1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/VirtRegMap.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 #include <cmath> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "regalloc" 45 46 STATISTIC(numJoins , "Number of interval joins performed"); 47 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 48 STATISTIC(numCommutes , "Number of instruction commuting performed"); 49 STATISTIC(numExtends , "Number of copies extended"); 50 STATISTIC(NumReMats , "Number of instructions re-materialized"); 51 STATISTIC(NumInflated , "Number of register classes inflated"); 52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 53 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 54 55 static cl::opt<bool> 56 EnableJoining("join-liveintervals", 57 cl::desc("Coalesce copies (default=true)"), 58 cl::init(true)); 59 60 static cl::opt<bool> UseTerminalRule("terminal-rule", 61 cl::desc("Apply the terminal rule"), 62 cl::init(false), cl::Hidden); 63 64 /// Temporary flag to test critical edge unsplitting. 65 static cl::opt<bool> 66 EnableJoinSplits("join-splitedges", 67 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 68 69 /// Temporary flag to test global copy optimization. 70 static cl::opt<cl::boolOrDefault> 71 EnableGlobalCopies("join-globalcopies", 72 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 73 cl::init(cl::BOU_UNSET), cl::Hidden); 74 75 static cl::opt<bool> 76 VerifyCoalescing("verify-coalescing", 77 cl::desc("Verify machine instrs before and after register coalescing"), 78 cl::Hidden); 79 80 namespace { 81 class RegisterCoalescer : public MachineFunctionPass, 82 private LiveRangeEdit::Delegate { 83 MachineFunction* MF; 84 MachineRegisterInfo* MRI; 85 const TargetMachine* TM; 86 const TargetRegisterInfo* TRI; 87 const TargetInstrInfo* TII; 88 LiveIntervals *LIS; 89 const MachineLoopInfo* Loops; 90 AliasAnalysis *AA; 91 RegisterClassInfo RegClassInfo; 92 93 /// A LaneMask to remember on which subregister live ranges we need to call 94 /// shrinkToUses() later. 95 LaneBitmask ShrinkMask; 96 97 /// True if the main range of the currently coalesced intervals should be 98 /// checked for smaller live intervals. 99 bool ShrinkMainRange; 100 101 /// \brief True if the coalescer should aggressively coalesce global copies 102 /// in favor of keeping local copies. 103 bool JoinGlobalCopies; 104 105 /// \brief True if the coalescer should aggressively coalesce fall-thru 106 /// blocks exclusively containing copies. 107 bool JoinSplitEdges; 108 109 /// Copy instructions yet to be coalesced. 110 SmallVector<MachineInstr*, 8> WorkList; 111 SmallVector<MachineInstr*, 8> LocalWorkList; 112 113 /// Set of instruction pointers that have been erased, and 114 /// that may be present in WorkList. 115 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 116 117 /// Dead instructions that are about to be deleted. 118 SmallVector<MachineInstr*, 8> DeadDefs; 119 120 /// Virtual registers to be considered for register class inflation. 121 SmallVector<unsigned, 8> InflateRegs; 122 123 /// Recursively eliminate dead defs in DeadDefs. 124 void eliminateDeadDefs(); 125 126 /// LiveRangeEdit callback for eliminateDeadDefs(). 127 void LRE_WillEraseInstruction(MachineInstr *MI) override; 128 129 /// Coalesce the LocalWorkList. 130 void coalesceLocals(); 131 132 /// Join compatible live intervals 133 void joinAllIntervals(); 134 135 /// Coalesce copies in the specified MBB, putting 136 /// copies that cannot yet be coalesced into WorkList. 137 void copyCoalesceInMBB(MachineBasicBlock *MBB); 138 139 /// Tries to coalesce all copies in CurrList. Returns true if any progress 140 /// was made. 141 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 142 143 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 144 /// src/dst of the copy instruction CopyMI. This returns true if the copy 145 /// was successfully coalesced away. If it is not currently possible to 146 /// coalesce this interval, but it may be possible if other things get 147 /// coalesced, then it returns true by reference in 'Again'. 148 bool joinCopy(MachineInstr *TheCopy, bool &Again); 149 150 /// Attempt to join these two intervals. On failure, this 151 /// returns false. The output "SrcInt" will not have been modified, so we 152 /// can use this information below to update aliases. 153 bool joinIntervals(CoalescerPair &CP); 154 155 /// Attempt joining two virtual registers. Return true on success. 156 bool joinVirtRegs(CoalescerPair &CP); 157 158 /// Attempt joining with a reserved physreg. 159 bool joinReservedPhysReg(CoalescerPair &CP); 160 161 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 162 /// Subranges in @p LI which only partially interfere with the desired 163 /// LaneMask are split as necessary. @p LaneMask are the lanes that 164 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 165 /// lanemasks already adjusted to the coalesced register. 166 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 167 LaneBitmask LaneMask, CoalescerPair &CP); 168 169 /// Join the liveranges of two subregisters. Joins @p RRange into 170 /// @p LRange, @p RRange may be invalid afterwards. 171 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 172 LaneBitmask LaneMask, const CoalescerPair &CP); 173 174 /// We found a non-trivially-coalescable copy. If the source value number is 175 /// defined by a copy from the destination reg see if we can merge these two 176 /// destination reg valno# into a single value number, eliminating a copy. 177 /// This returns true if an interval was modified. 178 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 179 180 /// Return true if there are definitions of IntB 181 /// other than BValNo val# that can reach uses of AValno val# of IntA. 182 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 183 VNInfo *AValNo, VNInfo *BValNo); 184 185 /// We found a non-trivially-coalescable copy. 186 /// If the source value number is defined by a commutable instruction and 187 /// its other operand is coalesced to the copy dest register, see if we 188 /// can transform the copy into a noop by commuting the definition. 189 /// This returns true if an interval was modified. 190 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 191 192 /// If the source of a copy is defined by a 193 /// trivial computation, replace the copy by rematerialize the definition. 194 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 195 bool &IsDefCopy); 196 197 /// Return true if a copy involving a physreg should be joined. 198 bool canJoinPhys(const CoalescerPair &CP); 199 200 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 201 /// number if it is not zero. If DstReg is a physical register and the 202 /// existing subregister number of the def / use being updated is not zero, 203 /// make sure to set it to the correct physical subregister. 204 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 205 206 /// Handle copies of undef values. 207 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 208 bool eliminateUndefCopy(MachineInstr *CopyMI); 209 210 /// Check whether or not we should apply the terminal rule on the 211 /// destination (Dst) of \p Copy. 212 /// When the terminal rule applies, Copy is not profitable to 213 /// coalesce. 214 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 215 /// at least one interference (Dst, Dst2). If Dst is terminal, the 216 /// terminal rule consists in checking that at least one of 217 /// interfering node, say Dst2, has an affinity of equal or greater 218 /// weight with Src. 219 /// In that case, Dst2 and Dst will not be able to be both coalesced 220 /// with Src. Since Dst2 exposes more coalescing opportunities than 221 /// Dst, we can drop \p Copy. 222 bool applyTerminalRule(const MachineInstr &Copy) const; 223 224 /// Wrapper method for \see LiveIntervals::shrinkToUses. 225 /// This method does the proper fixing of the live-ranges when the afore 226 /// mentioned method returns true. 227 void shrinkToUses(LiveInterval *LI, 228 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 229 if (LIS->shrinkToUses(LI, Dead)) { 230 /// Check whether or not \p LI is composed by multiple connected 231 /// components and if that is the case, fix that. 232 SmallVector<LiveInterval*, 8> SplitLIs; 233 LIS->splitSeparateComponents(*LI, SplitLIs); 234 } 235 } 236 237 public: 238 static char ID; ///< Class identification, replacement for typeinfo 239 RegisterCoalescer() : MachineFunctionPass(ID) { 240 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 241 } 242 243 void getAnalysisUsage(AnalysisUsage &AU) const override; 244 245 void releaseMemory() override; 246 247 /// This is the pass entry point. 248 bool runOnMachineFunction(MachineFunction&) override; 249 250 /// Implement the dump method. 251 void print(raw_ostream &O, const Module* = nullptr) const override; 252 }; 253 } // end anonymous namespace 254 255 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 256 257 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 258 "Simple Register Coalescing", false, false) 259 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 260 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 261 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 262 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 263 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 264 "Simple Register Coalescing", false, false) 265 266 char RegisterCoalescer::ID = 0; 267 268 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 269 unsigned &Src, unsigned &Dst, 270 unsigned &SrcSub, unsigned &DstSub) { 271 if (MI->isCopy()) { 272 Dst = MI->getOperand(0).getReg(); 273 DstSub = MI->getOperand(0).getSubReg(); 274 Src = MI->getOperand(1).getReg(); 275 SrcSub = MI->getOperand(1).getSubReg(); 276 } else if (MI->isSubregToReg()) { 277 Dst = MI->getOperand(0).getReg(); 278 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 279 MI->getOperand(3).getImm()); 280 Src = MI->getOperand(2).getReg(); 281 SrcSub = MI->getOperand(2).getSubReg(); 282 } else 283 return false; 284 return true; 285 } 286 287 /// Return true if this block should be vacated by the coalescer to eliminate 288 /// branches. The important cases to handle in the coalescer are critical edges 289 /// split during phi elimination which contain only copies. Simple blocks that 290 /// contain non-branches should also be vacated, but this can be handled by an 291 /// earlier pass similar to early if-conversion. 292 static bool isSplitEdge(const MachineBasicBlock *MBB) { 293 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 294 return false; 295 296 for (const auto &MI : *MBB) { 297 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 298 return false; 299 } 300 return true; 301 } 302 303 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 304 SrcReg = DstReg = 0; 305 SrcIdx = DstIdx = 0; 306 NewRC = nullptr; 307 Flipped = CrossClass = false; 308 309 unsigned Src, Dst, SrcSub, DstSub; 310 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 311 return false; 312 Partial = SrcSub || DstSub; 313 314 // If one register is a physreg, it must be Dst. 315 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 316 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 317 return false; 318 std::swap(Src, Dst); 319 std::swap(SrcSub, DstSub); 320 Flipped = true; 321 } 322 323 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 324 325 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 326 // Eliminate DstSub on a physreg. 327 if (DstSub) { 328 Dst = TRI.getSubReg(Dst, DstSub); 329 if (!Dst) return false; 330 DstSub = 0; 331 } 332 333 // Eliminate SrcSub by picking a corresponding Dst superregister. 334 if (SrcSub) { 335 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 336 if (!Dst) return false; 337 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 338 return false; 339 } 340 } else { 341 // Both registers are virtual. 342 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 343 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 344 345 // Both registers have subreg indices. 346 if (SrcSub && DstSub) { 347 // Copies between different sub-registers are never coalescable. 348 if (Src == Dst && SrcSub != DstSub) 349 return false; 350 351 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 352 SrcIdx, DstIdx); 353 if (!NewRC) 354 return false; 355 } else if (DstSub) { 356 // SrcReg will be merged with a sub-register of DstReg. 357 SrcIdx = DstSub; 358 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 359 } else if (SrcSub) { 360 // DstReg will be merged with a sub-register of SrcReg. 361 DstIdx = SrcSub; 362 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 363 } else { 364 // This is a straight copy without sub-registers. 365 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 366 } 367 368 // The combined constraint may be impossible to satisfy. 369 if (!NewRC) 370 return false; 371 372 // Prefer SrcReg to be a sub-register of DstReg. 373 // FIXME: Coalescer should support subregs symmetrically. 374 if (DstIdx && !SrcIdx) { 375 std::swap(Src, Dst); 376 std::swap(SrcIdx, DstIdx); 377 Flipped = !Flipped; 378 } 379 380 CrossClass = NewRC != DstRC || NewRC != SrcRC; 381 } 382 // Check our invariants 383 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 384 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 385 "Cannot have a physical SubIdx"); 386 SrcReg = Src; 387 DstReg = Dst; 388 return true; 389 } 390 391 bool CoalescerPair::flip() { 392 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 393 return false; 394 std::swap(SrcReg, DstReg); 395 std::swap(SrcIdx, DstIdx); 396 Flipped = !Flipped; 397 return true; 398 } 399 400 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 401 if (!MI) 402 return false; 403 unsigned Src, Dst, SrcSub, DstSub; 404 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 405 return false; 406 407 // Find the virtual register that is SrcReg. 