Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ARMISelLowering.h"
     16 #include "ARMCallingConv.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "ARMPerfectShuffle.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "ARMTargetObjectFile.h"
     23 #include "MCTargetDesc/ARMAddressingModes.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/ADT/StringSwitch.h"
     27 #include "llvm/CodeGen/CallingConvLower.h"
     28 #include "llvm/CodeGen/IntrinsicLowering.h"
     29 #include "llvm/CodeGen/MachineBasicBlock.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineFunction.h"
     32 #include "llvm/CodeGen/MachineInstrBuilder.h"
     33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     34 #include "llvm/CodeGen/MachineModuleInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/SelectionDAG.h"
     37 #include "llvm/IR/CallingConv.h"
     38 #include "llvm/IR/Constants.h"
     39 #include "llvm/IR/Function.h"
     40 #include "llvm/IR/GlobalValue.h"
     41 #include "llvm/IR/IRBuilder.h"
     42 #include "llvm/IR/Instruction.h"
     43 #include "llvm/IR/Instructions.h"
     44 #include "llvm/IR/IntrinsicInst.h"
     45 #include "llvm/IR/Intrinsics.h"
     46 #include "llvm/IR/Type.h"
     47 #include "llvm/MC/MCSectionMachO.h"
     48 #include "llvm/Support/CommandLine.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/ErrorHandling.h"
     51 #include "llvm/Support/MathExtras.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/Target/TargetOptions.h"
     54 #include <utility>
     55 using namespace llvm;
     56 
     57 #define DEBUG_TYPE "arm-isel"
     58 
     59 STATISTIC(NumTailCalls, "Number of tail calls");
     60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
     61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
     62 
     63 static cl::opt<bool>
     64 ARMInterworking("arm-interworking", cl::Hidden,
     65   cl::desc("Enable / disable ARM interworking (for debugging only)"),
     66   cl::init(true));
     67 
     68 namespace {
     69   class ARMCCState : public CCState {
     70   public:
     71     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
     72                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
     73                ParmContext PC)
     74         : CCState(CC, isVarArg, MF, locs, C) {
     75       assert(((PC == Call) || (PC == Prologue)) &&
     76              "ARMCCState users must specify whether their context is call"
     77              "or prologue generation.");
     78       CallOrPrologue = PC;
     79     }
     80   };
     81 }
     82 
     83 // The APCS parameter registers.
     84 static const MCPhysReg GPRArgRegs[] = {
     85   ARM::R0, ARM::R1, ARM::R2, ARM::R3
     86 };
     87 
     88 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
     89                                        MVT PromotedBitwiseVT) {
     90   if (VT != PromotedLdStVT) {
     91     setOperationAction(ISD::LOAD, VT, Promote);
     92     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
     93 
     94     setOperationAction(ISD::STORE, VT, Promote);
     95     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
     96   }
     97 
     98   MVT ElemTy = VT.getVectorElementType();
     99   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
    100     setOperationAction(ISD::SETCC, VT, Custom);
    101   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    102   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    103   if (ElemTy == MVT::i32) {
    104     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
    105     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
    106     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    107     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
    108   } else {
    109     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    110     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    111     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    112     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    113   }
    114   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
    115   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
    116   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
    117   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
    118   setOperationAction(ISD::SELECT,            VT, Expand);
    119   setOperationAction(ISD::SELECT_CC,         VT, Expand);
    120   setOperationAction(ISD::VSELECT,           VT, Expand);
    121   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    122   if (VT.isInteger()) {
    123     setOperationAction(ISD::SHL, VT, Custom);
    124     setOperationAction(ISD::SRA, VT, Custom);
    125     setOperationAction(ISD::SRL, VT, Custom);
    126   }
    127 
    128   // Promote all bit-wise operations.
    129   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    130     setOperationAction(ISD::AND, VT, Promote);
    131     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
    132     setOperationAction(ISD::OR,  VT, Promote);
    133     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
    134     setOperationAction(ISD::XOR, VT, Promote);
    135     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
    136   }
    137 
    138   // Neon does not support vector divide/remainder operations.
    139   setOperationAction(ISD::SDIV, VT, Expand);
    140   setOperationAction(ISD::UDIV, VT, Expand);
    141   setOperationAction(ISD::FDIV, VT, Expand);
    142   setOperationAction(ISD::SREM, VT, Expand);
    143   setOperationAction(ISD::UREM, VT, Expand);
    144   setOperationAction(ISD::FREM, VT, Expand);
    145 
    146   if (!VT.isFloatingPoint() &&
    147       VT != MVT::v2i64 && VT != MVT::v1i64)
    148     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
    149       setOperationAction(Opcode, VT, Legal);
    150 }
    151 
    152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
    153   addRegisterClass(VT, &ARM::DPRRegClass);
    154   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    155 }
    156 
    157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
    158   addRegisterClass(VT, &ARM::DPairRegClass);
    159   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    160 }
    161 
    162 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
    163                                      const ARMSubtarget &STI)
    164     : TargetLowering(TM), Subtarget(&STI) {
    165   RegInfo = Subtarget->getRegisterInfo();
    166   Itins = Subtarget->getInstrItineraryData();
    167 
    168   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    169 
    170   if (Subtarget->isTargetMachO()) {
    171     // Uses VFP for Thumb libfuncs if available.
    172     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
    173         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
    174       static const struct {
    175         const RTLIB::Libcall Op;
    176         const char * const Name;
    177         const ISD::CondCode Cond;
    178       } LibraryCalls[] = {
    179         // Single-precision floating-point arithmetic.
    180         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
    181         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
    182         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
    183         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
    184 
    185         // Double-precision floating-point arithmetic.
    186         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
    187         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
    188         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
    189         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
    190 
    191         // Single-precision comparisons.
    192         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
    193         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
    194         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
    195         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
    196         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
    197         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
    198         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
    199         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
    200 
    201         // Double-precision comparisons.
    202         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
    203         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
    204         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
    205         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
    206         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
    207         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
    208         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
    209         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
    210 
    211         // Floating-point to integer conversions.
    212         // i64 conversions are done via library routines even when generating VFP
    213         // instructions, so use the same ones.
    214         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
    215         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
    216         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
    217         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
    218 
    219         // Conversions between floating types.
    220         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
    221         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
    222 
    223         // Integer to floating-point conversions.
    224         // i64 conversions are done via library routines even when generating VFP
    225         // instructions, so use the same ones.
    226         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    227         // e.g., __floatunsidf vs. __floatunssidfvfp.
    228         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
    229         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
    230         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
    231         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
    232       };
    233 
    234       for (const auto &LC : LibraryCalls) {
    235         setLibcallName(LC.Op, LC.Name);
    236         if (LC.Cond != ISD::SETCC_INVALID)
    237           setCmpLibcallCC(LC.Op, LC.Cond);
    238       }
    239     }
    240 
    241     // Set the correct calling convention for ARMv7k WatchOS. It's just
    242     // AAPCS_VFP for functions as simple as libcalls.
    243     if (Subtarget->isTargetWatchABI()) {
    244       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
    245         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
    246     }
    247   }
    248 
    249   // These libcalls are not available in 32-bit.
    250   setLibcallName(RTLIB::SHL_I128, nullptr);
    251   setLibcallName(RTLIB::SRL_I128, nullptr);
    252   setLibcallName(RTLIB::SRA_I128, nullptr);
    253 
    254   // RTLIB
    255   if (Subtarget->isAAPCS_ABI() &&
    256       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
    257        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
    258     static const struct {
    259       const RTLIB::Libcall Op;
    260       const char * const Name;
    261       const CallingConv::ID CC;
    262       const ISD::CondCode Cond;
    263     } LibraryCalls[] = {
    264       // Double-precision floating-point arithmetic helper functions
    265       // RTABI chapter 4.1.2, Table 2
    266       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    267       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    268       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    269       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    270 
    271       // Double-precision floating-point comparison helper functions
    272       // RTABI chapter 4.1.2, Table 3
    273       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    274       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    275       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    276       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    277       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    278       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    279       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    280       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    281 
    282       // Single-precision floating-point arithmetic helper functions
    283       // RTABI chapter 4.1.2, Table 4
    284       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    285       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    286       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    287       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    288 
    289       // Single-precision floating-point comparison helper functions
    290       // RTABI chapter 4.1.2, Table 5
    291       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    292       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    293       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    294       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    295       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    296       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    297       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    298       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    299 
    300       // Floating-point to integer conversions.
    301       // RTABI chapter 4.1.2, Table 6
    302       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    303       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    304       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    305       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    306       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    307       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    308       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    309       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    310 
    311       // Conversions between floating types.
    312       // RTABI chapter 4.1.2, Table 7
    313       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    314       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    315       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    316 
    317       // Integer to floating-point conversions.
    318       // RTABI chapter 4.1.2, Table 8
    319       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    320       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    321       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    322       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    323       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    324       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    325       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    326       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    327 
    328       // Long long helper functions
    329       // RTABI chapter 4.2, Table 9
    330       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    331       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    332       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    333       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    334 
    335       // Integer division functions
    336       // RTABI chapter 4.3.1
    337       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    338       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    339       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    340       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    341       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    342       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    343       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    344       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    345     };
    346 
    347     for (const auto &LC : LibraryCalls) {
    348       setLibcallName(LC.Op, LC.Name);
    349       setLibcallCallingConv(LC.Op, LC.CC);
    350       if (LC.Cond != ISD::SETCC_INVALID)
    351         setCmpLibcallCC(LC.Op, LC.Cond);
    352     }
    353 
    354     // EABI dependent RTLIB
    355     if (TM.Options.EABIVersion == EABI::EABI4 ||
    356         TM.Options.EABIVersion == EABI::EABI5) {
    357       static const struct {
    358         const RTLIB::Libcall Op;
    359         const char *const Name;
    360         const CallingConv::ID CC;
    361         const ISD::CondCode Cond;
    362       } MemOpsLibraryCalls[] = {
    363         // Memory operations
    364         // RTABI chapter 4.3.4
    365         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    366         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    367         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    368       };
    369 
    370       for (const auto &LC : MemOpsLibraryCalls) {
    371         setLibcallName(LC.Op, LC.Name);
    372         setLibcallCallingConv(LC.Op, LC.CC);
    373         if (LC.Cond != ISD::SETCC_INVALID)
    374           setCmpLibcallCC(LC.Op, LC.Cond);
    375       }
    376     }
    377   }
    378 
    379   if (Subtarget->isTargetWindows()) {
    380     static const struct {
    381       const RTLIB::Libcall Op;
    382       const char * const Name;
    383       const CallingConv::ID CC;
    384     } LibraryCalls[] = {
    385       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
    386       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
    387       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
    388       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
    389       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
    390       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
    391       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
    392       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
    393     };
    394 
    395     for (const auto &LC : LibraryCalls) {
    396       setLibcallName(LC.Op, LC.Name);
    397       setLibcallCallingConv(LC.Op, LC.CC);
    398     }
    399   }
    400 
    401   // Use divmod compiler-rt calls for iOS 5.0 and later.
