
   7156   int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
   7157   GetAssembler()->LoadFromOffset(kLoadWord, temp1, sp, mem1 + stack_offset);
   7158   GetAssembler()->LoadFromOffset(kLoadWord, temp2, sp, mem2 + stack_offset);
   7159   GetAssembler()->StoreToOffset(kStoreWord, temp1, sp, mem2 + stack_offset);
   7160   GetAssembler()->StoreToOffset(kStoreWord, temp2, sp, mem1 + stack_offset);
   7161 }
   7162 
   7163 void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) {
   7164   MoveOperands* move = moves_[index];
   7165   Location source = move->GetSource();
   7166   Location destination = move->GetDestination();
   7167   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
   7168 
   7169   if (source.IsRegister() && destination.IsRegister()) {
   7170     vixl32::Register temp = temps.Acquire();
   7171     DCHECK(!RegisterFrom(source).Is(temp));
   7172     DCHECK(!RegisterFrom(destination).Is(temp));
   7173     __ Mov(temp, RegisterFrom(destination));
   7174     __ Mov(RegisterFrom(destination), RegisterFrom(source));
   7175     __ Mov(RegisterFrom(source), temp);
   7176   } else if (source.IsRegister() && destination.IsStackSlot()) {
   7177     Exchange(RegisterFrom(source), destination.GetStackIndex());
   7178   } else if (source.IsStackSlot() && destination.IsRegister()) {
   7179     Exchange(RegisterFrom(destination), source.GetStackIndex());
   7180   } else if (source.IsStackSlot() && destination.IsStackSlot()) {
   7181     Exchange(source.GetStackIndex(), destination.GetStackIndex());
   7182   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
   7183     vixl32::Register temp = temps.Acquire();
   7184     __ Vmov(temp, SRegisterFrom(source));
   7185     __ Vmov(SRegisterFrom(source), SRegisterFrom(destination));
   7186     __ Vmov(SRegisterFrom(destination), temp);
   7187   } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
   7188     vixl32::DRegister temp = temps.AcquireD();
   7189     __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source));
   7190     __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination));
   7191     __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination));
   7192     __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp);
   7193   } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
   7194     vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination);
   7195     int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex();
   7196     DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
   7197     vixl32::DRegister temp = temps.AcquireD();
   7198     __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1));
   7199     GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem);
   7200     GetAssembler()->StoreDToOffset(temp, sp, mem);
   7201   } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
   7202     vixl32::DRegister first = DRegisterFrom(source);
   7203     vixl32::DRegister second = DRegisterFrom(destination);
   7204     vixl32::DRegister temp = temps.AcquireD();
   7205     __ Vmov(temp, first);
   7206     __ Vmov(first, second);
   7207     __ Vmov(second, temp);
   7208   } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
   7209     vixl32::DRegister reg = source.IsFpuRegisterPair()
   7210         ? DRegisterFrom(source)
   7211         : DRegisterFrom(destination);
   7212     int mem = source.IsFpuRegisterPair()
   7213         ? destination.GetStackIndex()
   7214         : source.GetStackIndex();
   7215     vixl32::DRegister temp = temps.AcquireD();
   7216     __ Vmov(temp, reg);
   7217     GetAssembler()->LoadDFromOffset(reg, sp, mem);
   7218     GetAssembler()->StoreDToOffset(temp, sp, mem);
   7219   } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
   7220     vixl32::SRegister reg = source.IsFpuRegister()
   7221         ? SRegisterFrom(source)
   7222         : SRegisterFrom(destination);
   7223     int mem = source.IsFpuRegister()
   7224         ? destination.GetStackIndex()
   7225         : source.GetStackIndex();
   7226     vixl32::Register temp = temps.Acquire();
   7227     __ Vmov(temp, reg);
   7228     GetAssembler()->LoadSFromOffset(reg, sp, mem);
   7229     GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
   7230   } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
   7231     vixl32::DRegister temp1 = temps.AcquireD();
   7232     vixl32::DRegister temp2 = temps.AcquireD();
   7233     __ Vldr(temp1, MemOperand(sp, source.GetStackIndex()));
   7234     __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex()));
   7235     __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex()));
   7236     __ Vstr(temp2, MemOperand(sp, source.GetStackIndex()));
   7237   } else {
   7238     LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
   7239   }
   7240 }
   7241 
   7242 void ParallelMoveResolverARMVIXL::SpillScratch(int reg) {
   7243   __ Push(vixl32::Register(reg));
   7244 }
   7245 
   7246 void ParallelMoveResolverARMVIXL::RestoreScratch(int reg) {
   7247   __ Pop(vixl32::Register(reg));
   7248 }
   7249 
   7250 HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind(
   7251     HLoadClass::LoadKind desired_class_load_kind) {
   7252   switch (desired_class_load_kind) {
   7253     case HLoadClass::LoadKind::kInvalid:
   7254       LOG(FATAL) << "UNREACHABLE";
   7255       UNREACHABLE();
   7256     case HLoadClass::LoadKind::kReferrersClass:
   7257       break;
   7258     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
   7259     case HLoadClass::LoadKind::kBssEntry:
   7260       DCHECK(!Runtime::Current()->UseJitCompilation());
   7261       break;
   7262     case HLoadClass::LoadKind::kJitTableAddress:
   7263       DCHECK(Runtime::Current()->UseJitCompilation());
   7264       break;
   7265     case HLoadClass::LoadKind::kBootImageAddress:
   7266     case HLoadClass::LoadKind::kRuntimeCall:
   7267       break;
   7268   }
   7269   return desired_class_load_kind;
   7270 }
   7271 
   7272 void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) {
   7273   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
   7274   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
   7275     InvokeRuntimeCallingConventionARMVIXL calling_convention;
   7276     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
   7277         cls,
   7278         LocationFrom(calling_convention.GetRegisterAt(0)),
   7279         LocationFrom(r0));
   7280     DCHECK(calling_convention.GetRegisterAt(0).Is(r0));
   7281     return;
   7282   }
   7283   DCHECK(!cls->NeedsAccessCheck());
   7284 
   7285   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
   7286   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
   7287       ? LocationSummary::kCallOnSlowPath
   7288       : LocationSummary::kNoCall;
   7289   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
   7290   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
   7291     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   7292   }
   7293 
   7294   if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
   7295     locations->SetInAt(0, Location::RequiresRegister());
   7296   }
   7297   locations->SetOut(Location::RequiresRegister());
   7298   if (load_kind == HLoadClass::LoadKind::kBssEntry) {
   7299     if (!kUseReadBarrier || kUseBakerReadBarrier) {
   7300       // Rely on the type resolution or initialization and marking to save everything we need.
   7301       // Note that IP may be clobbered by saving/restoring the live register (only one thanks
   7302       // to the custom calling convention) or by marking, so we request a different temp.
   7303       locations->AddTemp(Location::RequiresRegister());
   7304       RegisterSet caller_saves = RegisterSet::Empty();
   7305       InvokeRuntimeCallingConventionARMVIXL calling_convention;
   7306       caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
   7307       // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
   7308       // that the the kPrimNot result register is the same as the first argument register.
   7309       locations->SetCustomSlowPathCallerSaves(caller_saves);
   7310     } else {
   7311       // For non-Baker read barrier we have a temp-clobbering call.
   7312     }
   7313   }
   7314   if (kUseBakerReadBarrier && kBakerReadBarrierLinkTimeThunksEnableForGcRoots) {
   7315     if (load_kind == HLoadClass::LoadKind::kBssEntry ||
   7316         (load_kind == HLoadClass::LoadKind::kReferrersClass &&
   7317             !Runtime::Current()->UseJitCompilation())) {
   7318       locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister.GetCode()));
   7319     }
   7320   }
   7321 }
   7322 
   7323 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
   7324 // move.
   7325 void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
   7326   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
   7327   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
   7328     codegen_->GenerateLoadClassRuntimeCall(cls);
   7329     return;
   7330   }
   7331   DCHECK(!cls->NeedsAccessCheck());
   7332 
   7333   LocationSummary* locations = cls->GetLocations();
   7334   Location out_loc = locations->Out();
   7335   vixl32::Register out = OutputRegister(cls);
   7336 
   7337   const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
   7338       ? kWithoutReadBarrier
   7339       : kCompilerReadBarrierOption;
   7340   bool generate_null_check = false;
   7341   switch (load_kind) {
   7342     case HLoadClass::LoadKind::kReferrersClass: {
   7343       DCHECK(!cls->CanCallRuntime());
   7344       DCHECK(!cls->MustGenerateClinitCheck());
   7345       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
   7346       vixl32::Register current_method = InputRegisterAt(cls, 0);
   7347       GenerateGcRootFieldLoad(cls,
   7348                               out_loc,
   7349                               current_method,
   7350                               ArtMethod::DeclaringClassOffset().Int32Value(),
   7351                               read_barrier_option);
   7352       break;
   7353     }
   7354     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
   7355       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
   7356       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
   7357       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
   7358           codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
   7359       codegen_->EmitMovwMovtPlaceholder(labels, out);
   7360       break;
   7361     }
   7362     case HLoadClass::LoadKind::kBootImageAddress: {
   7363       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
   7364       uint32_t address = dchecked_integral_cast<uint32_t>(
   7365           reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
   7366       DCHECK_NE(address, 0u);
   7367       __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
   7368       break;
   7369     }
   7370     case HLoadClass::LoadKind::kBssEntry: {
   7371       vixl32::Register temp = (!kUseReadBarrier || kUseBakerReadBarrier)
   7372           ? RegisterFrom(locations->GetTemp(0))
   7373           : out;
   7374       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
   7375           codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
   7376       codegen_->EmitMovwMovtPlaceholder(labels, temp);
   7377       GenerateGcRootFieldLoad(cls, out_loc, temp, /* offset */ 0, read_barrier_option);
   7378       generate_null_check = true;
   7379       break;
   7380     }
   7381     case HLoadClass::LoadKind::kJitTableAddress: {
   7382       __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
   7383                                                        cls->GetTypeIndex(),
   7384                                                        cls->GetClass()));
   7385       // /* GcRoot<mirror::Class> */ out = *out
   7386       GenerateGcRootFieldLoad(cls, out_loc, out, /* offset */ 0, read_barrier_option);
   7387       break;
   7388     }
   7389     case HLoadClass::LoadKind::kRuntimeCall:
   7390     case HLoadClass::LoadKind::kInvalid:
   7391       LOG(FATAL) << "UNREACHABLE";
   7392       UNREACHABLE();
   7393   }
   7394 
   7395   if (generate_null_check || cls->MustGenerateClinitCheck()) {
   7396     DCHECK(cls->CanCallRuntime());
   7397     LoadClassSlowPathARMVIXL* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARMVIXL(
   7398         cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
   7399     codegen_->AddSlowPath(slow_path);
   7400     if (generate_null_check) {
   7401       __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
   7402     }
   7403     if (cls->MustGenerateClinitCheck()) {
   7404       GenerateClassInitializationCheck(slow_path, out);
   7405     } else {
   7406       __ Bind(slow_path->GetExitLabel());
   7407     }
   7408   }
   7409 }
   7410 
   7411 void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) {
   7412   LocationSummary* locations =
   7413       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
   7414   locations->SetInAt(0, Location::RequiresRegister());
   7415   if (check->HasUses()) {
   7416     locations->SetOut(Location::SameAsFirstInput());
   7417   }
   7418 }
   7419 
   7420 void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) {
   7421   // We assume the class is not null.
   7422   LoadClassSlowPathARMVIXL* slow_path =
   7423       new (GetGraph()->GetArena()) LoadClassSlowPathARMVIXL(check->GetLoadClass(),
   7424                                                             check,
   7425                                                             check->GetDexPc(),
   7426                                                             /* do_clinit */ true);
   7427   codegen_->AddSlowPath(slow_path);
   7428   GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
   7429 }
   7430 
   7431 void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck(
   7432     LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) {
   7433   UseScratchRegisterScope temps(GetVIXLAssembler());
   7434   vixl32::Register temp = temps.Acquire();
   7435   GetAssembler()->LoadFromOffset(kLoadWord,
   7436                                  temp,
   7437                                  class_reg,
   7438                                  mirror::Class::StatusOffset().Int32Value());
   7439   __ Cmp(temp, mirror::Class::kStatusInitialized);
   7440   __ B(lt, slow_path->GetEntryLabel());
   7441   // Even if the initialized flag is set, we may be in a situation where caches are not synced
   7442   // properly. Therefore, we do a memory fence.
