Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86ISelLowering.h"
     19 #include "X86TargetMachine.h"
     20 #include "X86TargetObjectFile.h"
     21 #include "Utils/X86ShuffleDecode.h"
     22 #include "llvm/CallingConv.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/GlobalAlias.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/Intrinsics.h"
     30 #include "llvm/LLVMContext.h"
     31 #include "llvm/CodeGen/IntrinsicLowering.h"
     32 #include "llvm/CodeGen/MachineFrameInfo.h"
     33 #include "llvm/CodeGen/MachineFunction.h"
     34 #include "llvm/CodeGen/MachineInstrBuilder.h"
     35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     36 #include "llvm/CodeGen/MachineModuleInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/PseudoSourceValue.h"
     39 #include "llvm/MC/MCAsmInfo.h"
     40 #include "llvm/MC/MCContext.h"
     41 #include "llvm/MC/MCExpr.h"
     42 #include "llvm/MC/MCSymbol.h"
     43 #include "llvm/ADT/BitVector.h"
     44 #include "llvm/ADT/SmallSet.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/ADT/StringExtras.h"
     47 #include "llvm/ADT/VectorExtras.h"
     48 #include "llvm/Support/CallSite.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/Dwarf.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/MathExtras.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include "llvm/Target/TargetOptions.h"
     55 using namespace llvm;
     56 using namespace dwarf;
     57 
     58 STATISTIC(NumTailCalls, "Number of tail calls");
     59 
     60 // Forward declarations.
     61 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
     62                        SDValue V2);
     63 
     64 static SDValue Insert128BitVector(SDValue Result,
     65                                   SDValue Vec,
     66                                   SDValue Idx,
     67                                   SelectionDAG &DAG,
     68                                   DebugLoc dl);
     69 
     70 static SDValue Extract128BitVector(SDValue Vec,
     71                                    SDValue Idx,
     72                                    SelectionDAG &DAG,
     73                                    DebugLoc dl);
     74 
     75 /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
     76 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
     77 /// simple subregister reference.  Idx is an index in the 128 bits we
     78 /// want.  It need not be aligned to a 128-bit bounday.  That makes
     79 /// lowering EXTRACT_VECTOR_ELT operations easier.
     80 static SDValue Extract128BitVector(SDValue Vec,
     81                                    SDValue Idx,
     82                                    SelectionDAG &DAG,
     83                                    DebugLoc dl) {
     84   EVT VT = Vec.getValueType();
     85   assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
     86   EVT ElVT = VT.getVectorElementType();
     87   int Factor = VT.getSizeInBits()/128;
     88   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
     89                                   VT.getVectorNumElements()/Factor);
     90 
     91   // Extract from UNDEF is UNDEF.
     92   if (Vec.getOpcode() == ISD::UNDEF)
     93     return DAG.getNode(ISD::UNDEF, dl, ResultVT);
     94 
     95   if (isa<ConstantSDNode>(Idx)) {
     96     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
     97 
     98     // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
     99     // we can match to VEXTRACTF128.
    100     unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
    101 
    102     // This is the index of the first element of the 128-bit chunk
    103     // we want.
    104     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
    105                                  * ElemsPerChunk);
    106 
    107     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
    108     SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
    109                                  VecIdx);
    110 
    111     return Result;
    112   }
    113 
    114   return SDValue();
    115 }
    116 
    117 /// Generate a DAG to put 128-bits into a vector > 128 bits.  This
    118 /// sets things up to match to an AVX VINSERTF128 instruction or a
    119 /// simple superregister reference.  Idx is an index in the 128 bits
    120 /// we want.  It need not be aligned to a 128-bit bounday.  That makes
    121 /// lowering INSERT_VECTOR_ELT operations easier.
    122 static SDValue Insert128BitVector(SDValue Result,
    123                                   SDValue Vec,
    124                                   SDValue Idx,
    125                                   SelectionDAG &DAG,
    126                                   DebugLoc dl) {
    127   if (isa<ConstantSDNode>(Idx)) {
    128     EVT VT = Vec.getValueType();
    129     assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
    130 
    131     EVT ElVT = VT.getVectorElementType();
    132     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
    133     EVT ResultVT = Result.getValueType();
    134 
    135     // Insert the relevant 128 bits.
    136     unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
    137 
    138     // This is the index of the first element of the 128-bit chunk
    139     // we want.
    140     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
    141                                  * ElemsPerChunk);
    142 
    143     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
    144     Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
    145                          VecIdx);
    146     return Result;
    147   }
    148 
    149   return SDValue();
    150 }
    151 
    152 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
    153   const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
    154   bool is64Bit = Subtarget->is64Bit();
    155 
    156   if (Subtarget->isTargetEnvMacho()) {
    157     if (is64Bit)
    158       return new X8664_MachoTargetObjectFile();
    159     return new TargetLoweringObjectFileMachO();
    160   }
    161 
    162   if (Subtarget->isTargetELF())
    163     return new TargetLoweringObjectFileELF();
    164   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    165     return new TargetLoweringObjectFileCOFF();
    166   llvm_unreachable("unknown subtarget type");
    167 }
    168 
    169 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
    170   : TargetLowering(TM, createTLOF(TM)) {
    171   Subtarget = &TM.getSubtarget<X86Subtarget>();
    172   X86ScalarSSEf64 = Subtarget->hasXMMInt();
    173   X86ScalarSSEf32 = Subtarget->hasXMM();
    174   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
    175 
    176   RegInfo = TM.getRegisterInfo();
    177   TD = getTargetData();
    178 
    179   // Set up the TargetLowering object.
    180   static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
    181 
    182   // X86 is weird, it always uses i8 for shift amounts and setcc results.
    183   setBooleanContents(ZeroOrOneBooleanContent);
    184   // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
    185   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    186 
    187   // For 64-bit since we have so many registers use the ILP scheduler, for
    188   // 32-bit code use the register pressure specific scheduling.
    189   if (Subtarget->is64Bit())
    190     setSchedulingPreference(Sched::ILP);
    191   else
    192     setSchedulingPreference(Sched::RegPressure);
    193   setStackPointerRegisterToSaveRestore(X86StackPtr);
    194 
    195   if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
    196     // Setup Windows compiler runtime calls.
    197     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
    198     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
    199     setLibcallName(RTLIB::SREM_I64, "_allrem");
    200     setLibcallName(RTLIB::UREM_I64, "_aullrem");
    201     setLibcallName(RTLIB::MUL_I64, "_allmul");
    202     setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
    203     setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
    204     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
    205     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
    206     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
    207     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
    208     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
    209     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
    210     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
    211   }
    212 
    213   if (Subtarget->isTargetDarwin()) {
    214     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
    215     setUseUnderscoreSetJmp(false);
    216     setUseUnderscoreLongJmp(false);
    217   } else if (Subtarget->isTargetMingw()) {
    218     // MS runtime is weird: it exports _setjmp, but longjmp!
    219     setUseUnderscoreSetJmp(true);
    220     setUseUnderscoreLongJmp(false);
    221   } else {
    222     setUseUnderscoreSetJmp(true);
    223     setUseUnderscoreLongJmp(true);
    224   }
    225 
    226   // Set up the register classes.
    227   addRegisterClass(MVT::i8, X86::GR8RegisterClass);
    228   addRegisterClass(MVT::i16, X86::GR16RegisterClass);
    229   addRegisterClass(MVT::i32, X86::GR32RegisterClass);
    230   if (Subtarget->is64Bit())
    231     addRegisterClass(MVT::i64, X86::GR64RegisterClass);
    232 
    233   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    234 
    235   // We don't accept any truncstore of integer registers.
    236   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
    237   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    238   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
    239   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
    240   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
    241   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
    242 
    243   // SETOEQ and SETUNE require checking two conditions.
    244   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
    245   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
    246   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
    247   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
    248   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
    249   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
    250 
    251   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
    252   // operation.
    253   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
    254   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
    255   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
    256 
    257   if (Subtarget->is64Bit()) {
    258     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
    259     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
    260   } else if (!UseSoftFloat) {
    261     // We have an algorithm for SSE2->double, and we turn this into a
    262     // 64-bit FILD followed by conditional FADD for other targets.
    263     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
    264     // We have an algorithm for SSE2, and we turn this into a 64-bit
    265     // FILD for other targets.
    266     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
    267   }
    268 
    269   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
    270   // this operation.
    271   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
    272   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
    273 
    274   if (!UseSoftFloat) {
    275     // SSE has no i16 to fp conversion, only i32
    276     if (X86ScalarSSEf32) {
    277       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    278       // f32 and f64 cases are Legal, f80 case is not
    279       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    280     } else {
    281       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
    282       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    283     }
    284   } else {
    285     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    286     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
    287   }
    288 
    289   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
    290   // are Legal, f80 is custom lowered.
    291   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
    292   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
    293 
    294   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
    295   // this operation.
    296   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
    297   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
    298 
    299   if (X86ScalarSSEf32) {
    300     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
    301     // f32 and f64 cases are Legal, f80 case is not
    302     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    303   } else {
    304     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
    305     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    306   }
    307 
    308   // Handle FP_TO_UINT by promoting the destination to a larger signed
    309   // conversion.
    310   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
    311   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
    312   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
    313 
    314   if (Subtarget->is64Bit()) {
    315     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
    316     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
    317   } else if (!UseSoftFloat) {
    318     // Since AVX is a superset of SSE3, only check for SSE here.
    319     if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
    320       // Expand FP_TO_UINT into a select.
    321       // FIXME: We would like to use a Custom expander here eventually to do
    322       // the optimal thing for SSE vs. the default expansion in the legalizer.
    323       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
    324     else
    325       // With SSE3 we can use fisttpll to convert to a signed i64; without
    326       // SSE, we're stuck with a fistpll.
    327       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
    328   }
    329 
    330   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
    331   if (!X86ScalarSSEf64) {
    332     setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
    333     setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
    334     if (Subtarget->is64Bit()) {
    335       setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
    336       // Without SSE, i64->f64 goes through memory.
    337       setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
    338     }
    339   }
    340 
    341   // Scalar integer divide and remainder are lowered to use operations that
    342   // produce two results, to match the available instructions. This exposes
    343   // the two-result form to trivial CSE, which is able to combine x/y and x%y
    344   // into a single instruction.
    345   //
    346   // Scalar integer multiply-high is also lowered to use two-result
    347   // operations, to match the available instructions. However, plain multiply
    348   // (low) operations are left as Legal, as there are single-result
    349   // instructions for this in x86. Using the two-result multiply instructions
    350   // when both high and low results are needed must be arranged by dagcombine.
    351   for (unsigned i = 0, e = 4; i != e; ++i) {
    352     MVT VT = IntVTs[i];
    353     setOperationAction(ISD::MULHS, VT, Expand);
    354     setOperationAction(ISD::MULHU, VT, Expand);
    355     setOperationAction(ISD::SDIV, VT, Expand);
    356     setOperationAction(ISD::UDIV, VT, Expand);
    357     setOperationAction(ISD::SREM, VT, Expand);
    358     setOperationAction(ISD::UREM, VT, Expand);
    359 
    360     // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
    361     setOperationAction(ISD::ADDC, VT, Custom);
    362     setOperationAction(ISD::ADDE, VT, Custom);
    363     setOperationAction(ISD::SUBC, VT, Custom);
    364     setOperationAction(ISD::SUBE, VT, Custom);
    365   }
    366 
    367   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
    368   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
    369   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
    370   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
    371   if (Subtarget->is64Bit())
    372     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
    373   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
    374   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
    375   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
    376   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
    377   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
    378   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
    379   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
    380   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
    381 
    382   if (Subtarget->hasBMI()) {
    383     setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
    384   } else {
    385     setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
    386     setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
    387     setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
    388     if (Subtarget->is64Bit())
    389       setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
    390   }
    391 
    392   if (Subtarget->hasLZCNT()) {
    393     setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
    394   } else {
    395     setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
    396     setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
    397     setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
    398     if (Subtarget->is64Bit())
    399       setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
    400   }
    401 
    402   if (Subtarget->hasPOPCNT()) {
    403     setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
    404   } else {
    405     setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
    406     setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
    407     setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
    408     if (Subtarget->is64Bit())
    409       setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
    410   }
    411 
    412   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
    413   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
    414 
    415   // These should be promoted to a larger select which is supported.
    416   setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
    417   // X86 wants to expand cmov itself.
    418   setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
    419   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
    420   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
    421   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
    422   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
    423   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
    424   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
    425   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
    426   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
    427   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
    428   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
    429   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
    430   if (Subtarget->is64Bit()) {
    431     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
    432     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
    433   }
    434   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
    435 
    436   // Darwin ABI issue.
    437   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
    438   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
    439   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
    440   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
    441   if (Subtarget->is64Bit())
    442     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    443   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
    444   setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
    445   if (Subtarget->is64Bit()) {
    446     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
    447     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
    448     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
    449     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
    450     setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
    451   }
    452   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
    453   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
    454   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
    455   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
    456   if (Subtarget->is64Bit()) {
    457     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
    458     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
    459     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
    460   }
    461 
    462   if (Subtarget->hasXMM())
    463     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
    464 
    465   setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
    466   setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
    467 
    468   // On X86 and X86-64, atomic operations are lowered to locked instructions.
    469   // Locked instructions, in turn, have implicit fence semantics (all memory
    470   // operations are flushed before issuing the locked instruction, and they
    471   // are not buffered), so we can fold away the common pattern of
    472   // fence-atomic-fence.
    473   setShouldFoldAtomicFences(true);
    474 
    475   // Expand certain atomics
    476   for (unsigned i = 0, e = 4; i != e; ++i) {
    477     MVT VT = IntVTs[i];
    478     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
    479     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    480     setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    481   }
    482 
    483   if (!Subtarget->is64Bit()) {
    484     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
    485     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
    486     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
    487     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
    488     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
    489     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
    490     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
    491     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
    492   }
    493 
    494   if (Subtarget->hasCmpxchg16b()) {
    495     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
    496   }
    497 
    498   // FIXME - use subtarget debug flags
    499   if (!Subtarget->isTargetDarwin() &&
    500       !Subtarget->isTargetELF() &&
    501       !Subtarget->isTargetCygMing()) {
    502     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
    503   }
    504 
    505   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    506   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    507   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    508   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
    509   if (Subtarget->is64Bit()) {
    510     setExceptionPointerRegister(X86::RAX);
    511     setExceptionSelectorRegister(X86::RDX);
    512   } else {
    513     setExceptionPointerRegister(X86::EAX);
    514     setExceptionSelectorRegister(X86::EDX);
    515   }
    516   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    517   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
    518 
    519   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    520   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    521 
    522   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    523 
    524   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    525   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    526   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    527   if (Subtarget->is64Bit()) {
    528     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
    529     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
    530   } else {
    531     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
    532     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
    533   }
    534 
    535   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    536   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    537 
    538   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    539     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    540                        MVT::i64 : MVT::i32, Custom);
    541   else if (EnableSegmentedStacks)
    542     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    543                        MVT::i64 : MVT::i32, Custom);
    544   else
    545     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    546                        MVT::i64 : MVT::i32, Expand);
    547 
    548   if (!UseSoftFloat && X86ScalarSSEf64) {
    549     // f32 and f64 use SSE.
    550     // Set up the FP register classes.
    551     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    552     addRegisterClass(MVT::f64, X86::FR64RegisterClass);
    553 
    554     // Use ANDPD to simulate FABS.
    555     setOperationAction(ISD::FABS , MVT::f64, Custom);
    556     setOperationAction(ISD::FABS , MVT::f32, Custom);
    557 
    558     // Use XORP to simulate FNEG.
    559     setOperationAction(ISD::FNEG , MVT::f64, Custom);
    560     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    561 
    562     // Use ANDPD and ORPD to simulate FCOPYSIGN.
    563     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    564     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    565 
    566     // Lower this to FGETSIGNx86 plus an AND.
    567     setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
    568     setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
    569 
    570     // We don't support sin/cos/fmod
    571     setOperationAction(ISD::FSIN , MVT::f64, Expand);
    572     setOperationAction(ISD::FCOS , MVT::f64, Expand);
    573     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    574     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    575 
    576     // Expand FP immediates into loads from the stack, except for the special
    577     // cases we handle.
    578     addLegalFPImmediate(APFloat(+0.0)); // xorpd
    579     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    580   } else if (!UseSoftFloat && X86ScalarSSEf32) {
    581     // Use SSE for f32, x87 for f64.
    582     // Set up the FP register classes.
    583     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    584     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
    585 
    586     // Use ANDPS to simulate FABS.
    587     setOperationAction(ISD::FABS , MVT::f32, Custom);
    588 
    589     // Use XORP to simulate FNEG.
    590     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    591 
    592     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    593 
    594     // Use ANDPS and ORPS to simulate FCOPYSIGN.
    595     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    596     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    597 
    598     // We don't support sin/cos/fmod
    599     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    600     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    601 
    602     // Special cases we handle for FP constants.
    603     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    604     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    605     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    606     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    607     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    608 
    609     if (!UnsafeFPMath) {
    610       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    611       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    612     }
    613   } else if (!UseSoftFloat) {
    614     // f32 and f64 in x87.
    615     // Set up the FP register classes.
    616     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
    617     addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
    618 
    619     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    620     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
    621     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    622     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    623 
    624     if (!UnsafeFPMath) {
    625       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    626       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    627     }
    628     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    629     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    630     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    631     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    632     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
    633     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
    634     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
    635     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
    636   }
    637 
    638   // We don't support FMA.
    639   setOperationAction(ISD::FMA, MVT::f64, Expand);
    640   setOperationAction(ISD::FMA, MVT::f32, Expand);
    641 
    642   // Long double always uses X87.
    643   if (!UseSoftFloat) {
    644     addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
    645     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
    646     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
    647     {
    648       APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
    649       addLegalFPImmediate(TmpFlt);  // FLD0
    650       TmpFlt.changeSign();
    651       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
    652 
    653       bool ignored;
    654       APFloat TmpFlt2(+1.0);
    655       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
    656                       &ignored);
    657       addLegalFPImmediate(TmpFlt2);  // FLD1
    658       TmpFlt2.changeSign();
    659       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
    660     }
    661 
    662     if (!UnsafeFPMath) {
    663       setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
    664       setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
    665     }
    666 
    667     setOperationAction(ISD::FMA, MVT::f80, Expand);
    668   }
    669 
    670   // Always use a library call for pow.
    671   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
    672   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
    673   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
    674 
    675   setOperationAction(ISD::FLOG, MVT::f80, Expand);
    676   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
    677   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
    678   setOperationAction(ISD::FEXP, MVT::f80, Expand);
    679   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
    680 
    681   // First set operation action for all vector types to either promote
    682   // (for widening) or expand (for scalarization). Then we will selectively
    683   // turn on ones that can be effectively codegen'd.
    684   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    685        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    686     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
    687     setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
    688     setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
    689     setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
    690     setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
    691     setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
    692     setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
    693     setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
    694     setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
    695     setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
    696     setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
    697     setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
    698     setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
    699     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
    700     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
    701     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
    702     setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    703     setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    704     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
    705     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
    706     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
    707     setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
    708     setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
    709     setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
    710     setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
    711     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    712     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    713     setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
    714     setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
    715     setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
    716     setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
    717     setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
    718     setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
    719     setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
    720     setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
    721     setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
    722     setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
    723     setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
    724     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
    725     setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
    726     setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
    727     setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
    728     setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
    729     setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
    730     setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
    731     setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
    732     setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
    733     setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    734     setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    735     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
    736     setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
    737     setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    738     setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    739     setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    740     setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
    741     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    742          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    743       setTruncStoreAction((MVT::SimpleValueType)VT,
    744                           (MVT::SimpleValueType)InnerVT, Expand);
    745     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    746     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    747     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
    748   }
    749 
    750   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
    751   // with -msoft-float, disable use of MMX as well.
    752   if (!UseSoftFloat && Subtarget->hasMMX()) {
    753     addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
    754     // No operations on x86mmx supported, everything uses intrinsics.
    755   }
    756 
    757   // MMX-sized vectors (other than x86mmx) are expected to be expanded
    758   // into smaller operations.
    759   setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
    760   setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
    761   setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
    762   setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
    763   setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
    764   setOperationAction(ISD::AND,                MVT::v4i16, Expand);
    765   setOperationAction(ISD::AND,                MVT::v2i32, Expand);
    766   setOperationAction(ISD::AND,                MVT::v1i64, Expand);
    767   setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
    768   setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
    769   setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
    770   setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
    771   setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
    772   setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
    773   setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
    774   setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
    775   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
    776   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
    777   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
    778   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
    779   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
    780   setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
    781   setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
    782   setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
    783   setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
    784   setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
    785   setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
    786   setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
    787   setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
    788 
    789   if (!UseSoftFloat && Subtarget->hasXMM()) {
    790     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
    791 
    792     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
    793     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
    794     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
    795     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
    796     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
    797     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
    798     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
    799     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
    800     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
    801     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    802     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
    803     setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
    804   }
    805 
    806   if (!UseSoftFloat && Subtarget->hasXMMInt()) {
    807     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
    808 
    809     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
    810     // registers cannot be used even for integer operations.
    811     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
    812     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
    813     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
    814     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
    815 
    816     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
    817     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
    818     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
    819     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
    820     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
    821     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
    822     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
    823     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
    824     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
    825     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
    826     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
    827     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
    828     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
    829     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
    830     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
    831     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
    832 
    833     setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
    834     setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
    835     setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
    836     setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
    837 
    838     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
    839     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
    840     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    841     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    842     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    843 
    844     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
    845     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
    846     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
    847     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
    848     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
    849 
    850     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
    851     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
    852       EVT VT = (MVT::SimpleValueType)i;
    853       // Do not attempt to custom lower non-power-of-2 vectors
    854       if (!isPowerOf2_32(VT.getVectorNumElements()))
    855         continue;
    856       // Do not attempt to custom lower non-128-bit vectors
    857       if (!VT.is128BitVector())
    858         continue;
    859       setOperationAction(ISD::BUILD_VECTOR,
    860                          VT.getSimpleVT().SimpleTy, Custom);
    861       setOperationAction(ISD::VECTOR_SHUFFLE,
    862                          VT.getSimpleVT().SimpleTy, Custom);
    863       setOperationAction(ISD::EXTRACT_VECTOR_ELT,
    864                          VT.getSimpleVT().SimpleTy, Custom);
    865     }
    866 
    867     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
    868     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
    869     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
    870     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
    871     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
    872     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    873 
    874     if (Subtarget->is64Bit()) {
    875       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
    876       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
    877     }
    878 
    879     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
    880     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
    881       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
    882       EVT VT = SVT;
    883 
    884       // Do not attempt to promote non-128-bit vectors
    885       if (!VT.is128BitVector())
    886         continue;
    887 
    888       setOperationAction(ISD::AND,    SVT, Promote);
    889       AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
    890       setOperationAction(ISD::OR,     SVT, Promote);
    891       AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
    892       setOperationAction(ISD::XOR,    SVT, Promote);
    893       AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
    894       setOperationAction(ISD::LOAD,   SVT, Promote);
    895       AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
    896       setOperationAction(ISD::SELECT, SVT, Promote);
    897       AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
    898     }
    899 
    900     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    901 
    902     // Custom lower v2i64 and v2f64 selects.
    903     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
    904     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
    905     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
    906     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
    907 
    908     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
    909     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
    910   }
    911 
    912   if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
    913     setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
    914     setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
    915     setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
    916     setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
    917     setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
    918     setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
    919     setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
    920     setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
    921     setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
    922     setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
    923 
    924     // FIXME: Do we need to handle scalar-to-vector here?
    925     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
    926 
    927     // Can turn SHL into an integer multiply.
    928     setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
    929     setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
    930 
    931     setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
    932     setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
    933     setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
    934     setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
    935     setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
    936 
    937     // i8 and i16 vectors are custom , because the source register and source
    938     // source memory operand types are not the same width.  f32 vectors are
    939     // custom since the immediate controlling the insert encodes additional
    940     // information.
    941     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
    942     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    943     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    944     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    945 
    946     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
    947     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
    948     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
    949     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    950 
    951     if (Subtarget->is64Bit()) {
    952       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
    953       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    954     }
    955   }
    956 
    957   if (Subtarget->hasXMMInt()) {
    958     setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
    959     setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
    960     setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
    961     setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
    962 
    963     setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
    964     setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
    965     setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
    966 
    967     setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
    968     setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
    969   }
    970 
    971   if (Subtarget->hasSSE42() || Subtarget->hasAVX())
    972     setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
    973 
    974   if (!UseSoftFloat && Subtarget->hasAVX()) {
    975     addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
    976     addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
    977     addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
    978     addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
    979     addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
    980     addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
    981 
    982     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
    983     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
    984     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
    985 
    986     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
    987     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
    988     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
    989     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
    990     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
    991     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
    992 
    993     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
    994     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
    995     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
    996     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
    997     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
    998     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
    999 
   1000     setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
   1001     setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
   1002     setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
   1003 
   1004     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
   1005     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
   1006     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
   1007     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
   1008     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
   1009     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
   1010 
   1011     setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
   1012     setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
   1013     setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
   1014     setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
   1015 
   1016     setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
   1017     setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
   1018     setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
   1019     setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
   1020 
   1021     setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
   1022     setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
   1023 
   1024     setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
   1025     setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
   1026     setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
   1027     setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
   1028 
   1029     setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
   1030     setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
   1031     setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
   1032 
   1033     setOperationAction(ISD::VSELECT,            MVT::v4f64, Legal);
   1034     setOperationAction(ISD::VSELECT,            MVT::v4i64, Legal);
   1035     setOperationAction(ISD::VSELECT,            MVT::v8i32, Legal);
   1036     setOperationAction(ISD::VSELECT,            MVT::v8f32, Legal);
   1037 
   1038     setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
   1039     setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
   1040     setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
   1041     setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
   1042 
   1043     setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
   1044     setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
   1045     setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
   1046     setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
   1047 
   1048     setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
   1049     setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
   1050     setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
   1051     // Don't lower v32i8 because there is no 128-bit byte mul
   1052 
   1053     // Custom lower several nodes for 256-bit types.
   1054     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
   1055                   i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1056       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
   1057       EVT VT = SVT;
   1058 
   1059       // Extract subvector is special because the value type
   1060       // (result) is 128-bit but the source is 256-bit wide.
   1061       if (VT.is128BitVector())
   1062         setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
   1063 
   1064       // Do not attempt to custom lower other non-256-bit vectors
   1065       if (!VT.is256BitVector())
   1066         continue;
   1067 
   1068       setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
   1069       setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
   1070       setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
   1071       setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
   1072       setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
   1073       setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
   1074     }
   1075 
   1076     // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
   1077     for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
   1078       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
   1079       EVT VT = SVT;
   1080 
   1081       // Do not attempt to promote non-256-bit vectors
   1082       if (!VT.is256BitVector())
   1083         continue;
   1084 
   1085       setOperationAction(ISD::AND,    SVT, Promote);
   1086       AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
   1087       setOperationAction(ISD::OR,     SVT, Promote);
   1088       AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
   1089       setOperationAction(ISD::XOR,    SVT, Promote);
   1090       AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
   1091       setOperationAction(ISD::LOAD,   SVT, Promote);
   1092       AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
   1093       setOperationAction(ISD::SELECT, SVT, Promote);
   1094       AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
   1095     }
   1096   }
   1097 
   1098   // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
   1099   // of this type with custom code.
   1100   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
   1101          VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
   1102     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
   1103   }
   1104 
   1105   // We want to custom lower some of our intrinsics.
   1106   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
   1107 
   1108 
   1109   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
   1110   // handle type legalization for these operations here.
   1111   //
   1112   // FIXME: We really should do custom legalization for addition and
   1113   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
   1114   // than generic legalization for 64-bit multiplication-with-overflow, though.
   1115   for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
   1116     // Add/Sub/Mul with overflow operations are custom lowered.
   1117     MVT VT = IntVTs[i];
   1118     setOperationAction(ISD::SADDO, VT, Custom);
   1119     setOperationAction(ISD::UADDO, VT, Custom);
   1120     setOperationAction(ISD::SSUBO, VT, Custom);
   1121     setOperationAction(ISD::USUBO, VT, Custom);
   1122     setOperationAction(ISD::SMULO, VT, Custom);
   1123     setOperationAction(ISD::UMULO, VT, Custom);
   1124   }
   1125 
   1126   // There are no 8-bit 3-address imul/mul instructions
   1127   setOperationAction(ISD::SMULO, MVT::i8, Expand);
   1128   setOperationAction(ISD::UMULO, MVT::i8, Expand);
   1129 
   1130   if (!Subtarget->is64Bit()) {
   1131     // These libcalls are not available in 32-bit.
   1132     setLibcallName(RTLIB::SHL_I128, 0);
   1133     setLibcallName(RTLIB::SRL_I128, 0);
   1134     setLibcallName(RTLIB::SRA_I128, 0);
   1135   }
   1136 
   1137   // We have target-specific dag combine patterns for the following nodes:
   1138   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
   1139   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
   1140   setTargetDAGCombine(ISD::BUILD_VECTOR);
   1141   setTargetDAGCombine(ISD::VSELECT);
   1142   setTargetDAGCombine(ISD::SELECT);
   1143   setTargetDAGCombine(ISD::SHL);
   1144   setTargetDAGCombine(ISD::SRA);
   1145   setTargetDAGCombine(ISD::SRL);
   1146   setTargetDAGCombine(ISD::OR);
   1147   setTargetDAGCombine(ISD::AND);
   1148   setTargetDAGCombine(ISD::ADD);
   1149   setTargetDAGCombine(ISD::FADD);
   1150   setTargetDAGCombine(ISD::FSUB);
   1151   setTargetDAGCombine(ISD::SUB);
   1152   setTargetDAGCombine(ISD::LOAD);
   1153   setTargetDAGCombine(ISD::STORE);
   1154   setTargetDAGCombine(ISD::ZERO_EXTEND);
   1155   setTargetDAGCombine(ISD::SINT_TO_FP);
   1156   if (Subtarget->is64Bit())
   1157     setTargetDAGCombine(ISD::MUL);
   1158 
   1159   computeRegisterProperties();
   1160 
   1161   // On Darwin, -Os means optimize for size without hurting performance,
   1162   // do not reduce the limit.
   1163   maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
   1164   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
   1165   maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
   1166   maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1167   maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
   1168   maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1169   setPrefLoopAlignment(16);
   1170   benefitFromCodePlacementOpt = true;
   1171 
   1172   setPrefFunctionAlignment(4);
   1173 }
   1174 
   1175 
   1176 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
   1177   if (!VT.isVector()) return MVT::i8;
   1178   return VT.changeVectorElementTypeToInteger();
   1179 }
   1180 
   1181 
   1182 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
   1183 /// the desired ByVal argument alignment.
   1184 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
   1185   if (MaxAlign == 16)
   1186     return;
   1187   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
   1188     if (VTy->getBitWidth() == 128)
   1189       MaxAlign = 16;
   1190   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1191     unsigned EltAlign = 0;
   1192     getMaxByValAlign(ATy->getElementType(), EltAlign);
   1193     if (EltAlign > MaxAlign)
   1194       MaxAlign = EltAlign;
   1195   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1196     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1197       unsigned EltAlign = 0;
   1198       getMaxByValAlign(STy->getElementType(i), EltAlign);
   1199       if (EltAlign > MaxAlign)
   1200         MaxAlign = EltAlign;
   1201       if (MaxAlign == 16)
   1202         break;
   1203     }
   1204   }
   1205   return;
   1206 }
   1207 
   1208 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1209 /// function arguments in the caller parameter area. For X86, aggregates
   1210 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
   1211 /// are at 4-byte boundaries.
   1212 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1213   if (Subtarget->is64Bit()) {
   1214     // Max of 8 and alignment of type.
   1215     unsigned TyAlign = TD->getABITypeAlignment(Ty);
   1216     if (TyAlign > 8)
   1217       return TyAlign;
   1218     return 8;
   1219   }
   1220 
   1221   unsigned Align = 4;
   1222   if (Subtarget->hasXMM())
   1223     getMaxByValAlign(Ty, Align);
   1224   return Align;
   1225 }
   1226 
   1227 /// getOptimalMemOpType - Returns the target specific optimal type for load
   1228 /// and store operations as a result of memset, memcpy, and memmove
   1229 /// lowering. If DstAlign is zero that means it's safe to destination
   1230 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   1231 /// means there isn't a need to check it against alignment requirement,
   1232 /// probably because the source does not need to be loaded. If
   1233 /// 'NonScalarIntSafe' is true, that means it's safe to return a
   1234 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
   1235 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
   1236 /// constant so it does not need to be loaded.
   1237 /// It returns EVT::Other if the type should be determined using generic
   1238 /// target-independent logic.
   1239 EVT
   1240 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
   1241                                        unsigned DstAlign, unsigned SrcAlign,
   1242                                        bool NonScalarIntSafe,
   1243                                        bool MemcpyStrSrc,
   1244                                        MachineFunction &MF) const {
   1245   // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
   1246   // linux.  This is because the stack realignment code can't handle certain
   1247   // cases like PR2962.  This should be removed when PR2962 is fixed.
   1248   const Function *F = MF.getFunction();
   1249   if (NonScalarIntSafe &&
   1250       !F->hasFnAttr(Attribute::NoImplicitFloat)) {
   1251     if (Size >= 16 &&
   1252         (Subtarget->isUnalignedMemAccessFast() ||
   1253          ((DstAlign == 0 || DstAlign >= 16) &&
   1254           (SrcAlign == 0 || SrcAlign >= 16))) &&
   1255         Subtarget->getStackAlignment() >= 16) {
   1256       if (Subtarget->hasAVX() &&
   1257           Subtarget->getStackAlignment() >= 32)
   1258         return MVT::v8f32;
   1259       if (Subtarget->hasXMMInt())
   1260         return MVT::v4i32;
   1261       if (Subtarget->hasXMM())
   1262         return MVT::v4f32;
   1263     } else if (!MemcpyStrSrc && Size >= 8 &&
   1264                !Subtarget->is64Bit() &&
   1265                Subtarget->getStackAlignment() >= 8 &&
   1266                Subtarget->hasXMMInt()) {
   1267       // Do not use f64 to lower memcpy if source is string constant. It's
   1268       // better to use i32 to avoid the loads.
   1269       return MVT::f64;
   1270     }
   1271   }
   1272   if (Subtarget->is64Bit() && Size >= 8)
   1273     return MVT::i64;
   1274   return MVT::i32;
   1275 }
   1276 
   1277 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1278 /// current function.  The returned value is a member of the
   1279 /// MachineJumpTableInfo::JTEntryKind enum.
   1280 unsigned X86TargetLowering::getJumpTableEncoding() const {
   1281   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
   1282   // symbol.
   1283   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1284       Subtarget->isPICStyleGOT())
   1285     return MachineJumpTableInfo::EK_Custom32;
   1286 
   1287   // Otherwise, use the normal jump table encoding heuristics.
   1288   return TargetLowering::getJumpTableEncoding();
   1289 }
   1290 
   1291 const MCExpr *
   1292 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1293                                              const MachineBasicBlock *MBB,
   1294                                              unsigned uid,MCContext &Ctx) const{
   1295   assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1296          Subtarget->isPICStyleGOT());
   1297   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
   1298   // entries.
   1299   return MCSymbolRefExpr::Create(MBB->getSymbol(),
   1300                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
   1301 }
   1302 
   1303 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
   1304 /// jumptable.
   1305 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1306                                                     SelectionDAG &DAG) const {
   1307   if (!Subtarget->is64Bit())
   1308     // This doesn't have DebugLoc associated with it, but is not really the
   1309     // same as a Register.
   1310     return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
   1311   return Table;
   1312 }
   1313 
   1314 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1315 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1316 /// MCExpr.
   1317 const MCExpr *X86TargetLowering::
   1318 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
   1319                              MCContext &Ctx) const {
   1320   // X86-64 uses RIP relative addressing based on the jump table label.
   1321   if (Subtarget->isPICStyleRIPRel())
   1322     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
   1323 
   1324   // Otherwise, the reference is relative to the PIC base.
   1325   return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
   1326 }
   1327 
   1328 // FIXME: Why this routine is here? Move to RegInfo!
   1329 std::pair<const TargetRegisterClass*, uint8_t>
   1330 X86TargetLowering::findRepresentativeClass(EVT VT) const{
   1331   const TargetRegisterClass *RRC = 0;
   1332   uint8_t Cost = 1;
   1333   switch (VT.getSimpleVT().SimpleTy) {
   1334   default:
   1335     return TargetLowering::findRepresentativeClass(VT);
   1336   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
   1337     RRC = (Subtarget->is64Bit()
   1338            ? X86::GR64RegisterClass : X86::GR32RegisterClass);
   1339     break;
   1340   case MVT::x86mmx:
   1341     RRC = X86::VR64RegisterClass;
   1342     break;
   1343   case MVT::f32: case MVT::f64:
   1344   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1345   case MVT::v4f32: case MVT::v2f64:
   1346   case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
   1347   case MVT::v4f64:
   1348     RRC = X86::VR128RegisterClass;
   1349     break;
   1350   }
   1351   return std::make_pair(RRC, Cost);
   1352 }
   1353 
   1354 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
   1355                                                unsigned &Offset) const {
   1356   if (!Subtarget->isTargetLinux())
   1357     return false;
   1358 
   1359   if (Subtarget->is64Bit()) {
   1360     // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
   1361     Offset = 0x28;
   1362     if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
   1363       AddressSpace = 256;
   1364     else
   1365       AddressSpace = 257;
   1366   } else {
   1367     // %gs:0x14 on i386
   1368     Offset = 0x14;
   1369     AddressSpace = 256;
   1370   }
   1371   return true;
   1372 }
   1373 
   1374 
   1375 //===----------------------------------------------------------------------===//
   1376 //               Return Value Calling Convention Implementation
   1377 //===----------------------------------------------------------------------===//
   1378 
   1379 #include "X86GenCallingConv.inc"
   1380 
   1381 bool
   1382 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   1383 				  MachineFunction &MF, bool isVarArg,
   1384                         const SmallVectorImpl<ISD::OutputArg> &Outs,
   1385                         LLVMContext &Context) const {
   1386   SmallVector<CCValAssign, 16> RVLocs;
   1387   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1388                  RVLocs, Context);
   1389   return CCInfo.CheckReturn(Outs, RetCC_X86);
   1390 }
   1391 
   1392 SDValue
   1393 X86TargetLowering::LowerReturn(SDValue Chain,
   1394                                CallingConv::ID CallConv, bool isVarArg,
   1395                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1396                                const SmallVectorImpl<SDValue> &OutVals,
   1397                                DebugLoc dl, SelectionDAG &DAG) const {
   1398   MachineFunction &MF = DAG.getMachineFunction();
   1399   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1400 
   1401   SmallVector<CCValAssign, 16> RVLocs;
   1402   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1403                  RVLocs, *DAG.getContext());
   1404   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
   1405 
   1406   // Add the regs to the liveout set for the function.
   1407   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
   1408   for (unsigned i = 0; i != RVLocs.size(); ++i)
   1409     if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
   1410       MRI.addLiveOut(RVLocs[i].getLocReg());
   1411 
   1412   SDValue Flag;
   1413 
   1414   SmallVector<SDValue, 6> RetOps;
   1415   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   1416   // Operand #1 = Bytes To Pop
   1417   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
   1418                    MVT::i16));
   1419 
   1420   // Copy the result values into the output registers.
   1421   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1422     CCValAssign &VA = RVLocs[i];
   1423     assert(VA.isRegLoc() && "Can only return in registers!");
   1424     SDValue ValToCopy = OutVals[i];
   1425     EVT ValVT = ValToCopy.getValueType();
   1426 
   1427     // If this is x86-64, and we disabled SSE, we can't return FP values,
   1428     // or SSE or MMX vectors.
   1429     if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
   1430          VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
   1431           (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
   1432       report_fatal_error("SSE register return with SSE disabled");
   1433     }
   1434     // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
   1435     // llvm-gcc has never done it right and no one has noticed, so this
   1436     // should be OK for now.
   1437     if (ValVT == MVT::f64 &&
   1438         (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
   1439       report_fatal_error("SSE2 register return with SSE2 disabled");
   1440 
   1441     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
   1442     // the RET instruction and handled by the FP Stackifier.
   1443     if (VA.getLocReg() == X86::ST0 ||
   1444         VA.getLocReg() == X86::ST1) {
   1445       // If this is a copy from an xmm register to ST(0), use an FPExtend to
   1446       // change the value to the FP stack register class.
   1447       if (isScalarFPTypeInSSEReg(VA.getValVT()))
   1448         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
   1449       RetOps.push_back(ValToCopy);
   1450       // Don't emit a copytoreg.
   1451       continue;
   1452     }
   1453 
   1454     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
   1455     // which is returned in RAX / RDX.
   1456     if (Subtarget->is64Bit()) {
   1457       if (ValVT == MVT::x86mmx) {
   1458         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
   1459           ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
   1460           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
   1461                                   ValToCopy);
   1462           // If we don't have SSE2 available, convert to v4f32 so the generated
   1463           // register is legal.
   1464           if (!Subtarget->hasXMMInt())
   1465             ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
   1466         }
   1467       }
   1468     }
   1469 
   1470     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
   1471     Flag = Chain.getValue(1);
   1472   }
   1473 
   1474   // The x86-64 ABI for returning structs by value requires that we copy
   1475   // the sret argument into %rax for the return. We saved the argument into
   1476   // a virtual register in the entry block, so now we copy the value out
   1477   // and into %rax.
   1478   if (Subtarget->is64Bit() &&
   1479       DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
   1480     MachineFunction &MF = DAG.getMachineFunction();
   1481     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1482     unsigned Reg = FuncInfo->getSRetReturnReg();
   1483     assert(Reg &&
   1484            "SRetReturnReg should have been set in LowerFormalArguments().");
   1485     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
   1486 
   1487     Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
   1488     Flag = Chain.getValue(1);
   1489 
   1490     // RAX now acts like a return value.
   1491     MRI.addLiveOut(X86::RAX);
   1492   }
   1493 
   1494   RetOps[0] = Chain;  // Update chain.
   1495 
   1496   // Add the flag if we have it.
   1497   if (Flag.getNode())
   1498     RetOps.push_back(Flag);
   1499 
   1500   return DAG.getNode(X86ISD::RET_FLAG, dl,
   1501                      MVT::Other, &RetOps[0], RetOps.size());
   1502 }
   1503 
   1504 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
   1505   if (N->getNumValues() != 1)
   1506     return false;
   1507   if (!N->hasNUsesOfValue(1, 0))
   1508     return false;
   1509 
   1510   SDNode *Copy = *N->use_begin();
   1511   if (Copy->getOpcode() != ISD::CopyToReg &&
   1512       Copy->getOpcode() != ISD::FP_EXTEND)
   1513     return false;
   1514 
   1515   bool HasRet = false;
   1516   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   1517        UI != UE; ++UI) {
   1518     if (UI->getOpcode() != X86ISD::RET_FLAG)
   1519       return false;
   1520     HasRet = true;
   1521   }
   1522 
   1523   return HasRet;
   1524 }
   1525 
   1526 EVT
   1527 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1528                                             ISD::NodeType ExtendKind) const {
   1529   MVT ReturnMVT;
   1530   // TODO: Is this also valid on 32-bit?
   1531   if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
   1532     ReturnMVT = MVT::i8;
   1533   else
   1534     ReturnMVT = MVT::i32;
   1535 
   1536   EVT MinVT = getRegisterType(Context, ReturnMVT);
   1537   return VT.bitsLT(MinVT) ? MinVT : VT;
   1538 }
   1539 
   1540 /// LowerCallResult - Lower the result values of a call into the
   1541 /// appropriate copies out of appropriate physical registers.
   1542 ///
   1543 SDValue
   1544 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1545                                    CallingConv::ID CallConv, bool isVarArg,
   1546                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1547                                    DebugLoc dl, SelectionDAG &DAG,
   1548                                    SmallVectorImpl<SDValue> &InVals) const {
   1549 
   1550   // Assign locations to each value returned by this call.
   1551   SmallVector<CCValAssign, 16> RVLocs;
   1552   bool Is64Bit = Subtarget->is64Bit();
   1553   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1554 		 getTargetMachine(), RVLocs, *DAG.getContext());
   1555   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   1556 
   1557   // Copy all of the result registers out of their specified physreg.
   1558   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1559     CCValAssign &VA = RVLocs[i];
   1560     EVT CopyVT = VA.getValVT();
   1561 
   1562     // If this is x86-64, and we disabled SSE, we can't return FP values
   1563     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
   1564         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
   1565       report_fatal_error("SSE register return with SSE disabled");
   1566     }
   1567 
   1568     SDValue Val;
   1569 
   1570     // If this is a call to a function that returns an fp value on the floating
   1571     // point stack, we must guarantee the the value is popped from the stack, so
   1572     // a CopyFromReg is not good enough - the copy instruction may be eliminated
   1573     // if the return value is not used. We use the FpPOP_RETVAL instruction
   1574     // instead.
   1575     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
   1576       // If we prefer to use the value in xmm registers, copy it out as f80 and
   1577       // use a truncate to move it from fp stack reg to xmm reg.
   1578       if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
   1579       SDValue Ops[] = { Chain, InFlag };
   1580       Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
   1581                                          MVT::Other, MVT::Glue, Ops, 2), 1);
   1582       Val = Chain.getValue(0);
   1583 
   1584       // Round the f80 to the right size, which also moves it to the appropriate
   1585       // xmm register.
   1586       if (CopyVT != VA.getValVT())
   1587         Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
   1588                           // This truncation won't change the value.
   1589                           DAG.getIntPtrConstant(1));
   1590     } else {
   1591       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
   1592                                  CopyVT, InFlag).getValue(1);
   1593       Val = Chain.getValue(0);
   1594     }
   1595     InFlag = Chain.getValue(2);
   1596     InVals.push_back(Val);
   1597   }
   1598 
   1599   return Chain;
   1600 }
   1601 
   1602 
   1603 //===----------------------------------------------------------------------===//
   1604 //                C & StdCall & Fast Calling Convention implementation
   1605 //===----------------------------------------------------------------------===//
   1606 //  StdCall calling convention seems to be standard for many Windows' API
   1607 //  routines and around. It differs from C calling convention just a little:
   1608 //  callee should clean up the stack, not caller. Symbols should be also
   1609 //  decorated in some fancy way :) It doesn't support any vector arguments.
   1610 //  For info on fast calling convention see Fast Calling Convention (tail call)
   1611 //  implementation LowerX86_32FastCCCallTo.
   1612 
   1613 /// CallIsStructReturn - Determines whether a call uses struct return
   1614 /// semantics.
   1615 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
   1616   if (Outs.empty())
   1617     return false;
   1618 
   1619   return Outs[0].Flags.isSRet();
   1620 }
   1621 
   1622 /// ArgsAreStructReturn - Determines whether a function uses struct
   1623 /// return semantics.
   1624 static bool
   1625 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
   1626   if (Ins.empty())
   1627     return false;
   1628 
   1629   return Ins[0].Flags.isSRet();
   1630 }
   1631 
   1632 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   1633 /// by "Src" to address "Dst" with size and alignment information specified by
   1634 /// the specific parameter attribute. The copy will be passed as a byval
   1635 /// function parameter.
   1636 static SDValue
   1637 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   1638                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   1639                           DebugLoc dl) {
   1640   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   1641 
   1642   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   1643                        /*isVolatile*/false, /*AlwaysInline=*/true,
   1644                        MachinePointerInfo(), MachinePointerInfo());
   1645 }
   1646 
   1647 /// IsTailCallConvention - Return true if the calling convention is one that
   1648 /// supports tail call optimization.
   1649 static bool IsTailCallConvention(CallingConv::ID CC) {
   1650   return (CC == CallingConv::Fast || CC == CallingConv::GHC);
   1651 }
   1652 
   1653 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   1654   if (!CI->isTailCall())
   1655     return false;
   1656 
   1657   CallSite CS(CI);
   1658   CallingConv::ID CalleeCC = CS.getCallingConv();
   1659   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
   1660     return false;
   1661 
   1662   return true;
   1663 }
   1664 
   1665 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
   1666 /// a tailcall target by changing its ABI.
   1667 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
   1668   return GuaranteedTailCallOpt && IsTailCallConvention(CC);
   1669 }
   1670 
   1671 SDValue
   1672 X86TargetLowering::LowerMemArgument(SDValue Chain,
   1673                                     CallingConv::ID CallConv,
   1674                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1675                                     DebugLoc dl, SelectionDAG &DAG,
   1676                                     const CCValAssign &VA,
   1677                                     MachineFrameInfo *MFI,
   1678                                     unsigned i) const {
   1679   // Create the nodes corresponding to a load from this parameter slot.
   1680   ISD::ArgFlagsTy Flags = Ins[i].Flags;
   1681   bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
   1682   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
   1683   EVT ValVT;
   1684 
   1685   // If value is passed by pointer we have address passed instead of the value
   1686   // itself.
   1687   if (VA.getLocInfo() == CCValAssign::Indirect)
   1688     ValVT = VA.getLocVT();
   1689   else
   1690     ValVT = VA.getValVT();
   1691 
   1692   // FIXME: For now, all byval parameter objects are marked mutable. This can be
   1693   // changed with more analysis.
   1694   // In case of tail call optimization mark all arguments mutable. Since they
   1695   // could be overwritten by lowering of arguments in case of a tail call.
   1696   if (Flags.isByVal()) {
   1697     unsigned Bytes = Flags.getByValSize();
   1698     if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   1699     int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
   1700     return DAG.getFrameIndex(FI, getPointerTy());
   1701   } else {
   1702     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
   1703                                     VA.getLocMemOffset(), isImmutable);
   1704     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   1705     return DAG.getLoad(ValVT, dl, Chain, FIN,
   1706                        MachinePointerInfo::getFixedStack(FI),
   1707                        false, false, 0);
   1708   }
   1709 }
   1710 
   1711 SDValue
   1712 X86TargetLowering::LowerFormalArguments(SDValue Chain,
   1713                                         CallingConv::ID CallConv,
   1714                                         bool isVarArg,
   1715                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   1716                                         DebugLoc dl,
   1717                                         SelectionDAG &DAG,
   1718                                         SmallVectorImpl<SDValue> &InVals)
   1719                                           const {
   1720   MachineFunction &MF = DAG.getMachineFunction();
   1721   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1722 
   1723   const Function* Fn = MF.getFunction();
   1724   if (Fn->hasExternalLinkage() &&
   1725       Subtarget->isTargetCygMing() &&
   1726       Fn->getName() == "main")
   1727     FuncInfo->setForceFramePointer(true);
   1728 
   1729   MachineFrameInfo *MFI = MF.getFrameInfo();
   1730   bool Is64Bit = Subtarget->is64Bit();
   1731   bool IsWin64 = Subtarget->isTargetWin64();
   1732 
   1733   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   1734          "Var args not supported with calling convention fastcc or ghc");
   1735 
   1736   // Assign locations to all of the incoming arguments.
   1737   SmallVector<CCValAssign, 16> ArgLocs;
   1738   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1739                  ArgLocs, *DAG.getContext());
   1740 
   1741   // Allocate shadow area for Win64
   1742   if (IsWin64) {
   1743     CCInfo.AllocateStack(32, 8);
   1744   }
   1745 
   1746   CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
   1747 
   1748   unsigned LastVal = ~0U;
   1749   SDValue ArgValue;
   1750   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1751     CCValAssign &VA = ArgLocs[i];
   1752     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
   1753     // places.
   1754     assert(VA.getValNo() != LastVal &&
   1755            "Don't support value assigned to multiple locs yet");
   1756     (void)LastVal;
   1757     LastVal = VA.getValNo();
   1758 
   1759     if (VA.isRegLoc()) {
   1760       EVT RegVT = VA.getLocVT();
   1761       TargetRegisterClass *RC = NULL;
   1762       if (RegVT == MVT::i32)
   1763         RC = X86::GR32RegisterClass;
   1764       else if (Is64Bit && RegVT == MVT::i64)
   1765         RC = X86::GR64RegisterClass;
   1766       else if (RegVT == MVT::f32)
   1767         RC = X86::FR32RegisterClass;
   1768       else if (RegVT == MVT::f64)
   1769         RC = X86::FR64RegisterClass;
   1770       else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
   1771         RC = X86::VR256RegisterClass;
   1772       else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
   1773         RC = X86::VR128RegisterClass;
   1774       else if (RegVT == MVT::x86mmx)
   1775         RC = X86::VR64RegisterClass;
   1776       else
   1777         llvm_unreachable("Unknown argument type!");
   1778 
   1779       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   1780       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   1781 
   1782       // If this is an 8 or 16-bit value, it is really passed promoted to 32
   1783       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
   1784       // right size.
   1785       if (VA.getLocInfo() == CCValAssign::SExt)
   1786         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   1787                                DAG.getValueType(VA.getValVT()));
   1788       else if (VA.getLocInfo() == CCValAssign::ZExt)
   1789         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   1790                                DAG.getValueType(VA.getValVT()));
   1791       else if (VA.getLocInfo() == CCValAssign::BCvt)
   1792         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   1793 
   1794       if (VA.isExtInLoc()) {
   1795         // Handle MMX values passed in XMM regs.
   1796         if (RegVT.isVector()) {
   1797           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
   1798                                  ArgValue);
   1799         } else
   1800           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   1801       }
   1802     } else {
   1803       assert(VA.isMemLoc());
   1804       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
   1805     }
   1806 
   1807     // If value is passed via pointer - do a load.
   1808     if (VA.getLocInfo() == CCValAssign::Indirect)
   1809       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
   1810                              MachinePointerInfo(), false, false, 0);
   1811 
   1812     InVals.push_back(ArgValue);
   1813   }
   1814 
   1815   // The x86-64 ABI for returning structs by value requires that we copy
   1816   // the sret argument into %rax for the return. Save the argument into
   1817   // a virtual register so that we can access it from the return points.
   1818   if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
   1819     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1820     unsigned Reg = FuncInfo->getSRetReturnReg();
   1821     if (!Reg) {
   1822       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
   1823       FuncInfo->setSRetReturnReg(Reg);
   1824     }
   1825     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
   1826     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
   1827   }
   1828 
   1829   unsigned StackSize = CCInfo.getNextStackOffset();
   1830   // Align stack specially for tail calls.
   1831   if (FuncIsMadeTailCallSafe(CallConv))
   1832     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
   1833 
   1834   // If the function takes variable number of arguments, make a frame index for
   1835   // the start of the first vararg value... for expansion of llvm.va_start.
   1836   if (isVarArg) {
   1837     if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
   1838                     CallConv != CallingConv::X86_ThisCall)) {
   1839       FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
   1840     }
   1841     if (Is64Bit) {
   1842       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
   1843 
   1844       // FIXME: We should really autogenerate these arrays
   1845       static const unsigned GPR64ArgRegsWin64[] = {
   1846         X86::RCX, X86::RDX, X86::R8,  X86::R9
   1847       };
   1848       static const unsigned GPR64ArgRegs64Bit[] = {
   1849         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
   1850       };
   1851       static const unsigned XMMArgRegs64Bit[] = {
   1852         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   1853         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   1854       };
   1855       const unsigned *GPR64ArgRegs;
   1856       unsigned NumXMMRegs = 0;
   1857 
   1858       if (IsWin64) {
   1859         // The XMM registers which might contain var arg parameters are shadowed
   1860         // in their paired GPR.  So we only need to save the GPR to their home
   1861         // slots.
   1862         TotalNumIntRegs = 4;
   1863         GPR64ArgRegs = GPR64ArgRegsWin64;
   1864       } else {
   1865         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
   1866         GPR64ArgRegs = GPR64ArgRegs64Bit;
   1867 
   1868         NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
   1869       }
   1870       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
   1871                                                        TotalNumIntRegs);
   1872 
   1873       bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
   1874       assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
   1875              "SSE register cannot be used when SSE is disabled!");
   1876       assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
   1877              "SSE register cannot be used when SSE is disabled!");
   1878       if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
   1879         // Kernel mode asks for SSE to be disabled, so don't push them
   1880         // on the stack.
   1881         TotalNumXMMRegs = 0;
   1882 
   1883       if (IsWin64) {
   1884         const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
   1885         // Get to the caller-allocated home save location.  Add 8 to account
   1886         // for the return address.
   1887         int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
   1888         FuncInfo->setRegSaveFrameIndex(
   1889           MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
   1890         // Fixup to set vararg frame on shadow area (4 x i64).
   1891         if (NumIntRegs < 4)
   1892           FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
   1893       } else {
   1894         // For X86-64, if there are vararg parameters that are passed via
   1895         // registers, then we must store them to their spots on the stack so they
   1896         // may be loaded by deferencing the result of va_next.
   1897         FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
   1898         FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
   1899         FuncInfo->setRegSaveFrameIndex(
   1900           MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
   1901                                false));
   1902       }
   1903 
   1904       // Store the integer parameter registers.
   1905       SmallVector<SDValue, 8> MemOps;
   1906       SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   1907                                         getPointerTy());
   1908       unsigned Offset = FuncInfo->getVarArgsGPOffset();
   1909       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
   1910         SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
   1911                                   DAG.getIntPtrConstant(Offset));
   1912         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
   1913                                      X86::GR64RegisterClass);
   1914         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   1915         SDValue Store =
   1916           DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1917                        MachinePointerInfo::getFixedStack(
   1918                          FuncInfo->getRegSaveFrameIndex(), Offset),
   1919                        false, false, 0);
   1920         MemOps.push_back(Store);
   1921         Offset += 8;
   1922       }
   1923 
   1924       if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
   1925         // Now store the XMM (fp + vector) parameter registers.
   1926         SmallVector<SDValue, 11> SaveXMMOps;
   1927         SaveXMMOps.push_back(Chain);
   1928 
   1929         unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
   1930         SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
   1931         SaveXMMOps.push_back(ALVal);
   1932 
   1933         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   1934                                FuncInfo->getRegSaveFrameIndex()));
   1935         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   1936                                FuncInfo->getVarArgsFPOffset()));
   1937 
   1938         for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
   1939           unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
   1940                                        X86::VR128RegisterClass);
   1941           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
   1942           SaveXMMOps.push_back(Val);
   1943         }
   1944         MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
   1945                                      MVT::Other,
   1946                                      &SaveXMMOps[0], SaveXMMOps.size()));
   1947       }
   1948 
   1949       if (!MemOps.empty())
   1950         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1951                             &MemOps[0], MemOps.size());
   1952     }
   1953   }
   1954 
   1955   // Some CCs need callee pop.
   1956   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
   1957     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
   1958   } else {
   1959     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
   1960     // If this is an sret function, the return should pop the hidden pointer.
   1961     if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
   1962       FuncInfo->setBytesToPopOnReturn(4);
   1963   }
   1964 
   1965   if (!Is64Bit) {
   1966     // RegSaveFrameIndex is X86-64 only.
   1967     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
   1968     if (CallConv == CallingConv::X86_FastCall ||
   1969         CallConv == CallingConv::X86_ThisCall)
   1970       // fastcc functions can't have varargs.
   1971       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
   1972   }
   1973 
   1974   FuncInfo->setArgumentStackSize(StackSize);
   1975 
   1976   return Chain;
   1977 }
   1978 
   1979 SDValue
   1980 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
   1981                                     SDValue StackPtr, SDValue Arg,
   1982                                     DebugLoc dl, SelectionDAG &DAG,
   1983                                     const CCValAssign &VA,
   1984                                     ISD::ArgFlagsTy Flags) const {
   1985   unsigned LocMemOffset = VA.getLocMemOffset();
   1986   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1987   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1988   if (Flags.isByVal())
   1989     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
   1990 
   1991   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1992                       MachinePointerInfo::getStack(LocMemOffset),
   1993                       false, false, 0);
   1994 }
   1995 
   1996 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
   1997 /// optimization is performed and it is required.
   1998 SDValue
   1999 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
   2000                                            SDValue &OutRetAddr, SDValue Chain,
   2001                                            bool IsTailCall, bool Is64Bit,
   2002                                            int FPDiff, DebugLoc dl) const {
   2003   // Adjust the Return address stack slot.
   2004   EVT VT = getPointerTy();
   2005   OutRetAddr = getReturnAddressFrameIndex(DAG);
   2006 
   2007   // Load the "old" Return address.
   2008   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
   2009                            false, false, 0);
   2010   return SDValue(OutRetAddr.getNode(), 1);
   2011 }
   2012 
   2013 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
   2014 /// optimization is performed and it is required (FPDiff!=0).
   2015 static SDValue
   2016 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
   2017                          SDValue Chain, SDValue RetAddrFrIdx,
   2018                          bool Is64Bit, int FPDiff, DebugLoc dl) {
   2019   // Store the return address to the appropriate stack slot.
   2020   if (!FPDiff) return Chain;
   2021   // Calculate the new stack slot for the return address.
   2022   int SlotSize = Is64Bit ? 8 : 4;
   2023   int NewReturnAddrFI =
   2024     MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
   2025   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   2026   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
   2027   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
   2028                        MachinePointerInfo::getFixedStack(NewReturnAddrFI),
   2029                        false, false, 0);
   2030   return Chain;
   2031 }
   2032 
   2033 SDValue
   2034 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
   2035                              CallingConv::ID CallConv, bool isVarArg,
   2036                              bool &isTailCall,
   2037                              const SmallVectorImpl<ISD::OutputArg> &Outs,
   2038                              const SmallVectorImpl<SDValue> &OutVals,
   2039                              const SmallVectorImpl<ISD::InputArg> &Ins,
   2040                              DebugLoc dl, SelectionDAG &DAG,
   2041                              SmallVectorImpl<SDValue> &InVals) const {
   2042   MachineFunction &MF = DAG.getMachineFunction();
   2043   bool Is64Bit        = Subtarget->is64Bit();
   2044   bool IsWin64        = Subtarget->isTargetWin64();
   2045   bool IsStructRet    = CallIsStructReturn(Outs);
   2046   bool IsSibcall      = false;
   2047 
   2048   if (isTailCall) {
   2049     // Check if it's really possible to do a tail call.
   2050     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   2051                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
   2052                                                    Outs, OutVals, Ins, DAG);
   2053 
   2054     // Sibcalls are automatically detected tailcalls which do not require
   2055     // ABI changes.
   2056     if (!GuaranteedTailCallOpt && isTailCall)
   2057       IsSibcall = true;
   2058 
   2059     if (isTailCall)
   2060       ++NumTailCalls;
   2061   }
   2062 
   2063   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   2064          "Var args not supported with calling convention fastcc or ghc");
   2065 
   2066   // Analyze operands of the call, assigning locations to each operand.
   2067   SmallVector<CCValAssign, 16> ArgLocs;
   2068   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   2069                  ArgLocs, *DAG.getContext());
   2070 
   2071   // Allocate shadow area for Win64
   2072   if (IsWin64) {
   2073     CCInfo.AllocateStack(32, 8);
   2074   }
   2075 
   2076   CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2077 
   2078   // Get a count of how many bytes are to be pushed on the stack.
   2079   unsigned NumBytes = CCInfo.getNextStackOffset();
   2080   if (IsSibcall)
   2081     // This is a sibcall. The memory operands are available in caller's
   2082     // own caller's stack.
   2083     NumBytes = 0;
   2084   else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
   2085     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
   2086 
   2087   int FPDiff = 0;
   2088   if (isTailCall && !IsSibcall) {
   2089     // Lower arguments at fp - stackoffset + fpdiff.
   2090     unsigned NumBytesCallerPushed =
   2091       MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
   2092     FPDiff = NumBytesCallerPushed - NumBytes;
   2093 
   2094     // Set the delta of movement of the returnaddr stackslot.
   2095     // But only set if delta is greater than previous delta.
   2096     if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
   2097       MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
   2098   }
   2099 
   2100   if (!IsSibcall)
   2101     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   2102 
   2103   SDValue RetAddrFrIdx;
   2104   // Load return address for tail calls.
   2105   if (isTailCall && FPDiff)
   2106     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
   2107                                     Is64Bit, FPDiff, dl);
   2108 
   2109   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2110   SmallVector<SDValue, 8> MemOpChains;
   2111   SDValue StackPtr;
   2112 
   2113   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   2114   // of tail call optimization arguments are handle later.
   2115   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2116     CCValAssign &VA = ArgLocs[i];
   2117     EVT RegVT = VA.getLocVT();
   2118     SDValue Arg = OutVals[i];
   2119     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2120     bool isByVal = Flags.isByVal();
   2121 
   2122     // Promote the value if needed.