    402   if (Subtarget->isTargetWatchOS() ||
    403       (Subtarget->isTargetIOS() &&
    404        !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
    405     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    406     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    407   }
    408 
    409   // The half <-> float conversion functions are always soft-float on
    410   // non-watchos platforms, but are needed for some targets which use a
    411   // hard-float calling convention by default.
    412   if (!Subtarget->isTargetWatchABI()) {
    413     if (Subtarget->isAAPCS_ABI()) {
    414       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
    415       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
    416       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
    417     } else {
    418       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
    419       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
    420       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
    421     }
    422   }
    423 
    424   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
    425   // a __gnu_ prefix (which is the default).
    426   if (Subtarget->isTargetAEABI()) {
    427     setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
    428     setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
    429     setLibcallName(RTLIB::FPEXT_F16_F32,   "__aeabi_h2f");
    430   }
    431 
    432   if (Subtarget->isThumb1Only())
    433     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
    434   else
    435     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
    436   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
    437       !Subtarget->isThumb1Only()) {
    438     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
    439     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
    440   }
    441 
    442   for (MVT VT : MVT::vector_valuetypes()) {
    443     for (MVT InnerVT : MVT::vector_valuetypes()) {
    444       setTruncStoreAction(VT, InnerVT, Expand);
    445       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    446       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    447       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    448     }
    449 
    450     setOperationAction(ISD::MULHS, VT, Expand);
    451     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    452     setOperationAction(ISD::MULHU, VT, Expand);
    453     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    454 
    455     setOperationAction(ISD::BSWAP, VT, Expand);
    456   }
    457 
    458   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
    459   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
    460 
    461   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
    462   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
    463 
    464   if (Subtarget->hasNEON()) {
    465     addDRTypeForNEON(MVT::v2f32);
    466     addDRTypeForNEON(MVT::v8i8);
    467     addDRTypeForNEON(MVT::v4i16);
    468     addDRTypeForNEON(MVT::v2i32);
    469     addDRTypeForNEON(MVT::v1i64);
    470 
    471     addQRTypeForNEON(MVT::v4f32);
    472     addQRTypeForNEON(MVT::v2f64);
    473     addQRTypeForNEON(MVT::v16i8);
    474     addQRTypeForNEON(MVT::v8i16);
    475     addQRTypeForNEON(MVT::v4i32);
    476     addQRTypeForNEON(MVT::v2i64);
    477 
    478     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    479     // neither Neon nor VFP support any arithmetic operations on it.
    480     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    481     // supported for v4f32.
    482     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    483     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    484     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    485     // FIXME: Code duplication: FDIV and FREM are expanded always, see
    486     // ARMTargetLowering::addTypeForNEON method for details.
    487     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    488     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    489     // FIXME: Create unittest.
    490     // In another words, find a way when "copysign" appears in DAG with vector
    491     // operands.
    492     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    493     // FIXME: Code duplication: SETCC has custom operation action, see
    494     // ARMTargetLowering::addTypeForNEON method for details.
    495     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    496     // FIXME: Create unittest for FNEG and for FABS.
    497     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    498     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    499     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    500     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    501     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    502     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
    503     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    504     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    505     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    506     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    507     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    508     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    509     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    510     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    512     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    513     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    514     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    515     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
    516 
    517     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    518     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    519     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    520     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
    521     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    522     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    523     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    524     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    525     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    526     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    527     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
    528     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
    529     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    530     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    531     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
    532 
    533     // Mark v2f32 intrinsics.
    534     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
    535     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
    536     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
    537     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
    538     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
    539     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
    540     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
    541     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
    542     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
    543     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
    544     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
    545     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
    546     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
    547     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
    548     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
    549 
    550     // Neon does not support some operations on v1i64 and v2i64 types.
    551     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    552     // Custom handling for some quad-vector types to detect VMULL.
    553     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    554     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    555     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    556     // Custom handling for some vector types to avoid expensive expansions
    557     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    558     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    559     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    560     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    561     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
    562     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
    563     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    564     // a destination type that is wider than the source, and nor does
    565     // it have a FP_TO_[SU]INT instruction with a narrower destination than
    566     // source.
    567     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    568     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    569     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    570     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    571 
    572     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
    573     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
    574 
    575     // NEON does not have single instruction CTPOP for vectors with element
    576     // types wider than 8-bits.  However, custom lowering can leverage the
    577     // v8i8/v16i8 vcnt instruction.
    578     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
    579     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
    580     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
    581     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
    582     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
    583     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
    584 
    585     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
    586     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
    587 
    588     // NEON does not have single instruction CTTZ for vectors.
    589     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
    590     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
    591     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
    592     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
    593 
    594     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
    595     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
    596     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
    597     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
    598 
    599     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
    600     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
    601     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
    602     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
    603 
    604     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
    605     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
    606     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
    607     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
    608 
    609     // NEON only has FMA instructions as of VFP4.
    610     if (!Subtarget->hasVFP4()) {
    611       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
    612       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
    613     }
    614 
    615     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    616     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    617     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    618     setTargetDAGCombine(ISD::SHL);
    619     setTargetDAGCombine(ISD::SRL);
    620     setTargetDAGCombine(ISD::SRA);
    621     setTargetDAGCombine(ISD::SIGN_EXTEND);
    622     setTargetDAGCombine(ISD::ZERO_EXTEND);
    623     setTargetDAGCombine(ISD::ANY_EXTEND);
    624     setTargetDAGCombine(ISD::BUILD_VECTOR);
    625     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    626     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    627     setTargetDAGCombine(ISD::STORE);
    628     setTargetDAGCombine(ISD::FP_TO_SINT);
    629     setTargetDAGCombine(ISD::FP_TO_UINT);
    630     setTargetDAGCombine(ISD::FDIV);
    631     setTargetDAGCombine(ISD::LOAD);
    632 
    633     // It is legal to extload from v4i8 to v4i16 or v4i32.
    634     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
    635                    MVT::v2i32}) {
    636       for (MVT VT : MVT::integer_vector_valuetypes()) {
    637         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
    638         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
    639         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
    640       }
    641     }
    642   }
    643 
    644   // ARM and Thumb2 support UMLAL/SMLAL.
    645   if (!Subtarget->isThumb1Only())
    646     setTargetDAGCombine(ISD::ADDC);
    647 
    648   if (Subtarget->isFPOnlySP()) {
    649     // When targeting a floating-point unit with only single-precision
    650     // operations, f64 is legal for the few double-precision instructions which
    651     // are present However, no double-precision operations other than moves,
    652     // loads and stores are provided by the hardware.
    653     setOperationAction(ISD::FADD,       MVT::f64, Expand);
    654     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
    655     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
    656     setOperationAction(ISD::FMA,        MVT::f64, Expand);
    657     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
    658     setOperationAction(ISD::FREM,       MVT::f64, Expand);
    659     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
    660     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
    661     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
    662     setOperationAction(ISD::FABS,       MVT::f64, Expand);
    663     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
    664     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
    665     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
    666     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
    667     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
    668     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
    669     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
    670     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
    671     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
    672     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
    673     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
    674     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
    675     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
    676     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    677     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
    678     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    679     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    680     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    681     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    682     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
    683     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
    684     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
    685     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
    686   }
    687 
    688   computeRegisterProperties(Subtarget->getRegisterInfo());
    689 
    690   // ARM does not have floating-point extending loads.
    691   for (MVT VT : MVT::fp_valuetypes()) {
    692     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    693     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    694   }
    695 
    696   // ... or truncating stores
    697   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    698   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    699   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    700 
    701   // ARM does not have i1 sign extending load.
    702   for (MVT VT : MVT::integer_valuetypes())
    703     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    704 
    705   // ARM supports all 4 flavors of integer indexed load / store.
    706   if (!Subtarget->isThumb1Only()) {
    707     for (unsigned im = (unsigned)ISD::PRE_INC;
    708          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    709       setIndexedLoadAction(im,  MVT::i1,  Legal);
    710       setIndexedLoadAction(im,  MVT::i8,  Legal);
    711       setIndexedLoadAction(im,  MVT::i16, Legal);
    712       setIndexedLoadAction(im,  MVT::i32, Legal);
    713       setIndexedStoreAction(im, MVT::i1,  Legal);
    714       setIndexedStoreAction(im, MVT::i8,  Legal);
    715       setIndexedStoreAction(im, MVT::i16, Legal);
    716       setIndexedStoreAction(im, MVT::i32, Legal);
    717     }
    718   }
    719 
    720   setOperationAction(ISD::SADDO, MVT::i32, Custom);
    721   setOperationAction(ISD::UADDO, MVT::i32, Custom);
    722   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
    723   setOperationAction(ISD::USUBO, MVT::i32, Custom);
    724 
    725   // i64 operation support.
    726   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    727   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    728   if (Subtarget->isThumb1Only()) {
    729     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    730     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    731   }
    732   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    733       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
    734     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    735 
    736   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    737   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    738   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    739   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    740   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    741 
    742   if (!Subtarget->isThumb1Only()) {
    743     // FIXME: We should do this for Thumb1 as well.
    744     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
    745     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
    746     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
    747     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
    748   }
    749 
    750   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
    751     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
    752 
    753   // ARM does not have ROTL.
    754   setOperationAction(ISD::ROTL, MVT::i32, Expand);
    755   for (MVT VT : MVT::vector_valuetypes()) {
    756     setOperationAction(ISD::ROTL, VT, Expand);
    757     setOperationAction(ISD::ROTR, VT, Expand);
    758   }
    759   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    760   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    761   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    762     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    763 
    764   // @llvm.readcyclecounter requires the Performance Monitors extension.
    765   // Default to the 0 expansion on unsupported platforms.
    766   // FIXME: Technically there are older ARM CPUs that have
    767   // implementation-specific ways of obtaining this information.
    768   if (Subtarget->hasPerfMon())
    769     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
    770 
    771   // Only ARMv6 has BSWAP.
    772   if (!Subtarget->hasV6Ops())
    773     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    774 
    775   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
    776                                         : Subtarget->hasDivideInARMMode();
    777   if (!hasDivide) {
    778     // These are expanded into libcalls if the cpu doesn't have HW divider.