   7443   __ Dmb(ISH);
   7444   __ Bind(slow_path->GetExitLabel());
   7445 }
   7446 
   7447 HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind(
   7448     HLoadString::LoadKind desired_string_load_kind) {
   7449   switch (desired_string_load_kind) {
   7450     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   7451     case HLoadString::LoadKind::kBssEntry:
   7452       DCHECK(!Runtime::Current()->UseJitCompilation());
   7453       break;
   7454     case HLoadString::LoadKind::kJitTableAddress:
   7455       DCHECK(Runtime::Current()->UseJitCompilation());
   7456       break;
   7457     case HLoadString::LoadKind::kBootImageAddress:
   7458     case HLoadString::LoadKind::kRuntimeCall:
   7459       break;
   7460   }
   7461   return desired_string_load_kind;
   7462 }
   7463 
   7464 void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) {
   7465   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
   7466   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
   7467   HLoadString::LoadKind load_kind = load->GetLoadKind();
   7468   if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
   7469     locations->SetOut(LocationFrom(r0));
   7470   } else {
   7471     locations->SetOut(Location::RequiresRegister());
   7472     if (load_kind == HLoadString::LoadKind::kBssEntry) {
   7473       if (!kUseReadBarrier || kUseBakerReadBarrier) {
   7474         // Rely on the pResolveString and marking to save everything we need, including temps.
   7475         // Note that IP may be clobbered by saving/restoring the live register (only one thanks
   7476         // to the custom calling convention) or by marking, so we request a different temp.
   7477         locations->AddTemp(Location::RequiresRegister());
   7478         RegisterSet caller_saves = RegisterSet::Empty();
   7479         InvokeRuntimeCallingConventionARMVIXL calling_convention;
   7480         caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
   7481         // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
   7482         // that the the kPrimNot result register is the same as the first argument register.
   7483         locations->SetCustomSlowPathCallerSaves(caller_saves);
   7484         if (kUseBakerReadBarrier && kBakerReadBarrierLinkTimeThunksEnableForGcRoots) {
   7485           locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister.GetCode()));
   7486         }
   7487       } else {
   7488         // For non-Baker read barrier we have a temp-clobbering call.
   7489       }
   7490     }
   7491   }
   7492 }
   7493 
   7494 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
   7495 // move.
   7496 void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
   7497   LocationSummary* locations = load->GetLocations();
   7498   Location out_loc = locations->Out();
   7499   vixl32::Register out = OutputRegister(load);
   7500   HLoadString::LoadKind load_kind = load->GetLoadKind();
   7501 
   7502   switch (load_kind) {
   7503     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
   7504       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
   7505       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
   7506           codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
   7507       codegen_->EmitMovwMovtPlaceholder(labels, out);
   7508       return;  // No dex cache slow path.
   7509     }
   7510     case HLoadString::LoadKind::kBootImageAddress: {
   7511       uint32_t address = dchecked_integral_cast<uint32_t>(
   7512           reinterpret_cast<uintptr_t>(load->GetString().Get()));
   7513       DCHECK_NE(address, 0u);
   7514       __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
   7515       return;  // No dex cache slow path.
   7516     }
   7517     case HLoadString::LoadKind::kBssEntry: {
   7518       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
   7519       vixl32::Register temp = (!kUseReadBarrier || kUseBakerReadBarrier)
   7520           ? RegisterFrom(locations->GetTemp(0))
   7521           : out;
   7522       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
   7523           codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
   7524       codegen_->EmitMovwMovtPlaceholder(labels, temp);
   7525       GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption);
   7526       LoadStringSlowPathARMVIXL* slow_path =
   7527           new (GetGraph()->GetArena()) LoadStringSlowPathARMVIXL(load);
   7528       codegen_->AddSlowPath(slow_path);
   7529       __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
   7530       __ Bind(slow_path->GetExitLabel());
   7531       return;
   7532     }
   7533     case HLoadString::LoadKind::kJitTableAddress: {
   7534       __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
   7535                                                         load->GetStringIndex(),
   7536                                                         load->GetString()));
   7537       // /* GcRoot<mirror::String> */ out = *out
   7538       GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption);
   7539       return;
   7540     }
   7541     default:
   7542       break;
   7543   }
   7544 
   7545   // TODO: Re-add the compiler code to do string dex cache lookup again.
   7546   DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kRuntimeCall);
   7547   InvokeRuntimeCallingConventionARMVIXL calling_convention;
   7548   __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
   7549   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
   7550   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
   7551 }
   7552 
   7553 static int32_t GetExceptionTlsOffset() {
   7554   return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
   7555 }
   7556 
   7557 void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) {
   7558   LocationSummary* locations =
   7559       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
   7560   locations->SetOut(Location::RequiresRegister());
   7561 }
   7562 
   7563 void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) {
   7564   vixl32::Register out = OutputRegister(load);
   7565   GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset());
   7566 }
   7567 
   7568 
   7569 void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) {
   7570   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
   7571 }
   7572 
   7573 void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
   7574   UseScratchRegisterScope temps(GetVIXLAssembler());
   7575   vixl32::Register temp = temps.Acquire();
   7576   __ Mov(temp, 0);
   7577   GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset());
   7578 }
   7579 
   7580 void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) {
   7581   LocationSummary* locations =
   7582       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   7583   InvokeRuntimeCallingConventionARMVIXL calling_convention;
   7584   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   7585 }
   7586 
   7587 void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) {
   7588   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
   7589   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
   7590 }
   7591 
   7592 // Temp is used for read barrier.
   7593 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
   7594   if (kEmitCompilerReadBarrier &&
   7595        (kUseBakerReadBarrier ||
   7596           type_check_kind == TypeCheckKind::kAbstractClassCheck ||
   7597           type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
   7598           type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
   7599     return 1;
   7600   }
   7601   return 0;
   7602 }
   7603 
   7604 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
   7605 // interface pointer, one for loading the current interface.
   7606 // The other checks have one temp for loading the object's class.
   7607 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
   7608   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
   7609     return 3;
   7610   }
   7611   return 1 + NumberOfInstanceOfTemps(type_check_kind);
   7612 }
   7613 
   7614 void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
   7615   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   7616   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   7617   bool baker_read_barrier_slow_path = false;
   7618   switch (type_check_kind) {
   7619     case TypeCheckKind::kExactCheck:
   7620     case TypeCheckKind::kAbstractClassCheck:
   7621     case TypeCheckKind::kClassHierarchyCheck:
   7622     case TypeCheckKind::kArrayObjectCheck:
   7623       call_kind =
   7624           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
   7625       baker_read_barrier_slow_path = kUseBakerReadBarrier;
   7626       break;
   7627     case TypeCheckKind::kArrayCheck:
   7628     case TypeCheckKind::kUnresolvedCheck:
   7629     case TypeCheckKind::kInterfaceCheck:
   7630       call_kind = LocationSummary::kCallOnSlowPath;
   7631       break;
   7632   }
   7633 
   7634   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   7635   if (baker_read_barrier_slow_path) {
   7636     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   7637   }
   7638   locations->SetInAt(0, Location::RequiresRegister());
   7639   locations->SetInAt(1, Location::RequiresRegister());
   7640   // The "out" register is used as a temporary, so it overlaps with the inputs.
   7641   // Note that TypeCheckSlowPathARM uses this register too.
   7642   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   7643   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
   7644   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   7645     codegen_->MaybeAddBakerCcEntrypointTempForFields(locations);
   7646   }
   7647 }
   7648 
   7649 void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
   7650   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   7651   LocationSummary* locations = instruction->GetLocations();
   7652   Location obj_loc = locations->InAt(0);
   7653   vixl32::Register obj = InputRegisterAt(instruction, 0);
   7654   vixl32::Register cls = InputRegisterAt(instruction, 1);
   7655   Location out_loc = locations->Out();
   7656   vixl32::Register out = OutputRegister(instruction);
   7657   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
   7658   DCHECK_LE(num_temps, 1u);
   7659   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
   7660   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   7661   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   7662   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   7663   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   7664   vixl32::Label done;
   7665   vixl32::Label* const final_label = codegen_->GetFinalLabel(instruction, &done);
   7666   SlowPathCodeARMVIXL* slow_path = nullptr;
   7667 
   7668   // Return 0 if `obj` is null.
   7669   // avoid null check if we know obj is not null.
   7670   if (instruction->MustDoNullCheck()) {
   7671     DCHECK(!out.Is(obj));
   7672     __ Mov(out, 0);
   7673     __ CompareAndBranchIfZero(obj, final_label, /* far_target */ false);
   7674   }
   7675 
   7676   switch (type_check_kind) {
   7677     case TypeCheckKind::kExactCheck: {
   7678       // /* HeapReference<Class> */ out = obj->klass_
   7679       GenerateReferenceLoadTwoRegisters(instruction,
   7680                                         out_loc,
   7681                                         obj_loc,
   7682                                         class_offset,
   7683                                         maybe_temp_loc,
   7684                                         kCompilerReadBarrierOption);
   7685       // Classes must be equal for the instanceof to succeed.
   7686       __ Cmp(out, cls);
   7687       // We speculatively set the result to false without changing the condition
   7688       // flags, which allows us to avoid some branching later.
   7689       __ Mov(LeaveFlags, out, 0);
   7690 
   7691       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
   7692       // we check that the output is in a low register, so that a 16-bit MOV
   7693       // encoding can be used.
   7694       if (out.IsLow()) {
   7695         // We use the scope because of the IT block that follows.
   7696         ExactAssemblyScope guard(GetVIXLAssembler(),
   7697                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
   7698                                  CodeBufferCheckScope::kExactSize);
   7699 
   7700         __ it(eq);
   7701         __ mov(eq, out, 1);
   7702       } else {
   7703         __ B(ne, final_label, /* far_target */ false);
   7704         __ Mov(out, 1);
   7705       }
   7706 
   7707       break;
   7708     }
   7709 
   7710     case TypeCheckKind::kAbstractClassCheck: {
   7711       // /* HeapReference<Class> */ out = obj->klass_
   7712       GenerateReferenceLoadTwoRegisters(instruction,
   7713                                         out_loc,
   7714                                         obj_loc,
   7715                                         class_offset,
   7716                                         maybe_temp_loc,
   7717                                         kCompilerReadBarrierOption);
   7718       // If the class is abstract, we eagerly fetch the super class of the
   7719       // object to avoid doing a comparison we know will fail.
   7720       vixl32::Label loop;
   7721       __ Bind(&loop);
   7722       // /* HeapReference<Class> */ out = out->super_class_
   7723       GenerateReferenceLoadOneRegister(instruction,
   7724                                        out_loc,
   7725                                        super_offset,
   7726                                        maybe_temp_loc,
   7727                                        kCompilerReadBarrierOption);
   7728       // If `out` is null, we use it for the result, and jump to the final label.
   7729       __ CompareAndBranchIfZero(out, final_label, /* far_target */ false);
   7730       __ Cmp(out, cls);
   7731       __ B(ne, &loop, /* far_target */ false);
   7732       __ Mov(out, 1);
   7733       break;
   7734     }
   7735 
   7736     case TypeCheckKind::kClassHierarchyCheck: {
   7737       // /* HeapReference<Class> */ out = obj->klass_
   7738       GenerateReferenceLoadTwoRegisters(instruction,
   7739                                         out_loc,
   7740                                         obj_loc,
   7741                                         class_offset,
   7742                                         maybe_temp_loc,
   7743                                         kCompilerReadBarrierOption);
   7744       // Walk over the class hierarchy to find a match.
   7745       vixl32::Label loop, success;
   7746       __ Bind(&loop);
   7747       __ Cmp(out, cls);
   7748       __ B(eq, &success, /* far_target */ false);
   7749       // /* HeapReference<Class> */ out = out->super_class_
   7750       GenerateReferenceLoadOneRegister(instruction,
   7751                                        out_loc,
   7752                                        super_offset,
   7753                                        maybe_temp_loc,
   7754                                        kCompilerReadBarrierOption);
   7755       // This is essentially a null check, but it sets the condition flags to the
   7756       // proper value for the code that follows the loop, i.e. not `eq`.