   2123     switch (VA.getLocInfo()) {
   2124     default: llvm_unreachable("Unknown loc info!");
   2125     case CCValAssign::Full: break;
   2126     case CCValAssign::SExt:
   2127       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
   2128       break;
   2129     case CCValAssign::ZExt:
   2130       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
   2131       break;
   2132     case CCValAssign::AExt:
   2133       if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
   2134         // Special case: passing MMX values in XMM registers.
   2135         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   2136         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
   2137         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
   2138       } else
   2139         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
   2140       break;
   2141     case CCValAssign::BCvt:
   2142       Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
   2143       break;
   2144     case CCValAssign::Indirect: {
   2145       // Store the argument.
   2146       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
   2147       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   2148       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
   2149                            MachinePointerInfo::getFixedStack(FI),
   2150                            false, false, 0);
   2151       Arg = SpillSlot;
   2152       break;
   2153     }
   2154     }
   2155 
   2156     if (VA.isRegLoc()) {
   2157       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2158       if (isVarArg && IsWin64) {
   2159         // Win64 ABI requires argument XMM reg to be copied to the corresponding
   2160         // shadow reg if callee is a varargs function.
   2161         unsigned ShadowReg = 0;
   2162         switch (VA.getLocReg()) {
   2163         case X86::XMM0: ShadowReg = X86::RCX; break;
   2164         case X86::XMM1: ShadowReg = X86::RDX; break;
   2165         case X86::XMM2: ShadowReg = X86::R8; break;
   2166         case X86::XMM3: ShadowReg = X86::R9; break;
   2167         }
   2168         if (ShadowReg)
   2169           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
   2170       }
   2171     } else if (!IsSibcall && (!isTailCall || isByVal)) {
   2172       assert(VA.isMemLoc());
   2173       if (StackPtr.getNode() == 0)
   2174         StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
   2175       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   2176                                              dl, DAG, VA, Flags));
   2177     }
   2178   }
   2179 
   2180   if (!MemOpChains.empty())
   2181     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2182                         &MemOpChains[0], MemOpChains.size());
   2183 
   2184   // Build a sequence of copy-to-reg nodes chained together with token chain
   2185   // and flag operands which copy the outgoing args into registers.
   2186   SDValue InFlag;
   2187   // Tail call byval lowering might overwrite argument registers so in case of
   2188   // tail call optimization the copies to registers are lowered later.
   2189   if (!isTailCall)
   2190     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2191       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2192                                RegsToPass[i].second, InFlag);
   2193       InFlag = Chain.getValue(1);
   2194     }
   2195 
   2196   if (Subtarget->isPICStyleGOT()) {
   2197     // ELF / PIC requires GOT in the EBX register before function calls via PLT
   2198     // GOT pointer.
   2199     if (!isTailCall) {
   2200       Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
   2201                                DAG.getNode(X86ISD::GlobalBaseReg,
   2202                                            DebugLoc(), getPointerTy()),
   2203                                InFlag);
   2204       InFlag = Chain.getValue(1);
   2205     } else {
   2206       // If we are tail calling and generating PIC/GOT style code load the
   2207       // address of the callee into ECX. The value in ecx is used as target of
   2208       // the tail jump. This is done to circumvent the ebx/callee-saved problem
   2209       // for tail calls on PIC/GOT architectures. Normally we would just put the
   2210       // address of GOT into ebx and then call target@PLT. But for tail calls
   2211       // ebx would be restored (since ebx is callee saved) before jumping to the
   2212       // target@PLT.
   2213 
   2214       // Note: The actual moving to ECX is done further down.
   2215       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
   2216       if (G && !G->getGlobal()->hasHiddenVisibility() &&
   2217           !G->getGlobal()->hasProtectedVisibility())
   2218         Callee = LowerGlobalAddress(Callee, DAG);
   2219       else if (isa<ExternalSymbolSDNode>(Callee))
   2220         Callee = LowerExternalSymbol(Callee, DAG);
   2221     }
   2222   }
   2223 
   2224   if (Is64Bit && isVarArg && !IsWin64) {
   2225     // From AMD64 ABI document:
   2226     // For calls that may call functions that use varargs or stdargs
   2227     // (prototype-less calls or calls to functions containing ellipsis (...) in
   2228     // the declaration) %al is used as hidden argument to specify the number
   2229     // of SSE registers used. The contents of %al do not need to match exactly
   2230     // the number of registers, but must be an ubound on the number of SSE
   2231     // registers used and is in the range 0 - 8 inclusive.
   2232 
   2233     // Count the number of XMM registers allocated.
   2234     static const unsigned XMMArgRegs[] = {
   2235       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2236       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2237     };
   2238     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   2239     assert((Subtarget->hasXMM() || !NumXMMRegs)
   2240            && "SSE registers cannot be used when SSE is disabled");
   2241 
   2242     Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
   2243                              DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
   2244     InFlag = Chain.getValue(1);
   2245   }
   2246 
   2247 
   2248   // For tail calls lower the arguments to the 'real' stack slot.
   2249   if (isTailCall) {
   2250     // Force all the incoming stack arguments to be loaded from the stack
   2251     // before any new outgoing arguments are stored to the stack, because the
   2252     // outgoing stack slots may alias the incoming argument stack slots, and
   2253     // the alias isn't otherwise explicit. This is slightly more conservative
   2254     // than necessary, because it means that each store effectively depends
   2255     // on every argument instead of just those arguments it would clobber.
   2256     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
   2257 
   2258     SmallVector<SDValue, 8> MemOpChains2;
   2259     SDValue FIN;
   2260     int FI = 0;
   2261     // Do not flag preceding copytoreg stuff together with the following stuff.
   2262     InFlag = SDValue();
   2263     if (GuaranteedTailCallOpt) {
   2264       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2265         CCValAssign &VA = ArgLocs[i];
   2266         if (VA.isRegLoc())
   2267           continue;
   2268         assert(VA.isMemLoc());
   2269         SDValue Arg = OutVals[i];
   2270         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2271         // Create frame index.
   2272         int32_t Offset = VA.getLocMemOffset()+FPDiff;
   2273         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
   2274         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2275         FIN = DAG.getFrameIndex(FI, getPointerTy());
   2276 
   2277         if (Flags.isByVal()) {
   2278           // Copy relative to framepointer.
   2279           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
   2280           if (StackPtr.getNode() == 0)
   2281             StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
   2282                                           getPointerTy());
   2283           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
   2284 
   2285           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
   2286                                                            ArgChain,
   2287                                                            Flags, DAG, dl));
   2288         } else {
   2289           // Store relative to framepointer.
   2290           MemOpChains2.push_back(
   2291             DAG.getStore(ArgChain, dl, Arg, FIN,
   2292                          MachinePointerInfo::getFixedStack(FI),
   2293                          false, false, 0));
   2294         }
   2295       }
   2296     }
   2297 
   2298     if (!MemOpChains2.empty())
   2299       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2300                           &MemOpChains2[0], MemOpChains2.size());
   2301 
   2302     // Copy arguments to their registers.
   2303     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2304       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2305                                RegsToPass[i].second, InFlag);
   2306       InFlag = Chain.getValue(1);
   2307     }
   2308     InFlag =SDValue();
   2309 
   2310     // Store the return address to the appropriate stack slot.
   2311     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
   2312                                      FPDiff, dl);
   2313   }
   2314 
   2315   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
   2316     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
   2317     // In the 64-bit large code model, we have to make all calls
   2318     // through a register, since the call instruction's 32-bit
   2319     // pc-relative offset may not be large enough to hold the whole
   2320     // address.
   2321   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2322     // If the callee is a GlobalAddress node (quite common, every direct call
   2323     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
   2324     // it.
   2325 
   2326     // We should use extra load for direct calls to dllimported functions in
   2327     // non-JIT mode.
   2328     const GlobalValue *GV = G->getGlobal();
   2329     if (!GV->hasDLLImportLinkage()) {
   2330       unsigned char OpFlags = 0;
   2331       bool ExtraLoad = false;
   2332       unsigned WrapperKind = ISD::DELETED_NODE;
   2333 
   2334       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   2335       // external symbols most go through the PLT in PIC mode.  If the symbol
   2336       // has hidden or protected visibility, or if it is static or local, then
   2337       // we don't need to use the PLT - we can directly call it.
   2338       if (Subtarget->isTargetELF() &&
   2339           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   2340           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   2341         OpFlags = X86II::MO_PLT;
   2342       } else if (Subtarget->isPICStyleStubAny() &&
   2343                  (GV->isDeclaration() || GV->isWeakForLinker()) &&
   2344                  (!Subtarget->getTargetTriple().isMacOSX() ||
   2345                   Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2346         // PC-relative references to external symbols should go through $stub,
   2347         // unless we're building with the leopard linker or later, which
   2348         // automatically synthesizes these stubs.
   2349         OpFlags = X86II::MO_DARWIN_STUB;
   2350       } else if (Subtarget->isPICStyleRIPRel() &&
   2351                  isa<Function>(GV) &&
   2352                  cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
   2353         // If the function is marked as non-lazy, generate an indirect call
   2354         // which loads from the GOT directly. This avoids runtime overhead
   2355         // at the cost of eager binding (and one extra byte of encoding).
   2356         OpFlags = X86II::MO_GOTPCREL;
   2357         WrapperKind = X86ISD::WrapperRIP;
   2358         ExtraLoad = true;
   2359       }
   2360 
   2361       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
   2362                                           G->getOffset(), OpFlags);
   2363 
   2364       // Add a wrapper if needed.
   2365       if (WrapperKind != ISD::DELETED_NODE)
   2366         Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
   2367       // Add extra indirection if needed.
   2368       if (ExtraLoad)
   2369         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
   2370                              MachinePointerInfo::getGOT(),
   2371                              false, false, 0);
   2372     }
   2373   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2374     unsigned char OpFlags = 0;
   2375 
   2376     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
   2377     // external symbols should go through the PLT.
   2378     if (Subtarget->isTargetELF() &&
   2379         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2380       OpFlags = X86II::MO_PLT;
   2381     } else if (Subtarget->isPICStyleStubAny() &&
   2382                (!Subtarget->getTargetTriple().isMacOSX() ||
   2383                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2384       // PC-relative references to external symbols should go through $stub,
   2385       // unless we're building with the leopard linker or later, which
   2386       // automatically synthesizes these stubs.
   2387       OpFlags = X86II::MO_DARWIN_STUB;
   2388     }
   2389 
   2390     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
   2391                                          OpFlags);
   2392   }
   2393 
   2394   // Returns a chain & a flag for retval copy to use.
   2395   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2396   SmallVector<SDValue, 8> Ops;
   2397 
   2398   if (!IsSibcall && isTailCall) {
   2399     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2400                            DAG.getIntPtrConstant(0, true), InFlag);
   2401     InFlag = Chain.getValue(1);
   2402   }
   2403 
   2404   Ops.push_back(Chain);
   2405   Ops.push_back(Callee);
   2406 
   2407   if (isTailCall)
   2408     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
   2409 
   2410   // Add argument registers to the end of the list so that they are known live
   2411   // into the call.
   2412   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2413     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2414                                   RegsToPass[i].second.getValueType()));
   2415 
   2416   // Add an implicit use GOT pointer in EBX.
   2417   if (!isTailCall && Subtarget->isPICStyleGOT())
   2418     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
   2419 
   2420   // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
   2421   if (Is64Bit && isVarArg && !IsWin64)
   2422     Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
   2423 
   2424   if (InFlag.getNode())
   2425     Ops.push_back(InFlag);
   2426 
   2427   if (isTailCall) {
   2428     // We used to do:
   2429     //// If this is the first return lowered for this function, add the regs
   2430     //// to the liveout set for the function.
   2431     // This isn't right, although it's probably harmless on x86; liveouts
   2432     // should be computed from returns not tail calls.  Consider a void
   2433     // function making a tail call to a function returning int.
   2434     return DAG.getNode(X86ISD::TC_RETURN, dl,
   2435                        NodeTys, &Ops[0], Ops.size());
   2436   }
   2437 
   2438   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
   2439   InFlag = Chain.getValue(1);
   2440 
   2441   // Create the CALLSEQ_END node.
   2442   unsigned NumBytesForCalleeToPush;
   2443   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
   2444     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
   2445   else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
   2446     // If this is a call to a struct-return function, the callee
   2447     // pops the hidden struct pointer, so we have to push it back.
   2448     // This is common for Darwin/X86, Linux & Mingw32 targets.
   2449     NumBytesForCalleeToPush = 4;
   2450   else
   2451     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
   2452 
   2453   // Returns a flag for retval copy to use.
   2454   if (!IsSibcall) {
   2455     Chain = DAG.getCALLSEQ_END(Chain,
   2456                                DAG.getIntPtrConstant(NumBytes, true),
   2457                                DAG.getIntPtrConstant(NumBytesForCalleeToPush,
   2458                                                      true),
   2459                                InFlag);
   2460     InFlag = Chain.getValue(1);
   2461   }
   2462 
   2463   // Handle result values, copying them out of physregs into vregs that we
   2464   // return.
   2465   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   2466                          Ins, dl, DAG, InVals);
   2467 }
   2468 
   2469 
   2470 //===----------------------------------------------------------------------===//
   2471 //                Fast Calling Convention (tail call) implementation
   2472 //===----------------------------------------------------------------------===//
   2473 
   2474 //  Like std call, callee cleans arguments, convention except that ECX is
   2475 //  reserved for storing the tail called function address. Only 2 registers are
   2476 //  free for argument passing (inreg). Tail call optimization is performed
   2477 //  provided:
   2478 //                * tailcallopt is enabled
   2479 //                * caller/callee are fastcc
   2480 //  On X86_64 architecture with GOT-style position independent code only local
   2481 //  (within module) calls are supported at the moment.
   2482 //  To keep the stack aligned according to platform abi the function
   2483 //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
   2484 //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
   2485 //  If a tail called function callee has more arguments than the caller the
   2486 //  caller needs to make sure that there is room to move the RETADDR to. This is
   2487 //  achieved by reserving an area the size of the argument delta right after the
   2488 //  original REtADDR, but before the saved framepointer or the spilled registers
   2489 //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
   2490 //  stack layout:
   2491 //    arg1
   2492 //    arg2
   2493 //    RETADDR
   2494 //    [ new RETADDR
   2495 //      move area ]
   2496 //    (possible EBP)
   2497 //    ESI
   2498 //    EDI
   2499 //    local1 ..
   2500 
   2501 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
   2502 /// for a 16 byte align requirement.
   2503 unsigned
   2504 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
   2505                                                SelectionDAG& DAG) const {
   2506   MachineFunction &MF = DAG.getMachineFunction();
   2507   const TargetMachine &TM = MF.getTarget();
   2508   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   2509   unsigned StackAlignment = TFI.getStackAlignment();
   2510   uint64_t AlignMask = StackAlignment - 1;
   2511   int64_t Offset = StackSize;
   2512   uint64_t SlotSize = TD->getPointerSize();
   2513   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
   2514     // Number smaller than 12 so just add the difference.
   2515     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
   2516   } else {
   2517     // Mask out lower bits, add stackalignment once plus the 12 bytes.
   2518     Offset = ((~AlignMask) & Offset) + StackAlignment +
   2519       (StackAlignment-SlotSize);
   2520   }
   2521   return Offset;
   2522 }
   2523 
   2524 /// MatchingStackOffset - Return true if the given stack call argument is
   2525 /// already available in the same position (relatively) of the caller's
   2526 /// incoming argument stack.
   2527 static
   2528 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2529                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   2530                          const X86InstrInfo *TII) {
   2531   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   2532   int FI = INT_MAX;
   2533   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2534     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2535     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2536       return false;
   2537     MachineInstr *Def = MRI->getVRegDef(VR);
   2538     if (!Def)
   2539       return false;
   2540     if (!Flags.isByVal()) {
   2541       if (!TII->isLoadFromStackSlot(Def, FI))
   2542         return false;
   2543     } else {
   2544       unsigned Opcode = Def->getOpcode();
   2545       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
   2546           Def->getOperand(1).isFI()) {
   2547         FI = Def->getOperand(1).getIndex();
   2548         Bytes = Flags.getByValSize();
   2549       } else
   2550         return false;
   2551     }
   2552   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2553     if (Flags.isByVal())
   2554       // ByVal argument is passed in as a pointer but it's now being
   2555       // dereferenced. e.g.
   2556       // define @foo(%struct.X* %A) {
   2557       //   tail call @bar(%struct.X* byval %A)
   2558       // }
   2559       return false;
   2560     SDValue Ptr = Ld->getBasePtr();
   2561     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2562     if (!FINode)
   2563       return false;
   2564     FI = FINode->getIndex();
   2565   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
   2566     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
   2567     FI = FINode->getIndex();
   2568     Bytes = Flags.getByValSize();
   2569   } else
   2570     return false;
   2571 
   2572   assert(FI != INT_MAX);
   2573   if (!MFI->isFixedObjectIndex(FI))
   2574     return false;
   2575   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   2576 }
   2577 
   2578 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2579 /// for tail call optimization. Targets which want to do tail call
   2580 /// optimization should implement this function.
   2581 bool
   2582 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2583                                                      CallingConv::ID CalleeCC,
   2584                                                      bool isVarArg,
   2585                                                      bool isCalleeStructRet,
   2586                                                      bool isCallerStructRet,
   2587                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2588                                     const SmallVectorImpl<SDValue> &OutVals,
   2589                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2590                                                      SelectionDAG& DAG) const {
   2591   if (!IsTailCallConvention(CalleeCC) &&
   2592       CalleeCC != CallingConv::C)
   2593     return false;
   2594 
   2595   // If -tailcallopt is specified, make fastcc functions tail-callable.
   2596   const MachineFunction &MF = DAG.getMachineFunction();
   2597   const Function *CallerF = DAG.getMachineFunction().getFunction();
   2598   CallingConv::ID CallerCC = CallerF->getCallingConv();
   2599   bool CCMatch = CallerCC == CalleeCC;
   2600 
   2601   if (GuaranteedTailCallOpt) {
   2602     if (IsTailCallConvention(CalleeCC) && CCMatch)
   2603       return true;
   2604     return false;
   2605   }
   2606 
   2607   // Look for obvious safe cases to perform tail call optimization that do not
   2608   // require ABI changes. This is what gcc calls sibcall.
   2609 
   2610   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
   2611   // emit a special epilogue.
   2612   if (RegInfo->needsStackRealignment(MF))
   2613     return false;
   2614 
   2615   // Also avoid sibcall optimization if either caller or callee uses struct
   2616   // return semantics.
   2617   if (isCalleeStructRet || isCallerStructRet)
   2618     return false;
   2619 
   2620   // An stdcall caller is expected to clean up its arguments; the callee
   2621   // isn't going to do that.
   2622   if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
   2623     return false;
   2624 
   2625   // Do not sibcall optimize vararg calls unless all arguments are passed via
   2626   // registers.
   2627   if (isVarArg && !Outs.empty()) {
   2628 
   2629     // Optimizing for varargs on Win64 is unlikely to be safe without
   2630     // additional testing.
   2631     if (Subtarget->isTargetWin64())
   2632       return false;
   2633 
   2634     SmallVector<CCValAssign, 16> ArgLocs;
   2635     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2636 		   getTargetMachine(), ArgLocs, *DAG.getContext());
   2637 
   2638     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2639     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
   2640       if (!ArgLocs[i].isRegLoc())
   2641         return false;
   2642   }
   2643 
   2644   // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
   2645   // Therefore if it's not used by the call it is not safe to optimize this into
   2646   // a sibcall.
   2647   bool Unused = false;
   2648   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   2649     if (!Ins[i].Used) {
   2650       Unused = true;
   2651       break;
   2652     }
   2653   }
   2654   if (Unused) {
   2655     SmallVector<CCValAssign, 16> RVLocs;
   2656     CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
   2657 		   getTargetMachine(), RVLocs, *DAG.getContext());
   2658     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   2659     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   2660       CCValAssign &VA = RVLocs[i];
   2661       if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
   2662         return false;
   2663     }
   2664   }
   2665 
   2666   // If the calling conventions do not match, then we'd better make sure the
   2667   // results are returned in the same way as what the caller expects.
   2668   if (!CCMatch) {
   2669     SmallVector<CCValAssign, 16> RVLocs1;
   2670     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   2671 		    getTargetMachine(), RVLocs1, *DAG.getContext());
   2672     CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
   2673 
   2674     SmallVector<CCValAssign, 16> RVLocs2;
   2675     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   2676 		    getTargetMachine(), RVLocs2, *DAG.getContext());
   2677     CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
   2678 
   2679     if (RVLocs1.size() != RVLocs2.size())
   2680       return false;
   2681     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   2682       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   2683         return false;
   2684       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   2685         return false;
   2686       if (RVLocs1[i].isRegLoc()) {
   2687         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   2688           return false;
   2689       } else {
   2690         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   2691           return false;
   2692       }
   2693     }
   2694   }
   2695 
   2696   // If the callee takes no arguments then go on to check the results of the
   2697   // call.
   2698   if (!Outs.empty()) {
   2699     // Check if stack adjustment is needed. For now, do not do this if any
   2700     // argument is passed on the stack.
   2701     SmallVector<CCValAssign, 16> ArgLocs;
   2702     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2703 		   getTargetMachine(), ArgLocs, *DAG.getContext());
   2704 
   2705     // Allocate shadow area for Win64
   2706     if (Subtarget->isTargetWin64()) {
   2707       CCInfo.AllocateStack(32, 8);
   2708     }
   2709 
   2710     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2711     if (CCInfo.getNextStackOffset()) {
   2712       MachineFunction &MF = DAG.getMachineFunction();
   2713       if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
   2714         return false;
   2715 
   2716       // Check if the arguments are already laid out in the right way as
   2717       // the caller's fixed stack objects.
   2718       MachineFrameInfo *MFI = MF.getFrameInfo();
   2719       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2720       const X86InstrInfo *TII =
   2721         ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
   2722       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2723         CCValAssign &VA = ArgLocs[i];
   2724         SDValue Arg = OutVals[i];
   2725         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2726         if (VA.getLocInfo() == CCValAssign::Indirect)
   2727           return false;
   2728         if (!VA.isRegLoc()) {
   2729           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2730                                    MFI, MRI, TII))
   2731             return false;
   2732         }
   2733       }
   2734     }
   2735 
   2736     // If the tailcall address may be in a register, then make sure it's
   2737     // possible to register allocate for it. In 32-bit, the call address can
   2738     // only target EAX, EDX, or ECX since the tail call must be scheduled after
   2739     // callee-saved registers are restored. These happen to be the same
   2740     // registers used to pass 'inreg' arguments so watch out for those.
   2741     if (!Subtarget->is64Bit() &&
   2742         !isa<GlobalAddressSDNode>(Callee) &&
   2743         !isa<ExternalSymbolSDNode>(Callee)) {
   2744       unsigned NumInRegs = 0;
   2745       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2746         CCValAssign &VA = ArgLocs[i];
   2747         if (!VA.isRegLoc())
   2748           continue;
   2749         unsigned Reg = VA.getLocReg();
   2750         switch (Reg) {
   2751         default: break;
   2752         case X86::EAX: case X86::EDX: case X86::ECX:
   2753           if (++NumInRegs == 3)
   2754             return false;
   2755           break;
   2756         }
   2757       }
   2758     }
   2759   }
   2760 
   2761   return true;
   2762 }
   2763 
   2764 FastISel *
   2765 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
   2766   return X86::createFastISel(funcInfo);
   2767 }
   2768 
   2769 
   2770 //===----------------------------------------------------------------------===//
   2771 //                           Other Lowering Hooks
   2772 //===----------------------------------------------------------------------===//
   2773 
   2774 static bool MayFoldLoad(SDValue Op) {
   2775   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
   2776 }
   2777 
   2778 static bool MayFoldIntoStore(SDValue Op) {
   2779   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
   2780 }
   2781 
   2782 static bool isTargetShuffle(unsigned Opcode) {
   2783   switch(Opcode) {
   2784   default: return false;
   2785   case X86ISD::PSHUFD:
   2786   case X86ISD::PSHUFHW:
   2787   case X86ISD::PSHUFLW:
   2788   case X86ISD::SHUFPD:
   2789   case X86ISD::PALIGN:
   2790   case X86ISD::SHUFPS:
   2791   case X86ISD::MOVLHPS:
   2792   case X86ISD::MOVLHPD:
   2793   case X86ISD::MOVHLPS:
   2794   case X86ISD::MOVLPS:
   2795   case X86ISD::MOVLPD:
   2796   case X86ISD::MOVSHDUP:
   2797   case X86ISD::MOVSLDUP:
   2798   case X86ISD::MOVDDUP:
   2799   case X86ISD::MOVSS:
   2800   case X86ISD::MOVSD:
   2801   case X86ISD::UNPCKLPS:
   2802   case X86ISD::UNPCKLPD:
   2803   case X86ISD::VUNPCKLPSY:
   2804   case X86ISD::VUNPCKLPDY:
   2805   case X86ISD::PUNPCKLWD:
   2806   case X86ISD::PUNPCKLBW:
   2807   case X86ISD::PUNPCKLDQ:
   2808   case X86ISD::PUNPCKLQDQ:
   2809   case X86ISD::UNPCKHPS:
   2810   case X86ISD::UNPCKHPD:
   2811   case X86ISD::VUNPCKHPSY:
   2812   case X86ISD::VUNPCKHPDY:
   2813   case X86ISD::PUNPCKHWD:
   2814   case X86ISD::PUNPCKHBW:
   2815   case X86ISD::PUNPCKHDQ:
   2816   case X86ISD::PUNPCKHQDQ:
   2817   case X86ISD::VPERMILPS:
   2818   case X86ISD::VPERMILPSY:
   2819   case X86ISD::VPERMILPD:
   2820   case X86ISD::VPERMILPDY:
   2821   case X86ISD::VPERM2F128:
   2822     return true;
   2823   }
   2824   return false;
   2825 }
   2826 
   2827 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2828                                                SDValue V1, SelectionDAG &DAG) {
   2829   switch(Opc) {
   2830   default: llvm_unreachable("Unknown x86 shuffle node");
   2831   case X86ISD::MOVSHDUP:
   2832   case X86ISD::MOVSLDUP:
   2833   case X86ISD::MOVDDUP:
   2834     return DAG.getNode(Opc, dl, VT, V1);
   2835   }
   2836 
   2837   return SDValue();
   2838 }
   2839 
   2840 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2841                           SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
   2842   switch(Opc) {
   2843   default: llvm_unreachable("Unknown x86 shuffle node");
   2844   case X86ISD::PSHUFD:
   2845   case X86ISD::PSHUFHW:
   2846   case X86ISD::PSHUFLW:
   2847   case X86ISD::VPERMILPS:
   2848   case X86ISD::VPERMILPSY:
   2849   case X86ISD::VPERMILPD:
   2850   case X86ISD::VPERMILPDY:
   2851     return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
   2852   }
   2853 
   2854   return SDValue();
   2855 }
   2856 
   2857 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2858                SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
   2859   switch(Opc) {
   2860   default: llvm_unreachable("Unknown x86 shuffle node");
   2861   case X86ISD::PALIGN:
   2862   case X86ISD::SHUFPD:
   2863   case X86ISD::SHUFPS:
   2864   case X86ISD::VPERM2F128:
   2865     return DAG.getNode(Opc, dl, VT, V1, V2,
   2866                        DAG.getConstant(TargetMask, MVT::i8));
   2867   }
   2868   return SDValue();
   2869 }
   2870 
   2871 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2872                                     SDValue V1, SDValue V2, SelectionDAG &DAG) {
   2873   switch(Opc) {
   2874   default: llvm_unreachable("Unknown x86 shuffle node");
   2875   case X86ISD::MOVLHPS:
   2876   case X86ISD::MOVLHPD:
   2877   case X86ISD::MOVHLPS:
   2878   case X86ISD::MOVLPS:
   2879   case X86ISD::MOVLPD:
   2880   case X86ISD::MOVSS:
   2881   case X86ISD::MOVSD:
   2882   case X86ISD::UNPCKLPS:
   2883   case X86ISD::UNPCKLPD:
   2884   case X86ISD::VUNPCKLPSY:
   2885   case X86ISD::VUNPCKLPDY:
   2886   case X86ISD::PUNPCKLWD:
   2887   case X86ISD::PUNPCKLBW:
   2888   case X86ISD::PUNPCKLDQ:
   2889   case X86ISD::PUNPCKLQDQ:
   2890   case X86ISD::UNPCKHPS:
   2891   case X86ISD::UNPCKHPD:
   2892   case X86ISD::VUNPCKHPSY:
   2893   case X86ISD::VUNPCKHPDY:
   2894   case X86ISD::PUNPCKHWD:
   2895   case X86ISD::PUNPCKHBW:
   2896   case X86ISD::PUNPCKHDQ:
   2897   case X86ISD::PUNPCKHQDQ:
   2898     return DAG.getNode(Opc, dl, VT, V1, V2);
   2899   }
   2900   return SDValue();
   2901 }
   2902 
   2903 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   2904   MachineFunction &MF = DAG.getMachineFunction();
   2905   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   2906   int ReturnAddrIndex = FuncInfo->getRAIndex();
   2907 
   2908   if (ReturnAddrIndex == 0) {
   2909     // Set up a frame object for the return address.
   2910     uint64_t SlotSize = TD->getPointerSize();
   2911     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
   2912                                                            false);
   2913     FuncInfo->setRAIndex(ReturnAddrIndex);
   2914   }
   2915 
   2916   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
   2917 }
   2918 
   2919 
   2920 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
   2921                                        bool hasSymbolicDisplacement) {
   2922   // Offset should fit into 32 bit immediate field.
   2923   if (!isInt<32>(Offset))
   2924     return false;
   2925 
   2926   // If we don't have a symbolic displacement - we don't have any extra
   2927   // restrictions.
   2928   if (!hasSymbolicDisplacement)
   2929     return true;
   2930 
   2931   // FIXME: Some tweaks might be needed for medium code model.
   2932   if (M != CodeModel::Small && M != CodeModel::Kernel)
   2933     return false;
   2934 
   2935   // For small code model we assume that latest object is 16MB before end of 31
   2936   // bits boundary. We may also accept pretty large negative constants knowing
   2937   // that all objects are in the positive half of address space.
   2938   if (M == CodeModel::Small && Offset < 16*1024*1024)
   2939     return true;
   2940 
   2941   // For kernel code model we know that all object resist in the negative half
   2942   // of 32bits address space. We may not accept negative offsets, since they may
   2943   // be just off and we may accept pretty large positive ones.
   2944   if (M == CodeModel::Kernel && Offset > 0)
   2945     return true;
   2946 
   2947   return false;
   2948 }
   2949 
   2950 /// isCalleePop - Determines whether the callee is required to pop its
   2951 /// own arguments. Callee pop is necessary to support tail calls.
   2952 bool X86::isCalleePop(CallingConv::ID CallingConv,
   2953                       bool is64Bit, bool IsVarArg, bool TailCallOpt) {
   2954   if (IsVarArg)
   2955     return false;
   2956 
   2957   switch (CallingConv) {
   2958   default:
   2959     return false;
   2960   case CallingConv::X86_StdCall:
   2961     return !is64Bit;
   2962   case CallingConv::X86_FastCall:
   2963     return !is64Bit;
   2964   case CallingConv::X86_ThisCall:
   2965     return !is64Bit;
   2966   case CallingConv::Fast:
   2967     return TailCallOpt;
   2968   case CallingConv::GHC:
   2969     return TailCallOpt;
   2970   }
   2971 }
   2972 
   2973 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
   2974 /// specific condition code, returning the condition code and the LHS/RHS of the
   2975 /// comparison to make.
   2976 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
   2977                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
   2978   if (!isFP) {
   2979     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   2980       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
   2981         // X > -1   -> X == 0, jump !sign.
   2982         RHS = DAG.getConstant(0, RHS.getValueType());
   2983         return X86::COND_NS;
   2984       } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
   2985         // X < 0   -> X == 0, jump on sign.
   2986         return X86::COND_S;
   2987       } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
   2988         // X < 1   -> X <= 0
   2989         RHS = DAG.getConstant(0, RHS.getValueType());
   2990         return X86::COND_LE;
   2991       }
   2992     }
   2993 
   2994     switch (SetCCOpcode) {
   2995     default: llvm_unreachable("Invalid integer condition!");
   2996     case ISD::SETEQ:  return X86::COND_E;
   2997     case ISD::SETGT:  return X86::COND_G;
   2998     case ISD::SETGE:  return X86::COND_GE;
   2999     case ISD::SETLT:  return X86::COND_L;
   3000     case ISD::SETLE:  return X86::COND_LE;
   3001     case ISD::SETNE:  return X86::COND_NE;
   3002     case ISD::SETULT: return X86::COND_B;
   3003     case ISD::SETUGT: return X86::COND_A;
   3004     case ISD::SETULE: return X86::COND_BE;
   3005     case ISD::SETUGE: return X86::COND_AE;
   3006     }
   3007   }
   3008 
   3009   // First determine if it is required or is profitable to flip the operands.
   3010 
   3011   // If LHS is a foldable load, but RHS is not, flip the condition.
   3012   if (ISD::isNON_EXTLoad(LHS.getNode()) &&
   3013       !ISD::isNON_EXTLoad(RHS.getNode())) {
   3014     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
   3015     std::swap(LHS, RHS);
   3016   }
   3017 
   3018   switch (SetCCOpcode) {
   3019   default: break;
   3020   case ISD::SETOLT:
   3021   case ISD::SETOLE:
   3022   case ISD::SETUGT:
   3023   case ISD::SETUGE:
   3024     std::swap(LHS, RHS);
   3025     break;
   3026   }
   3027 
   3028   // On a floating point condition, the flags are set as follows:
   3029   // ZF  PF  CF   op
   3030   //  0 | 0 | 0 | X > Y
   3031   //  0 | 0 | 1 | X < Y
   3032   //  1 | 0 | 0 | X == Y
   3033   //  1 | 1 | 1 | unordered
   3034   switch (SetCCOpcode) {
   3035   default: llvm_unreachable("Condcode should be pre-legalized away");
   3036   case ISD::SETUEQ:
   3037   case ISD::SETEQ:   return X86::COND_E;
   3038   case ISD::SETOLT:              // flipped
   3039   case ISD::SETOGT:
   3040   case ISD::SETGT:   return X86::COND_A;
   3041   case ISD::SETOLE:              // flipped
   3042   case ISD::SETOGE:
   3043   case ISD::SETGE:   return X86::COND_AE;
   3044   case ISD::SETUGT:              // flipped
   3045   case ISD::SETULT:
   3046   case ISD::SETLT:   return X86::COND_B;
   3047   case ISD::SETUGE:              // flipped
   3048   case ISD::SETULE:
   3049   case ISD::SETLE:   return X86::COND_BE;
   3050   case ISD::SETONE:
   3051   case ISD::SETNE:   return X86::COND_NE;
   3052   case ISD::SETUO:   return X86::COND_P;
   3053   case ISD::SETO:    return X86::COND_NP;
   3054   case ISD::SETOEQ:
   3055   case ISD::SETUNE:  return X86::COND_INVALID;
   3056   }
   3057 }
   3058 
   3059 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
   3060 /// code. Current x86 isa includes the following FP cmov instructions:
   3061 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
   3062 static bool hasFPCMov(unsigned X86CC) {
   3063   switch (X86CC) {
   3064   default:
   3065     return false;
   3066   case X86::COND_B:
   3067   case X86::COND_BE:
   3068   case X86::COND_E:
   3069   case X86::COND_P:
   3070   case X86::COND_A:
   3071   case X86::COND_AE:
   3072   case X86::COND_NE:
   3073   case X86::COND_NP:
   3074     return true;
   3075   }
   3076 }
   3077 
   3078 /// isFPImmLegal - Returns true if the target can instruction select the
   3079 /// specified FP immediate natively. If false, the legalizer will
   3080 /// materialize the FP immediate as a load from a constant pool.
   3081 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3082   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
   3083     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
   3084       return true;
   3085   }
   3086   return false;
   3087 }
   3088 
   3089 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
   3090 /// the specified range (L, H].
   3091 static bool isUndefOrInRange(int Val, int Low, int Hi) {
   3092   return (Val < 0) || (Val >= Low && Val < Hi);
   3093 }
   3094 
   3095 /// isUndefOrInRange - Return true if every element in Mask, begining
   3096 /// from position Pos and ending in Pos+Size, falls within the specified
   3097 /// range (L, L+Pos]. or is undef.
   3098 static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
   3099                              int Pos, int Size, int Low, int Hi) {
   3100   for (int i = Pos, e = Pos+Size; i != e; ++i)
   3101     if (!isUndefOrInRange(Mask[i], Low, Hi))
   3102       return false;
   3103   return true;
   3104 }
   3105 
   3106 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
   3107 /// specified value.
   3108 static bool isUndefOrEqual(int Val, int CmpVal) {
   3109   if (Val < 0 || Val == CmpVal)
   3110     return true;
   3111   return false;
   3112 }
   3113 
   3114 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
   3115 /// from position Pos and ending in Pos+Size, falls within the specified
   3116 /// sequential range (L, L+Pos]. or is undef.
   3117 static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
   3118                                        int Pos, int Size, int Low) {
   3119   for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
   3120     if (!isUndefOrEqual(Mask[i], Low))
   3121       return false;
   3122   return true;
   3123 }
   3124 
   3125 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
   3126 /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
   3127 /// the second operand.
   3128 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3129   if (VT == MVT::v4f32 || VT == MVT::v4i32 )
   3130     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
   3131   if (VT == MVT::v2f64 || VT == MVT::v2i64)
   3132     return (Mask[0] < 2 && Mask[1] < 2);
   3133   return false;
   3134 }
   3135 
   3136 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
   3137   SmallVector<int, 8> M;
   3138   N->getMask(M);
   3139   return ::isPSHUFDMask(M, N->getValueType(0));
   3140 }
   3141 
   3142 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
   3143 /// is suitable for input to PSHUFHW.
   3144 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3145   if (VT != MVT::v8i16)
   3146     return false;
   3147 
   3148   // Lower quadword copied in order or undef.
   3149   for (int i = 0; i != 4; ++i)
   3150     if (Mask[i] >= 0 && Mask[i] != i)
   3151       return false;
   3152 
   3153   // Upper quadword shuffled.
   3154   for (int i = 4; i != 8; ++i)
   3155     if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
   3156       return false;
   3157 
   3158   return true;
   3159 }
   3160 
   3161 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
   3162   SmallVector<int, 8> M;
   3163   N->getMask(M);
   3164   return ::isPSHUFHWMask(M, N->getValueType(0));
   3165 }
   3166 
   3167 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
   3168 /// is suitable for input to PSHUFLW.
   3169 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3170   if (VT != MVT::v8i16)
   3171     return false;
   3172 
   3173   // Upper quadword copied in order.
   3174   for (int i = 4; i != 8; ++i)
   3175     if (Mask[i] >= 0 && Mask[i] != i)
   3176       return false;
   3177 
   3178   // Lower quadword shuffled.
   3179   for (int i = 0; i != 4; ++i)
   3180     if (Mask[i] >= 4)
   3181       return false;
   3182 
   3183   return true;
   3184 }
   3185 
   3186 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
   3187   SmallVector<int, 8> M;
   3188   N->getMask(M);
   3189   return ::isPSHUFLWMask(M, N->getValueType(0));
   3190 }
   3191 
   3192 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
   3193 /// is suitable for input to PALIGNR.
   3194 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3195                           bool hasSSSE3OrAVX) {
   3196   int i, e = VT.getVectorNumElements();
   3197   if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
   3198     return false;
   3199 
   3200   // Do not handle v2i64 / v2f64 shuffles with palignr.
   3201   if (e < 4 || !hasSSSE3OrAVX)
   3202     return false;
   3203 
   3204   for (i = 0; i != e; ++i)
   3205     if (Mask[i] >= 0)
   3206       break;
   3207 
   3208   // All undef, not a palignr.
   3209   if (i == e)
   3210     return false;
   3211 
   3212   // Make sure we're shifting in the right direction.
   3213   if (Mask[i] <= i)
   3214     return false;
   3215 
   3216   int s = Mask[i] - i;
   3217 
   3218   // Check the rest of the elements to see if they are consecutive.
   3219   for (++i; i != e; ++i) {
   3220     int m = Mask[i];
   3221     if (m >= 0 && m != s+i)
   3222       return false;
   3223   }
   3224   return true;
   3225 }
   3226 
   3227 /// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
   3228 /// specifies a shuffle of elements that is suitable for input to 256-bit
   3229 /// VSHUFPSY.
   3230 static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3231                           const X86Subtarget *Subtarget) {
   3232   int NumElems = VT.getVectorNumElements();
   3233 
   3234   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
   3235     return false;
   3236 
   3237   if (NumElems != 8)
   3238     return false;
   3239 
   3240   // VSHUFPSY divides the resulting vector into 4 chunks.
   3241   // The sources are also splitted into 4 chunks, and each destination
   3242   // chunk must come from a different source chunk.
   3243   //
   3244   //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
   3245   //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
   3246   //
   3247   //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
   3248   //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
   3249   //
   3250   int QuarterSize = NumElems/4;
   3251   int HalfSize = QuarterSize*2;
   3252   for (int i = 0; i < QuarterSize; ++i)
   3253     if (!isUndefOrInRange(Mask[i], 0, HalfSize))
   3254       return false;
   3255   for (int i = QuarterSize; i < QuarterSize*2; ++i)
   3256     if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
   3257       return false;
   3258 
   3259   // The mask of the second half must be the same as the first but with
   3260   // the appropriate offsets. This works in the same way as VPERMILPS
   3261   // works with masks.
   3262   for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
   3263     if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
   3264       return false;
   3265     int FstHalfIdx = i-HalfSize;
   3266     if (Mask[FstHalfIdx] < 0)
   3267       continue;
   3268     if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
   3269       return false;
   3270   }
   3271   for (int i = QuarterSize*3; i < NumElems; ++i) {
   3272     if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
   3273       return false;
   3274     int FstHalfIdx = i-HalfSize;
   3275     if (Mask[FstHalfIdx] < 0)
   3276       continue;
   3277     if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
   3278       return false;
   3279 
   3280   }
   3281 
   3282   return true;
   3283 }
   3284 
   3285 /// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
   3286 /// the specified VECTOR_MASK mask with VSHUFPSY instruction.
   3287 static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
   3288   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3289   EVT VT = SVOp->getValueType(0);
   3290   int NumElems = VT.getVectorNumElements();
   3291 
   3292   assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
   3293          "Only supports v8i32 and v8f32 types");
   3294 
   3295   int HalfSize = NumElems/2;
   3296   unsigned Mask = 0;
   3297   for (int i = 0; i != NumElems ; ++i) {
   3298     if (SVOp->getMaskElt(i) < 0)
   3299       continue;
   3300     // The mask of the first half must be equal to the second one.
   3301     unsigned Shamt = (i%HalfSize)*2;
   3302     unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
   3303     Mask |= Elt << Shamt;
   3304   }
   3305 
   3306   return Mask;
   3307 }
   3308 
   3309 /// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
   3310 /// specifies a shuffle of elements that is suitable for input to 256-bit
   3311 /// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
   3312 /// version and the mask of the second half isn't binded with the first
   3313 /// one.
   3314 static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3315                            const X86Subtarget *Subtarget) {
   3316   int NumElems = VT.getVectorNumElements();
   3317 
   3318   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
   3319     return false;
   3320 
   3321   if (NumElems != 4)
   3322     return false;
   3323 
   3324   // VSHUFPSY divides the resulting vector into 4 chunks.
   3325   // The sources are also splitted into 4 chunks, and each destination
   3326   // chunk must come from a different source chunk.
   3327   //
   3328   //  SRC1 =>      X3       X2       X1       X0
   3329   //  SRC2 =>      Y3       Y2       Y1       Y0
   3330   //
   3331   //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
   3332   //
   3333   int QuarterSize = NumElems/4;
   3334   int HalfSize = QuarterSize*2;
   3335   for (int i = 0; i < QuarterSize; ++i)
   3336     if (!isUndefOrInRange(Mask[i], 0, HalfSize))
   3337       return false;
   3338   for (int i = QuarterSize; i < QuarterSize*2; ++i)
   3339     if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
   3340       return false;
   3341   for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
   3342     if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
   3343       return false;
   3344   for (int i = QuarterSize*3; i < NumElems; ++i)
   3345     if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
   3346       return false;
   3347 
   3348   return true;
   3349 }
   3350 
   3351 /// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
   3352 /// the specified VECTOR_MASK mask with VSHUFPDY instruction.
   3353 static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
   3354   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3355   EVT VT = SVOp->getValueType(0);
   3356   int NumElems = VT.getVectorNumElements();
   3357 
   3358   assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
   3359          "Only supports v4i64 and v4f64 types");
   3360 
   3361   int HalfSize = NumElems/2;
   3362   unsigned Mask = 0;
   3363   for (int i = 0; i != NumElems ; ++i) {
   3364     if (SVOp->getMaskElt(i) < 0)
   3365       continue;
   3366     int Elt = SVOp->getMaskElt(i) % HalfSize;
   3367     Mask |= Elt << i;
   3368   }
   3369 
   3370   return Mask;
   3371 }
   3372 
   3373 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
   3374 /// specifies a shuffle of elements that is suitable for input to 128-bit
   3375 /// SHUFPS and SHUFPD.
   3376 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3377   int NumElems = VT.getVectorNumElements();
   3378 
   3379   if (VT.getSizeInBits() != 128)
   3380     return false;
   3381 
   3382   if (NumElems != 2 && NumElems != 4)
   3383     return false;
   3384 
   3385   int Half = NumElems / 2;
   3386   for (int i = 0; i < Half; ++i)
   3387     if (!isUndefOrInRange(Mask[i], 0, NumElems))
   3388       return false;
   3389   for (int i = Half; i < NumElems; ++i)
   3390     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
   3391       return false;
   3392 
   3393   return true;
   3394 }
   3395 
   3396 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
   3397   SmallVector<int, 8> M;
   3398   N->getMask(M);
   3399   return ::isSHUFPMask(M, N->getValueType(0));
   3400 }
   3401 
   3402 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
   3403 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
   3404 /// half elements to come from vector 1 (which would equal the dest.) and
   3405 /// the upper half to come from vector 2.
   3406 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3407   int NumElems = VT.getVectorNumElements();
   3408 
   3409   if (NumElems != 2 && NumElems != 4)
   3410     return false;
   3411 
   3412   int Half = NumElems / 2;
   3413   for (int i = 0; i < Half; ++i)
   3414     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
   3415       return false;
   3416   for (int i = Half; i < NumElems; ++i)
   3417     if (!isUndefOrInRange(Mask[i], 0, NumElems))
   3418       return false;
   3419   return true;
   3420 }
   3421 
   3422 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
   3423   SmallVector<int, 8> M;
   3424   N->getMask(M);
   3425   return isCommutedSHUFPMask(M, N->getValueType(0));
   3426 }
   3427 
   3428 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3429 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
   3430 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
   3431   EVT VT = N->getValueType(0);
   3432   unsigned NumElems = VT.getVectorNumElements();
   3433 
   3434   if (VT.getSizeInBits() != 128)
   3435     return false;
   3436 
   3437   if (NumElems != 4)
   3438     return false;
   3439 
   3440   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
   3441   return isUndefOrEqual(N->getMaskElt(0), 6) &&
   3442          isUndefOrEqual(N->getMaskElt(1), 7) &&
   3443          isUndefOrEqual(N->getMaskElt(2), 2) &&
   3444          isUndefOrEqual(N->getMaskElt(3), 3);
   3445 }
   3446 
   3447 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
   3448 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
   3449 /// <2, 3, 2, 3>
   3450 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
   3451   EVT VT = N->getValueType(0);
   3452   unsigned NumElems = VT.getVectorNumElements();
   3453 
   3454   if (VT.getSizeInBits() != 128)
   3455     return false;
   3456 
   3457   if (NumElems != 4)
   3458     return false;
   3459 
   3460   return isUndefOrEqual(N->getMaskElt(0), 2) &&
   3461          isUndefOrEqual(N->getMaskElt(1), 3) &&
   3462          isUndefOrEqual(N->getMaskElt(2), 2) &&
   3463          isUndefOrEqual(N->getMaskElt(3), 3);
   3464 }
   3465 
   3466 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
   3467 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
   3468 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
   3469   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3470 
   3471   if (NumElems != 2 && NumElems != 4)
   3472     return false;
   3473 
   3474   for (unsigned i = 0; i < NumElems/2; ++i)
   3475     if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
   3476       return false;
   3477 
   3478   for (unsigned i = NumElems/2; i < NumElems; ++i)
   3479     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3480       return false;
   3481 
   3482   return true;
   3483 }
   3484 
   3485 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3486 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
   3487 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
   3488   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   3489 
   3490   if ((NumElems != 2 && NumElems != 4)
   3491       || N->getValueType(0).getSizeInBits() > 128)
   3492     return false;
   3493 
   3494   for (unsigned i = 0; i < NumElems/2; ++i)
   3495     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3496       return false;
   3497 
   3498   for (unsigned i = 0; i < NumElems/2; ++i)
   3499     if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
   3500       return false;
   3501 
   3502   return true;
   3503 }
   3504 
   3505 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
   3506 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
   3507 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3508                          bool V2IsSplat = false) {
   3509   int NumElts = VT.getVectorNumElements();
   3510 
   3511   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3512          "Unsupported vector type for unpckh");
   3513 
   3514   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
   3515     return false;
   3516 
   3517   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3518   // independently on 128-bit lanes.
   3519   unsigned NumLanes = VT.getSizeInBits()/128;
   3520   unsigned NumLaneElts = NumElts/NumLanes;
   3521 
   3522   unsigned Start = 0;
   3523   unsigned End = NumLaneElts;
   3524   for (unsigned s = 0; s < NumLanes; ++s) {
   3525     for (unsigned i = Start, j = s * NumLaneElts;
   3526          i != End;
   3527          i += 2, ++j) {
   3528       int BitI  = Mask[i];
   3529       int BitI1 = Mask[i+1];
   3530       if (!isUndefOrEqual(BitI, j))
   3531         return false;
   3532       if (V2IsSplat) {
   3533         if (!isUndefOrEqual(BitI1, NumElts))
   3534           return false;
   3535       } else {
   3536         if (!isUndefOrEqual(BitI1, j + NumElts))
   3537           return false;
   3538       }
   3539     }
   3540     // Process the next 128 bits.
   3541     Start += NumLaneElts;
   3542     End += NumLaneElts;
   3543   }
   3544 
   3545   return true;
   3546 }
   3547 
   3548 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
   3549   SmallVector<int, 8> M;
   3550   N->getMask(M);
   3551   return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
   3552 }
   3553 
   3554 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
   3555 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
   3556 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3557                          bool V2IsSplat = false) {
   3558   int NumElts = VT.getVectorNumElements();
   3559 
   3560   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3561          "Unsupported vector type for unpckh");
   3562 
   3563   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
   3564     return false;
   3565 
   3566   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3567   // independently on 128-bit lanes.
   3568   unsigned NumLanes = VT.getSizeInBits()/128;
   3569   unsigned NumLaneElts = NumElts/NumLanes;
   3570 
   3571   unsigned Start = 0;
   3572   unsigned End = NumLaneElts;
   3573   for (unsigned l = 0; l != NumLanes; ++l) {
   3574     for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
   3575                              i != End; i += 2, ++j) {
   3576       int BitI  = Mask[i];
   3577       int BitI1 = Mask[i+1];
   3578       if (!isUndefOrEqual(BitI, j))
   3579         return false;
   3580       if (V2IsSplat) {
   3581         if (isUndefOrEqual(BitI1, NumElts))
   3582           return false;
   3583       } else {
   3584         if (!isUndefOrEqual(BitI1, j+NumElts))
   3585           return false;
   3586       }
   3587     }
   3588     // Process the next 128 bits.
   3589     Start += NumLaneElts;
   3590     End += NumLaneElts;
   3591   }
   3592   return true;
   3593 }
   3594 
   3595 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
   3596   SmallVector<int, 8> M;
   3597   N->getMask(M);
   3598   return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
   3599 }
   3600 
   3601 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
   3602 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
   3603 /// <0, 0, 1, 1>
   3604 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3605   int NumElems = VT.getVectorNumElements();
   3606   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
   3607     return false;
   3608 
   3609   // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
   3610   // FIXME: Need a better way to get rid of this, there's no latency difference
   3611   // between UNPCKLPD and MOVDDUP, the later should always be checked first and
   3612   // the former later. We should also remove the "_undef" special mask.
   3613   if (NumElems == 4 && VT.getSizeInBits() == 256)
   3614     return false;
   3615 
   3616   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3617   // independently on 128-bit lanes.
   3618   unsigned NumLanes = VT.getSizeInBits() / 128;
   3619   unsigned NumLaneElts = NumElems / NumLanes;
   3620 
   3621   for (unsigned s = 0; s < NumLanes; ++s) {
   3622     for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
   3623          i != NumLaneElts * (s + 1);
   3624          i += 2, ++j) {
   3625       int BitI  = Mask[i];
   3626       int BitI1 = Mask[i+1];
   3627 
   3628       if (!isUndefOrEqual(BitI, j))
   3629         return false;
   3630       if (!isUndefOrEqual(BitI1, j))
   3631         return false;
   3632     }
   3633   }
   3634 
   3635   return true;
   3636 }
   3637 
   3638 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
   3639   SmallVector<int, 8> M;
   3640   N->getMask(M);
   3641   return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
   3642 }
   3643 
   3644 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
   3645 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
   3646 /// <2, 2, 3, 3>
   3647 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3648   int NumElems = VT.getVectorNumElements();
   3649   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
   3650     return false;
   3651 
   3652   for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
   3653     int BitI  = Mask[i];
   3654     int BitI1 = Mask[i+1];
   3655     if (!isUndefOrEqual(BitI, j))
   3656       return false;
   3657     if (!isUndefOrEqual(BitI1, j))
   3658       return false;
   3659   }
   3660   return true;
   3661 }
   3662 
   3663 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
   3664   SmallVector<int, 8> M;
   3665   N->getMask(M);
   3666   return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
   3667 }
   3668 
   3669 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
   3670 /// specifies a shuffle of elements that is suitable for input to MOVSS,
   3671 /// MOVSD, and MOVD, i.e. setting the lowest element.
   3672 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
   3673   if (VT.getVectorElementType().getSizeInBits() < 32)
   3674     return false;
   3675 
   3676   int NumElts = VT.getVectorNumElements();
   3677 
   3678   if (!isUndefOrEqual(Mask[0], NumElts))
   3679     return false;
   3680 
   3681   for (int i = 1; i < NumElts; ++i)
   3682     if (!isUndefOrEqual(Mask[i], i))
   3683       return false;
   3684 
   3685   return true;
   3686 }
   3687 
   3688 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
   3689   SmallVector<int, 8> M;
   3690   N->getMask(M);
   3691   return ::isMOVLMask(M, N->getValueType(0));
   3692 }
   3693 
   3694 /// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
   3695 /// as permutations between 128-bit chunks or halves. As an example: this
   3696 /// shuffle bellow:
   3697 ///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
   3698 /// The first half comes from the second half of V1 and the second half from the
   3699 /// the second half of V2.
   3700 static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
   3701                              const X86Subtarget *Subtarget) {
   3702   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
   3703     return false;
   3704 
   3705   // The shuffle result is divided into half A and half B. In total the two
   3706   // sources have 4 halves, namely: C, D, E, F. The final values of A and
   3707   // B must come from C, D, E or F.
   3708   int HalfSize = VT.getVectorNumElements()/2;
   3709   bool MatchA = false, MatchB = false;
   3710 
   3711   // Check if A comes from one of C, D, E, F.
   3712   for (int Half = 0; Half < 4; ++Half) {
   3713     if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
   3714       MatchA = true;
   3715       break;
   3716     }
   3717   }
   3718 
   3719   // Check if B comes from one of C, D, E, F.
   3720   for (int Half = 0; Half < 4; ++Half) {
   3721     if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
   3722       MatchB = true;
   3723       break;
   3724     }
   3725   }
   3726 
   3727   return MatchA && MatchB;
   3728 }
   3729 
   3730 /// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
   3731 /// the specified VECTOR_MASK mask with VPERM2F128 instructions.
   3732 static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
   3733   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3734   EVT VT = SVOp->getValueType(0);
   3735 
   3736   int HalfSize = VT.getVectorNumElements()/2;
   3737 
   3738   int FstHalf = 0, SndHalf = 0;
   3739   for (int i = 0; i < HalfSize; ++i) {
   3740     if (SVOp->getMaskElt(i) > 0) {
   3741       FstHalf = SVOp->getMaskElt(i)/HalfSize;
   3742       break;
   3743     }
   3744   }
   3745   for (int i = HalfSize; i < HalfSize*2; ++i) {
   3746     if (SVOp->getMaskElt(i) > 0) {
   3747       SndHalf = SVOp->getMaskElt(i)/HalfSize;
   3748       break;
   3749     }
   3750   }
   3751 
   3752   return (FstHalf | (SndHalf << 4));
   3753 }
   3754 
   3755 /// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
   3756 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
   3757 /// Note that VPERMIL mask matching is different depending whether theunderlying
   3758 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
   3759 /// to the same elements of the low, but to the higher half of the source.
   3760 /// In VPERMILPD the two lanes could be shuffled independently of each other
   3761 /// with the same restriction that lanes can't be crossed.
   3762 static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3763                             const X86Subtarget *Subtarget) {
   3764   int NumElts = VT.getVectorNumElements();
   3765   int NumLanes = VT.getSizeInBits()/128;
   3766 
   3767   if (!Subtarget->hasAVX())
   3768     return false;
   3769 
   3770   // Only match 256-bit with 64-bit types
   3771   if (VT.getSizeInBits() != 256 || NumElts != 4)
   3772     return false;
   3773 
   3774   // The mask on the high lane is independent of the low. Both can match
   3775   // any element in inside its own lane, but can't cross.
   3776   int LaneSize = NumElts/NumLanes;
   3777   for (int l = 0; l < NumLanes; ++l)
   3778     for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
   3779       int LaneStart = l*LaneSize;
   3780       if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
   3781         return false;
   3782     }
   3783 
   3784   return true;
   3785 }
   3786 
   3787 /// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3788 /// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
   3789 /// Note that VPERMIL mask matching is different depending whether theunderlying
   3790 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
   3791 /// to the same elements of the low, but to the higher half of the source.
   3792 /// In VPERMILPD the two lanes could be shuffled independently of each other
   3793 /// with the same restriction that lanes can't be crossed.
   3794 static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3795                             const X86Subtarget *Subtarget) {
   3796   unsigned NumElts = VT.getVectorNumElements();
   3797   unsigned NumLanes = VT.getSizeInBits()/128;
   3798 
   3799   if (!Subtarget->hasAVX())
   3800     return false;
   3801 
   3802   // Only match 256-bit with 32-bit types
   3803   if (VT.getSizeInBits() != 256 || NumElts != 8)
   3804     return false;
   3805 
   3806   // The mask on the high lane should be the same as the low. Actually,
   3807   // they can differ if any of the corresponding index in a lane is undef
   3808   // and the other stays in range.
   3809   int LaneSize = NumElts/NumLanes;
   3810   for (int i = 0; i < LaneSize; ++i) {
   3811     int HighElt = i+LaneSize;
   3812     bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
   3813     bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
   3814 
   3815     if (!HighValid || !LowValid)
   3816       return false;
   3817     if (Mask[i] < 0 || Mask[HighElt] < 0)
   3818       continue;
   3819     if (Mask[HighElt]-Mask[i] != LaneSize)
   3820       return false;
   3821   }
   3822 
   3823   return true;
   3824 }
   3825 
   3826 /// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
   3827 /// the specified VECTOR_MASK mask with VPERMILPS* instructions.
   3828 static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
   3829   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3830   EVT VT = SVOp->getValueType(0);
   3831 
   3832   int NumElts = VT.getVectorNumElements();
   3833   int NumLanes = VT.getSizeInBits()/128;
   3834   int LaneSize = NumElts/NumLanes;
   3835 
   3836   // Although the mask is equal for both lanes do it twice to get the cases
   3837   // where a mask will match because the same mask element is undef on the
   3838   // first half but valid on the second. This would get pathological cases
   3839   // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
   3840   unsigned Mask = 0;
   3841   for (int l = 0; l < NumLanes; ++l) {
   3842     for (int i = 0; i < LaneSize; ++i) {
   3843       int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
   3844       if (MaskElt < 0)
   3845         continue;
   3846       if (MaskElt >= LaneSize)
   3847         MaskElt -= LaneSize;
   3848       Mask |= MaskElt << (i*2);
   3849     }
   3850   }
   3851 
   3852   return Mask;
   3853 }
   3854 
   3855 /// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
   3856 /// the specified VECTOR_MASK mask with VPERMILPD* instructions.
   3857 static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
   3858   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   3859   EVT VT = SVOp->getValueType(0);
   3860 
   3861   int NumElts = VT.getVectorNumElements();
   3862   int NumLanes = VT.getSizeInBits()/128;
   3863 
   3864   unsigned Mask = 0;
   3865   int LaneSize = NumElts/NumLanes;
   3866   for (int l = 0; l < NumLanes; ++l)
   3867     for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
   3868       int MaskElt = SVOp->getMaskElt(i);
   3869       if (MaskElt < 0)
   3870         continue;
   3871       Mask |= (MaskElt-l*LaneSize) << i;
   3872     }
   3873 
   3874   return Mask;
   3875 }
   3876 
   3877 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
   3878 /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
   3879 /// element of vector 2 and the other elements to come from vector 1 in order.
   3880 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
   3881                                bool V2IsSplat = false, bool V2IsUndef = false) {
   3882   int NumOps = VT.getVectorNumElements();
   3883   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
   3884     return false;
   3885 
   3886   if (!isUndefOrEqual(Mask[0], 0))
   3887     return false;
   3888 
   3889   for (int i = 1; i < NumOps; ++i)
   3890     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
   3891           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
   3892           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
   3893       return false;
   3894 
   3895   return true;
   3896 }
   3897 
   3898 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
   3899                            bool V2IsUndef = false) {
   3900   SmallVector<int, 8> M;
   3901   N->getMask(M);
   3902   return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
   3903 }
   3904 
   3905 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3906 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
   3907 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
   3908 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
   3909                          const X86Subtarget *Subtarget) {
   3910   if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
   3911     return false;
   3912 
   3913   // The second vector must be undef
   3914   if (N->getOperand(1).getOpcode() != ISD::UNDEF)
   3915     return false;
   3916 
   3917   EVT VT = N->getValueType(0);
   3918   unsigned NumElems = VT.getVectorNumElements();
   3919 
   3920   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
   3921       (VT.getSizeInBits() == 256 && NumElems != 8))
   3922     return false;
   3923 
   3924   // "i+1" is the value the indexed mask element must have
   3925   for (unsigned i = 0; i < NumElems; i += 2)
   3926     if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
   3927         !isUndefOrEqual(N->getMaskElt(i+1), i+1))
   3928       return false;
   3929 
   3930   return true;
   3931 }
   3932 
   3933 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3934 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
   3935 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
   3936 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
   3937                          const X86Subtarget *Subtarget) {
   3938   if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
   3939     return false;
   3940 
   3941   // The second vector must be undef
   3942   if (N->getOperand(1).getOpcode() != ISD::UNDEF)
   3943     return false;
   3944 
   3945   EVT VT = N->getValueType(0);
   3946   unsigned NumElems = VT.getVectorNumElements();
   3947 
   3948   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
   3949       (VT.getSizeInBits() == 256 && NumElems != 8))
   3950     return false;
   3951 
   3952   // "i" is the value the indexed mask element must have
   3953   for (unsigned i = 0; i < NumElems; i += 2)
   3954     if (!isUndefOrEqual(N->getMaskElt(i), i) ||
   3955         !isUndefOrEqual(N->getMaskElt(i+1), i))
   3956       return false;
   3957 
   3958   return true;
   3959 }
   3960 
   3961 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
   3962 /// specifies a shuffle of elements that is suitable for input to 256-bit
   3963 /// version of MOVDDUP.
   3964 static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
   3965                            const X86Subtarget *Subtarget) {
   3966   EVT VT = N->getValueType(0);
   3967   int NumElts = VT.getVectorNumElements();
   3968   bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
   3969 
   3970   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
   3971       !V2IsUndef || NumElts != 4)
   3972     return false;
   3973 
   3974   for (int i = 0; i != NumElts/2; ++i)
   3975     if (!isUndefOrEqual(N->getMaskElt(i), 0))
   3976       return false;
   3977   for (int i = NumElts/2; i != NumElts; ++i)
   3978     if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
   3979       return false;
   3980   return true;
   3981 }
   3982 
   3983 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3984 /// specifies a shuffle of elements that is suitable for input to 128-bit
   3985 /// version of MOVDDUP.