    779     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
    780     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
    781   }
    782 
    783   if (Subtarget->isTargetWindows() && !Subtarget->hasDivide()) {
    784     setOperationAction(ISD::SDIV, MVT::i32, Custom);
    785     setOperationAction(ISD::UDIV, MVT::i32, Custom);
    786 
    787     setOperationAction(ISD::SDIV, MVT::i64, Custom);
    788     setOperationAction(ISD::UDIV, MVT::i64, Custom);
    789   }
    790 
    791   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    792   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    793   // Register based DivRem for AEABI (RTABI 4.2)
    794   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
    795       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI()) {
    796     setOperationAction(ISD::SREM, MVT::i64, Custom);
    797     setOperationAction(ISD::UREM, MVT::i64, Custom);
    798 
    799     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
    800     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
    801     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
    802     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
    803     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
    804     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
    805     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
    806     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
    807 
    808     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
    809     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
    810     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
    811     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
    812     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
    813     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
    814     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
    815     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
    816 
    817     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    818     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    819     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
    820     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
    821   } else {
    822     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    823     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    824   }
    825 
    826   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    827   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    828   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    829   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    830 
    831   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    832 
    833   // Use the default implementation.
    834   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    835   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    836   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    837   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    838   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    839   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    840 
    841   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
    842     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
    843   else
    844     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    845 
    846   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    847   // the default expansion.
    848   InsertFencesForAtomic = false;
    849   if (Subtarget->hasAnyDataBarrier() &&
    850       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
    851     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
    852     // to ldrex/strex loops already.
    853     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
    854     if (!Subtarget->isThumb() || !Subtarget->isMClass())
    855       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
    856 
    857     // On v8, we have particularly efficient implementations of atomic fences
    858     // if they can be combined with nearby atomic loads and stores.
    859     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
    860       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
    861       InsertFencesForAtomic = true;
    862     }
    863   } else {
    864     // If there's anything we can use as a barrier, go through custom lowering
    865     // for ATOMIC_FENCE.
    866     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
    867                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
    868 
    869     // Set them all for expansion, which will force libcalls.
    870     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    871     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    872     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    873     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    874     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    875     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    876     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    877     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    878     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    879     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    880     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    881     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    882     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    883     // Unordered/Monotonic case.
    884     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    885     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    886   }
    887 
    888   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
    889 
    890   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
    891   if (!Subtarget->hasV6Ops()) {
    892     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    893     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    894   }
    895   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    896 
    897   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
    898       !Subtarget->isThumb1Only()) {
    899     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    900     // iff target supports vfp2.
    901     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    902     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    903   }
    904 
    905   // We want to custom lower some of our intrinsics.
    906   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    907   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    908   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    909   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
    910   if (Subtarget->useSjLjEH())
    911     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
    912 
    913   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
    914   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
    915   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
    916   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
    917   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
    918   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
    919   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    920   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    921   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    922 
    923   // Thumb-1 cannot currently select ARMISD::SUBE.
    924   if (!Subtarget->isThumb1Only())
    925     setOperationAction(ISD::SETCCE, MVT::i32, Custom);
    926 
    927   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
    928   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
    929   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
    930   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
    931   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
    932 
    933   // We don't support sin/cos/fmod/copysign/pow
    934   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
    935   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
    936   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
    937   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
    938   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
    939   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
    940   setOperationAction(ISD::FREM,      MVT::f64, Expand);
    941   setOperationAction(ISD::FREM,      MVT::f32, Expand);
    942   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
    943       !Subtarget->isThumb1Only()) {
    944     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    945     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    946   }
    947   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
    948   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
    949 
    950   if (!Subtarget->hasVFP4()) {
    951     setOperationAction(ISD::FMA, MVT::f64, Expand);
    952     setOperationAction(ISD::FMA, MVT::f32, Expand);
    953   }
    954 
    955   // Various VFP goodness
    956   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
    957     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
    958     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
    959       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
    960       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
    961     }
    962 
    963     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
    964     if (!Subtarget->hasFP16()) {
    965       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
    966       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
    967     }
    968   }
    969 
    970   // Combine sin / cos into one node or libcall if possible.
    971   if (Subtarget->hasSinCos()) {
    972     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
    973     setLibcallName(RTLIB::SINCOS_F64, "sincos");
    974     if (Subtarget->isTargetWatchABI()) {
    975       setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
    976       setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
    977     }
    978     if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
    979       // For iOS, we don't want to the normal expansion of a libcall to
    980       // sincos. We want to issue a libcall to __sincos_stret.
    981       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    982       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
    983     }
    984   }
    985 
    986   // FP-ARMv8 implements a lot of rounding-like FP operations.
    987   if (Subtarget->hasFPARMv8()) {
    988     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    989     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
    990     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    991     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    992     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
    993     setOperationAction(ISD::FRINT, MVT::f32, Legal);
    994     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
    995     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
    996     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
    997     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
    998     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    999     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
   1000 
   1001     if (!Subtarget->isFPOnlySP()) {
   1002       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
   1003       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
   1004       setOperationAction(ISD::FROUND, MVT::f64, Legal);
   1005       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
   1006       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
   1007       setOperationAction(ISD::FRINT, MVT::f64, Legal);
   1008       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
   1009       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
   1010     }
   1011   }
   1012 
   1013   if (Subtarget->hasNEON()) {
   1014     // vmin and vmax aren't available in a scalar form, so we use
   1015     // a NEON instruction with an undef lane instead.
   1016     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
   1017     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
   1018     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
   1019     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
   1020     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
   1021     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
   1022   }
   1023 
   1024   // We have target-specific dag combine patterns for the following nodes:
   1025   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
   1026   setTargetDAGCombine(ISD::ADD);
   1027   setTargetDAGCombine(ISD::SUB);
   1028   setTargetDAGCombine(ISD::MUL);
   1029   setTargetDAGCombine(ISD::AND);
   1030   setTargetDAGCombine(ISD::OR);
   1031   setTargetDAGCombine(ISD::XOR);
   1032 
   1033   if (Subtarget->hasV6Ops())
   1034     setTargetDAGCombine(ISD::SRL);
   1035 
   1036   setStackPointerRegisterToSaveRestore(ARM::SP);
   1037 
   1038   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
   1039       !Subtarget->hasVFP2())
   1040     setSchedulingPreference(Sched::RegPressure);
   1041   else
   1042     setSchedulingPreference(Sched::Hybrid);
   1043 
   1044   //// temporary - rewrite interface to use type
   1045   MaxStoresPerMemset = 8;
   1046   MaxStoresPerMemsetOptSize = 4;
   1047   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
   1048   MaxStoresPerMemcpyOptSize = 2;
   1049   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
   1050   MaxStoresPerMemmoveOptSize = 2;
   1051 
   1052   // On ARM arguments smaller than 4 bytes are extended, so all arguments
   1053   // are at least 4 bytes aligned.
   1054   setMinStackArgumentAlignment(4);
   1055 
   1056   // Prefer likely predicted branches to selects on out-of-order cores.
   1057   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
   1058 
   1059   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
   1060 }
   1061 
   1062 bool ARMTargetLowering::useSoftFloat() const {
   1063   return Subtarget->useSoftFloat();
   1064 }
   1065 
   1066 // FIXME: It might make sense to define the representative register class as the
   1067 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
   1068 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
   1069 // SPR's representative would be DPR_VFP2. This should work well if register
   1070 // pressure tracking were modified such that a register use would increment the
   1071 // pressure of the register class's representative and all of it's super
   1072 // classes' representatives transitively. We have not implemented this because
   1073 // of the difficulty prior to coalescing of modeling operand register classes
   1074 // due to the common occurrence of cross class copies and subregister insertions
   1075 // and extractions.
   1076 std::pair<const TargetRegisterClass *, uint8_t>
   1077 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
   1078                                            MVT VT) const {
   1079   const TargetRegisterClass *RRC = nullptr;
   1080   uint8_t Cost = 1;
   1081   switch (VT.SimpleTy) {
   1082   default:
   1083     return TargetLowering::findRepresentativeClass(TRI, VT);
   1084   // Use DPR as representative register class for all floating point
   1085   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
   1086   // the cost is 1 for both f32 and f64.
   1087   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
   1088   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
   1089     RRC = &ARM::DPRRegClass;
   1090     // When NEON is used for SP, only half of the register file is available
   1091     // because operations that define both SP and DP results will be constrained
   1092     // to the VFP2 class (D0-D15). We currently model this constraint prior to
   1093     // coalescing by double-counting the SP regs. See the FIXME above.
   1094     if (Subtarget->useNEONForSinglePrecisionFP())
   1095       Cost = 2;
   1096     break;
   1097   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1098   case MVT::v4f32: case MVT::v2f64:
   1099     RRC = &ARM::DPRRegClass;
   1100     Cost = 2;
   1101     break;
   1102   case MVT::v4i64:
   1103     RRC = &ARM::DPRRegClass;
   1104     Cost = 4;
   1105     break;
   1106   case MVT::v8i64:
   1107     RRC = &ARM::DPRRegClass;
   1108     Cost = 8;
   1109     break;
   1110   }
   1111   return std::make_pair(RRC, Cost);
   1112 }
   1113 
   1114 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1115   switch ((ARMISD::NodeType)Opcode) {
   1116   case ARMISD::FIRST_NUMBER:  break;
   1117   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
   1118   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
   1119   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
   1120   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
   1121   case ARMISD::CALL:          return "ARMISD::CALL";
   1122   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
   1123   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
   1124   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
   1125   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
   1126   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
   1127   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
   1128   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
   1129   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
   1130   case ARMISD::CMP:           return "ARMISD::CMP";
   1131   case ARMISD::CMN:           return "ARMISD::CMN";
   1132   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
   1133   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
   1134   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
   1135   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
   1136   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
   1137 
   1138   case ARMISD::CMOV:          return "ARMISD::CMOV";
   1139 
   1140   case ARMISD::SSAT:          return "ARMISD::SSAT";
   1141 
   1142   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
   1143   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
   1144   case ARMISD::RRX:           return "ARMISD::RRX";
   1145 
   1146   case ARMISD::ADDC:          return "ARMISD::ADDC";
   1147   case ARMISD::ADDE:          return "ARMISD::ADDE";
   1148   case ARMISD::SUBC:          return "ARMISD::SUBC";
   1149   case ARMISD::SUBE:          return "ARMISD::SUBE";
   1150 
   1151   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
   1152   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
   1153 
   1154   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
   1155   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
   1156   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
   1157 
   1158   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
   1159 
   1160   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
   1161 
   1162   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
   1163 
   1164   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
   1165 
   1166   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
   1167 
   1168   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
   1169   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
   1170 
   1171   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
   1172   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
   1173   case ARMISD::VCGE:          return "ARMISD::VCGE";
   1174   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
   1175   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
   1176   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
   1177   case ARMISD::VCGT:          return "ARMISD::VCGT";
   1178   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
   1179   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
   1180   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
   1181   case ARMISD::VTST:          return "ARMISD::VTST";
   1182 
   1183   case ARMISD::VSHL:          return "ARMISD::VSHL";
   1184   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
   1185   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
   1186   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
   1187   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
   1188   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
   1189   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
   1190   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
   1191   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
   1192   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
   1193   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
   1194   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
   1195   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
   1196   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
   1197   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
   1198   case ARMISD::VSLI:          return "ARMISD::VSLI";
   1199   case ARMISD::VSRI:          return "ARMISD::VSRI";
   1200   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
   1201   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
   1202   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
   1203   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
   1204   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
   1205   case ARMISD::VDUP:          return "ARMISD::VDUP";
   1206   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
   1207   case ARMISD::VEXT:          return "ARMISD::VEXT";
   1208   case ARMISD::VREV64:        return "ARMISD::VREV64";
   1209   case ARMISD::VREV32:        return "ARMISD::VREV32";
   1210   case ARMISD::VREV16:        return "ARMISD::VREV16";
   1211   case ARMISD::VZIP:          return "ARMISD::VZIP";
   1212   case ARMISD::VUZP:          return "ARMISD::VUZP";
   1213   case ARMISD::VTRN:          return "ARMISD::VTRN";
   1214   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
   1215   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
   1216   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
   1217   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
   1218   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
   1219   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
   1220   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
   1221   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
   1222   case ARMISD::BFI:           return "ARMISD::BFI";
   1223   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
   1224   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
   1225   case ARMISD::VBSL:          return "ARMISD::VBSL";
   1226   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
   1227   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
   1228   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
   1229   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
   1230   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
   1231   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
   1232   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
   1233   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
   1234   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
   1235   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
   1236   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
   1237   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
   1238   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
   1239   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
   1240   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
   1241   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
   1242   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
   1243   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
   1244   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
   1245   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
   1246   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
   1247   }
   1248   return nullptr;
   1249 }
   1250 
   1251 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
   1252                                           EVT VT) const {
   1253   if (!VT.isVector())
   1254     return getPointerTy(DL);
   1255   return VT.changeVectorElementTypeToInteger();
   1256 }
   1257 
   1258 /// getRegClassFor - Return the register class that should be used for the
   1259 /// specified value type.