   7757       __ Cmp(out, 1);
   7758       __ B(hs, &loop, /* far_target */ false);
   7759 
   7760       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
   7761       // we check that the output is in a low register, so that a 16-bit MOV
   7762       // encoding can be used.
   7763       if (out.IsLow()) {
   7764         // If `out` is null, we use it for the result, and the condition flags
   7765         // have already been set to `ne`, so the IT block that comes afterwards
   7766         // (and which handles the successful case) turns into a NOP (instead of
   7767         // overwriting `out`).
   7768         __ Bind(&success);
   7769 
   7770         // We use the scope because of the IT block that follows.
   7771         ExactAssemblyScope guard(GetVIXLAssembler(),
   7772                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
   7773                                  CodeBufferCheckScope::kExactSize);
   7774 
   7775         // There is only one branch to the `success` label (which is bound to this
   7776         // IT block), and it has the same condition, `eq`, so in that case the MOV
   7777         // is executed.
   7778         __ it(eq);
   7779         __ mov(eq, out, 1);
   7780       } else {
   7781         // If `out` is null, we use it for the result, and jump to the final label.
   7782         __ B(final_label);
   7783         __ Bind(&success);
   7784         __ Mov(out, 1);
   7785       }
   7786 
   7787       break;
   7788     }
   7789 
   7790     case TypeCheckKind::kArrayObjectCheck: {
   7791       // /* HeapReference<Class> */ out = obj->klass_
   7792       GenerateReferenceLoadTwoRegisters(instruction,
   7793                                         out_loc,
   7794                                         obj_loc,
   7795                                         class_offset,
   7796                                         maybe_temp_loc,
   7797                                         kCompilerReadBarrierOption);
   7798       // Do an exact check.
   7799       vixl32::Label exact_check;
   7800       __ Cmp(out, cls);
   7801       __ B(eq, &exact_check, /* far_target */ false);
   7802       // Otherwise, we need to check that the object's class is a non-primitive array.
   7803       // /* HeapReference<Class> */ out = out->component_type_
   7804       GenerateReferenceLoadOneRegister(instruction,
   7805                                        out_loc,
   7806                                        component_offset,
   7807                                        maybe_temp_loc,
   7808                                        kCompilerReadBarrierOption);
   7809       // If `out` is null, we use it for the result, and jump to the final label.
   7810       __ CompareAndBranchIfZero(out, final_label, /* far_target */ false);
   7811       GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
   7812       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
   7813       __ Cmp(out, 0);
   7814       // We speculatively set the result to false without changing the condition
   7815       // flags, which allows us to avoid some branching later.
   7816       __ Mov(LeaveFlags, out, 0);
   7817 
   7818       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
   7819       // we check that the output is in a low register, so that a 16-bit MOV
   7820       // encoding can be used.
   7821       if (out.IsLow()) {
   7822         __ Bind(&exact_check);
   7823 
   7824         // We use the scope because of the IT block that follows.
   7825         ExactAssemblyScope guard(GetVIXLAssembler(),
   7826                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
   7827                                  CodeBufferCheckScope::kExactSize);
   7828 
   7829         __ it(eq);
   7830         __ mov(eq, out, 1);
   7831       } else {
   7832         __ B(ne, final_label, /* far_target */ false);
   7833         __ Bind(&exact_check);
   7834         __ Mov(out, 1);
   7835       }
   7836 
   7837       break;
   7838     }
   7839 
   7840     case TypeCheckKind::kArrayCheck: {
   7841       // No read barrier since the slow path will retry upon failure.
   7842       // /* HeapReference<Class> */ out = obj->klass_
   7843       GenerateReferenceLoadTwoRegisters(instruction,
   7844                                         out_loc,
   7845                                         obj_loc,
   7846                                         class_offset,
   7847                                         maybe_temp_loc,
   7848                                         kWithoutReadBarrier);
   7849       __ Cmp(out, cls);
   7850       DCHECK(locations->OnlyCallsOnSlowPath());
   7851       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction,
   7852                                                                         /* is_fatal */ false);
   7853       codegen_->AddSlowPath(slow_path);
   7854       __ B(ne, slow_path->GetEntryLabel());
   7855       __ Mov(out, 1);
   7856       break;
   7857     }
   7858 
   7859     case TypeCheckKind::kUnresolvedCheck:
   7860     case TypeCheckKind::kInterfaceCheck: {
   7861       // Note that we indeed only call on slow path, but we always go
   7862       // into the slow path for the unresolved and interface check
   7863       // cases.
   7864       //
   7865       // We cannot directly call the InstanceofNonTrivial runtime
   7866       // entry point without resorting to a type checking slow path
   7867       // here (i.e. by calling InvokeRuntime directly), as it would
   7868       // require to assign fixed registers for the inputs of this
   7869       // HInstanceOf instruction (following the runtime calling
   7870       // convention), which might be cluttered by the potential first
   7871       // read barrier emission at the beginning of this method.
   7872       //
   7873       // TODO: Introduce a new runtime entry point taking the object
   7874       // to test (instead of its class) as argument, and let it deal
   7875       // with the read barrier issues. This will let us refactor this
   7876       // case of the `switch` code as it was previously (with a direct
   7877       // call to the runtime not using a type checking slow path).
   7878       // This should also be beneficial for the other cases above.
   7879       DCHECK(locations->OnlyCallsOnSlowPath());
   7880       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction,
   7881                                                                         /* is_fatal */ false);
   7882       codegen_->AddSlowPath(slow_path);
   7883       __ B(slow_path->GetEntryLabel());
   7884       break;
   7885     }
   7886   }
   7887 
   7888   if (done.IsReferenced()) {
   7889     __ Bind(&done);
   7890   }
   7891 
   7892   if (slow_path != nullptr) {
   7893     __ Bind(slow_path->GetExitLabel());
   7894   }
   7895 }
   7896 
   7897 void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) {
   7898   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   7899   bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
   7900 
   7901   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   7902   switch (type_check_kind) {
   7903     case TypeCheckKind::kExactCheck:
   7904     case TypeCheckKind::kAbstractClassCheck:
   7905     case TypeCheckKind::kClassHierarchyCheck:
   7906     case TypeCheckKind::kArrayObjectCheck:
   7907       call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
   7908           LocationSummary::kCallOnSlowPath :
   7909           LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
   7910       break;
   7911     case TypeCheckKind::kArrayCheck:
   7912     case TypeCheckKind::kUnresolvedCheck:
   7913     case TypeCheckKind::kInterfaceCheck:
   7914       call_kind = LocationSummary::kCallOnSlowPath;
   7915       break;
   7916   }
   7917 
   7918   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   7919   locations->SetInAt(0, Location::RequiresRegister());
   7920   locations->SetInAt(1, Location::RequiresRegister());
   7921   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
   7922 }
   7923 
   7924 void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) {
   7925   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   7926   LocationSummary* locations = instruction->GetLocations();
   7927   Location obj_loc = locations->InAt(0);
   7928   vixl32::Register obj = InputRegisterAt(instruction, 0);
   7929   vixl32::Register cls = InputRegisterAt(instruction, 1);
   7930   Location temp_loc = locations->GetTemp(0);
   7931   vixl32::Register temp = RegisterFrom(temp_loc);
   7932   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
   7933   DCHECK_LE(num_temps, 3u);
   7934   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
   7935   Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
   7936   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   7937   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   7938   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   7939   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   7940   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
   7941   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
   7942   const uint32_t object_array_data_offset =
   7943       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
   7944 
   7945   // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
   7946   // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
   7947   // read barriers is done for performance and code size reasons.
   7948   bool is_type_check_slow_path_fatal = false;
   7949   if (!kEmitCompilerReadBarrier) {
   7950     is_type_check_slow_path_fatal =
   7951         (type_check_kind == TypeCheckKind::kExactCheck ||
   7952          type_check_kind == TypeCheckKind::kAbstractClassCheck ||
   7953          type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
   7954          type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
   7955         !instruction->CanThrowIntoCatchBlock();
   7956   }
   7957   SlowPathCodeARMVIXL* type_check_slow_path =
   7958       new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction,
   7959                                                             is_type_check_slow_path_fatal);
   7960   codegen_->AddSlowPath(type_check_slow_path);
   7961 
   7962   vixl32::Label done;
   7963   vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
   7964   // Avoid null check if we know obj is not null.
   7965   if (instruction->MustDoNullCheck()) {
   7966     __ CompareAndBranchIfZero(obj, final_label, /* far_target */ false);
   7967   }
   7968 
   7969   switch (type_check_kind) {
   7970     case TypeCheckKind::kExactCheck:
   7971     case TypeCheckKind::kArrayCheck: {
   7972       // /* HeapReference<Class> */ temp = obj->klass_
   7973       GenerateReferenceLoadTwoRegisters(instruction,
   7974                                         temp_loc,
   7975                                         obj_loc,
   7976                                         class_offset,
   7977                                         maybe_temp2_loc,
   7978                                         kWithoutReadBarrier);
   7979 
   7980       __ Cmp(temp, cls);
   7981       // Jump to slow path for throwing the exception or doing a
   7982       // more involved array check.
   7983       __ B(ne, type_check_slow_path->GetEntryLabel());
   7984       break;
   7985     }
   7986 
   7987     case TypeCheckKind::kAbstractClassCheck: {
   7988       // /* HeapReference<Class> */ temp = obj->klass_
   7989       GenerateReferenceLoadTwoRegisters(instruction,
   7990                                         temp_loc,
   7991                                         obj_loc,
   7992                                         class_offset,
   7993                                         maybe_temp2_loc,
   7994                                         kWithoutReadBarrier);
   7995 
   7996       // If the class is abstract, we eagerly fetch the super class of the
   7997       // object to avoid doing a comparison we know will fail.
   7998       vixl32::Label loop;
   7999       __ Bind(&loop);
   8000       // /* HeapReference<Class> */ temp = temp->super_class_
   8001       GenerateReferenceLoadOneRegister(instruction,
   8002                                        temp_loc,
   8003                                        super_offset,
   8004                                        maybe_temp2_loc,
   8005                                        kWithoutReadBarrier);
   8006 
   8007       // If the class reference currently in `temp` is null, jump to the slow path to throw the
   8008       // exception.
   8009       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
   8010 
   8011       // Otherwise, compare the classes.
   8012       __ Cmp(temp, cls);
   8013       __ B(ne, &loop, /* far_target */ false);
   8014       break;
   8015     }
   8016 
   8017     case TypeCheckKind::kClassHierarchyCheck: {
   8018       // /* HeapReference<Class> */ temp = obj->klass_
   8019       GenerateReferenceLoadTwoRegisters(instruction,
   8020                                         temp_loc,
   8021                                         obj_loc,
   8022                                         class_offset,
   8023                                         maybe_temp2_loc,
   8024                                         kWithoutReadBarrier);
   8025 
   8026       // Walk over the class hierarchy to find a match.
   8027       vixl32::Label loop;
   8028       __ Bind(&loop);
   8029       __ Cmp(temp, cls);
   8030       __ B(eq, final_label, /* far_target */ false);
   8031 
   8032       // /* HeapReference<Class> */ temp = temp->super_class_
   8033       GenerateReferenceLoadOneRegister(instruction,
   8034                                        temp_loc,
   8035                                        super_offset,
   8036                                        maybe_temp2_loc,
   8037                                        kWithoutReadBarrier);
   8038 
   8039       // If the class reference currently in `temp` is null, jump to the slow path to throw the
   8040       // exception.
   8041       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
   8042       // Otherwise, jump to the beginning of the loop.
   8043       __ B(&loop);
   8044       break;
   8045     }
   8046 
   8047     case TypeCheckKind::kArrayObjectCheck:  {
   8048       // /* HeapReference<Class> */ temp = obj->klass_
   8049       GenerateReferenceLoadTwoRegisters(instruction,
   8050                                         temp_loc,
   8051                                         obj_loc,
   8052                                         class_offset,
   8053                                         maybe_temp2_loc,
   8054                                         kWithoutReadBarrier);
   8055 
   8056       // Do an exact check.