408 if (Dst == SrcReg) { 409 std::swap(Src, Dst); 410 std::swap(SrcSub, DstSub); 411 } else if (Src != SrcReg) { 412 return false; 413 } 414 415 // Now check that Dst matches DstReg. 416 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 417 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 418 return false; 419 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 420 // DstSub could be set for a physreg from INSERT_SUBREG. 421 if (DstSub) 422 Dst = TRI.getSubReg(Dst, DstSub); 423 // Full copy of Src. 424 if (!SrcSub) 425 return DstReg == Dst; 426 // This is a partial register copy. Check that the parts match. 427 return TRI.getSubReg(DstReg, SrcSub) == Dst; 428 } else { 429 // DstReg is virtual. 430 if (DstReg != Dst) 431 return false; 432 // Registers match, do the subregisters line up? 433 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 434 TRI.composeSubRegIndices(DstIdx, DstSub); 435 } 436 } 437 438 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 439 AU.setPreservesCFG(); 440 AU.addRequired<AAResultsWrapperPass>(); 441 AU.addRequired<LiveIntervals>(); 442 AU.addPreserved<LiveIntervals>(); 443 AU.addPreserved<SlotIndexes>(); 444 AU.addRequired<MachineLoopInfo>(); 445 AU.addPreserved<MachineLoopInfo>(); 446 AU.addPreservedID(MachineDominatorsID); 447 MachineFunctionPass::getAnalysisUsage(AU); 448 } 449 450 void RegisterCoalescer::eliminateDeadDefs() { 451 SmallVector<unsigned, 8> NewRegs; 452 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 453 nullptr, this).eliminateDeadDefs(DeadDefs); 454 } 455 456 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 457 // MI may be in WorkList. Make sure we don't visit it. 458 ErasedInstrs.insert(MI); 459 } 460 461 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 462 MachineInstr *CopyMI) { 463 assert(!CP.isPartial() && "This doesn't work for partial copies."); 464 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 465 466 LiveInterval &IntA = 467 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 468 LiveInterval &IntB = 469 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 470 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 471 472 // We have a non-trivially-coalescable copy with IntA being the source and 473 // IntB being the dest, thus this defines a value number in IntB. If the 474 // source value number (in IntA) is defined by a copy from B, see if we can 475 // merge these two pieces of B into a single value number, eliminating a copy. 476 // For example: 477 // 478 // A3 = B0 479 // ... 480 // B1 = A3 <- this copy 481 // 482 // In this case, B0 can be extended to where the B1 copy lives, allowing the 483 // B1 value number to be replaced with B0 (which simplifies the B 484 // liveinterval). 485 486 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 487 // the example above. 488 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 489 if (BS == IntB.end()) return false; 490 VNInfo *BValNo = BS->valno; 491 492 // Get the location that B is defined at. Two options: either this value has 493 // an unknown definition point or it is defined at CopyIdx. If unknown, we 494 // can't process it. 495 if (BValNo->def != CopyIdx) return false; 496 497 // AValNo is the value number in A that defines the copy, A3 in the example. 498 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 499 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 500 // The live segment might not exist after fun with physreg coalescing. 501 if (AS == IntA.end()) return false; 502 VNInfo *AValNo = AS->valno; 503 504 // If AValNo is defined as a copy from IntB, we can potentially process this. 505 // Get the instruction that defines this value number. 506 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 507 // Don't allow any partial copies, even if isCoalescable() allows them. 508 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 509 return false; 510 511 // Get the Segment in IntB that this value number starts with. 512 LiveInterval::iterator ValS = 513 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 514 if (ValS == IntB.end()) 515 return false; 516 517 // Make sure that the end of the live segment is inside the same block as 518 // CopyMI. 519 MachineInstr *ValSEndInst = 520 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 521 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 522 return false; 523 524 // Okay, we now know that ValS ends in the same block that the CopyMI 525 // live-range starts. If there are no intervening live segments between them 526 // in IntB, we can merge them. 527 if (ValS+1 != BS) return false; 528 529 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 530 531 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 532 // We are about to delete CopyMI, so need to remove it as the 'instruction 533 // that defines this value #'. Update the valnum with the new defining 534 // instruction #. 535 BValNo->def = FillerStart; 536 537 // Okay, we can merge them. We need to insert a new liverange: 538 // [ValS.end, BS.begin) of either value number, then we merge the 539 // two value numbers. 540 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 541 542 // Okay, merge "B1" into the same value number as "B0". 543 if (BValNo != ValS->valno) 544 IntB.MergeValueNumberInto(BValNo, ValS->valno); 545 546 // Do the same for the subregister segments. 547 for (LiveInterval::SubRange &S : IntB.subranges()) { 548 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 549 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 550 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 551 if (SubBValNo != SubValSNo) 552 S.MergeValueNumberInto(SubBValNo, SubValSNo); 553 } 554 555 DEBUG(dbgs() << " result = " << IntB << '\n'); 556 557 // If the source instruction was killing the source register before the 558 // merge, unset the isKill marker given the live range has been extended. 559 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 560 if (UIdx != -1) { 561 ValSEndInst->getOperand(UIdx).setIsKill(false); 562 } 563 564 // Rewrite the copy. If the copy instruction was killing the destination 565 // register before the merge, find the last use and trim the live range. That 566 // will also add the isKill marker. 567 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 568 if (AS->end == CopyIdx) 569 shrinkToUses(&IntA); 570 571 ++numExtends; 572 return true; 573 } 574 575 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 576 LiveInterval &IntB, 577 VNInfo *AValNo, 578 VNInfo *BValNo) { 579 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 580 // the PHI values. 581 if (LIS->hasPHIKill(IntA, AValNo)) 582 return true; 583 584 for (LiveRange::Segment &ASeg : IntA.segments) { 585 if (ASeg.valno != AValNo) continue; 586 LiveInterval::iterator BI = 587 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 588 if (BI != IntB.begin()) 589 --BI; 590 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 591 if (BI->valno == BValNo) 592 continue; 593 if (BI->start <= ASeg.start && BI->end > ASeg.start) 594 return true; 595 if (BI->start > ASeg.start && BI->start < ASeg.end) 596 return true; 597 } 598 } 599 return false; 600 } 601 602 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 603 /// range @Dst and use value number @p DstValNo there. 604 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 605 const LiveRange &Src, const VNInfo *SrcValNo) 606 { 607 for (const LiveRange::Segment &S : Src.segments) { 608 if (S.valno != SrcValNo) 609 continue; 610 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 611 } 612 } 613 614 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 615 MachineInstr *CopyMI) { 616 assert(!CP.isPhys()); 617 618 LiveInterval &IntA = 619 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 620 LiveInterval &IntB = 621 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 622 623 // We found a non-trivially-coalescable copy with IntA being the source and 624 // IntB being the dest, thus this defines a value number in IntB. If the 625 // source value number (in IntA) is defined by a commutable instruction and 626 // its other operand is coalesced to the copy dest register, see if we can 627 // transform the copy into a noop by commuting the definition. For example, 628 // 629 // A3 = op A2 B0<kill> 630 // ... 631 // B1 = A3 <- this copy 632 // ... 633 // = op A3 <- more uses 634 // 635 // ==> 636 // 637 // B2 = op B0 A2<kill> 638 // ... 639 // B1 = B2 <- now an identity copy 640 // ... 641 // = op B2 <- more uses 642 643 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 644 // the example above. 645 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 646 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 647 assert(BValNo != nullptr && BValNo->def == CopyIdx); 648 649 // AValNo is the value number in A that defines the copy, A3 in the example. 650 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 651 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 652 if (AValNo->isPHIDef()) 653 return false; 654 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 655 if (!DefMI) 656 return false; 657 if (!DefMI->isCommutable()) 658 return false; 659 // If DefMI is a two-address instruction then commuting it will change the 660 // destination register. 661 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 662 assert(DefIdx != -1); 663 unsigned UseOpIdx; 664 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 665 return false; 666 667 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 668 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 669 // passed to the method. That _other_ operand is chosen by 670 // the findCommutedOpIndices() method. 671 // 672 // That is obviously an area for improvement in case of instructions having 673 // more than 2 operands. For example, if some instruction has 3 commutable 674 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 675 // op#2<->op#3) of commute transformation should be considered/tried here. 676 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 677 if (!TII->findCommutedOpIndices(DefMI, UseOpIdx, NewDstIdx)) 678 return false; 679 680 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 681 unsigned NewReg = NewDstMO.getReg(); 682 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 683 return false; 684 685 // Make sure there are no other definitions of IntB that would reach the 686 // uses which the new definition can reach. 687 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 688 return false; 689 690 // If some of the uses of IntA.reg is already coalesced away, return false. 691 // It's not possible to determine whether it's safe to perform the coalescing. 692 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 693 MachineInstr *UseMI = MO.getParent(); 694 unsigned OpNo = &MO - &UseMI->getOperand(0); 695 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 696 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 697 if (US == IntA.end() || US->valno != AValNo) 698 continue; 699 // If this use is tied to a def, we can't rewrite the register. 700 if (UseMI->isRegTiedToDefOperand(OpNo)) 701 return false; 702 } 703 704 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 705 << *DefMI); 706 707 // At this point we have decided that it is legal to do this 708 // transformation. Start by commuting the instruction. 709 MachineBasicBlock *MBB = DefMI->getParent(); 710 MachineInstr *NewMI = 711 TII->commuteInstruction(DefMI, false, UseOpIdx, NewDstIdx); 712 if (!NewMI) 713 return false; 714 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 715 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 716 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 717 return false; 718 if (NewMI != DefMI) { 719 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 720 MachineBasicBlock::iterator Pos = DefMI; 721 MBB->insert(Pos, NewMI); 722 MBB->erase(DefMI); 723 } 724 725 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 726 // A = or A, B 727 // ... 728 // B = A 729 // ... 730 // C = A<kill> 731 // ... 732 // = B 733 734 // Update uses of IntA of the specific Val# with IntB. 735 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 736 UE = MRI->use_end(); 737 UI != UE; /* ++UI is below because of possible MI removal */) { 738 MachineOperand &UseMO = *UI; 739 ++UI; 740 if (UseMO.isUndef()) 741 continue; 742 MachineInstr *UseMI = UseMO.getParent(); 743 if (UseMI->isDebugValue()) { 744 // FIXME These don't have an instruction index. Not clear we have enough 745 // info to decide whether to do this replacement or not. For now do it. 746 UseMO.setReg(NewReg); 747 continue; 748 } 749 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 750 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 751 assert(US != IntA.end() && "Use must be live"); 752 if (US->valno != AValNo) 753 continue; 754 // Kill flags are no longer accurate. They are recomputed after RA. 755 UseMO.setIsKill(false); 756 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 757 UseMO.substPhysReg(NewReg, *TRI); 758 else 759 UseMO.setReg(NewReg); 760 if (UseMI == CopyMI) 761 continue; 762 if (!UseMI->isCopy()) 763 continue; 764 if (UseMI->getOperand(0).getReg() != IntB.reg || 765 UseMI->getOperand(0).getSubReg()) 766 continue; 767 768 // This copy will become a noop. If it's defining a new val#, merge it into 769 // BValNo. 