   1260 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
   1261   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
   1262   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
   1263   // load / store 4 to 8 consecutive D registers.
   1264   if (Subtarget->hasNEON()) {
   1265     if (VT == MVT::v4i64)
   1266       return &ARM::QQPRRegClass;
   1267     if (VT == MVT::v8i64)
   1268       return &ARM::QQQQPRRegClass;
   1269   }
   1270   return TargetLowering::getRegClassFor(VT);
   1271 }
   1272 
   1273 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
   1274 // source/dest is aligned and the copy size is large enough. We therefore want
   1275 // to align such objects passed to memory intrinsics.
   1276 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
   1277                                                unsigned &PrefAlign) const {
   1278   if (!isa<MemIntrinsic>(CI))
   1279     return false;
   1280   MinSize = 8;
   1281   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
   1282   // cycle faster than 4-byte aligned LDM.
   1283   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
   1284   return true;
   1285 }
   1286 
   1287 // Create a fast isel object.
   1288 FastISel *
   1289 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   1290                                   const TargetLibraryInfo *libInfo) const {
   1291   return ARM::createFastISel(funcInfo, libInfo);
   1292 }
   1293 
   1294 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
   1295   unsigned NumVals = N->getNumValues();
   1296   if (!NumVals)
   1297     return Sched::RegPressure;
   1298 
   1299   for (unsigned i = 0; i != NumVals; ++i) {
   1300     EVT VT = N->getValueType(i);
   1301     if (VT == MVT::Glue || VT == MVT::Other)
   1302       continue;
   1303     if (VT.isFloatingPoint() || VT.isVector())
   1304       return Sched::ILP;
   1305   }
   1306 
   1307   if (!N->isMachineOpcode())
   1308     return Sched::RegPressure;
   1309 
   1310   // Load are scheduled for latency even if there instruction itinerary
   1311   // is not available.
   1312   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   1313   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1314 
   1315   if (MCID.getNumDefs() == 0)
   1316     return Sched::RegPressure;
   1317   if (!Itins->isEmpty() &&
   1318       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1319     return Sched::ILP;
   1320 
   1321   return Sched::RegPressure;
   1322 }
   1323 
   1324 //===----------------------------------------------------------------------===//
   1325 // Lowering Code
   1326 //===----------------------------------------------------------------------===//
   1327 
   1328 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1329 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1330   switch (CC) {
   1331   default: llvm_unreachable("Unknown condition code!");
   1332   case ISD::SETNE:  return ARMCC::NE;
   1333   case ISD::SETEQ:  return ARMCC::EQ;
   1334   case ISD::SETGT:  return ARMCC::GT;
   1335   case ISD::SETGE:  return ARMCC::GE;
   1336   case ISD::SETLT:  return ARMCC::LT;
   1337   case ISD::SETLE:  return ARMCC::LE;
   1338   case ISD::SETUGT: return ARMCC::HI;
   1339   case ISD::SETUGE: return ARMCC::HS;
   1340   case ISD::SETULT: return ARMCC::LO;
   1341   case ISD::SETULE: return ARMCC::LS;
   1342   }
   1343 }
   1344 
   1345 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1346 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1347                         ARMCC::CondCodes &CondCode2) {
   1348   CondCode2 = ARMCC::AL;
   1349   switch (CC) {
   1350   default: llvm_unreachable("Unknown FP condition!");
   1351   case ISD::SETEQ:
   1352   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
   1353   case ISD::SETGT:
   1354   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1355   case ISD::SETGE:
   1356   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1357   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1358   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1359   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
   1360   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1361   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1362   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
   1363   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1364   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1365   case ISD::SETLT:
   1366   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1367   case ISD::SETLE:
   1368   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1369   case ISD::SETNE:
   1370   case ISD::SETUNE: CondCode = ARMCC::NE; break;
   1371   }
   1372 }
   1373 
   1374 //===----------------------------------------------------------------------===//
   1375 //                      Calling Convention Implementation
   1376 //===----------------------------------------------------------------------===//
   1377 
   1378 #include "ARMGenCallingConv.inc"
   1379 
   1380 /// getEffectiveCallingConv - Get the effective calling convention, taking into
   1381 /// account presence of floating point hardware and calling convention
   1382 /// limitations, such as support for variadic functions.
   1383 CallingConv::ID
   1384 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
   1385                                            bool isVarArg) const {
   1386   switch (CC) {
   1387   default:
   1388     llvm_unreachable("Unsupported calling convention");
   1389   case CallingConv::ARM_AAPCS:
   1390   case CallingConv::ARM_APCS:
   1391   case CallingConv::GHC:
   1392     return CC;
   1393   case CallingConv::PreserveMost:
   1394     return CallingConv::PreserveMost;
   1395   case CallingConv::ARM_AAPCS_VFP:
   1396   case CallingConv::Swift:
   1397     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
   1398   case CallingConv::C:
   1399     if (!Subtarget->isAAPCS_ABI())
   1400       return CallingConv::ARM_APCS;
   1401     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
   1402              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
   1403              !isVarArg)
   1404       return CallingConv::ARM_AAPCS_VFP;
   1405     else
   1406       return CallingConv::ARM_AAPCS;
   1407   case CallingConv::Fast:
   1408   case CallingConv::CXX_FAST_TLS:
   1409     if (!Subtarget->isAAPCS_ABI()) {
   1410       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1411         return CallingConv::Fast;
   1412       return CallingConv::ARM_APCS;
   1413     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1414       return CallingConv::ARM_AAPCS_VFP;
   1415     else
   1416       return CallingConv::ARM_AAPCS;
   1417   }
   1418 }
   1419 
   1420 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
   1421 /// CallingConvention.
   1422 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1423                                                  bool Return,
   1424                                                  bool isVarArg) const {
   1425   switch (getEffectiveCallingConv(CC, isVarArg)) {
   1426   default:
   1427     llvm_unreachable("Unsupported calling convention");
   1428   case CallingConv::ARM_APCS:
   1429     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1430   case CallingConv::ARM_AAPCS:
   1431     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1432   case CallingConv::ARM_AAPCS_VFP:
   1433     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1434   case CallingConv::Fast:
   1435     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1436   case CallingConv::GHC:
   1437     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
   1438   case CallingConv::PreserveMost:
   1439     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1440   }
   1441 }
   1442 
   1443 /// LowerCallResult - Lower the result values of a call into the
   1444 /// appropriate copies out of appropriate physical registers.
   1445 SDValue ARMTargetLowering::LowerCallResult(
   1446     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
   1447     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   1448     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
   1449     SDValue ThisVal) const {
   1450 
   1451   // Assign locations to each value returned by this call.
   1452   SmallVector<CCValAssign, 16> RVLocs;
   1453   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1454                     *DAG.getContext(), Call);
   1455   CCInfo.AnalyzeCallResult(Ins,
   1456                            CCAssignFnForNode(CallConv, /* Return*/ true,
   1457                                              isVarArg));
   1458 
   1459   // Copy all of the result registers out of their specified physreg.
   1460   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1461     CCValAssign VA = RVLocs[i];
   1462 
   1463     // Pass 'this' value directly from the argument to return value, to avoid
   1464     // reg unit interference
   1465     if (i == 0 && isThisReturn) {
   1466       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
   1467              "unexpected return calling convention register assignment");
   1468       InVals.push_back(ThisVal);
   1469       continue;
   1470     }
   1471 
   1472     SDValue Val;
   1473     if (VA.needsCustom()) {
   1474       // Handle f64 or half of a v2f64.
   1475       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1476                                       InFlag);
   1477       Chain = Lo.getValue(1);
   1478       InFlag = Lo.getValue(2);
   1479       VA = RVLocs[++i]; // skip ahead to next loc
   1480       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1481                                       InFlag);
   1482       Chain = Hi.getValue(1);
   1483       InFlag = Hi.getValue(2);
   1484       if (!Subtarget->isLittle())
   1485         std::swap (Lo, Hi);
   1486       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1487 
   1488       if (VA.getLocVT() == MVT::v2f64) {
   1489         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1490         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1491                           DAG.getConstant(0, dl, MVT::i32));
   1492 
   1493         VA = RVLocs[++i]; // skip ahead to next loc
   1494         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1495         Chain = Lo.getValue(1);
   1496         InFlag = Lo.getValue(2);
   1497         VA = RVLocs[++i]; // skip ahead to next loc
   1498         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1499         Chain = Hi.getValue(1);
   1500         InFlag = Hi.getValue(2);
   1501         if (!Subtarget->isLittle())
   1502           std::swap (Lo, Hi);
   1503         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1504         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1505                           DAG.getConstant(1, dl, MVT::i32));
   1506       }
   1507     } else {
   1508       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1509                                InFlag);
   1510       Chain = Val.getValue(1);
   1511       InFlag = Val.getValue(2);
   1512     }
   1513 
   1514     switch (VA.getLocInfo()) {
   1515     default: llvm_unreachable("Unknown loc info!");
   1516     case CCValAssign::Full: break;
   1517     case CCValAssign::BCvt:
   1518       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1519       break;
   1520     }
   1521 
   1522     InVals.push_back(Val);
   1523   }
   1524 
   1525   return Chain;
   1526 }
   1527 
   1528 /// LowerMemOpCallTo - Store the argument to the stack.