   8057       __ Cmp(temp, cls);
   8058       __ B(eq, final_label, /* far_target */ false);
   8059 
   8060       // Otherwise, we need to check that the object's class is a non-primitive array.
   8061       // /* HeapReference<Class> */ temp = temp->component_type_
   8062       GenerateReferenceLoadOneRegister(instruction,
   8063                                        temp_loc,
   8064                                        component_offset,
   8065                                        maybe_temp2_loc,
   8066                                        kWithoutReadBarrier);
   8067       // If the component type is null, jump to the slow path to throw the exception.
   8068       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
   8069       // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
   8070       // to further check that this component type is not a primitive type.
   8071       GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
   8072       static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
   8073       __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
   8074       break;
   8075     }
   8076 
   8077     case TypeCheckKind::kUnresolvedCheck:
   8078       // We always go into the type check slow path for the unresolved check case.
   8079       // We cannot directly call the CheckCast runtime entry point
   8080       // without resorting to a type checking slow path here (i.e. by
   8081       // calling InvokeRuntime directly), as it would require to
   8082       // assign fixed registers for the inputs of this HInstanceOf
   8083       // instruction (following the runtime calling convention), which
   8084       // might be cluttered by the potential first read barrier
   8085       // emission at the beginning of this method.
   8086 
   8087       __ B(type_check_slow_path->GetEntryLabel());
   8088       break;
   8089 
   8090     case TypeCheckKind::kInterfaceCheck: {
   8091       // Avoid read barriers to improve performance of the fast path. We can not get false
   8092       // positives by doing this.
   8093       // /* HeapReference<Class> */ temp = obj->klass_
   8094       GenerateReferenceLoadTwoRegisters(instruction,
   8095                                         temp_loc,
   8096                                         obj_loc,
   8097                                         class_offset,
   8098                                         maybe_temp2_loc,
   8099                                         kWithoutReadBarrier);
   8100 
   8101       // /* HeapReference<Class> */ temp = temp->iftable_
   8102       GenerateReferenceLoadTwoRegisters(instruction,
   8103                                         temp_loc,
   8104                                         temp_loc,
   8105                                         iftable_offset,
   8106                                         maybe_temp2_loc,
   8107                                         kWithoutReadBarrier);
   8108       // Iftable is never null.
   8109       __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset));
   8110       // Loop through the iftable and check if any class matches.
   8111       vixl32::Label start_loop;
   8112       __ Bind(&start_loop);
   8113       __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc),
   8114                                 type_check_slow_path->GetEntryLabel());
   8115       __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset));
   8116       GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc));
   8117       // Go to next interface.
   8118       __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize));
   8119       __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2);
   8120       // Compare the classes and continue the loop if they do not match.
   8121       __ Cmp(cls, RegisterFrom(maybe_temp3_loc));
   8122       __ B(ne, &start_loop, /* far_target */ false);
   8123       break;
   8124     }
   8125   }
   8126   if (done.IsReferenced()) {
   8127     __ Bind(&done);
   8128   }
   8129 
   8130   __ Bind(type_check_slow_path->GetExitLabel());
   8131 }
   8132 
   8133 void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
   8134   LocationSummary* locations =
   8135       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   8136   InvokeRuntimeCallingConventionARMVIXL calling_convention;
   8137   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   8138 }
   8139 
   8140 void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
   8141   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
   8142                           instruction,
   8143                           instruction->GetDexPc());
   8144   if (instruction->IsEnter()) {
   8145     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
   8146   } else {
   8147     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
   8148   }
   8149 }
   8150 
   8151 void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) {
   8152   HandleBitwiseOperation(instruction, AND);
   8153 }
   8154 
   8155 void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) {
   8156   HandleBitwiseOperation(instruction, ORR);
   8157 }
   8158 
   8159 void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) {
   8160   HandleBitwiseOperation(instruction, EOR);
   8161 }
   8162 
   8163 void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
   8164   LocationSummary* locations =
   8165       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   8166   DCHECK(instruction->GetResultType() == Primitive::kPrimInt
   8167          || instruction->GetResultType() == Primitive::kPrimLong);
   8168   // Note: GVN reorders commutative operations to have the constant on the right hand side.
   8169   locations->SetInAt(0, Location::RequiresRegister());
   8170   locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
   8171   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   8172 }
   8173 
   8174 void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) {
   8175   HandleBitwiseOperation(instruction);
   8176 }
   8177 
   8178 void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) {
   8179   HandleBitwiseOperation(instruction);
   8180 }
   8181 
   8182 void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) {
   8183   HandleBitwiseOperation(instruction);
   8184 }
   8185 
   8186 void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
   8187   LocationSummary* locations =
   8188       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   8189   DCHECK(instruction->GetResultType() == Primitive::kPrimInt
   8190          || instruction->GetResultType() == Primitive::kPrimLong);
   8191 
   8192   locations->SetInAt(0, Location::RequiresRegister());
   8193   locations->SetInAt(1, Location::RequiresRegister());
   8194   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   8195 }
   8196 
   8197 void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
   8198   LocationSummary* locations = instruction->GetLocations();
   8199   Location first = locations->InAt(0);
   8200   Location second = locations->InAt(1);
   8201   Location out = locations->Out();
   8202 
   8203   if (instruction->GetResultType() == Primitive::kPrimInt) {
   8204     vixl32::Register first_reg = RegisterFrom(first);
   8205     vixl32::Register second_reg = RegisterFrom(second);
   8206     vixl32::Register out_reg = RegisterFrom(out);
   8207 
   8208     switch (instruction->GetOpKind()) {
   8209       case HInstruction::kAnd:
   8210         __ Bic(out_reg, first_reg, second_reg);
   8211         break;
   8212       case HInstruction::kOr:
   8213         __ Orn(out_reg, first_reg, second_reg);
   8214         break;
   8215       // There is no EON on arm.
   8216       case HInstruction::kXor:
   8217       default:
   8218         LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
   8219         UNREACHABLE();
   8220     }
   8221     return;
   8222 
   8223   } else {
   8224     DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
   8225     vixl32::Register first_low = LowRegisterFrom(first);
   8226     vixl32::Register first_high = HighRegisterFrom(first);
   8227     vixl32::Register second_low = LowRegisterFrom(second);
   8228     vixl32::Register second_high = HighRegisterFrom(second);
   8229     vixl32::Register out_low = LowRegisterFrom(out);
   8230     vixl32::Register out_high = HighRegisterFrom(out);
   8231 
   8232     switch (instruction->GetOpKind()) {
   8233       case HInstruction::kAnd:
   8234         __ Bic(out_low, first_low, second_low);
   8235         __ Bic(out_high, first_high, second_high);
   8236         break;
   8237       case HInstruction::kOr:
   8238         __ Orn(out_low, first_low, second_low);
   8239         __ Orn(out_high, first_high, second_high);
   8240         break;
   8241       // There is no EON on arm.
   8242       case HInstruction::kXor:
   8243       default:
   8244         LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
   8245         UNREACHABLE();
   8246     }
   8247   }
   8248 }
   8249 
   8250 void LocationsBuilderARMVIXL::VisitDataProcWithShifterOp(
   8251     HDataProcWithShifterOp* instruction) {
   8252   DCHECK(instruction->GetType() == Primitive::kPrimInt ||
   8253          instruction->GetType() == Primitive::kPrimLong);
   8254   LocationSummary* locations =
   8255       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   8256   const bool overlap = instruction->GetType() == Primitive::kPrimLong &&
   8257                        HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind());
   8258 
   8259   locations->SetInAt(0, Location::RequiresRegister());
   8260   locations->SetInAt(1, Location::RequiresRegister());
   8261   locations->SetOut(Location::RequiresRegister(),
   8262                     overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
   8263 }
   8264 
   8265 void InstructionCodeGeneratorARMVIXL::VisitDataProcWithShifterOp(
   8266     HDataProcWithShifterOp* instruction) {
   8267   const LocationSummary* const locations = instruction->GetLocations();
   8268   const HInstruction::InstructionKind kind = instruction->GetInstrKind();
   8269   const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
   8270 
   8271   if (instruction->GetType() == Primitive::kPrimInt) {
   8272     DCHECK(!HDataProcWithShifterOp::IsExtensionOp(op_kind));
   8273 
   8274     const vixl32::Register second = instruction->InputAt(1)->GetType() == Primitive::kPrimLong
   8275         ? LowRegisterFrom(locations->InAt(1))
   8276         : InputRegisterAt(instruction, 1);
   8277 
   8278     GenerateDataProcInstruction(kind,
   8279                                 OutputRegister(instruction),
   8280                                 InputRegisterAt(instruction, 0),
   8281                                 Operand(second,
   8282                                         ShiftFromOpKind(op_kind),
   8283                                         instruction->GetShiftAmount()),
   8284                                 codegen_);
   8285   } else {
   8286     DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
   8287 
   8288     if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
   8289       const vixl32::Register second = InputRegisterAt(instruction, 1);
   8290 
   8291       DCHECK(!LowRegisterFrom(locations->Out()).Is(second));
   8292       GenerateDataProc(kind,
   8293                        locations->Out(),
   8294                        locations->InAt(0),
   8295                        second,
   8296                        Operand(second, ShiftType::ASR, 31),
   8297                        codegen_);
   8298     } else {
   8299       GenerateLongDataProc(instruction, codegen_);
   8300     }
   8301   }
   8302 }
   8303 
   8304 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
   8305 void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out,
   8306                                                        vixl32::Register first,
   8307                                                        uint32_t value) {
   8308   // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
   8309   if (value == 0xffffffffu) {
   8310     if (!out.Is(first)) {
   8311       __ Mov(out, first);
   8312     }
   8313     return;
   8314   }
   8315   if (value == 0u) {
   8316     __ Mov(out, 0);
   8317     return;
   8318   }
   8319   if (GetAssembler()->ShifterOperandCanHold(AND, value)) {
   8320     __ And(out, first, value);
   8321   } else if (GetAssembler()->ShifterOperandCanHold(BIC, ~value)) {
   8322     __ Bic(out, first, ~value);
   8323   } else {
   8324     DCHECK(IsPowerOfTwo(value + 1));
   8325     __ Ubfx(out, first, 0, WhichPowerOf2(value + 1));
   8326   }
   8327 }
   8328 
   8329 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
   8330 void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out,
   8331                                                        vixl32::Register first,
   8332                                                        uint32_t value) {
   8333   // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
   8334   if (value == 0u) {
   8335     if (!out.Is(first)) {
   8336       __ Mov(out, first);
   8337     }
   8338     return;
   8339   }
   8340   if (value == 0xffffffffu) {
   8341     __ Mvn(out, 0);
   8342     return;
   8343   }
   8344   if (GetAssembler()->ShifterOperandCanHold(ORR, value)) {
   8345     __ Orr(out, first, value);
   8346   } else {
   8347     DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value));
   8348     __ Orn(out, first, ~value);
   8349   }
   8350 }
   8351 
   8352 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
   8353 void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out,
   8354                                                        vixl32::Register first,
   8355                                                        uint32_t value) {
   8356   // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
   8357   if (value == 0u) {
   8358     if (!out.Is(first)) {
   8359       __ Mov(out, first);
   8360     }
   8361     return;
   8362   }
   8363   __ Eor(out, first, value);
   8364 }
   8365 
   8366 void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out,
   8367                                                            Location first,
   8368                                                            uint64_t value) {
   8369   vixl32::Register out_low = LowRegisterFrom(out);
   8370   vixl32::Register out_high = HighRegisterFrom(out);
   8371   vixl32::Register first_low = LowRegisterFrom(first);
   8372   vixl32::Register first_high = HighRegisterFrom(first);