770 SlotIndex DefIdx = UseIdx.getRegSlot(); 771 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 772 if (!DVNI) 773 continue; 774 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 775 assert(DVNI->def == DefIdx); 776 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 777 for (LiveInterval::SubRange &S : IntB.subranges()) { 778 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 779 if (!SubDVNI) 780 continue; 781 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 782 assert(SubBValNo->def == CopyIdx); 783 S.MergeValueNumberInto(SubDVNI, SubBValNo); 784 } 785 786 ErasedInstrs.insert(UseMI); 787 LIS->RemoveMachineInstrFromMaps(UseMI); 788 UseMI->eraseFromParent(); 789 } 790 791 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 792 // is updated. 793 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 794 if (IntB.hasSubRanges()) { 795 if (!IntA.hasSubRanges()) { 796 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 797 IntA.createSubRangeFrom(Allocator, Mask, IntA); 798 } 799 SlotIndex AIdx = CopyIdx.getRegSlot(true); 800 for (LiveInterval::SubRange &SA : IntA.subranges()) { 801 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 802 assert(ASubValNo != nullptr); 803 804 LaneBitmask AMask = SA.LaneMask; 805 for (LiveInterval::SubRange &SB : IntB.subranges()) { 806 LaneBitmask BMask = SB.LaneMask; 807 LaneBitmask Common = BMask & AMask; 808 if (Common == 0) 809 continue; 810 811 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask) 812 << " into " << PrintLaneMask(Common) << '\n'); 813 LaneBitmask BRest = BMask & ~AMask; 814 LiveInterval::SubRange *CommonRange; 815 if (BRest != 0) { 816 SB.LaneMask = BRest; 817 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest) 818 << '\n'); 819 // Duplicate SubRange for newly merged common stuff. 820 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 821 } else { 822 // We van reuse the L SubRange. 823 SB.LaneMask = Common; 824 CommonRange = &SB; 825 } 826 LiveRange RangeCopy(SB, Allocator); 827 828 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 829 assert(BSubValNo->def == CopyIdx); 830 BSubValNo->def = ASubValNo->def; 831 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 832 AMask &= ~BMask; 833 } 834 if (AMask != 0) { 835 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n'); 836 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 837 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 838 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 839 } 840 } 841 } 842 843 BValNo->def = AValNo->def; 844 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 845 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 846 847 LIS->removeVRegDefAt(IntA, AValNo->def); 848 849 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 850 ++numCommutes; 851 return true; 852 } 853 854 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 855 /// defining a subregister. 856 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 857 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 858 "This code cannot handle physreg aliasing"); 859 for (const MachineOperand &Op : MI.operands()) { 860 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 861 continue; 862 // Return true if we define the full register or don't care about the value 863 // inside other subregisters. 864 if (Op.getSubReg() == 0 || Op.isUndef()) 865 return true; 866 } 867 return false; 868 } 869 870 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 871 MachineInstr *CopyMI, 872 bool &IsDefCopy) { 873 IsDefCopy = false; 874 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 875 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 876 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 877 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 878 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 879 return false; 880 881 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 882 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 883 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 884 assert(ValNo && "CopyMI input register not live"); 885 if (ValNo->isPHIDef() || ValNo->isUnused()) 886 return false; 887 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 888 if (!DefMI) 889 return false; 890 if (DefMI->isCopyLike()) { 891 IsDefCopy = true; 892 return false; 893 } 894 if (!TII->isAsCheapAsAMove(DefMI)) 895 return false; 896 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 897 return false; 898 if (!definesFullReg(*DefMI, SrcReg)) 899 return false; 900 bool SawStore = false; 901 if (!DefMI->isSafeToMove(AA, SawStore)) 902 return false; 903 const MCInstrDesc &MCID = DefMI->getDesc(); 904 if (MCID.getNumDefs() != 1) 905 return false; 906 // Only support subregister destinations when the def is read-undef. 907 MachineOperand &DstOperand = CopyMI->getOperand(0); 908 unsigned CopyDstReg = DstOperand.getReg(); 909 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 910 return false; 911 912 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 913 // the register substantially (beyond both source and dest size). This is bad 914 // for performance since it can cascade through a function, introducing many 915 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 916 // around after a few subreg copies). 917 if (SrcIdx && DstIdx) 918 return false; 919 920 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 921 if (!DefMI->isImplicitDef()) { 922 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 923 unsigned NewDstReg = DstReg; 924 925 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 926 DefMI->getOperand(0).getSubReg()); 927 if (NewDstIdx) 928 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 929 930 // Finally, make sure that the physical subregister that will be 931 // constructed later is permitted for the instruction. 932 if (!DefRC->contains(NewDstReg)) 933 return false; 934 } else { 935 // Theoretically, some stack frame reference could exist. Just make sure 936 // it hasn't actually happened. 937 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 938 "Only expect to deal with virtual or physical registers"); 939 } 940 } 941 942 MachineBasicBlock *MBB = CopyMI->getParent(); 943 MachineBasicBlock::iterator MII = 944 std::next(MachineBasicBlock::iterator(CopyMI)); 945 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI); 946 MachineInstr *NewMI = std::prev(MII); 947 948 // In a situation like the following: 949 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx 950 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0 951 // instead of widening %vreg1 to the register class of %vreg0 simply do: 952 // %vreg1 = instr 953 const TargetRegisterClass *NewRC = CP.getNewRC(); 954 if (DstIdx != 0) { 955 MachineOperand &DefMO = NewMI->getOperand(0); 956 if (DefMO.getSubReg() == DstIdx) { 957 assert(SrcIdx == 0 && CP.isFlipped() 958 && "Shouldn't have SrcIdx+DstIdx at this point"); 959 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 960 const TargetRegisterClass *CommonRC = 961 TRI->getCommonSubClass(DefRC, DstRC); 962 if (CommonRC != nullptr) { 963 NewRC = CommonRC; 964 DstIdx = 0; 965 DefMO.setSubReg(0); 966 } 967 } 968 } 969 970 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 971 CopyMI->eraseFromParent(); 972 ErasedInstrs.insert(CopyMI); 973 974 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 975 // We need to remember these so we can add intervals once we insert 976 // NewMI into SlotIndexes. 977 SmallVector<unsigned, 4> NewMIImplDefs; 978 for (unsigned i = NewMI->getDesc().getNumOperands(), 979 e = NewMI->getNumOperands(); i != e; ++i) { 980 MachineOperand &MO = NewMI->getOperand(i); 981 if (MO.isReg() && MO.isDef()) { 982 assert(MO.isImplicit() && MO.isDead() && 983 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 984 NewMIImplDefs.push_back(MO.getReg()); 985 } 986 } 987 988 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 989 unsigned NewIdx = NewMI->getOperand(0).getSubReg(); 990 991 if (DefRC != nullptr) { 992 if (NewIdx) 993 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 994 else 995 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 996 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 997 } 998 MRI->setRegClass(DstReg, NewRC); 999 1000 updateRegDefsUses(DstReg, DstReg, DstIdx); 1001 NewMI->getOperand(0).setSubReg(NewIdx); 1002 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) { 1003 // The New instruction may be defining a sub-register of what's actually 1004 // been asked for. If so it must implicitly define the whole thing. 1005 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 1006 "Only expect virtual or physical registers in remat"); 1007 NewMI->getOperand(0).setIsDead(true); 1008 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg, 1009 true /*IsDef*/, 1010 true /*IsImp*/, 1011 false /*IsKill*/)); 1012 // Record small dead def live-ranges for all the subregisters 1013 // of the destination register. 1014 // Otherwise, variables that live through may miss some 1015 // interferences, thus creating invalid allocation. 1016 // E.g., i386 code: 1017 // vreg1 = somedef ; vreg1 GR8 1018 // vreg2 = remat ; vreg2 GR32 1019 // CL = COPY vreg2.sub_8bit 1020 // = somedef vreg1 ; vreg1 GR8 1021 // => 1022 // vreg1 = somedef ; vreg1 GR8 1023 // ECX<def, dead> = remat ; CL<imp-def> 1024 // = somedef vreg1 ; vreg1 GR8 1025 // vreg1 will see the inteferences with CL but not with CH since 1026 // no live-ranges would have been created for ECX. 1027 // Fix that! 1028 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1029 for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI); 1030 Units.isValid(); ++Units) 1031 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1032 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1033 } 1034 1035 if (NewMI->getOperand(0).getSubReg()) 1036 NewMI->getOperand(0).setIsUndef(); 1037 1038 // CopyMI may have implicit operands, transfer them over to the newly 1039 // rematerialized instruction. And update implicit def interval valnos. 1040 for (unsigned i = CopyMI->getDesc().getNumOperands(), 1041 e = CopyMI->getNumOperands(); i != e; ++i) { 1042 MachineOperand &MO = CopyMI->getOperand(i); 1043 if (MO.isReg()) { 1044 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1045 // Discard VReg implicit defs. 1046 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 1047 NewMI->addOperand(MO); 1048 } 1049 } 1050 } 1051 1052 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1053 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1054 unsigned Reg = NewMIImplDefs[i]; 1055 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1056 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1057 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1058 } 1059 1060 DEBUG(dbgs() << "Remat: " << *NewMI); 1061 ++NumReMats; 1062 1063 // The source interval can become smaller because we removed a use. 1064 shrinkToUses(&SrcInt, &DeadDefs); 1065 if (!DeadDefs.empty()) { 1066 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1067 // to describe DstReg instead. 1068 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1069 MachineInstr *UseMI = UseMO.getParent(); 1070 if (UseMI->isDebugValue()) { 1071 UseMO.setReg(DstReg); 1072 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1073 } 1074 } 1075 eliminateDeadDefs(); 1076 } 1077 1078 return true; 1079 } 1080 1081 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1082 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1083 // local variables. When we have a copy like: 1084 // 1085 // %vreg1 = COPY %vreg2<undef> 1086 // 1087 // We delete the copy and remove the corresponding value number from %vreg1. 1088 // Any uses of that value number are marked as <undef>. 1089 1090 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1091 // CoalescerPair may have a new register class with adjusted subreg indices 1092 // at this point. 1093 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1094 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1095 1096 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 1097 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1098 // CopyMI is undef iff SrcReg is not live before the instruction. 1099 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1100 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1101 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1102 if ((SR.LaneMask & SrcMask) == 0) 1103 continue; 1104 if (SR.liveAt(Idx)) 1105 return false; 1106 } 1107 } else if (SrcLI.liveAt(Idx)) 1108 return false; 1109 1110 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1111 1112 // Remove any DstReg segments starting at the instruction. 1113 LiveInterval &DstLI = LIS->getInterval(DstReg); 1114 SlotIndex RegIndex = Idx.getRegSlot(); 1115 // Remove value or merge with previous one in case of a subregister def. 1116 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1117 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1118 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1119 1120 // The affected subregister segments can be removed. 1121 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1122 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1123 if ((SR.LaneMask & DstMask) == 0) 1124 continue; 1125 1126 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1127 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1128 SR.removeValNo(SVNI); 1129 } 1130 DstLI.removeEmptySubRanges(); 1131 } else 1132 LIS->removeVRegDefAt(DstLI, RegIndex); 1133 1134 // Mark uses as undef. 