   1529 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
   1530                                             SDValue Arg, const SDLoc &dl,
   1531                                             SelectionDAG &DAG,
   1532                                             const CCValAssign &VA,
   1533                                             ISD::ArgFlagsTy Flags) const {
   1534   unsigned LocMemOffset = VA.getLocMemOffset();
   1535   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   1536   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
   1537                        StackPtr, PtrOff);
   1538   return DAG.getStore(
   1539       Chain, dl, Arg, PtrOff,
   1540       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
   1541       false, false, 0);
   1542 }
   1543 
   1544 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
   1545                                          SDValue Chain, SDValue &Arg,
   1546                                          RegsToPassVector &RegsToPass,
   1547                                          CCValAssign &VA, CCValAssign &NextVA,
   1548                                          SDValue &StackPtr,
   1549                                          SmallVectorImpl<SDValue> &MemOpChains,
   1550                                          ISD::ArgFlagsTy Flags) const {
   1551 
   1552   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1553                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1554   unsigned id = Subtarget->isLittle() ? 0 : 1;
   1555   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
   1556 
   1557   if (NextVA.isRegLoc())
   1558     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
   1559   else {
   1560     assert(NextVA.isMemLoc());
   1561     if (!StackPtr.getNode())
   1562       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
   1563                                     getPointerTy(DAG.getDataLayout()));
   1564 
   1565     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
   1566                                            dl, DAG, NextVA,
   1567                                            Flags));
   1568   }
   1569 }
   1570 
   1571 /// LowerCall - Lowering a call into a callseq_start <-
   1572 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1573 /// nodes.
   1574 SDValue
   1575 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1576                              SmallVectorImpl<SDValue> &InVals) const {
   1577   SelectionDAG &DAG                     = CLI.DAG;
   1578   SDLoc &dl                             = CLI.DL;
   1579   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1580   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1581   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1582   SDValue Chain                         = CLI.Chain;
   1583   SDValue Callee                        = CLI.Callee;
   1584   bool &isTailCall                      = CLI.IsTailCall;
   1585   CallingConv::ID CallConv              = CLI.CallConv;
   1586   bool doesNotRet                       = CLI.DoesNotReturn;
   1587   bool isVarArg                         = CLI.IsVarArg;
   1588 
   1589   MachineFunction &MF = DAG.getMachineFunction();
   1590   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1591   bool isThisReturn   = false;
   1592   bool isSibCall      = false;
   1593   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
   1594 
   1595   // Disable tail calls if they're not supported.
   1596   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
   1597     isTailCall = false;
   1598 
   1599   if (isTailCall) {
   1600     // Check if it's really possible to do a tail call.
   1601     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1602                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
   1603                                                    Outs, OutVals, Ins, DAG);
   1604     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
   1605       report_fatal_error("failed to perform tail call elimination on a call "
   1606                          "site marked musttail");
   1607     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1608     // detected sibcalls.
   1609     if (isTailCall) {
   1610       ++NumTailCalls;
   1611       isSibCall = true;
   1612     }
   1613   }
   1614 
   1615   // Analyze operands of the call, assigning locations to each operand.
   1616   SmallVector<CCValAssign, 16> ArgLocs;
   1617   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1618                     *DAG.getContext(), Call);
   1619   CCInfo.AnalyzeCallOperands(Outs,
   1620                              CCAssignFnForNode(CallConv, /* Return*/ false,
   1621                                                isVarArg));
   1622 
   1623   // Get a count of how many bytes are to be pushed on the stack.
   1624   unsigned NumBytes = CCInfo.getNextStackOffset();
   1625 
   1626   // For tail calls, memory operands are available in our caller's stack.
   1627   if (isSibCall)
   1628     NumBytes = 0;
   1629 
   1630   // Adjust the stack pointer for the new arguments...
   1631   // These operations are automatically eliminated by the prolog/epilog pass
   1632   if (!isSibCall)
   1633     Chain = DAG.getCALLSEQ_START(Chain,
   1634                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
   1635 
   1636   SDValue StackPtr =
   1637       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
   1638 
   1639   RegsToPassVector RegsToPass;
   1640   SmallVector<SDValue, 8> MemOpChains;
   1641 
   1642   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1643   // of tail call optimization, arguments are handled later.
   1644   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1645        i != e;
   1646        ++i, ++realArgIdx) {
   1647     CCValAssign &VA = ArgLocs[i];
   1648     SDValue Arg = OutVals[realArgIdx];
   1649     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1650     bool isByVal = Flags.isByVal();
   1651 
   1652     // Promote the value if needed.
   1653     switch (VA.getLocInfo()) {
   1654     default: llvm_unreachable("Unknown loc info!");
   1655     case CCValAssign::Full: break;
   1656     case CCValAssign::SExt:
   1657       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1658       break;
   1659     case CCValAssign::ZExt:
   1660       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1661       break;
   1662     case CCValAssign::AExt:
   1663       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1664       break;
   1665     case CCValAssign::BCvt:
   1666       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1667       break;
   1668     }
   1669 
   1670     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1671     if (VA.needsCustom()) {
   1672       if (VA.getLocVT() == MVT::v2f64) {
   1673         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1674                                   DAG.getConstant(0, dl, MVT::i32));
   1675         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1676                                   DAG.getConstant(1, dl, MVT::i32));
   1677 
   1678         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1679                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1680 
   1681         VA = ArgLocs[++i]; // skip ahead to next loc
   1682         if (VA.isRegLoc()) {
   1683           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1684                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1685         } else {
   1686           assert(VA.isMemLoc());
   1687 
   1688           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1689                                                  dl, DAG, VA, Flags));
   1690         }
   1691       } else {
   1692         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1693                          StackPtr, MemOpChains, Flags);
   1694       }
   1695     } else if (VA.isRegLoc()) {
   1696       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
   1697         assert(VA.getLocVT() == MVT::i32 &&
   1698                "unexpected calling convention register assignment");
   1699         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
   1700                "unexpected use of 'returned'");
   1701         isThisReturn = true;
   1702       }
   1703       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1704     } else if (isByVal) {
   1705       assert(VA.isMemLoc());
   1706       unsigned offset = 0;
   1707 
   1708       // True if this byval aggregate will be split between registers
   1709       // and memory.
   1710       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
   1711       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
   1712 
   1713       if (CurByValIdx < ByValArgsCount) {
   1714 
   1715         unsigned RegBegin, RegEnd;
   1716         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
   1717 
   1718         EVT PtrVT =
   1719             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   1720         unsigned int i, j;
   1721         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
   1722           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
   1723           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1724           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1725                                      MachinePointerInfo(),
   1726                                      false, false, false,
   1727                                      DAG.InferPtrAlignment(AddArg));
   1728           MemOpChains.push_back(Load.getValue(1));
   1729           RegsToPass.push_back(std::make_pair(j, Load));
   1730         }
   1731 
   1732         // If parameter size outsides register area, "offset" value
   1733         // helps us to calculate stack slot for remained part properly.
   1734         offset = RegEnd - RegBegin;
   1735 
   1736         CCInfo.nextInRegsParam();
   1737       }
   1738 
   1739       if (Flags.getByValSize() > 4*offset) {
   1740         auto PtrVT = getPointerTy(DAG.getDataLayout());
   1741         unsigned LocMemOffset = VA.getLocMemOffset();
   1742         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   1743         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
   1744         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
   1745         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
   1746         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
   1747                                            MVT::i32);
   1748         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
   1749                                             MVT::i32);
   1750 
   1751         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1752         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
   1753         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
   1754                                           Ops));
   1755       }
   1756     } else if (!isSibCall) {
   1757       assert(VA.isMemLoc());
   1758 
   1759       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1760                                              dl, DAG, VA, Flags));
   1761     }
   1762   }
   1763 
   1764   if (!MemOpChains.empty())
   1765     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1766 
   1767   // Build a sequence of copy-to-reg nodes chained together with token chain
   1768   // and flag operands which copy the outgoing args into the appropriate regs.
   1769   SDValue InFlag;
   1770   // Tail call byval lowering might overwrite argument registers so in case of
   1771   // tail call optimization the copies to registers are lowered later.
   1772   if (!isTailCall)
   1773     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1774       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1775                                RegsToPass[i].second, InFlag);
   1776       InFlag = Chain.getValue(1);
   1777     }
   1778 
   1779   // For tail calls lower the arguments to the 'real' stack slot.
   1780   if (isTailCall) {
   1781     // Force all the incoming stack arguments to be loaded from the stack
   1782     // before any new outgoing arguments are stored to the stack, because the
   1783     // outgoing stack slots may alias the incoming argument stack slots, and
   1784     // the alias isn't otherwise explicit. This is slightly more conservative
   1785     // than necessary, because it means that each store effectively depends
   1786     // on every argument instead of just those arguments it would clobber.
   1787 
   1788     // Do not flag preceding copytoreg stuff together with the following stuff.
   1789     InFlag = SDValue();
   1790     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1791       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1792                                RegsToPass[i].second, InFlag);
   1793       InFlag = Chain.getValue(1);
   1794     }
   1795     InFlag = SDValue();
   1796   }
   1797 
   1798   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1799   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1800   // node so that legalize doesn't hack it.
   1801   bool isDirect = false;
   1802 
   1803   const TargetMachine &TM = getTargetMachine();
   1804   const Module *Mod = MF.getFunction()->getParent();
   1805   const GlobalValue *GV = nullptr;
   1806   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   1807     GV = G->getGlobal();
   1808   bool isStub =
   1809       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
   1810 
   1811   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
   1812   bool isLocalARMFunc = false;
   1813   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1814   auto PtrVt = getPointerTy(DAG.getDataLayout());
   1815 
   1816   if (Subtarget->genLongCalls()) {
   1817     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
   1818            "long-calls codegen is not position independent!");
   1819     // Handle a global address or an external symbol. If it's not one of
   1820     // those, the target's already in a register, so we don't need to do
   1821     // anything extra.
   1822     if (isa<GlobalAddressSDNode>(Callee)) {
   1823       // Create a constant pool entry for the callee address
   1824       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1825       ARMConstantPoolValue *CPV =
   1826         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   1827 
   1828       // Get the address of the callee into a register
   1829       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   1830       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1831       Callee = DAG.getLoad(
   1832           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   1833           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   1834           false, false, 0);
   1835     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1836       const char *Sym = S->getSymbol();
   1837 
   1838       // Create a constant pool entry for the callee address
   1839       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1840       ARMConstantPoolValue *CPV =
   1841         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1842                                       ARMPCLabelIndex, 0);
   1843       // Get the address of the callee into a register
   1844       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   1845       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1846       Callee = DAG.getLoad(
   1847           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   1848           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   1849           false, false, 0);
   1850     }
   1851   } else if (isa<GlobalAddressSDNode>(Callee)) {
   1852     isDirect = true;
   1853     bool isDef = GV->isStrongDefinitionForLinker();
   1854 
   1855     // ARM call to a local ARM function is predicable.