   8373   uint32_t value_low = Low32Bits(value);
   8374   uint32_t value_high = High32Bits(value);
   8375   if (value_low == 0u) {
   8376     if (!out_low.Is(first_low)) {
   8377       __ Mov(out_low, first_low);
   8378     }
   8379     __ Add(out_high, first_high, value_high);
   8380     return;
   8381   }
   8382   __ Adds(out_low, first_low, value_low);
   8383   if (GetAssembler()->ShifterOperandCanHold(ADC, value_high, kCcDontCare)) {
   8384     __ Adc(out_high, first_high, value_high);
   8385   } else if (GetAssembler()->ShifterOperandCanHold(SBC, ~value_high, kCcDontCare)) {
   8386     __ Sbc(out_high, first_high, ~value_high);
   8387   } else {
   8388     LOG(FATAL) << "Unexpected constant " << value_high;
   8389     UNREACHABLE();
   8390   }
   8391 }
   8392 
   8393 void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) {
   8394   LocationSummary* locations = instruction->GetLocations();
   8395   Location first = locations->InAt(0);
   8396   Location second = locations->InAt(1);
   8397   Location out = locations->Out();
   8398 
   8399   if (second.IsConstant()) {
   8400     uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
   8401     uint32_t value_low = Low32Bits(value);
   8402     if (instruction->GetResultType() == Primitive::kPrimInt) {
   8403       vixl32::Register first_reg = InputRegisterAt(instruction, 0);
   8404       vixl32::Register out_reg = OutputRegister(instruction);
   8405       if (instruction->IsAnd()) {
   8406         GenerateAndConst(out_reg, first_reg, value_low);
   8407       } else if (instruction->IsOr()) {
   8408         GenerateOrrConst(out_reg, first_reg, value_low);
   8409       } else {
   8410         DCHECK(instruction->IsXor());
   8411         GenerateEorConst(out_reg, first_reg, value_low);
   8412       }
   8413     } else {
   8414       DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
   8415       uint32_t value_high = High32Bits(value);
   8416       vixl32::Register first_low = LowRegisterFrom(first);
   8417       vixl32::Register first_high = HighRegisterFrom(first);
   8418       vixl32::Register out_low = LowRegisterFrom(out);
   8419       vixl32::Register out_high = HighRegisterFrom(out);
   8420       if (instruction->IsAnd()) {
   8421         GenerateAndConst(out_low, first_low, value_low);
   8422         GenerateAndConst(out_high, first_high, value_high);
   8423       } else if (instruction->IsOr()) {
   8424         GenerateOrrConst(out_low, first_low, value_low);
   8425         GenerateOrrConst(out_high, first_high, value_high);
   8426       } else {
   8427         DCHECK(instruction->IsXor());
   8428         GenerateEorConst(out_low, first_low, value_low);
   8429         GenerateEorConst(out_high, first_high, value_high);
   8430       }
   8431     }
   8432     return;
   8433   }
   8434 
   8435   if (instruction->GetResultType() == Primitive::kPrimInt) {
   8436     vixl32::Register first_reg = InputRegisterAt(instruction, 0);
   8437     vixl32::Register second_reg = InputRegisterAt(instruction, 1);
   8438     vixl32::Register out_reg = OutputRegister(instruction);
   8439     if (instruction->IsAnd()) {
   8440       __ And(out_reg, first_reg, second_reg);
   8441     } else if (instruction->IsOr()) {
   8442       __ Orr(out_reg, first_reg, second_reg);
   8443     } else {
   8444       DCHECK(instruction->IsXor());
   8445       __ Eor(out_reg, first_reg, second_reg);
   8446     }
   8447   } else {
   8448     DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
   8449     vixl32::Register first_low = LowRegisterFrom(first);
   8450     vixl32::Register first_high = HighRegisterFrom(first);
   8451     vixl32::Register second_low = LowRegisterFrom(second);
   8452     vixl32::Register second_high = HighRegisterFrom(second);
   8453     vixl32::Register out_low = LowRegisterFrom(out);
   8454     vixl32::Register out_high = HighRegisterFrom(out);
   8455     if (instruction->IsAnd()) {
   8456       __ And(out_low, first_low, second_low);
   8457       __ And(out_high, first_high, second_high);
   8458     } else if (instruction->IsOr()) {
   8459       __ Orr(out_low, first_low, second_low);
   8460       __ Orr(out_high, first_high, second_high);
   8461     } else {
   8462       DCHECK(instruction->IsXor());
   8463       __ Eor(out_low, first_low, second_low);
   8464       __ Eor(out_high, first_high, second_high);
   8465     }
   8466   }
   8467 }
   8468 
   8469 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister(
   8470     HInstruction* instruction,
   8471     Location out,
   8472     uint32_t offset,
   8473     Location maybe_temp,
   8474     ReadBarrierOption read_barrier_option) {
   8475   vixl32::Register out_reg = RegisterFrom(out);
   8476   if (read_barrier_option == kWithReadBarrier) {
   8477     CHECK(kEmitCompilerReadBarrier);
   8478     DCHECK(maybe_temp.IsRegister()) << maybe_temp;
   8479     if (kUseBakerReadBarrier) {
   8480       // Load with fast path based Baker's read barrier.
   8481       // /* HeapReference<Object> */ out = *(out + offset)
   8482       codegen_->GenerateFieldLoadWithBakerReadBarrier(
   8483           instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
   8484     } else {
   8485       // Load with slow path based read barrier.
   8486       // Save the value of `out` into `maybe_temp` before overwriting it
   8487       // in the following move operation, as we will need it for the
   8488       // read barrier below.
   8489       __ Mov(RegisterFrom(maybe_temp), out_reg);
   8490       // /* HeapReference<Object> */ out = *(out + offset)
   8491       GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
   8492       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
   8493     }
   8494   } else {
   8495     // Plain load with no read barrier.
   8496     // /* HeapReference<Object> */ out = *(out + offset)
   8497     GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
   8498     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
   8499   }
   8500 }
   8501 
   8502 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters(
   8503     HInstruction* instruction,
   8504     Location out,
   8505     Location obj,
   8506     uint32_t offset,
   8507     Location maybe_temp,
   8508     ReadBarrierOption read_barrier_option) {
   8509   vixl32::Register out_reg = RegisterFrom(out);
   8510   vixl32::Register obj_reg = RegisterFrom(obj);
   8511   if (read_barrier_option == kWithReadBarrier) {
   8512     CHECK(kEmitCompilerReadBarrier);
   8513     if (kUseBakerReadBarrier) {
   8514       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
   8515       // Load with fast path based Baker's read barrier.
   8516       // /* HeapReference<Object> */ out = *(obj + offset)
   8517       codegen_->GenerateFieldLoadWithBakerReadBarrier(
   8518           instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
   8519     } else {
   8520       // Load with slow path based read barrier.
   8521       // /* HeapReference<Object> */ out = *(obj + offset)
   8522       GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
   8523       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
   8524     }
   8525   } else {
   8526     // Plain load with no read barrier.
   8527     // /* HeapReference<Object> */ out = *(obj + offset)
   8528     GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
   8529     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
   8530   }
   8531 }
   8532 
   8533 void InstructionCodeGeneratorARMVIXL::GenerateGcRootFieldLoad(
   8534     HInstruction* instruction,
   8535     Location root,
   8536     vixl32::Register obj,
   8537     uint32_t offset,
   8538     ReadBarrierOption read_barrier_option) {
   8539   vixl32::Register root_reg = RegisterFrom(root);
   8540   if (read_barrier_option == kWithReadBarrier) {
   8541     DCHECK(kEmitCompilerReadBarrier);
   8542     if (kUseBakerReadBarrier) {
   8543       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
   8544       // Baker's read barrier are used.
   8545       if (kBakerReadBarrierLinkTimeThunksEnableForGcRoots &&
   8546           !Runtime::Current()->UseJitCompilation()) {
   8547         // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
   8548         // the Marking Register) to decide whether we need to enter
   8549         // the slow path to mark the GC root.
   8550         //
   8551         // We use link-time generated thunks for the slow path. That thunk
   8552         // checks the reference and jumps to the entrypoint if needed.
   8553         //
   8554         //     lr = &return_address;
   8555         //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load.
   8556         //     if (mr) {  // Thread::Current()->GetIsGcMarking()
   8557         //       goto gc_root_thunk<root_reg>(lr)
   8558         //     }
   8559         //   return_address:
   8560 
   8561         UseScratchRegisterScope temps(GetVIXLAssembler());
   8562         ExcludeIPAndBakerCcEntrypointRegister(&temps, instruction);
   8563         bool narrow = CanEmitNarrowLdr(root_reg, obj, offset);
   8564         uint32_t custom_data = linker::Thumb2RelativePatcher::EncodeBakerReadBarrierGcRootData(
   8565             root_reg.GetCode(), narrow);
   8566         vixl32::Label* bne_label = codegen_->NewBakerReadBarrierPatch(custom_data);
   8567 
   8568         vixl::EmissionCheckScope guard(GetVIXLAssembler(), 4 * vixl32::kMaxInstructionSizeInBytes);
   8569         vixl32::Label return_address;
   8570         EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
   8571         __ cmp(mr, Operand(0));
   8572         // Currently the offset is always within range. If that changes,
   8573         // we shall have to split the load the same way as for fields.
   8574         DCHECK_LT(offset, kReferenceLoadMinFarOffset);
   8575         ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
   8576         __ ldr(EncodingSize(narrow ? Narrow : Wide), root_reg, MemOperand(obj, offset));
   8577         EmitPlaceholderBne(codegen_, bne_label);
   8578         __ Bind(&return_address);
   8579         DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
   8580                   narrow ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
   8581                          : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_OFFSET);
   8582       } else {
   8583         // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
   8584         // the Marking Register) to decide whether we need to enter
   8585         // the slow path to mark the GC root.
   8586         //
   8587         //   GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load.
   8588         //   if (mr) {  // Thread::Current()->GetIsGcMarking()
   8589         //     // Slow path.
   8590         //     entrypoint = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   8591         //     root = entrypoint(root);  // root = ReadBarrier::Mark(root);  // Entry point call.
   8592         //   }
   8593 
   8594         // Slow path marking the GC root `root`. The entrypoint will
   8595         // be loaded by the slow path code.
   8596         SlowPathCodeARMVIXL* slow_path =
   8597             new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARMVIXL(instruction, root);
   8598         codegen_->AddSlowPath(slow_path);
   8599 
   8600         // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   8601         GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
   8602         static_assert(
   8603             sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
   8604             "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
   8605             "have different sizes.");
   8606         static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
   8607                       "art::mirror::CompressedReference<mirror::Object> and int32_t "
   8608                       "have different sizes.");
   8609 
   8610         __ CompareAndBranchIfNonZero(mr, slow_path->GetEntryLabel());
   8611         __ Bind(slow_path->GetExitLabel());
   8612       }
   8613     } else {
   8614       // GC root loaded through a slow path for read barriers other
   8615       // than Baker's.
   8616       // /* GcRoot<mirror::Object>* */ root = obj + offset
   8617       __ Add(root_reg, obj, offset);
   8618       // /* mirror::Object* */ root = root->Read()
   8619       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
   8620     }
   8621   } else {
   8622     // Plain GC root load with no read barrier.
   8623     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   8624     GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
   8625     // Note that GC roots are not affected by heap poisoning, thus we
   8626     // do not have to unpoison `root_reg` here.
   8627   }
   8628 }
   8629 
   8630 void CodeGeneratorARMVIXL::MaybeAddBakerCcEntrypointTempForFields(LocationSummary* locations) {
   8631   DCHECK(kEmitCompilerReadBarrier);
   8632   DCHECK(kUseBakerReadBarrier);
   8633   if (kBakerReadBarrierLinkTimeThunksEnableForFields) {
   8634     if (!Runtime::Current()->UseJitCompilation()) {
   8635       locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister.GetCode()));
   8636     }
   8637   }
   8638 }
   8639 
   8640 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
   8641                                                                  Location ref,
   8642                                                                  vixl32::Register obj,
   8643                                                                  uint32_t offset,
   8644                                                                  Location temp,
   8645                                                                  bool needs_null_check) {
   8646   DCHECK(kEmitCompilerReadBarrier);
   8647   DCHECK(kUseBakerReadBarrier);
   8648 
   8649   if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
   8650       !Runtime::Current()->UseJitCompilation()) {
   8651     // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   8652     // Marking Register) to decide whether we need to enter the slow
   8653     // path to mark the reference. Then, in the slow path, check the
   8654     // gray bit in the lock word of the reference's holder (`obj`) to
   8655     // decide whether to mark `ref` or not.
   8656     //
   8657     // We use link-time generated thunks for the slow path. That thunk checks
   8658     // the holder and jumps to the entrypoint if needed. If the holder is not
   8659     // gray, it creates a fake dependency and returns to the LDR instruction.