1135 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1136 if (MO.isDef() /*|| MO.isUndef()*/) 1137 continue; 1138 const MachineInstr &MI = *MO.getParent(); 1139 SlotIndex UseIdx = LIS->getInstructionIndex(&MI); 1140 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1141 bool isLive; 1142 if (UseMask != ~0u && DstLI.hasSubRanges()) { 1143 isLive = false; 1144 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1145 if ((SR.LaneMask & UseMask) == 0) 1146 continue; 1147 if (SR.liveAt(UseIdx)) { 1148 isLive = true; 1149 break; 1150 } 1151 } 1152 } else 1153 isLive = DstLI.liveAt(UseIdx); 1154 if (isLive) 1155 continue; 1156 MO.setIsUndef(true); 1157 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1158 } 1159 return true; 1160 } 1161 1162 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1163 unsigned DstReg, 1164 unsigned SubIdx) { 1165 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1166 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1167 1168 SmallPtrSet<MachineInstr*, 8> Visited; 1169 for (MachineRegisterInfo::reg_instr_iterator 1170 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1171 I != E; ) { 1172 MachineInstr *UseMI = &*(I++); 1173 1174 // Each instruction can only be rewritten once because sub-register 1175 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1176 // the UseMI operands removes them from the SrcReg use-def chain, but when 1177 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1178 // operands mentioning the virtual register. 1179 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1180 continue; 1181 1182 SmallVector<unsigned,8> Ops; 1183 bool Reads, Writes; 1184 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1185 1186 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1187 // because SrcReg is a sub-register. 1188 if (DstInt && !Reads && SubIdx) 1189 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 1190 1191 // Replace SrcReg with DstReg in all UseMI operands. 1192 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1193 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1194 1195 // Adjust <undef> flags in case of sub-register joins. We don't want to 1196 // turn a full def into a read-modify-write sub-register def and vice 1197 // versa. 1198 if (SubIdx && MO.isDef()) 1199 MO.setIsUndef(!Reads); 1200 1201 // A subreg use of a partially undef (super) register may be a complete 1202 // undef use now and then has to be marked that way. 1203 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1204 if (!DstInt->hasSubRanges()) { 1205 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1206 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1207 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1208 } 1209 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx); 1210 bool IsUndef = true; 1211 SlotIndex MIIdx = UseMI->isDebugValue() 1212 ? LIS->getSlotIndexes()->getIndexBefore(UseMI) 1213 : LIS->getInstructionIndex(UseMI); 1214 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1215 for (LiveInterval::SubRange &S : DstInt->subranges()) { 1216 if ((S.LaneMask & Mask) == 0) 1217 continue; 1218 if (S.liveAt(UseIdx)) { 1219 IsUndef = false; 1220 break; 1221 } 1222 } 1223 if (IsUndef) { 1224 MO.setIsUndef(true); 1225 // We found out some subregister use is actually reading an undefined 1226 // value. In some cases the whole vreg has become undefined at this 1227 // point so we have to potentially shrink the main range if the 1228 // use was ending a live segment there. 1229 LiveQueryResult Q = DstInt->Query(MIIdx); 1230 if (Q.valueOut() == nullptr) 1231 ShrinkMainRange = true; 1232 } 1233 } 1234 1235 if (DstIsPhys) 1236 MO.substPhysReg(DstReg, *TRI); 1237 else 1238 MO.substVirtReg(DstReg, SubIdx, *TRI); 1239 } 1240 1241 DEBUG({ 1242 dbgs() << "\t\tupdated: "; 1243 if (!UseMI->isDebugValue()) 1244 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 1245 dbgs() << *UseMI; 1246 }); 1247 } 1248 } 1249 1250 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1251 // Always join simple intervals that are defined by a single copy from a 1252 // reserved register. This doesn't increase register pressure, so it is 1253 // always beneficial. 1254 if (!MRI->isReserved(CP.getDstReg())) { 1255 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1256 return false; 1257 } 1258 1259 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1260 if (JoinVInt.containsOneValue()) 1261 return true; 1262 1263 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1264 return false; 1265 } 1266 1267 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1268 1269 Again = false; 1270 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 1271 1272 CoalescerPair CP(*TRI); 1273 if (!CP.setRegisters(CopyMI)) { 1274 DEBUG(dbgs() << "\tNot coalescable.\n"); 1275 return false; 1276 } 1277 1278 if (CP.getNewRC()) { 1279 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1280 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1281 unsigned SrcIdx = CP.getSrcIdx(); 1282 unsigned DstIdx = CP.getDstIdx(); 1283 if (CP.isFlipped()) { 1284 std::swap(SrcIdx, DstIdx); 1285 std::swap(SrcRC, DstRC); 1286 } 1287 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1288 CP.getNewRC())) { 1289 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1290 return false; 1291 } 1292 } 1293 1294 // Dead code elimination. This really should be handled by MachineDCE, but 1295 // sometimes dead copies slip through, and we can't generate invalid live 1296 // ranges. 1297 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1298 DEBUG(dbgs() << "\tCopy is dead.\n"); 1299 DeadDefs.push_back(CopyMI); 1300 eliminateDeadDefs(); 1301 return true; 1302 } 1303 1304 // Eliminate undefs. 1305 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1306 LIS->RemoveMachineInstrFromMaps(CopyMI); 1307 CopyMI->eraseFromParent(); 1308 return false; // Not coalescable. 1309 } 1310 1311 // Coalesced copies are normally removed immediately, but transformations 1312 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1313 // When that happens, just join the values and remove the copy. 1314 if (CP.getSrcReg() == CP.getDstReg()) { 1315 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1316 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1317 const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 1318 LiveQueryResult LRQ = LI.Query(CopyIdx); 1319 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1320 VNInfo *ReadVNI = LRQ.valueIn(); 1321 assert(ReadVNI && "No value before copy and no <undef> flag."); 1322 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1323 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1324 1325 // Process subregister liveranges. 1326 for (LiveInterval::SubRange &S : LI.subranges()) { 1327 LiveQueryResult SLRQ = S.Query(CopyIdx); 1328 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1329 VNInfo *SReadVNI = SLRQ.valueIn(); 1330 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1331 } 1332 } 1333 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1334 } 1335 LIS->RemoveMachineInstrFromMaps(CopyMI); 1336 CopyMI->eraseFromParent(); 1337 return true; 1338 } 1339 1340 // Enforce policies. 1341 if (CP.isPhys()) { 1342 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1343 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1344 << '\n'); 1345 if (!canJoinPhys(CP)) { 1346 // Before giving up coalescing, if definition of source is defined by 1347 // trivial computation, try rematerializing it. 1348 bool IsDefCopy; 1349 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1350 return true; 1351 if (IsDefCopy) 1352 Again = true; // May be possible to coalesce later. 1353 return false; 1354 } 1355 } else { 1356 // When possible, let DstReg be the larger interval. 1357 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1358 LIS->getInterval(CP.getDstReg()).size()) 1359 CP.flip(); 1360 1361 DEBUG({ 1362 dbgs() << "\tConsidering merging to " 1363 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1364 if (CP.getDstIdx() && CP.getSrcIdx()) 1365 dbgs() << PrintReg(CP.getDstReg()) << " in " 1366 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1367 << PrintReg(CP.getSrcReg()) << " in " 1368 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1369 else 1370 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1371 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1372 }); 1373 } 1374 1375 ShrinkMask = 0; 1376 ShrinkMainRange = false; 1377 1378 // Okay, attempt to join these two intervals. On failure, this returns false. 1379 // Otherwise, if one of the intervals being joined is a physreg, this method 1380 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1381 // been modified, so we can use this information below to update aliases. 1382 if (!joinIntervals(CP)) { 1383 // Coalescing failed. 1384 1385 // If definition of source is defined by trivial computation, try 1386 // rematerializing it. 1387 bool IsDefCopy; 1388 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1389 return true; 1390 1391 // If we can eliminate the copy without merging the live segments, do so 1392 // now. 1393 if (!CP.isPartial() && !CP.isPhys()) { 1394 if (adjustCopiesBackFrom(CP, CopyMI) || 1395 removeCopyByCommutingDef(CP, CopyMI)) { 1396 LIS->RemoveMachineInstrFromMaps(CopyMI); 1397 CopyMI->eraseFromParent(); 1398 DEBUG(dbgs() << "\tTrivial!\n"); 1399 return true; 1400 } 1401 } 1402 1403 // Otherwise, we are unable to join the intervals. 1404 DEBUG(dbgs() << "\tInterference!\n"); 1405 Again = true; // May be possible to coalesce later. 1406 return false; 1407 } 1408 1409 // Coalescing to a virtual register that is of a sub-register class of the 1410 // other. Make sure the resulting register is set to the right register class. 1411 if (CP.isCrossClass()) { 1412 ++numCrossRCs; 1413 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1414 } 1415 1416 // Removing sub-register copies can ease the register class constraints. 1417 // Make sure we attempt to inflate the register class of DstReg. 1418 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1419 InflateRegs.push_back(CP.getDstReg()); 1420 1421 // CopyMI has been erased by joinIntervals at this point. Remove it from 1422 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1423 // to the work list. This keeps ErasedInstrs from growing needlessly. 1424 ErasedInstrs.erase(CopyMI); 1425 1426 // Rewrite all SrcReg operands to DstReg. 1427 // Also update DstReg operands to include DstIdx if it is set. 1428 if (CP.getDstIdx()) 1429 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1430 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1431 1432 // Shrink subregister ranges if necessary. 1433 if (ShrinkMask != 0) { 1434 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1435 for (LiveInterval::SubRange &S : LI.subranges()) { 1436 if ((S.LaneMask & ShrinkMask) == 0) 1437 continue; 1438 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 1439 << ")\n"); 1440 LIS->shrinkToUses(S, LI.reg); 1441 } 1442 LI.removeEmptySubRanges(); 1443 } 1444 if (ShrinkMainRange) { 1445 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1446 shrinkToUses(&LI); 1447 } 1448 1449 // SrcReg is guaranteed to be the register whose live interval that is 1450 // being merged. 1451 LIS->removeInterval(CP.getSrcReg()); 1452 1453 // Update regalloc hint. 1454 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1455 1456 DEBUG({ 1457 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1458 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1459 dbgs() << "\tResult = "; 1460 if (CP.isPhys()) 1461 dbgs() << PrintReg(CP.getDstReg(), TRI); 1462 else 1463 dbgs() << LIS->getInterval(CP.getDstReg()); 1464 dbgs() << '\n'; 1465 }); 1466 1467 ++numJoins; 1468 return true; 1469 } 1470 1471 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1472 unsigned DstReg = CP.getDstReg(); 1473 assert(CP.isPhys() && "Must be a physreg copy"); 1474 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1475 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1476 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1477 1478 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1479 1480 // Optimization for reserved registers like ESP. We can only merge with a 1481 // reserved physreg if RHS has a single value that is a copy of DstReg. 1482 // The live range of the reserved register will look like a set of dead defs 1483 // - we don't properly track the live range of reserved registers. 1484 1485 // Deny any overlapping intervals. This depends on all the reserved 1486 // register live ranges to look like dead defs. 1487 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) 1488 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1489 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1490 return false; 1491 } 1492 1493 // Skip any value computations, we are not adding new values to the 1494 // reserved register. Also skip merging the live ranges, the reserved 1495 // register live range doesn't need to be accurate as long as all the 1496 // defs are there. 1497 1498 // Delete the identity copy. 1499 MachineInstr *CopyMI; 1500 if (CP.isFlipped()) { 1501 CopyMI = MRI->getVRegDef(RHS.reg); 1502 } else { 1503 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1504 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1505 return false; 1506 } 1507 1508 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1509 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1510 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 1511 const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1512 1513 // We checked above that there are no interfering defs of the physical 1514 // register. However, for this case, where we intent to move up the def of 1515 // the physical register, we also need to check for interfering uses. 1516 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1517 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1518 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1519 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1520 if (MI->readsRegister(DstReg, TRI)) { 1521 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1522 return false; 1523 } 1524 1525 // We must also check for clobbers caused by regmasks. 