   1856     isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
   1857     // tBX takes a register source operand.
   1858     if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1859       assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
   1860       Callee = DAG.getNode(
   1861           ARMISD::WrapperPIC, dl, PtrVt,
   1862           DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
   1863       Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee,
   1864                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   1865                            false, false, true, 0);
   1866     } else if (Subtarget->isTargetCOFF()) {
   1867       assert(Subtarget->isTargetWindows() &&
   1868              "Windows is the only supported COFF target");
   1869       unsigned TargetFlags = GV->hasDLLImportStorageClass()
   1870                                  ? ARMII::MO_DLLIMPORT
   1871                                  : ARMII::MO_NO_FLAG;
   1872       Callee =
   1873           DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags);
   1874       if (GV->hasDLLImportStorageClass())
   1875         Callee =
   1876             DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
   1877                         DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
   1878                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   1879                         false, false, false, 0);
   1880     } else {
   1881       Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
   1882     }
   1883   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1884     isDirect = true;
   1885     // tBX takes a register source operand.
   1886     const char *Sym = S->getSymbol();
   1887     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1888       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1889       ARMConstantPoolValue *CPV =
   1890         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1891                                       ARMPCLabelIndex, 4);
   1892       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   1893       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1894       Callee = DAG.getLoad(
   1895           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   1896           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   1897           false, false, 0);
   1898       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   1899       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
   1900     } else {
   1901       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
   1902     }
   1903   }
   1904 
   1905   // FIXME: handle tail calls differently.
   1906   unsigned CallOpc;
   1907   if (Subtarget->isThumb()) {
   1908     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   1909       CallOpc = ARMISD::CALL_NOLINK;
   1910     else
   1911       CallOpc = ARMISD::CALL;
   1912   } else {
   1913     if (!isDirect && !Subtarget->hasV5TOps())
   1914       CallOpc = ARMISD::CALL_NOLINK;
   1915     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
   1916              // Emit regular call when code size is the priority
   1917              !MF.getFunction()->optForMinSize())
   1918       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1919       CallOpc = ARMISD::CALL_NOLINK;
   1920     else
   1921       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
   1922   }
   1923 
   1924   std::vector<SDValue> Ops;
   1925   Ops.push_back(Chain);
   1926   Ops.push_back(Callee);
   1927 
   1928   // Add argument registers to the end of the list so that they are known live
   1929   // into the call.
   1930   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1931     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1932                                   RegsToPass[i].second.getValueType()));
   1933 
   1934   // Add a register mask operand representing the call-preserved registers.
   1935   if (!isTailCall) {
   1936     const uint32_t *Mask;
   1937     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
   1938     if (isThisReturn) {
   1939       // For 'this' returns, use the R0-preserving mask if applicable
   1940       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
   1941       if (!Mask) {
   1942         // Set isThisReturn to false if the calling convention is not one that
   1943         // allows 'returned' to be modeled in this way, so LowerCallResult does
   1944         // not try to pass 'this' straight through
   1945         isThisReturn = false;
   1946         Mask = ARI->getCallPreservedMask(MF, CallConv);
   1947       }
   1948     } else
   1949       Mask = ARI->getCallPreservedMask(MF, CallConv);
   1950 
   1951     assert(Mask && "Missing call preserved mask for calling convention");
   1952     Ops.push_back(DAG.getRegisterMask(Mask));
   1953   }
   1954 
   1955   if (InFlag.getNode())
   1956     Ops.push_back(InFlag);
   1957 
   1958   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1959   if (isTailCall) {
   1960     MF.getFrameInfo()->setHasTailCall();
   1961     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
   1962   }
   1963 
   1964   // Returns a chain and a flag for retval copy to use.
   1965   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   1966   InFlag = Chain.getValue(1);
   1967 
   1968   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   1969                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
   1970   if (!Ins.empty())
   1971     InFlag = Chain.getValue(1);
   1972 
   1973   // Handle result values, copying them out of physregs into vregs that we
   1974   // return.
   1975   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
   1976                          InVals, isThisReturn,
   1977                          isThisReturn ? OutVals[0] : SDValue());
   1978 }
   1979 
   1980 /// HandleByVal - Every parameter *after* a byval parameter is passed
   1981 /// on the stack.  Remember the next parameter register to allocate,
   1982 /// and then confiscate the rest of the parameter registers to insure
   1983 /// this.
   1984 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
   1985                                     unsigned Align) const {
   1986   assert((State->getCallOrPrologue() == Prologue ||
   1987           State->getCallOrPrologue() == Call) &&
   1988          "unhandled ParmContext");
   1989 
   1990   // Byval (as with any stack) slots are always at least 4 byte aligned.
   1991   Align = std::max(Align, 4U);
   1992 
   1993   unsigned Reg = State->AllocateReg(GPRArgRegs);
   1994   if (!Reg)
   1995     return;
   1996 
   1997   unsigned AlignInRegs = Align / 4;
   1998   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
   1999   for (unsigned i = 0; i < Waste; ++i)
   2000     Reg = State->AllocateReg(GPRArgRegs);
   2001 
   2002   if (!Reg)
   2003     return;
   2004 
   2005   unsigned Excess = 4 * (ARM::R4 - Reg);
   2006 
   2007   // Special case when NSAA != SP and parameter size greater than size of
   2008   // all remained GPR regs. In that case we can't split parameter, we must
   2009   // send it to stack. We also must set NCRN to R4, so waste all
   2010   // remained registers.
   2011   const unsigned NSAAOffset = State->getNextStackOffset();
   2012   if (NSAAOffset != 0 && Size > Excess) {
   2013     while (State->AllocateReg(GPRArgRegs))
   2014       ;
   2015     return;
   2016   }
   2017 
   2018   // First register for byval parameter is the first register that wasn't
   2019   // allocated before this method call, so it would be "reg".
   2020   // If parameter is small enough to be saved in range [reg, r4), then
   2021   // the end (first after last) register would be reg + param-size-in-regs,
   2022   // else parameter would be splitted between registers and stack,
   2023   // end register would be r4 in this case.
   2024   unsigned ByValRegBegin = Reg;
   2025   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
   2026   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
   2027   // Note, first register is allocated in the beginning of function already,
   2028   // allocate remained amount of registers we need.
   2029   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
   2030     State->AllocateReg(GPRArgRegs);
   2031   // A byval parameter that is split between registers and memory needs its
   2032   // size truncated here.
   2033   // In the case where the entire structure fits in registers, we set the
   2034   // size in memory to zero.
   2035   Size = std::max<int>(Size - Excess, 0);
   2036 }
   2037 
   2038 /// MatchingStackOffset - Return true if the given stack call argument is
   2039 /// already available in the same position (relatively) of the caller's
   2040 /// incoming argument stack.
   2041 static
   2042 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2043                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   2044                          const TargetInstrInfo *TII) {
   2045   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   2046   int FI = INT_MAX;
   2047   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2048     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2049     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2050       return false;
   2051     MachineInstr *Def = MRI->getVRegDef(VR);
   2052     if (!Def)
   2053       return false;
   2054     if (!Flags.isByVal()) {
   2055       if (!TII->isLoadFromStackSlot(*Def, FI))
   2056         return false;
   2057     } else {
   2058       return false;
   2059     }
   2060   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2061     if (Flags.isByVal())
   2062       // ByVal argument is passed in as a pointer but it's now being
   2063       // dereferenced. e.g.
   2064       // define @foo(%struct.X* %A) {
   2065       //   tail call @bar(%struct.X* byval %A)
   2066       // }
   2067       return false;
   2068     SDValue Ptr = Ld->getBasePtr();
   2069     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2070     if (!FINode)
   2071       return false;
   2072     FI = FINode->getIndex();
   2073   } else
   2074     return false;
   2075 
   2076   assert(FI != INT_MAX);
   2077   if (!MFI->isFixedObjectIndex(FI))
   2078     return false;
   2079   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   2080 }
   2081 
   2082 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2083 /// for tail call optimization. Targets which want to do tail call
   2084 /// optimization should implement this function.
   2085 bool
   2086 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2087                                                      CallingConv::ID CalleeCC,
   2088                                                      bool isVarArg,
   2089                                                      bool isCalleeStructRet,
   2090                                                      bool isCallerStructRet,
   2091                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2092                                     const SmallVectorImpl<SDValue> &OutVals,
   2093                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2094                                                      SelectionDAG& DAG) const {
   2095   MachineFunction &MF = DAG.getMachineFunction();
   2096   const Function *CallerF = MF.getFunction();
   2097   CallingConv::ID CallerCC = CallerF->getCallingConv();
   2098 
   2099   assert(Subtarget->supportsTailCall());
   2100 
   2101   // Look for obvious safe cases to perform tail call optimization that do not
   2102   // require ABI changes. This is what gcc calls sibcall.
   2103 
   2104   // Do not sibcall optimize vararg calls unless the call site is not passing
   2105   // any arguments.
   2106   if (isVarArg && !Outs.empty())
   2107     return false;
   2108 
   2109   // Exception-handling functions need a special set of instructions to indicate
   2110   // a return to the hardware. Tail-calling another function would probably
   2111   // break this.
   2112   if (CallerF->hasFnAttribute("interrupt"))
   2113     return false;
   2114 
   2115   // Also avoid sibcall optimization if either caller or callee uses struct
   2116   // return semantics.
   2117   if (isCalleeStructRet || isCallerStructRet)
   2118     return false;
   2119 
   2120   // Externally-defined functions with weak linkage should not be
   2121   // tail-called on ARM when the OS does not support dynamic
   2122   // pre-emption of symbols, as the AAELF spec requires normal calls
   2123   // to undefined weak functions to be replaced with a NOP or jump to the
   2124   // next instruction. The behaviour of branch instructions in this
   2125   // situation (as used for tail calls) is implementation-defined, so we
   2126   // cannot rely on the linker replacing the tail call with a return.
   2127   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2128     const GlobalValue *GV = G->getGlobal();
   2129     const Triple &TT = getTargetMachine().getTargetTriple();
   2130     if (GV->hasExternalWeakLinkage() &&
   2131         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
   2132       return false;
   2133   }
   2134 
   2135   // Check that the call results are passed in the same way.
   2136   LLVMContext &C = *DAG.getContext();
   2137   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
   2138                                   CCAssignFnForNode(CalleeCC, true, isVarArg),
   2139                                   CCAssignFnForNode(CallerCC, true, isVarArg)))
   2140     return false;
   2141   // The callee has to preserve all registers the caller needs to preserve.