   8660     //
   8661     //     lr = &gray_return_address;
   8662     //     if (mr) {  // Thread::Current()->GetIsGcMarking()
   8663     //       goto field_thunk<holder_reg, base_reg>(lr)
   8664     //     }
   8665     //   not_gray_return_address:
   8666     //     // Original reference load. If the offset is too large to fit
   8667     //     // into LDR, we use an adjusted base register here.
   8668     //     HeapReference<mirror::Object> reference = *(obj+offset);
   8669     //   gray_return_address:
   8670 
   8671     DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
   8672     vixl32::Register ref_reg = RegisterFrom(ref, Primitive::kPrimNot);
   8673     bool narrow = CanEmitNarrowLdr(ref_reg, obj, offset);
   8674     vixl32::Register base = obj;
   8675     if (offset >= kReferenceLoadMinFarOffset) {
   8676       base = RegisterFrom(temp);
   8677       DCHECK(!base.Is(kBakerCcEntrypointRegister));
   8678       static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
   8679       __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
   8680       offset &= (kReferenceLoadMinFarOffset - 1u);
   8681       // Use narrow LDR only for small offsets. Generating narrow encoding LDR for the large
   8682       // offsets with `(offset & (kReferenceLoadMinFarOffset - 1u)) < 32u` would most likely
   8683       // increase the overall code size when taking the generated thunks into account.
   8684       DCHECK(!narrow);
   8685     }
   8686     UseScratchRegisterScope temps(GetVIXLAssembler());
   8687     ExcludeIPAndBakerCcEntrypointRegister(&temps, instruction);
   8688     uint32_t custom_data = linker::Thumb2RelativePatcher::EncodeBakerReadBarrierFieldData(
   8689         base.GetCode(), obj.GetCode(), narrow);
   8690     vixl32::Label* bne_label = NewBakerReadBarrierPatch(custom_data);
   8691 
   8692     vixl::EmissionCheckScope guard(
   8693         GetVIXLAssembler(),
   8694         (kPoisonHeapReferences ? 5u : 4u) * vixl32::kMaxInstructionSizeInBytes);
   8695     vixl32::Label return_address;
   8696     EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
   8697     __ cmp(mr, Operand(0));
   8698     EmitPlaceholderBne(this, bne_label);
   8699     ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
   8700     __ ldr(EncodingSize(narrow ? Narrow : Wide), ref_reg, MemOperand(base, offset));
   8701     if (needs_null_check) {
   8702       MaybeRecordImplicitNullCheck(instruction);
   8703     }
   8704     // Note: We need a specific width for the unpoisoning NEG.
   8705     if (kPoisonHeapReferences) {
   8706       if (narrow) {
   8707         // The only 16-bit encoding is T1 which sets flags outside IT block (i.e. RSBS, not RSB).
   8708         __ rsbs(EncodingSize(Narrow), ref_reg, ref_reg, Operand(0));
   8709       } else {
   8710         __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
   8711       }
   8712     }
   8713     __ Bind(&return_address);
   8714     DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
   8715               narrow ? BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET
   8716                      : BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET);
   8717     return;
   8718   }
   8719 
   8720   // /* HeapReference<Object> */ ref = *(obj + offset)
   8721   Location no_index = Location::NoLocation();
   8722   ScaleFactor no_scale_factor = TIMES_1;
   8723   GenerateReferenceLoadWithBakerReadBarrier(
   8724       instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check);
   8725 }
   8726 
   8727 void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
   8728                                                                  Location ref,
   8729                                                                  vixl32::Register obj,
   8730                                                                  uint32_t data_offset,
   8731                                                                  Location index,
   8732                                                                  Location temp,
   8733                                                                  bool needs_null_check) {
   8734   DCHECK(kEmitCompilerReadBarrier);
   8735   DCHECK(kUseBakerReadBarrier);
   8736 
   8737   static_assert(
   8738       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   8739       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   8740   ScaleFactor scale_factor = TIMES_4;
   8741 
   8742   if (kBakerReadBarrierLinkTimeThunksEnableForArrays &&
   8743       !Runtime::Current()->UseJitCompilation()) {
   8744     // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   8745     // Marking Register) to decide whether we need to enter the slow
   8746     // path to mark the reference. Then, in the slow path, check the
   8747     // gray bit in the lock word of the reference's holder (`obj`) to
   8748     // decide whether to mark `ref` or not.
   8749     //
   8750     // We use link-time generated thunks for the slow path. That thunk checks
   8751     // the holder and jumps to the entrypoint if needed. If the holder is not
   8752     // gray, it creates a fake dependency and returns to the LDR instruction.
   8753     //
   8754     //     lr = &gray_return_address;
   8755     //     if (mr) {  // Thread::Current()->GetIsGcMarking()
   8756     //       goto array_thunk<base_reg>(lr)
   8757     //     }
   8758     //   not_gray_return_address:
   8759     //     // Original reference load. If the offset is too large to fit
   8760     //     // into LDR, we use an adjusted base register here.
   8761     //     HeapReference<mirror::Object> reference = data[index];
   8762     //   gray_return_address:
   8763 
   8764     DCHECK(index.IsValid());
   8765     vixl32::Register index_reg = RegisterFrom(index, Primitive::kPrimInt);
   8766     vixl32::Register ref_reg = RegisterFrom(ref, Primitive::kPrimNot);
   8767     vixl32::Register data_reg = RegisterFrom(temp, Primitive::kPrimInt);  // Raw pointer.
   8768     DCHECK(!data_reg.Is(kBakerCcEntrypointRegister));
   8769 
   8770     UseScratchRegisterScope temps(GetVIXLAssembler());
   8771     ExcludeIPAndBakerCcEntrypointRegister(&temps, instruction);
   8772     uint32_t custom_data =
   8773         linker::Thumb2RelativePatcher::EncodeBakerReadBarrierArrayData(data_reg.GetCode());
   8774     vixl32::Label* bne_label = NewBakerReadBarrierPatch(custom_data);
   8775 
   8776     __ Add(data_reg, obj, Operand(data_offset));
   8777     vixl::EmissionCheckScope guard(
   8778         GetVIXLAssembler(),
   8779         (kPoisonHeapReferences ? 5u : 4u) * vixl32::kMaxInstructionSizeInBytes);
   8780     vixl32::Label return_address;
   8781     EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
   8782     __ cmp(mr, Operand(0));
   8783     EmitPlaceholderBne(this, bne_label);
   8784     ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
   8785     __ ldr(ref_reg, MemOperand(data_reg, index_reg, vixl32::LSL, scale_factor));
   8786     DCHECK(!needs_null_check);  // The thunk cannot handle the null check.
   8787     // Note: We need a Wide NEG for the unpoisoning.
   8788     if (kPoisonHeapReferences) {
   8789       __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
   8790     }
   8791     __ Bind(&return_address);
   8792     DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
   8793               BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
   8794     return;
   8795   }
   8796 
   8797   // /* HeapReference<Object> */ ref =
   8798   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
   8799   GenerateReferenceLoadWithBakerReadBarrier(
   8800       instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check);
   8801 }
   8802 
   8803 void CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
   8804                                                                      Location ref,
   8805                                                                      vixl32::Register obj,
   8806                                                                      uint32_t offset,
   8807                                                                      Location index,
   8808                                                                      ScaleFactor scale_factor,
   8809                                                                      Location temp,
   8810                                                                      bool needs_null_check) {
   8811   DCHECK(kEmitCompilerReadBarrier);
   8812   DCHECK(kUseBakerReadBarrier);
   8813 
   8814   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   8815   // Marking Register) to decide whether we need to enter the slow
   8816   // path to mark the reference. Then, in the slow path, check the
   8817   // gray bit in the lock word of the reference's holder (`obj`) to
   8818   // decide whether to mark `ref` or not.
   8819   //
   8820   //   if (mr) {  // Thread::Current()->GetIsGcMarking()
   8821   //     // Slow path.
   8822   //     uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
   8823   //     lfence;  // Load fence or artificial data dependency to prevent load-load reordering
   8824   //     HeapReference<mirror::Object> ref = *src;  // Original reference load.
   8825   //     bool is_gray = (rb_state == ReadBarrier::GrayState());
   8826   //     if (is_gray) {
   8827   //       entrypoint = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   8828   //       ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
   8829   //     }
   8830   //   } else {
   8831   //     HeapReference<mirror::Object> ref = *src;  // Original reference load.
   8832   //   }
   8833 
   8834   vixl32::Register temp_reg = RegisterFrom(temp);
   8835 
   8836   // Slow path marking the object `ref` when the GC is marking. The
   8837   // entrypoint will be loaded by the slow path code.
   8838   SlowPathCodeARMVIXL* slow_path =
   8839       new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierSlowPathARMVIXL(
   8840           instruction, ref, obj, offset, index, scale_factor, needs_null_check, temp_reg);
   8841   AddSlowPath(slow_path);
   8842 
   8843   __ CompareAndBranchIfNonZero(mr, slow_path->GetEntryLabel());
   8844   // Fast path: the GC is not marking: just load the reference.
   8845   GenerateRawReferenceLoad(instruction, ref, obj, offset, index, scale_factor, needs_null_check);
   8846   __ Bind(slow_path->GetExitLabel());
   8847 }
   8848 
   8849 void CodeGeneratorARMVIXL::UpdateReferenceFieldWithBakerReadBarrier(HInstruction* instruction,
   8850                                                                     Location ref,
   8851                                                                     vixl32::Register obj,
   8852                                                                     Location field_offset,
   8853                                                                     Location temp,
   8854                                                                     bool needs_null_check,
   8855                                                                     vixl32::Register temp2) {
   8856   DCHECK(kEmitCompilerReadBarrier);
   8857   DCHECK(kUseBakerReadBarrier);
   8858 
   8859   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   8860   // Marking Register) to decide whether we need to enter the slow
   8861   // path to update the reference field within `obj`. Then, in the
   8862   // slow path, check the gray bit in the lock word of the reference's
   8863   // holder (`obj`) to decide whether to mark `ref` and update the
   8864   // field or not.
   8865   //
   8866   //   if (mr) {  // Thread::Current()->GetIsGcMarking()
   8867   //     // Slow path.
   8868   //     uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
   8869   //     lfence;  // Load fence or artificial data dependency to prevent load-load reordering
   8870   //     HeapReference<mirror::Object> ref = *(obj + field_offset);  // Reference load.
   8871   //     bool is_gray = (rb_state == ReadBarrier::GrayState());
   8872   //     if (is_gray) {
   8873   //       old_ref = ref;
   8874   //       entrypoint = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   8875   //       ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
   8876   //       compareAndSwapObject(obj, field_offset, old_ref, ref);
   8877   //     }
   8878   //   }
   8879 
   8880   vixl32::Register temp_reg = RegisterFrom(temp);
   8881 
   8882   // Slow path updating the object reference at address `obj + field_offset`
   8883   // when the GC is marking. The entrypoint will be loaded by the slow path code.
   8884   SlowPathCodeARMVIXL* slow_path =
   8885       new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL(
   8886           instruction,
   8887           ref,
   8888           obj,
   8889           /* offset */ 0u,
   8890           /* index */ field_offset,
   8891           /* scale_factor */ ScaleFactor::TIMES_1,
   8892           needs_null_check,
   8893           temp_reg,
   8894           temp2);
   8895   AddSlowPath(slow_path);
   8896 
   8897   __ CompareAndBranchIfNonZero(mr, slow_path->GetEntryLabel());
   8898   // Fast path: the GC is not marking: nothing to do (the field is
   8899   // up-to-date, and we don't need to load the reference).
   8900   __ Bind(slow_path->GetExitLabel());
   8901 }
   8902 
   8903 void CodeGeneratorARMVIXL::GenerateRawReferenceLoad(HInstruction* instruction,
   8904                                                     Location ref,
   8905                                                     vixl::aarch32::Register obj,
   8906                                                     uint32_t offset,
   8907                                                     Location index,
   8908                                                     ScaleFactor scale_factor,
   8909                                                     bool needs_null_check) {
   8910   Primitive::Type type = Primitive::kPrimNot;
   8911   vixl32::Register ref_reg = RegisterFrom(ref, type);
   8912 
   8913   // If needed, vixl::EmissionCheckScope guards are used to ensure
   8914   // that no pools are emitted between the load (macro) instruction
   8915   // and MaybeRecordImplicitNullCheck.