   3986 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
   3987   EVT VT = N->getValueType(0);
   3988 
   3989   if (VT.getSizeInBits() != 128)
   3990     return false;
   3991 
   3992   int e = VT.getVectorNumElements() / 2;
   3993   for (int i = 0; i < e; ++i)
   3994     if (!isUndefOrEqual(N->getMaskElt(i), i))
   3995       return false;
   3996   for (int i = 0; i < e; ++i)
   3997     if (!isUndefOrEqual(N->getMaskElt(e+i), i))
   3998       return false;
   3999   return true;
   4000 }
   4001 
   4002 /// isVEXTRACTF128Index - Return true if the specified
   4003 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
   4004 /// suitable for input to VEXTRACTF128.
   4005 bool X86::isVEXTRACTF128Index(SDNode *N) {
   4006   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   4007     return false;
   4008 
   4009   // The index should be aligned on a 128-bit boundary.
   4010   uint64_t Index =
   4011     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   4012 
   4013   unsigned VL = N->getValueType(0).getVectorNumElements();
   4014   unsigned VBits = N->getValueType(0).getSizeInBits();
   4015   unsigned ElSize = VBits / VL;
   4016   bool Result = (Index * ElSize) % 128 == 0;
   4017 
   4018   return Result;
   4019 }
   4020 
   4021 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
   4022 /// operand specifies a subvector insert that is suitable for input to
   4023 /// VINSERTF128.
   4024 bool X86::isVINSERTF128Index(SDNode *N) {
   4025   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   4026     return false;
   4027 
   4028   // The index should be aligned on a 128-bit boundary.
   4029   uint64_t Index =
   4030     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   4031 
   4032   unsigned VL = N->getValueType(0).getVectorNumElements();
   4033   unsigned VBits = N->getValueType(0).getSizeInBits();
   4034   unsigned ElSize = VBits / VL;
   4035   bool Result = (Index * ElSize) % 128 == 0;
   4036 
   4037   return Result;
   4038 }
   4039 
   4040 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
   4041 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
   4042 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
   4043   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4044   int NumOperands = SVOp->getValueType(0).getVectorNumElements();
   4045 
   4046   unsigned Shift = (NumOperands == 4) ? 2 : 1;
   4047   unsigned Mask = 0;
   4048   for (int i = 0; i < NumOperands; ++i) {
   4049     int Val = SVOp->getMaskElt(NumOperands-i-1);
   4050     if (Val < 0) Val = 0;
   4051     if (Val >= NumOperands) Val -= NumOperands;
   4052     Mask |= Val;
   4053     if (i != NumOperands - 1)
   4054       Mask <<= Shift;
   4055   }
   4056   return Mask;
   4057 }
   4058 
   4059 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
   4060 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
   4061 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
   4062   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4063   unsigned Mask = 0;
   4064   // 8 nodes, but we only care about the last 4.
   4065   for (unsigned i = 7; i >= 4; --i) {
   4066     int Val = SVOp->getMaskElt(i);
   4067     if (Val >= 0)
   4068       Mask |= (Val - 4);
   4069     if (i != 4)
   4070       Mask <<= 2;
   4071   }
   4072   return Mask;
   4073 }
   4074 
   4075 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
   4076 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
   4077 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
   4078   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4079   unsigned Mask = 0;
   4080   // 8 nodes, but we only care about the first 4.
   4081   for (int i = 3; i >= 0; --i) {
   4082     int Val = SVOp->getMaskElt(i);
   4083     if (Val >= 0)
   4084       Mask |= Val;
   4085     if (i != 0)
   4086       Mask <<= 2;
   4087   }
   4088   return Mask;
   4089 }
   4090 
   4091 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
   4092 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
   4093 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
   4094   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   4095   EVT VVT = N->getValueType(0);
   4096   unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
   4097   int Val = 0;
   4098 
   4099   unsigned i, e;
   4100   for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
   4101     Val = SVOp->getMaskElt(i);
   4102     if (Val >= 0)
   4103       break;
   4104   }
   4105   assert(Val - i > 0 && "PALIGNR imm should be positive");
   4106   return (Val - i) * EltSize;
   4107 }
   4108 
   4109 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
   4110 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
   4111 /// instructions.
   4112 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
   4113   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   4114     llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
   4115 
   4116   uint64_t Index =
   4117     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   4118 
   4119   EVT VecVT = N->getOperand(0).getValueType();
   4120   EVT ElVT = VecVT.getVectorElementType();
   4121 
   4122   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   4123   return Index / NumElemsPerChunk;
   4124 }
   4125 
   4126 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
   4127 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
   4128 /// instructions.
   4129 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
   4130   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   4131     llvm_unreachable("Illegal insert subvector for VINSERTF128");
   4132 
   4133   uint64_t Index =
   4134     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   4135 
   4136   EVT VecVT = N->getValueType(0);
   4137   EVT ElVT = VecVT.getVectorElementType();
   4138 
   4139   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   4140   return Index / NumElemsPerChunk;
   4141 }
   4142 
   4143 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
   4144 /// constant +0.0.
   4145 bool X86::isZeroNode(SDValue Elt) {
   4146   return ((isa<ConstantSDNode>(Elt) &&
   4147            cast<ConstantSDNode>(Elt)->isNullValue()) ||
   4148           (isa<ConstantFPSDNode>(Elt) &&
   4149            cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
   4150 }
   4151 
   4152 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
   4153 /// their permute mask.
   4154 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
   4155                                     SelectionDAG &DAG) {
   4156   EVT VT = SVOp->getValueType(0);
   4157   unsigned NumElems = VT.getVectorNumElements();
   4158   SmallVector<int, 8> MaskVec;
   4159 
   4160   for (unsigned i = 0; i != NumElems; ++i) {
   4161     int idx = SVOp->getMaskElt(i);
   4162     if (idx < 0)
   4163       MaskVec.push_back(idx);
   4164     else if (idx < (int)NumElems)
   4165       MaskVec.push_back(idx + NumElems);
   4166     else
   4167       MaskVec.push_back(idx - NumElems);
   4168   }
   4169   return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
   4170                               SVOp->getOperand(0), &MaskVec[0]);
   4171 }
   4172 
   4173 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
   4174 /// the two vector operands have swapped position.
   4175 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
   4176   unsigned NumElems = VT.getVectorNumElements();
   4177   for (unsigned i = 0; i != NumElems; ++i) {
   4178     int idx = Mask[i];
   4179     if (idx < 0)
   4180       continue;
   4181     else if (idx < (int)NumElems)
   4182       Mask[i] = idx + NumElems;
   4183     else
   4184       Mask[i] = idx - NumElems;
   4185   }
   4186 }
   4187 
   4188 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
   4189 /// match movhlps. The lower half elements should come from upper half of
   4190 /// V1 (and in order), and the upper half elements should come from the upper
   4191 /// half of V2 (and in order).
   4192 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
   4193   EVT VT = Op->getValueType(0);
   4194   if (VT.getSizeInBits() != 128)
   4195     return false;
   4196   if (VT.getVectorNumElements() != 4)
   4197     return false;
   4198   for (unsigned i = 0, e = 2; i != e; ++i)
   4199     if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
   4200       return false;
   4201   for (unsigned i = 2; i != 4; ++i)
   4202     if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
   4203       return false;
   4204   return true;
   4205 }
   4206 
   4207 /// isScalarLoadToVector - Returns true if the node is a scalar load that
   4208 /// is promoted to a vector. It also returns the LoadSDNode by reference if
   4209 /// required.
   4210 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
   4211   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
   4212     return false;
   4213   N = N->getOperand(0).getNode();
   4214   if (!ISD::isNON_EXTLoad(N))
   4215     return false;
   4216   if (LD)
   4217     *LD = cast<LoadSDNode>(N);
   4218   return true;
   4219 }
   4220 
   4221 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
   4222 /// match movlp{s|d}. The lower half elements should come from lower half of
   4223 /// V1 (and in order), and the upper half elements should come from the upper
   4224 /// half of V2 (and in order). And since V1 will become the source of the
   4225 /// MOVLP, it must be either a vector load or a scalar load to vector.
   4226 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
   4227                                ShuffleVectorSDNode *Op) {
   4228   EVT VT = Op->getValueType(0);
   4229   if (VT.getSizeInBits() != 128)
   4230     return false;
   4231 
   4232   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
   4233     return false;
   4234   // Is V2 is a vector load, don't do this transformation. We will try to use
   4235   // load folding shufps op.
   4236   if (ISD::isNON_EXTLoad(V2))
   4237     return false;
   4238 
   4239   unsigned NumElems = VT.getVectorNumElements();
   4240 
   4241   if (NumElems != 2 && NumElems != 4)
   4242     return false;
   4243   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   4244     if (!isUndefOrEqual(Op->getMaskElt(i), i))
   4245       return false;
   4246   for (unsigned i = NumElems/2; i != NumElems; ++i)
   4247     if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
   4248       return false;
   4249   return true;
   4250 }
   4251 
   4252 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
   4253 /// all the same.
   4254 static bool isSplatVector(SDNode *N) {
   4255   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4256     return false;
   4257 
   4258   SDValue SplatValue = N->getOperand(0);
   4259   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
   4260     if (N->getOperand(i) != SplatValue)
   4261       return false;
   4262   return true;
   4263 }
   4264 
   4265 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
   4266 /// to an zero vector.
   4267 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
   4268 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
   4269   SDValue V1 = N->getOperand(0);
   4270   SDValue V2 = N->getOperand(1);
   4271   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   4272   for (unsigned i = 0; i != NumElems; ++i) {
   4273     int Idx = N->getMaskElt(i);
   4274     if (Idx >= (int)NumElems) {
   4275       unsigned Opc = V2.getOpcode();
   4276       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
   4277         continue;
   4278       if (Opc != ISD::BUILD_VECTOR ||
   4279           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
   4280         return false;
   4281     } else if (Idx >= 0) {
   4282       unsigned Opc = V1.getOpcode();
   4283       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
   4284         continue;
   4285       if (Opc != ISD::BUILD_VECTOR ||
   4286           !X86::isZeroNode(V1.getOperand(Idx)))
   4287         return false;
   4288     }
   4289   }
   4290   return true;
   4291 }
   4292 
   4293 /// getZeroVector - Returns a vector of specified type with all zero elements.
   4294 ///
   4295 static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
   4296                              DebugLoc dl) {
   4297   assert(VT.isVector() && "Expected a vector type");
   4298 
   4299   // Always build SSE zero vectors as <4 x i32> bitcasted
   4300   // to their dest type. This ensures they get CSE'd.
   4301   SDValue Vec;
   4302   if (VT.getSizeInBits() == 128) {  // SSE
   4303     if (HasXMMInt) {  // SSE2
   4304       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
   4305       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4306     } else { // SSE1
   4307       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4308       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
   4309     }
   4310   } else if (VT.getSizeInBits() == 256) { // AVX
   4311     // 256-bit logic and arithmetic instructions in AVX are
   4312     // all floating-point, no support for integer ops. Default
   4313     // to emitting fp zeroed vectors then.
   4314     SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4315     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4316     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
   4317   }
   4318   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4319 }
   4320 
   4321 /// getOnesVector - Returns a vector of specified type with all bits set.
   4322 /// Always build ones vectors as <4 x i32>. For 256-bit types, use two
   4323 /// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
   4324 /// original type, ensuring they get CSE'd.
   4325 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   4326   assert(VT.isVector() && "Expected a vector type");
   4327   assert((VT.is128BitVector() || VT.is256BitVector())
   4328          && "Expected a 128-bit or 256-bit vector type");
   4329 
   4330   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
   4331   SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
   4332                             Cst, Cst, Cst, Cst);
   4333 
   4334   if (VT.is256BitVector()) {
   4335     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
   4336                               Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
   4337     Vec = Insert128BitVector(InsV, Vec,
   4338                   DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
   4339   }
   4340 
   4341   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4342 }
   4343 
   4344 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
   4345 /// that point to V2 points to its first element.
   4346 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   4347   EVT VT = SVOp->getValueType(0);
   4348   unsigned NumElems = VT.getVectorNumElements();
   4349 
   4350   bool Changed = false;
   4351   SmallVector<int, 8> MaskVec;
   4352   SVOp->getMask(MaskVec);
   4353 
   4354   for (unsigned i = 0; i != NumElems; ++i) {
   4355     if (MaskVec[i] > (int)NumElems) {
   4356       MaskVec[i] = NumElems;
   4357       Changed = true;
   4358     }
   4359   }
   4360   if (Changed)
   4361     return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
   4362                                 SVOp->getOperand(1), &MaskVec[0]);
   4363   return SDValue(SVOp, 0);
   4364 }
   4365 
   4366 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
   4367 /// operation of specified width.
   4368 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4369                        SDValue V2) {
   4370   unsigned NumElems = VT.getVectorNumElements();
   4371   SmallVector<int, 8> Mask;
   4372   Mask.push_back(NumElems);
   4373   for (unsigned i = 1; i != NumElems; ++i)
   4374     Mask.push_back(i);
   4375   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4376 }
   4377 
   4378 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
   4379 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4380                           SDValue V2) {
   4381   unsigned NumElems = VT.getVectorNumElements();
   4382   SmallVector<int, 8> Mask;
   4383   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
   4384     Mask.push_back(i);
   4385     Mask.push_back(i + NumElems);
   4386   }
   4387   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4388 }
   4389 
   4390 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
   4391 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4392                           SDValue V2) {
   4393   unsigned NumElems = VT.getVectorNumElements();
   4394   unsigned Half = NumElems/2;
   4395   SmallVector<int, 8> Mask;
   4396   for (unsigned i = 0; i != Half; ++i) {
   4397     Mask.push_back(i + Half);
   4398     Mask.push_back(i + NumElems + Half);
   4399   }
   4400   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4401 }
   4402 
   4403 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
   4404 // a generic shuffle instruction because the target has no such instructions.
   4405 // Generate shuffles which repeat i16 and i8 several times until they can be
   4406 // represented by v4f32 and then be manipulated by target suported shuffles.
   4407 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
   4408   EVT VT = V.getValueType();
   4409   int NumElems = VT.getVectorNumElements();
   4410   DebugLoc dl = V.getDebugLoc();
   4411 
   4412   while (NumElems > 4) {
   4413     if (EltNo < NumElems/2) {
   4414       V = getUnpackl(DAG, dl, VT, V, V);
   4415     } else {
   4416       V = getUnpackh(DAG, dl, VT, V, V);
   4417       EltNo -= NumElems/2;
   4418     }
   4419     NumElems >>= 1;
   4420   }
   4421   return V;
   4422 }
   4423 
   4424 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
   4425 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
   4426   EVT VT = V.getValueType();
   4427   DebugLoc dl = V.getDebugLoc();
   4428   assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
   4429          && "Vector size not supported");
   4430 
   4431   if (VT.getSizeInBits() == 128) {
   4432     V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
   4433     int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
   4434     V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
   4435                              &SplatMask[0]);
   4436   } else {
   4437     // To use VPERMILPS to splat scalars, the second half of indicies must
   4438     // refer to the higher part, which is a duplication of the lower one,
   4439     // because VPERMILPS can only handle in-lane permutations.
   4440     int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
   4441                          EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
   4442 
   4443     V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
   4444     V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
   4445                              &SplatMask[0]);
   4446   }
   4447 
   4448   return DAG.getNode(ISD::BITCAST, dl, VT, V);
   4449 }
   4450 
   4451 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
   4452 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
   4453   EVT SrcVT = SV->getValueType(0);
   4454   SDValue V1 = SV->getOperand(0);
   4455   DebugLoc dl = SV->getDebugLoc();
   4456 
   4457   int EltNo = SV->getSplatIndex();
   4458   int NumElems = SrcVT.getVectorNumElements();
   4459   unsigned Size = SrcVT.getSizeInBits();
   4460 
   4461   assert(((Size == 128 && NumElems > 4) || Size == 256) &&
   4462           "Unknown how to promote splat for type");
   4463 
   4464   // Extract the 128-bit part containing the splat element and update
   4465   // the splat element index when it refers to the higher register.
   4466   if (Size == 256) {
   4467     unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
   4468     V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
   4469     if (Idx > 0)
   4470       EltNo -= NumElems/2;
   4471   }
   4472 
   4473   // All i16 and i8 vector types can't be used directly by a generic shuffle
   4474   // instruction because the target has no such instruction. Generate shuffles
   4475   // which repeat i16 and i8 several times until they fit in i32, and then can
   4476   // be manipulated by target suported shuffles.
   4477   EVT EltVT = SrcVT.getVectorElementType();
   4478   if (EltVT == MVT::i8 || EltVT == MVT::i16)
   4479     V1 = PromoteSplati8i16(V1, DAG, EltNo);
   4480 
   4481   // Recreate the 256-bit vector and place the same 128-bit vector
   4482   // into the low and high part. This is necessary because we want
   4483   // to use VPERM* to shuffle the vectors
   4484   if (Size == 256) {
   4485     SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
   4486                          DAG.getConstant(0, MVT::i32), DAG, dl);
   4487     V1 = Insert128BitVector(InsV, V1,
   4488                DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
   4489   }
   4490 
   4491   return getLegalSplat(DAG, V1, EltNo);
   4492 }
   4493 
   4494 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
   4495 /// vector of zero or undef vector.  This produces a shuffle where the low
   4496 /// element of V2 is swizzled into the zero/undef vector, landing at element
   4497 /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
   4498 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
   4499                                            bool isZero, bool HasXMMInt,
   4500                                            SelectionDAG &DAG) {
   4501   EVT VT = V2.getValueType();
   4502   SDValue V1 = isZero
   4503     ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
   4504   unsigned NumElems = VT.getVectorNumElements();
   4505   SmallVector<int, 16> MaskVec;
   4506   for (unsigned i = 0; i != NumElems; ++i)
   4507     // If this is the insertion idx, put the low elt of V2 here.
   4508     MaskVec.push_back(i == Idx ? NumElems : i);
   4509   return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
   4510 }
   4511 
   4512 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
   4513 /// element of the result of the vector shuffle.
   4514 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
   4515                                    unsigned Depth) {
   4516   if (Depth == 6)
   4517     return SDValue();  // Limit search depth.
   4518 
   4519   SDValue V = SDValue(N, 0);
   4520   EVT VT = V.getValueType();
   4521   unsigned Opcode = V.getOpcode();
   4522 
   4523   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
   4524   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
   4525     Index = SV->getMaskElt(Index);
   4526 
   4527     if (Index < 0)
   4528       return DAG.getUNDEF(VT.getVectorElementType());
   4529 
   4530     int NumElems = VT.getVectorNumElements();
   4531     SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
   4532     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
   4533   }
   4534 
   4535   // Recurse into target specific vector shuffles to find scalars.
   4536   if (isTargetShuffle(Opcode)) {
   4537     int NumElems = VT.getVectorNumElements();
   4538     SmallVector<unsigned, 16> ShuffleMask;
   4539     SDValue ImmN;
   4540 
   4541     switch(Opcode) {
   4542     case X86ISD::SHUFPS:
   4543     case X86ISD::SHUFPD:
   4544       ImmN = N->getOperand(N->getNumOperands()-1);
   4545       DecodeSHUFPSMask(NumElems,
   4546                        cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4547                        ShuffleMask);
   4548       break;
   4549     case X86ISD::PUNPCKHBW:
   4550     case X86ISD::PUNPCKHWD:
   4551     case X86ISD::PUNPCKHDQ:
   4552     case X86ISD::PUNPCKHQDQ:
   4553       DecodePUNPCKHMask(NumElems, ShuffleMask);
   4554       break;
   4555     case X86ISD::UNPCKHPS:
   4556     case X86ISD::UNPCKHPD:
   4557     case X86ISD::VUNPCKHPSY:
   4558     case X86ISD::VUNPCKHPDY:
   4559       DecodeUNPCKHPMask(NumElems, ShuffleMask);
   4560       break;
   4561     case X86ISD::PUNPCKLBW:
   4562     case X86ISD::PUNPCKLWD:
   4563     case X86ISD::PUNPCKLDQ:
   4564     case X86ISD::PUNPCKLQDQ:
   4565       DecodePUNPCKLMask(VT, ShuffleMask);
   4566       break;
   4567     case X86ISD::UNPCKLPS:
   4568     case X86ISD::UNPCKLPD:
   4569     case X86ISD::VUNPCKLPSY:
   4570     case X86ISD::VUNPCKLPDY:
   4571       DecodeUNPCKLPMask(VT, ShuffleMask);
   4572       break;
   4573     case X86ISD::MOVHLPS:
   4574       DecodeMOVHLPSMask(NumElems, ShuffleMask);
   4575       break;
   4576     case X86ISD::MOVLHPS:
   4577       DecodeMOVLHPSMask(NumElems, ShuffleMask);
   4578       break;
   4579     case X86ISD::PSHUFD:
   4580       ImmN = N->getOperand(N->getNumOperands()-1);
   4581       DecodePSHUFMask(NumElems,
   4582                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4583                       ShuffleMask);
   4584       break;
   4585     case X86ISD::PSHUFHW:
   4586       ImmN = N->getOperand(N->getNumOperands()-1);
   4587       DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4588                         ShuffleMask);
   4589       break;
   4590     case X86ISD::PSHUFLW:
   4591       ImmN = N->getOperand(N->getNumOperands()-1);
   4592       DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4593                         ShuffleMask);
   4594       break;
   4595     case X86ISD::MOVSS:
   4596     case X86ISD::MOVSD: {
   4597       // The index 0 always comes from the first element of the second source,
   4598       // this is why MOVSS and MOVSD are used in the first place. The other
   4599       // elements come from the other positions of the first source vector.
   4600       unsigned OpNum = (Index == 0) ? 1 : 0;
   4601       return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
   4602                                  Depth+1);
   4603     }
   4604     case X86ISD::VPERMILPS:
   4605       ImmN = N->getOperand(N->getNumOperands()-1);
   4606       DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4607                         ShuffleMask);
   4608       break;
   4609     case X86ISD::VPERMILPSY:
   4610       ImmN = N->getOperand(N->getNumOperands()-1);
   4611       DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4612                         ShuffleMask);
   4613       break;
   4614     case X86ISD::VPERMILPD:
   4615       ImmN = N->getOperand(N->getNumOperands()-1);
   4616       DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4617                         ShuffleMask);
   4618       break;
   4619     case X86ISD::VPERMILPDY:
   4620       ImmN = N->getOperand(N->getNumOperands()-1);
   4621       DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4622                         ShuffleMask);
   4623       break;
   4624     case X86ISD::VPERM2F128:
   4625       ImmN = N->getOperand(N->getNumOperands()-1);
   4626       DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
   4627                            ShuffleMask);
   4628       break;
   4629     case X86ISD::MOVDDUP:
   4630     case X86ISD::MOVLHPD:
   4631     case X86ISD::MOVLPD:
   4632     case X86ISD::MOVLPS:
   4633     case X86ISD::MOVSHDUP:
   4634     case X86ISD::MOVSLDUP:
   4635     case X86ISD::PALIGN:
   4636       return SDValue(); // Not yet implemented.
   4637     default:
   4638       assert(0 && "unknown target shuffle node");
   4639       return SDValue();
   4640     }
   4641 
   4642     Index = ShuffleMask[Index];
   4643     if (Index < 0)
   4644       return DAG.getUNDEF(VT.getVectorElementType());
   4645 
   4646     SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
   4647     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
   4648                                Depth+1);
   4649   }
   4650 
   4651   // Actual nodes that may contain scalar elements
   4652   if (Opcode == ISD::BITCAST) {
   4653     V = V.getOperand(0);
   4654     EVT SrcVT = V.getValueType();
   4655     unsigned NumElems = VT.getVectorNumElements();
   4656 
   4657     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
   4658       return SDValue();
   4659   }
   4660 
   4661   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   4662     return (Index == 0) ? V.getOperand(0)
   4663                           : DAG.getUNDEF(VT.getVectorElementType());
   4664 
   4665   if (V.getOpcode() == ISD::BUILD_VECTOR)
   4666     return V.getOperand(Index);
   4667 
   4668   return SDValue();
   4669 }
   4670 
   4671 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
   4672 /// shuffle operation which come from a consecutively from a zero. The
   4673 /// search can start in two different directions, from left or right.
   4674 static
   4675 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
   4676                                   bool ZerosFromLeft, SelectionDAG &DAG) {
   4677   int i = 0;
   4678 
   4679   while (i < NumElems) {
   4680     unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
   4681     SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
   4682     if (!(Elt.getNode() &&
   4683          (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
   4684       break;
   4685     ++i;
   4686   }
   4687 
   4688   return i;
   4689 }
   4690 
   4691 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
   4692 /// MaskE correspond consecutively to elements from one of the vector operands,
   4693 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
   4694 static
   4695 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
   4696                               int OpIdx, int NumElems, unsigned &OpNum) {
   4697   bool SeenV1 = false;
   4698   bool SeenV2 = false;
   4699 
   4700   for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
   4701     int Idx = SVOp->getMaskElt(i);
   4702     // Ignore undef indicies
   4703     if (Idx < 0)
   4704       continue;
   4705 
   4706     if (Idx < NumElems)
   4707       SeenV1 = true;
   4708     else
   4709       SeenV2 = true;
   4710 
   4711     // Only accept consecutive elements from the same vector
   4712     if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
   4713       return false;
   4714   }
   4715 
   4716   OpNum = SeenV1 ? 0 : 1;
   4717   return true;
   4718 }
   4719 
   4720 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
   4721 /// logical left shift of a vector.
   4722 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4723                                bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4724   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4725   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4726               false /* check zeros from right */, DAG);
   4727   unsigned OpSrc;
   4728 
   4729   if (!NumZeros)
   4730     return false;
   4731 
   4732   // Considering the elements in the mask that are not consecutive zeros,
   4733   // check if they consecutively come from only one of the source vectors.
   4734   //
   4735   //               V1 = {X, A, B, C}     0
   4736   //                         \  \  \    /
   4737   //   vector_shuffle V1, V2 <1, 2, 3, X>
   4738   //
   4739   if (!isShuffleMaskConsecutive(SVOp,
   4740             0,                   // Mask Start Index
   4741             NumElems-NumZeros-1, // Mask End Index
   4742             NumZeros,            // Where to start looking in the src vector
   4743             NumElems,            // Number of elements in vector
   4744             OpSrc))              // Which source operand ?
   4745     return false;
   4746 
   4747   isLeft = false;
   4748   ShAmt = NumZeros;
   4749   ShVal = SVOp->getOperand(OpSrc);
   4750   return true;
   4751 }
   4752 
   4753 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
   4754 /// logical left shift of a vector.
   4755 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4756                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4757   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4758   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4759               true /* check zeros from left */, DAG);
   4760   unsigned OpSrc;
   4761 
   4762   if (!NumZeros)
   4763     return false;
   4764 
   4765   // Considering the elements in the mask that are not consecutive zeros,
   4766   // check if they consecutively come from only one of the source vectors.
   4767   //
   4768   //                           0    { A, B, X, X } = V2
   4769   //                          / \    /  /
   4770   //   vector_shuffle V1, V2 <X, X, 4, 5>
   4771   //
   4772   if (!isShuffleMaskConsecutive(SVOp,
   4773             NumZeros,     // Mask Start Index
   4774             NumElems-1,   // Mask End Index
   4775             0,            // Where to start looking in the src vector
   4776             NumElems,     // Number of elements in vector
   4777             OpSrc))       // Which source operand ?
   4778     return false;
   4779 
   4780   isLeft = true;
   4781   ShAmt = NumZeros;
   4782   ShVal = SVOp->getOperand(OpSrc);
   4783   return true;
   4784 }
   4785 
   4786 /// isVectorShift - Returns true if the shuffle can be implemented as a
   4787 /// logical left or right shift of a vector.
   4788 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4789                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4790   // Although the logic below support any bitwidth size, there are no
   4791   // shift instructions which handle more than 128-bit vectors.
   4792   if (SVOp->getValueType(0).getSizeInBits() > 128)
   4793     return false;
   4794 
   4795   if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
   4796       isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
   4797     return true;
   4798 
   4799   return false;
   4800 }
   4801 
   4802 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
   4803 ///
   4804 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
   4805                                        unsigned NumNonZero, unsigned NumZero,
   4806                                        SelectionDAG &DAG,
   4807                                        const TargetLowering &TLI) {
   4808   if (NumNonZero > 8)
   4809     return SDValue();
   4810 
   4811   DebugLoc dl = Op.getDebugLoc();
   4812   SDValue V(0, 0);
   4813   bool First = true;
   4814   for (unsigned i = 0; i < 16; ++i) {
   4815     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
   4816     if (ThisIsNonZero && First) {
   4817       if (NumZero)
   4818         V = getZeroVector(MVT::v8i16, true, DAG, dl);
   4819       else
   4820         V = DAG.getUNDEF(MVT::v8i16);
   4821       First = false;
   4822     }
   4823 
   4824     if ((i & 1) != 0) {
   4825       SDValue ThisElt(0, 0), LastElt(0, 0);
   4826       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
   4827       if (LastIsNonZero) {
   4828         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
   4829                               MVT::i16, Op.getOperand(i-1));
   4830       }
   4831       if (ThisIsNonZero) {
   4832         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
   4833         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
   4834                               ThisElt, DAG.getConstant(8, MVT::i8));
   4835         if (LastIsNonZero)
   4836           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
   4837       } else
   4838         ThisElt = LastElt;
   4839 
   4840       if (ThisElt.getNode())
   4841         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
   4842                         DAG.getIntPtrConstant(i/2));
   4843     }
   4844   }
   4845 
   4846   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
   4847 }
   4848 
   4849 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
   4850 ///
   4851 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
   4852                                      unsigned NumNonZero, unsigned NumZero,
   4853                                      SelectionDAG &DAG,
   4854                                      const TargetLowering &TLI) {
   4855   if (NumNonZero > 4)
   4856     return SDValue();
   4857 
   4858   DebugLoc dl = Op.getDebugLoc();
   4859   SDValue V(0, 0);
   4860   bool First = true;
   4861   for (unsigned i = 0; i < 8; ++i) {
   4862     bool isNonZero = (NonZeros & (1 << i)) != 0;
   4863     if (isNonZero) {
   4864       if (First) {
   4865         if (NumZero)
   4866           V = getZeroVector(MVT::v8i16, true, DAG, dl);
   4867         else
   4868           V = DAG.getUNDEF(MVT::v8i16);
   4869         First = false;
   4870       }
   4871       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
   4872                       MVT::v8i16, V, Op.getOperand(i),
   4873                       DAG.getIntPtrConstant(i));
   4874     }
   4875   }
   4876 
   4877   return V;
   4878 }
   4879 
   4880 /// getVShift - Return a vector logical shift node.
   4881 ///
   4882 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
   4883                          unsigned NumBits, SelectionDAG &DAG,
   4884                          const TargetLowering &TLI, DebugLoc dl) {
   4885   assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
   4886   EVT ShVT = MVT::v2i64;
   4887   unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
   4888   SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
   4889   return DAG.getNode(ISD::BITCAST, dl, VT,
   4890                      DAG.getNode(Opc, dl, ShVT, SrcOp,
   4891                              DAG.getConstant(NumBits,
   4892                                   TLI.getShiftAmountTy(SrcOp.getValueType()))));
   4893 }
   4894 
   4895 SDValue
   4896 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
   4897                                           SelectionDAG &DAG) const {
   4898 
   4899   // Check if the scalar load can be widened into a vector load. And if
   4900   // the address is "base + cst" see if the cst can be "absorbed" into
   4901   // the shuffle mask.
   4902   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
   4903     SDValue Ptr = LD->getBasePtr();
   4904     if (!ISD::isNormalLoad(LD) || LD->isVolatile())
   4905       return SDValue();
   4906     EVT PVT = LD->getValueType(0);
   4907     if (PVT != MVT::i32 && PVT != MVT::f32)
   4908       return SDValue();
   4909 
   4910     int FI = -1;
   4911     int64_t Offset = 0;
   4912     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
   4913       FI = FINode->getIndex();
   4914       Offset = 0;
   4915     } else if (DAG.isBaseWithConstantOffset(Ptr) &&
   4916                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
   4917       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   4918       Offset = Ptr.getConstantOperandVal(1);
   4919       Ptr = Ptr.getOperand(0);
   4920     } else {
   4921       return SDValue();
   4922     }
   4923 
   4924     // FIXME: 256-bit vector instructions don't require a strict alignment,
   4925     // improve this code to support it better.
   4926     unsigned RequiredAlign = VT.getSizeInBits()/8;
   4927     SDValue Chain = LD->getChain();
   4928     // Make sure the stack object alignment is at least 16 or 32.
   4929     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4930     if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
   4931       if (MFI->isFixedObjectIndex(FI)) {
   4932         // Can't change the alignment. FIXME: It's possible to compute
   4933         // the exact stack offset and reference FI + adjust offset instead.
   4934         // If someone *really* cares about this. That's the way to implement it.
   4935         return SDValue();
   4936       } else {
   4937         MFI->setObjectAlignment(FI, RequiredAlign);
   4938       }
   4939     }
   4940 
   4941     // (Offset % 16 or 32) must be multiple of 4. Then address is then
   4942     // Ptr + (Offset & ~15).
   4943     if (Offset < 0)
   4944       return SDValue();
   4945     if ((Offset % RequiredAlign) & 3)
   4946       return SDValue();
   4947     int64_t StartOffset = Offset & ~(RequiredAlign-1);
   4948     if (StartOffset)
   4949       Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
   4950                         Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
   4951 
   4952     int EltNo = (Offset - StartOffset) >> 2;
   4953     int NumElems = VT.getVectorNumElements();
   4954 
   4955     EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
   4956     EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
   4957     SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
   4958                              LD->getPointerInfo().getWithOffset(StartOffset),
   4959                              false, false, 0);
   4960 
   4961     // Canonicalize it to a v4i32 or v8i32 shuffle.
   4962     SmallVector<int, 8> Mask;
   4963     for (int i = 0; i < NumElems; ++i)
   4964       Mask.push_back(EltNo);
   4965 
   4966     V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
   4967     return DAG.getNode(ISD::BITCAST, dl, NVT,
   4968                        DAG.getVectorShuffle(CanonVT, dl, V1,
   4969                                             DAG.getUNDEF(CanonVT),&Mask[0]));
   4970   }
   4971 
   4972   return SDValue();
   4973 }
   4974 
   4975 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
   4976 /// vector of type 'VT', see if the elements can be replaced by a single large
   4977 /// load which has the same value as a build_vector whose operands are 'elts'.
   4978 ///
   4979 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
   4980 ///
   4981 /// FIXME: we'd also like to handle the case where the last elements are zero
   4982 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
   4983 /// There's even a handy isZeroNode for that purpose.
   4984 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
   4985                                         DebugLoc &DL, SelectionDAG &DAG) {
   4986   EVT EltVT = VT.getVectorElementType();
   4987   unsigned NumElems = Elts.size();
   4988 
   4989   LoadSDNode *LDBase = NULL;
   4990   unsigned LastLoadedElt = -1U;
   4991 
   4992   // For each element in the initializer, see if we've found a load or an undef.
   4993   // If we don't find an initial load element, or later load elements are
   4994   // non-consecutive, bail out.
   4995   for (unsigned i = 0; i < NumElems; ++i) {
   4996     SDValue Elt = Elts[i];
   4997 
   4998     if (!Elt.getNode() ||
   4999         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
   5000       return SDValue();
   5001     if (!LDBase) {
   5002       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
   5003         return SDValue();
   5004       LDBase = cast<LoadSDNode>(Elt.getNode());
   5005       LastLoadedElt = i;
   5006       continue;
   5007     }
   5008     if (Elt.getOpcode() == ISD::UNDEF)
   5009       continue;
   5010 
   5011     LoadSDNode *LD = cast<LoadSDNode>(Elt);
   5012     if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
   5013       return SDValue();
   5014     LastLoadedElt = i;
   5015   }
   5016 
   5017   // If we have found an entire vector of loads and undefs, then return a large
   5018   // load of the entire vector width starting at the base pointer.  If we found
   5019   // consecutive loads for the low half, generate a vzext_load node.
   5020   if (LastLoadedElt == NumElems - 1) {
   5021     if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
   5022       return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   5023                          LDBase->getPointerInfo(),
   5024                          LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
   5025     return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   5026                        LDBase->getPointerInfo(),
   5027                        LDBase->isVolatile(), LDBase->isNonTemporal(),
   5028                        LDBase->getAlignment());
   5029   } else if (NumElems == 4 && LastLoadedElt == 1 &&
   5030              DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
   5031     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
   5032     SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
   5033     SDValue ResNode =
   5034         DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
   5035                                 LDBase->getPointerInfo(),
   5036                                 LDBase->getAlignment(),
   5037                                 false/*isVolatile*/, true/*ReadMem*/,
   5038                                 false/*WriteMem*/);
   5039     return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
   5040   }
   5041   return SDValue();
   5042 }
   5043 
   5044 SDValue
   5045 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   5046   DebugLoc dl = Op.getDebugLoc();
   5047 
   5048   EVT VT = Op.getValueType();
   5049   EVT ExtVT = VT.getVectorElementType();
   5050   unsigned NumElems = Op.getNumOperands();
   5051 
   5052   // Vectors containing all zeros can be matched by pxor and xorps later
   5053   if (ISD::isBuildVectorAllZeros(Op.getNode())) {
   5054     // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
   5055     // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
   5056     if (Op.getValueType() == MVT::v4i32 ||
   5057         Op.getValueType() == MVT::v8i32)
   5058       return Op;
   5059 
   5060     return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
   5061   }
   5062 
   5063   // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
   5064   // vectors or broken into v4i32 operations on 256-bit vectors.
   5065   if (ISD::isBuildVectorAllOnes(Op.getNode())) {
   5066     if (Op.getValueType() == MVT::v4i32)
   5067       return Op;
   5068 
   5069     return getOnesVector(Op.getValueType(), DAG, dl);
   5070   }
   5071 
   5072   unsigned EVTBits = ExtVT.getSizeInBits();
   5073 
   5074   unsigned NumZero  = 0;
   5075   unsigned NumNonZero = 0;
   5076   unsigned NonZeros = 0;
   5077   bool IsAllConstants = true;
   5078   SmallSet<SDValue, 8> Values;
   5079   for (unsigned i = 0; i < NumElems; ++i) {
   5080     SDValue Elt = Op.getOperand(i);
   5081     if (Elt.getOpcode() == ISD::UNDEF)
   5082       continue;
   5083     Values.insert(Elt);
   5084     if (Elt.getOpcode() != ISD::Constant &&
   5085         Elt.getOpcode() != ISD::ConstantFP)
   5086       IsAllConstants = false;
   5087     if (X86::isZeroNode(Elt))
   5088       NumZero++;
   5089     else {
   5090       NonZeros |= (1 << i);
   5091       NumNonZero++;
   5092     }
   5093   }
   5094 
   5095   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
   5096   if (NumNonZero == 0)
   5097     return DAG.getUNDEF(VT);
   5098 
   5099   // Special case for single non-zero, non-undef, element.
   5100   if (NumNonZero == 1) {
   5101     unsigned Idx = CountTrailingZeros_32(NonZeros);
   5102     SDValue Item = Op.getOperand(Idx);
   5103 
   5104     // If this is an insertion of an i64 value on x86-32, and if the top bits of
   5105     // the value are obviously zero, truncate the value to i32 and do the
   5106     // insertion that way.  Only do this if the value is non-constant or if the
   5107     // value is a constant being inserted into element 0.  It is cheaper to do
   5108     // a constant pool load than it is to do a movd + shuffle.
   5109     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
   5110         (!IsAllConstants || Idx == 0)) {
   5111       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
   5112         // Handle SSE only.
   5113         assert(VT == MVT::v2i64 && "Expected an SSE value type!");
   5114         EVT VecVT = MVT::v4i32;
   5115         unsigned VecElts = 4;
   5116 
   5117         // Truncate the value (which may itself be a constant) to i32, and
   5118         // convert it to a vector with movd (S2V+shuffle to zero extend).
   5119         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
   5120         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
   5121         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
   5122                                            Subtarget->hasXMMInt(), DAG);
   5123 
   5124         // Now we have our 32-bit value zero extended in the low element of
   5125         // a vector.  If Idx != 0, swizzle it into place.
   5126         if (Idx != 0) {
   5127           SmallVector<int, 4> Mask;
   5128           Mask.push_back(Idx);
   5129           for (unsigned i = 1; i != VecElts; ++i)
   5130             Mask.push_back(i);
   5131           Item = DAG.getVectorShuffle(VecVT, dl, Item,
   5132                                       DAG.getUNDEF(Item.getValueType()),
   5133                                       &Mask[0]);
   5134         }
   5135         return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
   5136       }
   5137     }
   5138 
   5139     // If we have a constant or non-constant insertion into the low element of
   5140     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
   5141     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
   5142     // depending on what the source datatype is.
   5143     if (Idx == 0) {
   5144       if (NumZero == 0) {
   5145         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5146       } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
   5147           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
   5148         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5149         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
   5150         return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
   5151                                            DAG);
   5152       } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
   5153         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
   5154         assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
   5155         EVT MiddleVT = MVT::v4i32;
   5156         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
   5157         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
   5158                                            Subtarget->hasXMMInt(), DAG);
   5159         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
   5160       }
   5161     }
   5162 
   5163     // Is it a vector logical left shift?
   5164     if (NumElems == 2 && Idx == 1 &&
   5165         X86::isZeroNode(Op.getOperand(0)) &&
   5166         !X86::isZeroNode(Op.getOperand(1))) {
   5167       unsigned NumBits = VT.getSizeInBits();
   5168       return getVShift(true, VT,
   5169                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   5170                                    VT, Op.getOperand(1)),
   5171                        NumBits/2, DAG, *this, dl);
   5172     }
   5173 
   5174     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
   5175       return SDValue();
   5176 
   5177     // Otherwise, if this is a vector with i32 or f32 elements, and the element
   5178     // is a non-constant being inserted into an element other than the low one,
   5179     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
   5180     // movd/movss) to move this into the low element, then shuffle it into
   5181     // place.
   5182     if (EVTBits == 32) {
   5183       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5184 
   5185       // Turn it into a shuffle of zero and zero-extended scalar to vector.
   5186       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
   5187                                          Subtarget->hasXMMInt(), DAG);
   5188       SmallVector<int, 8> MaskVec;
   5189       for (unsigned i = 0; i < NumElems; i++)
   5190         MaskVec.push_back(i == Idx ? 0 : 1);
   5191       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
   5192     }
   5193   }
   5194 
   5195   // Splat is obviously ok. Let legalizer expand it to a shuffle.
   5196   if (Values.size() == 1) {
   5197     if (EVTBits == 32) {
   5198       // Instead of a shuffle like this:
   5199       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
   5200       // Check if it's possible to issue this instead.
   5201       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
   5202       unsigned Idx = CountTrailingZeros_32(NonZeros);
   5203       SDValue Item = Op.getOperand(Idx);
   5204       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
   5205         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
   5206     }
   5207     return SDValue();
   5208   }
   5209 
   5210   // A vector full of immediates; various special cases are already
   5211   // handled, so this is best done with a single constant-pool load.
   5212   if (IsAllConstants)
   5213     return SDValue();
   5214 
   5215   // For AVX-length vectors, build the individual 128-bit pieces and use
   5216   // shuffles to put them in place.
   5217   if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
   5218     SmallVector<SDValue, 32> V;
   5219     for (unsigned i = 0; i < NumElems; ++i)
   5220       V.push_back(Op.getOperand(i));
   5221 
   5222     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
   5223 
   5224     // Build both the lower and upper subvector.
   5225     SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
   5226     SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
   5227                                 NumElems/2);
   5228 
   5229     // Recreate the wider vector with the lower and upper part.
   5230     SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
   5231                                 DAG.getConstant(0, MVT::i32), DAG, dl);
   5232     return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
   5233                               DAG, dl);
   5234   }
   5235 
   5236   // Let legalizer expand 2-wide build_vectors.
   5237   if (EVTBits == 64) {
   5238     if (NumNonZero == 1) {
   5239       // One half is zero or undef.
   5240       unsigned Idx = CountTrailingZeros_32(NonZeros);
   5241       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
   5242                                  Op.getOperand(Idx));
   5243       return getShuffleVectorZeroOrUndef(V2, Idx, true,
   5244                                          Subtarget->hasXMMInt(), DAG);
   5245     }
   5246     return SDValue();
   5247   }
   5248 
   5249   // If element VT is < 32 bits, convert it to inserts into a zero vector.
   5250   if (EVTBits == 8 && NumElems == 16) {
   5251     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
   5252                                         *this);
   5253     if (V.getNode()) return V;
   5254   }
   5255 
   5256   if (EVTBits == 16 && NumElems == 8) {
   5257     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
   5258                                       *this);
   5259     if (V.getNode()) return V;
   5260   }
   5261 
   5262   // If element VT is == 32 bits, turn it into a number of shuffles.
   5263   SmallVector<SDValue, 8> V;
   5264   V.resize(NumElems);
   5265   if (NumElems == 4 && NumZero > 0) {
   5266     for (unsigned i = 0; i < 4; ++i) {
   5267       bool isZero = !(NonZeros & (1 << i));
   5268       if (isZero)
   5269         V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
   5270       else
   5271         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   5272     }
   5273 
   5274     for (unsigned i = 0; i < 2; ++i) {
   5275       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
   5276         default: break;
   5277         case 0:
   5278           V[i] = V[i*2];  // Must be a zero vector.
   5279           break;
   5280         case 1:
   5281           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
   5282           break;
   5283         case 2:
   5284           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
   5285           break;
   5286         case 3:
   5287           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
   5288           break;
   5289       }
   5290     }
   5291 
   5292     SmallVector<int, 8> MaskVec;
   5293     bool Reverse = (NonZeros & 0x3) == 2;
   5294     for (unsigned i = 0; i < 2; ++i)
   5295       MaskVec.push_back(Reverse ? 1-i : i);
   5296     Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
   5297     for (unsigned i = 0; i < 2; ++i)
   5298       MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
   5299     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
   5300   }
   5301 
   5302   if (Values.size() > 1 && VT.getSizeInBits() == 128) {
   5303     // Check for a build vector of consecutive loads.
   5304     for (unsigned i = 0; i < NumElems; ++i)
   5305       V[i] = Op.getOperand(i);
   5306 
   5307     // Check for elements which are consecutive loads.
   5308     SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
   5309     if (LD.getNode())
   5310       return LD;
   5311 
   5312     // For SSE 4.1, use insertps to put the high elements into the low element.
   5313     if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
   5314       SDValue Result;
   5315       if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
   5316         Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
   5317       else
   5318         Result = DAG.getUNDEF(VT);
   5319 
   5320       for (unsigned i = 1; i < NumElems; ++i) {
   5321         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
   5322         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
   5323                              Op.getOperand(i), DAG.getIntPtrConstant(i));
   5324       }
   5325       return Result;
   5326     }
   5327 
   5328     // Otherwise, expand into a number of unpckl*, start by extending each of
   5329     // our (non-undef) elements to the full vector width with the element in the
   5330     // bottom slot of the vector (which generates no code for SSE).
   5331     for (unsigned i = 0; i < NumElems; ++i) {
   5332       if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
   5333         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   5334       else
   5335         V[i] = DAG.getUNDEF(VT);
   5336     }
   5337 
   5338     // Next, we iteratively mix elements, e.g. for v4f32:
   5339     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
   5340     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
   5341     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
   5342     unsigned EltStride = NumElems >> 1;
   5343     while (EltStride != 0) {
   5344       for (unsigned i = 0; i < EltStride; ++i) {
   5345         // If V[i+EltStride] is undef and this is the first round of mixing,
   5346         // then it is safe to just drop this shuffle: V[i] is already in the
   5347         // right place, the one element (since it's the first round) being
   5348         // inserted as undef can be dropped.  This isn't safe for successive
   5349         // rounds because they will permute elements within both vectors.
   5350         if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
   5351             EltStride == NumElems/2)
   5352           continue;
   5353 
   5354         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
   5355       }
   5356       EltStride >>= 1;
   5357     }
   5358     return V[0];
   5359   }
   5360   return SDValue();
   5361 }
   5362 
   5363 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
   5364 // them in a MMX register.  This is better than doing a stack convert.
   5365 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   5366   DebugLoc dl = Op.getDebugLoc();
   5367   EVT ResVT = Op.getValueType();
   5368 
   5369   assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
   5370          ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
   5371   int Mask[2];
   5372   SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
   5373   SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
   5374   InVec = Op.getOperand(1);
   5375   if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   5376     unsigned NumElts = ResVT.getVectorNumElements();
   5377     VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
   5378     VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
   5379                        InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
   5380   } else {
   5381     InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
   5382     SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
   5383     Mask[0] = 0; Mask[1] = 2;
   5384     VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
   5385   }
   5386   return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
   5387 }
   5388 
   5389 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
   5390 // to create 256-bit vectors from two other 128-bit ones.
   5391 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   5392   DebugLoc dl = Op.getDebugLoc();
   5393   EVT ResVT = Op.getValueType();
   5394 
   5395   assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
   5396 
   5397   SDValue V1 = Op.getOperand(0);
   5398   SDValue V2 = Op.getOperand(1);
   5399   unsigned NumElems = ResVT.getVectorNumElements();
   5400 
   5401   SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
   5402                                  DAG.getConstant(0, MVT::i32), DAG, dl);
   5403   return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
   5404                             DAG, dl);
   5405 }
   5406 
   5407 SDValue
   5408 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
   5409   EVT ResVT = Op.getValueType();
   5410 
   5411   assert(Op.getNumOperands() == 2);
   5412   assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
   5413          "Unsupported CONCAT_VECTORS for value type");
   5414 
   5415   // We support concatenate two MMX registers and place them in a MMX register.
   5416   // This is better than doing a stack convert.
   5417   if (ResVT.is128BitVector())
   5418     return LowerMMXCONCAT_VECTORS(Op, DAG);
   5419 
   5420   // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
   5421   // from two other 128-bit ones.
   5422   return LowerAVXCONCAT_VECTORS(Op, DAG);
   5423 }
   5424 
   5425 // v8i16 shuffles - Prefer shuffles in the following order:
   5426 // 1. [all]   pshuflw, pshufhw, optional move
   5427 // 2. [ssse3] 1 x pshufb
   5428 // 3. [ssse3] 2 x pshufb + 1 x por
   5429 // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
   5430 SDValue
   5431 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
   5432                                             SelectionDAG &DAG) const {
   5433   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5434   SDValue V1 = SVOp->getOperand(0);
   5435   SDValue V2 = SVOp->getOperand(1);
   5436   DebugLoc dl = SVOp->getDebugLoc();
   5437   SmallVector<int, 8> MaskVals;
   5438 
   5439   // Determine if more than 1 of the words in each of the low and high quadwords
   5440   // of the result come from the same quadword of one of the two inputs.  Undef
   5441   // mask values count as coming from any quadword, for better codegen.
   5442   unsigned LoQuad[] = { 0, 0, 0, 0 };
   5443   unsigned HiQuad[] = { 0, 0, 0, 0 };
   5444   BitVector InputQuads(4);
   5445   for (unsigned i = 0; i < 8; ++i) {
   5446     unsigned *Quad = i < 4 ? LoQuad : HiQuad;
   5447     int EltIdx = SVOp->getMaskElt(i);
   5448     MaskVals.push_back(EltIdx);
   5449     if (EltIdx < 0) {
   5450       ++Quad[0];
   5451       ++Quad[1];
   5452       ++Quad[2];
   5453       ++Quad[3];
   5454       continue;
   5455     }
   5456     ++Quad[EltIdx / 4];
   5457     InputQuads.set(EltIdx / 4);
   5458   }
   5459 
   5460   int BestLoQuad = -1;
   5461   unsigned MaxQuad = 1;
   5462   for (unsigned i = 0; i < 4; ++i) {
   5463     if (LoQuad[i] > MaxQuad) {
   5464       BestLoQuad = i;
   5465       MaxQuad = LoQuad[i];
   5466     }
   5467   }
   5468 
   5469   int BestHiQuad = -1;
   5470   MaxQuad = 1;
   5471   for (unsigned i = 0; i < 4; ++i) {
   5472     if (HiQuad[i] > MaxQuad) {
   5473       BestHiQuad = i;
   5474       MaxQuad = HiQuad[i];
   5475     }
   5476   }
   5477 
   5478   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
   5479   // of the two input vectors, shuffle them into one input vector so only a
   5480   // single pshufb instruction is necessary. If There are more than 2 input
   5481   // quads, disable the next transformation since it does not help SSSE3.
   5482   bool V1Used = InputQuads[0] || InputQuads[1];
   5483   bool V2Used = InputQuads[2] || InputQuads[3];
   5484   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
   5485     if (InputQuads.count() == 2 && V1Used && V2Used) {
   5486       BestLoQuad = InputQuads.find_first();
   5487       BestHiQuad = InputQuads.find_next(BestLoQuad);
   5488     }
   5489     if (InputQuads.count() > 2) {
   5490       BestLoQuad = -1;
   5491       BestHiQuad = -1;
   5492     }
   5493   }
   5494 
   5495   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
   5496   // the shuffle mask.  If a quad is scored as -1, that means that it contains
   5497   // words from all 4 input quadwords.
   5498   SDValue NewV;
   5499   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
   5500     SmallVector<int, 8> MaskV;
   5501     MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
   5502     MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
   5503     NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
   5504                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
   5505                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
   5506     NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
   5507 
   5508     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
   5509     // source words for the shuffle, to aid later transformations.
   5510     bool AllWordsInNewV = true;
   5511     bool InOrder[2] = { true, true };
   5512     for (unsigned i = 0; i != 8; ++i) {
   5513       int idx = MaskVals[i];
   5514       if (idx != (int)i)
   5515         InOrder[i/4] = false;
   5516       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
   5517         continue;
   5518       AllWordsInNewV = false;
   5519       break;
   5520     }
   5521 
   5522     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
   5523     if (AllWordsInNewV) {
   5524       for (int i = 0; i != 8; ++i) {
   5525         int idx = MaskVals[i];
   5526         if (idx < 0)
   5527           continue;
   5528         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
   5529         if ((idx != i) && idx < 4)
   5530           pshufhw = false;
   5531         if ((idx != i) && idx > 3)
   5532           pshuflw = false;
   5533       }
   5534       V1 = NewV;
   5535       V2Used = false;
   5536       BestLoQuad = 0;
   5537       BestHiQuad = 1;
   5538     }
   5539 
   5540     // If we've eliminated the use of V2, and the new mask is a pshuflw or
   5541     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
   5542     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
   5543       unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
   5544       unsigned TargetMask = 0;
   5545       NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
   5546                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
   5547       TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
   5548                              X86::getShufflePSHUFLWImmediate(NewV.getNode());
   5549       V1 = NewV.getOperand(0);
   5550       return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
   5551     }
   5552   }
   5553 
   5554   // If we have SSSE3, and all words of the result are from 1 input vector,
   5555   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
   5556   // is present, fall back to case 4.
   5557   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
   5558     SmallVector<SDValue,16> pshufbMask;
   5559 
   5560     // If we have elements from both input vectors, set the high bit of the
   5561     // shuffle mask element to zero out elements that come from V2 in the V1
   5562     // mask, and elements that come from V1 in the V2 mask, so that the two
   5563     // results can be OR'd together.
   5564     bool TwoInputs = V1Used && V2Used;
   5565     for (unsigned i = 0; i != 8; ++i) {
   5566       int EltIdx = MaskVals[i] * 2;
   5567       if (TwoInputs && (EltIdx >= 16)) {
   5568         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5569         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5570         continue;
   5571       }
   5572       pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
   5573       pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
   5574     }
   5575     V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
   5576     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   5577                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5578                                  MVT::v16i8, &pshufbMask[0], 16));
   5579     if (!TwoInputs)
   5580       return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5581 
   5582     // Calculate the shuffle mask for the second input, shuffle it, and
   5583     // OR it with the first shuffled input.
   5584     pshufbMask.clear();
   5585     for (unsigned i = 0; i != 8; ++i) {
   5586       int EltIdx = MaskVals[i] * 2;
   5587       if (EltIdx < 16) {
   5588         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5589         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5590         continue;
   5591       }
   5592       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
   5593       pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
   5594     }
   5595     V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
   5596     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   5597                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5598                                  MVT::v16i8, &pshufbMask[0], 16));
   5599     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   5600     return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5601   }
   5602 
   5603   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
   5604   // and update MaskVals with new element order.
   5605   BitVector InOrder(8);
   5606   if (BestLoQuad >= 0) {
   5607     SmallVector<int, 8> MaskV;
   5608     for (int i = 0; i != 4; ++i) {
   5609       int idx = MaskVals[i];
   5610       if (idx < 0) {
   5611         MaskV.push_back(-1);
   5612         InOrder.set(i);
   5613       } else if ((idx / 4) == BestLoQuad) {
   5614         MaskV.push_back(idx & 3);
   5615         InOrder.set(i);
   5616       } else {
   5617         MaskV.push_back(-1);
   5618       }
   5619     }
   5620     for (unsigned i = 4; i != 8; ++i)
   5621       MaskV.push_back(i);
   5622     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   5623                                 &MaskV[0]);
   5624 
   5625     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
   5626         (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
   5627       NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
   5628                                NewV.getOperand(0),
   5629                                X86::getShufflePSHUFLWImmediate(NewV.getNode()),
   5630                                DAG);
   5631   }
   5632 
   5633   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
   5634   // and update MaskVals with the new element order.
   5635   if (BestHiQuad >= 0) {
   5636     SmallVector<int, 8> MaskV;
   5637     for (unsigned i = 0; i != 4; ++i)
   5638       MaskV.push_back(i);
   5639     for (unsigned i = 4; i != 8; ++i) {
   5640       int idx = MaskVals[i];
   5641       if (idx < 0) {
   5642         MaskV.push_back(-1);
   5643         InOrder.set(i);
   5644       } else if ((idx / 4) == BestHiQuad) {
   5645         MaskV.push_back((idx & 3) + 4);
   5646         InOrder.set(i);
   5647       } else {
   5648         MaskV.push_back(-1);
   5649       }
   5650     }
   5651     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   5652                                 &MaskV[0]);
   5653 
   5654     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
   5655         (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
   5656       NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
   5657                               NewV.getOperand(0),
   5658                               X86::getShufflePSHUFHWImmediate(NewV.getNode()),
   5659                               DAG);
   5660   }
   5661 
   5662   // In case BestHi & BestLo were both -1, which means each quadword has a word
   5663   // from each of the four input quadwords, calculate the InOrder bitvector now
   5664   // before falling through to the insert/extract cleanup.
   5665   if (BestLoQuad == -1 && BestHiQuad == -1) {
   5666     NewV = V1;
   5667     for (int i = 0; i != 8; ++i)
   5668       if (MaskVals[i] < 0 || MaskVals[i] == i)
   5669         InOrder.set(i);
   5670   }
   5671 
   5672   // The other elements are put in the right place using pextrw and pinsrw.
   5673   for (unsigned i = 0; i != 8; ++i) {
   5674     if (InOrder[i])
   5675       continue;
   5676     int EltIdx = MaskVals[i];
   5677     if (EltIdx < 0)
   5678       continue;
   5679     SDValue ExtOp = (EltIdx < 8)
   5680     ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
   5681                   DAG.getIntPtrConstant(EltIdx))
   5682     : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
   5683                   DAG.getIntPtrConstant(EltIdx - 8));
   5684     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
   5685                        DAG.getIntPtrConstant(i));
   5686   }
   5687   return NewV;
   5688 }
   5689 
   5690 // v16i8 shuffles - Prefer shuffles in the following order:
   5691 // 1. [ssse3] 1 x pshufb
   5692 // 2. [ssse3] 2 x pshufb + 1 x por
   5693 // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
   5694 static
   5695 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
   5696                                  SelectionDAG &DAG,
   5697                                  const X86TargetLowering &TLI) {
   5698   SDValue V1 = SVOp->getOperand(0);
   5699   SDValue V2 = SVOp->getOperand(1);
   5700   DebugLoc dl = SVOp->getDebugLoc();
   5701   SmallVector<int, 16> MaskVals;
   5702   SVOp->getMask(MaskVals);
   5703 
   5704   // If we have SSSE3, case 1 is generated when all result bytes come from
   5705   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
   5706   // present, fall back to case 3.
   5707   // FIXME: kill V2Only once shuffles are canonizalized by getNode.
   5708   bool V1Only = true;
   5709   bool V2Only = true;
   5710   for (unsigned i = 0; i < 16; ++i) {
   5711     int EltIdx = MaskVals[i];
   5712     if (EltIdx < 0)
   5713       continue;
   5714     if (EltIdx < 16)
   5715       V2Only = false;
   5716     else
   5717       V1Only = false;
   5718   }
   5719 
   5720   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
   5721   if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
   5722     SmallVector<SDValue,16> pshufbMask;
   5723 
   5724     // If all result elements are from one input vector, then only translate
   5725     // undef mask values to 0x80 (zero out result) in the pshufb mask.
   5726     //
   5727     // Otherwise, we have elements from both input vectors, and must zero out
   5728     // elements that come from V2 in the first mask, and V1 in the second mask
   5729     // so that we can OR them together.
   5730     bool TwoInputs = !(V1Only || V2Only);
   5731     for (unsigned i = 0; i != 16; ++i) {
   5732       int EltIdx = MaskVals[i];
   5733       if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
   5734         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5735         continue;
   5736       }
   5737       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   5738     }
   5739     // If all the elements are from V2, assign it to V1 and return after
   5740     // building the first pshufb.
   5741     if (V2Only)
   5742       V1 = V2;
   5743     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   5744                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5745                                  MVT::v16i8, &pshufbMask[0], 16));
   5746     if (!TwoInputs)
   5747       return V1;
   5748 
   5749     // Calculate the shuffle mask for the second input, shuffle it, and
   5750     // OR it with the first shuffled input.
   5751     pshufbMask.clear();
   5752     for (unsigned i = 0; i != 16; ++i) {
   5753       int EltIdx = MaskVals[i];
   5754       if (EltIdx < 16) {
   5755         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   5756         continue;
   5757       }
   5758       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
   5759     }
   5760     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   5761                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5762                                  MVT::v16i8, &pshufbMask[0], 16));
   5763     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   5764   }
   5765 
   5766   // No SSSE3 - Calculate in place words and then fix all out of place words
   5767   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
   5768   // the 16 different words that comprise the two doublequadword input vectors.
   5769   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5770   V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
   5771   SDValue NewV = V2Only ? V2 : V1;
   5772   for (int i = 0; i != 8; ++i) {
   5773     int Elt0 = MaskVals[i*2];
   5774     int Elt1 = MaskVals[i*2+1];
   5775 
   5776     // This word of the result is all undef, skip it.
   5777     if (Elt0 < 0 && Elt1 < 0)
   5778       continue;
   5779 
   5780     // This word of the result is already in the correct place, skip it.
   5781     if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
   5782       continue;
   5783     if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
   5784       continue;
   5785 
   5786     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
   5787     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
   5788     SDValue InsElt;
   5789 
   5790     // If Elt0 and Elt1 are defined, are consecutive, and can be load
   5791     // using a single extract together, load it and store it.
   5792     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
   5793       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5794                            DAG.getIntPtrConstant(Elt1 / 2));
   5795       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   5796                         DAG.getIntPtrConstant(i));
   5797       continue;
   5798     }
   5799 
   5800     // If Elt1 is defined, extract it from the appropriate source.  If the
   5801     // source byte is not also odd, shift the extracted word left 8 bits
   5802     // otherwise clear the bottom 8 bits if we need to do an or.
   5803     if (Elt1 >= 0) {
   5804       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5805                            DAG.getIntPtrConstant(Elt1 / 2));
   5806       if ((Elt1 & 1) == 0)
   5807         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
   5808                              DAG.getConstant(8,
   5809                                   TLI.getShiftAmountTy(InsElt.getValueType())));
   5810       else if (Elt0 >= 0)
   5811         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
   5812                              DAG.getConstant(0xFF00, MVT::i16));
   5813     }
   5814     // If Elt0 is defined, extract it from the appropriate source.  If the
   5815     // source byte is not also even, shift the extracted word right 8 bits. If
   5816     // Elt1 was also defined, OR the extracted values together before
   5817     // inserting them in the result.