1526 for (const auto &MO : MI->operands()) { 1527 if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) { 1528 DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI); 1529 return false; 1530 } 1531 } 1532 } 1533 1534 // We're going to remove the copy which defines a physical reserved 1535 // register, so remove its valno, etc. 1536 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1537 << CopyRegIdx << "\n"); 1538 1539 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1540 // Create a new dead def at the new def location. 1541 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1542 LiveRange &LR = LIS->getRegUnit(*UI); 1543 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1544 } 1545 } 1546 1547 LIS->RemoveMachineInstrFromMaps(CopyMI); 1548 CopyMI->eraseFromParent(); 1549 1550 // We don't track kills for reserved registers. 1551 MRI->clearKillFlags(CP.getSrcReg()); 1552 1553 return true; 1554 } 1555 1556 //===----------------------------------------------------------------------===// 1557 // Interference checking and interval joining 1558 //===----------------------------------------------------------------------===// 1559 // 1560 // In the easiest case, the two live ranges being joined are disjoint, and 1561 // there is no interference to consider. It is quite common, though, to have 1562 // overlapping live ranges, and we need to check if the interference can be 1563 // resolved. 1564 // 1565 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1566 // This means that two SSA values overlap if and only if the def of one value 1567 // is contained in the live range of the other value. As a special case, the 1568 // overlapping values can be defined at the same index. 1569 // 1570 // The interference from an overlapping def can be resolved in these cases: 1571 // 1572 // 1. Coalescable copies. The value is defined by a copy that would become an 1573 // identity copy after joining SrcReg and DstReg. The copy instruction will 1574 // be removed, and the value will be merged with the source value. 1575 // 1576 // There can be several copies back and forth, causing many values to be 1577 // merged into one. We compute a list of ultimate values in the joined live 1578 // range as well as a mappings from the old value numbers. 1579 // 1580 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1581 // predecessors have a live out value. It doesn't cause real interference, 1582 // and can be merged into the value it overlaps. Like a coalescable copy, it 1583 // can be erased after joining. 1584 // 1585 // 3. Copy of external value. The overlapping def may be a copy of a value that 1586 // is already in the other register. This is like a coalescable copy, but 1587 // the live range of the source register must be trimmed after erasing the 1588 // copy instruction: 1589 // 1590 // %src = COPY %ext 1591 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1592 // 1593 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1594 // defining one lane at a time: 1595 // 1596 // %dst:ssub0<def,read-undef> = FOO 1597 // %src = BAR 1598 // %dst:ssub1<def> = COPY %src 1599 // 1600 // The live range of %src overlaps the %dst value defined by FOO, but 1601 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1602 // which was undef anyway. 1603 // 1604 // The value mapping is more complicated in this case. The final live range 1605 // will have different value numbers for both FOO and BAR, but there is no 1606 // simple mapping from old to new values. It may even be necessary to add 1607 // new PHI values. 1608 // 1609 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1610 // is live, but never read. This can happen because we don't compute 1611 // individual live ranges per lane. 1612 // 1613 // %dst<def> = FOO 1614 // %src = BAR 1615 // %dst:ssub1<def> = COPY %src 1616 // 1617 // This kind of interference is only resolved locally. If the clobbered 1618 // lane value escapes the block, the join is aborted. 1619 1620 namespace { 1621 /// Track information about values in a single virtual register about to be 1622 /// joined. Objects of this class are always created in pairs - one for each 1623 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1624 /// pair) 1625 class JoinVals { 1626 /// Live range we work on. 1627 LiveRange &LR; 1628 /// (Main) register we work on. 1629 const unsigned Reg; 1630 1631 /// Reg (and therefore the values in this liverange) will end up as 1632 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1633 /// CP.SrcIdx. 1634 const unsigned SubIdx; 1635 /// The LaneMask that this liverange will occupy the coalesced register. May 1636 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1637 const LaneBitmask LaneMask; 1638 1639 /// This is true when joining sub register ranges, false when joining main 1640 /// ranges. 1641 const bool SubRangeJoin; 1642 /// Whether the current LiveInterval tracks subregister liveness. 1643 const bool TrackSubRegLiveness; 1644 1645 /// Values that will be present in the final live range. 1646 SmallVectorImpl<VNInfo*> &NewVNInfo; 1647 1648 const CoalescerPair &CP; 1649 LiveIntervals *LIS; 1650 SlotIndexes *Indexes; 1651 const TargetRegisterInfo *TRI; 1652 1653 /// Value number assignments. Maps value numbers in LI to entries in 1654 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1655 SmallVector<int, 8> Assignments; 1656 1657 /// Conflict resolution for overlapping values. 1658 enum ConflictResolution { 1659 /// No overlap, simply keep this value. 1660 CR_Keep, 1661 1662 /// Merge this value into OtherVNI and erase the defining instruction. 1663 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1664 /// values. 1665 CR_Erase, 1666 1667 /// Merge this value into OtherVNI but keep the defining instruction. 1668 /// This is for the special case where OtherVNI is defined by the same 1669 /// instruction. 1670 CR_Merge, 1671 1672 /// Keep this value, and have it replace OtherVNI where possible. This 1673 /// complicates value mapping since OtherVNI maps to two different values 1674 /// before and after this def. 1675 /// Used when clobbering undefined or dead lanes. 1676 CR_Replace, 1677 1678 /// Unresolved conflict. Visit later when all values have been mapped. 1679 CR_Unresolved, 1680 1681 /// Unresolvable conflict. Abort the join. 1682 CR_Impossible 1683 }; 1684 1685 /// Per-value info for LI. The lane bit masks are all relative to the final 1686 /// joined register, so they can be compared directly between SrcReg and 1687 /// DstReg. 1688 struct Val { 1689 ConflictResolution Resolution; 1690 1691 /// Lanes written by this def, 0 for unanalyzed values. 1692 LaneBitmask WriteLanes; 1693 1694 /// Lanes with defined values in this register. Other lanes are undef and 1695 /// safe to clobber. 1696 LaneBitmask ValidLanes; 1697 1698 /// Value in LI being redefined by this def. 1699 VNInfo *RedefVNI; 1700 1701 /// Value in the other live range that overlaps this def, if any. 1702 VNInfo *OtherVNI; 1703 1704 /// Is this value an IMPLICIT_DEF that can be erased? 1705 /// 1706 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1707 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1708 /// safely erased if they are overlapping a live value in the other live 1709 /// interval. 1710 /// 1711 /// Weird control flow graphs and incomplete PHI handling in 1712 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1713 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1714 /// normal values. 1715 bool ErasableImplicitDef; 1716 1717 /// True when the live range of this value will be pruned because of an 1718 /// overlapping CR_Replace value in the other live range. 1719 bool Pruned; 1720 1721 /// True once Pruned above has been computed. 1722 bool PrunedComputed; 1723 1724 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1725 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 1726 Pruned(false), PrunedComputed(false) {} 1727 1728 bool isAnalyzed() const { return WriteLanes != 0; } 1729 }; 1730 1731 /// One entry per value number in LI. 1732 SmallVector<Val, 8> Vals; 1733 1734 /// Compute the bitmask of lanes actually written by DefMI. 1735 /// Set Redef if there are any partial register definitions that depend on the 1736 /// previous value of the register. 1737 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 1738 1739 /// Find the ultimate value that VNI was copied from. 1740 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 1741 1742 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 1743 1744 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1745 /// Return a conflict resolution when possible, but leave the hard cases as 1746 /// CR_Unresolved. 1747 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1748 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1749 /// The recursion always goes upwards in the dominator tree, making loops 1750 /// impossible. 1751 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1752 1753 /// Compute the value assignment for ValNo in RI. 1754 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1755 /// the stack. 1756 void computeAssignment(unsigned ValNo, JoinVals &Other); 1757 1758 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 1759 /// the extent of the tainted lanes in the block. 1760 /// 1761 /// Multiple values in Other.LR can be affected since partial redefinitions 1762 /// can preserve previously tainted lanes. 1763 /// 1764 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1765 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1766 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1767 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1768 /// 1769 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1770 /// entry to TaintedVals. 1771 /// 1772 /// Returns false if the tainted lanes extend beyond the basic block. 1773 bool taintExtent(unsigned, LaneBitmask, JoinVals&, 1774 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&); 1775 1776 /// Return true if MI uses any of the given Lanes from Reg. 1777 /// This does not include partial redefinitions of Reg. 1778 bool usesLanes(const MachineInstr *MI, unsigned, unsigned, LaneBitmask) const; 1779 1780 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 1781 /// be pruned: 1782 /// 1783 /// %dst = COPY %src 1784 /// %src = COPY %dst <-- This value to be pruned. 1785 /// %dst = COPY %src <-- This value is a copy of a pruned value. 1786 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1787 1788 public: 1789 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, 1790 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 1791 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 1792 bool TrackSubRegLiveness) 1793 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 1794 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 1795 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 1796 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 1797 {} 1798 1799 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 1800 /// Returns false if any conflicts were impossible to resolve. 1801 bool mapValues(JoinVals &Other); 1802 1803 /// Try to resolve conflicts that require all values to be mapped. 1804 /// Returns false if any conflicts were impossible to resolve. 1805 bool resolveConflicts(JoinVals &Other); 1806 1807 /// Prune the live range of values in Other.LR where they would conflict with 1808 /// CR_Replace values in LR. Collect end points for restoring the live range 1809 /// after joining. 1810 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 1811 bool changeInstrs); 1812 1813 /// Removes subranges starting at copies that get removed. This sometimes 1814 /// happens when undefined subranges are copied around. These ranges contain 1815 /// no useful information and can be removed. 1816 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 1817 1818 /// Erase any machine instructions that have been coalesced away. 1819 /// Add erased instructions to ErasedInstrs. 1820 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1821 /// the erased instrs. 1822 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 1823 SmallVectorImpl<unsigned> &ShrinkRegs); 1824 1825 /// Remove liverange defs at places where implicit defs will be removed. 1826 void removeImplicitDefs(); 1827 1828 /// Get the value assignments suitable for passing to LiveInterval::join. 1829 const int *getAssignments() const { return Assignments.data(); } 1830 }; 1831 } // end anonymous namespace 1832 1833 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 1834 const { 1835 LaneBitmask L = 0; 1836 for (const MachineOperand &MO : DefMI->operands()) { 1837 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 1838 continue; 1839 L |= TRI->getSubRegIndexLaneMask( 1840 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 1841 if (MO.readsReg()) 1842 Redef = true; 1843 } 1844 return L; 1845 } 1846 1847 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 1848 const VNInfo *VNI) const { 1849 unsigned Reg = this->Reg; 1850 1851 while (!VNI->isPHIDef()) { 1852 SlotIndex Def = VNI->def; 1853 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1854 assert(MI && "No defining instruction"); 1855 if (!MI->isFullCopy()) 1856 return std::make_pair(VNI, Reg); 1857 unsigned SrcReg = MI->getOperand(1).getReg(); 1858 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1859 return std::make_pair(VNI, Reg); 1860 1861 const LiveInterval &LI = LIS->getInterval(SrcReg); 1862 const VNInfo *ValueIn; 1863 // No subrange involved. 1864 if (!SubRangeJoin || !LI.hasSubRanges()) { 1865 LiveQueryResult LRQ = LI.Query(Def); 1866 ValueIn = LRQ.valueIn(); 1867 } else { 1868 // Query subranges. Pick the first matching one. 1869 ValueIn = nullptr; 1870 for (const LiveInterval::SubRange &S : LI.subranges()) { 1871 // Transform lanemask to a mask in the joined live interval. 