   8916 
   8917   if (index.IsValid()) {
   8918     // Load types involving an "index": ArrayGet,
   8919     // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
   8920     // intrinsics.
   8921     // /* HeapReference<mirror::Object> */ ref = *(obj + offset + (index << scale_factor))
   8922     if (index.IsConstant()) {
   8923       size_t computed_offset =
   8924           (Int32ConstantFrom(index) << scale_factor) + offset;
   8925       vixl::EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   8926       GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
   8927       if (needs_null_check) {
   8928         MaybeRecordImplicitNullCheck(instruction);
   8929       }
   8930     } else {
   8931       // Handle the special case of the
   8932       // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
   8933       // intrinsics, which use a register pair as index ("long
   8934       // offset"), of which only the low part contains data.
   8935       vixl32::Register index_reg = index.IsRegisterPair()
   8936           ? LowRegisterFrom(index)
   8937           : RegisterFrom(index);
   8938       UseScratchRegisterScope temps(GetVIXLAssembler());
   8939       vixl32::Register temp = temps.Acquire();
   8940       __ Add(temp, obj, Operand(index_reg, ShiftType::LSL, scale_factor));
   8941       {
   8942         vixl::EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   8943         GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, temp, offset);
   8944         if (needs_null_check) {
   8945           MaybeRecordImplicitNullCheck(instruction);
   8946         }
   8947       }
   8948     }
   8949   } else {
   8950     // /* HeapReference<mirror::Object> */ ref = *(obj + offset)
   8951     vixl::EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   8952     GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, obj, offset);
   8953     if (needs_null_check) {
   8954       MaybeRecordImplicitNullCheck(instruction);
   8955     }
   8956   }
   8957 
   8958   // Object* ref = ref_addr->AsMirrorPtr()
   8959   GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
   8960 }
   8961 
   8962 void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction,
   8963                                                    Location out,
   8964                                                    Location ref,
   8965                                                    Location obj,
   8966                                                    uint32_t offset,
   8967                                                    Location index) {
   8968   DCHECK(kEmitCompilerReadBarrier);
   8969 
   8970   // Insert a slow path based read barrier *after* the reference load.
   8971   //
   8972   // If heap poisoning is enabled, the unpoisoning of the loaded
   8973   // reference will be carried out by the runtime within the slow
   8974   // path.
   8975   //
   8976   // Note that `ref` currently does not get unpoisoned (when heap
   8977   // poisoning is enabled), which is alright as the `ref` argument is
   8978   // not used by the artReadBarrierSlow entry point.
   8979   //
   8980   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
   8981   SlowPathCodeARMVIXL* slow_path = new (GetGraph()->GetArena())
   8982       ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index);
   8983   AddSlowPath(slow_path);
   8984 
   8985   __ B(slow_path->GetEntryLabel());
   8986   __ Bind(slow_path->GetExitLabel());
   8987 }
   8988 
   8989 void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
   8990                                                         Location out,
   8991                                                         Location ref,
   8992                                                         Location obj,
   8993                                                         uint32_t offset,
   8994                                                         Location index) {
   8995   if (kEmitCompilerReadBarrier) {
   8996     // Baker's read barriers shall be handled by the fast path
   8997     // (CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier).
   8998     DCHECK(!kUseBakerReadBarrier);
   8999     // If heap poisoning is enabled, unpoisoning will be taken care of
   9000     // by the runtime within the slow path.
   9001     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
   9002   } else if (kPoisonHeapReferences) {
   9003     GetAssembler()->UnpoisonHeapReference(RegisterFrom(out));
   9004   }
   9005 }
   9006 
   9007 void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction,
   9008                                                           Location out,
   9009                                                           Location root) {
   9010   DCHECK(kEmitCompilerReadBarrier);
   9011 
   9012   // Insert a slow path based read barrier *after* the GC root load.
   9013   //
   9014   // Note that GC roots are not affected by heap poisoning, so we do
   9015   // not need to do anything special for this here.
   9016   SlowPathCodeARMVIXL* slow_path =
   9017       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root);
   9018   AddSlowPath(slow_path);
   9019 
   9020   __ B(slow_path->GetEntryLabel());
   9021   __ Bind(slow_path->GetExitLabel());
   9022 }
   9023 
   9024 // Check if the desired_dispatch_info is supported. If it is, return it,
   9025 // otherwise return a fall-back info that should be used instead.
   9026 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch(
   9027     const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
   9028     HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
   9029   return desired_dispatch_info;
   9030 }
   9031 
   9032 vixl32::Register CodeGeneratorARMVIXL::GetInvokeStaticOrDirectExtraParameter(
   9033     HInvokeStaticOrDirect* invoke, vixl32::Register temp) {
   9034   DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
   9035   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   9036   if (!invoke->GetLocations()->Intrinsified()) {
   9037     return RegisterFrom(location);
   9038   }
   9039   // For intrinsics we allow any location, so it may be on the stack.
   9040   if (!location.IsRegister()) {
   9041     GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, location.GetStackIndex());
   9042     return temp;
   9043   }
   9044   // For register locations, check if the register was saved. If so, get it from the stack.
   9045   // Note: There is a chance that the register was saved but not overwritten, so we could
   9046   // save one load. However, since this is just an intrinsic slow path we prefer this
   9047   // simple and more robust approach rather that trying to determine if that's the case.
   9048   SlowPathCode* slow_path = GetCurrentSlowPath();
   9049   if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(RegisterFrom(location).GetCode())) {
   9050     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(RegisterFrom(location).GetCode());
   9051     GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, stack_offset);
   9052     return temp;
   9053   }
   9054   return RegisterFrom(location);
   9055 }
   9056 
   9057 void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(
   9058     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
   9059   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
   9060   switch (invoke->GetMethodLoadKind()) {
   9061     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
   9062       uint32_t offset =
   9063           GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
   9064       // temp = thread->string_init_entrypoint
   9065       GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset);
   9066       break;
   9067     }
   9068     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
   9069       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   9070       break;
   9071     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
   9072       DCHECK(GetCompilerOptions().IsBootImage());
   9073       PcRelativePatchInfo* labels = NewPcRelativeMethodPatch(invoke->GetTargetMethod());
   9074       vixl32::Register temp_reg = RegisterFrom(temp);
   9075       EmitMovwMovtPlaceholder(labels, temp_reg);
   9076       break;
   9077     }
   9078     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
   9079       __ Mov(RegisterFrom(temp), Operand::From(invoke->GetMethodAddress()));
   9080       break;
   9081     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
   9082       PcRelativePatchInfo* labels = NewMethodBssEntryPatch(
   9083           MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()));
   9084       vixl32::Register temp_reg = RegisterFrom(temp);
   9085       EmitMovwMovtPlaceholder(labels, temp_reg);
   9086       GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0);
   9087       break;
   9088     }
   9089     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
   9090       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
   9091       return;  // No code pointer retrieval; the runtime performs the call directly.
   9092     }
   9093   }
   9094 
   9095   switch (invoke->GetCodePtrLocation()) {
   9096     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
   9097       {
   9098         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
   9099         ExactAssemblyScope aas(GetVIXLAssembler(),
   9100                                vixl32::k32BitT32InstructionSizeInBytes,
   9101                                CodeBufferCheckScope::kMaximumSize);
   9102         __ bl(GetFrameEntryLabel());
   9103         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
   9104       }
   9105       break;
   9106     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
   9107       // LR = callee_method->entry_point_from_quick_compiled_code_
   9108       GetAssembler()->LoadFromOffset(
   9109             kLoadWord,
   9110             lr,
   9111             RegisterFrom(callee_method),
   9112             ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value());
   9113       {
   9114         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
   9115         // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
   9116         ExactAssemblyScope aas(GetVIXLAssembler(),
   9117                                vixl32::k16BitT32InstructionSizeInBytes,
   9118                                CodeBufferCheckScope::kExactSize);
   9119         // LR()
   9120         __ blx(lr);
   9121         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
   9122       }
   9123       break;
   9124   }
   9125 
   9126   DCHECK(!IsLeafMethod());
   9127 }
   9128 
   9129 void CodeGeneratorARMVIXL::GenerateVirtualCall(
   9130     HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
   9131   vixl32::Register temp = RegisterFrom(temp_location);
   9132   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   9133       invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
   9134 
   9135   // Use the calling convention instead of the location of the receiver, as
   9136   // intrinsics may have put the receiver in a different register. In the intrinsics
   9137   // slow path, the arguments have been moved to the right place, so here we are
   9138   // guaranteed that the receiver is the first register of the calling convention.
   9139   InvokeDexCallingConventionARMVIXL calling_convention;
   9140   vixl32::Register receiver = calling_convention.GetRegisterAt(0);
   9141   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   9142   {
   9143     // Make sure the pc is recorded immediately after the `ldr` instruction.
   9144     ExactAssemblyScope aas(GetVIXLAssembler(),
   9145                            vixl32::kMaxInstructionSizeInBytes,
   9146                            CodeBufferCheckScope::kMaximumSize);
   9147     // /* HeapReference<Class> */ temp = receiver->klass_
   9148     __ ldr(temp, MemOperand(receiver, class_offset));
   9149     MaybeRecordImplicitNullCheck(invoke);
   9150   }
   9151   // Instead of simply (possibly) unpoisoning `temp` here, we should
   9152   // emit a read barrier for the previous class reference load.
   9153   // However this is not required in practice, as this is an
   9154   // intermediate/temporary reference and because the current
   9155   // concurrent copying collector keeps the from-space memory
   9156   // intact/accessible until the end of the marking phase (the
   9157   // concurrent copying collector may not in the future).
   9158   GetAssembler()->MaybeUnpoisonHeapReference(temp);
   9159 
   9160   // temp = temp->GetMethodAt(method_offset);
   9161   uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
   9162       kArmPointerSize).Int32Value();
   9163   GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
   9164   // LR = temp->GetEntryPoint();
   9165   GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
   9166   {
   9167     // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
   9168     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
   9169     ExactAssemblyScope aas(GetVIXLAssembler(),
   9170                            vixl32::k16BitT32InstructionSizeInBytes,
   9171                            CodeBufferCheckScope::kExactSize);
   9172     // LR();
   9173     __ blx(lr);
   9174     RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
   9175   }
   9176 }
   9177 
   9178 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeMethodPatch(
   9179     MethodReference target_method) {
   9180   return NewPcRelativePatch(*target_method.dex_file,
   9181                             target_method.dex_method_index,
   9182                             &pc_relative_method_patches_);
   9183 }
   9184 
   9185 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewMethodBssEntryPatch(
   9186     MethodReference target_method) {
   9187   return NewPcRelativePatch(*target_method.dex_file,
   9188                             target_method.dex_method_index,
   9189                             &method_bss_entry_patches_);
   9190 }
   9191 
   9192 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeTypePatch(
   9193     const DexFile& dex_file, dex::TypeIndex type_index) {
   9194   return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_);
   9195 }
   9196 
   9197 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch(
   9198     const DexFile& dex_file, dex::TypeIndex type_index) {
   9199   return NewPcRelativePatch(dex_file, type_index.index_, &type_bss_entry_patches_);
   9200 }
   9201 
   9202 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeStringPatch(
   9203     const DexFile& dex_file, dex::StringIndex string_index) {
   9204   return NewPcRelativePatch(dex_file, string_index.index_, &pc_relative_string_patches_);
   9205 }
   9206 
   9207 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch(
   9208     const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
   9209   patches->emplace_back(dex_file, offset_or_index);
   9210   return &patches->back();
   9211 }
   9212 
   9213 vixl::aarch32::Label* CodeGeneratorARMVIXL::NewBakerReadBarrierPatch(uint32_t custom_data) {
   9214   baker_read_barrier_patches_.emplace_back(custom_data);
   9215   return &baker_read_barrier_patches_.back().label;
   9216 }
   9217 
   9218 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) {
   9219   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_);
   9220 }
   9221 
   9222 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral(
   9223     const DexFile& dex_file,
   9224     dex::StringIndex string_index,
   9225     Handle<mirror::String> handle) {
   9226   jit_string_roots_.Overwrite(StringReference(&dex_file, string_index),
   9227                               reinterpret_cast64<uint64_t>(handle.GetReference()));
   9228   return jit_string_patches_.GetOrCreate(
   9229       StringReference(&dex_file, string_index),
   9230       [this]() {
   9231         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u);
   9232       });
   9233 }
   9234 
   9235 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file,
   9236                                                       dex::TypeIndex type_index,
   9237                                                       Handle<mirror::Class> handle) {
   9238   jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index),
   9239                              reinterpret_cast64<uint64_t>(handle.GetReference()));
   9240   return jit_class_patches_.GetOrCreate(
   9241       TypeReference(&dex_file, type_index),
   9242       [this]() {
   9243         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u);
   9244       });
   9245 }
   9246 
   9247 template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
   9248 inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches(
   9249     const ArenaDeque<PcRelativePatchInfo>& infos,
   9250     ArenaVector<LinkerPatch>* linker_patches) {
   9251   for (const PcRelativePatchInfo& info : infos) {
   9252     const DexFile& dex_file = info.target_dex_file;
   9253     size_t offset_or_index = info.offset_or_index;
   9254     DCHECK(info.add_pc_label.IsBound());
   9255     uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.GetLocation());
   9256     // Add MOVW patch.