   5818     if (Elt0 >= 0) {
   5819       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
   5820                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
   5821       if ((Elt0 & 1) != 0)
   5822         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
   5823                               DAG.getConstant(8,
   5824                                  TLI.getShiftAmountTy(InsElt0.getValueType())));
   5825       else if (Elt1 >= 0)
   5826         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
   5827                              DAG.getConstant(0x00FF, MVT::i16));
   5828       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
   5829                          : InsElt0;
   5830     }
   5831     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   5832                        DAG.getIntPtrConstant(i));
   5833   }
   5834   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
   5835 }
   5836 
   5837 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
   5838 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
   5839 /// done when every pair / quad of shuffle mask elements point to elements in
   5840 /// the right sequence. e.g.
   5841 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
   5842 static
   5843 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
   5844                                  SelectionDAG &DAG, DebugLoc dl) {
   5845   EVT VT = SVOp->getValueType(0);
   5846   SDValue V1 = SVOp->getOperand(0);
   5847   SDValue V2 = SVOp->getOperand(1);
   5848   unsigned NumElems = VT.getVectorNumElements();
   5849   unsigned NewWidth = (NumElems == 4) ? 2 : 4;
   5850   EVT NewVT;
   5851   switch (VT.getSimpleVT().SimpleTy) {
   5852   default: assert(false && "Unexpected!");
   5853   case MVT::v4f32: NewVT = MVT::v2f64; break;
   5854   case MVT::v4i32: NewVT = MVT::v2i64; break;
   5855   case MVT::v8i16: NewVT = MVT::v4i32; break;
   5856   case MVT::v16i8: NewVT = MVT::v4i32; break;
   5857   }
   5858 
   5859   int Scale = NumElems / NewWidth;
   5860   SmallVector<int, 8> MaskVec;
   5861   for (unsigned i = 0; i < NumElems; i += Scale) {
   5862     int StartIdx = -1;
   5863     for (int j = 0; j < Scale; ++j) {
   5864       int EltIdx = SVOp->getMaskElt(i+j);
   5865       if (EltIdx < 0)
   5866         continue;
   5867       if (StartIdx == -1)
   5868         StartIdx = EltIdx - (EltIdx % Scale);
   5869       if (EltIdx != StartIdx + j)
   5870         return SDValue();
   5871     }
   5872     if (StartIdx == -1)
   5873       MaskVec.push_back(-1);
   5874     else
   5875       MaskVec.push_back(StartIdx / Scale);
   5876   }
   5877 
   5878   V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
   5879   V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
   5880   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
   5881 }
   5882 
   5883 /// getVZextMovL - Return a zero-extending vector move low node.
   5884 ///
   5885 static SDValue getVZextMovL(EVT VT, EVT OpVT,
   5886                             SDValue SrcOp, SelectionDAG &DAG,
   5887                             const X86Subtarget *Subtarget, DebugLoc dl) {
   5888   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
   5889     LoadSDNode *LD = NULL;
   5890     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
   5891       LD = dyn_cast<LoadSDNode>(SrcOp);
   5892     if (!LD) {
   5893       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
   5894       // instead.
   5895       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
   5896       if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
   5897           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   5898           SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
   5899           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
   5900         // PR2108
   5901         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
   5902         return DAG.getNode(ISD::BITCAST, dl, VT,
   5903                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   5904                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   5905                                                    OpVT,
   5906                                                    SrcOp.getOperand(0)
   5907                                                           .getOperand(0))));
   5908       }
   5909     }
   5910   }
   5911 
   5912   return DAG.getNode(ISD::BITCAST, dl, VT,
   5913                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   5914                                  DAG.getNode(ISD::BITCAST, dl,
   5915                                              OpVT, SrcOp)));
   5916 }
   5917 
   5918 /// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
   5919 /// shuffle node referes to only one lane in the sources.
   5920 static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
   5921   EVT VT = SVOp->getValueType(0);
   5922   int NumElems = VT.getVectorNumElements();
   5923   int HalfSize = NumElems/2;
   5924   SmallVector<int, 16> M;
   5925   SVOp->getMask(M);
   5926   bool MatchA = false, MatchB = false;
   5927 
   5928   for (int l = 0; l < NumElems*2; l += HalfSize) {
   5929     if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
   5930       MatchA = true;
   5931       break;
   5932     }
   5933   }
   5934 
   5935   for (int l = 0; l < NumElems*2; l += HalfSize) {
   5936     if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
   5937       MatchB = true;
   5938       break;
   5939     }
   5940   }
   5941 
   5942   return MatchA && MatchB;
   5943 }
   5944 
   5945 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
   5946 /// which could not be matched by any known target speficic shuffle
   5947 static SDValue
   5948 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   5949   if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
   5950     // If each half of a vector shuffle node referes to only one lane in the
   5951     // source vectors, extract each used 128-bit lane and shuffle them using
   5952     // 128-bit shuffles. Then, concatenate the results. Otherwise leave
   5953     // the work to the legalizer.
   5954     DebugLoc dl = SVOp->getDebugLoc();
   5955     EVT VT = SVOp->getValueType(0);
   5956     int NumElems = VT.getVectorNumElements();
   5957     int HalfSize = NumElems/2;
   5958 
   5959     // Extract the reference for each half
   5960     int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
   5961     int FstVecOpNum = 0, SndVecOpNum = 0;
   5962     for (int i = 0; i < HalfSize; ++i) {
   5963       int Elt = SVOp->getMaskElt(i);
   5964       if (SVOp->getMaskElt(i) < 0)
   5965         continue;
   5966       FstVecOpNum = Elt/NumElems;
   5967       FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
   5968       break;
   5969     }
   5970     for (int i = HalfSize; i < NumElems; ++i) {
   5971       int Elt = SVOp->getMaskElt(i);
   5972       if (SVOp->getMaskElt(i) < 0)
   5973         continue;
   5974       SndVecOpNum = Elt/NumElems;
   5975       SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
   5976       break;
   5977     }
   5978 
   5979     // Extract the subvectors
   5980     SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
   5981                       DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
   5982     SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
   5983                       DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
   5984 
   5985     // Generate 128-bit shuffles
   5986     SmallVector<int, 16> MaskV1, MaskV2;
   5987     for (int i = 0; i < HalfSize; ++i) {
   5988       int Elt = SVOp->getMaskElt(i);
   5989       MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
   5990     }
   5991     for (int i = HalfSize; i < NumElems; ++i) {
   5992       int Elt = SVOp->getMaskElt(i);
   5993       MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
   5994     }
   5995 
   5996     EVT NVT = V1.getValueType();
   5997     V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
   5998     V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
   5999 
   6000     // Concatenate the result back
   6001     SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
   6002                                    DAG.getConstant(0, MVT::i32), DAG, dl);
   6003     return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
   6004                               DAG, dl);
   6005   }
   6006 
   6007   return SDValue();
   6008 }
   6009 
   6010 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
   6011 /// 4 elements, and match them with several different shuffle types.
   6012 static SDValue
   6013 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   6014   SDValue V1 = SVOp->getOperand(0);
   6015   SDValue V2 = SVOp->getOperand(1);
   6016   DebugLoc dl = SVOp->getDebugLoc();
   6017   EVT VT = SVOp->getValueType(0);
   6018 
   6019   assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
   6020 
   6021   SmallVector<std::pair<int, int>, 8> Locs;
   6022   Locs.resize(4);
   6023   SmallVector<int, 8> Mask1(4U, -1);
   6024   SmallVector<int, 8> PermMask;
   6025   SVOp->getMask(PermMask);
   6026 
   6027   unsigned NumHi = 0;
   6028   unsigned NumLo = 0;
   6029   for (unsigned i = 0; i != 4; ++i) {
   6030     int Idx = PermMask[i];
   6031     if (Idx < 0) {
   6032       Locs[i] = std::make_pair(-1, -1);
   6033     } else {
   6034       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
   6035       if (Idx < 4) {
   6036         Locs[i] = std::make_pair(0, NumLo);
   6037         Mask1[NumLo] = Idx;
   6038         NumLo++;
   6039       } else {
   6040         Locs[i] = std::make_pair(1, NumHi);
   6041         if (2+NumHi < 4)
   6042           Mask1[2+NumHi] = Idx;
   6043         NumHi++;
   6044       }
   6045     }
   6046   }
   6047 
   6048   if (NumLo <= 2 && NumHi <= 2) {
   6049     // If no more than two elements come from either vector. This can be
   6050     // implemented with two shuffles. First shuffle gather the elements.
   6051     // The second shuffle, which takes the first shuffle as both of its
   6052     // vector operands, put the elements into the right order.
   6053     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6054 
   6055     SmallVector<int, 8> Mask2(4U, -1);
   6056 
   6057     for (unsigned i = 0; i != 4; ++i) {
   6058       if (Locs[i].first == -1)
   6059         continue;
   6060       else {
   6061         unsigned Idx = (i < 2) ? 0 : 4;
   6062         Idx += Locs[i].first * 2 + Locs[i].second;
   6063         Mask2[i] = Idx;
   6064       }
   6065     }
   6066 
   6067     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
   6068   } else if (NumLo == 3 || NumHi == 3) {
   6069     // Otherwise, we must have three elements from one vector, call it X, and
   6070     // one element from the other, call it Y.  First, use a shufps to build an
   6071     // intermediate vector with the one element from Y and the element from X
   6072     // that will be in the same half in the final destination (the indexes don't
   6073     // matter). Then, use a shufps to build the final vector, taking the half
   6074     // containing the element from Y from the intermediate, and the other half
   6075     // from X.
   6076     if (NumHi == 3) {
   6077       // Normalize it so the 3 elements come from V1.
   6078       CommuteVectorShuffleMask(PermMask, VT);
   6079       std::swap(V1, V2);
   6080     }
   6081 
   6082     // Find the element from V2.
   6083     unsigned HiIndex;
   6084     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
   6085       int Val = PermMask[HiIndex];
   6086       if (Val < 0)
   6087         continue;
   6088       if (Val >= 4)
   6089         break;
   6090     }
   6091 
   6092     Mask1[0] = PermMask[HiIndex];
   6093     Mask1[1] = -1;
   6094     Mask1[2] = PermMask[HiIndex^1];
   6095     Mask1[3] = -1;
   6096     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6097 
   6098     if (HiIndex >= 2) {
   6099       Mask1[0] = PermMask[0];
   6100       Mask1[1] = PermMask[1];
   6101       Mask1[2] = HiIndex & 1 ? 6 : 4;
   6102       Mask1[3] = HiIndex & 1 ? 4 : 6;
   6103       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6104     } else {
   6105       Mask1[0] = HiIndex & 1 ? 2 : 0;
   6106       Mask1[1] = HiIndex & 1 ? 0 : 2;
   6107       Mask1[2] = PermMask[2];
   6108       Mask1[3] = PermMask[3];
   6109       if (Mask1[2] >= 0)
   6110         Mask1[2] += 4;
   6111       if (Mask1[3] >= 0)
   6112         Mask1[3] += 4;
   6113       return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
   6114     }
   6115   }
   6116 
   6117   // Break it into (shuffle shuffle_hi, shuffle_lo).
   6118   Locs.clear();
   6119   Locs.resize(4);
   6120   SmallVector<int,8> LoMask(4U, -1);
   6121   SmallVector<int,8> HiMask(4U, -1);
   6122 
   6123   SmallVector<int,8> *MaskPtr = &LoMask;
   6124   unsigned MaskIdx = 0;
   6125   unsigned LoIdx = 0;
   6126   unsigned HiIdx = 2;
   6127   for (unsigned i = 0; i != 4; ++i) {
   6128     if (i == 2) {
   6129       MaskPtr = &HiMask;
   6130       MaskIdx = 1;
   6131       LoIdx = 0;
   6132       HiIdx = 2;
   6133     }
   6134     int Idx = PermMask[i];
   6135     if (Idx < 0) {
   6136       Locs[i] = std::make_pair(-1, -1);
   6137     } else if (Idx < 4) {
   6138       Locs[i] = std::make_pair(MaskIdx, LoIdx);
   6139       (*MaskPtr)[LoIdx] = Idx;
   6140       LoIdx++;
   6141     } else {
   6142       Locs[i] = std::make_pair(MaskIdx, HiIdx);
   6143       (*MaskPtr)[HiIdx] = Idx;
   6144       HiIdx++;
   6145     }
   6146   }
   6147 
   6148   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
   6149   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
   6150   SmallVector<int, 8> MaskOps;
   6151   for (unsigned i = 0; i != 4; ++i) {
   6152     if (Locs[i].first == -1) {
   6153       MaskOps.push_back(-1);
   6154     } else {
   6155       unsigned Idx = Locs[i].first * 4 + Locs[i].second;
   6156       MaskOps.push_back(Idx);
   6157     }
   6158   }
   6159   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
   6160 }
   6161 
   6162 static bool MayFoldVectorLoad(SDValue V) {
   6163   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6164     V = V.getOperand(0);
   6165   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6166     V = V.getOperand(0);
   6167   if (MayFoldLoad(V))
   6168     return true;
   6169   return false;
   6170 }
   6171 
   6172 // FIXME: the version above should always be used. Since there's
   6173 // a bug where several vector shuffles can't be folded because the
   6174 // DAG is not updated during lowering and a node claims to have two
   6175 // uses while it only has one, use this version, and let isel match
   6176 // another instruction if the load really happens to have more than
   6177 // one use. Remove this version after this bug get fixed.
   6178 // rdar://8434668, PR8156
   6179 static bool RelaxedMayFoldVectorLoad(SDValue V) {
   6180   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6181     V = V.getOperand(0);
   6182   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6183     V = V.getOperand(0);
   6184   if (ISD::isNormalLoad(V.getNode()))
   6185     return true;
   6186   return false;
   6187 }
   6188 
   6189 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
   6190 /// a vector extract, and if both can be later optimized into a single load.
   6191 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
   6192 /// here because otherwise a target specific shuffle node is going to be
   6193 /// emitted for this shuffle, and the optimization not done.
   6194 /// FIXME: This is probably not the best approach, but fix the problem
   6195 /// until the right path is decided.
   6196 static
   6197 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
   6198                                          const TargetLowering &TLI) {
   6199   EVT VT = V.getValueType();
   6200   ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
   6201 
   6202   // Be sure that the vector shuffle is present in a pattern like this:
   6203   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
   6204   if (!V.hasOneUse())
   6205     return false;
   6206 
   6207   SDNode *N = *V.getNode()->use_begin();
   6208   if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   6209     return false;
   6210 
   6211   SDValue EltNo = N->getOperand(1);
   6212   if (!isa<ConstantSDNode>(EltNo))
   6213     return false;
   6214 
   6215   // If the bit convert changed the number of elements, it is unsafe
   6216   // to examine the mask.
   6217   bool HasShuffleIntoBitcast = false;
   6218   if (V.getOpcode() == ISD::BITCAST) {
   6219     EVT SrcVT = V.getOperand(0).getValueType();
   6220     if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
   6221       return false;
   6222     V = V.getOperand(0);
   6223     HasShuffleIntoBitcast = true;
   6224   }
   6225 
   6226   // Select the input vector, guarding against out of range extract vector.
   6227   unsigned NumElems = VT.getVectorNumElements();
   6228   unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
   6229   int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
   6230   V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
   6231 
   6232   // Skip one more bit_convert if necessary
   6233   if (V.getOpcode() == ISD::BITCAST)
   6234     V = V.getOperand(0);
   6235 
   6236   if (ISD::isNormalLoad(V.getNode())) {
   6237     // Is the original load suitable?
   6238     LoadSDNode *LN0 = cast<LoadSDNode>(V);
   6239 
   6240     // FIXME: avoid the multi-use bug that is preventing lots of
   6241     // of foldings to be detected, this is still wrong of course, but
   6242     // give the temporary desired behavior, and if it happens that
   6243     // the load has real more uses, during isel it will not fold, and
   6244     // will generate poor code.
   6245     if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
   6246       return false;
   6247 
   6248     if (!HasShuffleIntoBitcast)
   6249       return true;
   6250 
   6251     // If there's a bitcast before the shuffle, check if the load type and
   6252     // alignment is valid.
   6253     unsigned Align = LN0->getAlignment();
   6254     unsigned NewAlign =
   6255       TLI.getTargetData()->getABITypeAlignment(
   6256                                     VT.getTypeForEVT(*DAG.getContext()));
   6257 
   6258     if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
   6259       return false;
   6260   }
   6261 
   6262   return true;
   6263 }
   6264 
   6265 static
   6266 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
   6267   EVT VT = Op.getValueType();
   6268 
   6269   // Canonizalize to v2f64.
   6270   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
   6271   return DAG.getNode(ISD::BITCAST, dl, VT,
   6272                      getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
   6273                                           V1, DAG));
   6274 }
   6275 
   6276 static
   6277 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
   6278                         bool HasXMMInt) {
   6279   SDValue V1 = Op.getOperand(0);
   6280   SDValue V2 = Op.getOperand(1);
   6281   EVT VT = Op.getValueType();
   6282 
   6283   assert(VT != MVT::v2i64 && "unsupported shuffle type");
   6284 
   6285   if (HasXMMInt && VT == MVT::v2f64)
   6286     return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
   6287 
   6288   // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
   6289   return DAG.getNode(ISD::BITCAST, dl, VT,
   6290                      getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
   6291                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
   6292                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
   6293 }
   6294 
   6295 static
   6296 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
   6297   SDValue V1 = Op.getOperand(0);
   6298   SDValue V2 = Op.getOperand(1);
   6299   EVT VT = Op.getValueType();
   6300 
   6301   assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
   6302          "unsupported shuffle type");
   6303 
   6304   if (V2.getOpcode() == ISD::UNDEF)
   6305     V2 = V1;
   6306 
   6307   // v4i32 or v4f32
   6308   return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
   6309 }
   6310 
   6311 static inline unsigned getSHUFPOpcode(EVT VT) {
   6312   switch(VT.getSimpleVT().SimpleTy) {
   6313   case MVT::v8i32: // Use fp unit for int unpack.
   6314   case MVT::v8f32:
   6315   case MVT::v4i32: // Use fp unit for int unpack.
   6316   case MVT::v4f32: return X86ISD::SHUFPS;
   6317   case MVT::v4i64: // Use fp unit for int unpack.
   6318   case MVT::v4f64:
   6319   case MVT::v2i64: // Use fp unit for int unpack.
   6320   case MVT::v2f64: return X86ISD::SHUFPD;
   6321   default:
   6322     llvm_unreachable("Unknown type for shufp*");
   6323   }
   6324   return 0;
   6325 }
   6326 
   6327 static
   6328 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
   6329   SDValue V1 = Op.getOperand(0);
   6330   SDValue V2 = Op.getOperand(1);
   6331   EVT VT = Op.getValueType();
   6332   unsigned NumElems = VT.getVectorNumElements();
   6333 
   6334   // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
   6335   // operand of these instructions is only memory, so check if there's a
   6336   // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
   6337   // same masks.
   6338   bool CanFoldLoad = false;
   6339 
   6340   // Trivial case, when V2 comes from a load.
   6341   if (MayFoldVectorLoad(V2))
   6342     CanFoldLoad = true;
   6343 
   6344   // When V1 is a load, it can be folded later into a store in isel, example:
   6345   //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
   6346   //    turns into:
   6347   //  (MOVLPSmr addr:$src1, VR128:$src2)
   6348   // So, recognize this potential and also use MOVLPS or MOVLPD
   6349   if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
   6350     CanFoldLoad = true;
   6351 
   6352   // Both of them can't be memory operations though.
   6353   if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
   6354     CanFoldLoad = false;
   6355 
   6356   if (CanFoldLoad) {
   6357     if (HasXMMInt && NumElems == 2)
   6358       return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
   6359 
   6360     if (NumElems == 4)
   6361       return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
   6362   }
   6363 
   6364   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6365   // movl and movlp will both match v2i64, but v2i64 is never matched by
   6366   // movl earlier because we make it strict to avoid messing with the movlp load
   6367   // folding logic (see the code above getMOVLP call). Match it here then,
   6368   // this is horrible, but will stay like this until we move all shuffle
   6369   // matching to x86 specific nodes. Note that for the 1st condition all
   6370   // types are matched with movsd.
   6371   if (HasXMMInt) {
   6372     // FIXME: isMOVLMask should be checked and matched before getMOVLP,
   6373     // as to remove this logic from here, as much as possible
   6374     if (NumElems == 2 || !X86::isMOVLMask(SVOp))
   6375       return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   6376     return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   6377   }
   6378 
   6379   assert(VT != MVT::v4i32 && "unsupported shuffle type");
   6380 
   6381   // Invert the operand order and use SHUFPS to match it.
   6382   return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
   6383                               X86::getShuffleSHUFImmediate(SVOp), DAG);
   6384 }
   6385 
   6386 static inline unsigned getUNPCKLOpcode(EVT VT) {
   6387   switch(VT.getSimpleVT().SimpleTy) {
   6388   case MVT::v4i32: return X86ISD::PUNPCKLDQ;
   6389   case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
   6390   case MVT::v4f32: return X86ISD::UNPCKLPS;
   6391   case MVT::v2f64: return X86ISD::UNPCKLPD;
   6392   case MVT::v8i32: // Use fp unit for int unpack.
   6393   case MVT::v8f32: return X86ISD::VUNPCKLPSY;
   6394   case MVT::v4i64: // Use fp unit for int unpack.
   6395   case MVT::v4f64: return X86ISD::VUNPCKLPDY;
   6396   case MVT::v16i8: return X86ISD::PUNPCKLBW;
   6397   case MVT::v8i16: return X86ISD::PUNPCKLWD;
   6398   default:
   6399     llvm_unreachable("Unknown type for unpckl");
   6400   }
   6401   return 0;
   6402 }
   6403 
   6404 static inline unsigned getUNPCKHOpcode(EVT VT) {
   6405   switch(VT.getSimpleVT().SimpleTy) {
   6406   case MVT::v4i32: return X86ISD::PUNPCKHDQ;
   6407   case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
   6408   case MVT::v4f32: return X86ISD::UNPCKHPS;
   6409   case MVT::v2f64: return X86ISD::UNPCKHPD;
   6410   case MVT::v8i32: // Use fp unit for int unpack.
   6411   case MVT::v8f32: return X86ISD::VUNPCKHPSY;
   6412   case MVT::v4i64: // Use fp unit for int unpack.
   6413   case MVT::v4f64: return X86ISD::VUNPCKHPDY;
   6414   case MVT::v16i8: return X86ISD::PUNPCKHBW;
   6415   case MVT::v8i16: return X86ISD::PUNPCKHWD;
   6416   default:
   6417     llvm_unreachable("Unknown type for unpckh");
   6418   }
   6419   return 0;
   6420 }
   6421 
   6422 static inline unsigned getVPERMILOpcode(EVT VT) {
   6423   switch(VT.getSimpleVT().SimpleTy) {
   6424   case MVT::v4i32:
   6425   case MVT::v4f32: return X86ISD::VPERMILPS;
   6426   case MVT::v2i64:
   6427   case MVT::v2f64: return X86ISD::VPERMILPD;
   6428   case MVT::v8i32:
   6429   case MVT::v8f32: return X86ISD::VPERMILPSY;
   6430   case MVT::v4i64:
   6431   case MVT::v4f64: return X86ISD::VPERMILPDY;
   6432   default:
   6433     llvm_unreachable("Unknown type for vpermil");
   6434   }
   6435   return 0;
   6436 }
   6437 
   6438 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
   6439 /// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
   6440 /// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
   6441 static bool isVectorBroadcast(SDValue &Op) {
   6442   EVT VT = Op.getValueType();
   6443   bool Is256 = VT.getSizeInBits() == 256;
   6444 
   6445   assert((VT.getSizeInBits() == 128 || Is256) &&
   6446          "Unsupported type for vbroadcast node");
   6447 
   6448   SDValue V = Op;
   6449   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6450     V = V.getOperand(0);
   6451 
   6452   if (Is256 && !(V.hasOneUse() &&
   6453                  V.getOpcode() == ISD::INSERT_SUBVECTOR &&
   6454                  V.getOperand(0).getOpcode() == ISD::UNDEF))
   6455     return false;
   6456 
   6457   if (Is256)
   6458     V = V.getOperand(1);
   6459 
   6460   if (!V.hasOneUse())
   6461     return false;
   6462 
   6463   // Check the source scalar_to_vector type. 256-bit broadcasts are
   6464   // supported for 32/64-bit sizes, while 128-bit ones are only supported
   6465   // for 32-bit scalars.
   6466   if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
   6467     return false;
   6468 
   6469   unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
   6470   if (ScalarSize != 32 && ScalarSize != 64)
   6471     return false;
   6472   if (!Is256 && ScalarSize == 64)
   6473     return false;
   6474 
   6475   V = V.getOperand(0);
   6476   if (!MayFoldLoad(V))
   6477     return false;
   6478 
   6479   // Return the load node
   6480   Op = V;
   6481   return true;
   6482 }
   6483 
   6484 static
   6485 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
   6486                                const TargetLowering &TLI,
   6487                                const X86Subtarget *Subtarget) {
   6488   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6489   EVT VT = Op.getValueType();
   6490   DebugLoc dl = Op.getDebugLoc();
   6491   SDValue V1 = Op.getOperand(0);
   6492   SDValue V2 = Op.getOperand(1);
   6493 
   6494   if (isZeroShuffle(SVOp))
   6495     return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
   6496 
   6497   // Handle splat operations
   6498   if (SVOp->isSplat()) {
   6499     unsigned NumElem = VT.getVectorNumElements();
   6500     int Size = VT.getSizeInBits();
   6501     // Special case, this is the only place now where it's allowed to return
   6502     // a vector_shuffle operation without using a target specific node, because
   6503     // *hopefully* it will be optimized away by the dag combiner. FIXME: should
   6504     // this be moved to DAGCombine instead?
   6505     if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
   6506       return Op;
   6507 
   6508     // Use vbroadcast whenever the splat comes from a foldable load
   6509     if (Subtarget->hasAVX() && isVectorBroadcast(V1))
   6510       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
   6511 
   6512     // Handle splats by matching through known shuffle masks
   6513     if ((Size == 128 && NumElem <= 4) ||
   6514         (Size == 256 && NumElem < 8))
   6515       return SDValue();
   6516 
   6517     // All remaning splats are promoted to target supported vector shuffles.
   6518     return PromoteSplat(SVOp, DAG);
   6519   }
   6520 
   6521   // If the shuffle can be profitably rewritten as a narrower shuffle, then
   6522   // do it!
   6523   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
   6524     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6525     if (NewOp.getNode())
   6526       return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
   6527   } else if ((VT == MVT::v4i32 ||
   6528              (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
   6529     // FIXME: Figure out a cleaner way to do this.
   6530     // Try to make use of movq to zero out the top part.
   6531     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
   6532       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6533       if (NewOp.getNode()) {
   6534         if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
   6535           return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
   6536                               DAG, Subtarget, dl);
   6537       }
   6538     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
   6539       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6540       if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
   6541         return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
   6542                             DAG, Subtarget, dl);
   6543     }
   6544   }
   6545   return SDValue();
   6546 }
   6547 
   6548 SDValue
   6549 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
   6550   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6551   SDValue V1 = Op.getOperand(0);
   6552   SDValue V2 = Op.getOperand(1);
   6553   EVT VT = Op.getValueType();
   6554   DebugLoc dl = Op.getDebugLoc();
   6555   unsigned NumElems = VT.getVectorNumElements();
   6556   bool isMMX = VT.getSizeInBits() == 64;
   6557   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
   6558   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
   6559   bool V1IsSplat = false;
   6560   bool V2IsSplat = false;
   6561   bool HasXMMInt = Subtarget->hasXMMInt();
   6562   MachineFunction &MF = DAG.getMachineFunction();
   6563   bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
   6564 
   6565   // Shuffle operations on MMX not supported.
   6566   if (isMMX)
   6567     return Op;
   6568 
   6569   // Vector shuffle lowering takes 3 steps:
   6570   //
   6571   // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
   6572   //    narrowing and commutation of operands should be handled.
   6573   // 2) Matching of shuffles with known shuffle masks to x86 target specific
   6574   //    shuffle nodes.
   6575   // 3) Rewriting of unmatched masks into new generic shuffle operations,
   6576   //    so the shuffle can be broken into other shuffles and the legalizer can
   6577   //    try the lowering again.
   6578   //
   6579   // The general ideia is that no vector_shuffle operation should be left to
   6580   // be matched during isel, all of them must be converted to a target specific
   6581   // node here.
   6582 
   6583   // Normalize the input vectors. Here splats, zeroed vectors, profitable
   6584   // narrowing and commutation of operands should be handled. The actual code
   6585   // doesn't include all of those, work in progress...
   6586   SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
   6587   if (NewOp.getNode())
   6588     return NewOp;
   6589 
   6590   // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
   6591   // unpckh_undef). Only use pshufd if speed is more important than size.
   6592   if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
   6593     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
   6594   if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
   6595     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   6596 
   6597   if (X86::isMOVDDUPMask(SVOp) &&
   6598       (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
   6599       V2IsUndef && RelaxedMayFoldVectorLoad(V1))
   6600     return getMOVDDup(Op, dl, V1, DAG);
   6601 
   6602   if (X86::isMOVHLPS_v_undef_Mask(SVOp))
   6603     return getMOVHighToLow(Op, dl, DAG);
   6604 
   6605   // Use to match splats
   6606   if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
   6607       (VT == MVT::v2f64 || VT == MVT::v2i64))
   6608     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   6609 
   6610   if (X86::isPSHUFDMask(SVOp)) {
   6611     // The actual implementation will match the mask in the if above and then
   6612     // during isel it can match several different instructions, not only pshufd
   6613     // as its name says, sad but true, emulate the behavior for now...
   6614     if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
   6615         return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
   6616 
   6617     unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
   6618 
   6619     if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
   6620       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
   6621 
   6622     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
   6623                                 TargetMask, DAG);
   6624   }
   6625 
   6626   // Check if this can be converted into a logical shift.
   6627   bool isLeft = false;
   6628   unsigned ShAmt = 0;
   6629   SDValue ShVal;
   6630   bool isShift = getSubtarget()->hasXMMInt() &&
   6631                  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
   6632   if (isShift && ShVal.hasOneUse()) {
   6633     // If the shifted value has multiple uses, it may be cheaper to use
   6634     // v_set0 + movlhps or movhlps, etc.
   6635     EVT EltVT = VT.getVectorElementType();
   6636     ShAmt *= EltVT.getSizeInBits();
   6637     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   6638   }
   6639 
   6640   if (X86::isMOVLMask(SVOp)) {
   6641     if (V1IsUndef)
   6642       return V2;
   6643     if (ISD::isBuildVectorAllZeros(V1.getNode()))
   6644       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
   6645     if (!X86::isMOVLPMask(SVOp)) {
   6646       if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
   6647         return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   6648 
   6649       if (VT == MVT::v4i32 || VT == MVT::v4f32)
   6650         return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   6651     }
   6652   }
   6653 
   6654   // FIXME: fold these into legal mask.
   6655   if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
   6656     return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
   6657 
   6658   if (X86::isMOVHLPSMask(SVOp))
   6659     return getMOVHighToLow(Op, dl, DAG);
   6660 
   6661   if (X86::isMOVSHDUPMask(SVOp, Subtarget))
   6662     return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
   6663 
   6664   if (X86::isMOVSLDUPMask(SVOp, Subtarget))
   6665     return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
   6666 
   6667   if (X86::isMOVLPMask(SVOp))
   6668     return getMOVLP(Op, dl, DAG, HasXMMInt);
   6669 
   6670   if (ShouldXformToMOVHLPS(SVOp) ||
   6671       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
   6672     return CommuteVectorShuffle(SVOp, DAG);
   6673 
   6674   if (isShift) {
   6675     // No better options. Use a vshl / vsrl.
   6676     EVT EltVT = VT.getVectorElementType();
   6677     ShAmt *= EltVT.getSizeInBits();
   6678     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   6679   }
   6680 
   6681   bool Commuted = false;
   6682   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
   6683   // 1,1,1,1 -> v8i16 though.
   6684   V1IsSplat = isSplatVector(V1.getNode());
   6685   V2IsSplat = isSplatVector(V2.getNode());
   6686 
   6687   // Canonicalize the splat or undef, if present, to be on the RHS.
   6688   if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
   6689     Op = CommuteVectorShuffle(SVOp, DAG);
   6690     SVOp = cast<ShuffleVectorSDNode>(Op);
   6691     V1 = SVOp->getOperand(0);
   6692     V2 = SVOp->getOperand(1);
   6693     std::swap(V1IsSplat, V2IsSplat);
   6694     std::swap(V1IsUndef, V2IsUndef);
   6695     Commuted = true;
   6696   }
   6697 
   6698   if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
   6699     // Shuffling low element of v1 into undef, just return v1.
   6700     if (V2IsUndef)
   6701       return V1;
   6702     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
   6703     // the instruction selector will not match, so get a canonical MOVL with
   6704     // swapped operands to undo the commute.
   6705     return getMOVL(DAG, dl, VT, V2, V1);
   6706   }
   6707 
   6708   if (X86::isUNPCKLMask(SVOp))
   6709     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
   6710 
   6711   if (X86::isUNPCKHMask(SVOp))
   6712     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
   6713 
   6714   if (V2IsSplat) {
   6715     // Normalize mask so all entries that point to V2 points to its first
   6716     // element then try to match unpck{h|l} again. If match, return a
   6717     // new vector_shuffle with the corrected mask.
   6718     SDValue NewMask = NormalizeMask(SVOp, DAG);
   6719     ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
   6720     if (NSVOp != SVOp) {
   6721       if (X86::isUNPCKLMask(NSVOp, true)) {
   6722         return NewMask;
   6723       } else if (X86::isUNPCKHMask(NSVOp, true)) {
   6724         return NewMask;
   6725       }
   6726     }
   6727   }
   6728 
   6729   if (Commuted) {
   6730     // Commute is back and try unpck* again.
   6731     // FIXME: this seems wrong.
   6732     SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
   6733     ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
   6734 
   6735     if (X86::isUNPCKLMask(NewSVOp))
   6736       return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
   6737 
   6738     if (X86::isUNPCKHMask(NewSVOp))
   6739       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
   6740   }
   6741 
   6742   // Normalize the node to match x86 shuffle ops if needed
   6743   if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
   6744     return CommuteVectorShuffle(SVOp, DAG);
   6745 
   6746   // The checks below are all present in isShuffleMaskLegal, but they are
   6747   // inlined here right now to enable us to directly emit target specific
   6748   // nodes, and remove one by one until they don't return Op anymore.
   6749   SmallVector<int, 16> M;
   6750   SVOp->getMask(M);
   6751 
   6752   if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
   6753     return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
   6754                                 X86::getShufflePALIGNRImmediate(SVOp),
   6755                                 DAG);
   6756 
   6757   if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
   6758       SVOp->getSplatIndex() == 0 && V2IsUndef) {
   6759     if (VT == MVT::v2f64)
   6760       return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
   6761     if (VT == MVT::v2i64)
   6762       return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
   6763   }
   6764 
   6765   if (isPSHUFHWMask(M, VT))
   6766     return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
   6767                                 X86::getShufflePSHUFHWImmediate(SVOp),
   6768                                 DAG);
   6769 
   6770   if (isPSHUFLWMask(M, VT))
   6771     return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
   6772                                 X86::getShufflePSHUFLWImmediate(SVOp),
   6773                                 DAG);
   6774 
   6775   if (isSHUFPMask(M, VT))
   6776     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
   6777                                 X86::getShuffleSHUFImmediate(SVOp), DAG);
   6778 
   6779   if (X86::isUNPCKL_v_undef_Mask(SVOp))
   6780     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
   6781   if (X86::isUNPCKH_v_undef_Mask(SVOp))
   6782     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
   6783 
   6784   //===--------------------------------------------------------------------===//
   6785   // Generate target specific nodes for 128 or 256-bit shuffles only
   6786   // supported in the AVX instruction set.
   6787   //
   6788 
   6789   // Handle VMOVDDUPY permutations
   6790   if (isMOVDDUPYMask(SVOp, Subtarget))
   6791     return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
   6792 
   6793   // Handle VPERMILPS* permutations
   6794   if (isVPERMILPSMask(M, VT, Subtarget))
   6795     return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
   6796                                 getShuffleVPERMILPSImmediate(SVOp), DAG);
   6797 
   6798   // Handle VPERMILPD* permutations
   6799   if (isVPERMILPDMask(M, VT, Subtarget))
   6800     return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
   6801                                 getShuffleVPERMILPDImmediate(SVOp), DAG);
   6802 
   6803   // Handle VPERM2F128 permutations
   6804   if (isVPERM2F128Mask(M, VT, Subtarget))
   6805     return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
   6806                                 getShuffleVPERM2F128Immediate(SVOp), DAG);
   6807 
   6808   // Handle VSHUFPSY permutations
   6809   if (isVSHUFPSYMask(M, VT, Subtarget))
   6810     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
   6811                                 getShuffleVSHUFPSYImmediate(SVOp), DAG);
   6812 
   6813   // Handle VSHUFPDY permutations
   6814   if (isVSHUFPDYMask(M, VT, Subtarget))
   6815     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
   6816                                 getShuffleVSHUFPDYImmediate(SVOp), DAG);
   6817 
   6818   //===--------------------------------------------------------------------===//
   6819   // Since no target specific shuffle was selected for this generic one,
   6820   // lower it into other known shuffles. FIXME: this isn't true yet, but
   6821   // this is the plan.
   6822   //
   6823 
   6824   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
   6825   if (VT == MVT::v8i16) {
   6826     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
   6827     if (NewOp.getNode())
   6828       return NewOp;
   6829   }
   6830 
   6831   if (VT == MVT::v16i8) {
   6832     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
   6833     if (NewOp.getNode())
   6834       return NewOp;
   6835   }
   6836 
   6837   // Handle all 128-bit wide vectors with 4 elements, and match them with
   6838   // several different shuffle types.
   6839   if (NumElems == 4 && VT.getSizeInBits() == 128)
   6840     return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
   6841 
   6842   // Handle general 256-bit shuffles
   6843   if (VT.is256BitVector())
   6844     return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
   6845 
   6846   return SDValue();
   6847 }
   6848 
   6849 SDValue
   6850 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
   6851                                                 SelectionDAG &DAG) const {
   6852   EVT VT = Op.getValueType();
   6853   DebugLoc dl = Op.getDebugLoc();
   6854 
   6855   if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
   6856     return SDValue();
   6857 
   6858   if (VT.getSizeInBits() == 8) {
   6859     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
   6860                                     Op.getOperand(0), Op.getOperand(1));
   6861     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6862                                     DAG.getValueType(VT));
   6863     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6864   } else if (VT.getSizeInBits() == 16) {
   6865     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6866     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
   6867     if (Idx == 0)
   6868       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   6869                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6870                                      DAG.getNode(ISD::BITCAST, dl,
   6871                                                  MVT::v4i32,
   6872                                                  Op.getOperand(0)),
   6873                                      Op.getOperand(1)));
   6874     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
   6875                                     Op.getOperand(0), Op.getOperand(1));
   6876     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6877                                     DAG.getValueType(VT));
   6878     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6879   } else if (VT == MVT::f32) {
   6880     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
   6881     // the result back to FR32 register. It's only worth matching if the
   6882     // result has a single use which is a store or a bitcast to i32.  And in
   6883     // the case of a store, it's not worth it if the index is a constant 0,
   6884     // because a MOVSSmr can be used instead, which is smaller and faster.
   6885     if (!Op.hasOneUse())
   6886       return SDValue();
   6887     SDNode *User = *Op.getNode()->use_begin();
   6888     if ((User->getOpcode() != ISD::STORE ||
   6889          (isa<ConstantSDNode>(Op.getOperand(1)) &&
   6890           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
   6891         (User->getOpcode() != ISD::BITCAST ||
   6892          User->getValueType(0) != MVT::i32))
   6893       return SDValue();
   6894     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6895                                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
   6896                                               Op.getOperand(0)),
   6897                                               Op.getOperand(1));
   6898     return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
   6899   } else if (VT == MVT::i32) {
   6900     // ExtractPS works with constant index.
   6901     if (isa<ConstantSDNode>(Op.getOperand(1)))
   6902       return Op;
   6903   }
   6904   return SDValue();
   6905 }
   6906 
   6907 
   6908 SDValue
   6909 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   6910                                            SelectionDAG &DAG) const {
   6911   if (!isa<ConstantSDNode>(Op.getOperand(1)))
   6912     return SDValue();
   6913 
   6914   SDValue Vec = Op.getOperand(0);
   6915   EVT VecVT = Vec.getValueType();
   6916 
   6917   // If this is a 256-bit vector result, first extract the 128-bit vector and
   6918   // then extract the element from the 128-bit vector.
   6919   if (VecVT.getSizeInBits() == 256) {
   6920     DebugLoc dl = Op.getNode()->getDebugLoc();
   6921     unsigned NumElems = VecVT.getVectorNumElements();
   6922     SDValue Idx = Op.getOperand(1);
   6923     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   6924 
   6925     // Get the 128-bit vector.
   6926     bool Upper = IdxVal >= NumElems/2;
   6927     Vec = Extract128BitVector(Vec,
   6928                     DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
   6929 
   6930     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
   6931                     Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
   6932   }
   6933 
   6934   assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
   6935 
   6936   if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
   6937     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
   6938     if (Res.getNode())
   6939       return Res;
   6940   }
   6941 
   6942   EVT VT = Op.getValueType();
   6943   DebugLoc dl = Op.getDebugLoc();
   6944   // TODO: handle v16i8.
   6945   if (VT.getSizeInBits() == 16) {
   6946     SDValue Vec = Op.getOperand(0);
   6947     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6948     if (Idx == 0)
   6949       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   6950                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6951                                      DAG.getNode(ISD::BITCAST, dl,
   6952                                                  MVT::v4i32, Vec),
   6953                                      Op.getOperand(1)));
   6954     // Transform it so it match pextrw which produces a 32-bit result.
   6955     EVT EltVT = MVT::i32;
   6956     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
   6957                                     Op.getOperand(0), Op.getOperand(1));
   6958     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
   6959                                     DAG.getValueType(VT));
   6960     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6961   } else if (VT.getSizeInBits() == 32) {
   6962     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6963     if (Idx == 0)
   6964       return Op;
   6965 
   6966     // SHUFPS the element to the lowest double word, then movss.
   6967     int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
   6968     EVT VVT = Op.getOperand(0).getValueType();
   6969     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   6970                                        DAG.getUNDEF(VVT), Mask);
   6971     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   6972                        DAG.getIntPtrConstant(0));
   6973   } else if (VT.getSizeInBits() == 64) {
   6974     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
   6975     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
   6976     //        to match extract_elt for f64.
   6977     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6978     if (Idx == 0)
   6979       return Op;
   6980 
   6981     // UNPCKHPD the element to the lowest double word, then movsd.
   6982     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
   6983     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
   6984     int Mask[2] = { 1, -1 };
   6985     EVT VVT = Op.getOperand(0).getValueType();
   6986     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   6987                                        DAG.getUNDEF(VVT), Mask);
   6988     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   6989                        DAG.getIntPtrConstant(0));
   6990   }
   6991 
   6992   return SDValue();
   6993 }
   6994 
   6995 SDValue
   6996 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
   6997                                                SelectionDAG &DAG) const {
   6998   EVT VT = Op.getValueType();
   6999   EVT EltVT = VT.getVectorElementType();
   7000   DebugLoc dl = Op.getDebugLoc();
   7001 
   7002   SDValue N0 = Op.getOperand(0);
   7003   SDValue N1 = Op.getOperand(1);
   7004   SDValue N2 = Op.getOperand(2);
   7005 
   7006   if (VT.getSizeInBits() == 256)
   7007     return SDValue();
   7008 
   7009   if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
   7010       isa<ConstantSDNode>(N2)) {
   7011     unsigned Opc;
   7012     if (VT == MVT::v8i16)
   7013       Opc = X86ISD::PINSRW;
   7014     else if (VT == MVT::v16i8)
   7015       Opc = X86ISD::PINSRB;
   7016     else
   7017       Opc = X86ISD::PINSRB;
   7018 
   7019     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
   7020     // argument.
   7021     if (N1.getValueType() != MVT::i32)
   7022       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7023     if (N2.getValueType() != MVT::i32)
   7024       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7025     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
   7026   } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
   7027     // Bits [7:6] of the constant are the source select.  This will always be
   7028     //  zero here.  The DAG Combiner may combine an extract_elt index into these
   7029     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
   7030     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
   7031     // Bits [5:4] of the constant are the destination select.  This is the
   7032     //  value of the incoming immediate.
   7033     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
   7034     //   combine either bitwise AND or insert of float 0.0 to set these bits.
   7035     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
   7036     // Create this as a scalar to vector..
   7037     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
   7038     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
   7039   } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
   7040     // PINSR* works with constant index.
   7041     return Op;
   7042   }
   7043   return SDValue();
   7044 }
   7045 
   7046 SDValue
   7047 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   7048   EVT VT = Op.getValueType();
   7049   EVT EltVT = VT.getVectorElementType();
   7050 
   7051   DebugLoc dl = Op.getDebugLoc();
   7052   SDValue N0 = Op.getOperand(0);
   7053   SDValue N1 = Op.getOperand(1);
   7054   SDValue N2 = Op.getOperand(2);
   7055 
   7056   // If this is a 256-bit vector result, first extract the 128-bit vector,
   7057   // insert the element into the extracted half and then place it back.
   7058   if (VT.getSizeInBits() == 256) {
   7059     if (!isa<ConstantSDNode>(N2))
   7060       return SDValue();
   7061 
   7062     // Get the desired 128-bit vector half.
   7063     unsigned NumElems = VT.getVectorNumElements();
   7064     unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
   7065     bool Upper = IdxVal >= NumElems/2;
   7066     SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
   7067     SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
   7068 
   7069     // Insert the element into the desired half.
   7070     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
   7071                  N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
   7072 
   7073     // Insert the changed part back to the 256-bit vector
   7074     return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
   7075   }
   7076 
   7077   if (Subtarget->hasSSE41() || Subtarget->hasAVX())
   7078     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
   7079 
   7080   if (EltVT == MVT::i8)
   7081     return SDValue();
   7082 
   7083   if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
   7084     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
   7085     // as its second argument.
   7086     if (N1.getValueType() != MVT::i32)
   7087       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7088     if (N2.getValueType() != MVT::i32)
   7089       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7090     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
   7091   }
   7092   return SDValue();
   7093 }
   7094 
   7095 SDValue
   7096 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   7097   LLVMContext *Context = DAG.getContext();
   7098   DebugLoc dl = Op.getDebugLoc();
   7099   EVT OpVT = Op.getValueType();
   7100 
   7101   // If this is a 256-bit vector result, first insert into a 128-bit
   7102   // vector and then insert into the 256-bit vector.
   7103   if (OpVT.getSizeInBits() > 128) {
   7104     // Insert into a 128-bit vector.
   7105     EVT VT128 = EVT::getVectorVT(*Context,
   7106                                  OpVT.getVectorElementType(),
   7107                                  OpVT.getVectorNumElements() / 2);
   7108 
   7109     Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
   7110 
   7111     // Insert the 128-bit vector.
   7112     return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
   7113                               DAG.getConstant(0, MVT::i32),
   7114                               DAG, dl);
   7115   }
   7116 
   7117   if (Op.getValueType() == MVT::v1i64 &&
   7118       Op.getOperand(0).getValueType() == MVT::i64)
   7119     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
   7120 
   7121   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
   7122   assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
   7123          "Expected an SSE type!");
   7124   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
   7125                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
   7126 }
   7127 
   7128 // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
   7129 // a simple subregister reference or explicit instructions to grab
   7130 // upper bits of a vector.
   7131 SDValue
   7132 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   7133   if (Subtarget->hasAVX()) {
   7134     DebugLoc dl = Op.getNode()->getDebugLoc();
   7135     SDValue Vec = Op.getNode()->getOperand(0);
   7136     SDValue Idx = Op.getNode()->getOperand(1);
   7137 
   7138     if (Op.getNode()->getValueType(0).getSizeInBits() == 128
   7139         && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
   7140         return Extract128BitVector(Vec, Idx, DAG, dl);
   7141     }
   7142   }
   7143   return SDValue();
   7144 }
   7145 
   7146 // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
   7147 // simple superregister reference or explicit instructions to insert
   7148 // the upper bits of a vector.
   7149 SDValue
   7150 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   7151   if (Subtarget->hasAVX()) {
   7152     DebugLoc dl = Op.getNode()->getDebugLoc();
   7153     SDValue Vec = Op.getNode()->getOperand(0);
   7154     SDValue SubVec = Op.getNode()->getOperand(1);
   7155     SDValue Idx = Op.getNode()->getOperand(2);
   7156 
   7157     if (Op.getNode()->getValueType(0).getSizeInBits() == 256
   7158         && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
   7159       return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
   7160     }
   7161   }
   7162   return SDValue();
   7163 }
   7164 
   7165 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   7166 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
   7167 // one of the above mentioned nodes. It has to be wrapped because otherwise
   7168 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   7169 // be used to form addressing mode. These wrapped nodes will be selected
   7170 // into MOV32ri.
   7171 SDValue
   7172 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
   7173   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   7174 
   7175   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7176   // global base reg.
   7177   unsigned char OpFlag = 0;
   7178   unsigned WrapperKind = X86ISD::Wrapper;
   7179   CodeModel::Model M = getTargetMachine().getCodeModel();
   7180 
   7181   if (Subtarget->isPICStyleRIPRel() &&
   7182       (M == CodeModel::Small || M == CodeModel::Kernel))
   7183     WrapperKind = X86ISD::WrapperRIP;
   7184   else if (Subtarget->isPICStyleGOT())
   7185     OpFlag = X86II::MO_GOTOFF;
   7186   else if (Subtarget->isPICStyleStubPIC())
   7187     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7188 
   7189   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
   7190                                              CP->getAlignment(),
   7191                                              CP->getOffset(), OpFlag);
   7192   DebugLoc DL = CP->getDebugLoc();
   7193   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7194   // With PIC, the address is actually $g + Offset.
   7195   if (OpFlag) {
   7196     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7197                          DAG.getNode(X86ISD::GlobalBaseReg,
   7198                                      DebugLoc(), getPointerTy()),
   7199                          Result);
   7200   }
   7201 
   7202   return Result;
   7203 }
   7204 
   7205 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   7206   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   7207 
   7208   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7209   // global base reg.
   7210   unsigned char OpFlag = 0;
   7211   unsigned WrapperKind = X86ISD::Wrapper;
   7212   CodeModel::Model M = getTargetMachine().getCodeModel();
   7213 
   7214   if (Subtarget->isPICStyleRIPRel() &&
   7215       (M == CodeModel::Small || M == CodeModel::Kernel))
   7216     WrapperKind = X86ISD::WrapperRIP;
   7217   else if (Subtarget->isPICStyleGOT())
   7218     OpFlag = X86II::MO_GOTOFF;
   7219   else if (Subtarget->isPICStyleStubPIC())
   7220     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7221 
   7222   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
   7223                                           OpFlag);
   7224   DebugLoc DL = JT->getDebugLoc();
   7225   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7226 
   7227   // With PIC, the address is actually $g + Offset.
   7228   if (OpFlag)
   7229     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7230                          DAG.getNode(X86ISD::GlobalBaseReg,
   7231                                      DebugLoc(), getPointerTy()),
   7232                          Result);
   7233 
   7234   return Result;
   7235 }
   7236 
   7237 SDValue
   7238 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
   7239   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
   7240 
   7241   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7242   // global base reg.
   7243   unsigned char OpFlag = 0;
   7244   unsigned WrapperKind = X86ISD::Wrapper;
   7245   CodeModel::Model M = getTargetMachine().getCodeModel();
   7246 
   7247   if (Subtarget->isPICStyleRIPRel() &&
   7248       (M == CodeModel::Small || M == CodeModel::Kernel)) {
   7249     if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
   7250       OpFlag = X86II::MO_GOTPCREL;
   7251     WrapperKind = X86ISD::WrapperRIP;
   7252   } else if (Subtarget->isPICStyleGOT()) {
   7253     OpFlag = X86II::MO_GOT;
   7254   } else if (Subtarget->isPICStyleStubPIC()) {
   7255     OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
   7256   } else if (Subtarget->isPICStyleStubNoDynamic()) {
   7257     OpFlag = X86II::MO_DARWIN_NONLAZY;
   7258   }
   7259 
   7260   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
   7261 
   7262   DebugLoc DL = Op.getDebugLoc();
   7263   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7264 
   7265 
   7266   // With PIC, the address is actually $g + Offset.
   7267   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   7268       !Subtarget->is64Bit()) {
   7269     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7270                          DAG.getNode(X86ISD::GlobalBaseReg,
   7271                                      DebugLoc(), getPointerTy()),
   7272                          Result);
   7273   }
   7274 
   7275   // For symbols that require a load from a stub to get the address, emit the
   7276   // load.
   7277   if (isGlobalStubReference(OpFlag))
   7278     Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
   7279                          MachinePointerInfo::getGOT(), false, false, 0);
   7280 
   7281   return Result;
   7282 }
   7283 
   7284 SDValue
   7285 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
   7286   // Create the TargetBlockAddressAddress node.
   7287   unsigned char OpFlags =
   7288     Subtarget->ClassifyBlockAddressReference();
   7289   CodeModel::Model M = getTargetMachine().getCodeModel();
   7290   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   7291   DebugLoc dl = Op.getDebugLoc();
   7292   SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
   7293                                        /*isTarget=*/true, OpFlags);
   7294 
   7295   if (Subtarget->isPICStyleRIPRel() &&
   7296       (M == CodeModel::Small || M == CodeModel::Kernel))
   7297     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7298   else
   7299     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7300 
   7301   // With PIC, the address is actually $g + Offset.
   7302   if (isGlobalRelativeToPICBase(OpFlags)) {
   7303     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7304                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7305                          Result);
   7306   }
   7307 
   7308   return Result;
   7309 }
   7310 
   7311 SDValue
   7312 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
   7313                                       int64_t Offset,
   7314                                       SelectionDAG &DAG) const {
   7315   // Create the TargetGlobalAddress node, folding in the constant
   7316   // offset if it is legal.
   7317   unsigned char OpFlags =
   7318     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
   7319   CodeModel::Model M = getTargetMachine().getCodeModel();
   7320   SDValue Result;
   7321   if (OpFlags == X86II::MO_NO_FLAG &&
   7322       X86::isOffsetSuitableForCodeModel(Offset, M)) {
   7323     // A direct static reference to a global.
   7324     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
   7325     Offset = 0;
   7326   } else {
   7327     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   7328   }
   7329 
   7330   if (Subtarget->isPICStyleRIPRel() &&
   7331       (M == CodeModel::Small || M == CodeModel::Kernel))
   7332     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7333   else
   7334     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7335 
   7336   // With PIC, the address is actually $g + Offset.
   7337   if (isGlobalRelativeToPICBase(OpFlags)) {
   7338     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7339                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7340                          Result);
   7341   }
   7342 
   7343   // For globals that require a load from a stub to get the address, emit the
   7344   // load.
   7345   if (isGlobalStubReference(OpFlags))
   7346     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
   7347                          MachinePointerInfo::getGOT(), false, false, 0);
   7348 
   7349   // If there was a non-zero offset that we didn't fold, create an explicit
   7350   // addition for it.
   7351   if (Offset != 0)
   7352     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
   7353                          DAG.getConstant(Offset, getPointerTy()));
   7354 
   7355   return Result;
   7356 }
   7357 
   7358 SDValue
   7359 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
   7360   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   7361   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
   7362   return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
   7363 }
   7364 
   7365 static SDValue
   7366 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
   7367            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
   7368            unsigned char OperandFlags) {
   7369   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   7370   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   7371   DebugLoc dl = GA->getDebugLoc();
   7372   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7373                                            GA->getValueType(0),
   7374                                            GA->getOffset(),
   7375                                            OperandFlags);
   7376   if (InFlag) {
   7377     SDValue Ops[] = { Chain,  TGA, *InFlag };
   7378     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
   7379   } else {
   7380     SDValue Ops[]  = { Chain, TGA };
   7381     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
   7382   }
   7383 
   7384   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   7385   MFI->setAdjustsStack(true);
   7386 
   7387   SDValue Flag = Chain.getValue(1);
   7388   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
   7389 }
   7390 
   7391 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
   7392 static SDValue
   7393 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7394                                 const EVT PtrVT) {
   7395   SDValue InFlag;
   7396   DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
   7397   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
   7398                                      DAG.getNode(X86ISD::GlobalBaseReg,
   7399                                                  DebugLoc(), PtrVT), InFlag);
   7400   InFlag = Chain.getValue(1);
   7401 
   7402   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
   7403 }
   7404 
   7405 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
   7406 static SDValue
   7407 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7408                                 const EVT PtrVT) {
   7409   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
   7410                     X86::RAX, X86II::MO_TLSGD);
   7411 }
   7412 
   7413 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
   7414 // "local exec" model.
   7415 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7416                                    const EVT PtrVT, TLSModel::Model model,
   7417                                    bool is64Bit) {
   7418   DebugLoc dl = GA->getDebugLoc();
   7419 
   7420   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
   7421   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
   7422                                                          is64Bit ? 257 : 256));
   7423 
   7424   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   7425                                       DAG.getIntPtrConstant(0),
   7426                                       MachinePointerInfo(Ptr), false, false, 0);
   7427 
   7428   unsigned char OperandFlags = 0;
   7429   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
   7430   // initialexec.
   7431   unsigned WrapperKind = X86ISD::Wrapper;
   7432   if (model == TLSModel::LocalExec) {
   7433     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
   7434   } else if (is64Bit) {
   7435     assert(model == TLSModel::InitialExec);
   7436     OperandFlags = X86II::MO_GOTTPOFF;
   7437     WrapperKind = X86ISD::WrapperRIP;
   7438   } else {
   7439     assert(model == TLSModel::InitialExec);
   7440     OperandFlags = X86II::MO_INDNTPOFF;
   7441   }
   7442 
   7443   // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
   7444   // exec)
   7445   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7446                                            GA->getValueType(0),
   7447                                            GA->getOffset(), OperandFlags);
   7448   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
   7449 
   7450   if (model == TLSModel::InitialExec)
   7451     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
   7452                          MachinePointerInfo::getGOT(), false, false, 0);
   7453 
   7454   // The address of the thread local variable is the add of the thread
   7455   // pointer with the offset of the variable.
   7456   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   7457 }
   7458 
   7459 SDValue
   7460 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   7461 
   7462   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   7463   const GlobalValue *GV = GA->getGlobal();
   7464 
   7465   if (Subtarget->isTargetELF()) {
   7466     // TODO: implement the "local dynamic" model
   7467     // TODO: implement the "initial exec"model for pic executables
   7468 
   7469     // If GV is an alias then use the aliasee for determining
   7470     // thread-localness.
   7471     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
   7472       GV = GA->resolveAliasedGlobal(false);
   7473 
   7474     TLSModel::Model model
   7475       = getTLSModel(GV, getTargetMachine().getRelocationModel());
   7476 
   7477     switch (model) {
   7478       case TLSModel::GeneralDynamic:
   7479       case TLSModel::LocalDynamic: // not implemented
   7480         if (Subtarget->is64Bit())
   7481           return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
   7482         return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
   7483 
   7484       case TLSModel::InitialExec:
   7485       case TLSModel::LocalExec:
   7486         return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
   7487                                    Subtarget->is64Bit());
   7488     }
   7489   } else if (Subtarget->isTargetDarwin()) {
   7490     // Darwin only has one model of TLS.  Lower to that.
   7491     unsigned char OpFlag = 0;
   7492     unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
   7493                            X86ISD::WrapperRIP : X86ISD::Wrapper;
   7494 
   7495     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7496     // global base reg.
   7497     bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
   7498                   !Subtarget->is64Bit();
   7499     if (PIC32)
   7500       OpFlag = X86II::MO_TLVP_PIC_BASE;
   7501     else
   7502       OpFlag = X86II::MO_TLVP;
   7503     DebugLoc DL = Op.getDebugLoc();
   7504     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
   7505                                                 GA->getValueType(0),
   7506                                                 GA->getOffset(), OpFlag);
   7507     SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7508 
   7509     // With PIC32, the address is actually $g + Offset.
   7510     if (PIC32)
   7511       Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7512                            DAG.getNode(X86ISD::GlobalBaseReg,
   7513                                        DebugLoc(), getPointerTy()),
   7514                            Offset);
   7515 
   7516     // Lowering the machine isd will make sure everything is in the right
   7517     // location.
   7518     SDValue Chain = DAG.getEntryNode();
   7519     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   7520     SDValue Args[] = { Chain, Offset };
   7521     Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
   7522 
   7523     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
   7524     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   7525     MFI->setAdjustsStack(true);
   7526 
   7527     // And our return value (tls address) is in the standard call return value
   7528     // location.
   7529     unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   7530     return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
   7531   }
   7532 
   7533   assert(false &&
   7534          "TLS not implemented for this target.");
   7535 
   7536   llvm_unreachable("Unreachable");
   7537   return SDValue();
   7538 }
   7539 
   7540 
   7541 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
   7542 /// take a 2 x i32 value to shift plus a shift amount.
   7543 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
   7544   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   7545   EVT VT = Op.getValueType();
   7546   unsigned VTBits = VT.getSizeInBits();
   7547   DebugLoc dl = Op.getDebugLoc();
   7548   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
   7549   SDValue ShOpLo = Op.getOperand(0);
   7550   SDValue ShOpHi = Op.getOperand(1);
   7551   SDValue ShAmt  = Op.getOperand(2);
   7552   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
   7553                                      DAG.getConstant(VTBits - 1, MVT::i8))
   7554                        : DAG.getConstant(0, VT);
   7555 
   7556   SDValue Tmp2, Tmp3;
   7557   if (Op.getOpcode() == ISD::SHL_PARTS) {
   7558     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
   7559     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   7560   } else {
   7561     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
   7562     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
   7563   }
   7564 
   7565   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
   7566                                 DAG.getConstant(VTBits, MVT::i8));
   7567   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   7568                              AndNode, DAG.getConstant(0, MVT::i8));
   7569 
   7570   SDValue Hi, Lo;
   7571   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   7572   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
   7573   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
   7574 
   7575   if (Op.getOpcode() == ISD::SHL_PARTS) {
   7576     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   7577     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   7578   } else {
   7579     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   7580     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   7581   }
   7582 
   7583   SDValue Ops[2] = { Lo, Hi };
   7584   return DAG.getMergeValues(Ops, 2, dl);
   7585 }
   7586 
   7587 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
   7588                                            SelectionDAG &DAG) const {
   7589   EVT SrcVT = Op.getOperand(0).getValueType();
   7590 
   7591   if (SrcVT.isVector())
   7592     return SDValue();
   7593 
   7594   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
   7595          "Unknown SINT_TO_FP to lower!");
   7596 
   7597   // These are really Legal; return the operand so the caller accepts it as
   7598   // Legal.
   7599   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
   7600     return Op;
   7601   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
   7602       Subtarget->is64Bit()) {
   7603     return Op;
   7604   }
   7605 
   7606   DebugLoc dl = Op.getDebugLoc();
   7607   unsigned Size = SrcVT.getSizeInBits()/8;
   7608   MachineFunction &MF = DAG.getMachineFunction();
   7609   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
   7610   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7611   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   7612                                StackSlot,
   7613                                MachinePointerInfo::getFixedStack(SSFI),
   7614                                false, false, 0);
   7615   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
   7616 }
   7617 
   7618 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
   7619                                      SDValue StackSlot,
   7620                                      SelectionDAG &DAG) const {
   7621   // Build the FILD
   7622   DebugLoc DL = Op.getDebugLoc();
   7623   SDVTList Tys;
   7624   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
   7625   if (useSSE)
   7626     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
   7627   else
   7628     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
   7629 
   7630   unsigned ByteSize = SrcVT.getSizeInBits()/8;
   7631 
   7632   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
   7633   MachineMemOperand *MMO;
   7634   if (FI) {
   7635     int SSFI = FI->getIndex();
   7636     MMO =
   7637       DAG.getMachineFunction()
   7638       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7639                             MachineMemOperand::MOLoad, ByteSize, ByteSize);
   7640   } else {
   7641     MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
   7642     StackSlot = StackSlot.getOperand(1);
   7643   }
   7644   SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
   7645   SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
   7646                                            X86ISD::FILD, DL,
   7647                                            Tys, Ops, array_lengthof(Ops),
   7648                                            SrcVT, MMO);
   7649 
   7650   if (useSSE) {
   7651     Chain = Result.getValue(1);
   7652     SDValue InFlag = Result.getValue(2);
   7653 
   7654     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
   7655     // shouldn't be necessary except that RFP cannot be live across
   7656     // multiple blocks. When stackifier is fixed, they can be uncoupled.