   2142   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
   2143   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
   2144   if (CalleeCC != CallerCC) {
   2145     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
   2146     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
   2147       return false;
   2148   }
   2149 
   2150   // If Caller's vararg or byval argument has been split between registers and
   2151   // stack, do not perform tail call, since part of the argument is in caller's
   2152   // local frame.
   2153   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
   2154   if (AFI_Caller->getArgRegsSaveSize())
   2155     return false;
   2156 
   2157   // If the callee takes no arguments then go on to check the results of the
   2158   // call.
   2159   if (!Outs.empty()) {
   2160     // Check if stack adjustment is needed. For now, do not do this if any
   2161     // argument is passed on the stack.
   2162     SmallVector<CCValAssign, 16> ArgLocs;
   2163     ARMCCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C, Call);
   2164     CCInfo.AnalyzeCallOperands(Outs,
   2165                                CCAssignFnForNode(CalleeCC, false, isVarArg));
   2166     if (CCInfo.getNextStackOffset()) {
   2167       // Check if the arguments are already laid out in the right way as
   2168       // the caller's fixed stack objects.
   2169       MachineFrameInfo *MFI = MF.getFrameInfo();
   2170       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2171       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   2172       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   2173            i != e;
   2174            ++i, ++realArgIdx) {
   2175         CCValAssign &VA = ArgLocs[i];
   2176         EVT RegVT = VA.getLocVT();
   2177         SDValue Arg = OutVals[realArgIdx];
   2178         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   2179         if (VA.getLocInfo() == CCValAssign::Indirect)
   2180           return false;
   2181         if (VA.needsCustom()) {
   2182           // f64 and vector types are split into multiple registers or
   2183           // register/stack-slot combinations.  The types will not match
   2184           // the registers; give up on memory f64 refs until we figure
   2185           // out what to do about this.
   2186           if (!VA.isRegLoc())
   2187             return false;
   2188           if (!ArgLocs[++i].isRegLoc())
   2189             return false;
   2190           if (RegVT == MVT::v2f64) {
   2191             if (!ArgLocs[++i].isRegLoc())
   2192               return false;
   2193             if (!ArgLocs[++i].isRegLoc())
   2194               return false;
   2195           }
   2196         } else if (!VA.isRegLoc()) {
   2197           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2198                                    MFI, MRI, TII))
   2199             return false;
   2200         }
   2201       }
   2202     }
   2203 
   2204     const MachineRegisterInfo &MRI = MF.getRegInfo();
   2205     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
   2206       return false;
   2207   }
   2208 
   2209   return true;
   2210 }
   2211 
   2212 bool
   2213 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   2214                                   MachineFunction &MF, bool isVarArg,
   2215                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2216                                   LLVMContext &Context) const {
   2217   SmallVector<CCValAssign, 16> RVLocs;
   2218   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   2219   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
   2220                                                     isVarArg));
   2221 }
   2222 
   2223 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
   2224                                     const SDLoc &DL, SelectionDAG &DAG) {
   2225   const MachineFunction &MF = DAG.getMachineFunction();
   2226   const Function *F = MF.getFunction();
   2227 
   2228   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
   2229 
   2230   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
   2231   // version of the "preferred return address". These offsets affect the return
   2232   // instruction if this is a return from PL1 without hypervisor extensions.
   2233   //    IRQ/FIQ: +4     "subs pc, lr, #4"
   2234   //    SWI:     0      "subs pc, lr, #0"
   2235   //    ABORT:   +4     "subs pc, lr, #4"
   2236   //    UNDEF:   +4/+2  "subs pc, lr, #0"
   2237   // UNDEF varies depending on where the exception came from ARM or Thumb
   2238   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
   2239 
   2240   int64_t LROffset;
   2241   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
   2242       IntKind == "ABORT")
   2243     LROffset = 4;
   2244   else if (IntKind == "SWI" || IntKind == "UNDEF")
   2245     LROffset = 0;
   2246   else
   2247     report_fatal_error("Unsupported interrupt attribute. If present, value "
   2248                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
   2249 
   2250   RetOps.insert(RetOps.begin() + 1,
   2251                 DAG.getConstant(LROffset, DL, MVT::i32, false));
   2252 
   2253   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
   2254 }
   2255 
   2256 SDValue
   2257 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   2258                                bool isVarArg,
   2259                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   2260                                const SmallVectorImpl<SDValue> &OutVals,
   2261                                const SDLoc &dl, SelectionDAG &DAG) const {
   2262 
   2263   // CCValAssign - represent the assignment of the return value to a location.
   2264   SmallVector<CCValAssign, 16> RVLocs;
   2265 
   2266   // CCState - Info about the registers and stack slots.
   2267   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   2268                     *DAG.getContext(), Call);
   2269 
   2270   // Analyze outgoing return values.
   2271   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
   2272                                                isVarArg));
   2273 
   2274   SDValue Flag;
   2275   SmallVector<SDValue, 4> RetOps;
   2276   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   2277   bool isLittleEndian = Subtarget->isLittle();
   2278 
   2279   MachineFunction &MF = DAG.getMachineFunction();
   2280   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2281   AFI->setReturnRegsCount(RVLocs.size());
   2282 
   2283   // Copy the result values into the output registers.
   2284   for (unsigned i = 0, realRVLocIdx = 0;
   2285        i != RVLocs.size();
   2286        ++i, ++realRVLocIdx) {
   2287     CCValAssign &VA = RVLocs[i];
   2288     assert(VA.isRegLoc() && "Can only return in registers!");
   2289 
   2290     SDValue Arg = OutVals[realRVLocIdx];
   2291 
   2292     switch (VA.getLocInfo()) {
   2293     default: llvm_unreachable("Unknown loc info!");
   2294     case CCValAssign::Full: break;
   2295     case CCValAssign::BCvt:
   2296       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   2297       break;
   2298     }
   2299 
   2300     if (VA.needsCustom()) {
   2301       if (VA.getLocVT() == MVT::v2f64) {
   2302         // Extract the first half and return it in two registers.
   2303         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2304                                    DAG.getConstant(0, dl, MVT::i32));
   2305         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   2306                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   2307 
   2308         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2309                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
   2310                                  Flag);
   2311         Flag = Chain.getValue(1);
   2312         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2313         VA = RVLocs[++i]; // skip ahead to next loc
   2314         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2315                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
   2316                                  Flag);
   2317         Flag = Chain.getValue(1);
   2318         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2319         VA = RVLocs[++i]; // skip ahead to next loc
   2320 
   2321         // Extract the 2nd half and fall through to handle it as an f64 value.
   2322         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2323                           DAG.getConstant(1, dl, MVT::i32));
   2324       }
   2325       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   2326       // available.
   2327       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   2328                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
   2329       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2330                                fmrrd.getValue(isLittleEndian ? 0 : 1),
   2331                                Flag);
   2332       Flag = Chain.getValue(1);
   2333       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2334       VA = RVLocs[++i]; // skip ahead to next loc
   2335       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2336                                fmrrd.getValue(isLittleEndian ? 1 : 0),
   2337                                Flag);
   2338     } else
   2339       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   2340 
   2341     // Guarantee that all emitted copies are
   2342     // stuck together, avoiding something bad.
   2343     Flag = Chain.getValue(1);
   2344     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2345   }
   2346   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
   2347   const MCPhysReg *I =
   2348       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
   2349   if (I) {
   2350     for (; *I; ++I) {
   2351       if (ARM::GPRRegClass.contains(*I))
   2352         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
   2353       else if (ARM::DPRRegClass.contains(*I))
   2354         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
   2355       else
   2356         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   2357     }
   2358   }
   2359 
   2360   // Update chain and glue.
   2361   RetOps[0] = Chain;
   2362   if (Flag.getNode())
   2363     RetOps.push_back(Flag);
   2364 
   2365   // CPUs which aren't M-class use a special sequence to return from
   2366   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
   2367   // though we use "subs pc, lr, #N").
   2368   //
   2369   // M-class CPUs actually use a normal return sequence with a special
   2370   // (hardware-provided) value in LR, so the normal code path works.
   2371   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
   2372       !Subtarget->isMClass()) {
   2373     if (Subtarget->isThumb1Only())
   2374       report_fatal_error("interrupt attribute is not supported in Thumb1");
   2375     return LowerInterruptReturn(RetOps, dl, DAG);
   2376   }
   2377 
   2378   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
   2379 }
   2380 
   2381 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   2382   if (N->getNumValues() != 1)
   2383     return false;
   2384   if (!N->hasNUsesOfValue(1, 0))
   2385     return false;
   2386 
   2387   SDValue TCChain = Chain;
   2388   SDNode *Copy = *N->use_begin();
   2389   if (Copy->getOpcode() == ISD::CopyToReg) {
   2390     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2391     // perform a tail call.
   2392     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2393       return false;
   2394     TCChain = Copy->getOperand(0);
   2395   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
   2396     SDNode *VMov = Copy;
   2397     // f64 returned in a pair of GPRs.
   2398     SmallPtrSet<SDNode*, 2> Copies;
   2399     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2400          UI != UE; ++UI) {
   2401       if (UI->getOpcode() != ISD::CopyToReg)
   2402         return false;
   2403       Copies.insert(*UI);
   2404     }
   2405     if (Copies.size() > 2)
   2406       return false;
   2407 
   2408     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2409          UI != UE; ++UI) {
   2410       SDValue UseChain = UI->getOperand(0);
   2411       if (Copies.count(UseChain.getNode()))
   2412         // Second CopyToReg
   2413         Copy = *UI;
   2414       else {
   2415         // We are at the top of this chain.
   2416         // If the copy has a glue operand, we conservatively assume it
   2417         // isn't safe to perform a tail call.
   2418         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
   2419           return false;
   2420         // First CopyToReg
   2421         TCChain = UseChain;
   2422       }
   2423     }
   2424   } else if (Copy->getOpcode() == ISD::BITCAST) {
   2425     // f32 returned in a single GPR.
   2426     if (!Copy->hasOneUse())
   2427       return false;
   2428     Copy = *Copy->use_begin();
   2429     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
   2430       return false;
   2431     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2432     // perform a tail call.
   2433     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2434       return false;
   2435     TCChain = Copy->getOperand(0);
   2436   } else {
   2437     return false;
   2438   }
   2439 
   2440   bool HasRet = false;
   2441   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   2442        UI != UE; ++UI) {
   2443     if (UI->getOpcode() != ARMISD::RET_FLAG &&
   2444         UI->getOpcode() != ARMISD::INTRET_FLAG)
   2445       return false;
   2446     HasRet = true;
   2447   }
   2448 
   2449   if (!HasRet)
   2450     return false;
   2451 
   2452   Chain = TCChain;
   2453   return true;
   2454 }
   2455 
   2456 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   2457   if (!Subtarget->supportsTailCall())
   2458     return false;
   2459 
   2460   auto Attr =
   2461       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
   2462   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
   2463     return false;
   2464 
   2465   return true;
   2466 }
   2467 
   2468 // Trying to write a 64 bit value so need to split into two 32 bit values first,
   2469 // and pass the lower and high parts through.