1872 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 1873 if ((SMask & LaneMask) == 0) 1874 continue; 1875 LiveQueryResult LRQ = S.Query(Def); 1876 ValueIn = LRQ.valueIn(); 1877 break; 1878 } 1879 } 1880 if (ValueIn == nullptr) 1881 break; 1882 VNI = ValueIn; 1883 Reg = SrcReg; 1884 } 1885 return std::make_pair(VNI, Reg); 1886 } 1887 1888 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 1889 const JoinVals &Other) const { 1890 const VNInfo *Orig0; 1891 unsigned Reg0; 1892 std::tie(Orig0, Reg0) = followCopyChain(Value0); 1893 if (Orig0 == Value1) 1894 return true; 1895 1896 const VNInfo *Orig1; 1897 unsigned Reg1; 1898 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 1899 1900 // The values are equal if they are defined at the same place and use the 1901 // same register. Note that we cannot compare VNInfos directly as some of 1902 // them might be from a copy created in mergeSubRangeInto() while the other 1903 // is from the original LiveInterval. 1904 return Orig0->def == Orig1->def && Reg0 == Reg1; 1905 } 1906 1907 JoinVals::ConflictResolution 1908 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 1909 Val &V = Vals[ValNo]; 1910 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 1911 VNInfo *VNI = LR.getValNumInfo(ValNo); 1912 if (VNI->isUnused()) { 1913 V.WriteLanes = ~0u; 1914 return CR_Keep; 1915 } 1916 1917 // Get the instruction defining this value, compute the lanes written. 1918 const MachineInstr *DefMI = nullptr; 1919 if (VNI->isPHIDef()) { 1920 // Conservatively assume that all lanes in a PHI are valid. 1921 LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx); 1922 V.ValidLanes = V.WriteLanes = Lanes; 1923 } else { 1924 DefMI = Indexes->getInstructionFromIndex(VNI->def); 1925 assert(DefMI != nullptr); 1926 if (SubRangeJoin) { 1927 // We don't care about the lanes when joining subregister ranges. 1928 V.WriteLanes = V.ValidLanes = 1; 1929 if (DefMI->isImplicitDef()) { 1930 V.ValidLanes = 0; 1931 V.ErasableImplicitDef = true; 1932 } 1933 } else { 1934 bool Redef = false; 1935 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 1936 1937 // If this is a read-modify-write instruction, there may be more valid 1938 // lanes than the ones written by this instruction. 1939 // This only covers partial redef operands. DefMI may have normal use 1940 // operands reading the register. They don't contribute valid lanes. 1941 // 1942 // This adds ssub1 to the set of valid lanes in %src: 1943 // 1944 // %src:ssub1<def> = FOO 1945 // 1946 // This leaves only ssub1 valid, making any other lanes undef: 1947 // 1948 // %src:ssub1<def,read-undef> = FOO %src:ssub2 1949 // 1950 // The <read-undef> flag on the def operand means that old lane values are 1951 // not important. 1952 if (Redef) { 1953 V.RedefVNI = LR.Query(VNI->def).valueIn(); 1954 assert((TrackSubRegLiveness || V.RedefVNI) && 1955 "Instruction is reading nonexistent value"); 1956 if (V.RedefVNI != nullptr) { 1957 computeAssignment(V.RedefVNI->id, Other); 1958 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 1959 } 1960 } 1961 1962 // An IMPLICIT_DEF writes undef values. 1963 if (DefMI->isImplicitDef()) { 1964 // We normally expect IMPLICIT_DEF values to be live only until the end 1965 // of their block. If the value is really live longer and gets pruned in 1966 // another block, this flag is cleared again. 1967 V.ErasableImplicitDef = true; 1968 V.ValidLanes &= ~V.WriteLanes; 1969 } 1970 } 1971 } 1972 1973 // Find the value in Other that overlaps VNI->def, if any. 1974 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 1975 1976 // It is possible that both values are defined by the same instruction, or 1977 // the values are PHIs defined in the same block. When that happens, the two 1978 // values should be merged into one, but not into any preceding value. 1979 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 1980 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 1981 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 1982 1983 // One value stays, the other is merged. Keep the earlier one, or the first 1984 // one we see. 1985 if (OtherVNI->def < VNI->def) 1986 Other.computeAssignment(OtherVNI->id, *this); 1987 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 1988 // This is an early-clobber def overlapping a live-in value in the other 1989 // register. Not mergeable. 1990 V.OtherVNI = OtherLRQ.valueIn(); 1991 return CR_Impossible; 1992 } 1993 V.OtherVNI = OtherVNI; 1994 Val &OtherV = Other.Vals[OtherVNI->id]; 1995 // Keep this value, check for conflicts when analyzing OtherVNI. 1996 if (!OtherV.isAnalyzed()) 1997 return CR_Keep; 1998 // Both sides have been analyzed now. 1999 // Allow overlapping PHI values. Any real interference would show up in a 2000 // predecessor, the PHI itself can't introduce any conflicts. 2001 if (VNI->isPHIDef()) 2002 return CR_Merge; 2003 if (V.ValidLanes & OtherV.ValidLanes) 2004 // Overlapping lanes can't be resolved. 2005 return CR_Impossible; 2006 else 2007 return CR_Merge; 2008 } 2009 2010 // No simultaneous def. Is Other live at the def? 2011 V.OtherVNI = OtherLRQ.valueIn(); 2012 if (!V.OtherVNI) 2013 // No overlap, no conflict. 2014 return CR_Keep; 2015 2016 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2017 2018 // We have overlapping values, or possibly a kill of Other. 2019 // Recursively compute assignments up the dominator tree. 2020 Other.computeAssignment(V.OtherVNI->id, *this); 2021 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2022 2023 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2024 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2025 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2026 // technically. 2027 // 2028 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2029 // to erase the IMPLICIT_DEF instruction. 2030 if (OtherV.ErasableImplicitDef && DefMI && 2031 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2032 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2033 << " extends into BB#" << DefMI->getParent()->getNumber() 2034 << ", keeping it.\n"); 2035 OtherV.ErasableImplicitDef = false; 2036 } 2037 2038 // Allow overlapping PHI values. Any real interference would show up in a 2039 // predecessor, the PHI itself can't introduce any conflicts. 2040 if (VNI->isPHIDef()) 2041 return CR_Replace; 2042 2043 // Check for simple erasable conflicts. 2044 if (DefMI->isImplicitDef()) { 2045 // We need the def for the subregister if there is nothing else live at the 2046 // subrange at this point. 2047 if (TrackSubRegLiveness 2048 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0) 2049 return CR_Replace; 2050 return CR_Erase; 2051 } 2052 2053 // Include the non-conflict where DefMI is a coalescable copy that kills 2054 // OtherVNI. We still want the copy erased and value numbers merged. 2055 if (CP.isCoalescable(DefMI)) { 2056 // Some of the lanes copied from OtherVNI may be undef, making them undef 2057 // here too. 2058 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2059 return CR_Erase; 2060 } 2061 2062 // This may not be a real conflict if DefMI simply kills Other and defines 2063 // VNI. 2064 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2065 return CR_Keep; 2066 2067 // Handle the case where VNI and OtherVNI can be proven to be identical: 2068 // 2069 // %other = COPY %ext 2070 // %this = COPY %ext <-- Erase this copy 2071 // 2072 if (DefMI->isFullCopy() && !CP.isPartial() 2073 && valuesIdentical(VNI, V.OtherVNI, Other)) 2074 return CR_Erase; 2075 2076 // If the lanes written by this instruction were all undef in OtherVNI, it is 2077 // still safe to join the live ranges. This can't be done with a simple value 2078 // mapping, though - OtherVNI will map to multiple values: 2079 // 2080 // 1 %dst:ssub0 = FOO <-- OtherVNI 2081 // 2 %src = BAR <-- VNI 2082 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2083 // 4 BAZ %dst<kill> 2084 // 5 QUUX %src<kill> 2085 // 2086 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2087 // handles this complex value mapping. 2088 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 2089 return CR_Replace; 2090 2091 // If the other live range is killed by DefMI and the live ranges are still 2092 // overlapping, it must be because we're looking at an early clobber def: 2093 // 2094 // %dst<def,early-clobber> = ASM %src<kill> 2095 // 2096 // In this case, it is illegal to merge the two live ranges since the early 2097 // clobber def would clobber %src before it was read. 2098 if (OtherLRQ.isKill()) { 2099 // This case where the def doesn't overlap the kill is handled above. 2100 assert(VNI->def.isEarlyClobber() && 2101 "Only early clobber defs can overlap a kill"); 2102 return CR_Impossible; 2103 } 2104 2105 // VNI is clobbering live lanes in OtherVNI, but there is still the 2106 // possibility that no instructions actually read the clobbered lanes. 2107 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2108 // Otherwise Other.RI wouldn't be live here. 2109 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 2110 return CR_Impossible; 2111 2112 // We need to verify that no instructions are reading the clobbered lanes. To 2113 // save compile time, we'll only check that locally. Don't allow the tainted 2114 // value to escape the basic block. 2115 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2116 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2117 return CR_Impossible; 2118 2119 // There are still some things that could go wrong besides clobbered lanes 2120 // being read, for example OtherVNI may be only partially redefined in MBB, 2121 // and some clobbered lanes could escape the block. Save this analysis for 2122 // resolveConflicts() when all values have been mapped. We need to know 2123 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2124 // that now - the recursive analyzeValue() calls must go upwards in the 2125 // dominator tree. 2126 return CR_Unresolved; 2127 } 2128 2129 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2130 Val &V = Vals[ValNo]; 2131 if (V.isAnalyzed()) { 2132 // Recursion should always move up the dominator tree, so ValNo is not 2133 // supposed to reappear before it has been assigned. 2134 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2135 return; 2136 } 2137 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2138 case CR_Erase: 2139 case CR_Merge: 2140 // Merge this ValNo into OtherVNI. 2141 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2142 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2143 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2144 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2145 << LR.getValNumInfo(ValNo)->def << " into " 2146 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2147 << V.OtherVNI->def << " --> @" 2148 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2149 break; 2150 case CR_Replace: 2151 case CR_Unresolved: { 2152 // The other value is going to be pruned if this join is successful. 2153 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2154 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2155 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2156 // its lanes. 2157 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness) 2158 OtherV.ErasableImplicitDef = false; 2159 OtherV.Pruned = true; 2160 } 2161 // Fall through. 2162 default: 2163 // This value number needs to go in the final joined live range. 2164 Assignments[ValNo] = NewVNInfo.size(); 2165 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2166 break; 2167 } 2168 } 2169 2170 bool JoinVals::mapValues(JoinVals &Other) { 2171 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2172 computeAssignment(i, Other); 2173 if (Vals[i].Resolution == CR_Impossible) { 2174 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2175 << '@' << LR.getValNumInfo(i)->def << '\n'); 2176 return false; 2177 } 2178 } 2179 return true; 2180 } 2181 2182 bool JoinVals:: 2183 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2184 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) { 2185 VNInfo *VNI = LR.getValNumInfo(ValNo); 2186 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2187 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2188 2189 // Scan Other.LR from VNI.def to MBBEnd. 2190 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2191 assert(OtherI != Other.LR.end() && "No conflict?"); 2192 do { 2193 // OtherI is pointing to a tainted value. Abort the join if the tainted 2194 // lanes escape the block. 2195 SlotIndex End = OtherI->end; 2196 if (End >= MBBEnd) { 2197 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2198 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2199 return false; 2200 } 2201 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2202 << OtherI->valno->id << '@' << OtherI->start 2203 << " to " << End << '\n'); 2204 // A dead def is not a problem. 2205 if (End.isDead()) 2206 break; 2207 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2208 2209 // Check for another def in the MBB. 2210 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2211 break; 2212 2213 // Lanes written by the new def are no longer tainted. 