   7657     MachineFunction &MF = DAG.getMachineFunction();
   7658     unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
   7659     int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
   7660     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7661     Tys = DAG.getVTList(MVT::Other);
   7662     SDValue Ops[] = {
   7663       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
   7664     };
   7665     MachineMemOperand *MMO =
   7666       DAG.getMachineFunction()
   7667       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7668                             MachineMemOperand::MOStore, SSFISize, SSFISize);
   7669 
   7670     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
   7671                                     Ops, array_lengthof(Ops),
   7672                                     Op.getValueType(), MMO);
   7673     Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
   7674                          MachinePointerInfo::getFixedStack(SSFI),
   7675                          false, false, 0);
   7676   }
   7677 
   7678   return Result;
   7679 }
   7680 
   7681 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
   7682 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
   7683                                                SelectionDAG &DAG) const {
   7684   // This algorithm is not obvious. Here it is in C code, more or less:
   7685   /*
   7686     double uint64_to_double( uint32_t hi, uint32_t lo ) {
   7687       static const __m128i exp = { 0x4330000045300000ULL, 0 };
   7688       static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
   7689 
   7690       // Copy ints to xmm registers.
   7691       __m128i xh = _mm_cvtsi32_si128( hi );
   7692       __m128i xl = _mm_cvtsi32_si128( lo );
   7693 
   7694       // Combine into low half of a single xmm register.
   7695       __m128i x = _mm_unpacklo_epi32( xh, xl );
   7696       __m128d d;
   7697       double sd;
   7698 
   7699       // Merge in appropriate exponents to give the integer bits the right
   7700       // magnitude.
   7701       x = _mm_unpacklo_epi32( x, exp );
   7702 
   7703       // Subtract away the biases to deal with the IEEE-754 double precision
   7704       // implicit 1.
   7705       d = _mm_sub_pd( (__m128d) x, bias );
   7706 
   7707       // All conversions up to here are exact. The correctly rounded result is
   7708       // calculated using the current rounding mode using the following
   7709       // horizontal add.
   7710       d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
   7711       _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
   7712                                 // store doesn't really need to be here (except
   7713                                 // maybe to zero the other double)
   7714       return sd;
   7715     }
   7716   */
   7717 
   7718   DebugLoc dl = Op.getDebugLoc();
   7719   LLVMContext *Context = DAG.getContext();
   7720 
   7721   // Build some magic constants.
   7722   std::vector<Constant*> CV0;
   7723   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
   7724   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
   7725   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
   7726   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
   7727   Constant *C0 = ConstantVector::get(CV0);
   7728   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
   7729 
   7730   std::vector<Constant*> CV1;
   7731   CV1.push_back(
   7732     ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
   7733   CV1.push_back(
   7734     ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
   7735   Constant *C1 = ConstantVector::get(CV1);
   7736   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
   7737 
   7738   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   7739                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   7740                                         Op.getOperand(0),
   7741                                         DAG.getIntPtrConstant(1)));
   7742   SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   7743                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   7744                                         Op.getOperand(0),
   7745                                         DAG.getIntPtrConstant(0)));
   7746   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
   7747   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
   7748                               MachinePointerInfo::getConstantPool(),
   7749                               false, false, 16);
   7750   SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
   7751   SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
   7752   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
   7753                               MachinePointerInfo::getConstantPool(),
   7754                               false, false, 16);
   7755   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
   7756 
   7757   // Add the halves; easiest way is to swap them into another reg first.
   7758   int ShufMask[2] = { 1, -1 };
   7759   SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
   7760                                       DAG.getUNDEF(MVT::v2f64), ShufMask);
   7761   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
   7762   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
   7763                      DAG.getIntPtrConstant(0));
   7764 }
   7765 
   7766 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
   7767 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
   7768                                                SelectionDAG &DAG) const {
   7769   DebugLoc dl = Op.getDebugLoc();
   7770   // FP constant to bias correct the final result.
   7771   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
   7772                                    MVT::f64);
   7773 
   7774   // Load the 32-bit value into an XMM register.
   7775   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   7776                              Op.getOperand(0));
   7777 
   7778   // Zero out the upper parts of the register.
   7779   Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
   7780                                      DAG);
   7781 
   7782   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7783                      DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
   7784                      DAG.getIntPtrConstant(0));
   7785 
   7786   // Or the load with the bias.
   7787   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
   7788                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   7789                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   7790                                                    MVT::v2f64, Load)),
   7791                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   7792                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   7793                                                    MVT::v2f64, Bias)));
   7794   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7795                    DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
   7796                    DAG.getIntPtrConstant(0));
   7797 
   7798   // Subtract the bias.
   7799   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
   7800 
   7801   // Handle final rounding.
   7802   EVT DestVT = Op.getValueType();
   7803 
   7804   if (DestVT.bitsLT(MVT::f64)) {
   7805     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
   7806                        DAG.getIntPtrConstant(0));
   7807   } else if (DestVT.bitsGT(MVT::f64)) {
   7808     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
   7809   }
   7810 
   7811   // Handle final rounding.
   7812   return Sub;
   7813 }
   7814 
   7815 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   7816                                            SelectionDAG &DAG) const {
   7817   SDValue N0 = Op.getOperand(0);
   7818   DebugLoc dl = Op.getDebugLoc();
   7819 
   7820   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
   7821   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
   7822   // the optimization here.
   7823   if (DAG.SignBitIsZero(N0))
   7824     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
   7825 
   7826   EVT SrcVT = N0.getValueType();
   7827   EVT DstVT = Op.getValueType();
   7828   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
   7829     return LowerUINT_TO_FP_i64(Op, DAG);
   7830   else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
   7831     return LowerUINT_TO_FP_i32(Op, DAG);
   7832 
   7833   // Make a 64-bit buffer, and use it to build an FILD.
   7834   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
   7835   if (SrcVT == MVT::i32) {
   7836     SDValue WordOff = DAG.getConstant(4, getPointerTy());
   7837     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
   7838                                      getPointerTy(), StackSlot, WordOff);
   7839     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   7840                                   StackSlot, MachinePointerInfo(),
   7841                                   false, false, 0);
   7842     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
   7843                                   OffsetSlot, MachinePointerInfo(),
   7844                                   false, false, 0);
   7845     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
   7846     return Fild;
   7847   }
   7848 
   7849   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
   7850   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   7851                                 StackSlot, MachinePointerInfo(),
   7852                                false, false, 0);
   7853   // For i64 source, we need to add the appropriate power of 2 if the input
   7854   // was negative.  This is the same as the optimization in
   7855   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
   7856   // we must be careful to do the computation in x87 extended precision, not
   7857   // in SSE. (The generic code can't know it's OK to do this, or how to.)
   7858   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
   7859   MachineMemOperand *MMO =
   7860     DAG.getMachineFunction()
   7861     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7862                           MachineMemOperand::MOLoad, 8, 8);
   7863 
   7864   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
   7865   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
   7866   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
   7867                                          MVT::i64, MMO);
   7868 
   7869   APInt FF(32, 0x5F800000ULL);
   7870 
   7871   // Check whether the sign bit is set.
   7872   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
   7873                                  Op.getOperand(0), DAG.getConstant(0, MVT::i64),
   7874                                  ISD::SETLT);
   7875 
   7876   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
   7877   SDValue FudgePtr = DAG.getConstantPool(
   7878                              ConstantInt::get(*DAG.getContext(), FF.zext(64)),
   7879                                          getPointerTy());
   7880 
   7881   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
   7882   SDValue Zero = DAG.getIntPtrConstant(0);
   7883   SDValue Four = DAG.getIntPtrConstant(4);
   7884   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
   7885                                Zero, Four);
   7886   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
   7887 
   7888   // Load the value out, extending it from f32 to f80.
   7889   // FIXME: Avoid the extend by constructing the right constant pool?
   7890   SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
   7891                                  FudgePtr, MachinePointerInfo::getConstantPool(),
   7892                                  MVT::f32, false, false, 4);
   7893   // Extend everything to 80 bits to force it to be done on x87.
   7894   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
   7895   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
   7896 }
   7897 
   7898 std::pair<SDValue,SDValue> X86TargetLowering::
   7899 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
   7900   DebugLoc DL = Op.getDebugLoc();
   7901 
   7902   EVT DstTy = Op.getValueType();
   7903 
   7904   if (!IsSigned) {
   7905     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
   7906     DstTy = MVT::i64;
   7907   }
   7908 
   7909   assert(DstTy.getSimpleVT() <= MVT::i64 &&
   7910          DstTy.getSimpleVT() >= MVT::i16 &&
   7911          "Unknown FP_TO_SINT to lower!");
   7912 
   7913   // These are really Legal.
   7914   if (DstTy == MVT::i32 &&
   7915       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   7916     return std::make_pair(SDValue(), SDValue());
   7917   if (Subtarget->is64Bit() &&
   7918       DstTy == MVT::i64 &&
   7919       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   7920     return std::make_pair(SDValue(), SDValue());
   7921 
   7922   // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
   7923   // stack slot.
   7924   MachineFunction &MF = DAG.getMachineFunction();
   7925   unsigned MemSize = DstTy.getSizeInBits()/8;
   7926   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   7927   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7928 
   7929 
   7930 
   7931   unsigned Opc;
   7932   switch (DstTy.getSimpleVT().SimpleTy) {
   7933   default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
   7934   case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
   7935   case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
   7936   case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
   7937   }
   7938 
   7939   SDValue Chain = DAG.getEntryNode();
   7940   SDValue Value = Op.getOperand(0);
   7941   EVT TheVT = Op.getOperand(0).getValueType();
   7942   if (isScalarFPTypeInSSEReg(TheVT)) {
   7943     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
   7944     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
   7945                          MachinePointerInfo::getFixedStack(SSFI),
   7946                          false, false, 0);
   7947     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
   7948     SDValue Ops[] = {
   7949       Chain, StackSlot, DAG.getValueType(TheVT)
   7950     };
   7951 
   7952     MachineMemOperand *MMO =
   7953       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7954                               MachineMemOperand::MOLoad, MemSize, MemSize);
   7955     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
   7956                                     DstTy, MMO);
   7957     Chain = Value.getValue(1);
   7958     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   7959     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7960   }
   7961 
   7962   MachineMemOperand *MMO =
   7963     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7964                             MachineMemOperand::MOStore, MemSize, MemSize);
   7965 
   7966   // Build the FP_TO_INT*_IN_MEM
   7967   SDValue Ops[] = { Chain, Value, StackSlot };
   7968   SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
   7969                                          Ops, 3, DstTy, MMO);
   7970 
   7971   return std::make_pair(FIST, StackSlot);
   7972 }
   7973 
   7974 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
   7975                                            SelectionDAG &DAG) const {
   7976   if (Op.getValueType().isVector())
   7977     return SDValue();
   7978 
   7979   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
   7980   SDValue FIST = Vals.first, StackSlot = Vals.second;
   7981   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
   7982   if (FIST.getNode() == 0) return Op;
   7983 
   7984   // Load the result.
   7985   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   7986                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
   7987 }
   7988 
   7989 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
   7990                                            SelectionDAG &DAG) const {
   7991   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
   7992   SDValue FIST = Vals.first, StackSlot = Vals.second;
   7993   assert(FIST.getNode() && "Unexpected failure");
   7994 
   7995   // Load the result.
   7996   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   7997                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
   7998 }
   7999 
   8000 SDValue X86TargetLowering::LowerFABS(SDValue Op,
   8001                                      SelectionDAG &DAG) const {
   8002   LLVMContext *Context = DAG.getContext();
   8003   DebugLoc dl = Op.getDebugLoc();
   8004   EVT VT = Op.getValueType();
   8005   EVT EltVT = VT;
   8006   if (VT.isVector())
   8007     EltVT = VT.getVectorElementType();
   8008   std::vector<Constant*> CV;
   8009   if (EltVT == MVT::f64) {
   8010     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
   8011     CV.push_back(C);
   8012     CV.push_back(C);
   8013   } else {
   8014     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
   8015     CV.push_back(C);
   8016     CV.push_back(C);
   8017     CV.push_back(C);
   8018     CV.push_back(C);
   8019   }
   8020   Constant *C = ConstantVector::get(CV);
   8021   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8022   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8023                              MachinePointerInfo::getConstantPool(),
   8024                              false, false, 16);
   8025   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
   8026 }
   8027 
   8028 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
   8029   LLVMContext *Context = DAG.getContext();
   8030   DebugLoc dl = Op.getDebugLoc();
   8031   EVT VT = Op.getValueType();
   8032   EVT EltVT = VT;
   8033   if (VT.isVector())
   8034     EltVT = VT.getVectorElementType();
   8035   std::vector<Constant*> CV;
   8036   if (EltVT == MVT::f64) {
   8037     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
   8038     CV.push_back(C);
   8039     CV.push_back(C);
   8040   } else {
   8041     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
   8042     CV.push_back(C);
   8043     CV.push_back(C);
   8044     CV.push_back(C);
   8045     CV.push_back(C);
   8046   }
   8047   Constant *C = ConstantVector::get(CV);
   8048   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8049   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8050                              MachinePointerInfo::getConstantPool(),
   8051                              false, false, 16);
   8052   if (VT.isVector()) {
   8053     return DAG.getNode(ISD::BITCAST, dl, VT,
   8054                        DAG.getNode(ISD::XOR, dl, MVT::v2i64,
   8055                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   8056                                 Op.getOperand(0)),
   8057                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
   8058   } else {
   8059     return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
   8060   }
   8061 }
   8062 
   8063 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   8064   LLVMContext *Context = DAG.getContext();
   8065   SDValue Op0 = Op.getOperand(0);
   8066   SDValue Op1 = Op.getOperand(1);
   8067   DebugLoc dl = Op.getDebugLoc();
   8068   EVT VT = Op.getValueType();
   8069   EVT SrcVT = Op1.getValueType();
   8070 
   8071   // If second operand is smaller, extend it first.
   8072   if (SrcVT.bitsLT(VT)) {
   8073     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
   8074     SrcVT = VT;
   8075   }
   8076   // And if it is bigger, shrink it first.
   8077   if (SrcVT.bitsGT(VT)) {
   8078     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
   8079     SrcVT = VT;
   8080   }
   8081 
   8082   // At this point the operands and the result should have the same
   8083   // type, and that won't be f80 since that is not custom lowered.
   8084 
   8085   // First get the sign bit of second operand.
   8086   std::vector<Constant*> CV;
   8087   if (SrcVT == MVT::f64) {
   8088     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
   8089     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   8090   } else {
   8091     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
   8092     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8093     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8094     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8095   }
   8096   Constant *C = ConstantVector::get(CV);
   8097   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8098   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
   8099                               MachinePointerInfo::getConstantPool(),
   8100                               false, false, 16);
   8101   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
   8102 
   8103   // Shift sign bit right or left if the two operands have different types.
   8104   if (SrcVT.bitsGT(VT)) {
   8105     // Op0 is MVT::f32, Op1 is MVT::f64.
   8106     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
   8107     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
   8108                           DAG.getConstant(32, MVT::i32));
   8109     SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
   8110     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
   8111                           DAG.getIntPtrConstant(0));
   8112   }
   8113 
   8114   // Clear first operand sign bit.
   8115   CV.clear();
   8116   if (VT == MVT::f64) {
   8117     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
   8118     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   8119   } else {
   8120     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
   8121     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8122     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8123     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8124   }
   8125   C = ConstantVector::get(CV);
   8126   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8127   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8128                               MachinePointerInfo::getConstantPool(),
   8129                               false, false, 16);
   8130   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
   8131 
   8132   // Or the value with the sign bit.
   8133   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
   8134 }
   8135 
   8136 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
   8137   SDValue N0 = Op.getOperand(0);
   8138   DebugLoc dl = Op.getDebugLoc();
   8139   EVT VT = Op.getValueType();
   8140 
   8141   // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
   8142   SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
   8143                                   DAG.getConstant(1, VT));
   8144   return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
   8145 }
   8146 
   8147 /// Emit nodes that will be selected as "test Op0,Op0", or something
   8148 /// equivalent.
   8149 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
   8150                                     SelectionDAG &DAG) const {
   8151   DebugLoc dl = Op.getDebugLoc();
   8152 
   8153   // CF and OF aren't always set the way we want. Determine which
   8154   // of these we need.
   8155   bool NeedCF = false;
   8156   bool NeedOF = false;
   8157   switch (X86CC) {
   8158   default: break;
   8159   case X86::COND_A: case X86::COND_AE:
   8160   case X86::COND_B: case X86::COND_BE:
   8161     NeedCF = true;
   8162     break;
   8163   case X86::COND_G: case X86::COND_GE:
   8164   case X86::COND_L: case X86::COND_LE:
   8165   case X86::COND_O: case X86::COND_NO:
   8166     NeedOF = true;
   8167     break;
   8168   }
   8169 
   8170   // See if we can use the EFLAGS value from the operand instead of
   8171   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
   8172   // we prove that the arithmetic won't overflow, we can't use OF or CF.
   8173   if (Op.getResNo() != 0 || NeedOF || NeedCF)
   8174     // Emit a CMP with 0, which is the TEST pattern.
   8175     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   8176                        DAG.getConstant(0, Op.getValueType()));
   8177 
   8178   unsigned Opcode = 0;
   8179   unsigned NumOperands = 0;
   8180   switch (Op.getNode()->getOpcode()) {
   8181   case ISD::ADD:
   8182     // Due to an isel shortcoming, be conservative if this add is likely to be
   8183     // selected as part of a load-modify-store instruction. When the root node
   8184     // in a match is a store, isel doesn't know how to remap non-chain non-flag
   8185     // uses of other nodes in the match, such as the ADD in this case. This
   8186     // leads to the ADD being left around and reselected, with the result being
   8187     // two adds in the output.  Alas, even if none our users are stores, that
   8188     // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
   8189     // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
   8190     // climbing the DAG back to the root, and it doesn't seem to be worth the
   8191     // effort.
   8192     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8193            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   8194       if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
   8195         goto default_case;
   8196 
   8197     if (ConstantSDNode *C =
   8198         dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
   8199       // An add of one will be selected as an INC.
   8200       if (C->getAPIntValue() == 1) {
   8201         Opcode = X86ISD::INC;
   8202         NumOperands = 1;
   8203         break;
   8204       }
   8205 
   8206       // An add of negative one (subtract of one) will be selected as a DEC.
   8207       if (C->getAPIntValue().isAllOnesValue()) {
   8208         Opcode = X86ISD::DEC;
   8209         NumOperands = 1;
   8210         break;
   8211       }
   8212     }
   8213 
   8214     // Otherwise use a regular EFLAGS-setting add.
   8215     Opcode = X86ISD::ADD;
   8216     NumOperands = 2;
   8217     break;
   8218   case ISD::AND: {
   8219     // If the primary and result isn't used, don't bother using X86ISD::AND,
   8220     // because a TEST instruction will be better.
   8221     bool NonFlagUse = false;
   8222     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8223            UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   8224       SDNode *User = *UI;
   8225       unsigned UOpNo = UI.getOperandNo();
   8226       if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
   8227         // Look pass truncate.
   8228         UOpNo = User->use_begin().getOperandNo();
   8229         User = *User->use_begin();
   8230       }
   8231 
   8232       if (User->getOpcode() != ISD::BRCOND &&
   8233           User->getOpcode() != ISD::SETCC &&
   8234           (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
   8235         NonFlagUse = true;
   8236         break;
   8237       }
   8238     }
   8239 
   8240     if (!NonFlagUse)
   8241       break;
   8242   }
   8243     // FALL THROUGH
   8244   case ISD::SUB:
   8245   case ISD::OR:
   8246   case ISD::XOR:
   8247     // Due to the ISEL shortcoming noted above, be conservative if this op is
   8248     // likely to be selected as part of a load-modify-store instruction.
   8249     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8250            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   8251       if (UI->getOpcode() == ISD::STORE)
   8252         goto default_case;
   8253 
   8254     // Otherwise use a regular EFLAGS-setting instruction.
   8255     switch (Op.getNode()->getOpcode()) {
   8256     default: llvm_unreachable("unexpected operator!");
   8257     case ISD::SUB: Opcode = X86ISD::SUB; break;
   8258     case ISD::OR:  Opcode = X86ISD::OR;  break;
   8259     case ISD::XOR: Opcode = X86ISD::XOR; break;
   8260     case ISD::AND: Opcode = X86ISD::AND; break;
   8261     }
   8262 
   8263     NumOperands = 2;
   8264     break;
   8265   case X86ISD::ADD:
   8266   case X86ISD::SUB:
   8267   case X86ISD::INC:
   8268   case X86ISD::DEC:
   8269   case X86ISD::OR:
   8270   case X86ISD::XOR:
   8271   case X86ISD::AND:
   8272     return SDValue(Op.getNode(), 1);
   8273   default:
   8274   default_case:
   8275     break;
   8276   }
   8277 
   8278   if (Opcode == 0)
   8279     // Emit a CMP with 0, which is the TEST pattern.
   8280     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   8281                        DAG.getConstant(0, Op.getValueType()));
   8282 
   8283   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   8284   SmallVector<SDValue, 4> Ops;
   8285   for (unsigned i = 0; i != NumOperands; ++i)
   8286     Ops.push_back(Op.getOperand(i));
   8287 
   8288   SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
   8289   DAG.ReplaceAllUsesWith(Op, New);
   8290   return SDValue(New.getNode(), 1);
   8291 }
   8292 
   8293 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
   8294 /// equivalent.
   8295 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
   8296                                    SelectionDAG &DAG) const {
   8297   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
   8298     if (C->getAPIntValue() == 0)
   8299       return EmitTest(Op0, X86CC, DAG);
   8300 
   8301   DebugLoc dl = Op0.getDebugLoc();
   8302   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
   8303 }
   8304 
   8305 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
   8306 /// if it's possible.
   8307 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
   8308                                      DebugLoc dl, SelectionDAG &DAG) const {
   8309   SDValue Op0 = And.getOperand(0);
   8310   SDValue Op1 = And.getOperand(1);
   8311   if (Op0.getOpcode() == ISD::TRUNCATE)
   8312     Op0 = Op0.getOperand(0);
   8313   if (Op1.getOpcode() == ISD::TRUNCATE)
   8314     Op1 = Op1.getOperand(0);
   8315 
   8316   SDValue LHS, RHS;
   8317   if (Op1.getOpcode() == ISD::SHL)
   8318     std::swap(Op0, Op1);
   8319   if (Op0.getOpcode() == ISD::SHL) {
   8320     if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
   8321       if (And00C->getZExtValue() == 1) {
   8322         // If we looked past a truncate, check that it's only truncating away
   8323         // known zeros.
   8324         unsigned BitWidth = Op0.getValueSizeInBits();
   8325         unsigned AndBitWidth = And.getValueSizeInBits();
   8326         if (BitWidth > AndBitWidth) {
   8327           APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
   8328           DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
   8329           if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
   8330             return SDValue();
   8331         }
   8332         LHS = Op1;
   8333         RHS = Op0.getOperand(1);
   8334       }
   8335   } else if (Op1.getOpcode() == ISD::Constant) {
   8336     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
   8337     SDValue AndLHS = Op0;
   8338     if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
   8339       LHS = AndLHS.getOperand(0);
   8340       RHS = AndLHS.getOperand(1);
   8341     }
   8342   }
   8343 
   8344   if (LHS.getNode()) {
   8345     // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
   8346     // instruction.  Since the shift amount is in-range-or-undefined, we know
   8347     // that doing a bittest on the i32 value is ok.  We extend to i32 because
   8348     // the encoding for the i16 version is larger than the i32 version.
   8349     // Also promote i16 to i32 for performance / code size reason.
   8350     if (LHS.getValueType() == MVT::i8 ||
   8351         LHS.getValueType() == MVT::i16)
   8352       LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
   8353 
   8354     // If the operand types disagree, extend the shift amount to match.  Since
   8355     // BT ignores high bits (like shifts) we can use anyextend.
   8356     if (LHS.getValueType() != RHS.getValueType())
   8357       RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
   8358 
   8359     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
   8360     unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
   8361     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8362                        DAG.getConstant(Cond, MVT::i8), BT);
   8363   }
   8364 
   8365   return SDValue();
   8366 }
   8367 
   8368 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   8369 
   8370   if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
   8371 
   8372   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
   8373   SDValue Op0 = Op.getOperand(0);
   8374   SDValue Op1 = Op.getOperand(1);
   8375   DebugLoc dl = Op.getDebugLoc();
   8376   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   8377 
   8378   // Optimize to BT if possible.
   8379   // Lower (X & (1 << N)) == 0 to BT(X, N).
   8380   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
   8381   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
   8382   if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
   8383       Op1.getOpcode() == ISD::Constant &&
   8384       cast<ConstantSDNode>(Op1)->isNullValue() &&
   8385       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   8386     SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
   8387     if (NewSetCC.getNode())
   8388       return NewSetCC;
   8389   }
   8390 
   8391   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
   8392   // these.
   8393   if (Op1.getOpcode() == ISD::Constant &&
   8394       (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
   8395        cast<ConstantSDNode>(Op1)->isNullValue()) &&
   8396       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   8397 
   8398     // If the input is a setcc, then reuse the input setcc or use a new one with
   8399     // the inverted condition.
   8400     if (Op0.getOpcode() == X86ISD::SETCC) {
   8401       X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
   8402       bool Invert = (CC == ISD::SETNE) ^
   8403         cast<ConstantSDNode>(Op1)->isNullValue();
   8404       if (!Invert) return Op0;
   8405 
   8406       CCode = X86::GetOppositeBranchCondition(CCode);
   8407       return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8408                          DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
   8409     }
   8410   }
   8411 
   8412   bool isFP = Op1.getValueType().isFloatingPoint();
   8413   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
   8414   if (X86CC == X86::COND_INVALID)
   8415     return SDValue();
   8416 
   8417   SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
   8418   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8419                      DAG.getConstant(X86CC, MVT::i8), EFLAGS);
   8420 }
   8421 
   8422 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
   8423 // ones, and then concatenate the result back.
   8424 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
   8425   EVT VT = Op.getValueType();
   8426 
   8427   assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
   8428          "Unsupported value type for operation");
   8429 
   8430   int NumElems = VT.getVectorNumElements();
   8431   DebugLoc dl = Op.getDebugLoc();
   8432   SDValue CC = Op.getOperand(2);
   8433   SDValue Idx0 = DAG.getConstant(0, MVT::i32);
   8434   SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
   8435 
   8436   // Extract the LHS vectors
   8437   SDValue LHS = Op.getOperand(0);
   8438   SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
   8439   SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
   8440 
   8441   // Extract the RHS vectors
   8442   SDValue RHS = Op.getOperand(1);
   8443   SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
   8444   SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
   8445 
   8446   // Issue the operation on the smaller types and concatenate the result back
   8447   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   8448   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   8449   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   8450                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
   8451                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
   8452 }
   8453 
   8454 
   8455 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
   8456   SDValue Cond;
   8457   SDValue Op0 = Op.getOperand(0);
   8458   SDValue Op1 = Op.getOperand(1);
   8459   SDValue CC = Op.getOperand(2);
   8460   EVT VT = Op.getValueType();
   8461   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   8462   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
   8463   DebugLoc dl = Op.getDebugLoc();
   8464 
   8465   if (isFP) {
   8466     unsigned SSECC = 8;
   8467     EVT EltVT = Op0.getValueType().getVectorElementType();
   8468     assert(EltVT == MVT::f32 || EltVT == MVT::f64);
   8469 
   8470     unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
   8471     bool Swap = false;
   8472 
   8473     // SSE Condition code mapping:
   8474     //  0 - EQ
   8475     //  1 - LT
   8476     //  2 - LE
   8477     //  3 - UNORD
   8478     //  4 - NEQ
   8479     //  5 - NLT
   8480     //  6 - NLE
   8481     //  7 - ORD
   8482     switch (SetCCOpcode) {
   8483     default: break;
   8484     case ISD::SETOEQ:
   8485     case ISD::SETEQ:  SSECC = 0; break;
   8486     case ISD::SETOGT:
   8487     case ISD::SETGT: Swap = true; // Fallthrough
   8488     case ISD::SETLT:
   8489     case ISD::SETOLT: SSECC = 1; break;
   8490     case ISD::SETOGE:
   8491     case ISD::SETGE: Swap = true; // Fallthrough
   8492     case ISD::SETLE:
   8493     case ISD::SETOLE: SSECC = 2; break;
   8494     case ISD::SETUO:  SSECC = 3; break;
   8495     case ISD::SETUNE:
   8496     case ISD::SETNE:  SSECC = 4; break;
   8497     case ISD::SETULE: Swap = true;
   8498     case ISD::SETUGE: SSECC = 5; break;
   8499     case ISD::SETULT: Swap = true;
   8500     case ISD::SETUGT: SSECC = 6; break;
   8501     case ISD::SETO:   SSECC = 7; break;
   8502     }
   8503     if (Swap)
   8504       std::swap(Op0, Op1);
   8505 
   8506     // In the two special cases we can't handle, emit two comparisons.
   8507     if (SSECC == 8) {
   8508       if (SetCCOpcode == ISD::SETUEQ) {
   8509         SDValue UNORD, EQ;
   8510         UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
   8511         EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
   8512         return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
   8513       }
   8514       else if (SetCCOpcode == ISD::SETONE) {
   8515         SDValue ORD, NEQ;
   8516         ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
   8517         NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
   8518         return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
   8519       }
   8520       llvm_unreachable("Illegal FP comparison");
   8521     }
   8522     // Handle all other FP comparisons here.
   8523     return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
   8524   }
   8525 
   8526   // Break 256-bit integer vector compare into smaller ones.
   8527   if (!isFP && VT.getSizeInBits() == 256)
   8528     return Lower256IntVSETCC(Op, DAG);
   8529 
   8530   // We are handling one of the integer comparisons here.  Since SSE only has
   8531   // GT and EQ comparisons for integer, swapping operands and multiple
   8532   // operations may be required for some comparisons.
   8533   unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
   8534   bool Swap = false, Invert = false, FlipSigns = false;
   8535 
   8536   switch (VT.getSimpleVT().SimpleTy) {
   8537   default: break;
   8538   case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
   8539   case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
   8540   case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
   8541   case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
   8542   }
   8543 
   8544   switch (SetCCOpcode) {
   8545   default: break;
   8546   case ISD::SETNE:  Invert = true;
   8547   case ISD::SETEQ:  Opc = EQOpc; break;
   8548   case ISD::SETLT:  Swap = true;
   8549   case ISD::SETGT:  Opc = GTOpc; break;
   8550   case ISD::SETGE:  Swap = true;
   8551   case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
   8552   case ISD::SETULT: Swap = true;
   8553   case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
   8554   case ISD::SETUGE: Swap = true;
   8555   case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
   8556   }
   8557   if (Swap)
   8558     std::swap(Op0, Op1);
   8559 
   8560   // Check that the operation in question is available (most are plain SSE2,
   8561   // but PCMPGTQ and PCMPEQQ have different requirements).
   8562   if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
   8563     return SDValue();
   8564   if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
   8565     return SDValue();
   8566 
   8567   // Since SSE has no unsigned integer comparisons, we need to flip  the sign
   8568   // bits of the inputs before performing those operations.
   8569   if (FlipSigns) {
   8570     EVT EltVT = VT.getVectorElementType();
   8571     SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
   8572                                       EltVT);
   8573     std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
   8574     SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
   8575                                     SignBits.size());
   8576     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
   8577     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
   8578   }
   8579 
   8580   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   8581 
   8582   // If the logical-not of the result is required, perform that now.
   8583   if (Invert)
   8584     Result = DAG.getNOT(dl, Result, VT);
   8585 
   8586   return Result;
   8587 }
   8588 
   8589 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
   8590 static bool isX86LogicalCmp(SDValue Op) {
   8591   unsigned Opc = Op.getNode()->getOpcode();
   8592   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
   8593     return true;
   8594   if (Op.getResNo() == 1 &&
   8595       (Opc == X86ISD::ADD ||
   8596        Opc == X86ISD::SUB ||
   8597        Opc == X86ISD::ADC ||
   8598        Opc == X86ISD::SBB ||
   8599        Opc == X86ISD::SMUL ||
   8600        Opc == X86ISD::UMUL ||
   8601        Opc == X86ISD::INC ||
   8602        Opc == X86ISD::DEC ||
   8603        Opc == X86ISD::OR ||
   8604        Opc == X86ISD::XOR ||
   8605        Opc == X86ISD::AND))
   8606     return true;
   8607 
   8608   if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
   8609     return true;
   8610 
   8611   return false;
   8612 }
   8613 
   8614 static bool isZero(SDValue V) {
   8615   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   8616   return C && C->isNullValue();
   8617 }
   8618 
   8619 static bool isAllOnes(SDValue V) {
   8620   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   8621   return C && C->isAllOnesValue();
   8622 }
   8623 
   8624 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   8625   bool addTest = true;
   8626   SDValue Cond  = Op.getOperand(0);
   8627   SDValue Op1 = Op.getOperand(1);
   8628   SDValue Op2 = Op.getOperand(2);
   8629   DebugLoc DL = Op.getDebugLoc();
   8630   SDValue CC;
   8631 
   8632   if (Cond.getOpcode() == ISD::SETCC) {
   8633     SDValue NewCond = LowerSETCC(Cond, DAG);
   8634     if (NewCond.getNode())
   8635       Cond = NewCond;
   8636   }
   8637 
   8638   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
   8639   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
   8640   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
   8641   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
   8642   if (Cond.getOpcode() == X86ISD::SETCC &&
   8643       Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
   8644       isZero(Cond.getOperand(1).getOperand(1))) {
   8645     SDValue Cmp = Cond.getOperand(1);
   8646 
   8647     unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
   8648 
   8649     if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
   8650         (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
   8651       SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
   8652 
   8653       SDValue CmpOp0 = Cmp.getOperand(0);
   8654       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
   8655                         CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
   8656 
   8657       SDValue Res =   // Res = 0 or -1.
   8658         DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   8659                     DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
   8660 
   8661       if (isAllOnes(Op1) != (CondCode == X86::COND_E))
   8662         Res = DAG.getNOT(DL, Res, Res.getValueType());
   8663 
   8664       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
   8665       if (N2C == 0 || !N2C->isNullValue())
   8666         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
   8667       return Res;
   8668     }
   8669   }
   8670 
   8671   // Look past (and (setcc_carry (cmp ...)), 1).
   8672   if (Cond.getOpcode() == ISD::AND &&
   8673       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   8674     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   8675     if (C && C->getAPIntValue() == 1)
   8676       Cond = Cond.getOperand(0);
   8677   }
   8678 
   8679   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   8680   // setting operand in place of the X86ISD::SETCC.
   8681   if (Cond.getOpcode() == X86ISD::SETCC ||
   8682       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
   8683     CC = Cond.getOperand(0);
   8684 
   8685     SDValue Cmp = Cond.getOperand(1);
   8686     unsigned Opc = Cmp.getOpcode();
   8687     EVT VT = Op.getValueType();
   8688 
   8689     bool IllegalFPCMov = false;
   8690     if (VT.isFloatingPoint() && !VT.isVector() &&
   8691         !isScalarFPTypeInSSEReg(VT))  // FPStack?
   8692       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
   8693 
   8694     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
   8695         Opc == X86ISD::BT) { // FIXME
   8696       Cond = Cmp;
   8697       addTest = false;
   8698     }
   8699   }
   8700 
   8701   if (addTest) {
   8702     // Look pass the truncate.
   8703     if (Cond.getOpcode() == ISD::TRUNCATE)
   8704       Cond = Cond.getOperand(0);
   8705 
   8706     // We know the result of AND is compared against zero. Try to match
   8707     // it to BT.
   8708     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   8709       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
   8710       if (NewSetCC.getNode()) {
   8711         CC = NewSetCC.getOperand(0);
   8712         Cond = NewSetCC.getOperand(1);
   8713         addTest = false;
   8714       }
   8715     }
   8716   }
   8717 
   8718   if (addTest) {
   8719     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   8720     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   8721   }
   8722 
   8723   // a <  b ? -1 :  0 -> RES = ~setcc_carry
   8724   // a <  b ?  0 : -1 -> RES = setcc_carry
   8725   // a >= b ? -1 :  0 -> RES = setcc_carry
   8726   // a >= b ?  0 : -1 -> RES = ~setcc_carry
   8727   if (Cond.getOpcode() == X86ISD::CMP) {
   8728     unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
   8729 
   8730     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
   8731         (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
   8732       SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   8733                                 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
   8734       if (isAllOnes(Op1) != (CondCode == X86::COND_B))
   8735         return DAG.getNOT(DL, Res, Res.getValueType());
   8736       return Res;
   8737     }
   8738   }
   8739 
   8740   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
   8741   // condition is true.
   8742   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   8743   SDValue Ops[] = { Op2, Op1, CC, Cond };
   8744   return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
   8745 }
   8746 
   8747 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
   8748 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
   8749 // from the AND / OR.
   8750 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
   8751   Opc = Op.getOpcode();
   8752   if (Opc != ISD::OR && Opc != ISD::AND)
   8753     return false;
   8754   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   8755           Op.getOperand(0).hasOneUse() &&
   8756           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
   8757           Op.getOperand(1).hasOneUse());
   8758 }
   8759 
   8760 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
   8761 // 1 and that the SETCC node has a single use.
   8762 static bool isXor1OfSetCC(SDValue Op) {
   8763   if (Op.getOpcode() != ISD::XOR)
   8764     return false;
   8765   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   8766   if (N1C && N1C->getAPIntValue() == 1) {
   8767     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   8768       Op.getOperand(0).hasOneUse();
   8769   }
   8770   return false;
   8771 }
   8772 
   8773 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   8774   bool addTest = true;
   8775   SDValue Chain = Op.getOperand(0);
   8776   SDValue Cond  = Op.getOperand(1);
   8777   SDValue Dest  = Op.getOperand(2);
   8778   DebugLoc dl = Op.getDebugLoc();
   8779   SDValue CC;
   8780 
   8781   if (Cond.getOpcode() == ISD::SETCC) {
   8782     SDValue NewCond = LowerSETCC(Cond, DAG);
   8783     if (NewCond.getNode())
   8784       Cond = NewCond;
   8785   }
   8786 #if 0
   8787   // FIXME: LowerXALUO doesn't handle these!!
   8788   else if (Cond.getOpcode() == X86ISD::ADD  ||
   8789            Cond.getOpcode() == X86ISD::SUB  ||
   8790            Cond.getOpcode() == X86ISD::SMUL ||
   8791            Cond.getOpcode() == X86ISD::UMUL)
   8792     Cond = LowerXALUO(Cond, DAG);
   8793 #endif
   8794 
   8795   // Look pass (and (setcc_carry (cmp ...)), 1).
   8796   if (Cond.getOpcode() == ISD::AND &&
   8797       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   8798     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   8799     if (C && C->getAPIntValue() == 1)
   8800       Cond = Cond.getOperand(0);
   8801   }
   8802 
   8803   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   8804   // setting operand in place of the X86ISD::SETCC.
   8805   if (Cond.getOpcode() == X86ISD::SETCC ||
   8806       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
   8807     CC = Cond.getOperand(0);
   8808 
   8809     SDValue Cmp = Cond.getOperand(1);
   8810     unsigned Opc = Cmp.getOpcode();
   8811     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
   8812     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
   8813       Cond = Cmp;
   8814       addTest = false;
   8815     } else {
   8816       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
   8817       default: break;
   8818       case X86::COND_O:
   8819       case X86::COND_B:
   8820         // These can only come from an arithmetic instruction with overflow,
   8821         // e.g. SADDO, UADDO.
   8822         Cond = Cond.getNode()->getOperand(1);
   8823         addTest = false;
   8824         break;
   8825       }
   8826     }
   8827   } else {
   8828     unsigned CondOpc;
   8829     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
   8830       SDValue Cmp = Cond.getOperand(0).getOperand(1);
   8831       if (CondOpc == ISD::OR) {
   8832         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
   8833         // two branches instead of an explicit OR instruction with a
   8834         // separate test.
   8835         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   8836             isX86LogicalCmp(Cmp)) {
   8837           CC = Cond.getOperand(0).getOperand(0);
   8838           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   8839                               Chain, Dest, CC, Cmp);
   8840           CC = Cond.getOperand(1).getOperand(0);
   8841           Cond = Cmp;
   8842           addTest = false;
   8843         }
   8844       } else { // ISD::AND
   8845         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
   8846         // two branches instead of an explicit AND instruction with a
   8847         // separate test. However, we only do this if this block doesn't
   8848         // have a fall-through edge, because this requires an explicit
   8849         // jmp when the condition is false.
   8850         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   8851             isX86LogicalCmp(Cmp) &&
   8852             Op.getNode()->hasOneUse()) {
   8853           X86::CondCode CCode =
   8854             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   8855           CCode = X86::GetOppositeBranchCondition(CCode);
   8856           CC = DAG.getConstant(CCode, MVT::i8);
   8857           SDNode *User = *Op.getNode()->use_begin();
   8858           // Look for an unconditional branch following this conditional branch.
   8859           // We need this because we need to reverse the successors in order
   8860           // to implement FCMP_OEQ.
   8861           if (User->getOpcode() == ISD::BR) {
   8862             SDValue FalseBB = User->getOperand(1);
   8863             SDNode *NewBR =
   8864               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   8865             assert(NewBR == User);
   8866             (void)NewBR;
   8867             Dest = FalseBB;
   8868 
   8869             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   8870                                 Chain, Dest, CC, Cmp);
   8871             X86::CondCode CCode =
   8872               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
   8873             CCode = X86::GetOppositeBranchCondition(CCode);
   8874             CC = DAG.getConstant(CCode, MVT::i8);
   8875             Cond = Cmp;
   8876             addTest = false;
   8877           }
   8878         }
   8879       }
   8880     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
   8881       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
   8882       // It should be transformed during dag combiner except when the condition
   8883       // is set by a arithmetics with overflow node.
   8884       X86::CondCode CCode =
   8885         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   8886       CCode = X86::GetOppositeBranchCondition(CCode);
   8887       CC = DAG.getConstant(CCode, MVT::i8);
   8888       Cond = Cond.getOperand(0).getOperand(1);
   8889       addTest = false;
   8890     }
   8891   }
   8892 
   8893   if (addTest) {
   8894     // Look pass the truncate.
   8895     if (Cond.getOpcode() == ISD::TRUNCATE)
   8896       Cond = Cond.getOperand(0);
   8897 
   8898     // We know the result of AND is compared against zero. Try to match
   8899     // it to BT.
   8900     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   8901       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
   8902       if (NewSetCC.getNode()) {
   8903         CC = NewSetCC.getOperand(0);
   8904         Cond = NewSetCC.getOperand(1);
   8905         addTest = false;
   8906       }
   8907     }
   8908   }
   8909 
   8910   if (addTest) {
   8911     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   8912     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   8913   }
   8914   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   8915                      Chain, Dest, CC, Cond);
   8916 }
   8917 
   8918 
   8919 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
   8920 // Calls to _alloca is needed to probe the stack when allocating more than 4k
   8921 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
   8922 // that the guard pages used by the OS virtual memory manager are allocated in
   8923 // correct sequence.
   8924 SDValue
   8925 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   8926                                            SelectionDAG &DAG) const {
   8927   assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
   8928           EnableSegmentedStacks) &&
   8929          "This should be used only on Windows targets or when segmented stacks "
   8930          "are being used");
   8931   assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
   8932   DebugLoc dl = Op.getDebugLoc();
   8933 
   8934   // Get the inputs.
   8935   SDValue Chain = Op.getOperand(0);
   8936   SDValue Size  = Op.getOperand(1);
   8937   // FIXME: Ensure alignment here
   8938 
   8939   bool Is64Bit = Subtarget->is64Bit();
   8940   EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
   8941 
   8942   if (EnableSegmentedStacks) {
   8943     MachineFunction &MF = DAG.getMachineFunction();
   8944     MachineRegisterInfo &MRI = MF.getRegInfo();
   8945 
   8946     if (Is64Bit) {
   8947       // The 64 bit implementation of segmented stacks needs to clobber both r10
   8948       // r11. This makes it impossible to use it along with nested parameters.
   8949       const Function *F = MF.getFunction();
   8950 
   8951       for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   8952            I != E; I++)
   8953         if (I->hasNestAttr())
   8954           report_fatal_error("Cannot use segmented stacks with functions that "
   8955                              "have nested arguments.");
   8956     }
   8957 
   8958     const TargetRegisterClass *AddrRegClass =
   8959       getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
   8960     unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
   8961     Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
   8962     SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
   8963                                 DAG.getRegister(Vreg, SPTy));
   8964     SDValue Ops1[2] = { Value, Chain };
   8965     return DAG.getMergeValues(Ops1, 2, dl);
   8966   } else {
   8967     SDValue Flag;
   8968     unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
   8969 
   8970     Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
   8971     Flag = Chain.getValue(1);
   8972     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   8973 
   8974     Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
   8975     Flag = Chain.getValue(1);
   8976 
   8977     Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
   8978 
   8979     SDValue Ops1[2] = { Chain.getValue(0), Chain };
   8980     return DAG.getMergeValues(Ops1, 2, dl);
   8981   }
   8982 }
   8983 
   8984 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   8985   MachineFunction &MF = DAG.getMachineFunction();
   8986   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   8987 
   8988   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   8989   DebugLoc DL = Op.getDebugLoc();
   8990 
   8991   if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
   8992     // vastart just stores the address of the VarArgsFrameIndex slot into the
   8993     // memory location argument.
   8994     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   8995                                    getPointerTy());
   8996     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
   8997                         MachinePointerInfo(SV), false, false, 0);
   8998   }
   8999 
   9000   // __va_list_tag:
   9001   //   gp_offset         (0 - 6 * 8)
   9002   //   fp_offset         (48 - 48 + 8 * 16)
   9003   //   overflow_arg_area (point to parameters coming in memory).
   9004   //   reg_save_area
   9005   SmallVector<SDValue, 8> MemOps;
   9006   SDValue FIN = Op.getOperand(1);
   9007   // Store gp_offset
   9008   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
   9009                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
   9010                                                MVT::i32),
   9011                                FIN, MachinePointerInfo(SV), false, false, 0);
   9012   MemOps.push_back(Store);
   9013 
   9014   // Store fp_offset
   9015   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9016                     FIN, DAG.getIntPtrConstant(4));
   9017   Store = DAG.getStore(Op.getOperand(0), DL,
   9018                        DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
   9019                                        MVT::i32),
   9020                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
   9021   MemOps.push_back(Store);
   9022 
   9023   // Store ptr to overflow_arg_area
   9024   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9025                     FIN, DAG.getIntPtrConstant(4));
   9026   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   9027                                     getPointerTy());
   9028   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
   9029                        MachinePointerInfo(SV, 8),
   9030                        false, false, 0);
   9031   MemOps.push_back(Store);
   9032 
   9033   // Store ptr to reg_save_area.
   9034   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9035                     FIN, DAG.getIntPtrConstant(8));
   9036   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   9037                                     getPointerTy());
   9038   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
   9039                        MachinePointerInfo(SV, 16), false, false, 0);
   9040   MemOps.push_back(Store);
   9041   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   9042                      &MemOps[0], MemOps.size());
   9043 }
   9044 
   9045 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   9046   assert(Subtarget->is64Bit() &&
   9047          "LowerVAARG only handles 64-bit va_arg!");
   9048   assert((Subtarget->isTargetLinux() ||
   9049           Subtarget->isTargetDarwin()) &&
   9050           "Unhandled target in LowerVAARG");
   9051   assert(Op.getNode()->getNumOperands() == 4);
   9052   SDValue Chain = Op.getOperand(0);
   9053   SDValue SrcPtr = Op.getOperand(1);
   9054   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   9055   unsigned Align = Op.getConstantOperandVal(3);
   9056   DebugLoc dl = Op.getDebugLoc();
   9057 
   9058   EVT ArgVT = Op.getNode()->getValueType(0);
   9059   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   9060   uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
   9061   uint8_t ArgMode;
   9062 
   9063   // Decide which area this value should be read from.
   9064   // TODO: Implement the AMD64 ABI in its entirety. This simple
   9065   // selection mechanism works only for the basic types.
   9066   if (ArgVT == MVT::f80) {
   9067     llvm_unreachable("va_arg for f80 not yet implemented");
   9068   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
   9069     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
   9070   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
   9071     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
   9072   } else {
   9073     llvm_unreachable("Unhandled argument type in LowerVAARG");
   9074   }
   9075 
   9076   if (ArgMode == 2) {
   9077     // Sanity Check: Make sure using fp_offset makes sense.
   9078     assert(!UseSoftFloat &&
   9079            !(DAG.getMachineFunction()
   9080                 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
   9081            Subtarget->hasXMM());
   9082   }
   9083 
   9084   // Insert VAARG_64 node into the DAG
   9085   // VAARG_64 returns two values: Variable Argument Address, Chain
   9086   SmallVector<SDValue, 11> InstOps;
   9087   InstOps.push_back(Chain);
   9088   InstOps.push_back(SrcPtr);
   9089   InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
   9090   InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
   9091   InstOps.push_back(DAG.getConstant(Align, MVT::i32));
   9092   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
   9093   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
   9094                                           VTs, &InstOps[0], InstOps.size(),
   9095                                           MVT::i64,
   9096                                           MachinePointerInfo(SV),
   9097                                           /*Align=*/0,
   9098                                           /*Volatile=*/false,
   9099                                           /*ReadMem=*/true,
   9100                                           /*WriteMem=*/true);
   9101   Chain = VAARG.getValue(1);
   9102 
   9103   // Load the next argument and return it
   9104   return DAG.getLoad(ArgVT, dl,
   9105                      Chain,
   9106                      VAARG,
   9107                      MachinePointerInfo(),
   9108                      false, false, 0);
   9109 }
   9110 
   9111 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
   9112   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
   9113   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
   9114   SDValue Chain = Op.getOperand(0);
   9115   SDValue DstPtr = Op.getOperand(1);
   9116   SDValue SrcPtr = Op.getOperand(2);
   9117   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   9118   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   9119   DebugLoc DL = Op.getDebugLoc();
   9120 
   9121   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
   9122                        DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
   9123                        false,
   9124                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   9125 }
   9126 
   9127 SDValue
   9128 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
   9129   DebugLoc dl = Op.getDebugLoc();
   9130   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9131   switch (IntNo) {
   9132   default: return SDValue();    // Don't custom lower most intrinsics.
   9133   // Comparison intrinsics.
   9134   case Intrinsic::x86_sse_comieq_ss:
   9135   case Intrinsic::x86_sse_comilt_ss:
   9136   case Intrinsic::x86_sse_comile_ss:
   9137   case Intrinsic::x86_sse_comigt_ss:
   9138   case Intrinsic::x86_sse_comige_ss:
   9139   case Intrinsic::x86_sse_comineq_ss:
   9140   case Intrinsic::x86_sse_ucomieq_ss:
   9141   case Intrinsic::x86_sse_ucomilt_ss:
   9142   case Intrinsic::x86_sse_ucomile_ss:
   9143   case Intrinsic::x86_sse_ucomigt_ss:
   9144   case Intrinsic::x86_sse_ucomige_ss:
   9145   case Intrinsic::x86_sse_ucomineq_ss:
   9146   case Intrinsic::x86_sse2_comieq_sd:
   9147   case Intrinsic::x86_sse2_comilt_sd:
   9148   case Intrinsic::x86_sse2_comile_sd:
   9149   case Intrinsic::x86_sse2_comigt_sd:
   9150   case Intrinsic::x86_sse2_comige_sd:
   9151   case Intrinsic::x86_sse2_comineq_sd:
   9152   case Intrinsic::x86_sse2_ucomieq_sd:
   9153   case Intrinsic::x86_sse2_ucomilt_sd:
   9154   case Intrinsic::x86_sse2_ucomile_sd:
   9155   case Intrinsic::x86_sse2_ucomigt_sd:
   9156   case Intrinsic::x86_sse2_ucomige_sd:
   9157   case Intrinsic::x86_sse2_ucomineq_sd: {
   9158     unsigned Opc = 0;
   9159     ISD::CondCode CC = ISD::SETCC_INVALID;
   9160     switch (IntNo) {
   9161     default: break;
   9162     case Intrinsic::x86_sse_comieq_ss:
   9163     case Intrinsic::x86_sse2_comieq_sd:
   9164       Opc = X86ISD::COMI;
   9165       CC = ISD::SETEQ;
   9166       break;
   9167     case Intrinsic::x86_sse_comilt_ss:
   9168     case Intrinsic::x86_sse2_comilt_sd:
   9169       Opc = X86ISD::COMI;
   9170       CC = ISD::SETLT;
   9171       break;
   9172     case Intrinsic::x86_sse_comile_ss:
   9173     case Intrinsic::x86_sse2_comile_sd:
   9174       Opc = X86ISD::COMI;
   9175       CC = ISD::SETLE;
   9176       break;
   9177     case Intrinsic::x86_sse_comigt_ss:
   9178     case Intrinsic::x86_sse2_comigt_sd:
   9179       Opc = X86ISD::COMI;
   9180       CC = ISD::SETGT;
   9181       break;
   9182     case Intrinsic::x86_sse_comige_ss:
   9183     case Intrinsic::x86_sse2_comige_sd:
   9184       Opc = X86ISD::COMI;
   9185       CC = ISD::SETGE;
   9186       break;
   9187     case Intrinsic::x86_sse_comineq_ss:
   9188     case Intrinsic::x86_sse2_comineq_sd:
   9189       Opc = X86ISD::COMI;
   9190       CC = ISD::SETNE;
   9191       break;
   9192     case Intrinsic::x86_sse_ucomieq_ss:
   9193     case Intrinsic::x86_sse2_ucomieq_sd:
   9194       Opc = X86ISD::UCOMI;
   9195       CC = ISD::SETEQ;
   9196       break;
   9197     case Intrinsic::x86_sse_ucomilt_ss:
   9198     case Intrinsic::x86_sse2_ucomilt_sd:
   9199       Opc = X86ISD::UCOMI;
   9200       CC = ISD::SETLT;
   9201       break;
   9202     case Intrinsic::x86_sse_ucomile_ss:
   9203     case Intrinsic::x86_sse2_ucomile_sd:
   9204       Opc = X86ISD::UCOMI;
   9205       CC = ISD::SETLE;
   9206       break;
   9207     case Intrinsic::x86_sse_ucomigt_ss:
   9208     case Intrinsic::x86_sse2_ucomigt_sd:
   9209       Opc = X86ISD::UCOMI;
   9210       CC = ISD::SETGT;
   9211       break;
   9212     case Intrinsic::x86_sse_ucomige_ss:
   9213     case Intrinsic::x86_sse2_ucomige_sd:
   9214       Opc = X86ISD::UCOMI;
   9215       CC = ISD::SETGE;
   9216       break;
   9217     case Intrinsic::x86_sse_ucomineq_ss:
   9218     case Intrinsic::x86_sse2_ucomineq_sd:
   9219       Opc = X86ISD::UCOMI;
   9220       CC = ISD::SETNE;
   9221       break;
   9222     }
   9223 
   9224     SDValue LHS = Op.getOperand(1);
   9225     SDValue RHS = Op.getOperand(2);
   9226     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
   9227     assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
   9228     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
   9229     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   9230                                 DAG.getConstant(X86CC, MVT::i8), Cond);
   9231     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   9232   }
   9233   // Arithmetic intrinsics.
   9234   case Intrinsic::x86_sse3_hadd_ps:
   9235   case Intrinsic::x86_sse3_hadd_pd:
   9236   case Intrinsic::x86_avx_hadd_ps_256:
   9237   case Intrinsic::x86_avx_hadd_pd_256:
   9238     return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
   9239                        Op.getOperand(1), Op.getOperand(2));
   9240   case Intrinsic::x86_sse3_hsub_ps:
   9241   case Intrinsic::x86_sse3_hsub_pd:
   9242   case Intrinsic::x86_avx_hsub_ps_256:
   9243   case Intrinsic::x86_avx_hsub_pd_256:
   9244     return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
   9245                        Op.getOperand(1), Op.getOperand(2));
   9246   // ptest and testp intrinsics. The intrinsic these come from are designed to
   9247   // return an integer value, not just an instruction so lower it to the ptest
   9248   // or testp pattern and a setcc for the result.
   9249   case Intrinsic::x86_sse41_ptestz:
   9250   case Intrinsic::x86_sse41_ptestc:
   9251   case Intrinsic::x86_sse41_ptestnzc:
   9252   case Intrinsic::x86_avx_ptestz_256:
   9253   case Intrinsic::x86_avx_ptestc_256:
   9254   case Intrinsic::x86_avx_ptestnzc_256:
   9255   case Intrinsic::x86_avx_vtestz_ps:
   9256   case Intrinsic::x86_avx_vtestc_ps:
   9257   case Intrinsic::x86_avx_vtestnzc_ps:
   9258   case Intrinsic::x86_avx_vtestz_pd:
   9259   case Intrinsic::x86_avx_vtestc_pd:
   9260   case Intrinsic::x86_avx_vtestnzc_pd:
   9261   case Intrinsic::x86_avx_vtestz_ps_256:
   9262   case Intrinsic::x86_avx_vtestc_ps_256:
   9263   case Intrinsic::x86_avx_vtestnzc_ps_256:
   9264   case Intrinsic::x86_avx_vtestz_pd_256:
   9265   case Intrinsic::x86_avx_vtestc_pd_256:
   9266   case Intrinsic::x86_avx_vtestnzc_pd_256: {
   9267     bool IsTestPacked = false;
   9268     unsigned X86CC = 0;
   9269     switch (IntNo) {
   9270     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
   9271     case Intrinsic::x86_avx_vtestz_ps:
   9272     case Intrinsic::x86_avx_vtestz_pd:
   9273     case Intrinsic::x86_avx_vtestz_ps_256:
   9274     case Intrinsic::x86_avx_vtestz_pd_256:
   9275       IsTestPacked = true; // Fallthrough
   9276     case Intrinsic::x86_sse41_ptestz:
   9277     case Intrinsic::x86_avx_ptestz_256:
   9278       // ZF = 1
   9279       X86CC = X86::COND_E;
   9280       break;
   9281     case Intrinsic::x86_avx_vtestc_ps:
   9282     case Intrinsic::x86_avx_vtestc_pd:
   9283     case Intrinsic::x86_avx_vtestc_ps_256:
   9284     case Intrinsic::x86_avx_vtestc_pd_256:
   9285       IsTestPacked = true; // Fallthrough
   9286     case Intrinsic::x86_sse41_ptestc:
   9287     case Intrinsic::x86_avx_ptestc_256:
   9288       // CF = 1
   9289       X86CC = X86::COND_B;
   9290       break;
   9291     case Intrinsic::x86_avx_vtestnzc_ps:
   9292     case Intrinsic::x86_avx_vtestnzc_pd:
   9293     case Intrinsic::x86_avx_vtestnzc_ps_256:
   9294     case Intrinsic::x86_avx_vtestnzc_pd_256:
   9295       IsTestPacked = true; // Fallthrough
   9296     case Intrinsic::x86_sse41_ptestnzc:
   9297     case Intrinsic::x86_avx_ptestnzc_256:
   9298       // ZF and CF = 0
   9299       X86CC = X86::COND_A;
   9300       break;
   9301     }
   9302 
   9303     SDValue LHS = Op.getOperand(1);
   9304     SDValue RHS = Op.getOperand(2);
   9305     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
   9306     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
   9307     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
   9308     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
   9309     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   9310   }
   9311 
   9312   // Fix vector shift instructions where the last operand is a non-immediate
   9313   // i32 value.
   9314   case Intrinsic::x86_sse2_pslli_w:
   9315   case Intrinsic::x86_sse2_pslli_d:
   9316   case Intrinsic::x86_sse2_pslli_q:
   9317   case Intrinsic::x86_sse2_psrli_w:
   9318   case Intrinsic::x86_sse2_psrli_d:
   9319   case Intrinsic::x86_sse2_psrli_q:
   9320   case Intrinsic::x86_sse2_psrai_w:
   9321   case Intrinsic::x86_sse2_psrai_d:
   9322   case Intrinsic::x86_mmx_pslli_w:
   9323   case Intrinsic::x86_mmx_pslli_d:
   9324   case Intrinsic::x86_mmx_pslli_q:
   9325   case Intrinsic::x86_mmx_psrli_w:
   9326   case Intrinsic::x86_mmx_psrli_d:
   9327   case Intrinsic::x86_mmx_psrli_q:
   9328   case Intrinsic::x86_mmx_psrai_w:
   9329   case Intrinsic::x86_mmx_psrai_d: {
   9330     SDValue ShAmt = Op.getOperand(2);
   9331     if (isa<ConstantSDNode>(ShAmt))
   9332       return SDValue();
   9333 
   9334     unsigned NewIntNo = 0;
   9335     EVT ShAmtVT = MVT::v4i32;
   9336     switch (IntNo) {
   9337     case Intrinsic::x86_sse2_pslli_w:
   9338       NewIntNo = Intrinsic::x86_sse2_psll_w;
   9339       break;
   9340     case Intrinsic::x86_sse2_pslli_d:
   9341       NewIntNo = Intrinsic::x86_sse2_psll_d;
   9342       break;
   9343     case Intrinsic::x86_sse2_pslli_q:
   9344       NewIntNo = Intrinsic::x86_sse2_psll_q;
   9345       break;
   9346     case Intrinsic::x86_sse2_psrli_w:
   9347       NewIntNo = Intrinsic::x86_sse2_psrl_w;
   9348       break;
   9349     case Intrinsic::x86_sse2_psrli_d:
   9350       NewIntNo = Intrinsic::x86_sse2_psrl_d;
   9351       break;
   9352     case Intrinsic::x86_sse2_psrli_q:
   9353       NewIntNo = Intrinsic::x86_sse2_psrl_q;
   9354       break;
   9355     case Intrinsic::x86_sse2_psrai_w:
   9356       NewIntNo = Intrinsic::x86_sse2_psra_w;
   9357       break;
   9358     case Intrinsic::x86_sse2_psrai_d:
   9359       NewIntNo = Intrinsic::x86_sse2_psra_d;
   9360       break;
   9361     default: {
   9362       ShAmtVT = MVT::v2i32;
   9363       switch (IntNo) {
   9364       case Intrinsic::x86_mmx_pslli_w:
   9365         NewIntNo = Intrinsic::x86_mmx_psll_w;
   9366         break;
   9367       case Intrinsic::x86_mmx_pslli_d:
   9368         NewIntNo = Intrinsic::x86_mmx_psll_d;
   9369         break;
   9370       case Intrinsic::x86_mmx_pslli_q:
   9371         NewIntNo = Intrinsic::x86_mmx_psll_q;
   9372         break;
   9373       case Intrinsic::x86_mmx_psrli_w:
   9374         NewIntNo = Intrinsic::x86_mmx_psrl_w;
   9375         break;
   9376       case Intrinsic::x86_mmx_psrli_d:
   9377         NewIntNo = Intrinsic::x86_mmx_psrl_d;
   9378         break;
   9379       case Intrinsic::x86_mmx_psrli_q:
   9380         NewIntNo = Intrinsic::x86_mmx_psrl_q;
   9381         break;
   9382       case Intrinsic::x86_mmx_psrai_w:
   9383         NewIntNo = Intrinsic::x86_mmx_psra_w;
   9384         break;
   9385       case Intrinsic::x86_mmx_psrai_d:
   9386         NewIntNo = Intrinsic::x86_mmx_psra_d;
   9387         break;
   9388       default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   9389       }
   9390       break;
   9391     }
   9392     }
   9393 
   9394     // The vector shift intrinsics with scalars uses 32b shift amounts but
   9395     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   9396     // to be zero.
   9397     SDValue ShOps[4];
   9398     ShOps[0] = ShAmt;
   9399     ShOps[1] = DAG.getConstant(0, MVT::i32);
   9400     if (ShAmtVT == MVT::v4i32) {
   9401       ShOps[2] = DAG.getUNDEF(MVT::i32);
   9402       ShOps[3] = DAG.getUNDEF(MVT::i32);
   9403       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
   9404     } else {
   9405       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
   9406 // FIXME this must be lowered to get rid of the invalid type.