   9257     DCHECK(info.movw_label.IsBound());
   9258     uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.GetLocation());
   9259     linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index));
   9260     // Add MOVT patch.
   9261     DCHECK(info.movt_label.IsBound());
   9262     uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.GetLocation());
   9263     linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index));
   9264   }
   9265 }
   9266 
   9267 void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
   9268   DCHECK(linker_patches->empty());
   9269   size_t size =
   9270       /* MOVW+MOVT for each entry */ 2u * pc_relative_method_patches_.size() +
   9271       /* MOVW+MOVT for each entry */ 2u * method_bss_entry_patches_.size() +
   9272       /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() +
   9273       /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() +
   9274       /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() +
   9275       baker_read_barrier_patches_.size();
   9276   linker_patches->reserve(size);
   9277   if (GetCompilerOptions().IsBootImage()) {
   9278     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeMethodPatch>(pc_relative_method_patches_,
   9279                                                                   linker_patches);
   9280     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
   9281                                                                 linker_patches);
   9282     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
   9283                                                                   linker_patches);
   9284   } else {
   9285     DCHECK(pc_relative_method_patches_.empty());
   9286     DCHECK(pc_relative_type_patches_.empty());
   9287     EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
   9288                                                                   linker_patches);
   9289   }
   9290   EmitPcRelativeLinkerPatches<LinkerPatch::MethodBssEntryPatch>(method_bss_entry_patches_,
   9291                                                                 linker_patches);
   9292   EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_,
   9293                                                               linker_patches);
   9294   for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
   9295     linker_patches->push_back(LinkerPatch::BakerReadBarrierBranchPatch(info.label.GetLocation(),
   9296                                                                        info.custom_data));
   9297   }
   9298   DCHECK_EQ(size, linker_patches->size());
   9299 }
   9300 
   9301 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal(
   9302     uint32_t value,
   9303     Uint32ToLiteralMap* map) {
   9304   return map->GetOrCreate(
   9305       value,
   9306       [this, value]() {
   9307         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ value);
   9308       });
   9309 }
   9310 
   9311 void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
   9312   LocationSummary* locations =
   9313       new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
   9314   locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
   9315                      Location::RequiresRegister());
   9316   locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
   9317   locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
   9318   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   9319 }
   9320 
   9321 void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
   9322   vixl32::Register res = OutputRegister(instr);
   9323   vixl32::Register accumulator =
   9324       InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
   9325   vixl32::Register mul_left =
   9326       InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
   9327   vixl32::Register mul_right =
   9328       InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
   9329 
   9330   if (instr->GetOpKind() == HInstruction::kAdd) {
   9331     __ Mla(res, mul_left, mul_right, accumulator);
   9332   } else {
   9333     __ Mls(res, mul_left, mul_right, accumulator);
   9334   }
   9335 }
   9336 
   9337 void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   9338   // Nothing to do, this should be removed during prepare for register allocator.
   9339   LOG(FATAL) << "Unreachable";
   9340 }
   9341 
   9342 void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   9343   // Nothing to do, this should be removed during prepare for register allocator.
   9344   LOG(FATAL) << "Unreachable";
   9345 }
   9346 
   9347 // Simple implementation of packed switch - generate cascaded compare/jumps.
   9348 void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   9349   LocationSummary* locations =
   9350       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
   9351   locations->SetInAt(0, Location::RequiresRegister());
   9352   if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
   9353       codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
   9354     locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
   9355     if (switch_instr->GetStartValue() != 0) {
   9356       locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
   9357     }
   9358   }
   9359 }
   9360 
   9361 // TODO(VIXL): Investigate and reach the parity with old arm codegen.
   9362 void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   9363   int32_t lower_bound = switch_instr->GetStartValue();
   9364   uint32_t num_entries = switch_instr->GetNumEntries();
   9365   LocationSummary* locations = switch_instr->GetLocations();
   9366   vixl32::Register value_reg = InputRegisterAt(switch_instr, 0);
   9367   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
   9368 
   9369   if (num_entries <= kPackedSwitchCompareJumpThreshold ||
   9370       !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
   9371     // Create a series of compare/jumps.
   9372     UseScratchRegisterScope temps(GetVIXLAssembler());
   9373     vixl32::Register temp_reg = temps.Acquire();
   9374     // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
   9375     // the immediate, because IP is used as the destination register. For the other
   9376     // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
   9377     // and they can be encoded in the instruction without making use of IP register.
   9378     __ Adds(temp_reg, value_reg, -lower_bound);
   9379 
   9380     const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
   9381     // Jump to successors[0] if value == lower_bound.
   9382     __ B(eq, codegen_->GetLabelOf(successors[0]));
   9383     int32_t last_index = 0;
   9384     for (; num_entries - last_index > 2; last_index += 2) {
   9385       __ Adds(temp_reg, temp_reg, -2);
   9386       // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
   9387       __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
   9388       // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
   9389       __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
   9390     }
   9391     if (num_entries - last_index == 2) {
   9392       // The last missing case_value.
   9393       __ Cmp(temp_reg, 1);
   9394       __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
   9395     }
   9396 
   9397     // And the default for any other value.
   9398     if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
   9399       __ B(codegen_->GetLabelOf(default_block));
   9400     }
   9401   } else {
   9402     // Create a table lookup.
   9403     vixl32::Register table_base = RegisterFrom(locations->GetTemp(0));
   9404 
   9405     JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr);
   9406 
   9407     // Remove the bias.
   9408     vixl32::Register key_reg;
   9409     if (lower_bound != 0) {
   9410       key_reg = RegisterFrom(locations->GetTemp(1));
   9411       __ Sub(key_reg, value_reg, lower_bound);
   9412     } else {
   9413       key_reg = value_reg;
   9414     }
   9415 
   9416     // Check whether the value is in the table, jump to default block if not.
   9417     __ Cmp(key_reg, num_entries - 1);
   9418     __ B(hi, codegen_->GetLabelOf(default_block));
   9419 
   9420     UseScratchRegisterScope temps(GetVIXLAssembler());
   9421     vixl32::Register jump_offset = temps.Acquire();
   9422 
   9423     // Load jump offset from the table.
   9424     {
   9425       const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
   9426       ExactAssemblyScope aas(GetVIXLAssembler(),
   9427                              (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size,
   9428                              CodeBufferCheckScope::kMaximumSize);
   9429       __ adr(table_base, jump_table->GetTableStartLabel());
   9430       __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2));
   9431 
   9432       // Jump to target block by branching to table_base(pc related) + offset.
   9433       vixl32::Register target_address = table_base;
   9434       __ add(target_address, table_base, jump_offset);
   9435       __ bx(target_address);
   9436 
   9437       jump_table->EmitTable(codegen_);
   9438     }
   9439   }
   9440 }
   9441 
   9442 // Copy the result of a call into the given target.
   9443 void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, Primitive::Type type) {
   9444   if (!trg.IsValid()) {
   9445     DCHECK_EQ(type, Primitive::kPrimVoid);
   9446     return;
   9447   }
   9448 
   9449   DCHECK_NE(type, Primitive::kPrimVoid);
   9450 
   9451   Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type);
   9452   if (return_loc.Equals(trg)) {
   9453     return;
   9454   }
   9455 
   9456   // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
   9457   //       with the last branch.
   9458   if (type == Primitive::kPrimLong) {
   9459     TODO_VIXL32(FATAL);
   9460   } else if (type == Primitive::kPrimDouble) {
   9461     TODO_VIXL32(FATAL);
   9462   } else {
   9463     // Let the parallel move resolver take care of all of this.
   9464     HParallelMove parallel_move(GetGraph()->GetArena());
   9465     parallel_move.AddMove(return_loc, trg, type, nullptr);
   9466     GetMoveResolver()->EmitNativeCode(&parallel_move);
   9467   }
   9468 }
   9469 
   9470 void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
   9471   LocationSummary* locations =
   9472       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   9473   locations->SetInAt(0, Location::RequiresRegister());
   9474   locations->SetOut(Location::RequiresRegister());
   9475 }
   9476 
   9477 void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
   9478   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
   9479     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   9480         instruction->GetIndex(), kArmPointerSize).SizeValue();
   9481     GetAssembler()->LoadFromOffset(kLoadWord,
   9482                                    OutputRegister(instruction),
   9483                                    InputRegisterAt(instruction, 0),
   9484                                    method_offset);
   9485   } else {
   9486     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   9487         instruction->GetIndex(), kArmPointerSize));
   9488     GetAssembler()->LoadFromOffset(kLoadWord,
   9489                                    OutputRegister(instruction),
   9490                                    InputRegisterAt(instruction, 0),
   9491                                    mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
   9492     GetAssembler()->LoadFromOffset(kLoadWord,
   9493                                    OutputRegister(instruction),
   9494                                    OutputRegister(instruction),
   9495                                    method_offset);
   9496   }
   9497 }
   9498 
   9499 static void PatchJitRootUse(uint8_t* code,
   9500                             const uint8_t* roots_data,
   9501                             VIXLUInt32Literal* literal,
   9502                             uint64_t index_in_table) {
   9503   DCHECK(literal->IsBound());
   9504   uint32_t literal_offset = literal->GetLocation();
   9505   uintptr_t address =
   9506       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
   9507   uint8_t* data = code + literal_offset;
   9508   reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
   9509 }
   9510 
   9511 void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
   9512   for (const auto& entry : jit_string_patches_) {
   9513     const StringReference& string_reference = entry.first;
   9514     VIXLUInt32Literal* table_entry_literal = entry.second;
   9515     const auto it = jit_string_roots_.find(string_reference);
   9516     DCHECK(it != jit_string_roots_.end());
   9517     uint64_t index_in_table = it->second;
   9518     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
   9519   }
   9520   for (const auto& entry : jit_class_patches_) {
   9521     const TypeReference& type_reference = entry.first;
   9522     VIXLUInt32Literal* table_entry_literal = entry.second;
   9523     const auto it = jit_class_roots_.find(type_reference);
   9524     DCHECK(it != jit_class_roots_.end());
   9525     uint64_t index_in_table = it->second;
   9526     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
   9527   }
   9528 }
   9529 
   9530 void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder(
   9531     CodeGeneratorARMVIXL::PcRelativePatchInfo* labels,
   9532     vixl32::Register out) {
   9533   ExactAssemblyScope aas(GetVIXLAssembler(),
   9534                          3 * vixl32::kMaxInstructionSizeInBytes,
   9535                          CodeBufferCheckScope::kMaximumSize);
   9536   // TODO(VIXL): Think about using mov instead of movw.
   9537   __ bind(&labels->movw_label);
   9538   __ movw(out, /* placeholder */ 0u);
   9539   __ bind(&labels->movt_label);
   9540   __ movt(out, /* placeholder */ 0u);
   9541   __ bind(&labels->add_pc_label);
   9542   __ add(out, out, pc);
   9543 }
   9544 
   9545 #undef __
   9546 #undef QUICK_ENTRY_POINT
   9547 #undef TODO_VIXL32
   9548 
   9549 }  // namespace arm
   9550 }  // namespace art
   9551