2214 const Val &OV = Other.Vals[OtherI->valno->id]; 2215 TaintedLanes &= ~OV.WriteLanes; 2216 if (!OV.RedefVNI) 2217 break; 2218 } while (TaintedLanes); 2219 return true; 2220 } 2221 2222 bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx, 2223 LaneBitmask Lanes) const { 2224 if (MI->isDebugValue()) 2225 return false; 2226 for (const MachineOperand &MO : MI->operands()) { 2227 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 2228 continue; 2229 if (!MO.readsReg()) 2230 continue; 2231 if (Lanes & TRI->getSubRegIndexLaneMask( 2232 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()))) 2233 return true; 2234 } 2235 return false; 2236 } 2237 2238 bool JoinVals::resolveConflicts(JoinVals &Other) { 2239 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2240 Val &V = Vals[i]; 2241 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2242 if (V.Resolution != CR_Unresolved) 2243 continue; 2244 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2245 << '@' << LR.getValNumInfo(i)->def << '\n'); 2246 if (SubRangeJoin) 2247 return false; 2248 2249 ++NumLaneConflicts; 2250 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2251 VNInfo *VNI = LR.getValNumInfo(i); 2252 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2253 2254 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2255 // join, those lanes will be tainted with a wrong value. Get the extent of 2256 // the tainted lanes. 2257 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2258 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 2259 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2260 // Tainted lanes would extend beyond the basic block. 2261 return false; 2262 2263 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2264 2265 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2266 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2267 MachineBasicBlock::iterator MI = MBB->begin(); 2268 if (!VNI->isPHIDef()) { 2269 MI = Indexes->getInstructionFromIndex(VNI->def); 2270 // No need to check the instruction defining VNI for reads. 2271 ++MI; 2272 } 2273 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2274 "Interference ends on VNI->def. Should have been handled earlier"); 2275 MachineInstr *LastMI = 2276 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2277 assert(LastMI && "Range must end at a proper instruction"); 2278 unsigned TaintNum = 0; 2279 for(;;) { 2280 assert(MI != MBB->end() && "Bad LastMI"); 2281 if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2282 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2283 return false; 2284 } 2285 // LastMI is the last instruction to use the current value. 2286 if (&*MI == LastMI) { 2287 if (++TaintNum == TaintExtent.size()) 2288 break; 2289 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2290 assert(LastMI && "Range must end at a proper instruction"); 2291 TaintedLanes = TaintExtent[TaintNum].second; 2292 } 2293 ++MI; 2294 } 2295 2296 // The tainted lanes are unused. 2297 V.Resolution = CR_Replace; 2298 ++NumLaneResolves; 2299 } 2300 return true; 2301 } 2302 2303 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2304 Val &V = Vals[ValNo]; 2305 if (V.Pruned || V.PrunedComputed) 2306 return V.Pruned; 2307 2308 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2309 return V.Pruned; 2310 2311 // Follow copies up the dominator tree and check if any intermediate value 2312 // has been pruned. 2313 V.PrunedComputed = true; 2314 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2315 return V.Pruned; 2316 } 2317 2318 void JoinVals::pruneValues(JoinVals &Other, 2319 SmallVectorImpl<SlotIndex> &EndPoints, 2320 bool changeInstrs) { 2321 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2322 SlotIndex Def = LR.getValNumInfo(i)->def; 2323 switch (Vals[i].Resolution) { 2324 case CR_Keep: 2325 break; 2326 case CR_Replace: { 2327 // This value takes precedence over the value in Other.LR. 2328 LIS->pruneValue(Other.LR, Def, &EndPoints); 2329 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2330 // instructions are only inserted to provide a live-out value for PHI 2331 // predecessors, so the instruction should simply go away once its value 2332 // has been replaced. 2333 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2334 bool EraseImpDef = OtherV.ErasableImplicitDef && 2335 OtherV.Resolution == CR_Keep; 2336 if (!Def.isBlock()) { 2337 if (changeInstrs) { 2338 // Remove <def,read-undef> flags. This def is now a partial redef. 2339 // Also remove <def,dead> flags since the joined live range will 2340 // continue past this instruction. 2341 for (MachineOperand &MO : 2342 Indexes->getInstructionFromIndex(Def)->operands()) { 2343 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 2344 MO.setIsUndef(EraseImpDef); 2345 MO.setIsDead(false); 2346 } 2347 } 2348 } 2349 // This value will reach instructions below, but we need to make sure 2350 // the live range also reaches the instruction at Def. 2351 if (!EraseImpDef) 2352 EndPoints.push_back(Def); 2353 } 2354 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2355 << ": " << Other.LR << '\n'); 2356 break; 2357 } 2358 case CR_Erase: 2359 case CR_Merge: 2360 if (isPrunedValue(i, Other)) { 2361 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2362 // We can no longer trust the value mapping computed by 2363 // computeAssignment(), the value that was originally copied could have 2364 // been replaced. 2365 LIS->pruneValue(LR, Def, &EndPoints); 2366 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2367 << Def << ": " << LR << '\n'); 2368 } 2369 break; 2370 case CR_Unresolved: 2371 case CR_Impossible: 2372 llvm_unreachable("Unresolved conflicts"); 2373 } 2374 } 2375 } 2376 2377 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) 2378 { 2379 // Look for values being erased. 2380 bool DidPrune = false; 2381 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2382 if (Vals[i].Resolution != CR_Erase) 2383 continue; 2384 2385 // Check subranges at the point where the copy will be removed. 2386 SlotIndex Def = LR.getValNumInfo(i)->def; 2387 for (LiveInterval::SubRange &S : LI.subranges()) { 2388 LiveQueryResult Q = S.Query(Def); 2389 2390 // If a subrange starts at the copy then an undefined value has been 2391 // copied and we must remove that subrange value as well. 2392 VNInfo *ValueOut = Q.valueOutOrDead(); 2393 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2394 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 2395 << " at " << Def << "\n"); 2396 LIS->pruneValue(S, Def, nullptr); 2397 DidPrune = true; 2398 // Mark value number as unused. 2399 ValueOut->markUnused(); 2400 continue; 2401 } 2402 // If a subrange ends at the copy, then a value was copied but only 2403 // partially used later. Shrink the subregister range appropriately. 2404 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2405 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) 2406 << " at " << Def << "\n"); 2407 ShrinkMask |= S.LaneMask; 2408 } 2409 } 2410 } 2411 if (DidPrune) 2412 LI.removeEmptySubRanges(); 2413 } 2414 2415 void JoinVals::removeImplicitDefs() { 2416 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2417 Val &V = Vals[i]; 2418 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2419 continue; 2420 2421 VNInfo *VNI = LR.getValNumInfo(i); 2422 VNI->markUnused(); 2423 LR.removeValNo(VNI); 2424 } 2425 } 2426 2427 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2428 SmallVectorImpl<unsigned> &ShrinkRegs) { 2429 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2430 // Get the def location before markUnused() below invalidates it. 2431 SlotIndex Def = LR.getValNumInfo(i)->def; 2432 switch (Vals[i].Resolution) { 2433 case CR_Keep: { 2434 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2435 // longer. The IMPLICIT_DEF instructions are only inserted by 2436 // PHIElimination to guarantee that all PHI predecessors have a value. 2437 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2438 break; 2439 // Remove value number i from LR. 2440 VNInfo *VNI = LR.getValNumInfo(i); 2441 LR.removeValNo(VNI); 2442 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2443 // make it appear like an unused value number. 2444 VNI->markUnused(); 2445 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'); 2446 // FALL THROUGH. 2447 } 2448 2449 case CR_Erase: { 2450 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2451 assert(MI && "No instruction to erase"); 2452 if (MI->isCopy()) { 2453 unsigned Reg = MI->getOperand(1).getReg(); 2454 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2455 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2456 ShrinkRegs.push_back(Reg); 2457 } 2458 ErasedInstrs.insert(MI); 2459 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2460 LIS->RemoveMachineInstrFromMaps(MI); 2461 MI->eraseFromParent(); 2462 break; 2463 } 2464 default: 2465 break; 2466 } 2467 } 2468 } 2469 2470 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2471 LaneBitmask LaneMask, 2472 const CoalescerPair &CP) { 2473 SmallVector<VNInfo*, 16> NewVNInfo; 2474 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2475 NewVNInfo, CP, LIS, TRI, true, true); 2476 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2477 NewVNInfo, CP, LIS, TRI, true, true); 2478 2479 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2480 // We should be able to resolve all conflicts here as we could successfully do 2481 // it on the mainrange already. There is however a problem when multiple 2482 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2483 // interferences. 2484 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2485 // We already determined that it is legal to merge the intervals, so this 2486 // should never fail. 2487 llvm_unreachable("*** Couldn't join subrange!\n"); 2488 } 2489 if (!LHSVals.resolveConflicts(RHSVals) || 2490 !RHSVals.resolveConflicts(LHSVals)) { 2491 // We already determined that it is legal to merge the intervals, so this 2492 // should never fail. 2493 llvm_unreachable("*** Couldn't join subrange!\n"); 2494 } 2495 2496 // The merging algorithm in LiveInterval::join() can't handle conflicting 2497 // value mappings, so we need to remove any live ranges that overlap a 2498 // CR_Replace resolution. Collect a set of end points that can be used to 2499 // restore the live range after joining. 2500 SmallVector<SlotIndex, 8> EndPoints; 2501 LHSVals.pruneValues(RHSVals, EndPoints, false); 2502 RHSVals.pruneValues(LHSVals, EndPoints, false); 2503 2504 LHSVals.removeImplicitDefs(); 2505 RHSVals.removeImplicitDefs(); 2506 2507 LRange.verify(); 2508 RRange.verify(); 2509 2510 // Join RRange into LHS. 2511 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2512 NewVNInfo); 2513 2514 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2515 if (EndPoints.empty()) 2516 return; 2517 2518 // Recompute the parts of the live range we had to remove because of 2519 // CR_Replace conflicts. 2520 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2521 << " points: " << LRange << '\n'); 2522 LIS->extendToIndices(LRange, EndPoints); 2523 } 2524 2525 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2526 const LiveRange &ToMerge, 2527 LaneBitmask LaneMask, 2528 CoalescerPair &CP) { 2529 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2530 for (LiveInterval::SubRange &R : LI.subranges()) { 2531 LaneBitmask RMask = R.LaneMask; 2532 // LaneMask of subregisters common to subrange R and ToMerge. 2533 LaneBitmask Common = RMask & LaneMask; 2534 // There is nothing to do without common subregs. 2535 if (Common == 0) 2536 continue; 2537 2538 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into " 2539 << PrintLaneMask(Common) << '\n'); 2540 // LaneMask of subregisters contained in the R range but not in ToMerge, 2541 // they have to split into their own subrange. 2542 LaneBitmask LRest = RMask & ~LaneMask; 2543 LiveInterval::SubRange *CommonRange; 2544 if (LRest != 0) { 2545 R.LaneMask = LRest; 2546 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n'); 2547 // Duplicate SubRange for newly merged common stuff. 2548 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2549 } else { 2550 // Reuse the existing range. 2551 R.LaneMask = Common; 2552 CommonRange = &R; 2553 } 2554 LiveRange RangeCopy(ToMerge, Allocator); 2555 joinSubRegRanges(*CommonRange, RangeCopy, Common, CP); 2556 LaneMask &= ~RMask; 2557 } 2558 2559 if (LaneMask != 0) { 2560 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n'); 2561 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2562 } 2563 } 2564 2565 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2566 SmallVector<VNInfo*, 16> NewVNInfo; 2567 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2568 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2569 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2570 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS, 2571 TRI, false, TrackSubRegLiveness); 2572 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS, 2573 TRI, false, TrackSubRegLiveness); 2574 2575 DEBUG(dbgs() << "\t\tRHS = " << RHS 2576 << "\n\t\tLHS = " << LHS 2577 << '\n'); 2578 2579 // First compute NewVNInfo and the simple value mappings. 2580 // Detect impossible conflicts early. 2581 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2582 return false; 2583 2584 // Some conflicts can only be resolved after all values have been mapped. 2585 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2586 return false; 2587 2588 // All clear, the live ranges can be merged. 2589 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2590 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2591 2592 // Transform lanemasks from the LHS to masks in the coalesced register and 2593 // create initial subranges if necessary. 2594 unsigned DstIdx = CP.getDstIdx(); 2595 if (!LHS.hasSubRanges()) { 2596 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2597 : TRI->getSubRegIndexLaneMask(DstIdx); 2598 // LHS must support subregs or we wouldn't be in this codepath. 2599 assert(Mask != 0); 2600 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2601 } else if (DstIdx != 0) { 2602 // Transform LHS lanemasks to new register class if necessary. 2603 for (LiveInterval::SubRange &R : LHS.subranges()) { 2604 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2605 R.LaneMask = Mask; 2606 } 2607 } 2608 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2609 << ' ' << LHS << '\n'); 2610 2611 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2612 unsigned SrcIdx = CP.getSrcIdx(); 2613 if (!RHS.hasSubRanges()) { 2614 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2615 : TRI->getSubRegIndexLaneMask(SrcIdx); 2616 mergeSubRangeInto(LHS, RHS, Mask, CP); 2617 } else { 2618 // Pair up subranges and merge. 