   9407     }
   9408 
   9409     EVT VT = Op.getValueType();
   9410     ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
   9411     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9412                        DAG.getConstant(NewIntNo, MVT::i32),
   9413                        Op.getOperand(1), ShAmt);
   9414   }
   9415   }
   9416 }
   9417 
   9418 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
   9419                                            SelectionDAG &DAG) const {
   9420   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   9421   MFI->setReturnAddressIsTaken(true);
   9422 
   9423   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9424   DebugLoc dl = Op.getDebugLoc();
   9425 
   9426   if (Depth > 0) {
   9427     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   9428     SDValue Offset =
   9429       DAG.getConstant(TD->getPointerSize(),
   9430                       Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
   9431     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   9432                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   9433                                    FrameAddr, Offset),
   9434                        MachinePointerInfo(), false, false, 0);
   9435   }
   9436 
   9437   // Just load the return address.
   9438   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   9439   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   9440                      RetAddrFI, MachinePointerInfo(), false, false, 0);
   9441 }
   9442 
   9443 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   9444   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   9445   MFI->setFrameAddressIsTaken(true);
   9446 
   9447   EVT VT = Op.getValueType();
   9448   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
   9449   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9450   unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
   9451   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   9452   while (Depth--)
   9453     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   9454                             MachinePointerInfo(),
   9455                             false, false, 0);
   9456   return FrameAddr;
   9457 }
   9458 
   9459 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
   9460                                                      SelectionDAG &DAG) const {
   9461   return DAG.getIntPtrConstant(2*TD->getPointerSize());
   9462 }
   9463 
   9464 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
   9465   MachineFunction &MF = DAG.getMachineFunction();
   9466   SDValue Chain     = Op.getOperand(0);
   9467   SDValue Offset    = Op.getOperand(1);
   9468   SDValue Handler   = Op.getOperand(2);
   9469   DebugLoc dl       = Op.getDebugLoc();
   9470 
   9471   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   9472                                      Subtarget->is64Bit() ? X86::RBP : X86::EBP,
   9473                                      getPointerTy());
   9474   unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
   9475 
   9476   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
   9477                                   DAG.getIntPtrConstant(TD->getPointerSize()));
   9478   StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
   9479   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
   9480                        false, false, 0);
   9481   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
   9482   MF.getRegInfo().addLiveOut(StoreAddrReg);
   9483 
   9484   return DAG.getNode(X86ISD::EH_RETURN, dl,
   9485                      MVT::Other,
   9486                      Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
   9487 }
   9488 
   9489 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   9490                                                   SelectionDAG &DAG) const {
   9491   return Op.getOperand(0);
   9492 }
   9493 
   9494 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   9495                                                 SelectionDAG &DAG) const {
   9496   SDValue Root = Op.getOperand(0);
   9497   SDValue Trmp = Op.getOperand(1); // trampoline
   9498   SDValue FPtr = Op.getOperand(2); // nested function
   9499   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   9500   DebugLoc dl  = Op.getDebugLoc();
   9501 
   9502   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   9503 
   9504   if (Subtarget->is64Bit()) {
   9505     SDValue OutChains[6];
   9506 
   9507     // Large code-model.
   9508     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
   9509     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
   9510 
   9511     const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
   9512     const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
   9513 
   9514     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
   9515 
   9516     // Load the pointer to the nested function into R11.
   9517     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
   9518     SDValue Addr = Trmp;
   9519     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   9520                                 Addr, MachinePointerInfo(TrmpAddr),
   9521                                 false, false, 0);
   9522 
   9523     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9524                        DAG.getConstant(2, MVT::i64));
   9525     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
   9526                                 MachinePointerInfo(TrmpAddr, 2),
   9527                                 false, false, 2);
   9528 
   9529     // Load the 'nest' parameter value into R10.
   9530     // R10 is specified in X86CallingConv.td
   9531     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
   9532     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9533                        DAG.getConstant(10, MVT::i64));
   9534     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   9535                                 Addr, MachinePointerInfo(TrmpAddr, 10),
   9536                                 false, false, 0);
   9537 
   9538     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9539                        DAG.getConstant(12, MVT::i64));
   9540     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
   9541                                 MachinePointerInfo(TrmpAddr, 12),
   9542                                 false, false, 2);
   9543 
   9544     // Jump to the nested function.
   9545     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
   9546     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9547                        DAG.getConstant(20, MVT::i64));
   9548     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   9549                                 Addr, MachinePointerInfo(TrmpAddr, 20),
   9550                                 false, false, 0);
   9551 
   9552     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
   9553     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   9554                        DAG.getConstant(22, MVT::i64));
   9555     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
   9556                                 MachinePointerInfo(TrmpAddr, 22),
   9557                                 false, false, 0);
   9558 
   9559     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
   9560   } else {
   9561     const Function *Func =
   9562       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
   9563     CallingConv::ID CC = Func->getCallingConv();
   9564     unsigned NestReg;
   9565 
   9566     switch (CC) {
   9567     default:
   9568       llvm_unreachable("Unsupported calling convention");
   9569     case CallingConv::C:
   9570     case CallingConv::X86_StdCall: {
   9571       // Pass 'nest' parameter in ECX.
   9572       // Must be kept in sync with X86CallingConv.td
   9573       NestReg = X86::ECX;
   9574 
   9575       // Check that ECX wasn't needed by an 'inreg' parameter.
   9576       FunctionType *FTy = Func->getFunctionType();
   9577       const AttrListPtr &Attrs = Func->getAttributes();
   9578 
   9579       if (!Attrs.isEmpty() && !Func->isVarArg()) {
   9580         unsigned InRegCount = 0;
   9581         unsigned Idx = 1;
   9582 
   9583         for (FunctionType::param_iterator I = FTy->param_begin(),
   9584              E = FTy->param_end(); I != E; ++I, ++Idx)
   9585           if (Attrs.paramHasAttr(Idx, Attribute::InReg))
   9586             // FIXME: should only count parameters that are lowered to integers.
   9587             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
   9588 
   9589         if (InRegCount > 2) {
   9590           report_fatal_error("Nest register in use - reduce number of inreg"
   9591                              " parameters!");
   9592         }
   9593       }
   9594       break;
   9595     }
   9596     case CallingConv::X86_FastCall:
   9597     case CallingConv::X86_ThisCall:
   9598     case CallingConv::Fast:
   9599       // Pass 'nest' parameter in EAX.
   9600       // Must be kept in sync with X86CallingConv.td
   9601       NestReg = X86::EAX;
   9602       break;
   9603     }
   9604 
   9605     SDValue OutChains[4];
   9606     SDValue Addr, Disp;
   9607 
   9608     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9609                        DAG.getConstant(10, MVT::i32));
   9610     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
   9611 
   9612     // This is storing the opcode for MOV32ri.
   9613     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
   9614     const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
   9615     OutChains[0] = DAG.getStore(Root, dl,
   9616                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
   9617                                 Trmp, MachinePointerInfo(TrmpAddr),
   9618                                 false, false, 0);
   9619 
   9620     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9621                        DAG.getConstant(1, MVT::i32));
   9622     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
   9623                                 MachinePointerInfo(TrmpAddr, 1),
   9624                                 false, false, 1);
   9625 
   9626     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
   9627     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9628                        DAG.getConstant(5, MVT::i32));
   9629     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
   9630                                 MachinePointerInfo(TrmpAddr, 5),
   9631                                 false, false, 1);
   9632 
   9633     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   9634                        DAG.getConstant(6, MVT::i32));
   9635     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
   9636                                 MachinePointerInfo(TrmpAddr, 6),
   9637                                 false, false, 1);
   9638 
   9639     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
   9640   }
   9641 }
   9642 
   9643 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   9644                                             SelectionDAG &DAG) const {
   9645   /*
   9646    The rounding mode is in bits 11:10 of FPSR, and has the following
   9647    settings:
   9648      00 Round to nearest
   9649      01 Round to -inf
   9650      10 Round to +inf
   9651      11 Round to 0
   9652 
   9653   FLT_ROUNDS, on the other hand, expects the following:
   9654     -1 Undefined
   9655      0 Round to 0
   9656      1 Round to nearest
   9657      2 Round to +inf
   9658      3 Round to -inf
   9659 
   9660   To perform the conversion, we do:
   9661     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
   9662   */
   9663 
   9664   MachineFunction &MF = DAG.getMachineFunction();
   9665   const TargetMachine &TM = MF.getTarget();
   9666   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   9667   unsigned StackAlignment = TFI.getStackAlignment();
   9668   EVT VT = Op.getValueType();
   9669   DebugLoc DL = Op.getDebugLoc();
   9670 
   9671   // Save FP Control Word to stack slot
   9672   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
   9673   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   9674 
   9675 
   9676   MachineMemOperand *MMO =
   9677    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   9678                            MachineMemOperand::MOStore, 2, 2);
   9679 
   9680   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
   9681   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
   9682                                           DAG.getVTList(MVT::Other),
   9683                                           Ops, 2, MVT::i16, MMO);
   9684 
   9685   // Load FP Control Word from stack slot
   9686   SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
   9687                             MachinePointerInfo(), false, false, 0);
   9688 
   9689   // Transform as necessary
   9690   SDValue CWD1 =
   9691     DAG.getNode(ISD::SRL, DL, MVT::i16,
   9692                 DAG.getNode(ISD::AND, DL, MVT::i16,
   9693                             CWD, DAG.getConstant(0x800, MVT::i16)),
   9694                 DAG.getConstant(11, MVT::i8));
   9695   SDValue CWD2 =
   9696     DAG.getNode(ISD::SRL, DL, MVT::i16,
   9697                 DAG.getNode(ISD::AND, DL, MVT::i16,
   9698                             CWD, DAG.getConstant(0x400, MVT::i16)),
   9699                 DAG.getConstant(9, MVT::i8));
   9700 
   9701   SDValue RetVal =
   9702     DAG.getNode(ISD::AND, DL, MVT::i16,
   9703                 DAG.getNode(ISD::ADD, DL, MVT::i16,
   9704                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
   9705                             DAG.getConstant(1, MVT::i16)),
   9706                 DAG.getConstant(3, MVT::i16));
   9707 
   9708 
   9709   return DAG.getNode((VT.getSizeInBits() < 16 ?
   9710                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
   9711 }
   9712 
   9713 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
   9714   EVT VT = Op.getValueType();
   9715   EVT OpVT = VT;
   9716   unsigned NumBits = VT.getSizeInBits();
   9717   DebugLoc dl = Op.getDebugLoc();
   9718 
   9719   Op = Op.getOperand(0);
   9720   if (VT == MVT::i8) {
   9721     // Zero extend to i32 since there is not an i8 bsr.
   9722     OpVT = MVT::i32;
   9723     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   9724   }
   9725 
   9726   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
   9727   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   9728   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
   9729 
   9730   // If src is zero (i.e. bsr sets ZF), returns NumBits.
   9731   SDValue Ops[] = {
   9732     Op,
   9733     DAG.getConstant(NumBits+NumBits-1, OpVT),
   9734     DAG.getConstant(X86::COND_E, MVT::i8),
   9735     Op.getValue(1)
   9736   };
   9737   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   9738 
   9739   // Finally xor with NumBits-1.
   9740   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
   9741 
   9742   if (VT == MVT::i8)
   9743     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   9744   return Op;
   9745 }
   9746 
   9747 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
   9748   EVT VT = Op.getValueType();
   9749   EVT OpVT = VT;
   9750   unsigned NumBits = VT.getSizeInBits();
   9751   DebugLoc dl = Op.getDebugLoc();
   9752 
   9753   Op = Op.getOperand(0);
   9754   if (VT == MVT::i8) {
   9755     OpVT = MVT::i32;
   9756     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   9757   }
   9758 
   9759   // Issue a bsf (scan bits forward) which also sets EFLAGS.
   9760   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   9761   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
   9762 
   9763   // If src is zero (i.e. bsf sets ZF), returns NumBits.
   9764   SDValue Ops[] = {
   9765     Op,
   9766     DAG.getConstant(NumBits, OpVT),
   9767     DAG.getConstant(X86::COND_E, MVT::i8),
   9768     Op.getValue(1)
   9769   };
   9770   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   9771 
   9772   if (VT == MVT::i8)
   9773     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   9774   return Op;
   9775 }
   9776 
   9777 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
   9778 // ones, and then concatenate the result back.
   9779 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
   9780   EVT VT = Op.getValueType();
   9781 
   9782   assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
   9783          "Unsupported value type for operation");
   9784 
   9785   int NumElems = VT.getVectorNumElements();
   9786   DebugLoc dl = Op.getDebugLoc();
   9787   SDValue Idx0 = DAG.getConstant(0, MVT::i32);
   9788   SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
   9789 
   9790   // Extract the LHS vectors
   9791   SDValue LHS = Op.getOperand(0);
   9792   SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
   9793   SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
   9794 
   9795   // Extract the RHS vectors
   9796   SDValue RHS = Op.getOperand(1);
   9797   SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
   9798   SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
   9799 
   9800   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   9801   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   9802 
   9803   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   9804                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
   9805                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
   9806 }
   9807 
   9808 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
   9809   assert(Op.getValueType().getSizeInBits() == 256 &&
   9810          Op.getValueType().isInteger() &&
   9811          "Only handle AVX 256-bit vector integer operation");
   9812   return Lower256IntArith(Op, DAG);
   9813 }
   9814 
   9815 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
   9816   assert(Op.getValueType().getSizeInBits() == 256 &&
   9817          Op.getValueType().isInteger() &&
   9818          "Only handle AVX 256-bit vector integer operation");
   9819   return Lower256IntArith(Op, DAG);
   9820 }
   9821 
   9822 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   9823   EVT VT = Op.getValueType();
   9824 
   9825   // Decompose 256-bit ops into smaller 128-bit ops.
   9826   if (VT.getSizeInBits() == 256)
   9827     return Lower256IntArith(Op, DAG);
   9828 
   9829   assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
   9830   DebugLoc dl = Op.getDebugLoc();
   9831 
   9832   //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
   9833   //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
   9834   //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
   9835   //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
   9836   //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
   9837   //
   9838   //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
   9839   //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
   9840   //  return AloBlo + AloBhi + AhiBlo;
   9841 
   9842   SDValue A = Op.getOperand(0);
   9843   SDValue B = Op.getOperand(1);
   9844 
   9845   SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9846                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   9847                        A, DAG.getConstant(32, MVT::i32));
   9848   SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9849                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   9850                        B, DAG.getConstant(32, MVT::i32));
   9851   SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9852                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   9853                        A, B);
   9854   SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9855                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   9856                        A, Bhi);
   9857   SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9858                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
   9859                        Ahi, B);
   9860   AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9861                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   9862                        AloBhi, DAG.getConstant(32, MVT::i32));
   9863   AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9864                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   9865                        AhiBlo, DAG.getConstant(32, MVT::i32));
   9866   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
   9867   Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
   9868   return Res;
   9869 }
   9870 
   9871 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
   9872 
   9873   EVT VT = Op.getValueType();
   9874   DebugLoc dl = Op.getDebugLoc();
   9875   SDValue R = Op.getOperand(0);
   9876   SDValue Amt = Op.getOperand(1);
   9877   LLVMContext *Context = DAG.getContext();
   9878 
   9879   if (!Subtarget->hasXMMInt())
   9880     return SDValue();
   9881 
   9882   // Decompose 256-bit shifts into smaller 128-bit shifts.
   9883   if (VT.getSizeInBits() == 256) {
   9884     int NumElems = VT.getVectorNumElements();
   9885     MVT EltVT = VT.getVectorElementType().getSimpleVT();
   9886     EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   9887 
   9888     // Extract the two vectors
   9889     SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
   9890     SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
   9891                                      DAG, dl);
   9892 
   9893     // Recreate the shift amount vectors
   9894     SDValue Amt1, Amt2;
   9895     if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
   9896       // Constant shift amount
   9897       SmallVector<SDValue, 4> Amt1Csts;
   9898       SmallVector<SDValue, 4> Amt2Csts;
   9899       for (int i = 0; i < NumElems/2; ++i)
   9900         Amt1Csts.push_back(Amt->getOperand(i));
   9901       for (int i = NumElems/2; i < NumElems; ++i)
   9902         Amt2Csts.push_back(Amt->getOperand(i));
   9903 
   9904       Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   9905                                  &Amt1Csts[0], NumElems/2);
   9906       Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   9907                                  &Amt2Csts[0], NumElems/2);
   9908     } else {
   9909       // Variable shift amount
   9910       Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
   9911       Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
   9912                                  DAG, dl);
   9913     }
   9914 
   9915     // Issue new vector shifts for the smaller types
   9916     V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
   9917     V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
   9918 
   9919     // Concatenate the result back
   9920     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
   9921   }
   9922 
   9923   // Optimize shl/srl/sra with constant shift amount.
   9924   if (isSplatVector(Amt.getNode())) {
   9925     SDValue SclrAmt = Amt->getOperand(0);
   9926     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
   9927       uint64_t ShiftAmt = C->getZExtValue();
   9928 
   9929       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
   9930        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9931                      DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   9932                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9933 
   9934       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
   9935        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9936                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   9937                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9938 
   9939       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
   9940        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9941                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   9942                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9943 
   9944       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
   9945        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9946                      DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   9947                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9948 
   9949       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
   9950        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9951                      DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
   9952                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9953 
   9954       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
   9955        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9956                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
   9957                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9958 
   9959       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
   9960        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9961                      DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
   9962                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9963 
   9964       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
   9965        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9966                      DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
   9967                      R, DAG.getConstant(ShiftAmt, MVT::i32));
   9968     }
   9969   }
   9970 
   9971   // Lower SHL with variable shift amount.
   9972   if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
   9973     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9974                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   9975                      Op.getOperand(1), DAG.getConstant(23, MVT::i32));
   9976 
   9977     ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
   9978 
   9979     std::vector<Constant*> CV(4, CI);
   9980     Constant *C = ConstantVector::get(CV);
   9981     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   9982     SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   9983                                  MachinePointerInfo::getConstantPool(),
   9984                                  false, false, 16);
   9985 
   9986     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
   9987     Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
   9988     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
   9989     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
   9990   }
   9991   if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
   9992     // a = a << 5;
   9993     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   9994                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   9995                      Op.getOperand(1), DAG.getConstant(5, MVT::i32));
   9996 
   9997     ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
   9998     ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
   9999 
   10000     std::vector<Constant*> CVM1(16, CM1);
   10001     std::vector<Constant*> CVM2(16, CM2);
   10002     Constant *C = ConstantVector::get(CVM1);
   10003     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   10004     SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   10005                             MachinePointerInfo::getConstantPool(),
   10006                             false, false, 16);
   10007 
   10008     // r = pblendv(r, psllw(r & (char16)15, 4), a);
   10009     M = DAG.getNode(ISD::AND, dl, VT, R, M);
   10010     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10011                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
   10012                     DAG.getConstant(4, MVT::i32));
   10013     R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
   10014     // a += a
   10015     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   10016 
   10017     C = ConstantVector::get(CVM2);
   10018     CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   10019     M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   10020                     MachinePointerInfo::getConstantPool(),
   10021                     false, false, 16);
   10022 
   10023     // r = pblendv(r, psllw(r & (char16)63, 2), a);
   10024     M = DAG.getNode(ISD::AND, dl, VT, R, M);
   10025     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10026                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
   10027                     DAG.getConstant(2, MVT::i32));
   10028     R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
   10029     // a += a
   10030     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   10031 
   10032     // return pblendv(r, r+r, a);
   10033     R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
   10034                     R, DAG.getNode(ISD::ADD, dl, VT, R, R));
   10035     return R;
   10036   }
   10037   return SDValue();
   10038 }
   10039 
   10040 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   10041   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
   10042   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
   10043   // looks for this combo and may remove the "setcc" instruction if the "setcc"
   10044   // has only one use.
   10045   SDNode *N = Op.getNode();
   10046   SDValue LHS = N->getOperand(0);
   10047   SDValue RHS = N->getOperand(1);
   10048   unsigned BaseOp = 0;
   10049   unsigned Cond = 0;
   10050   DebugLoc DL = Op.getDebugLoc();
   10051   switch (Op.getOpcode()) {
   10052   default: llvm_unreachable("Unknown ovf instruction!");
   10053   case ISD::SADDO:
   10054     // A subtract of one will be selected as a INC. Note that INC doesn't
   10055     // set CF, so we can't do this for UADDO.
   10056     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   10057       if (C->isOne()) {
   10058         BaseOp = X86ISD::INC;
   10059         Cond = X86::COND_O;
   10060         break;
   10061       }
   10062     BaseOp = X86ISD::ADD;
   10063     Cond = X86::COND_O;
   10064     break;
   10065   case ISD::UADDO:
   10066     BaseOp = X86ISD::ADD;
   10067     Cond = X86::COND_B;
   10068     break;
   10069   case ISD::SSUBO:
   10070     // A subtract of one will be selected as a DEC. Note that DEC doesn't
   10071     // set CF, so we can't do this for USUBO.
   10072     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   10073       if (C->isOne()) {
   10074         BaseOp = X86ISD::DEC;
   10075         Cond = X86::COND_O;
   10076         break;
   10077       }
   10078     BaseOp = X86ISD::SUB;
   10079     Cond = X86::COND_O;
   10080     break;
   10081   case ISD::USUBO:
   10082     BaseOp = X86ISD::SUB;
   10083     Cond = X86::COND_B;
   10084     break;
   10085   case ISD::SMULO:
   10086     BaseOp = X86ISD::SMUL;
   10087     Cond = X86::COND_O;
   10088     break;
   10089   case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
   10090     SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
   10091                                  MVT::i32);
   10092     SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
   10093 
   10094     SDValue SetCC =
   10095       DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   10096                   DAG.getConstant(X86::COND_O, MVT::i32),
   10097                   SDValue(Sum.getNode(), 2));
   10098 
   10099     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   10100   }
   10101   }
   10102 
   10103   // Also sets EFLAGS.
   10104   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
   10105   SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
   10106 
   10107   SDValue SetCC =
   10108     DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
   10109                 DAG.getConstant(Cond, MVT::i32),
   10110                 SDValue(Sum.getNode(), 1));
   10111 
   10112   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   10113 }
   10114 
   10115 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
   10116   DebugLoc dl = Op.getDebugLoc();
   10117   SDNode* Node = Op.getNode();
   10118   EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
   10119   EVT VT = Node->getValueType(0);
   10120   if (Subtarget->hasXMMInt() && VT.isVector()) {
   10121     unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
   10122                         ExtraVT.getScalarType().getSizeInBits();
   10123     SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
   10124 
   10125     unsigned SHLIntrinsicsID = 0;
   10126     unsigned SRAIntrinsicsID = 0;
   10127     switch (VT.getSimpleVT().SimpleTy) {
   10128       default:
   10129         return SDValue();
   10130       case MVT::v4i32: {
   10131         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
   10132         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
   10133         break;
   10134       }
   10135       case MVT::v8i16: {
   10136         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
   10137         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
   10138         break;
   10139       }
   10140     }
   10141 
   10142     SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10143                          DAG.getConstant(SHLIntrinsicsID, MVT::i32),
   10144                          Node->getOperand(0), ShAmt);
   10145 
   10146     // In case of 1 bit sext, no need to shr
   10147     if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
   10148 
   10149     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   10150                        DAG.getConstant(SRAIntrinsicsID, MVT::i32),
   10151                        Tmp1, ShAmt);
   10152   }
   10153 
   10154   return SDValue();
   10155 }
   10156 
   10157 
   10158 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
   10159   DebugLoc dl = Op.getDebugLoc();
   10160 
   10161   // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
   10162   // There isn't any reason to disable it if the target processor supports it.
   10163   if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
   10164     SDValue Chain = Op.getOperand(0);
   10165     SDValue Zero = DAG.getConstant(0, MVT::i32);
   10166     SDValue Ops[] = {
   10167       DAG.getRegister(X86::ESP, MVT::i32), // Base
   10168       DAG.getTargetConstant(1, MVT::i8),   // Scale
   10169       DAG.getRegister(0, MVT::i32),        // Index
   10170       DAG.getTargetConstant(0, MVT::i32),  // Disp
   10171       DAG.getRegister(0, MVT::i32),        // Segment.
   10172       Zero,
   10173       Chain
   10174     };
   10175     SDNode *Res =
   10176       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
   10177                           array_lengthof(Ops));
   10178     return SDValue(Res, 0);
   10179   }
   10180 
   10181   unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
   10182   if (!isDev)
   10183     return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   10184 
   10185   unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   10186   unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   10187   unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
   10188   unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   10189 
   10190   // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
   10191   if (!Op1 && !Op2 && !Op3 && Op4)
   10192     return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
   10193 
   10194   // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
   10195   if (Op1 && !Op2 && !Op3 && !Op4)
   10196     return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
   10197 
   10198   // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
   10199   //           (MFENCE)>;
   10200   return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   10201 }
   10202 
   10203 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
   10204                                              SelectionDAG &DAG) const {
   10205   DebugLoc dl = Op.getDebugLoc();
   10206   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
   10207     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
   10208   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
   10209     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
   10210 
   10211   // The only fence that needs an instruction is a sequentially-consistent
   10212   // cross-thread fence.
   10213   if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
   10214     // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
   10215     // no-sse2). There isn't any reason to disable it if the target processor
   10216     // supports it.
   10217     if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
   10218       return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   10219 
   10220     SDValue Chain = Op.getOperand(0);
   10221     SDValue Zero = DAG.getConstant(0, MVT::i32);
   10222     SDValue Ops[] = {
   10223       DAG.getRegister(X86::ESP, MVT::i32), // Base
   10224       DAG.getTargetConstant(1, MVT::i8),   // Scale
   10225       DAG.getRegister(0, MVT::i32),        // Index
   10226       DAG.getTargetConstant(0, MVT::i32),  // Disp
   10227       DAG.getRegister(0, MVT::i32),        // Segment.
   10228       Zero,
   10229       Chain
   10230     };
   10231     SDNode *Res =
   10232       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
   10233                          array_lengthof(Ops));
   10234     return SDValue(Res, 0);
   10235   }
   10236 
   10237   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
   10238   return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   10239 }
   10240 
   10241 
   10242 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
   10243   EVT T = Op.getValueType();
   10244   DebugLoc DL = Op.getDebugLoc();
   10245   unsigned Reg = 0;
   10246   unsigned size = 0;
   10247   switch(T.getSimpleVT().SimpleTy) {
   10248   default:
   10249     assert(false && "Invalid value type!");
   10250   case MVT::i8:  Reg = X86::AL;  size = 1; break;
   10251   case MVT::i16: Reg = X86::AX;  size = 2; break;
   10252   case MVT::i32: Reg = X86::EAX; size = 4; break;
   10253   case MVT::i64:
   10254     assert(Subtarget->is64Bit() && "Node not type legal!");
   10255     Reg = X86::RAX; size = 8;
   10256     break;
   10257   }
   10258   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
   10259                                     Op.getOperand(2), SDValue());
   10260   SDValue Ops[] = { cpIn.getValue(0),
   10261                     Op.getOperand(1),
   10262                     Op.getOperand(3),
   10263                     DAG.getTargetConstant(size, MVT::i8),
   10264                     cpIn.getValue(1) };
   10265   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10266   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
   10267   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
   10268                                            Ops, 5, T, MMO);
   10269   SDValue cpOut =
   10270     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
   10271   return cpOut;
   10272 }
   10273 
   10274 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
   10275                                                  SelectionDAG &DAG) const {
   10276   assert(Subtarget->is64Bit() && "Result not type legalized?");
   10277   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10278   SDValue TheChain = Op.getOperand(0);
   10279   DebugLoc dl = Op.getDebugLoc();
   10280   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   10281   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
   10282   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
   10283                                    rax.getValue(2));
   10284   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
   10285                             DAG.getConstant(32, MVT::i8));
   10286   SDValue Ops[] = {
   10287     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
   10288     rdx.getValue(1)
   10289   };
   10290   return DAG.getMergeValues(Ops, 2, dl);
   10291 }
   10292 
   10293 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
   10294                                             SelectionDAG &DAG) const {
   10295   EVT SrcVT = Op.getOperand(0).getValueType();
   10296   EVT DstVT = Op.getValueType();
   10297   assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
   10298          Subtarget->hasMMX() && "Unexpected custom BITCAST");
   10299   assert((DstVT == MVT::i64 ||
   10300           (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
   10301          "Unexpected custom BITCAST");
   10302   // i64 <=> MMX conversions are Legal.
   10303   if (SrcVT==MVT::i64 && DstVT.isVector())
   10304     return Op;
   10305   if (DstVT==MVT::i64 && SrcVT.isVector())
   10306     return Op;
   10307   // MMX <=> MMX conversions are Legal.
   10308   if (SrcVT.isVector() && DstVT.isVector())
   10309     return Op;
   10310   // All other conversions need to be expanded.
   10311   return SDValue();
   10312 }
   10313 
   10314 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
   10315   SDNode *Node = Op.getNode();
   10316   DebugLoc dl = Node->getDebugLoc();
   10317   EVT T = Node->getValueType(0);
   10318   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
   10319                               DAG.getConstant(0, T), Node->getOperand(2));
   10320   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
   10321                        cast<AtomicSDNode>(Node)->getMemoryVT(),
   10322                        Node->getOperand(0),
   10323                        Node->getOperand(1), negOp,
   10324                        cast<AtomicSDNode>(Node)->getSrcValue(),
   10325                        cast<AtomicSDNode>(Node)->getAlignment(),
   10326                        cast<AtomicSDNode>(Node)->getOrdering(),
   10327                        cast<AtomicSDNode>(Node)->getSynchScope());
   10328 }
   10329 
   10330 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
   10331   SDNode *Node = Op.getNode();
   10332   DebugLoc dl = Node->getDebugLoc();
   10333   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   10334 
   10335   // Convert seq_cst store -> xchg
   10336   // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
   10337   // FIXME: On 32-bit, store -> fist or movq would be more efficient
   10338   //        (The only way to get a 16-byte store is cmpxchg16b)
   10339   // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
   10340   if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
   10341       !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   10342     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
   10343                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   10344                                  Node->getOperand(0),
   10345                                  Node->getOperand(1), Node->getOperand(2),
   10346                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   10347                                  cast<AtomicSDNode>(Node)->getOrdering(),
   10348                                  cast<AtomicSDNode>(Node)->getSynchScope());
   10349     return Swap.getValue(1);
   10350   }
   10351   // Other atomic stores have a simple pattern.
   10352   return Op;
   10353 }
   10354 
   10355 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   10356   EVT VT = Op.getNode()->getValueType(0);
   10357 
   10358   // Let legalize expand this if it isn't a legal type yet.
   10359   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   10360     return SDValue();
   10361 
   10362   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   10363 
   10364   unsigned Opc;
   10365   bool ExtraOp = false;
   10366   switch (Op.getOpcode()) {
   10367   default: assert(0 && "Invalid code");
   10368   case ISD::ADDC: Opc = X86ISD::ADD; break;
   10369   case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
   10370   case ISD::SUBC: Opc = X86ISD::SUB; break;
   10371   case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
   10372   }
   10373 
   10374   if (!ExtraOp)
   10375     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   10376                        Op.getOperand(1));
   10377   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   10378                      Op.getOperand(1), Op.getOperand(2));
   10379 }
   10380 
   10381 /// LowerOperation - Provide custom lowering hooks for some operations.
   10382 ///
   10383 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   10384   switch (Op.getOpcode()) {
   10385   default: llvm_unreachable("Should not custom lower this!");
   10386   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
   10387   case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
   10388   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
   10389   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
   10390   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
   10391   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
   10392   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   10393   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
   10394   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   10395   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   10396   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
   10397   case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
   10398   case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
   10399   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   10400   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   10401   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   10402   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   10403   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
   10404   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   10405   case ISD::SHL_PARTS:
   10406   case ISD::SRA_PARTS:
   10407   case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
   10408   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   10409   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
   10410   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
   10411   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
   10412   case ISD::FABS:               return LowerFABS(Op, DAG);
   10413   case ISD::FNEG:               return LowerFNEG(Op, DAG);
   10414   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
   10415   case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
   10416   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   10417   case ISD::SELECT:             return LowerSELECT(Op, DAG);
   10418   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
   10419   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   10420   case ISD::VASTART:            return LowerVASTART(Op, DAG);
   10421   case ISD::VAARG:              return LowerVAARG(Op, DAG);
   10422   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
   10423   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   10424   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   10425   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   10426   case ISD::FRAME_TO_ARGS_OFFSET:
   10427                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
   10428   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   10429   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
   10430   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   10431   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   10432   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   10433   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
   10434   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
   10435   case ISD::MUL:                return LowerMUL(Op, DAG);
   10436   case ISD::SRA:
   10437   case ISD::SRL:
   10438   case ISD::SHL:                return LowerShift(Op, DAG);
   10439   case ISD::SADDO:
   10440   case ISD::UADDO:
   10441   case ISD::SSUBO:
   10442   case ISD::USUBO:
   10443   case ISD::SMULO:
   10444   case ISD::UMULO:              return LowerXALUO(Op, DAG);
   10445   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
   10446   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
   10447   case ISD::ADDC:
   10448   case ISD::ADDE:
   10449   case ISD::SUBC:
   10450   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   10451   case ISD::ADD:                return LowerADD(Op, DAG);
   10452   case ISD::SUB:                return LowerSUB(Op, DAG);
   10453   }
   10454 }
   10455 
   10456 static void ReplaceATOMIC_LOAD(SDNode *Node,
   10457                                   SmallVectorImpl<SDValue> &Results,
   10458                                   SelectionDAG &DAG) {
   10459   DebugLoc dl = Node->getDebugLoc();
   10460   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   10461 
   10462   // Convert wide load -> cmpxchg8b/cmpxchg16b
   10463   // FIXME: On 32-bit, load -> fild or movq would be more efficient
   10464   //        (The only way to get a 16-byte load is cmpxchg16b)
   10465   // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
   10466   SDValue Zero = DAG.getConstant(0, VT);
   10467   SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
   10468                                Node->getOperand(0),
   10469                                Node->getOperand(1), Zero, Zero,
   10470                                cast<AtomicSDNode>(Node)->getMemOperand(),
   10471                                cast<AtomicSDNode>(Node)->getOrdering(),
   10472                                cast<AtomicSDNode>(Node)->getSynchScope());
   10473   Results.push_back(Swap.getValue(0));
   10474   Results.push_back(Swap.getValue(1));
   10475 }
   10476 
   10477 void X86TargetLowering::
   10478 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
   10479                         SelectionDAG &DAG, unsigned NewOp) const {
   10480   DebugLoc dl = Node->getDebugLoc();
   10481   assert (Node->getValueType(0) == MVT::i64 &&
   10482           "Only know how to expand i64 atomics");
   10483 
   10484   SDValue Chain = Node->getOperand(0);
   10485   SDValue In1 = Node->getOperand(1);
   10486   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   10487                              Node->getOperand(2), DAG.getIntPtrConstant(0));
   10488   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   10489                              Node->getOperand(2), DAG.getIntPtrConstant(1));
   10490   SDValue Ops[] = { Chain, In1, In2L, In2H };
   10491   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   10492   SDValue Result =
   10493     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
   10494                             cast<MemSDNode>(Node)->getMemOperand());
   10495   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
   10496   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   10497   Results.push_back(Result.getValue(2));
   10498 }
   10499 
   10500 /// ReplaceNodeResults - Replace a node with an illegal result type
   10501 /// with a new node built out of custom code.
   10502 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
   10503                                            SmallVectorImpl<SDValue>&Results,
   10504                                            SelectionDAG &DAG) const {
   10505   DebugLoc dl = N->getDebugLoc();
   10506   switch (N->getOpcode()) {
   10507   default:
   10508     assert(false && "Do not know how to custom type legalize this operation!");
   10509     return;
   10510   case ISD::SIGN_EXTEND_INREG:
   10511   case ISD::ADDC:
   10512   case ISD::ADDE:
   10513   case ISD::SUBC:
   10514   case ISD::SUBE:
   10515     // We don't want to expand or promote these.
   10516     return;
   10517   case ISD::FP_TO_SINT: {
   10518     std::pair<SDValue,SDValue> Vals =
   10519         FP_TO_INTHelper(SDValue(N, 0), DAG, true);
   10520     SDValue FIST = Vals.first, StackSlot = Vals.second;
   10521     if (FIST.getNode() != 0) {
   10522       EVT VT = N->getValueType(0);
   10523       // Return a load from the stack slot.
   10524       Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
   10525                                     MachinePointerInfo(), false, false, 0));
   10526     }
   10527     return;
   10528   }
   10529   case ISD::READCYCLECOUNTER: {
   10530     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10531     SDValue TheChain = N->getOperand(0);
   10532     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   10533     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
   10534                                      rd.getValue(1));
   10535     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
   10536                                      eax.getValue(2));
   10537     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
   10538     SDValue Ops[] = { eax, edx };
   10539     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
   10540     Results.push_back(edx.getValue(1));
   10541     return;
   10542   }
   10543   case ISD::ATOMIC_CMP_SWAP: {
   10544     EVT T = N->getValueType(0);
   10545     assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
   10546     bool Regs64bit = T == MVT::i128;
   10547     EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
   10548     SDValue cpInL, cpInH;
   10549     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   10550                         DAG.getConstant(0, HalfT));
   10551     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   10552                         DAG.getConstant(1, HalfT));
   10553     cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
   10554                              Regs64bit ? X86::RAX : X86::EAX,
   10555                              cpInL, SDValue());
   10556     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
   10557                              Regs64bit ? X86::RDX : X86::EDX,
   10558                              cpInH, cpInL.getValue(1));
   10559     SDValue swapInL, swapInH;
   10560     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   10561                           DAG.getConstant(0, HalfT));
   10562     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   10563                           DAG.getConstant(1, HalfT));
   10564     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
   10565                                Regs64bit ? X86::RBX : X86::EBX,
   10566                                swapInL, cpInH.getValue(1));
   10567     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
   10568                                Regs64bit ? X86::RCX : X86::ECX,
   10569                                swapInH, swapInL.getValue(1));
   10570     SDValue Ops[] = { swapInH.getValue(0),
   10571                       N->getOperand(1),
   10572                       swapInH.getValue(1) };
   10573     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   10574     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
   10575     unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
   10576                                   X86ISD::LCMPXCHG8_DAG;
   10577     SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
   10578                                              Ops, 3, T, MMO);
   10579     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
   10580                                         Regs64bit ? X86::RAX : X86::EAX,
   10581                                         HalfT, Result.getValue(1));
   10582     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
   10583                                         Regs64bit ? X86::RDX : X86::EDX,
   10584                                         HalfT, cpOutL.getValue(2));
   10585     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
   10586     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
   10587     Results.push_back(cpOutH.getValue(1));
   10588     return;
   10589   }
   10590   case ISD::ATOMIC_LOAD_ADD:
   10591     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
   10592     return;
   10593   case ISD::ATOMIC_LOAD_AND:
   10594     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
   10595     return;
   10596   case ISD::ATOMIC_LOAD_NAND:
   10597     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
   10598     return;
   10599   case ISD::ATOMIC_LOAD_OR:
   10600     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
   10601     return;
   10602   case ISD::ATOMIC_LOAD_SUB:
   10603     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
   10604     return;
   10605   case ISD::ATOMIC_LOAD_XOR:
   10606     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
   10607     return;
   10608   case ISD::ATOMIC_SWAP:
   10609     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
   10610     return;
   10611   case ISD::ATOMIC_LOAD:
   10612     ReplaceATOMIC_LOAD(N, Results, DAG);
   10613   }
   10614 }
   10615 
   10616 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   10617   switch (Opcode) {
   10618   default: return NULL;
   10619   case X86ISD::BSF:                return "X86ISD::BSF";
   10620   case X86ISD::BSR:                return "X86ISD::BSR";
   10621   case X86ISD::SHLD:               return "X86ISD::SHLD";
   10622   case X86ISD::SHRD:               return "X86ISD::SHRD";
   10623   case X86ISD::FAND:               return "X86ISD::FAND";
   10624   case X86ISD::FOR:                return "X86ISD::FOR";
   10625   case X86ISD::FXOR:               return "X86ISD::FXOR";
   10626   case X86ISD::FSRL:               return "X86ISD::FSRL";
   10627   case X86ISD::FILD:               return "X86ISD::FILD";
   10628   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
   10629   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
   10630   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
   10631   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
   10632   case X86ISD::FLD:                return "X86ISD::FLD";
   10633   case X86ISD::FST:                return "X86ISD::FST";
   10634   case X86ISD::CALL:               return "X86ISD::CALL";
   10635   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
   10636   case X86ISD::BT:                 return "X86ISD::BT";
   10637   case X86ISD::CMP:                return "X86ISD::CMP";
   10638   case X86ISD::COMI:               return "X86ISD::COMI";
   10639   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
   10640   case X86ISD::SETCC:              return "X86ISD::SETCC";
   10641   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
   10642   case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
   10643   case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
   10644   case X86ISD::CMOV:               return "X86ISD::CMOV";
   10645   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
   10646   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
   10647   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
   10648   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
   10649   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
   10650   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
   10651   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
   10652   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
   10653   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
   10654   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
   10655   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
   10656   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
   10657   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
   10658   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
   10659   case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
   10660   case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
   10661   case X86ISD::PSIGND:             return "X86ISD::PSIGND";
   10662   case X86ISD::FMAX:               return "X86ISD::FMAX";
   10663   case X86ISD::FMIN:               return "X86ISD::FMIN";
   10664   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
   10665   case X86ISD::FRCP:               return "X86ISD::FRCP";
   10666   case X86ISD::FHADD:              return "X86ISD::FHADD";
   10667   case X86ISD::FHSUB:              return "X86ISD::FHSUB";
   10668   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
   10669   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
   10670   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
   10671   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
   10672   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
   10673   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
   10674   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
   10675   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
   10676   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
   10677   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
   10678   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
   10679   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
   10680   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
   10681   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
   10682   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
   10683   case X86ISD::VSHL:               return "X86ISD::VSHL";
   10684   case X86ISD::VSRL:               return "X86ISD::VSRL";
   10685   case X86ISD::CMPPD:              return "X86ISD::CMPPD";
   10686   case X86ISD::CMPPS:              return "X86ISD::CMPPS";
   10687   case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
   10688   case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
   10689   case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
   10690   case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
   10691   case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
   10692   case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
   10693   case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
   10694   case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
   10695   case X86ISD::ADD:                return "X86ISD::ADD";
   10696   case X86ISD::SUB:                return "X86ISD::SUB";
   10697   case X86ISD::ADC:                return "X86ISD::ADC";
   10698   case X86ISD::SBB:                return "X86ISD::SBB";
   10699   case X86ISD::SMUL:               return "X86ISD::SMUL";
   10700   case X86ISD::UMUL:               return "X86ISD::UMUL";
   10701   case X86ISD::INC:                return "X86ISD::INC";
   10702   case X86ISD::DEC:                return "X86ISD::DEC";
   10703   case X86ISD::OR:                 return "X86ISD::OR";
   10704   case X86ISD::XOR:                return "X86ISD::XOR";
   10705   case X86ISD::AND:                return "X86ISD::AND";
   10706   case X86ISD::ANDN:               return "X86ISD::ANDN";
   10707   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
   10708   case X86ISD::PTEST:              return "X86ISD::PTEST";
   10709   case X86ISD::TESTP:              return "X86ISD::TESTP";
   10710   case X86ISD::PALIGN:             return "X86ISD::PALIGN";
   10711   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
   10712   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
   10713   case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
   10714   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
   10715   case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
   10716   case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
   10717   case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
   10718   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
   10719   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
   10720   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
   10721   case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
   10722   case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
   10723   case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
   10724   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
   10725   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
   10726   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
   10727   case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
   10728   case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
   10729   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
   10730   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
   10731   case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
   10732   case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
   10733   case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
   10734   case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
   10735   case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
   10736   case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
   10737   case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
   10738   case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
   10739   case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
   10740   case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
   10741   case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
   10742   case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
   10743   case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
   10744   case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
   10745   case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
   10746   case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
   10747   case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
   10748   case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
   10749   case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
   10750   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
   10751   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
   10752   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
   10753   case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
   10754   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
   10755   }
   10756 }
   10757 
   10758 // isLegalAddressingMode - Return true if the addressing mode represented
   10759 // by AM is legal for this target, for a load/store of the specified type.
   10760 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   10761                                               Type *Ty) const {
   10762   // X86 supports extremely general addressing modes.
   10763   CodeModel::Model M = getTargetMachine().getCodeModel();
   10764   Reloc::Model R = getTargetMachine().getRelocationModel();
   10765 
   10766   // X86 allows a sign-extended 32-bit immediate field as a displacement.
   10767   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
   10768     return false;
   10769 
   10770   if (AM.BaseGV) {
   10771     unsigned GVFlags =
   10772       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
   10773 
   10774     // If a reference to this global requires an extra load, we can't fold it.
   10775     if (isGlobalStubReference(GVFlags))
   10776       return false;
   10777 
   10778     // If BaseGV requires a register for the PIC base, we cannot also have a
   10779     // BaseReg specified.
   10780     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
   10781       return false;
   10782 
   10783     // If lower 4G is not available, then we must use rip-relative addressing.
   10784     if ((M != CodeModel::Small || R != Reloc::Static) &&
   10785         Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
   10786       return false;
   10787   }
   10788 
   10789   switch (AM.Scale) {
   10790   case 0:
   10791   case 1:
   10792   case 2:
   10793   case 4:
   10794   case 8:
   10795     // These scales always work.
   10796     break;
   10797   case 3:
   10798   case 5:
   10799   case 9:
   10800     // These scales are formed with basereg+scalereg.  Only accept if there is
   10801     // no basereg yet.
   10802     if (AM.HasBaseReg)
   10803       return false;
   10804     break;
   10805   default:  // Other stuff never works.
   10806     return false;
   10807   }
   10808 
   10809   return true;
   10810 }
   10811 
   10812 
   10813 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   10814   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   10815     return false;
   10816   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   10817   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   10818   if (NumBits1 <= NumBits2)
   10819     return false;
   10820   return true;
   10821 }
   10822 
   10823 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   10824   if (!VT1.isInteger() || !VT2.isInteger())
   10825     return false;
   10826   unsigned NumBits1 = VT1.getSizeInBits();
   10827   unsigned NumBits2 = VT2.getSizeInBits();
   10828   if (NumBits1 <= NumBits2)
   10829     return false;
   10830   return true;
   10831 }
   10832 
   10833 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   10834   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   10835   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
   10836 }
   10837 
   10838 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   10839   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   10840   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
   10841 }
   10842 
   10843 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
   10844   // i16 instructions are longer (0x66 prefix) and potentially slower.
   10845   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
   10846 }
   10847 
   10848 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   10849 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   10850 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   10851 /// are assumed to be legal.
   10852 bool
   10853 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   10854                                       EVT VT) const {
   10855   // Very little shuffling can be done for 64-bit vectors right now.
   10856   if (VT.getSizeInBits() == 64)
   10857     return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
   10858 
   10859   // FIXME: pshufb, blends, shifts.
   10860   return (VT.getVectorNumElements() == 2 ||
   10861           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   10862           isMOVLMask(M, VT) ||
   10863           isSHUFPMask(M, VT) ||
   10864           isPSHUFDMask(M, VT) ||
   10865           isPSHUFHWMask(M, VT) ||
   10866           isPSHUFLWMask(M, VT) ||
   10867           isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
   10868           isUNPCKLMask(M, VT) ||
   10869           isUNPCKHMask(M, VT) ||
   10870           isUNPCKL_v_undef_Mask(M, VT) ||
   10871           isUNPCKH_v_undef_Mask(M, VT));
   10872 }
   10873 
   10874 bool
   10875 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
   10876                                           EVT VT) const {
   10877   unsigned NumElts = VT.getVectorNumElements();
   10878   // FIXME: This collection of masks seems suspect.
   10879   if (NumElts == 2)
   10880     return true;
   10881   if (NumElts == 4 && VT.getSizeInBits() == 128) {
   10882     return (isMOVLMask(Mask, VT)  ||
   10883             isCommutedMOVLMask(Mask, VT, true) ||
   10884             isSHUFPMask(Mask, VT) ||
   10885             isCommutedSHUFPMask(Mask, VT));
   10886   }
   10887   return false;
   10888 }
   10889 
   10890 //===----------------------------------------------------------------------===//
   10891 //                           X86 Scheduler Hooks
   10892 //===----------------------------------------------------------------------===//
   10893 
   10894 // private utility function
   10895 MachineBasicBlock *
   10896 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
   10897                                                        MachineBasicBlock *MBB,
   10898                                                        unsigned regOpc,
   10899                                                        unsigned immOpc,
   10900                                                        unsigned LoadOpc,
   10901                                                        unsigned CXchgOpc,
   10902                                                        unsigned notOpc,
   10903                                                        unsigned EAXreg,
   10904                                                        TargetRegisterClass *RC,
   10905                                                        bool invSrc) const {
   10906   // For the atomic bitwise operator, we generate
   10907   //   thisMBB:
   10908   //   newMBB:
   10909   //     ld  t1 = [bitinstr.addr]
   10910   //     op  t2 = t1, [bitinstr.val]
   10911   //     mov EAX = t1
   10912   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
   10913   //     bz  newMBB
   10914   //     fallthrough -->nextMBB
   10915   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   10916   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   10917   MachineFunction::iterator MBBIter = MBB;
   10918   ++MBBIter;
   10919 
   10920   /// First build the CFG
   10921   MachineFunction *F = MBB->getParent();
   10922   MachineBasicBlock *thisMBB = MBB;
   10923   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10924   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10925   F->insert(MBBIter, newMBB);
   10926   F->insert(MBBIter, nextMBB);
   10927 
   10928   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   10929   nextMBB->splice(nextMBB->begin(), thisMBB,
   10930                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   10931                   thisMBB->end());
   10932   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   10933 
   10934   // Update thisMBB to fall through to newMBB
   10935   thisMBB->addSuccessor(newMBB);
   10936 
   10937   // newMBB jumps to itself and fall through to nextMBB
   10938   newMBB->addSuccessor(nextMBB);
   10939   newMBB->addSuccessor(newMBB);
   10940 
   10941   // Insert instructions into newMBB based on incoming instruction
   10942   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   10943          "unexpected number of operands");
   10944   DebugLoc dl = bInstr->getDebugLoc();
   10945   MachineOperand& destOper = bInstr->getOperand(0);
   10946   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   10947   int numArgs = bInstr->getNumOperands() - 1;
   10948   for (int i=0; i < numArgs; ++i)
   10949     argOpers[i] = &bInstr->getOperand(i+1);
   10950 
   10951   // x86 address has 4 operands: base, index, scale, and displacement
   10952   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   10953   int valArgIndx = lastAddrIndx + 1;
   10954 
   10955   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   10956   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
   10957   for (int i=0; i <= lastAddrIndx; ++i)
   10958     (*MIB).addOperand(*argOpers[i]);
   10959 
   10960   unsigned tt = F->getRegInfo().createVirtualRegister(RC);
   10961   if (invSrc) {
   10962     MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
   10963   }
   10964   else
   10965     tt = t1;
   10966 
   10967   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   10968   assert((argOpers[valArgIndx]->isReg() ||
   10969           argOpers[valArgIndx]->isImm()) &&
   10970          "invalid operand");
   10971   if (argOpers[valArgIndx]->isReg())
   10972     MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
   10973   else
   10974     MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
   10975   MIB.addReg(tt);
   10976   (*MIB).addOperand(*argOpers[valArgIndx]);
   10977 
   10978   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
   10979   MIB.addReg(t1);
   10980 
   10981   MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
   10982   for (int i=0; i <= lastAddrIndx; ++i)
   10983     (*MIB).addOperand(*argOpers[i]);
   10984   MIB.addReg(t2);
   10985   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   10986   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   10987                     bInstr->memoperands_end());
   10988 
   10989   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   10990   MIB.addReg(EAXreg);
   10991 
   10992   // insert branch
   10993   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   10994 
   10995   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   10996   return nextMBB;
   10997 }
   10998 
   10999 // private utility function:  64 bit atomics on 32 bit host.
   11000 MachineBasicBlock *
   11001 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
   11002                                                        MachineBasicBlock *MBB,
   11003                                                        unsigned regOpcL,
   11004                                                        unsigned regOpcH,
   11005                                                        unsigned immOpcL,
   11006                                                        unsigned immOpcH,
   11007                                                        bool invSrc) const {
   11008   // For the atomic bitwise operator, we generate
   11009   //   thisMBB (instructions are in pairs, except cmpxchg8b)
   11010   //     ld t1,t2 = [bitinstr.addr]
   11011   //   newMBB:
   11012   //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
   11013   //     op  t5, t6 <- out1, out2, [bitinstr.val]
   11014   //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
   11015   //     mov ECX, EBX <- t5, t6
   11016   //     mov EAX, EDX <- t1, t2
   11017   //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
   11018   //     mov t3, t4 <- EAX, EDX
   11019   //     bz  newMBB
   11020   //     result in out1, out2
   11021   //     fallthrough -->nextMBB
   11022 
   11023   const TargetRegisterClass *RC = X86::GR32RegisterClass;
   11024   const unsigned LoadOpc = X86::MOV32rm;
   11025   const unsigned NotOpc = X86::NOT32r;
   11026   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11027   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11028   MachineFunction::iterator MBBIter = MBB;
   11029   ++MBBIter;
   11030 
   11031   /// First build the CFG
   11032   MachineFunction *F = MBB->getParent();
   11033   MachineBasicBlock *thisMBB = MBB;
   11034   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11035   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11036   F->insert(MBBIter, newMBB);
   11037   F->insert(MBBIter, nextMBB);
   11038 
   11039   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   11040   nextMBB->splice(nextMBB->begin(), thisMBB,
   11041                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   11042                   thisMBB->end());
   11043   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11044 
   11045   // Update thisMBB to fall through to newMBB
   11046   thisMBB->addSuccessor(newMBB);
   11047 
   11048   // newMBB jumps to itself and fall through to nextMBB
   11049   newMBB->addSuccessor(nextMBB);
   11050   newMBB->addSuccessor(newMBB);
   11051 
   11052   DebugLoc dl = bInstr->getDebugLoc();
   11053   // Insert instructions into newMBB based on incoming instruction
   11054   // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
   11055   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
   11056          "unexpected number of operands");
   11057   MachineOperand& dest1Oper = bInstr->getOperand(0);
   11058   MachineOperand& dest2Oper = bInstr->getOperand(1);
   11059   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   11060   for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
   11061     argOpers[i] = &bInstr->getOperand(i+2);
   11062 
   11063     // We use some of the operands multiple times, so conservatively just
   11064     // clear any kill flags that might be present.
   11065     if (argOpers[i]->isReg() && argOpers[i]->isUse())
   11066       argOpers[i]->setIsKill(false);
   11067   }
   11068 
   11069   // x86 address has 5 operands: base, index, scale, displacement, and segment.
   11070   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   11071 
   11072   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   11073   MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
   11074   for (int i=0; i <= lastAddrIndx; ++i)
   11075     (*MIB).addOperand(*argOpers[i]);
   11076   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   11077   MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
   11078   // add 4 to displacement.
   11079   for (int i=0; i <= lastAddrIndx-2; ++i)
   11080     (*MIB).addOperand(*argOpers[i]);
   11081   MachineOperand newOp3 = *(argOpers[3]);
   11082   if (newOp3.isImm())
   11083     newOp3.setImm(newOp3.getImm()+4);
   11084   else
   11085     newOp3.setOffset(newOp3.getOffset()+4);
   11086   (*MIB).addOperand(newOp3);
   11087   (*MIB).addOperand(*argOpers[lastAddrIndx]);
   11088 
   11089   // t3/4 are defined later, at the bottom of the loop
   11090   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
   11091   unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
   11092   BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
   11093     .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
   11094   BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
   11095     .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
   11096 
   11097   // The subsequent operations should be using the destination registers of
   11098   //the PHI instructions.
   11099   if (invSrc) {
   11100     t1 = F->getRegInfo().createVirtualRegister(RC);
   11101     t2 = F->getRegInfo().createVirtualRegister(RC);
   11102     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
   11103     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
   11104   } else {
   11105     t1 = dest1Oper.getReg();
   11106     t2 = dest2Oper.getReg();
   11107   }
   11108 
   11109   int valArgIndx = lastAddrIndx + 1;
   11110   assert((argOpers[valArgIndx]->isReg() ||
   11111           argOpers[valArgIndx]->isImm()) &&
   11112          "invalid operand");
   11113   unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
   11114   unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
   11115   if (argOpers[valArgIndx]->isReg())
   11116     MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
   11117   else
   11118     MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
   11119   if (regOpcL != X86::MOV32rr)
   11120     MIB.addReg(t1);
   11121   (*MIB).addOperand(*argOpers[valArgIndx]);
   11122   assert(argOpers[valArgIndx + 1]->isReg() ==
   11123          argOpers[valArgIndx]->isReg());
   11124   assert(argOpers[valArgIndx + 1]->isImm() ==
   11125          argOpers[valArgIndx]->isImm());
   11126   if (argOpers[valArgIndx + 1]->isReg())
   11127     MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
   11128   else
   11129     MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
   11130   if (regOpcH != X86::MOV32rr)
   11131     MIB.addReg(t2);
   11132   (*MIB).addOperand(*argOpers[valArgIndx + 1]);
   11133 
   11134   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   11135   MIB.addReg(t1);
   11136   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
   11137   MIB.addReg(t2);
   11138 
   11139   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
   11140   MIB.addReg(t5);
   11141   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
   11142   MIB.addReg(t6);
   11143 
   11144   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
   11145   for (int i=0; i <= lastAddrIndx; ++i)
   11146     (*MIB).addOperand(*argOpers[i]);
   11147 
   11148   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   11149   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   11150                     bInstr->memoperands_end());
   11151 
   11152   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
   11153   MIB.addReg(X86::EAX);
   11154   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
   11155   MIB.addReg(X86::EDX);
   11156 
   11157   // insert branch
   11158   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   11159 
   11160   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   11161   return nextMBB;
   11162 }
   11163 
   11164 // private utility function
   11165 MachineBasicBlock *
   11166 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
   11167                                                       MachineBasicBlock *MBB,
   11168                                                       unsigned cmovOpc) const {
   11169   // For the atomic min/max operator, we generate
   11170   //   thisMBB:
   11171   //   newMBB:
   11172   //     ld t1 = [min/max.addr]
   11173   //     mov t2 = [min/max.val]
   11174   //     cmp  t1, t2
   11175   //     cmov[cond] t2 = t1
   11176   //     mov EAX = t1
   11177   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
   11178   //     bz   newMBB
   11179   //     fallthrough -->nextMBB
   11180   //
   11181   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11182   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11183   MachineFunction::iterator MBBIter = MBB;
   11184   ++MBBIter;
   11185 
   11186   /// First build the CFG
   11187   MachineFunction *F = MBB->getParent();
   11188   MachineBasicBlock *thisMBB = MBB;
   11189   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11190   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11191   F->insert(MBBIter, newMBB);
   11192   F->insert(MBBIter, nextMBB);
   11193 
   11194   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   11195   nextMBB->splice(nextMBB->begin(), thisMBB,
   11196                   llvm::next(MachineBasicBlock::iterator(mInstr)),
   11197                   thisMBB->end());
   11198   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11199 
   11200   // Update thisMBB to fall through to newMBB
   11201   thisMBB->addSuccessor(newMBB);
   11202 
   11203   // newMBB jumps to newMBB and fall through to nextMBB
   11204   newMBB->addSuccessor(nextMBB);
   11205   newMBB->addSuccessor(newMBB);
   11206 
   11207   DebugLoc dl = mInstr->getDebugLoc();
   11208   // Insert instructions into newMBB based on incoming instruction
   11209   assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   11210          "unexpected number of operands");
   11211   MachineOperand& destOper = mInstr->getOperand(0);
   11212   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   11213   int numArgs = mInstr->getNumOperands() - 1;
   11214   for (int i=0; i < numArgs; ++i)
   11215     argOpers[i] = &mInstr->getOperand(i+1);
   11216 
   11217   // x86 address has 4 operands: base, index, scale, and displacement
   11218   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   11219   int valArgIndx = lastAddrIndx + 1;
   11220 
   11221   unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   11222   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
   11223   for (int i=0; i <= lastAddrIndx; ++i)
   11224     (*MIB).addOperand(*argOpers[i]);
   11225 
   11226   // We only support register and immediate values
   11227   assert((argOpers[valArgIndx]->isReg() ||
   11228           argOpers[valArgIndx]->isImm()) &&
   11229          "invalid operand");
   11230 
   11231   unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   11232   if (argOpers[valArgIndx]->isReg())
   11233     MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
   11234   else
   11235     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
   11236   (*MIB).addOperand(*argOpers[valArgIndx]);
   11237 
   11238   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   11239   MIB.addReg(t1);
   11240 
   11241   MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
   11242   MIB.addReg(t1);
   11243   MIB.addReg(t2);
   11244 
   11245   // Generate movc
   11246   unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
   11247   MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
   11248   MIB.addReg(t2);
   11249   MIB.addReg(t1);
   11250 
   11251   // Cmp and exchange if none has modified the memory location
   11252   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
   11253   for (int i=0; i <= lastAddrIndx; ++i)
   11254     (*MIB).addOperand(*argOpers[i]);
   11255   MIB.addReg(t3);
   11256   assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   11257   (*MIB).setMemRefs(mInstr->memoperands_begin(),
   11258                     mInstr->memoperands_end());
   11259 
   11260   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   11261   MIB.addReg(X86::EAX);
   11262 
   11263   // insert branch
   11264   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   11265 
   11266   mInstr->eraseFromParent();   // The pseudo instruction is gone now.
   11267   return nextMBB;
   11268 }
   11269 
   11270 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
   11271 // or XMM0_V32I8 in AVX all of this code can be replaced with that
   11272 // in the .td file.
   11273 MachineBasicBlock *
   11274 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
   11275                             unsigned numArgs, bool memArg) const {
   11276   assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
   11277          "Target must have SSE4.2 or AVX features enabled");
   11278 
   11279   DebugLoc dl = MI->getDebugLoc();
   11280   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11281   unsigned Opc;
   11282   if (!Subtarget->hasAVX()) {
   11283     if (memArg)
   11284       Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
   11285     else
   11286       Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
   11287   } else {
   11288     if (memArg)
   11289       Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
   11290     else
   11291       Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
   11292   }
   11293 
   11294   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
   11295   for (unsigned i = 0; i < numArgs; ++i) {
   11296     MachineOperand &Op = MI->getOperand(i+1);
   11297     if (!(Op.isReg() && Op.isImplicit()))
   11298       MIB.addOperand(Op);
   11299   }
   11300   BuildMI(*BB, MI, dl,
   11301     TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
   11302              MI->getOperand(0).getReg())
   11303     .addReg(X86::XMM0);
   11304 
   11305   MI->eraseFromParent();
   11306   return BB;
   11307 }
   11308 
   11309 MachineBasicBlock *
   11310 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
   11311   DebugLoc dl = MI->getDebugLoc();
   11312   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11313 
   11314   // Address into RAX/EAX, other two args into ECX, EDX.
   11315   unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   11316   unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   11317   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
   11318   for (int i = 0; i < X86::AddrNumOperands; ++i)
   11319     MIB.addOperand(MI->getOperand(i));
   11320 
   11321   unsigned ValOps = X86::AddrNumOperands;
   11322   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   11323     .addReg(MI->getOperand(ValOps).getReg());
   11324   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
   11325     .addReg(MI->getOperand(ValOps+1).getReg());
   11326 
   11327   // The instruction doesn't actually take any operands though.
   11328   BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
   11329 
   11330   MI->eraseFromParent(); // The pseudo is gone now.
   11331   return BB;
   11332 }
   11333 
   11334 MachineBasicBlock *
   11335 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
   11336   DebugLoc dl = MI->getDebugLoc();
   11337   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11338 
   11339   // First arg in ECX, the second in EAX.
   11340   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   11341     .addReg(MI->getOperand(0).getReg());
   11342   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
   11343     .addReg(MI->getOperand(1).getReg());
   11344 
   11345   // The instruction doesn't actually take any operands though.
   11346   BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
   11347 
   11348   MI->eraseFromParent(); // The pseudo is gone now.
   11349   return BB;
   11350 }
   11351 
   11352 MachineBasicBlock *
   11353 X86TargetLowering::EmitVAARG64WithCustomInserter(
   11354                    MachineInstr *MI,
   11355                    MachineBasicBlock *MBB) const {
   11356   // Emit va_arg instruction on X86-64.