2619 for (LiveInterval::SubRange &R : RHS.subranges()) { 2620 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2621 mergeSubRangeInto(LHS, R, Mask, CP); 2622 } 2623 } 2624 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2625 2626 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2627 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2628 } 2629 2630 // The merging algorithm in LiveInterval::join() can't handle conflicting 2631 // value mappings, so we need to remove any live ranges that overlap a 2632 // CR_Replace resolution. Collect a set of end points that can be used to 2633 // restore the live range after joining. 2634 SmallVector<SlotIndex, 8> EndPoints; 2635 LHSVals.pruneValues(RHSVals, EndPoints, true); 2636 RHSVals.pruneValues(LHSVals, EndPoints, true); 2637 2638 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 2639 // registers to require trimming. 2640 SmallVector<unsigned, 8> ShrinkRegs; 2641 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2642 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2643 while (!ShrinkRegs.empty()) 2644 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 2645 2646 // Join RHS into LHS. 2647 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 2648 2649 // Kill flags are going to be wrong if the live ranges were overlapping. 2650 // Eventually, we should simply clear all kill flags when computing live 2651 // ranges. They are reinserted after register allocation. 2652 MRI->clearKillFlags(LHS.reg); 2653 MRI->clearKillFlags(RHS.reg); 2654 2655 if (!EndPoints.empty()) { 2656 // Recompute the parts of the live range we had to remove because of 2657 // CR_Replace conflicts. 2658 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2659 << " points: " << LHS << '\n'); 2660 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 2661 } 2662 2663 return true; 2664 } 2665 2666 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 2667 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 2668 } 2669 2670 namespace { 2671 /// Information concerning MBB coalescing priority. 2672 struct MBBPriorityInfo { 2673 MachineBasicBlock *MBB; 2674 unsigned Depth; 2675 bool IsSplit; 2676 2677 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 2678 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 2679 }; 2680 } 2681 2682 /// C-style comparator that sorts first based on the loop depth of the basic 2683 /// block (the unsigned), and then on the MBB number. 2684 /// 2685 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 2686 static int compareMBBPriority(const MBBPriorityInfo *LHS, 2687 const MBBPriorityInfo *RHS) { 2688 // Deeper loops first 2689 if (LHS->Depth != RHS->Depth) 2690 return LHS->Depth > RHS->Depth ? -1 : 1; 2691 2692 // Try to unsplit critical edges next. 2693 if (LHS->IsSplit != RHS->IsSplit) 2694 return LHS->IsSplit ? -1 : 1; 2695 2696 // Prefer blocks that are more connected in the CFG. This takes care of 2697 // the most difficult copies first while intervals are short. 2698 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 2699 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 2700 if (cl != cr) 2701 return cl > cr ? -1 : 1; 2702 2703 // As a last resort, sort by block number. 2704 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 2705 } 2706 2707 /// \returns true if the given copy uses or defines a local live range. 2708 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 2709 if (!Copy->isCopy()) 2710 return false; 2711 2712 if (Copy->getOperand(1).isUndef()) 2713 return false; 2714 2715 unsigned SrcReg = Copy->getOperand(1).getReg(); 2716 unsigned DstReg = Copy->getOperand(0).getReg(); 2717 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 2718 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 2719 return false; 2720 2721 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 2722 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 2723 } 2724 2725 bool RegisterCoalescer:: 2726 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 2727 bool Progress = false; 2728 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 2729 if (!CurrList[i]) 2730 continue; 2731 // Skip instruction pointers that have already been erased, for example by 2732 // dead code elimination. 2733 if (ErasedInstrs.erase(CurrList[i])) { 2734 CurrList[i] = nullptr; 2735 continue; 2736 } 2737 bool Again = false; 2738 bool Success = joinCopy(CurrList[i], Again); 2739 Progress |= Success; 2740 if (Success || !Again) 2741 CurrList[i] = nullptr; 2742 } 2743 return Progress; 2744 } 2745 2746 /// Check if DstReg is a terminal node. 2747 /// I.e., it does not have any affinity other than \p Copy. 2748 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 2749 const MachineRegisterInfo *MRI) { 2750 assert(Copy.isCopyLike()); 2751 // Check if the destination of this copy as any other affinity. 2752 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 2753 if (&MI != &Copy && MI.isCopyLike()) 2754 return false; 2755 return true; 2756 } 2757 2758 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 2759 assert(Copy.isCopyLike()); 2760 if (!UseTerminalRule) 2761 return false; 2762 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 2763 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 2764 // Check if the destination of this copy has any other affinity. 2765 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 2766 // If SrcReg is a physical register, the copy won't be coalesced. 2767 // Ignoring it may have other side effect (like missing 2768 // rematerialization). So keep it. 2769 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 2770 !isTerminalReg(DstReg, Copy, MRI)) 2771 return false; 2772 2773 // DstReg is a terminal node. Check if it interferes with any other 2774 // copy involving SrcReg. 2775 const MachineBasicBlock *OrigBB = Copy.getParent(); 2776 const LiveInterval &DstLI = LIS->getInterval(DstReg); 2777 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 2778 // Technically we should check if the weight of the new copy is 2779 // interesting compared to the other one and update the weight 2780 // of the copies accordingly. However, this would only work if 2781 // we would gather all the copies first then coalesce, whereas 2782 // right now we interleave both actions. 2783 // For now, just consider the copies that are in the same block. 2784 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 2785 continue; 2786 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 2787 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 2788 OtherSubReg); 2789 if (OtherReg == SrcReg) 2790 OtherReg = OtherSrcReg; 2791 // Check if OtherReg is a non-terminal. 2792 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 2793 isTerminalReg(OtherReg, MI, MRI)) 2794 continue; 2795 // Check that OtherReg interfere with DstReg. 2796 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 2797 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 2798 return true; 2799 } 2800 } 2801 return false; 2802 } 2803 2804 void 2805 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2806 DEBUG(dbgs() << MBB->getName() << ":\n"); 2807 2808 // Collect all copy-like instructions in MBB. Don't start coalescing anything 2809 // yet, it might invalidate the iterator. 2810 const unsigned PrevSize = WorkList.size(); 2811 if (JoinGlobalCopies) { 2812 SmallVector<MachineInstr*, 2> LocalTerminals; 2813 SmallVector<MachineInstr*, 2> GlobalTerminals; 2814 // Coalesce copies bottom-up to coalesce local defs before local uses. They 2815 // are not inherently easier to resolve, but slightly preferable until we 2816 // have local live range splitting. In particular this is required by 2817 // cmp+jmp macro fusion. 2818 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2819 MII != E; ++MII) { 2820 if (!MII->isCopyLike()) 2821 continue; 2822 bool ApplyTerminalRule = applyTerminalRule(*MII); 2823 if (isLocalCopy(&(*MII), LIS)) { 2824 if (ApplyTerminalRule) 2825 LocalTerminals.push_back(&(*MII)); 2826 else 2827 LocalWorkList.push_back(&(*MII)); 2828 } else { 2829 if (ApplyTerminalRule) 2830 GlobalTerminals.push_back(&(*MII)); 2831 else 2832 WorkList.push_back(&(*MII)); 2833 } 2834 } 2835 // Append the copies evicted by the terminal rule at the end of the list. 2836 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 2837 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 2838 } 2839 else { 2840 SmallVector<MachineInstr*, 2> Terminals; 2841 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2842 MII != E; ++MII) 2843 if (MII->isCopyLike()) { 2844 if (applyTerminalRule(*MII)) 2845 Terminals.push_back(&(*MII)); 2846 else 2847 WorkList.push_back(MII); 2848 } 2849 // Append the copies evicted by the terminal rule at the end of the list. 2850 WorkList.append(Terminals.begin(), Terminals.end()); 2851 } 2852 // Try coalescing the collected copies immediately, and remove the nulls. 2853 // This prevents the WorkList from getting too large since most copies are 2854 // joinable on the first attempt. 2855 MutableArrayRef<MachineInstr*> 2856 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 2857 if (copyCoalesceWorkList(CurrList)) 2858 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 2859 (MachineInstr*)nullptr), WorkList.end()); 2860 } 2861 2862 void RegisterCoalescer::coalesceLocals() { 2863 copyCoalesceWorkList(LocalWorkList); 2864 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 2865 if (LocalWorkList[j]) 2866 WorkList.push_back(LocalWorkList[j]); 2867 } 2868 LocalWorkList.clear(); 2869 } 2870 2871 void RegisterCoalescer::joinAllIntervals() { 2872 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 2873 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 2874 2875 std::vector<MBBPriorityInfo> MBBs; 2876 MBBs.reserve(MF->size()); 2877 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ 2878 MachineBasicBlock *MBB = &*I; 2879 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 2880 JoinSplitEdges && isSplitEdge(MBB))); 2881 } 2882 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 2883 2884 // Coalesce intervals in MBB priority order. 2885 unsigned CurrDepth = UINT_MAX; 2886 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 2887 // Try coalescing the collected local copies for deeper loops. 2888 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 2889 coalesceLocals(); 2890 CurrDepth = MBBs[i].Depth; 2891 } 2892 copyCoalesceInMBB(MBBs[i].MBB); 2893 } 2894 coalesceLocals(); 2895 2896 // Joining intervals can allow other intervals to be joined. Iteratively join 2897 // until we make no progress. 2898 while (copyCoalesceWorkList(WorkList)) 2899 /* empty */ ; 2900 } 2901 2902 void RegisterCoalescer::releaseMemory() { 2903 ErasedInstrs.clear(); 2904 WorkList.clear(); 2905 DeadDefs.clear(); 2906 InflateRegs.clear(); 2907 } 2908 2909 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 2910 MF = &fn; 2911 MRI = &fn.getRegInfo(); 2912 TM = &fn.getTarget(); 2913 const TargetSubtargetInfo &STI = fn.getSubtarget(); 2914 TRI = STI.getRegisterInfo(); 2915 TII = STI.getInstrInfo(); 2916 LIS = &getAnalysis<LiveIntervals>(); 2917 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2918 Loops = &getAnalysis<MachineLoopInfo>(); 2919 if (EnableGlobalCopies == cl::BOU_UNSET) 2920 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 2921 else 2922 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 2923 2924 // The MachineScheduler does not currently require JoinSplitEdges. This will 2925 // either be enabled unconditionally or replaced by a more general live range 2926 // splitting optimization. 2927 JoinSplitEdges = EnableJoinSplits; 2928 2929 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 2930 << "********** Function: " << MF->getName() << '\n'); 2931 2932 if (VerifyCoalescing) 2933 MF->verify(this, "Before register coalescing"); 2934 2935 RegClassInfo.runOnMachineFunction(fn); 2936 2937 // Join (coalesce) intervals if requested. 2938 if (EnableJoining) 2939 joinAllIntervals(); 2940 2941 // After deleting a lot of copies, register classes may be less constrained. 2942 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 2943 // DPR inflation. 2944 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 2945 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 2946 InflateRegs.end()); 2947 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 2948 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 2949 unsigned Reg = InflateRegs[i]; 2950 if (MRI->reg_nodbg_empty(Reg)) 2951 continue; 2952 if (MRI->recomputeRegClass(Reg)) { 2953 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 2954 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 2955 ++NumInflated; 2956 2957 LiveInterval &LI = LIS->getInterval(Reg); 2958 if (LI.hasSubRanges()) { 2959 // If the inflated register class does not support subregisters anymore 2960 // remove the subranges. 2961 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 2962 LI.clearSubRanges(); 2963 } else { 2964 #ifndef NDEBUG 2965 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2966 // If subranges are still supported, then the same subregs 2967 // should still be supported. 2968 for (LiveInterval::SubRange &S : LI.subranges()) { 2969 assert((S.LaneMask & ~MaxMask) == 0); 2970 } 2971 #endif 2972 } 2973 } 2974 } 2975 } 2976 2977 DEBUG(dump()); 2978 if (VerifyCoalescing) 2979 MF->verify(this, "After register coalescing"); 2980 return true; 2981 } 2982 2983 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 2984 LIS->print(O, m); 2985 } 2986