   11357 
   11358   // Operands to this pseudo-instruction:
   11359   // 0  ) Output        : destination address (reg)
   11360   // 1-5) Input         : va_list address (addr, i64mem)
   11361   // 6  ) ArgSize       : Size (in bytes) of vararg type
   11362   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
   11363   // 8  ) Align         : Alignment of type
   11364   // 9  ) EFLAGS (implicit-def)
   11365 
   11366   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
   11367   assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
   11368 
   11369   unsigned DestReg = MI->getOperand(0).getReg();
   11370   MachineOperand &Base = MI->getOperand(1);
   11371   MachineOperand &Scale = MI->getOperand(2);
   11372   MachineOperand &Index = MI->getOperand(3);
   11373   MachineOperand &Disp = MI->getOperand(4);
   11374   MachineOperand &Segment = MI->getOperand(5);
   11375   unsigned ArgSize = MI->getOperand(6).getImm();
   11376   unsigned ArgMode = MI->getOperand(7).getImm();
   11377   unsigned Align = MI->getOperand(8).getImm();
   11378 
   11379   // Memory Reference
   11380   assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
   11381   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   11382   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   11383 
   11384   // Machine Information
   11385   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11386   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   11387   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
   11388   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
   11389   DebugLoc DL = MI->getDebugLoc();
   11390 
   11391   // struct va_list {
   11392   //   i32   gp_offset
   11393   //   i32   fp_offset
   11394   //   i64   overflow_area (address)
   11395   //   i64   reg_save_area (address)
   11396   // }
   11397   // sizeof(va_list) = 24
   11398   // alignment(va_list) = 8
   11399 
   11400   unsigned TotalNumIntRegs = 6;
   11401   unsigned TotalNumXMMRegs = 8;
   11402   bool UseGPOffset = (ArgMode == 1);
   11403   bool UseFPOffset = (ArgMode == 2);
   11404   unsigned MaxOffset = TotalNumIntRegs * 8 +
   11405                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
   11406 
   11407   /* Align ArgSize to a multiple of 8 */
   11408   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
   11409   bool NeedsAlign = (Align > 8);
   11410 
   11411   MachineBasicBlock *thisMBB = MBB;
   11412   MachineBasicBlock *overflowMBB;
   11413   MachineBasicBlock *offsetMBB;
   11414   MachineBasicBlock *endMBB;
   11415 
   11416   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
   11417   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
   11418   unsigned OffsetReg = 0;
   11419 
   11420   if (!UseGPOffset && !UseFPOffset) {
   11421     // If we only pull from the overflow region, we don't create a branch.
   11422     // We don't need to alter control flow.
   11423     OffsetDestReg = 0; // unused
   11424     OverflowDestReg = DestReg;
   11425 
   11426     offsetMBB = NULL;
   11427     overflowMBB = thisMBB;
   11428     endMBB = thisMBB;
   11429   } else {
   11430     // First emit code to check if gp_offset (or fp_offset) is below the bound.
   11431     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
   11432     // If not, pull from overflow_area. (branch to overflowMBB)
   11433     //
   11434     //       thisMBB
   11435     //         |     .
   11436     //         |        .
   11437     //     offsetMBB   overflowMBB
   11438     //         |        .
   11439     //         |     .
   11440     //        endMBB
   11441 
   11442     // Registers for the PHI in endMBB
   11443     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
   11444     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
   11445 
   11446     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11447     MachineFunction *MF = MBB->getParent();
   11448     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11449     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11450     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11451 
   11452     MachineFunction::iterator MBBIter = MBB;
   11453     ++MBBIter;
   11454 
   11455     // Insert the new basic blocks
   11456     MF->insert(MBBIter, offsetMBB);
   11457     MF->insert(MBBIter, overflowMBB);
   11458     MF->insert(MBBIter, endMBB);
   11459 
   11460     // Transfer the remainder of MBB and its successor edges to endMBB.
   11461     endMBB->splice(endMBB->begin(), thisMBB,
   11462                     llvm::next(MachineBasicBlock::iterator(MI)),
   11463                     thisMBB->end());
   11464     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11465 
   11466     // Make offsetMBB and overflowMBB successors of thisMBB
   11467     thisMBB->addSuccessor(offsetMBB);
   11468     thisMBB->addSuccessor(overflowMBB);
   11469 
   11470     // endMBB is a successor of both offsetMBB and overflowMBB
   11471     offsetMBB->addSuccessor(endMBB);
   11472     overflowMBB->addSuccessor(endMBB);
   11473 
   11474     // Load the offset value into a register
   11475     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   11476     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
   11477       .addOperand(Base)
   11478       .addOperand(Scale)
   11479       .addOperand(Index)
   11480       .addDisp(Disp, UseFPOffset ? 4 : 0)
   11481       .addOperand(Segment)
   11482       .setMemRefs(MMOBegin, MMOEnd);
   11483 
   11484     // Check if there is enough room left to pull this argument.
   11485     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
   11486       .addReg(OffsetReg)
   11487       .addImm(MaxOffset + 8 - ArgSizeA8);
   11488 
   11489     // Branch to "overflowMBB" if offset >= max
   11490     // Fall through to "offsetMBB" otherwise
   11491     BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
   11492       .addMBB(overflowMBB);
   11493   }
   11494 
   11495   // In offsetMBB, emit code to use the reg_save_area.
   11496   if (offsetMBB) {
   11497     assert(OffsetReg != 0);
   11498 
   11499     // Read the reg_save_area address.
   11500     unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
   11501     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
   11502       .addOperand(Base)
   11503       .addOperand(Scale)
   11504       .addOperand(Index)
   11505       .addDisp(Disp, 16)
   11506       .addOperand(Segment)
   11507       .setMemRefs(MMOBegin, MMOEnd);
   11508 
   11509     // Zero-extend the offset
   11510     unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
   11511       BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
   11512         .addImm(0)
   11513         .addReg(OffsetReg)
   11514         .addImm(X86::sub_32bit);
   11515 
   11516     // Add the offset to the reg_save_area to get the final address.
   11517     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
   11518       .addReg(OffsetReg64)
   11519       .addReg(RegSaveReg);
   11520 
   11521     // Compute the offset for the next argument
   11522     unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   11523     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
   11524       .addReg(OffsetReg)
   11525       .addImm(UseFPOffset ? 16 : 8);
   11526 
   11527     // Store it back into the va_list.
   11528     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
   11529       .addOperand(Base)
   11530       .addOperand(Scale)
   11531       .addOperand(Index)
   11532       .addDisp(Disp, UseFPOffset ? 4 : 0)
   11533       .addOperand(Segment)
   11534       .addReg(NextOffsetReg)
   11535       .setMemRefs(MMOBegin, MMOEnd);
   11536 
   11537     // Jump to endMBB
   11538     BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
   11539       .addMBB(endMBB);
   11540   }
   11541 
   11542   //
   11543   // Emit code to use overflow area
   11544   //
   11545 
   11546   // Load the overflow_area address into a register.
   11547   unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
   11548   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
   11549     .addOperand(Base)
   11550     .addOperand(Scale)
   11551     .addOperand(Index)
   11552     .addDisp(Disp, 8)
   11553     .addOperand(Segment)
   11554     .setMemRefs(MMOBegin, MMOEnd);
   11555 
   11556   // If we need to align it, do so. Otherwise, just copy the address
   11557   // to OverflowDestReg.
   11558   if (NeedsAlign) {
   11559     // Align the overflow address
   11560     assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
   11561     unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
   11562 
   11563     // aligned_addr = (addr + (align-1)) & ~(align-1)
   11564     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
   11565       .addReg(OverflowAddrReg)
   11566       .addImm(Align-1);
   11567 
   11568     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
   11569       .addReg(TmpReg)
   11570       .addImm(~(uint64_t)(Align-1));
   11571   } else {
   11572     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
   11573       .addReg(OverflowAddrReg);
   11574   }
   11575 
   11576   // Compute the next overflow address after this argument.
   11577   // (the overflow address should be kept 8-byte aligned)
   11578   unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
   11579   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
   11580     .addReg(OverflowDestReg)
   11581     .addImm(ArgSizeA8);
   11582 
   11583   // Store the new overflow address.
   11584   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
   11585     .addOperand(Base)
   11586     .addOperand(Scale)
   11587     .addOperand(Index)
   11588     .addDisp(Disp, 8)
   11589     .addOperand(Segment)
   11590     .addReg(NextAddrReg)
   11591     .setMemRefs(MMOBegin, MMOEnd);
   11592 
   11593   // If we branched, emit the PHI to the front of endMBB.
   11594   if (offsetMBB) {
   11595     BuildMI(*endMBB, endMBB->begin(), DL,
   11596             TII->get(X86::PHI), DestReg)
   11597       .addReg(OffsetDestReg).addMBB(offsetMBB)
   11598       .addReg(OverflowDestReg).addMBB(overflowMBB);
   11599   }
   11600 
   11601   // Erase the pseudo instruction
   11602   MI->eraseFromParent();
   11603 
   11604   return endMBB;
   11605 }
   11606 
   11607 MachineBasicBlock *
   11608 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
   11609                                                  MachineInstr *MI,
   11610                                                  MachineBasicBlock *MBB) const {
   11611   // Emit code to save XMM registers to the stack. The ABI says that the
   11612   // number of registers to save is given in %al, so it's theoretically
   11613   // possible to do an indirect jump trick to avoid saving all of them,
   11614   // however this code takes a simpler approach and just executes all
   11615   // of the stores if %al is non-zero. It's less code, and it's probably
   11616   // easier on the hardware branch predictor, and stores aren't all that
   11617   // expensive anyway.
   11618 
   11619   // Create the new basic blocks. One block contains all the XMM stores,
   11620   // and one block is the final destination regardless of whether any
   11621   // stores were performed.
   11622   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11623   MachineFunction *F = MBB->getParent();
   11624   MachineFunction::iterator MBBIter = MBB;
   11625   ++MBBIter;
   11626   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11627   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11628   F->insert(MBBIter, XMMSaveMBB);
   11629   F->insert(MBBIter, EndMBB);
   11630 
   11631   // Transfer the remainder of MBB and its successor edges to EndMBB.
   11632   EndMBB->splice(EndMBB->begin(), MBB,
   11633                  llvm::next(MachineBasicBlock::iterator(MI)),
   11634                  MBB->end());
   11635   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
   11636 
   11637   // The original block will now fall through to the XMM save block.
   11638   MBB->addSuccessor(XMMSaveMBB);
   11639   // The XMMSaveMBB will fall through to the end block.
   11640   XMMSaveMBB->addSuccessor(EndMBB);
   11641 
   11642   // Now add the instructions.
   11643   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11644   DebugLoc DL = MI->getDebugLoc();
   11645 
   11646   unsigned CountReg = MI->getOperand(0).getReg();
   11647   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
   11648   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
   11649 
   11650   if (!Subtarget->isTargetWin64()) {
   11651     // If %al is 0, branch around the XMM save block.
   11652     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
   11653     BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
   11654     MBB->addSuccessor(EndMBB);
   11655   }
   11656 
   11657   unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
   11658   // In the XMM save block, save all the XMM argument registers.
   11659   for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
   11660     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
   11661     MachineMemOperand *MMO =
   11662       F->getMachineMemOperand(
   11663           MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
   11664         MachineMemOperand::MOStore,
   11665         /*Size=*/16, /*Align=*/16);
   11666     BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
   11667       .addFrameIndex(RegSaveFrameIndex)
   11668       .addImm(/*Scale=*/1)
   11669       .addReg(/*IndexReg=*/0)
   11670       .addImm(/*Disp=*/Offset)
   11671       .addReg(/*Segment=*/0)
   11672       .addReg(MI->getOperand(i).getReg())
   11673       .addMemOperand(MMO);
   11674   }
   11675 
   11676   MI->eraseFromParent();   // The pseudo instruction is gone now.
   11677 
   11678   return EndMBB;
   11679 }
   11680 
   11681 MachineBasicBlock *
   11682 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   11683                                      MachineBasicBlock *BB) const {
   11684   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11685   DebugLoc DL = MI->getDebugLoc();
   11686 
   11687   // To "insert" a SELECT_CC instruction, we actually have to insert the
   11688   // diamond control-flow pattern.  The incoming instruction knows the
   11689   // destination vreg to set, the condition code register to branch on, the
   11690   // true/false values to select between, and a branch opcode to use.
   11691   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   11692   MachineFunction::iterator It = BB;
   11693   ++It;
   11694 
   11695   //  thisMBB:
   11696   //  ...
   11697   //   TrueVal = ...
   11698   //   cmpTY ccX, r1, r2
   11699   //   bCC copy1MBB
   11700   //   fallthrough --> copy0MBB
   11701   MachineBasicBlock *thisMBB = BB;
   11702   MachineFunction *F = BB->getParent();
   11703   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   11704   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11705   F->insert(It, copy0MBB);
   11706   F->insert(It, sinkMBB);
   11707 
   11708   // If the EFLAGS register isn't dead in the terminator, then claim that it's
   11709   // live into the sink and copy blocks.
   11710   if (!MI->killsRegister(X86::EFLAGS)) {
   11711     copy0MBB->addLiveIn(X86::EFLAGS);
   11712     sinkMBB->addLiveIn(X86::EFLAGS);
   11713   }
   11714 
   11715   // Transfer the remainder of BB and its successor edges to sinkMBB.
   11716   sinkMBB->splice(sinkMBB->begin(), BB,
   11717                   llvm::next(MachineBasicBlock::iterator(MI)),
   11718                   BB->end());
   11719   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   11720 
   11721   // Add the true and fallthrough blocks as its successors.
   11722   BB->addSuccessor(copy0MBB);
   11723   BB->addSuccessor(sinkMBB);
   11724 
   11725   // Create the conditional branch instruction.
   11726   unsigned Opc =
   11727     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
   11728   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
   11729 
   11730   //  copy0MBB:
   11731   //   %FalseValue = ...
   11732   //   # fallthrough to sinkMBB
   11733   copy0MBB->addSuccessor(sinkMBB);
   11734 
   11735   //  sinkMBB:
   11736   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   11737   //  ...
   11738   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   11739           TII->get(X86::PHI), MI->getOperand(0).getReg())
   11740     .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   11741     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   11742 
   11743   MI->eraseFromParent();   // The pseudo instruction is gone now.
   11744   return sinkMBB;
   11745 }
   11746 
   11747 MachineBasicBlock *
   11748 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
   11749                                         bool Is64Bit) const {
   11750   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11751   DebugLoc DL = MI->getDebugLoc();
   11752   MachineFunction *MF = BB->getParent();
   11753   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   11754 
   11755   assert(EnableSegmentedStacks);
   11756 
   11757   unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
   11758   unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
   11759 
   11760   // BB:
   11761   //  ... [Till the alloca]
   11762   // If stacklet is not large enough, jump to mallocMBB
   11763   //
   11764   // bumpMBB:
   11765   //  Allocate by subtracting from RSP
   11766   //  Jump to continueMBB
   11767   //
   11768   // mallocMBB:
   11769   //  Allocate by call to runtime
   11770   //
   11771   // continueMBB:
   11772   //  ...
   11773   //  [rest of original BB]
   11774   //
   11775 
   11776   MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11777   MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11778   MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   11779 
   11780   MachineRegisterInfo &MRI = MF->getRegInfo();
   11781   const TargetRegisterClass *AddrRegClass =
   11782     getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
   11783 
   11784   unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   11785     bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   11786     tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
   11787     sizeVReg = MI->getOperand(1).getReg(),
   11788     physSPReg = Is64Bit ? X86::RSP : X86::ESP;
   11789 
   11790   MachineFunction::iterator MBBIter = BB;
   11791   ++MBBIter;
   11792 
   11793   MF->insert(MBBIter, bumpMBB);
   11794   MF->insert(MBBIter, mallocMBB);
   11795   MF->insert(MBBIter, continueMBB);
   11796 
   11797   continueMBB->splice(continueMBB->begin(), BB, llvm::next
   11798                       (MachineBasicBlock::iterator(MI)), BB->end());
   11799   continueMBB->transferSuccessorsAndUpdatePHIs(BB);
   11800 
   11801   // Add code to the main basic block to check if the stack limit has been hit,
   11802   // and if so, jump to mallocMBB otherwise to bumpMBB.
   11803   BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
   11804   BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
   11805     .addReg(tmpSPVReg).addReg(sizeVReg);
   11806   BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
   11807     .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
   11808     .addReg(tmpSPVReg);
   11809   BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
   11810 
   11811   // bumpMBB simply decreases the stack pointer, since we know the current
   11812   // stacklet has enough space.
   11813   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
   11814     .addReg(tmpSPVReg);
   11815   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
   11816     .addReg(tmpSPVReg);
   11817   BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   11818 
   11819   // Calls into a routine in libgcc to allocate more space from the heap.
   11820   if (Is64Bit) {
   11821     BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
   11822       .addReg(sizeVReg);
   11823     BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
   11824     .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
   11825   } else {
   11826     BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
   11827       .addImm(12);
   11828     BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
   11829     BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
   11830       .addExternalSymbol("__morestack_allocate_stack_space");
   11831   }
   11832 
   11833   if (!Is64Bit)
   11834     BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
   11835       .addImm(16);
   11836 
   11837   BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
   11838     .addReg(Is64Bit ? X86::RAX : X86::EAX);
   11839   BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   11840 
   11841   // Set up the CFG correctly.
   11842   BB->addSuccessor(bumpMBB);
   11843   BB->addSuccessor(mallocMBB);
   11844   mallocMBB->addSuccessor(continueMBB);
   11845   bumpMBB->addSuccessor(continueMBB);
   11846 
   11847   // Take care of the PHI nodes.
   11848   BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
   11849           MI->getOperand(0).getReg())
   11850     .addReg(mallocPtrVReg).addMBB(mallocMBB)
   11851     .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
   11852 
   11853   // Delete the original pseudo instruction.
   11854   MI->eraseFromParent();
   11855 
   11856   // And we're done.
   11857   return continueMBB;
   11858 }
   11859 
   11860 MachineBasicBlock *
   11861 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
   11862                                           MachineBasicBlock *BB) const {
   11863   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11864   DebugLoc DL = MI->getDebugLoc();
   11865 
   11866   assert(!Subtarget->isTargetEnvMacho());
   11867 
   11868   // The lowering is pretty easy: we're just emitting the call to _alloca.  The
   11869   // non-trivial part is impdef of ESP.
   11870 
   11871   if (Subtarget->isTargetWin64()) {
   11872     if (Subtarget->isTargetCygMing()) {
   11873       // ___chkstk(Mingw64):
   11874       // Clobbers R10, R11, RAX and EFLAGS.
   11875       // Updates RSP.
   11876       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   11877         .addExternalSymbol("___chkstk")
   11878         .addReg(X86::RAX, RegState::Implicit)
   11879         .addReg(X86::RSP, RegState::Implicit)
   11880         .addReg(X86::RAX, RegState::Define | RegState::Implicit)
   11881         .addReg(X86::RSP, RegState::Define | RegState::Implicit)
   11882         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   11883     } else {
   11884       // __chkstk(MSVCRT): does not update stack pointer.
   11885       // Clobbers R10, R11 and EFLAGS.
   11886       // FIXME: RAX(allocated size) might be reused and not killed.
   11887       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   11888         .addExternalSymbol("__chkstk")
   11889         .addReg(X86::RAX, RegState::Implicit)
   11890         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   11891       // RAX has the offset to subtracted from RSP.
   11892       BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
   11893         .addReg(X86::RSP)
   11894         .addReg(X86::RAX);
   11895     }
   11896   } else {
   11897     const char *StackProbeSymbol =
   11898       Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
   11899 
   11900     BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
   11901       .addExternalSymbol(StackProbeSymbol)
   11902       .addReg(X86::EAX, RegState::Implicit)
   11903       .addReg(X86::ESP, RegState::Implicit)
   11904       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   11905       .addReg(X86::ESP, RegState::Define | RegState::Implicit)
   11906       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   11907   }
   11908 
   11909   MI->eraseFromParent();   // The pseudo instruction is gone now.
   11910   return BB;
   11911 }
   11912 
   11913 MachineBasicBlock *
   11914 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
   11915                                       MachineBasicBlock *BB) const {
   11916   // This is pretty easy.  We're taking the value that we received from
   11917   // our load from the relocation, sticking it in either RDI (x86-64)
   11918   // or EAX and doing an indirect call.  The return value will then
   11919   // be in the normal return register.
   11920   const X86InstrInfo *TII
   11921     = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
   11922   DebugLoc DL = MI->getDebugLoc();
   11923   MachineFunction *F = BB->getParent();
   11924 
   11925   assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
   11926   assert(MI->getOperand(3).isGlobal() && "This should be a global");
   11927 
   11928   if (Subtarget->is64Bit()) {
   11929     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   11930                                       TII->get(X86::MOV64rm), X86::RDI)
   11931     .addReg(X86::RIP)
   11932     .addImm(0).addReg(0)
   11933     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   11934                       MI->getOperand(3).getTargetFlags())
   11935     .addReg(0);
   11936     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
   11937     addDirectMem(MIB, X86::RDI);
   11938   } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
   11939     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   11940                                       TII->get(X86::MOV32rm), X86::EAX)
   11941     .addReg(0)
   11942     .addImm(0).addReg(0)
   11943     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   11944                       MI->getOperand(3).getTargetFlags())
   11945     .addReg(0);
   11946     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   11947     addDirectMem(MIB, X86::EAX);
   11948   } else {
   11949     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   11950                                       TII->get(X86::MOV32rm), X86::EAX)
   11951     .addReg(TII->getGlobalBaseReg(F))
   11952     .addImm(0).addReg(0)
   11953     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   11954                       MI->getOperand(3).getTargetFlags())
   11955     .addReg(0);
   11956     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   11957     addDirectMem(MIB, X86::EAX);
   11958   }
   11959 
   11960   MI->eraseFromParent(); // The pseudo instruction is gone now.
   11961   return BB;
   11962 }
   11963 
   11964 MachineBasicBlock *
   11965 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   11966                                                MachineBasicBlock *BB) const {
   11967   switch (MI->getOpcode()) {
   11968   default: assert(0 && "Unexpected instr type to insert");
   11969   case X86::TAILJMPd64:
   11970   case X86::TAILJMPr64:
   11971   case X86::TAILJMPm64:
   11972     assert(0 && "TAILJMP64 would not be touched here.");
   11973   case X86::TCRETURNdi64:
   11974   case X86::TCRETURNri64:
   11975   case X86::TCRETURNmi64:
   11976     // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
   11977     // On AMD64, additional defs should be added before register allocation.
   11978     if (!Subtarget->isTargetWin64()) {
   11979       MI->addRegisterDefined(X86::RSI);
   11980       MI->addRegisterDefined(X86::RDI);
   11981       MI->addRegisterDefined(X86::XMM6);
   11982       MI->addRegisterDefined(X86::XMM7);
   11983       MI->addRegisterDefined(X86::XMM8);
   11984       MI->addRegisterDefined(X86::XMM9);
   11985       MI->addRegisterDefined(X86::XMM10);
   11986       MI->addRegisterDefined(X86::XMM11);
   11987       MI->addRegisterDefined(X86::XMM12);
   11988       MI->addRegisterDefined(X86::XMM13);
   11989       MI->addRegisterDefined(X86::XMM14);
   11990       MI->addRegisterDefined(X86::XMM15);
   11991     }
   11992     return BB;
   11993   case X86::WIN_ALLOCA:
   11994     return EmitLoweredWinAlloca(MI, BB);
   11995   case X86::SEG_ALLOCA_32:
   11996     return EmitLoweredSegAlloca(MI, BB, false);
   11997   case X86::SEG_ALLOCA_64:
   11998     return EmitLoweredSegAlloca(MI, BB, true);
   11999   case X86::TLSCall_32:
   12000   case X86::TLSCall_64:
   12001     return EmitLoweredTLSCall(MI, BB);
   12002   case X86::CMOV_GR8:
   12003   case X86::CMOV_FR32:
   12004   case X86::CMOV_FR64:
   12005   case X86::CMOV_V4F32:
   12006   case X86::CMOV_V2F64:
   12007   case X86::CMOV_V2I64:
   12008   case X86::CMOV_V8F32:
   12009   case X86::CMOV_V4F64:
   12010   case X86::CMOV_V4I64:
   12011   case X86::CMOV_GR16:
   12012   case X86::CMOV_GR32:
   12013   case X86::CMOV_RFP32:
   12014   case X86::CMOV_RFP64:
   12015   case X86::CMOV_RFP80:
   12016     return EmitLoweredSelect(MI, BB);
   12017 
   12018   case X86::FP32_TO_INT16_IN_MEM:
   12019   case X86::FP32_TO_INT32_IN_MEM:
   12020   case X86::FP32_TO_INT64_IN_MEM:
   12021   case X86::FP64_TO_INT16_IN_MEM:
   12022   case X86::FP64_TO_INT32_IN_MEM:
   12023   case X86::FP64_TO_INT64_IN_MEM:
   12024   case X86::FP80_TO_INT16_IN_MEM:
   12025   case X86::FP80_TO_INT32_IN_MEM:
   12026   case X86::FP80_TO_INT64_IN_MEM: {
   12027     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12028     DebugLoc DL = MI->getDebugLoc();
   12029 
   12030     // Change the floating point control register to use "round towards zero"
   12031     // mode when truncating to an integer value.
   12032     MachineFunction *F = BB->getParent();
   12033     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
   12034     addFrameReference(BuildMI(*BB, MI, DL,
   12035                               TII->get(X86::FNSTCW16m)), CWFrameIdx);
   12036 
   12037     // Load the old value of the high byte of the control word...
   12038     unsigned OldCW =
   12039       F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
   12040     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
   12041                       CWFrameIdx);
   12042 
   12043     // Set the high part to be round to zero...
   12044     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
   12045       .addImm(0xC7F);
   12046 
   12047     // Reload the modified control word now...
   12048     addFrameReference(BuildMI(*BB, MI, DL,
   12049                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   12050 
   12051     // Restore the memory image of control word to original value
   12052     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
   12053       .addReg(OldCW);
   12054 
   12055     // Get the X86 opcode to use.
   12056     unsigned Opc;
   12057     switch (MI->getOpcode()) {
   12058     default: llvm_unreachable("illegal opcode!");
   12059     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
   12060     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
   12061     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
   12062     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
   12063     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
   12064     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
   12065     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
   12066     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
   12067     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
   12068     }
   12069 
   12070     X86AddressMode AM;
   12071     MachineOperand &Op = MI->getOperand(0);
   12072     if (Op.isReg()) {
   12073       AM.BaseType = X86AddressMode::RegBase;
   12074       AM.Base.Reg = Op.getReg();
   12075     } else {
   12076       AM.BaseType = X86AddressMode::FrameIndexBase;
   12077       AM.Base.FrameIndex = Op.getIndex();
   12078     }
   12079     Op = MI->getOperand(1);
   12080     if (Op.isImm())
   12081       AM.Scale = Op.getImm();
   12082     Op = MI->getOperand(2);
   12083     if (Op.isImm())
   12084       AM.IndexReg = Op.getImm();
   12085     Op = MI->getOperand(3);
   12086     if (Op.isGlobal()) {
   12087       AM.GV = Op.getGlobal();
   12088     } else {
   12089       AM.Disp = Op.getImm();
   12090     }
   12091     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
   12092                       .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
   12093 
   12094     // Reload the original control word now.
   12095     addFrameReference(BuildMI(*BB, MI, DL,
   12096                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   12097 
   12098     MI->eraseFromParent();   // The pseudo instruction is gone now.
   12099     return BB;
   12100   }
   12101     // String/text processing lowering.
   12102   case X86::PCMPISTRM128REG:
   12103   case X86::VPCMPISTRM128REG:
   12104     return EmitPCMP(MI, BB, 3, false /* in-mem */);
   12105   case X86::PCMPISTRM128MEM:
   12106   case X86::VPCMPISTRM128MEM:
   12107     return EmitPCMP(MI, BB, 3, true /* in-mem */);
   12108   case X86::PCMPESTRM128REG:
   12109   case X86::VPCMPESTRM128REG:
   12110     return EmitPCMP(MI, BB, 5, false /* in mem */);
   12111   case X86::PCMPESTRM128MEM:
   12112   case X86::VPCMPESTRM128MEM:
   12113     return EmitPCMP(MI, BB, 5, true /* in mem */);
   12114 
   12115     // Thread synchronization.
   12116   case X86::MONITOR:
   12117     return EmitMonitor(MI, BB);
   12118   case X86::MWAIT:
   12119     return EmitMwait(MI, BB);
   12120 
   12121     // Atomic Lowering.
   12122   case X86::ATOMAND32:
   12123     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
   12124                                                X86::AND32ri, X86::MOV32rm,
   12125                                                X86::LCMPXCHG32,
   12126                                                X86::NOT32r, X86::EAX,
   12127                                                X86::GR32RegisterClass);
   12128   case X86::ATOMOR32:
   12129     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
   12130                                                X86::OR32ri, X86::MOV32rm,
   12131                                                X86::LCMPXCHG32,
   12132                                                X86::NOT32r, X86::EAX,
   12133                                                X86::GR32RegisterClass);
   12134   case X86::ATOMXOR32:
   12135     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
   12136                                                X86::XOR32ri, X86::MOV32rm,
   12137                                                X86::LCMPXCHG32,
   12138                                                X86::NOT32r, X86::EAX,
   12139                                                X86::GR32RegisterClass);
   12140   case X86::ATOMNAND32:
   12141     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
   12142                                                X86::AND32ri, X86::MOV32rm,
   12143                                                X86::LCMPXCHG32,
   12144                                                X86::NOT32r, X86::EAX,
   12145                                                X86::GR32RegisterClass, true);
   12146   case X86::ATOMMIN32:
   12147     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
   12148   case X86::ATOMMAX32:
   12149     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
   12150   case X86::ATOMUMIN32:
   12151     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
   12152   case X86::ATOMUMAX32:
   12153     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
   12154 
   12155   case X86::ATOMAND16:
   12156     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
   12157                                                X86::AND16ri, X86::MOV16rm,
   12158                                                X86::LCMPXCHG16,
   12159                                                X86::NOT16r, X86::AX,
   12160                                                X86::GR16RegisterClass);
   12161   case X86::ATOMOR16:
   12162     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
   12163                                                X86::OR16ri, X86::MOV16rm,
   12164                                                X86::LCMPXCHG16,
   12165                                                X86::NOT16r, X86::AX,
   12166                                                X86::GR16RegisterClass);
   12167   case X86::ATOMXOR16:
   12168     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
   12169                                                X86::XOR16ri, X86::MOV16rm,
   12170                                                X86::LCMPXCHG16,
   12171                                                X86::NOT16r, X86::AX,
   12172                                                X86::GR16RegisterClass);
   12173   case X86::ATOMNAND16:
   12174     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
   12175                                                X86::AND16ri, X86::MOV16rm,
   12176                                                X86::LCMPXCHG16,
   12177                                                X86::NOT16r, X86::AX,
   12178                                                X86::GR16RegisterClass, true);
   12179   case X86::ATOMMIN16:
   12180     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
   12181   case X86::ATOMMAX16:
   12182     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
   12183   case X86::ATOMUMIN16:
   12184     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
   12185   case X86::ATOMUMAX16:
   12186     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
   12187 
   12188   case X86::ATOMAND8:
   12189     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
   12190                                                X86::AND8ri, X86::MOV8rm,
   12191                                                X86::LCMPXCHG8,
   12192                                                X86::NOT8r, X86::AL,
   12193                                                X86::GR8RegisterClass);
   12194   case X86::ATOMOR8:
   12195     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
   12196                                                X86::OR8ri, X86::MOV8rm,
   12197                                                X86::LCMPXCHG8,
   12198                                                X86::NOT8r, X86::AL,
   12199                                                X86::GR8RegisterClass);
   12200   case X86::ATOMXOR8:
   12201     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
   12202                                                X86::XOR8ri, X86::MOV8rm,
   12203                                                X86::LCMPXCHG8,
   12204                                                X86::NOT8r, X86::AL,
   12205                                                X86::GR8RegisterClass);
   12206   case X86::ATOMNAND8:
   12207     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
   12208                                                X86::AND8ri, X86::MOV8rm,
   12209                                                X86::LCMPXCHG8,
   12210                                                X86::NOT8r, X86::AL,
   12211                                                X86::GR8RegisterClass, true);
   12212   // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
   12213   // This group is for 64-bit host.
   12214   case X86::ATOMAND64:
   12215     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
   12216                                                X86::AND64ri32, X86::MOV64rm,
   12217                                                X86::LCMPXCHG64,
   12218                                                X86::NOT64r, X86::RAX,
   12219                                                X86::GR64RegisterClass);
   12220   case X86::ATOMOR64:
   12221     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
   12222                                                X86::OR64ri32, X86::MOV64rm,
   12223                                                X86::LCMPXCHG64,
   12224                                                X86::NOT64r, X86::RAX,
   12225                                                X86::GR64RegisterClass);
   12226   case X86::ATOMXOR64:
   12227     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
   12228                                                X86::XOR64ri32, X86::MOV64rm,
   12229                                                X86::LCMPXCHG64,
   12230                                                X86::NOT64r, X86::RAX,
   12231                                                X86::GR64RegisterClass);
   12232   case X86::ATOMNAND64:
   12233     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
   12234                                                X86::AND64ri32, X86::MOV64rm,
   12235                                                X86::LCMPXCHG64,
   12236                                                X86::NOT64r, X86::RAX,
   12237                                                X86::GR64RegisterClass, true);
   12238   case X86::ATOMMIN64:
   12239     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
   12240   case X86::ATOMMAX64:
   12241     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
   12242   case X86::ATOMUMIN64:
   12243     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
   12244   case X86::ATOMUMAX64:
   12245     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
   12246 
   12247   // This group does 64-bit operations on a 32-bit host.
   12248   case X86::ATOMAND6432:
   12249     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12250                                                X86::AND32rr, X86::AND32rr,
   12251                                                X86::AND32ri, X86::AND32ri,
   12252                                                false);
   12253   case X86::ATOMOR6432:
   12254     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12255                                                X86::OR32rr, X86::OR32rr,
   12256                                                X86::OR32ri, X86::OR32ri,
   12257                                                false);
   12258   case X86::ATOMXOR6432:
   12259     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12260                                                X86::XOR32rr, X86::XOR32rr,
   12261                                                X86::XOR32ri, X86::XOR32ri,
   12262                                                false);
   12263   case X86::ATOMNAND6432:
   12264     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12265                                                X86::AND32rr, X86::AND32rr,
   12266                                                X86::AND32ri, X86::AND32ri,
   12267                                                true);
   12268   case X86::ATOMADD6432:
   12269     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12270                                                X86::ADD32rr, X86::ADC32rr,
   12271                                                X86::ADD32ri, X86::ADC32ri,
   12272                                                false);
   12273   case X86::ATOMSUB6432:
   12274     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12275                                                X86::SUB32rr, X86::SBB32rr,
   12276                                                X86::SUB32ri, X86::SBB32ri,
   12277                                                false);
   12278   case X86::ATOMSWAP6432:
   12279     return EmitAtomicBit6432WithCustomInserter(MI, BB,
   12280                                                X86::MOV32rr, X86::MOV32rr,
   12281                                                X86::MOV32ri, X86::MOV32ri,
   12282                                                false);
   12283   case X86::VASTART_SAVE_XMM_REGS:
   12284     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
   12285 
   12286   case X86::VAARG_64:
   12287     return EmitVAARG64WithCustomInserter(MI, BB);
   12288   }
   12289 }
   12290 
   12291 //===----------------------------------------------------------------------===//
   12292 //                           X86 Optimization Hooks
   12293 //===----------------------------------------------------------------------===//
   12294 
   12295 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   12296                                                        const APInt &Mask,
   12297                                                        APInt &KnownZero,
   12298                                                        APInt &KnownOne,
   12299                                                        const SelectionDAG &DAG,
   12300                                                        unsigned Depth) const {
   12301   unsigned Opc = Op.getOpcode();
   12302   assert((Opc >= ISD::BUILTIN_OP_END ||
   12303           Opc == ISD::INTRINSIC_WO_CHAIN ||
   12304           Opc == ISD::INTRINSIC_W_CHAIN ||
   12305           Opc == ISD::INTRINSIC_VOID) &&
   12306          "Should use MaskedValueIsZero if you don't know whether Op"
   12307          " is a target node!");
   12308 
   12309   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
   12310   switch (Opc) {
   12311   default: break;
   12312   case X86ISD::ADD:
   12313   case X86ISD::SUB:
   12314   case X86ISD::ADC:
   12315   case X86ISD::SBB:
   12316   case X86ISD::SMUL:
   12317   case X86ISD::UMUL:
   12318   case X86ISD::INC:
   12319   case X86ISD::DEC:
   12320   case X86ISD::OR:
   12321   case X86ISD::XOR:
   12322   case X86ISD::AND:
   12323     // These nodes' second result is a boolean.
   12324     if (Op.getResNo() == 0)
   12325       break;
   12326     // Fallthrough
   12327   case X86ISD::SETCC:
   12328     KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
   12329                                        Mask.getBitWidth() - 1);
   12330     break;
   12331   case ISD::INTRINSIC_WO_CHAIN: {
   12332     unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   12333     unsigned NumLoBits = 0;
   12334     switch (IntId) {
   12335     default: break;
   12336     case Intrinsic::x86_sse_movmsk_ps:
   12337     case Intrinsic::x86_avx_movmsk_ps_256:
   12338     case Intrinsic::x86_sse2_movmsk_pd:
   12339     case Intrinsic::x86_avx_movmsk_pd_256:
   12340     case Intrinsic::x86_mmx_pmovmskb:
   12341     case Intrinsic::x86_sse2_pmovmskb_128: {
   12342       // High bits of movmskp{s|d}, pmovmskb are known zero.
   12343       switch (IntId) {
   12344         case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
   12345         case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
   12346         case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
   12347         case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
   12348         case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
   12349         case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
   12350       }
   12351       KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
   12352                                         Mask.getBitWidth() - NumLoBits);
   12353       break;
   12354     }
   12355     }
   12356     break;
   12357   }
   12358   }
   12359 }
   12360 
   12361 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   12362                                                          unsigned Depth) const {
   12363   // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
   12364   if (Op.getOpcode() == X86ISD::SETCC_CARRY)
   12365     return Op.getValueType().getScalarType().getSizeInBits();
   12366 
   12367   // Fallback case.
   12368   return 1;
   12369 }
   12370 
   12371 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   12372 /// node is a GlobalAddress + offset.
   12373 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
   12374                                        const GlobalValue* &GA,
   12375                                        int64_t &Offset) const {
   12376   if (N->getOpcode() == X86ISD::Wrapper) {
   12377     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
   12378       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
   12379       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
   12380       return true;
   12381     }
   12382   }
   12383   return TargetLowering::isGAPlusOffset(N, GA, Offset);
   12384 }
   12385 
   12386 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
   12387 /// same as extracting the high 128-bit part of 256-bit vector and then
   12388 /// inserting the result into the low part of a new 256-bit vector
   12389 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
   12390   EVT VT = SVOp->getValueType(0);
   12391   int NumElems = VT.getVectorNumElements();
   12392 
   12393   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   12394   for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
   12395     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   12396         SVOp->getMaskElt(j) >= 0)
   12397       return false;
   12398 
   12399   return true;
   12400 }
   12401 
   12402 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
   12403 /// same as extracting the low 128-bit part of 256-bit vector and then
   12404 /// inserting the result into the high part of a new 256-bit vector
   12405 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
   12406   EVT VT = SVOp->getValueType(0);
   12407   int NumElems = VT.getVectorNumElements();
   12408 
   12409   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   12410   for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
   12411     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   12412         SVOp->getMaskElt(j) >= 0)
   12413       return false;
   12414 
   12415   return true;
   12416 }
   12417 
   12418 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
   12419 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
   12420                                         TargetLowering::DAGCombinerInfo &DCI) {
   12421   DebugLoc dl = N->getDebugLoc();
   12422   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   12423   SDValue V1 = SVOp->getOperand(0);
   12424   SDValue V2 = SVOp->getOperand(1);
   12425   EVT VT = SVOp->getValueType(0);
   12426   int NumElems = VT.getVectorNumElements();
   12427 
   12428   if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
   12429       V2.getOpcode() == ISD::CONCAT_VECTORS) {
   12430     //
   12431     //                   0,0,0,...
   12432     //                      |
   12433     //    V      UNDEF    BUILD_VECTOR    UNDEF
   12434     //     \      /           \           /
   12435     //  CONCAT_VECTOR         CONCAT_VECTOR
   12436     //         \                  /
   12437     //          \                /
   12438     //          RESULT: V + zero extended
   12439     //
   12440     if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
   12441         V2.getOperand(1).getOpcode() != ISD::UNDEF ||
   12442         V1.getOperand(1).getOpcode() != ISD::UNDEF)
   12443       return SDValue();
   12444 
   12445     if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
   12446       return SDValue();
   12447 
   12448     // To match the shuffle mask, the first half of the mask should
   12449     // be exactly the first vector, and all the rest a splat with the
   12450     // first element of the second one.
   12451     for (int i = 0; i < NumElems/2; ++i)
   12452       if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
   12453           !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
   12454         return SDValue();
   12455 
   12456     // Emit a zeroed vector and insert the desired subvector on its
   12457     // first half.
   12458     SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
   12459     SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
   12460                          DAG.getConstant(0, MVT::i32), DAG, dl);
   12461     return DCI.CombineTo(N, InsV);
   12462   }
   12463 
   12464   //===--------------------------------------------------------------------===//
   12465   // Combine some shuffles into subvector extracts and inserts:
   12466   //
   12467 
   12468   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   12469   if (isShuffleHigh128VectorInsertLow(SVOp)) {
   12470     SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
   12471                                     DAG, dl);
   12472     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
   12473                                       V, DAG.getConstant(0, MVT::i32), DAG, dl);
   12474     return DCI.CombineTo(N, InsV);
   12475   }
   12476 
   12477   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   12478   if (isShuffleLow128VectorInsertHigh(SVOp)) {
   12479     SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
   12480     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
   12481                              V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
   12482     return DCI.CombineTo(N, InsV);
   12483   }
   12484 
   12485   return SDValue();
   12486 }
   12487 
   12488 /// PerformShuffleCombine - Performs several different shuffle combines.
   12489 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
   12490                                      TargetLowering::DAGCombinerInfo &DCI,
   12491                                      const X86Subtarget *Subtarget) {
   12492   DebugLoc dl = N->getDebugLoc();
   12493   EVT VT = N->getValueType(0);
   12494 
   12495   // Don't create instructions with illegal types after legalize types has run.
   12496   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   12497   if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
   12498     return SDValue();
   12499 
   12500   // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
   12501   if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
   12502       N->getOpcode() == ISD::VECTOR_SHUFFLE)
   12503     return PerformShuffleCombine256(N, DAG, DCI);
   12504 
   12505   // Only handle 128 wide vector from here on.
   12506   if (VT.getSizeInBits() != 128)
   12507     return SDValue();
   12508 
   12509   // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
   12510   // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
   12511   // consecutive, non-overlapping, and in the right order.
   12512   SmallVector<SDValue, 16> Elts;
   12513   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
   12514     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
   12515 
   12516   return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
   12517 }
   12518 
   12519 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
   12520 /// generation and convert it from being a bunch of shuffles and extracts
   12521 /// to a simple store and scalar loads to extract the elements.
   12522 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
   12523                                                 const TargetLowering &TLI) {
   12524   SDValue InputVector = N->getOperand(0);
   12525 
   12526   // Only operate on vectors of 4 elements, where the alternative shuffling
   12527   // gets to be more expensive.
   12528   if (InputVector.getValueType() != MVT::v4i32)
   12529     return SDValue();
   12530 
   12531   // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
   12532   // single use which is a sign-extend or zero-extend, and all elements are
   12533   // used.
   12534   SmallVector<SDNode *, 4> Uses;
   12535   unsigned ExtractedElements = 0;
   12536   for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
   12537        UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
   12538     if (UI.getUse().getResNo() != InputVector.getResNo())
   12539       return SDValue();
   12540 
   12541     SDNode *Extract = *UI;
   12542     if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   12543       return SDValue();
   12544 
   12545     if (Extract->getValueType(0) != MVT::i32)
   12546       return SDValue();
   12547     if (!Extract->hasOneUse())
   12548       return SDValue();
   12549     if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
   12550         Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
   12551       return SDValue();
   12552     if (!isa<ConstantSDNode>(Extract->getOperand(1)))
   12553       return SDValue();
   12554 
   12555     // Record which element was extracted.
   12556     ExtractedElements |=
   12557       1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
   12558 
   12559     Uses.push_back(Extract);
   12560   }
   12561 
   12562   // If not all the elements were used, this may not be worthwhile.
   12563   if (ExtractedElements != 15)
   12564     return SDValue();
   12565 
   12566   // Ok, we've now decided to do the transformation.
   12567   DebugLoc dl = InputVector.getDebugLoc();
   12568 
   12569   // Store the value to a temporary stack slot.
   12570   SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
   12571   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
   12572                             MachinePointerInfo(), false, false, 0);
   12573 
   12574   // Replace each use (extract) with a load of the appropriate element.
   12575   for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
   12576        UE = Uses.end(); UI != UE; ++UI) {
   12577     SDNode *Extract = *UI;
   12578 
   12579     // cOMpute the element's address.
   12580     SDValue Idx = Extract->getOperand(1);
   12581     unsigned EltSize =
   12582         InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
   12583     uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
   12584     SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
   12585 
   12586     SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   12587                                      StackPtr, OffsetVal);
   12588 
   12589     // Load the scalar.
   12590     SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
   12591                                      ScalarAddr, MachinePointerInfo(),
   12592                                      false, false, 0);
   12593 
   12594     // Replace the exact with the load.
   12595     DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
   12596   }
   12597 
   12598   // The replacement was made in place; don't return anything.
   12599   return SDValue();
   12600 }
   12601 
   12602 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
   12603 /// nodes.
   12604 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
   12605                                     const X86Subtarget *Subtarget) {
   12606   DebugLoc DL = N->getDebugLoc();
   12607   SDValue Cond = N->getOperand(0);
   12608   // Get the LHS/RHS of the select.
   12609   SDValue LHS = N->getOperand(1);
   12610   SDValue RHS = N->getOperand(2);
   12611   EVT VT = LHS.getValueType();
   12612 
   12613   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
   12614   // instructions match the semantics of the common C idiom x<y?x:y but not
   12615   // x<=y?x:y, because of how they handle negative zero (which can be
   12616   // ignored in unsafe-math mode).
   12617   if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
   12618       VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
   12619       (Subtarget->hasXMMInt() ||
   12620        (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
   12621     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   12622 
   12623     unsigned Opcode = 0;
   12624     // Check for x CC y ? x : y.
   12625     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   12626         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   12627       switch (CC) {
   12628       default: break;
   12629       case ISD::SETULT:
   12630         // Converting this to a min would handle NaNs incorrectly, and swapping
   12631         // the operands would cause it to handle comparisons between positive
   12632         // and negative zero incorrectly.
   12633         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   12634           if (!UnsafeFPMath &&
   12635               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   12636             break;
   12637           std::swap(LHS, RHS);
   12638         }
   12639         Opcode = X86ISD::FMIN;
   12640         break;
   12641       case ISD::SETOLE:
   12642         // Converting this to a min would handle comparisons between positive
   12643         // and negative zero incorrectly.
   12644         if (!UnsafeFPMath &&
   12645             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   12646           break;
   12647         Opcode = X86ISD::FMIN;
   12648         break;
   12649       case ISD::SETULE:
   12650         // Converting this to a min would handle both negative zeros and NaNs
   12651         // incorrectly, but we can swap the operands to fix both.
   12652         std::swap(LHS, RHS);
   12653       case ISD::SETOLT:
   12654       case ISD::SETLT:
   12655       case ISD::SETLE:
   12656         Opcode = X86ISD::FMIN;
   12657         break;
   12658 
   12659       case ISD::SETOGE:
   12660         // Converting this to a max would handle comparisons between positive
   12661         // and negative zero incorrectly.
   12662         if (!UnsafeFPMath &&
   12663             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   12664           break;
   12665         Opcode = X86ISD::FMAX;
   12666         break;
   12667       case ISD::SETUGT:
   12668         // Converting this to a max would handle NaNs incorrectly, and swapping
   12669         // the operands would cause it to handle comparisons between positive
   12670         // and negative zero incorrectly.
   12671         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   12672           if (!UnsafeFPMath &&
   12673               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   12674             break;
   12675           std::swap(LHS, RHS);
   12676         }
   12677         Opcode = X86ISD::FMAX;
   12678         break;
   12679       case ISD::SETUGE:
   12680         // Converting this to a max would handle both negative zeros and NaNs
   12681         // incorrectly, but we can swap the operands to fix both.
   12682         std::swap(LHS, RHS);
   12683       case ISD::SETOGT:
   12684       case ISD::SETGT:
   12685       case ISD::SETGE:
   12686         Opcode = X86ISD::FMAX;
   12687         break;
   12688       }
   12689     // Check for x CC y ? y : x -- a min/max with reversed arms.
   12690     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
   12691                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
   12692       switch (CC) {
   12693       default: break;
   12694       case ISD::SETOGE:
   12695         // Converting this to a min would handle comparisons between positive
   12696         // and negative zero incorrectly, and swapping the operands would
   12697         // cause it to handle NaNs incorrectly.
   12698         if (!UnsafeFPMath &&
   12699             !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
   12700           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   12701             break;
   12702           std::swap(LHS, RHS);
   12703         }
   12704         Opcode = X86ISD::FMIN;
   12705         break;
   12706       case ISD::SETUGT:
   12707         // Converting this to a min would handle NaNs incorrectly.
   12708         if (!UnsafeFPMath &&
   12709             (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
   12710           break;
   12711         Opcode = X86ISD::FMIN;
   12712         break;
   12713       case ISD::SETUGE:
   12714         // Converting this to a min would handle both negative zeros and NaNs
   12715         // incorrectly, but we can swap the operands to fix both.
   12716         std::swap(LHS, RHS);
   12717       case ISD::SETOGT:
   12718       case ISD::SETGT:
   12719       case ISD::SETGE:
   12720         Opcode = X86ISD::FMIN;
   12721         break;
   12722 
   12723       case ISD::SETULT:
   12724         // Converting this to a max would handle NaNs incorrectly.
   12725         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   12726           break;
   12727         Opcode = X86ISD::FMAX;
   12728         break;
   12729       case ISD::SETOLE:
   12730         // Converting this to a max would handle comparisons between positive
   12731         // and negative zero incorrectly, and swapping the operands would
   12732         // cause it to handle NaNs incorrectly.
   12733         if (!UnsafeFPMath &&
   12734             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
   12735           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   12736             break;
   12737           std::swap(LHS, RHS);
   12738         }
   12739         Opcode = X86ISD::FMAX;
   12740         break;
   12741       case ISD::SETULE:
   12742         // Converting this to a max would handle both negative zeros and NaNs
   12743         // incorrectly, but we can swap the operands to fix both.
   12744         std::swap(LHS, RHS);
   12745       case ISD::SETOLT:
   12746       case ISD::SETLT:
   12747       case ISD::SETLE:
   12748         Opcode = X86ISD::FMAX;
   12749         break;
   12750       }
   12751     }
   12752 
   12753     if (Opcode)
   12754       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
   12755   }
   12756 
   12757   // If this is a select between two integer constants, try to do some
   12758   // optimizations.
   12759   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
   12760     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
   12761       // Don't do this for crazy integer types.
   12762       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
   12763         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
   12764         // so that TrueC (the true value) is larger than FalseC.
   12765         bool NeedsCondInvert = false;
   12766 
   12767         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
   12768             // Efficiently invertible.
   12769             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
   12770              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
   12771               isa<ConstantSDNode>(Cond.getOperand(1))))) {
   12772           NeedsCondInvert = true;
   12773           std::swap(TrueC, FalseC);
   12774         }
   12775 
   12776         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
   12777         if (FalseC->getAPIntValue() == 0 &&
   12778             TrueC->getAPIntValue().isPowerOf2()) {
   12779           if (NeedsCondInvert) // Invert the condition if needed.
   12780             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   12781                                DAG.getConstant(1, Cond.getValueType()));
   12782 
   12783           // Zero extend the condition if needed.
   12784           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
   12785 
   12786           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   12787           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
   12788                              DAG.getConstant(ShAmt, MVT::i8));
   12789         }
   12790 
   12791         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
   12792         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   12793           if (NeedsCondInvert) // Invert the condition if needed.
   12794             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   12795                                DAG.getConstant(1, Cond.getValueType()));
   12796 
   12797           // Zero extend the condition if needed.
   12798           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   12799                              FalseC->getValueType(0), Cond);
   12800           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12801                              SDValue(FalseC, 0));
   12802         }
   12803 
   12804         // Optimize cases that will turn into an LEA instruction.  This requires
   12805         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   12806         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   12807           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   12808           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   12809 
   12810           bool isFastMultiplier = false;
   12811           if (Diff < 10) {
   12812             switch ((unsigned char)Diff) {
   12813               default: break;
   12814               case 1:  // result = add base, cond
   12815               case 2:  // result = lea base(    , cond*2)
   12816               case 3:  // result = lea base(cond, cond*2)
   12817               case 4:  // result = lea base(    , cond*4)
   12818               case 5:  // result = lea base(cond, cond*4)
   12819               case 8:  // result = lea base(    , cond*8)
   12820               case 9:  // result = lea base(cond, cond*8)
   12821                 isFastMultiplier = true;
   12822                 break;
   12823             }
   12824           }
   12825 
   12826           if (isFastMultiplier) {
   12827             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   12828             if (NeedsCondInvert) // Invert the condition if needed.
   12829               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   12830                                  DAG.getConstant(1, Cond.getValueType()));
   12831 
   12832             // Zero extend the condition if needed.
   12833             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   12834                                Cond);
   12835             // Scale the condition by the difference.
   12836             if (Diff != 1)
   12837               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   12838                                  DAG.getConstant(Diff, Cond.getValueType()));
   12839 
   12840             // Add the base if non-zero.
   12841             if (FalseC->getAPIntValue() != 0)
   12842               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12843                                  SDValue(FalseC, 0));
   12844             return Cond;
   12845           }
   12846         }
   12847       }
   12848   }
   12849 
   12850   return SDValue();
   12851 }
   12852 
   12853 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
   12854 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
   12855                                   TargetLowering::DAGCombinerInfo &DCI) {
   12856   DebugLoc DL = N->getDebugLoc();
   12857 
   12858   // If the flag operand isn't dead, don't touch this CMOV.
   12859   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
   12860     return SDValue();
   12861 
   12862   SDValue FalseOp = N->getOperand(0);
   12863   SDValue TrueOp = N->getOperand(1);
   12864   X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
   12865   SDValue Cond = N->getOperand(3);
   12866   if (CC == X86::COND_E || CC == X86::COND_NE) {
   12867     switch (Cond.getOpcode()) {
   12868     default: break;
   12869     case X86ISD::BSR:
   12870     case X86ISD::BSF:
   12871       // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
   12872       if (DAG.isKnownNeverZero(Cond.getOperand(0)))
   12873         return (CC == X86::COND_E) ? FalseOp : TrueOp;
   12874     }
   12875   }
   12876 
   12877   // If this is a select between two integer constants, try to do some
   12878   // optimizations.  Note that the operands are ordered the opposite of SELECT
   12879   // operands.
   12880   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
   12881     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
   12882       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
   12883       // larger than FalseC (the false value).
   12884       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
   12885         CC = X86::GetOppositeBranchCondition(CC);
   12886         std::swap(TrueC, FalseC);
   12887       }
   12888 
   12889       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
   12890       // This is efficient for any integer data type (including i8/i16) and
   12891       // shift amount.
   12892       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
   12893         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   12894                            DAG.getConstant(CC, MVT::i8), Cond);
   12895 
   12896         // Zero extend the condition if needed.
   12897         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
   12898 
   12899         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   12900         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
   12901                            DAG.getConstant(ShAmt, MVT::i8));
   12902         if (N->getNumValues() == 2)  // Dead flag value?
   12903           return DCI.CombineTo(N, Cond, SDValue());
   12904         return Cond;
   12905       }
   12906 
   12907       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
   12908       // for any integer data type, including i8/i16.
   12909       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   12910         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   12911                            DAG.getConstant(CC, MVT::i8), Cond);
   12912 
   12913         // Zero extend the condition if needed.
   12914         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   12915                            FalseC->getValueType(0), Cond);
   12916         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12917                            SDValue(FalseC, 0));
   12918 
   12919         if (N->getNumValues() == 2)  // Dead flag value?
   12920           return DCI.CombineTo(N, Cond, SDValue());
   12921         return Cond;
   12922       }
   12923 
   12924       // Optimize cases that will turn into an LEA instruction.  This requires
   12925       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   12926       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   12927         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   12928         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   12929 
   12930         bool isFastMultiplier = false;
   12931         if (Diff < 10) {
   12932           switch ((unsigned char)Diff) {
   12933           default: break;
   12934           case 1:  // result = add base, cond
   12935           case 2:  // result = lea base(    , cond*2)
   12936           case 3:  // result = lea base(cond, cond*2)
   12937           case 4:  // result = lea base(    , cond*4)
   12938           case 5:  // result = lea base(cond, cond*4)
   12939           case 8:  // result = lea base(    , cond*8)
   12940           case 9:  // result = lea base(cond, cond*8)
   12941             isFastMultiplier = true;
   12942             break;
   12943           }
   12944         }
   12945 
   12946         if (isFastMultiplier) {
   12947           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   12948           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   12949                              DAG.getConstant(CC, MVT::i8), Cond);
   12950           // Zero extend the condition if needed.
   12951           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   12952                              Cond);
   12953           // Scale the condition by the difference.
   12954           if (Diff != 1)
   12955             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   12956                                DAG.getConstant(Diff, Cond.getValueType()));
   12957 
   12958           // Add the base if non-zero.
   12959           if (FalseC->getAPIntValue() != 0)
   12960             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   12961                                SDValue(FalseC, 0));
   12962           if (N->getNumValues() == 2)  // Dead flag value?
   12963             return DCI.CombineTo(N, Cond, SDValue());
   12964           return Cond;
   12965         }
   12966       }
   12967     }
   12968   }
   12969   return SDValue();
   12970 }
   12971 
   12972 
   12973 /// PerformMulCombine - Optimize a single multiply with constant into two
   12974 /// in order to implement it with two cheaper instructions, e.g.
   12975 /// LEA + SHL, LEA + LEA.
   12976 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
   12977                                  TargetLowering::DAGCombinerInfo &DCI) {
   12978   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   12979     return SDValue();
   12980 
   12981   EVT VT = N->getValueType(0);
   12982   if (VT != MVT::i64)
   12983     return SDValue();
   12984 
   12985   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   12986   if (!C)
   12987     return SDValue();
   12988   uint64_t MulAmt = C->getZExtValue();
   12989   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
   12990     return SDValue();
   12991 
   12992   uint64_t MulAmt1 = 0;
   12993   uint64_t MulAmt2 = 0;
   12994   if ((MulAmt % 9) == 0) {
   12995     MulAmt1 = 9;
   12996     MulAmt2 = MulAmt / 9;
   12997   } else if ((MulAmt % 5) == 0) {
   12998     MulAmt1 = 5;
   12999     MulAmt2 = MulAmt / 5;
   13000   } else if ((MulAmt % 3) == 0) {
   13001     MulAmt1 = 3;
   13002     MulAmt2 = MulAmt / 3;
   13003   }
   13004   if (MulAmt2 &&
   13005       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
   13006     DebugLoc DL = N->getDebugLoc();
   13007 
   13008     if (isPowerOf2_64(MulAmt2) &&
   13009         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
   13010       // If second multiplifer is pow2, issue it first. We want the multiply by
   13011       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
   13012       // is an add.
   13013       std::swap(MulAmt1, MulAmt2);
   13014 
   13015     SDValue NewMul;
   13016     if (isPowerOf2_64(MulAmt1))
   13017       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
   13018                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
   13019     else
   13020       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
   13021                            DAG.getConstant(MulAmt1, VT));
   13022 
   13023     if (isPowerOf2_64(MulAmt2))
   13024       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
   13025                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
   13026     else
   13027       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
   13028                            DAG.getConstant(MulAmt2, VT));
   13029 
   13030     // Do not add new nodes to DAG combiner worklist.
   13031     DCI.CombineTo(N, NewMul, false);
   13032   }
   13033   return SDValue();
   13034 }
   13035 
   13036 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
   13037   SDValue N0 = N->getOperand(0);
   13038   SDValue N1 = N->getOperand(1);
   13039   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   13040   EVT VT = N0.getValueType();
   13041 
   13042   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
   13043   // since the result of setcc_c is all zero's or all ones.
   13044   if (N1C && N0.getOpcode() == ISD::AND &&
   13045       N0.getOperand(1).getOpcode() == ISD::Constant) {
   13046     SDValue N00 = N0.getOperand(0);
   13047     if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
   13048         ((N00.getOpcode() == ISD::ANY_EXTEND ||
   13049           N00.getOpcode() == ISD::ZERO_EXTEND) &&
   13050          N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
   13051       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   13052       APInt ShAmt = N1C->getAPIntValue();
   13053       Mask = Mask.shl(ShAmt);
   13054       if (Mask != 0)
   13055         return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
   13056                            N00, DAG.getConstant(Mask, VT));
   13057     }
   13058   }
   13059 
   13060   return SDValue();
   13061 }
   13062 
   13063 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
   13064 ///                       when possible.
   13065 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
   13066                                    const X86Subtarget *Subtarget) {
   13067   EVT VT = N->getValueType(0);
   13068   if (!VT.isVector() && VT.isInteger() &&
   13069       N->getOpcode() == ISD::SHL)
   13070     return PerformSHLCombine(N, DAG);
   13071 
   13072   // On X86 with SSE2 support, we can transform this to a vector shift if
   13073   // all elements are shifted by the same amount.  We can't do this in legalize
   13074   // because the a constant vector is typically transformed to a constant pool
   13075   // so we have no knowledge of the shift amount.
   13076   if (!Subtarget->hasXMMInt())
   13077     return SDValue();
   13078 
   13079   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
   13080     return SDValue();
   13081 
   13082   SDValue ShAmtOp = N->getOperand(1);
   13083   EVT EltVT = VT.getVectorElementType();
   13084   DebugLoc DL = N->getDebugLoc();
   13085   SDValue BaseShAmt = SDValue();
   13086   if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
   13087     unsigned NumElts = VT.getVectorNumElements();
   13088     unsigned i = 0;
   13089     for (; i != NumElts; ++i) {
   13090       SDValue Arg = ShAmtOp.getOperand(i);
   13091       if (Arg.getOpcode() == ISD::UNDEF) continue;
   13092       BaseShAmt = Arg;
   13093       break;
   13094     }
   13095     for (; i != NumElts; ++i) {
   13096       SDValue Arg = ShAmtOp.getOperand(i);
   13097       if (Arg.getOpcode() == ISD::UNDEF) continue;
   13098       if (Arg != BaseShAmt) {
   13099         return SDValue();
   13100       }
   13101     }
   13102   } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
   13103              cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
   13104     SDValue InVec = ShAmtOp.getOperand(0);
   13105     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
   13106       unsigned NumElts = InVec.getValueType().getVectorNumElements();
   13107       unsigned i = 0;
   13108       for (; i != NumElts; ++i) {
   13109         SDValue Arg = InVec.getOperand(i);
   13110         if (Arg.getOpcode() == ISD::UNDEF) continue;
   13111         BaseShAmt = Arg;
   13112         break;
   13113       }
   13114     } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
   13115        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
   13116          unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
   13117          if (C->getZExtValue() == SplatIdx)
   13118            BaseShAmt = InVec.getOperand(1);
   13119        }
   13120     }
   13121     if (BaseShAmt.getNode() == 0)
   13122       BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
   13123                               DAG.getIntPtrConstant(0));
   13124   } else
   13125     return SDValue();
   13126 
   13127   // The shift amount is an i32.
   13128   if (EltVT.bitsGT(MVT::i32))
   13129     BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
   13130   else if (EltVT.bitsLT(MVT::i32))
   13131     BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
   13132 
   13133   // The shift amount is identical so we can do a vector shift.
   13134   SDValue  ValOp = N->getOperand(0);
   13135   switch (N->getOpcode()) {
   13136   default:
   13137     llvm_unreachable("Unknown shift opcode!");
   13138     break;
   13139   case ISD::SHL:
   13140     if (VT == MVT::v2i64)
   13141       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13142                          DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
   13143                          ValOp, BaseShAmt);
   13144     if (VT == MVT::v4i32)
   13145       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13146                          DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
   13147                          ValOp, BaseShAmt);
   13148     if (VT == MVT::v8i16)
   13149       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13150                          DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
   13151                          ValOp, BaseShAmt);
   13152     break;
   13153   case ISD::SRA:
   13154     if (VT == MVT::v4i32)
   13155       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13156                          DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
   13157                          ValOp, BaseShAmt);
   13158     if (VT == MVT::v8i16)
   13159       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13160                          DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
   13161                          ValOp, BaseShAmt);
   13162     break;
   13163   case ISD::SRL:
   13164     if (VT == MVT::v2i64)
   13165       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13166                          DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
   13167                          ValOp, BaseShAmt);
   13168     if (VT == MVT::v4i32)
   13169       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13170                          DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
   13171                          ValOp, BaseShAmt);
   13172     if (VT ==  MVT::v8i16)
   13173       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   13174                          DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
   13175                          ValOp, BaseShAmt);
   13176     break;
   13177   }
   13178   return SDValue();
   13179 }
   13180 
   13181 
   13182 // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
   13183 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
   13184 // and friends.  Likewise for OR -> CMPNEQSS.
   13185 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
   13186                             TargetLowering::DAGCombinerInfo &DCI,
   13187                             const X86Subtarget *Subtarget) {
   13188   unsigned opcode;
   13189 
   13190   // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
   13191   // we're requiring SSE2 for both.
   13192   if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
   13193     SDValue N0 = N->getOperand(0);
   13194     SDValue N1 = N->getOperand(1);
   13195     SDValue CMP0 = N0->getOperand(1);
   13196     SDValue CMP1 = N1->getOperand(1);
   13197     DebugLoc DL = N->getDebugLoc();
   13198 
   13199     // The SETCCs should both refer to the same CMP.
   13200     if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
   13201       return SDValue();
   13202 
   13203     SDValue CMP00 = CMP0->getOperand(0);
   13204     SDValue CMP01 = CMP0->getOperand(1);
   13205     EVT     VT    = CMP00.getValueType();
   13206 
   13207     if (VT == MVT::f32 || VT == MVT::f64) {
   13208       bool ExpectingFlags = false;
   13209       // Check for any users that want flags:
   13210       for (SDNode::use_iterator UI = N->use_begin(),
   13211              UE = N->use_end();
   13212            !ExpectingFlags && UI != UE; ++UI)
   13213         switch (UI->getOpcode()) {
   13214         default:
   13215         case ISD::BR_CC:
   13216         case ISD::BRCOND:
   13217         case ISD::SELECT:
   13218           ExpectingFlags = true;
   13219           break;
   13220         case ISD::CopyToReg:
   13221         case ISD::SIGN_EXTEND:
   13222         case ISD::ZERO_EXTEND:
   13223         case ISD::ANY_EXTEND:
   13224           break;
   13225         }
   13226 
   13227       if (!ExpectingFlags) {
   13228         enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
   13229         enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
   13230 
   13231         if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
   13232           X86::CondCode tmp = cc0;
   13233           cc0 = cc1;
   13234           cc1 = tmp;
   13235         }
   13236 
   13237         if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
   13238             (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
   13239           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
   13240           X86ISD::NodeType NTOperator = is64BitFP ?
   13241             X86ISD::FSETCCsd : X86ISD::FSETCCss;
   13242           // FIXME: need symbolic constants for these magic numbers.
   13243           // See X86ATTInstPrinter.cpp:printSSECC().
   13244           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
   13245           SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
   13246                                               DAG.getConstant(x86cc, MVT::i8));
   13247           SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
   13248                                               OnesOrZeroesF);
   13249           SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
   13250                                       DAG.getConstant(1, MVT::i32));
   13251           SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
   13252           return OneBitOfTruth;
   13253         }
   13254       }
   13255     }
   13256   }
   13257   return SDValue();
   13258 }
   13259 
   13260 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
   13261 /// so it can be folded inside ANDNP.
   13262 static bool CanFoldXORWithAllOnes(const SDNode *N) {
   13263   EVT VT = N->getValueType(0);
   13264 
   13265   // Match direct AllOnes for 128 and 256-bit vectors
   13266   if (ISD::isBuildVectorAllOnes(N))
   13267     return true;
   13268 
   13269   // Look through a bit convert.
   13270   if (N->getOpcode() == ISD::BITCAST)
   13271     N = N->getOperand(0).getNode();
   13272 
   13273   // Sometimes the operand may come from a insert_subvector building a 256-bit
   13274   // allones vector
   13275   if (VT.getSizeInBits() == 256 &&
   13276       N->getOpcode() == ISD::INSERT_SUBVECTOR) {
   13277     SDValue V1 = N->getOperand(0);
   13278     SDValue V2 = N->getOperand(1);
   13279 
   13280     if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
   13281         V1.getOperand(0).getOpcode() == ISD::UNDEF &&
   13282         ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
   13283         ISD::isBuildVectorAllOnes(V2.getNode()))
   13284       return true;
   13285   }
   13286 
   13287   return false;
   13288 }
   13289 
   13290 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
   13291                                  TargetLowering::DAGCombinerInfo &DCI,
   13292                                  const X86Subtarget *Subtarget) {
   13293   if (DCI.isBeforeLegalizeOps())
   13294     return SDValue();
   13295 
   13296   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   13297   if (R.getNode())
   13298     return R;
   13299 
   13300   EVT VT = N->getValueType(0);
   13301 
   13302   // Create ANDN instructions
   13303   if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
   13304     SDValue N0 = N->getOperand(0);
   13305     SDValue N1 = N->getOperand(1);
   13306     DebugLoc DL = N->getDebugLoc();
   13307 
   13308     // Check LHS for not
   13309     if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
   13310       return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
   13311     // Check RHS for not
   13312     if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
   13313       return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
   13314 
   13315     return SDValue();
   13316   }
   13317 
   13318   // Want to form ANDNP nodes:
   13319   // 1) In the hopes of then easily combining them with OR and AND nodes
   13320   //    to form PBLEND/PSIGN.
   13321   // 2) To match ANDN packed intrinsics
   13322   if (VT != MVT::v2i64 && VT != MVT::v4i64)
   13323     return SDValue();
   13324 
   13325   SDValue N0 = N->getOperand(0);
   13326   SDValue N1 = N->getOperand(1);
   13327   DebugLoc DL = N->getDebugLoc();
   13328 
   13329   // Check LHS for vnot
   13330   if (N0.getOpcode() == ISD::XOR &&
   13331       //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
   13332       CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
   13333     return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
   13334 
   13335   // Check RHS for vnot
   13336   if (N1.getOpcode() == ISD::XOR &&
   13337       //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
   13338       CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
   13339     return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
   13340 
   13341   return SDValue();
   13342 }
   13343 
   13344 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
   13345                                 TargetLowering::DAGCombinerInfo &DCI,
   13346                                 const X86Subtarget *Subtarget) {
   13347   if (DCI.isBeforeLegalizeOps())
   13348     return SDValue();
   13349 
   13350   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   13351   if (R.getNode())
   13352     return R;
   13353 
   13354   EVT VT = N->getValueType(0);
   13355   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
   13356     return SDValue();
   13357 
   13358   SDValue N0 = N->getOperand(0);
   13359   SDValue N1 = N->getOperand(1);
   13360 
   13361   // look for psign/blend
   13362   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
   13363     if (VT == MVT::v2i64) {
   13364       // Canonicalize pandn to RHS
   13365       if (N0.getOpcode() == X86ISD::ANDNP)
   13366         std::swap(N0, N1);
   13367       // or (and (m, x), (pandn m, y))
   13368       if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
   13369         SDValue Mask = N1.getOperand(0);
   13370         SDValue X    = N1.getOperand(1);
   13371         SDValue Y;
   13372         if (N0.getOperand(0) == Mask)
   13373           Y = N0.getOperand(1);
   13374         if (N0.getOperand(1) == Mask)
   13375           Y = N0.getOperand(0);
   13376 
   13377         // Check to see if the mask appeared in both the AND and ANDNP and
   13378         if (!Y.getNode())
   13379           return SDValue();
   13380 
   13381         // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
   13382         if (Mask.getOpcode() != ISD::BITCAST ||
   13383             X.getOpcode() != ISD::BITCAST ||
   13384             Y.getOpcode() != ISD::BITCAST)
   13385           return SDValue();
   13386 
   13387         // Look through mask bitcast.
   13388         Mask = Mask.getOperand(0);
   13389         EVT MaskVT = Mask.getValueType();
   13390 
   13391         // Validate that the Mask operand is a vector sra node.  The sra node
   13392         // will be an intrinsic.
   13393         if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
   13394           return SDValue();
   13395 
   13396         // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
   13397         // there is no psrai.b
   13398         switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
   13399         case Intrinsic::x86_sse2_psrai_w:
   13400         case Intrinsic::x86_sse2_psrai_d:
   13401           break;
   13402         default: return SDValue();
   13403         }
   13404 
   13405         // Check that the SRA is all signbits.
   13406         SDValue SraC = Mask.getOperand(2);
   13407         unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
   13408         unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
   13409         if ((SraAmt + 1) != EltBits)
   13410           return SDValue();
   13411 
   13412         DebugLoc DL = N->getDebugLoc();
   13413 
   13414         // Now we know we at least have a plendvb with the mask val.  See if
   13415         // we can form a psignb/w/d.
   13416         // psign = x.type == y.type == mask.type && y = sub(0, x);
   13417         X = X.getOperand(0);
   13418         Y = Y.getOperand(0);
   13419         if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
   13420             ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
   13421             X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
   13422           unsigned Opc = 0;
   13423           switch (EltBits) {
   13424           case 8: Opc = X86ISD::PSIGNB; break;
   13425           case 16: Opc = X86ISD::PSIGNW; break;
   13426           case 32: Opc = X86ISD::PSIGND; break;
   13427           default: break;
   13428           }
   13429           if (Opc) {
   13430             SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
   13431             return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
   13432           }
   13433         }
   13434         // PBLENDVB only available on SSE 4.1
   13435         if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
   13436           return SDValue();
   13437 
   13438         X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
   13439         Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
   13440         Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
   13441         Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
   13442         return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
   13443       }
   13444     }
   13445   }
   13446 
   13447   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
   13448   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
   13449     std::swap(N0, N1);
   13450   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
   13451     return SDValue();
   13452   if (!N0.hasOneUse() || !N1.hasOneUse())
   13453     return SDValue();
   13454 
   13455   SDValue ShAmt0 = N0.getOperand(1);
   13456   if (ShAmt0.getValueType() != MVT::i8)
   13457     return SDValue();
   13458   SDValue ShAmt1 = N1.getOperand(1);
   13459   if (ShAmt1.getValueType() != MVT::i8)
   13460     return SDValue();
   13461   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
   13462     ShAmt0 = ShAmt0.getOperand(0);
   13463   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
   13464     ShAmt1 = ShAmt1.getOperand(0);
   13465 
   13466   DebugLoc DL = N->getDebugLoc();
   13467   unsigned Opc = X86ISD::SHLD;
   13468   SDValue Op0 = N0.getOperand(0);
   13469   SDValue Op1 = N1.getOperand(0);
   13470   if (ShAmt0.getOpcode() == ISD::SUB) {
   13471     Opc = X86ISD::SHRD;
   13472     std::swap(Op0, Op1);
   13473     std::swap(ShAmt0, ShAmt1);
   13474   }
   13475 
   13476   unsigned Bits = VT.getSizeInBits();
   13477   if (ShAmt1.getOpcode() == ISD::SUB) {
   13478     SDValue Sum = ShAmt1.getOperand(0);
   13479     if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
   13480       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
   13481       if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
   13482         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
   13483       if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
   13484         return DAG.getNode(Opc, DL, VT,
   13485                            Op0, Op1,
   13486                            DAG.getNode(ISD::TRUNCATE, DL,
   13487                                        MVT::i8, ShAmt0));
   13488     }
   13489   } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
   13490     ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
   13491     if (ShAmt0C &&
   13492         ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
   13493       return DAG.getNode(Opc, DL, VT,
   13494                          N0.getOperand(0), N1.getOperand(0),
   13495                          DAG.getNode(ISD::TRUNCATE, DL,
   13496                                        MVT::i8, ShAmt0));
   13497   }
   13498 
   13499   return SDValue();
   13500 }
   13501 
   13502 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
   13503 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
   13504                                    const X86Subtarget *Subtarget) {
   13505   LoadSDNode *Ld = cast<LoadSDNode>(N);
   13506   EVT RegVT = Ld->getValueType(0);
   13507   EVT MemVT = Ld->getMemoryVT();
   13508   DebugLoc dl = Ld->getDebugLoc();
   13509   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13510 
   13511   ISD::LoadExtType Ext = Ld->getExtensionType();
   13512 
   13513   // If this is a vector EXT Load then attempt to optimize it using a
   13514   // shuffle. We need SSE4 for the shuffles.
   13515   // TODO: It is possible to support ZExt by zeroing the undef values
   13516   // during the shuffle phase or after the shuffle.
   13517   if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
   13518     assert(MemVT != RegVT && "Cannot extend to the same type");
   13519     assert(MemVT.isVector() && "Must load a vector from memory");
   13520 
   13521     unsigned NumElems = RegVT.getVectorNumElements();
   13522     unsigned RegSz = RegVT.getSizeInBits();
   13523     unsigned MemSz = MemVT.getSizeInBits();
   13524     assert(RegSz > MemSz && "Register size must be greater than the mem size");
   13525     // All sizes must be a power of two
   13526     if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
   13527 
   13528     // Attempt to load the original value using a single load op.
   13529     // Find a scalar type which is equal to the loaded word size.
   13530     MVT SclrLoadTy = MVT::i8;
   13531     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   13532          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   13533       MVT Tp = (MVT::SimpleValueType)tp;
   13534       if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
   13535         SclrLoadTy = Tp;
   13536         break;
   13537       }
   13538     }
   13539 
   13540     // Proceed if a load word is found.
   13541     if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
   13542 
   13543     EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
   13544       RegSz/SclrLoadTy.getSizeInBits());
   13545 
   13546     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
   13547                                   RegSz/MemVT.getScalarType().getSizeInBits());
   13548     // Can't shuffle using an illegal type.
   13549     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   13550 
   13551     // Perform a single load.
   13552     SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
   13553                                   Ld->getBasePtr(),
   13554                                   Ld->getPointerInfo(), Ld->isVolatile(),
   13555                                   Ld->isNonTemporal(), Ld->getAlignment());
   13556 
   13557     // Insert the word loaded into a vector.
   13558     SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   13559       LoadUnitVecVT, ScalarLoad);
   13560 
   13561     // Bitcast the loaded value to a vector of the original element type, in
   13562     // the size of the target vector type.
   13563     SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
   13564     unsigned SizeRatio = RegSz/MemSz;
   13565 
   13566     // Redistribute the loaded elements into the different locations.
   13567     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   13568     for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
   13569 
   13570     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
   13571                                 DAG.getUNDEF(SlicedVec.getValueType()),
   13572                                 ShuffleVec.data());
   13573 
   13574     // Bitcast to the requested type.
   13575     Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
   13576     // Replace the original load with the new sequence
   13577     // and return the new chain.
   13578     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
   13579     return SDValue(ScalarLoad.getNode(), 1);
   13580   }
   13581 
   13582   return SDValue();
   13583 }
   13584 
   13585 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
   13586 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
   13587                                    const X86Subtarget *Subtarget) {
   13588   StoreSDNode *St = cast<StoreSDNode>(N);
   13589   EVT VT = St->getValue().getValueType();
   13590   EVT StVT = St->getMemoryVT();
   13591   DebugLoc dl = St->getDebugLoc();
   13592   SDValue StoredVal = St->getOperand(1);
   13593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13594 
   13595   // If we are saving a concatination of two XMM registers, perform two stores.
   13596   // This is better in Sandy Bridge cause one 256-bit mem op is done via two
   13597   // 128-bit ones. If in the future the cost becomes only one memory access the
   13598   // first version would be better.
   13599   if (VT.getSizeInBits() == 256 &&
   13600     StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
   13601     StoredVal.getNumOperands() == 2) {
   13602 
   13603     SDValue Value0 = StoredVal.getOperand(0);
   13604     SDValue Value1 = StoredVal.getOperand(1);
   13605 
   13606     SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
   13607     SDValue Ptr0 = St->getBasePtr();
   13608     SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
   13609 
   13610     SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
   13611                                 St->getPointerInfo(), St->isVolatile(),
   13612                                 St->isNonTemporal(), St->getAlignment());
   13613     SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
   13614                                 St->getPointerInfo(), St->isVolatile(),
   13615                                 St->isNonTemporal(), St->getAlignment());
   13616     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
   13617   }
   13618 
   13619   // Optimize trunc store (of multiple scalars) to shuffle and store.
   13620   // First, pack all of the elements in one place. Next, store to memory
   13621   // in fewer chunks.
   13622   if (St->isTruncatingStore() && VT.isVector()) {
   13623     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13624     unsigned NumElems = VT.getVectorNumElements();
   13625     assert(StVT != VT && "Cannot truncate to the same type");
   13626     unsigned FromSz = VT.getVectorElementType().getSizeInBits();
   13627     unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
   13628 
   13629     // From, To sizes and ElemCount must be pow of two
   13630     if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
   13631     // We are going to use the original vector elt for storing.
   13632     // Accumulated smaller vector elements must be a multiple of the store size.
   13633     if (0 != (NumElems * FromSz) % ToSz) return SDValue();
   13634 
   13635     unsigned SizeRatio  = FromSz / ToSz;
   13636 
   13637     assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
   13638 
   13639     // Create a type on which we perform the shuffle
   13640     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
   13641             StVT.getScalarType(), NumElems*SizeRatio);
   13642 
   13643     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   13644 
   13645     SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
   13646     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   13647     for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
   13648 
   13649     // Can't shuffle using an illegal type
   13650     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   13651 
   13652     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
   13653                                 DAG.getUNDEF(WideVec.getValueType()),
   13654                                 ShuffleVec.data());
   13655     // At this point all of the data is stored at the bottom of the
   13656     // register. We now need to save it to mem.
   13657 
   13658     // Find the largest store unit
   13659     MVT StoreType = MVT::i8;
   13660     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   13661          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   13662       MVT Tp = (MVT::SimpleValueType)tp;
   13663       if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
   13664         StoreType = Tp;
   13665     }
   13666 
   13667     // Bitcast the original vector into a vector of store-size units
   13668     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   13669             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   13670     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   13671     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
   13672     SmallVector<SDValue, 8> Chains;
   13673     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   13674                                         TLI.getPointerTy());
   13675     SDValue Ptr = St->getBasePtr();
   13676 
   13677     // Perform one or more big stores into memory.
   13678     for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
   13679       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   13680                                    StoreType, ShuffWide,
   13681                                    DAG.getIntPtrConstant(i));
   13682       SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
   13683                                 St->getPointerInfo(), St->isVolatile(),
   13684                                 St->isNonTemporal(), St->getAlignment());
   13685       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   13686       Chains.push_back(Ch);
   13687     }
   13688 
   13689     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
   13690                                Chains.size());
   13691   }
   13692 
   13693 
   13694   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
   13695   // the FP state in cases where an emms may be missing.
   13696   // A preferable solution to the general problem is to figure out the right
   13697   // places to insert EMMS.  This qualifies as a quick hack.
   13698 
   13699   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
   13700   if (VT.getSizeInBits() != 64)
   13701     return SDValue();
   13702 
   13703   const Function *F = DAG.getMachineFunction().getFunction();
   13704   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
   13705   bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
   13706                      && Subtarget->hasXMMInt();
   13707   if ((VT.isVector() ||
   13708        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
   13709       isa<LoadSDNode>(St->getValue()) &&
   13710       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
   13711       St->getChain().hasOneUse() && !St->isVolatile()) {
   13712     SDNode* LdVal = St->getValue().getNode();
   13713     LoadSDNode *Ld = 0;
   13714     int TokenFactorIndex = -1;
   13715     SmallVector<SDValue, 8> Ops;
   13716     SDNode* ChainVal = St->getChain().getNode();
   13717     // Must be a store of a load.  We currently handle two cases:  the load
   13718     // is a direct child, and it's under an intervening TokenFactor.  It is
   13719     // possible to dig deeper under nested TokenFactors.
   13720     if (ChainVal == LdVal)
   13721       Ld = cast<LoadSDNode>(St->getChain());
   13722     else if (St->getValue().hasOneUse() &&
   13723              ChainVal->getOpcode() == ISD::TokenFactor) {
   13724       for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
   13725         if (ChainVal->getOperand(i).getNode() == LdVal) {
   13726           TokenFactorIndex = i;
   13727           Ld = cast<LoadSDNode>(St->getValue());
   13728         } else
   13729           Ops.push_back(ChainVal->getOperand(i));
   13730       }
   13731     }
   13732 
   13733     if (!Ld || !ISD::isNormalLoad(Ld))
   13734       return SDValue();
   13735 
   13736     // If this is not the MMX case, i.e. we are just turning i64 load/store
   13737     // into f64 load/store, avoid the transformation if there are multiple
   13738     // uses of the loaded value.
   13739     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
   13740       return SDValue();
   13741 
   13742     DebugLoc LdDL = Ld->getDebugLoc();
   13743     DebugLoc StDL = N->getDebugLoc();
   13744     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
   13745     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
   13746     // pair instead.
   13747     if (Subtarget->is64Bit() || F64IsLegal) {
   13748       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
   13749       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
   13750                                   Ld->getPointerInfo(), Ld->isVolatile(),
   13751                                   Ld->isNonTemporal(), Ld->getAlignment());
   13752       SDValue NewChain = NewLd.getValue(1);
   13753       if (TokenFactorIndex != -1) {
   13754         Ops.push_back(NewChain);
   13755         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   13756                                Ops.size());
   13757       }
   13758       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
   13759                           St->getPointerInfo(),
   13760                           St->isVolatile(), St->isNonTemporal(),
   13761                           St->getAlignment());
   13762     }
   13763 
   13764     // Otherwise, lower to two pairs of 32-bit loads / stores.
   13765     SDValue LoAddr = Ld->getBasePtr();
   13766     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
   13767                                  DAG.getConstant(4, MVT::i32));
   13768 
   13769     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
   13770                                Ld->getPointerInfo(),
   13771                                Ld->isVolatile(), Ld->isNonTemporal(),
   13772                                Ld->getAlignment());
   13773     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
   13774                                Ld->getPointerInfo().getWithOffset(4),
   13775                                Ld->isVolatile(), Ld->isNonTemporal(),
   13776                                MinAlign(Ld->getAlignment(), 4));
   13777 
   13778     SDValue NewChain = LoLd.getValue(1);
   13779     if (TokenFactorIndex != -1) {
   13780       Ops.push_back(LoLd);
   13781       Ops.push_back(HiLd);
   13782       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   13783                              Ops.size());
   13784     }
   13785 
   13786     LoAddr = St->getBasePtr();
   13787     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
   13788                          DAG.getConstant(4, MVT::i32));
   13789 
   13790     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
   13791                                 St->getPointerInfo(),
   13792                                 St->isVolatile(), St->isNonTemporal(),
   13793                                 St->getAlignment());
   13794     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
   13795                                 St->getPointerInfo().getWithOffset(4),
   13796                                 St->isVolatile(),
   13797                                 St->isNonTemporal(),
   13798                                 MinAlign(St->getAlignment(), 4));
   13799     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
   13800   }
   13801   return SDValue();
   13802 }
   13803 
   13804 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
   13805 /// and return the operands for the horizontal operation in LHS and RHS.  A
   13806 /// horizontal operation performs the binary operation on successive elements
   13807 /// of its first operand, then on successive elements of its second operand,
   13808 /// returning the resulting values in a vector.  For example, if
   13809 ///   A = < float a0, float a1, float a2, float a3 >
   13810 /// and
   13811 ///   B = < float b0, float b1, float b2, float b3 >
   13812 /// then the result of doing a horizontal operation on A and B is
   13813 ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
   13814 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
   13815 /// A horizontal-op B, for some already available A and B, and if so then LHS is
   13816 /// set to A, RHS to B, and the routine returns 'true'.
   13817 /// Note that the binary operation should have the property that if one of the
   13818 /// operands is UNDEF then the result is UNDEF.
   13819 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
   13820   // Look for the following pattern: if
   13821   //   A = < float a0, float a1, float a2, float a3 >
   13822   //   B = < float b0, float b1, float b2, float b3 >
   13823   // and
   13824   //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
   13825   //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
   13826   // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
   13827   // which is A horizontal-op B.
   13828 
   13829   // At least one of the operands should be a vector shuffle.
   13830   if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
   13831       RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
   13832     return false;
   13833 
   13834   EVT VT = LHS.getValueType();
   13835   unsigned N = VT.getVectorNumElements();
   13836 
   13837   // View LHS in the form
   13838   //   LHS = VECTOR_SHUFFLE A, B, LMask
   13839   // If LHS is not a shuffle then pretend it is the shuffle
   13840   //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
   13841   // NOTE: in what follows a default initialized SDValue represents an UNDEF of
   13842   // type VT.
   13843   SDValue A, B;
   13844   SmallVector<int, 8> LMask(N);
   13845   if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   13846     if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
   13847       A = LHS.getOperand(0);
   13848     if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
   13849       B = LHS.getOperand(1);
   13850     cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
   13851   } else {
   13852     if (LHS.getOpcode() != ISD::UNDEF)
   13853       A = LHS;
   13854     for (unsigned i = 0; i != N; ++i)
   13855       LMask[i] = i;
   13856   }
   13857 
   13858   // Likewise, view RHS in the form
   13859   //   RHS = VECTOR_SHUFFLE C, D, RMask
   13860   SDValue C, D;
   13861   SmallVector<int, 8> RMask(N);
   13862   if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   13863     if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
   13864       C = RHS.getOperand(0);
   13865     if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
   13866       D = RHS.getOperand(1);
   13867     cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
   13868   } else {
   13869     if (RHS.getOpcode() != ISD::UNDEF)
   13870       C = RHS;
   13871     for (unsigned i = 0; i != N; ++i)
   13872       RMask[i] = i;
   13873   }
   13874 
   13875   // Check that the shuffles are both shuffling the same vectors.
   13876   if (!(A == C && B == D) && !(A == D && B == C))
   13877     return false;
   13878 
   13879   // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
   13880   if (!A.getNode() && !B.getNode())
   13881     return false;
   13882 
   13883   // If A and B occur in reverse order in RHS, then "swap" them (which means
   13884   // rewriting the mask).
   13885   if (A != C)
   13886     for (unsigned i = 0; i != N; ++i) {
   13887       unsigned Idx = RMask[i];
   13888       if (Idx < N)
   13889         RMask[i] += N;
   13890       else if (Idx < 2*N)
   13891         RMask[i] -= N;
   13892     }
   13893 
   13894   // At this point LHS and RHS are equivalent to
   13895   //   LHS = VECTOR_SHUFFLE A, B, LMask
   13896   //   RHS = VECTOR_SHUFFLE A, B, RMask
   13897   // Check that the masks correspond to performing a horizontal operation.
   13898   for (unsigned i = 0; i != N; ++i) {
   13899     unsigned LIdx = LMask[i], RIdx = RMask[i];
   13900 
   13901     // Ignore any UNDEF components.
   13902     if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
   13903         || (!B.getNode() && (LIdx >= N || RIdx >= N)))
   13904       continue;
   13905 
   13906     // Check that successive elements are being operated on.  If not, this is
   13907     // not a horizontal operation.
   13908     if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
   13909         !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
   13910       return false;
   13911   }
   13912 
   13913   LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
   13914   RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
   13915   return true;
   13916 }
   13917 
   13918 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
   13919 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
   13920                                   const X86Subtarget *Subtarget) {
   13921   EVT VT = N->getValueType(0);
   13922   SDValue LHS = N->getOperand(0);
   13923   SDValue RHS = N->getOperand(1);
   13924 
   13925   // Try to synthesize horizontal adds from adds of shuffles.
   13926   if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
   13927       (VT == MVT::v4f32 || VT == MVT::v2f64) &&
   13928       isHorizontalBinOp(LHS, RHS, true))
   13929     return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
   13930   return SDValue();
   13931 }
   13932 
   13933 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
   13934 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
   13935                                   const X86Subtarget *Subtarget) {
   13936   EVT VT = N->getValueType(0);
   13937   SDValue LHS = N->getOperand(0);
   13938   SDValue RHS = N->getOperand(1);
   13939 
   13940   // Try to synthesize horizontal subs from subs of shuffles.
   13941   if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
   13942       (VT == MVT::v4f32 || VT == MVT::v2f64) &&
   13943       isHorizontalBinOp(LHS, RHS, false))
   13944     return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
   13945   return SDValue();
   13946 }
   13947 
   13948 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
   13949 /// X86ISD::FXOR nodes.
   13950 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
   13951   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
   13952   // F[X]OR(0.0, x) -> x
   13953   // F[X]OR(x, 0.0) -> x
   13954   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   13955     if (C->getValueAPF().isPosZero())
   13956       return N->getOperand(1);
   13957   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   13958     if (C->getValueAPF().isPosZero())
   13959       return N->getOperand(0);
   13960   return SDValue();
   13961 }
   13962 
   13963 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
   13964 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
   13965   // FAND(0.0, x) -> 0.0
   13966   // FAND(x, 0.0) -> 0.0
   13967   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   13968     if (C->getValueAPF().isPosZero())
   13969       return N->getOperand(0);
   13970   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   13971     if (C->getValueAPF().isPosZero())
   13972       return N->getOperand(1);
   13973   return SDValue();
   13974 }
   13975 
   13976 static SDValue PerformBTCombine(SDNode *N,
   13977                                 SelectionDAG &DAG,
   13978                                 TargetLowering::DAGCombinerInfo &DCI) {
   13979   // BT ignores high bits in the bit index operand.
   13980   SDValue Op1 = N->getOperand(1);
   13981   if (Op1.hasOneUse()) {
   13982     unsigned BitWidth = Op1.getValueSizeInBits();
   13983     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
   13984     APInt KnownZero, KnownOne;
   13985     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   13986                                           !DCI.isBeforeLegalizeOps());
   13987     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13988     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
   13989         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
   13990       DCI.CommitTargetLoweringOpt(TLO);
   13991   }
   13992   return SDValue();
   13993 }
   13994 
   13995 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
   13996   SDValue Op = N->getOperand(0);
   13997   if (Op.getOpcode() == ISD::BITCAST)
   13998     Op = Op.getOperand(0);
   13999   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
   14000   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
   14001       VT.getVectorElementType().getSizeInBits() ==
   14002       OpVT.getVectorElementType().getSizeInBits()) {
   14003     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
   14004   }
   14005   return SDValue();
   14006 }
   14007 
   14008 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
   14009   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
   14010   //           (and (i32 x86isd::setcc_carry), 1)
   14011   // This eliminates the zext. This transformation is necessary because
   14012   // ISD::SETCC is always legalized to i8.
   14013   DebugLoc dl = N->getDebugLoc();
   14014   SDValue N0 = N->getOperand(0);
   14015   EVT VT = N->getValueType(0);
   14016   if (N0.getOpcode() == ISD::AND &&
   14017       N0.hasOneUse() &&
   14018       N0.getOperand(0).hasOneUse()) {
   14019     SDValue N00 = N0.getOperand(0);
   14020     if (N00.getOpcode() != X86ISD::SETCC_CARRY)
   14021       return SDValue();
   14022     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   14023     if (!C || C->getZExtValue() != 1)
   14024       return SDValue();
   14025     return DAG.getNode(ISD::AND, dl, VT,
   14026                        DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
   14027                                    N00.getOperand(0), N00.getOperand(1)),
   14028                        DAG.getConstant(1, VT));
   14029   }
   14030 
   14031   return SDValue();
   14032 }
   14033 
   14034 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
   14035 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
   14036   unsigned X86CC = N->getConstantOperandVal(0);
   14037   SDValue EFLAG = N->getOperand(1);
   14038   DebugLoc DL = N->getDebugLoc();
   14039 
   14040   // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
   14041   // a zext and produces an all-ones bit which is more useful than 0/1 in some
   14042   // cases.
   14043   if (X86CC == X86::COND_B)
   14044     return DAG.getNode(ISD::AND, DL, MVT::i8,
   14045                        DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
   14046                                    DAG.getConstant(X86CC, MVT::i8), EFLAG),
   14047                        DAG.getConstant(1, MVT::i8));
   14048 
   14049   return SDValue();
   14050 }
   14051 
   14052 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
   14053                                         const X86TargetLowering *XTLI) {
   14054   SDValue Op0 = N->getOperand(0);
   14055   // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
   14056   // a 32-bit target where SSE doesn't support i64->FP operations.
   14057   if (Op0.getOpcode() == ISD::LOAD) {
   14058     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
   14059     EVT VT = Ld->getValueType(0);
   14060     if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
   14061         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
   14062         !XTLI->getSubtarget()->is64Bit() &&
   14063         !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   14064       SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
   14065                                           Ld->getChain(), Op0, DAG);
   14066       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
   14067       return FILDChain;
   14068     }
   14069   }
   14070   return SDValue();
   14071 }
   14072 
   14073 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
   14074 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
   14075                                  X86TargetLowering::DAGCombinerInfo &DCI) {
   14076   // If the LHS and RHS of the ADC node are zero, then it can't overflow and
   14077   // the result is either zero or one (depending on the input carry bit).
   14078   // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
   14079   if (X86::isZeroNode(N->getOperand(0)) &&
   14080       X86::isZeroNode(N->getOperand(1)) &&
   14081       // We don't have a good way to replace an EFLAGS use, so only do this when
   14082       // dead right now.
   14083       SDValue(N, 1).use_empty()) {
   14084     DebugLoc DL = N->getDebugLoc();
   14085     EVT VT = N->getValueType(0);
   14086     SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
   14087     SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
   14088                                DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
   14089                                            DAG.getConstant(X86::COND_B,MVT::i8),
   14090                                            N->getOperand(2)),
   14091                                DAG.getConstant(1, VT));
   14092     return DCI.CombineTo(N, Res1, CarryOut);
   14093   }
   14094 
   14095   return SDValue();
   14096 }
   14097 
   14098 // fold (add Y, (sete  X, 0)) -> adc  0, Y
   14099 //      (add Y, (setne X, 0)) -> sbb -1, Y
   14100 //      (sub (sete  X, 0), Y) -> sbb  0, Y
   14101 //      (sub (setne X, 0), Y) -> adc -1, Y
   14102 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
   14103   DebugLoc DL = N->getDebugLoc();
   14104 
   14105   // Look through ZExts.
   14106   SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
   14107   if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
   14108     return SDValue();
   14109 
   14110   SDValue SetCC = Ext.getOperand(0);
   14111   if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
   14112     return SDValue();
   14113 
   14114   X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
   14115   if (CC != X86::COND_E && CC != X86::COND_NE)
   14116     return SDValue();
   14117 
   14118   SDValue Cmp = SetCC.getOperand(1);
   14119   if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
   14120       !X86::isZeroNode(Cmp.getOperand(1)) ||
   14121       !Cmp.getOperand(0).getValueType().isInteger())
   14122     return SDValue();
   14123 
   14124   SDValue CmpOp0 = Cmp.getOperand(0);
   14125   SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
   14126                                DAG.getConstant(1, CmpOp0.getValueType()));
   14127 
   14128   SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
   14129   if (CC == X86::COND_NE)
   14130     return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
   14131                        DL, OtherVal.getValueType(), OtherVal,
   14132                        DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
   14133   return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
   14134                      DL, OtherVal.getValueType(), OtherVal,
   14135                      DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
   14136 }
   14137 
   14138 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
   14139   SDValue Op0 = N->getOperand(0);
   14140   SDValue Op1 = N->getOperand(1);
   14141 
   14142   // X86 can't encode an immediate LHS of a sub. See if we can push the
   14143   // negation into a preceding instruction.
   14144   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
   14145     // If the RHS of the sub is a XOR with one use and a constant, invert the
   14146     // immediate. Then add one to the LHS of the sub so we can turn
   14147     // X-Y -> X+~Y+1, saving one register.
   14148     if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
   14149         isa<ConstantSDNode>(Op1.getOperand(1))) {
   14150       APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
   14151       EVT VT = Op0.getValueType();
   14152       SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
   14153                                    Op1.getOperand(0),
   14154                                    DAG.getConstant(~XorC, VT));
   14155       return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
   14156                          DAG.getConstant(C->getAPIntValue()+1, VT));
   14157     }
   14158   }
   14159 
   14160   return OptimizeConditionalInDecrement(N, DAG);
   14161 }
   14162 
   14163 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
   14164                                              DAGCombinerInfo &DCI) const {
   14165   SelectionDAG &DAG = DCI.DAG;
   14166   switch (N->getOpcode()) {
   14167   default: break;
   14168   case ISD::EXTRACT_VECTOR_ELT:
   14169     return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
   14170   case ISD::VSELECT:
   14171   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
   14172   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
   14173   case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
   14174   case ISD::SUB:            return PerformSubCombine(N, DAG);
   14175   case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
   14176   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
   14177   case ISD::SHL:
   14178   case ISD::SRA:
   14179   case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
   14180   case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
   14181   case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
   14182   case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
   14183   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
   14184   case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
   14185   case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
   14186   case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
   14187   case X86ISD::FXOR:
   14188   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
   14189   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
   14190   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
   14191   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
   14192   case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
   14193   case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
   14194   case X86ISD::SHUFPS:      // Handle all target specific shuffles
   14195   case X86ISD::SHUFPD:
   14196   case X86ISD::PALIGN:
   14197   case X86ISD::PUNPCKHBW:
   14198   case X86ISD::PUNPCKHWD:
   14199   case X86ISD::PUNPCKHDQ:
   14200   case X86ISD::PUNPCKHQDQ:
   14201   case X86ISD::UNPCKHPS:
   14202   case X86ISD::UNPCKHPD:
   14203   case X86ISD::VUNPCKHPSY:
   14204   case X86ISD::VUNPCKHPDY:
   14205   case X86ISD::PUNPCKLBW:
   14206   case X86ISD::PUNPCKLWD:
   14207   case X86ISD::PUNPCKLDQ:
   14208   case X86ISD::PUNPCKLQDQ:
   14209   case X86ISD::UNPCKLPS:
   14210   case X86ISD::UNPCKLPD:
   14211   case X86ISD::VUNPCKLPSY:
   14212   case X86ISD::VUNPCKLPDY:
   14213   case X86ISD::MOVHLPS:
   14214   case X86ISD::MOVLHPS:
   14215   case X86ISD::PSHUFD:
   14216   case X86ISD::PSHUFHW:
   14217   case X86ISD::PSHUFLW:
   14218   case X86ISD::MOVSS:
   14219   case X86ISD::MOVSD:
   14220   case X86ISD::VPERMILPS:
   14221   case X86ISD::VPERMILPSY:
   14222   case X86ISD::VPERMILPD:
   14223   case X86ISD::VPERMILPDY:
   14224   case X86ISD::VPERM2F128:
   14225   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
   14226   }
   14227 
   14228   return SDValue();
   14229 }
   14230 
   14231 /// isTypeDesirableForOp - Return true if the target has native support for
   14232 /// the specified value type and it is 'desirable' to use the type for the
   14233 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
   14234 /// instruction encodings are longer and some i16 instructions are slow.
   14235 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
   14236   if (!isTypeLegal(VT))
   14237     return false;
   14238   if (VT != MVT::i16)
   14239     return true;
   14240 
   14241   switch (Opc) {
   14242   default:
   14243     return true;
   14244   case ISD::LOAD:
   14245   case ISD::SIGN_EXTEND:
   14246   case ISD::ZERO_EXTEND:
   14247   case ISD::ANY_EXTEND:
   14248   case ISD::SHL:
   14249   case ISD::SRL:
   14250   case ISD::SUB:
   14251   case ISD::ADD:
   14252   case ISD::MUL:
   14253   case ISD::AND:
   14254   case ISD::OR:
   14255   case ISD::XOR:
   14256     return false;
   14257   }
   14258 }
   14259 
   14260 /// IsDesirableToPromoteOp - This method query the target whether it is
   14261 /// beneficial for dag combiner to promote the specified node. If true, it
   14262 /// should return the desired promotion type by reference.
   14263 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
   14264   EVT VT = Op.getValueType();
   14265   if (VT != MVT::i16)
   14266     return false;
   14267 
   14268   bool Promote = false;
   14269   bool Commute = false;
   14270   switch (Op.getOpcode()) {
   14271   default: break;
   14272   case ISD::LOAD: {
   14273     LoadSDNode *LD = cast<LoadSDNode>(Op);
   14274     // If the non-extending load has a single use and it's not live out, then it
   14275     // might be folded.
   14276     if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
   14277                                                      Op.hasOneUse()*/) {
   14278       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   14279              UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   14280         // The only case where we'd want to promote LOAD (rather then it being
   14281         // promoted as an operand is when it's only use is liveout.
   14282         if (UI->getOpcode() != ISD::CopyToReg)
   14283           return false;
   14284       }
   14285     }
   14286     Promote = true;
   14287     break;
   14288   }
   14289   case ISD::SIGN_EXTEND:
   14290   case ISD::ZERO_EXTEND:
   14291   case ISD::ANY_EXTEND:
   14292     Promote = true;
   14293     break;
   14294   case ISD::SHL:
   14295   case ISD::SRL: {
   14296     SDValue N0 = Op.getOperand(0);
   14297     // Look out for (store (shl (load), x)).
   14298     if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
   14299       return false;
   14300     Promote = true;
   14301     break;
   14302   }
   14303   case ISD::ADD:
   14304   case ISD::MUL:
   14305   case ISD::AND:
   14306   case ISD::OR:
   14307   case ISD::XOR:
   14308     Commute = true;
   14309     // fallthrough
   14310   case ISD::SUB: {
   14311     SDValue N0 = Op.getOperand(0);
   14312     SDValue N1 = Op.getOperand(1);
   14313     if (!Commute && MayFoldLoad(N1))
   14314       return false;
   14315     // Avoid disabling potential load folding opportunities.
   14316     if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
   14317       return false;
   14318     if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
   14319       return false;
   14320     Promote = true;
   14321   }
   14322   }
   14323 
   14324   PVT = MVT::i32;
   14325   return Promote;
   14326 }
   14327 
   14328 //===----------------------------------------------------------------------===//
   14329 //                           X86 Inline Assembly Support
   14330 //===----------------------------------------------------------------------===//
   14331 
   14332 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
   14333   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   14334 
   14335   std::string AsmStr = IA->getAsmString();
   14336 
   14337   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
   14338   SmallVector<StringRef, 4> AsmPieces;
   14339   SplitString(AsmStr, AsmPieces, ";\n");
   14340 
   14341   switch (AsmPieces.size()) {
   14342   default: return false;
   14343   case 1:
   14344     AsmStr = AsmPieces[0];
   14345     AsmPieces.clear();
   14346     SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
   14347 
   14348     // FIXME: this should verify that we are targeting a 486 or better.  If not,
   14349     // we will turn this bswap into something that will be lowered to logical ops
   14350     // instead of emitting the bswap asm.  For now, we don't support 486 or lower
   14351     // so don't worry about this.
   14352     // bswap $0
   14353     if (AsmPieces.size() == 2 &&
   14354         (AsmPieces[0] == "bswap" ||
   14355          AsmPieces[0] == "bswapq" ||
   14356          AsmPieces[0] == "bswapl") &&
   14357         (AsmPieces[1] == "$0" ||
   14358          AsmPieces[1] == "${0:q}")) {
   14359       // No need to check constraints, nothing other than the equivalent of
   14360       // "=r,0" would be valid here.
   14361       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14362       if (!Ty || Ty->getBitWidth() % 16 != 0)
   14363         return false;
   14364       return IntrinsicLowering::LowerToByteSwap(CI);
   14365     }
   14366     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
   14367     if (CI->getType()->isIntegerTy(16) &&
   14368         AsmPieces.size() == 3 &&
   14369         (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
   14370         AsmPieces[1] == "$$8," &&
   14371         AsmPieces[2] == "${0:w}" &&
   14372         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
   14373       AsmPieces.clear();
   14374       const std::string &ConstraintsStr = IA->getConstraintString();
   14375       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   14376       std::sort(AsmPieces.begin(), AsmPieces.end());
   14377       if (AsmPieces.size() == 4 &&
   14378           AsmPieces[0] == "~{cc}" &&
   14379           AsmPieces[1] == "~{dirflag}" &&
   14380           AsmPieces[2] == "~{flags}" &&
   14381           AsmPieces[3] == "~{fpsr}") {
   14382         IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14383         if (!Ty || Ty->getBitWidth() % 16 != 0)
   14384           return false;
   14385         return IntrinsicLowering::LowerToByteSwap(CI);
   14386       }
   14387     }
   14388     break;
   14389   case 3:
   14390     if (CI->getType()->isIntegerTy(32) &&
   14391         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
   14392       SmallVector<StringRef, 4> Words;
   14393       SplitString(AsmPieces[0], Words, " \t,");
   14394       if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
   14395           Words[2] == "${0:w}") {
   14396         Words.clear();
   14397         SplitString(AsmPieces[1], Words, " \t,");
   14398         if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
   14399             Words[2] == "$0") {
   14400           Words.clear();
   14401           SplitString(AsmPieces[2], Words, " \t,");
   14402           if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
   14403               Words[2] == "${0:w}") {
   14404             AsmPieces.clear();
   14405             const std::string &ConstraintsStr = IA->getConstraintString();
   14406             SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   14407             std::sort(AsmPieces.begin(), AsmPieces.end());
   14408             if (AsmPieces.size() == 4 &&
   14409                 AsmPieces[0] == "~{cc}" &&
   14410                 AsmPieces[1] == "~{dirflag}" &&
   14411                 AsmPieces[2] == "~{flags}" &&
   14412                 AsmPieces[3] == "~{fpsr}") {
   14413               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14414               if (!Ty || Ty->getBitWidth() % 16 != 0)
   14415                 return false;
   14416               return IntrinsicLowering::LowerToByteSwap(CI);
   14417             }
   14418           }
   14419         }
   14420       }
   14421     }
   14422 
   14423     if (CI->getType()->isIntegerTy(64)) {
   14424       InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
   14425       if (Constraints.size() >= 2 &&
   14426           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
   14427           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
   14428         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
   14429         SmallVector<StringRef, 4> Words;
   14430         SplitString(AsmPieces[0], Words, " \t");
   14431         if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
   14432           Words.clear();
   14433           SplitString(AsmPieces[1], Words, " \t");
   14434           if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
   14435             Words.clear();
   14436             SplitString(AsmPieces[2], Words, " \t,");
   14437             if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
   14438                 Words[2] == "%edx") {
   14439               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   14440               if (!Ty || Ty->getBitWidth() % 16 != 0)
   14441                 return false;
   14442               return IntrinsicLowering::LowerToByteSwap(CI);
   14443             }
   14444           }
   14445         }
   14446       }
   14447     }
   14448     break;
   14449   }
   14450   return false;
   14451 }
   14452 
   14453 
   14454 
   14455 /// getConstraintType - Given a constraint letter, return the type of
   14456 /// constraint it is for this target.
   14457 X86TargetLowering::ConstraintType
   14458 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
   14459   if (Constraint.size() == 1) {
   14460     switch (Constraint[0]) {
   14461     case 'R':
   14462     case 'q':
   14463     case 'Q':
   14464     case 'f':
   14465     case 't':
   14466     case 'u':
   14467     case 'y':
   14468     case 'x':
   14469     case 'Y':
   14470     case 'l':
   14471       return C_RegisterClass;
   14472     case 'a':
   14473     case 'b':
   14474     case 'c':
   14475     case 'd':
   14476     case 'S':
   14477     case 'D':
   14478     case 'A':
   14479       return C_Register;
   14480     case 'I':
   14481     case 'J':
   14482     case 'K':
   14483     case 'L':
   14484     case 'M':
   14485     case 'N':
   14486     case 'G':
   14487     case 'C':
   14488     case 'e':
   14489     case 'Z':
   14490       return C_Other;
   14491     default:
   14492       break;
   14493     }
   14494   }
   14495   return TargetLowering::getConstraintType(Constraint);
   14496 }
   14497 
   14498 /// Examine constraint type and operand type and determine a weight value.
   14499 /// This object must already have been set up with the operand type
   14500 /// and the current alternative constraint selected.
   14501 TargetLowering::ConstraintWeight
   14502   X86TargetLowering::getSingleConstraintMatchWeight(
   14503     AsmOperandInfo &info, const char *constraint) const {
   14504   ConstraintWeight weight = CW_Invalid;
   14505   Value *CallOperandVal = info.CallOperandVal;
   14506     // If we don't have a value, we can't do a match,
   14507     // but allow it at the lowest weight.
   14508   if (CallOperandVal == NULL)
   14509     return CW_Default;
   14510   Type *type = CallOperandVal->getType();
   14511   // Look at the constraint type.
   14512   switch (*constraint) {
   14513   default:
   14514     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   14515   case 'R':
   14516   case 'q':
   14517   case 'Q':
   14518   case 'a':
   14519   case 'b':
   14520   case 'c':
   14521   case 'd':
   14522   case 'S':
   14523   case 'D':
   14524   case 'A':
   14525     if (CallOperandVal->getType()->isIntegerTy())
   14526       weight = CW_SpecificReg;
   14527     break;
   14528   case 'f':
   14529   case 't':
   14530   case 'u':
   14531       if (type->isFloatingPointTy())
   14532         weight = CW_SpecificReg;
   14533       break;
   14534   case 'y':
   14535       if (type->isX86_MMXTy() && Subtarget->hasMMX())
   14536         weight = CW_SpecificReg;
   14537       break;
   14538   case 'x':
   14539   case 'Y':
   14540     if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
   14541       weight = CW_Register;
   14542     break;
   14543   case 'I':
   14544     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
   14545       if (C->getZExtValue() <= 31)
   14546         weight = CW_Constant;
   14547     }
   14548     break;
   14549   case 'J':
   14550     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14551       if (C->getZExtValue() <= 63)
   14552         weight = CW_Constant;
   14553     }
   14554     break;
   14555   case 'K':
   14556     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14557       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
   14558         weight = CW_Constant;
   14559     }
   14560     break;
   14561   case 'L':
   14562     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14563       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
   14564         weight = CW_Constant;
   14565     }
   14566     break;
   14567   case 'M':
   14568     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14569       if (C->getZExtValue() <= 3)
   14570         weight = CW_Constant;
   14571     }
   14572     break;
   14573   case 'N':
   14574     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14575       if (C->getZExtValue() <= 0xff)
   14576         weight = CW_Constant;
   14577     }
   14578     break;
   14579   case 'G':
   14580   case 'C':
   14581     if (dyn_cast<ConstantFP>(CallOperandVal)) {
   14582       weight = CW_Constant;
   14583     }
   14584     break;
   14585   case 'e':
   14586     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14587       if ((C->getSExtValue() >= -0x80000000LL) &&
   14588           (C->getSExtValue() <= 0x7fffffffLL))
   14589         weight = CW_Constant;
   14590     }
   14591     break;
   14592   case 'Z':
   14593     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   14594       if (C->getZExtValue() <= 0xffffffff)
   14595         weight = CW_Constant;
   14596     }
   14597     break;
   14598   }
   14599   return weight;
   14600 }
   14601 
   14602 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   14603 /// with another that has more specific requirements based on the type of the
   14604 /// corresponding operand.
   14605 const char *X86TargetLowering::
   14606 LowerXConstraint(EVT ConstraintVT) const {
   14607   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
   14608   // 'f' like normal targets.
   14609   if (ConstraintVT.isFloatingPoint()) {
   14610     if (Subtarget->hasXMMInt())
   14611       return "Y";
   14612     if (Subtarget->hasXMM())
   14613       return "x";
   14614   }
   14615 
   14616   return TargetLowering::LowerXConstraint(ConstraintVT);
   14617 }
   14618 
   14619 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   14620 /// vector.  If it is invalid, don't add anything to Ops.
   14621 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   14622                                                      std::string &Constraint,
   14623                                                      std::vector<SDValue>&Ops,
   14624                                                      SelectionDAG &DAG) const {
   14625   SDValue Result(0, 0);
   14626 
   14627   // Only support length 1 constraints for now.
   14628   if (Constraint.length() > 1) return;
   14629 
   14630   char ConstraintLetter = Constraint[0];
   14631   switch (ConstraintLetter) {
   14632   default: break;
   14633   case 'I':
   14634     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14635       if (C->getZExtValue() <= 31) {
   14636         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14637         break;
   14638       }
   14639     }
   14640     return;
   14641   case 'J':
   14642     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14643       if (C->getZExtValue() <= 63) {
   14644         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14645         break;
   14646       }
   14647     }
   14648     return;
   14649   case 'K':
   14650     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14651       if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
   14652         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14653         break;
   14654       }
   14655     }
   14656     return;
   14657   case 'N':
   14658     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14659       if (C->getZExtValue() <= 255) {
   14660         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14661         break;
   14662       }
   14663     }
   14664     return;
   14665   case 'e': {
   14666     // 32-bit signed value
   14667     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14668       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   14669                                            C->getSExtValue())) {
   14670         // Widen to 64 bits here to get it sign extended.
   14671         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
   14672         break;
   14673       }
   14674     // FIXME gcc accepts some relocatable values here too, but only in certain
   14675     // memory models; it's complicated.
   14676     }
   14677     return;
   14678   }
   14679   case 'Z': {
   14680     // 32-bit unsigned value
   14681     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   14682       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   14683                                            C->getZExtValue())) {
   14684         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   14685         break;
   14686       }
   14687     }
   14688     // FIXME gcc accepts some relocatable values here too, but only in certain
   14689     // memory models; it's complicated.
   14690     return;
   14691   }
   14692   case 'i': {
   14693     // Literal immediates are always ok.
   14694     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
   14695       // Widen to 64 bits here to get it sign extended.
   14696       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
   14697       break;
   14698     }
   14699 
   14700     // In any sort of PIC mode addresses need to be computed at runtime by
   14701     // adding in a register or some sort of table lookup.  These can't
   14702     // be used as immediates.
   14703     if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
   14704       return;
   14705 
   14706     // If we are in non-pic codegen mode, we allow the address of a global (with
   14707     // an optional displacement) to be used with 'i'.
   14708     GlobalAddressSDNode *GA = 0;
   14709     int64_t Offset = 0;
   14710 
   14711     // Match either (GA), (GA+C), (GA+C1+C2), etc.
   14712     while (1) {
   14713       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
   14714         Offset += GA->getOffset();
   14715         break;
   14716       } else if (Op.getOpcode() == ISD::ADD) {
   14717         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   14718           Offset += C->getZExtValue();
   14719           Op = Op.getOperand(0);
   14720           continue;
   14721         }
   14722       } else if (Op.getOpcode() == ISD::SUB) {
   14723         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   14724           Offset += -C->getZExtValue();
   14725           Op = Op.getOperand(0);
   14726           continue;
   14727         }
   14728       }
   14729 
   14730       // Otherwise, this isn't something we can handle, reject it.
   14731       return;
   14732     }
   14733 
   14734     const GlobalValue *GV = GA->getGlobal();
   14735     // If we require an extra load to get this address, as in PIC mode, we
   14736     // can't accept it.
   14737     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
   14738                                                         getTargetMachine())))
   14739       return;
   14740 
   14741     Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
   14742                                         GA->getValueType(0), Offset);
   14743     break;
   14744   }
   14745   }
   14746 
   14747   if (Result.getNode()) {
   14748     Ops.push_back(Result);
   14749     return;
   14750   }
   14751   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   14752 }
   14753 
   14754 std::pair<unsigned, const TargetRegisterClass*>
   14755 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   14756                                                 EVT VT) const {
   14757   // First, see if this is a constraint that directly corresponds to an LLVM
   14758   // register class.
   14759   if (Constraint.size() == 1) {
   14760     // GCC Constraint Letters
   14761     switch (Constraint[0]) {
   14762     default: break;
   14763       // TODO: Slight differences here in allocation order and leaving
   14764       // RIP in the class. Do they matter any more here than they do
   14765       // in the normal allocation?
   14766     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
   14767       if (Subtarget->is64Bit()) {
   14768 	if (VT == MVT::i32 || VT == MVT::f32)
   14769 	  return std::make_pair(0U, X86::GR32RegisterClass);
   14770 	else if (VT == MVT::i16)
   14771 	  return std::make_pair(0U, X86::GR16RegisterClass);
   14772 	else if (VT == MVT::i8 || VT == MVT::i1)
   14773 	  return std::make_pair(0U, X86::GR8RegisterClass);
   14774 	else if (VT == MVT::i64 || VT == MVT::f64)
   14775 	  return std::make_pair(0U, X86::GR64RegisterClass);
   14776 	break;
   14777       }
   14778       // 32-bit fallthrough
   14779     case 'Q':   // Q_REGS
   14780       if (VT == MVT::i32 || VT == MVT::f32)
   14781 	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
   14782       else if (VT == MVT::i16)
   14783 	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
   14784       else if (VT == MVT::i8 || VT == MVT::i1)
   14785 	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
   14786       else if (VT == MVT::i64)
   14787 	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
   14788       break;
   14789     case 'r':   // GENERAL_REGS
   14790     case 'l':   // INDEX_REGS
   14791       if (VT == MVT::i8 || VT == MVT::i1)
   14792         return std::make_pair(0U, X86::GR8RegisterClass);
   14793       if (VT == MVT::i16)
   14794         return std::make_pair(0U, X86::GR16RegisterClass);
   14795       if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
   14796         return std::make_pair(0U, X86::GR32RegisterClass);
   14797       return std::make_pair(0U, X86::GR64RegisterClass);
   14798     case 'R':   // LEGACY_REGS
   14799       if (VT == MVT::i8 || VT == MVT::i1)
   14800         return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
   14801       if (VT == MVT::i16)
   14802         return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
   14803       if (VT == MVT::i32 || !Subtarget->is64Bit())
   14804         return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
   14805       return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
   14806     case 'f':  // FP Stack registers.
   14807       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
   14808       // value to the correct fpstack register class.
   14809       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
   14810         return std::make_pair(0U, X86::RFP32RegisterClass);
   14811       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
   14812         return std::make_pair(0U, X86::RFP64RegisterClass);
   14813       return std::make_pair(0U, X86::RFP80RegisterClass);
   14814     case 'y':   // MMX_REGS if MMX allowed.
   14815       if (!Subtarget->hasMMX()) break;
   14816       return std::make_pair(0U, X86::VR64RegisterClass);
   14817     case 'Y':   // SSE_REGS if SSE2 allowed
   14818       if (!Subtarget->hasXMMInt()) break;
   14819       // FALL THROUGH.
   14820     case 'x':   // SSE_REGS if SSE1 allowed
   14821       if (!Subtarget->hasXMM()) break;
   14822 
   14823       switch (VT.getSimpleVT().SimpleTy) {
   14824       default: break;
   14825       // Scalar SSE types.
   14826       case MVT::f32:
   14827       case MVT::i32:
   14828         return std::make_pair(0U, X86::FR32RegisterClass);
   14829       case MVT::f64:
   14830       case MVT::i64:
   14831         return std::make_pair(0U, X86::FR64RegisterClass);
   14832       // Vector types.
   14833       case MVT::v16i8:
   14834       case MVT::v8i16:
   14835       case MVT::v4i32:
   14836       case MVT::v2i64:
   14837       case MVT::v4f32:
   14838       case MVT::v2f64:
   14839         return std::make_pair(0U, X86::VR128RegisterClass);
   14840       }
   14841       break;
   14842     }
   14843   }
   14844 
   14845   // Use the default implementation in TargetLowering to convert the register
   14846   // constraint into a member of a register class.
   14847   std::pair<unsigned, const TargetRegisterClass*> Res;
   14848   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   14849 
   14850   // Not found as a standard register?
   14851   if (Res.second == 0) {
   14852     // Map st(0) -> st(7) -> ST0
   14853     if (Constraint.size() == 7 && Constraint[0] == '{' &&
   14854         tolower(Constraint[1]) == 's' &&
   14855         tolower(Constraint[2]) == 't' &&
   14856         Constraint[3] == '(' &&
   14857         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
   14858         Constraint[5] == ')' &&
   14859         Constraint[6] == '}') {
   14860 
   14861       Res.first = X86::ST0+Constraint[4]-'0';
   14862       Res.second = X86::RFP80RegisterClass;
   14863       return Res;
   14864     }
   14865 
   14866     // GCC allows "st(0)" to be called just plain "st".
   14867     if (StringRef("{st}").equals_lower(Constraint)) {
   14868       Res.first = X86::ST0;
   14869       Res.second = X86::RFP80RegisterClass;
   14870       return Res;
   14871     }
   14872 
   14873     // flags -> EFLAGS
   14874     if (StringRef("{flags}").equals_lower(Constraint)) {
   14875       Res.first = X86::EFLAGS;
   14876       Res.second = X86::CCRRegisterClass;
   14877       return Res;
   14878     }
   14879 
   14880     // 'A' means EAX + EDX.
   14881     if (Constraint == "A") {
   14882       Res.first = X86::EAX;
   14883       Res.second = X86::GR32_ADRegisterClass;
   14884       return Res;
   14885     }
   14886     return Res;
   14887   }
   14888 
   14889   // Otherwise, check to see if this is a register class of the wrong value
   14890   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
   14891   // turn into {ax},{dx}.
   14892   if (Res.second->hasType(VT))
   14893     return Res;   // Correct type already, nothing to do.
   14894 
   14895   // All of the single-register GCC register classes map their values onto
   14896   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
   14897   // really want an 8-bit or 32-bit register, map to the appropriate register
   14898   // class and return the appropriate register.
   14899   if (Res.second == X86::GR16RegisterClass) {
   14900     if (VT == MVT::i8) {
   14901       unsigned DestReg = 0;
   14902       switch (Res.first) {
   14903       default: break;
   14904       case X86::AX: DestReg = X86::AL; break;
   14905       case X86::DX: DestReg = X86::DL; break;
   14906       case X86::CX: DestReg = X86::CL; break;
   14907       case X86::BX: DestReg = X86::BL; break;
   14908       }
   14909       if (DestReg) {
   14910         Res.first = DestReg;
   14911         Res.second = X86::GR8RegisterClass;
   14912       }
   14913     } else if (VT == MVT::i32) {
   14914       unsigned DestReg = 0;
   14915       switch (Res.first) {
   14916       default: break;
   14917       case X86::AX: DestReg = X86::EAX; break;
   14918       case X86::DX: DestReg = X86::EDX; break;
   14919       case X86::CX: DestReg = X86::ECX; break;
   14920       case X86::BX: DestReg = X86::EBX; break;
   14921       case X86::SI: DestReg = X86::ESI; break;
   14922       case X86::DI: DestReg = X86::EDI; break;
   14923       case X86::BP: DestReg = X86::EBP; break;
   14924       case X86::SP: DestReg = X86::ESP; break;
   14925       }
   14926       if (DestReg) {
   14927         Res.first = DestReg;
   14928         Res.second = X86::GR32RegisterClass;
   14929       }
   14930     } else if (VT == MVT::i64) {
   14931       unsigned DestReg = 0;
   14932       switch (Res.first) {
   14933       default: break;
   14934       case X86::AX: DestReg = X86::RAX; break;
   14935       case X86::DX: DestReg = X86::RDX; break;
   14936       case X86::CX: DestReg = X86::RCX; break;
   14937       case X86::BX: DestReg = X86::RBX; break;
   14938       case X86::SI: DestReg = X86::RSI; break;
   14939       case X86::DI: DestReg = X86::RDI; break;
   14940       case X86::BP: DestReg = X86::RBP; break;
   14941       case X86::SP: DestReg = X86::RSP; break;
   14942       }
   14943       if (DestReg) {
   14944         Res.first = DestReg;
   14945         Res.second = X86::GR64RegisterClass;
   14946       }
   14947     }
   14948   } else if (Res.second == X86::FR32RegisterClass ||
   14949              Res.second == X86::FR64RegisterClass ||
   14950              Res.second == X86::VR128RegisterClass) {
   14951     // Handle references to XMM physical registers that got mapped into the
   14952     // wrong class.  This can happen with constraints like {xmm0} where the
   14953     // target independent register mapper will just pick the first match it can
   14954     // find, ignoring the required type.
   14955     if (VT == MVT::f32)
   14956       Res.second = X86::FR32RegisterClass;
   14957     else if (VT == MVT::f64)
   14958       Res.second = X86::FR64RegisterClass;
   14959     else if (X86::VR128RegisterClass->hasType(VT))
   14960       Res.second = X86::VR128RegisterClass;
   14961   }
   14962 
   14963   return Res;
   14964 }
   14965