   2470 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
   2471   SDLoc DL(Op);
   2472   SDValue WriteValue = Op->getOperand(2);
   2473 
   2474   // This function is only supposed to be called for i64 type argument.
   2475   assert(WriteValue.getValueType() == MVT::i64
   2476           && "LowerWRITE_REGISTER called for non-i64 type argument.");
   2477 
   2478   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
   2479                            DAG.getConstant(0, DL, MVT::i32));
   2480   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
   2481                            DAG.getConstant(1, DL, MVT::i32));
   2482   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
   2483   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
   2484 }
   2485 
   2486 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   2487 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   2488 // one of the above mentioned nodes. It has to be wrapped because otherwise
   2489 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   2490 // be used to form addressing mode. These wrapped nodes will be selected
   2491 // into MOVi.
   2492 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
   2493   EVT PtrVT = Op.getValueType();
   2494   // FIXME there is no actual debug info here
   2495   SDLoc dl(Op);
   2496   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2497   SDValue Res;
   2498   if (CP->isMachineConstantPoolEntry())
   2499     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2500                                     CP->getAlignment());
   2501   else
   2502     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2503                                     CP->getAlignment());
   2504   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   2505 }
   2506 
   2507 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   2508   return MachineJumpTableInfo::EK_Inline;
   2509 }
   2510 
   2511 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   2512                                              SelectionDAG &DAG) const {
   2513   MachineFunction &MF = DAG.getMachineFunction();
   2514   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2515   unsigned ARMPCLabelIndex = 0;
   2516   SDLoc DL(Op);
   2517   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2518   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   2519   SDValue CPAddr;
   2520   bool IsPositionIndependent = isPositionIndependent();
   2521   if (!IsPositionIndependent) {
   2522     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   2523   } else {
   2524     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2525     ARMPCLabelIndex = AFI->createPICLabelUId();
   2526     ARMConstantPoolValue *CPV =
   2527       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   2528                                       ARMCP::CPBlockAddress, PCAdj);
   2529     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2530   }
   2531   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   2532   SDValue Result =
   2533       DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
   2534                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
   2535                   false, false, false, 0);
   2536   if (!IsPositionIndependent)
   2537     return Result;
   2538   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
   2539   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   2540 }
   2541 
   2542 /// \brief Convert a TLS address reference into the correct sequence of loads
   2543 /// and calls to compute the variable's address for Darwin, and return an
   2544 /// SDValue containing the final node.
   2545 
   2546 /// Darwin only has one TLS scheme which must be capable of dealing with the
   2547 /// fully general situation, in the worst case. This means:
   2548 ///     + "extern __thread" declaration.
   2549 ///     + Defined in a possibly unknown dynamic library.
   2550 ///
   2551 /// The general system is that each __thread variable has a [3 x i32] descriptor
   2552 /// which contains information used by the runtime to calculate the address. The
   2553 /// only part of this the compiler needs to know about is the first word, which
   2554 /// contains a function pointer that must be called with the address of the
   2555 /// entire descriptor in "r0".
   2556 ///
   2557 /// Since this descriptor may be in a different unit, in general access must
   2558 /// proceed along the usual ARM rules. A common sequence to produce is:
   2559 ///
   2560 ///     movw rT1, :lower16:_var$non_lazy_ptr
   2561 ///     movt rT1, :upper16:_var$non_lazy_ptr
   2562 ///     ldr r0, [rT1]
   2563 ///     ldr rT2, [r0]
   2564 ///     blx rT2
   2565 ///     [...address now in r0...]
   2566 SDValue
   2567 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
   2568                                                SelectionDAG &DAG) const {
   2569   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
   2570   SDLoc DL(Op);
   2571 
   2572   // First step is to get the address of the actua global symbol. This is where
   2573   // the TLS descriptor lives.
   2574   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
   2575 
   2576   // The first entry in the descriptor is a function pointer that we must call
   2577   // to obtain the address of the variable.
   2578   SDValue Chain = DAG.getEntryNode();
   2579   SDValue FuncTLVGet =
   2580       DAG.getLoad(MVT::i32, DL, Chain, DescAddr,
   2581                   MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2582                   false, true, true, 4);
   2583   Chain = FuncTLVGet.getValue(1);
   2584 
   2585   MachineFunction &F = DAG.getMachineFunction();
   2586   MachineFrameInfo *MFI = F.getFrameInfo();
   2587   MFI->setAdjustsStack(true);
   2588 
   2589   // TLS calls preserve all registers except those that absolutely must be
   2590   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
   2591   // silly).
   2592   auto TRI =
   2593       getTargetMachine().getSubtargetImpl(*F.getFunction())->getRegisterInfo();
   2594   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
   2595   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
   2596 
   2597   // Finally, we can make the call. This is just a degenerate version of a
   2598   // normal AArch64 call node: r0 takes the address of the descriptor, and
   2599   // returns the address of the variable in this thread.
   2600   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
   2601   Chain =
   2602       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
   2603                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
   2604                   DAG.getRegisterMask(Mask), Chain.getValue(1));
   2605   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
   2606 }
   2607 
   2608 SDValue
   2609 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
   2610                                                 SelectionDAG &DAG) const {
   2611   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
   2612 
   2613   SDValue Chain = DAG.getEntryNode();
   2614   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2615   SDLoc DL(Op);
   2616 
   2617   // Load the current TEB (thread environment block)
   2618   SDValue Ops[] = {Chain,
   2619                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
   2620                    DAG.getConstant(15, DL, MVT::i32),
   2621                    DAG.getConstant(0, DL, MVT::i32),
   2622                    DAG.getConstant(13, DL, MVT::i32),
   2623                    DAG.getConstant(0, DL, MVT::i32),
   2624                    DAG.getConstant(2, DL, MVT::i32)};
   2625   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
   2626                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
   2627 
   2628   SDValue TEB = CurrentTEB.getValue(0);
   2629   Chain = CurrentTEB.getValue(1);
   2630 
   2631   // Load the ThreadLocalStoragePointer from the TEB
   2632   // A pointer to the TLS array is located at offset 0x2c from the TEB.
   2633   SDValue TLSArray =
   2634       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
   2635   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo(),
   2636                          false, false, false, 0);
   2637 
   2638   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
   2639   // offset into the TLSArray.
   2640 
   2641   // Load the TLS index from the C runtime
   2642   SDValue TLSIndex =
   2643       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
   2644   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
   2645   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo(),
   2646                          false, false, false, 0);
   2647 
   2648   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
   2649                               DAG.getConstant(2, DL, MVT::i32));
   2650   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
   2651                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
   2652                             MachinePointerInfo(), false, false, false, 0);
   2653 
   2654   // Get the offset of the start of the .tls section (section base)
   2655   const auto *GA = cast<GlobalAddressSDNode>(Op);
   2656   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
   2657   SDValue Offset =
   2658       DAG.getLoad(PtrVT, DL, Chain,
   2659                   DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
   2660                               DAG.getTargetConstantPool(CPV, PtrVT, 4)),
   2661                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
   2662                   false, false, false, 0);
   2663 
   2664   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
   2665 }
   2666 
   2667 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   2668 SDValue
   2669 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   2670                                                  SelectionDAG &DAG) const {
   2671   SDLoc dl(GA);
   2672   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2673   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2674   MachineFunction &MF = DAG.getMachineFunction();
   2675   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2676   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2677   ARMConstantPoolValue *CPV =
   2678     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2679                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   2680   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2681   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   2682   Argument =
   2683       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
   2684                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
   2685                   false, false, false, 0);
   2686   SDValue Chain = Argument.getValue(1);
   2687 
   2688   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2689   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   2690 
   2691   // call __tls_get_addr.
   2692   ArgListTy Args;
   2693   ArgListEntry Entry;
   2694   Entry.Node = Argument;
   2695   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2696   Args.push_back(Entry);
   2697 
   2698   // FIXME: is there useful debug info available here?
   2699   TargetLowering::CallLoweringInfo CLI(DAG);
   2700   CLI.setDebugLoc(dl).setChain(Chain)
   2701     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
   2702                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
   2703 
   2704   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2705   return CallResult.first;
   2706 }
   2707 
   2708 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2709 // "local exec" model.
   2710 SDValue
   2711 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2712                                         SelectionDAG &DAG,
   2713                                         TLSModel::Model model) const {
   2714   const GlobalValue *GV = GA->getGlobal();
   2715   SDLoc dl(GA);
   2716   SDValue Offset;
   2717   SDValue Chain = DAG.getEntryNode();
   2718   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2719   // Get the Thread Pointer
   2720   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2721 
   2722   if (model == TLSModel::InitialExec) {
   2723     MachineFunction &MF = DAG.getMachineFunction();
   2724     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2725     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2726     // Initial exec model.
   2727     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2728     ARMConstantPoolValue *CPV =
   2729       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2730                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2731                                       true);
   2732     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2733     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2734     Offset = DAG.getLoad(
   2735         PtrVT, dl, Chain, Offset,
   2736         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2737         false, false, 0);
   2738     Chain = Offset.getValue(1);
   2739 
   2740     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2741     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2742 
   2743     Offset = DAG.getLoad(
   2744         PtrVT, dl, Chain, Offset,
   2745         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2746         false, false, 0);
   2747   } else {
   2748     // local exec model
   2749     assert(model == TLSModel::LocalExec);
   2750     ARMConstantPoolValue *CPV =
   2751       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2752     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2753     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2754     Offset = DAG.getLoad(
   2755         PtrVT, dl, Chain, Offset,
   2756         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2757         false, false, 0);
   2758   }
   2759 
   2760   // The address of the thread local variable is the add of the thread
   2761   // pointer with the offset of the variable.
   2762   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   2763 }
   2764 
   2765 SDValue
   2766 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   2767   if (Subtarget->isTargetDarwin())
   2768     return LowerGlobalTLSAddressDarwin(Op, DAG);
   2769 
   2770   if (Subtarget->isTargetWindows())
   2771     return LowerGlobalTLSAddressWindows(Op, DAG);
   2772 
   2773   // TODO: implement the "local dynamic" model
   2774   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
   2775   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2776   if (DAG.getTarget().Options.EmulatedTLS)
   2777     return LowerToTLSEmulatedModel(GA, DAG);
   2778 
   2779   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
   2780 
   2781   switch (model) {
   2782     case TLSModel::GeneralDynamic:
   2783     case TLSModel::LocalDynamic:
   2784       return LowerToTLSGeneralDynamicModel(GA, DAG);
   2785     case TLSModel::InitialExec:
   2786     case TLSModel::LocalExec:
   2787       return LowerToTLSExecModels(GA, DAG, model);
   2788   }
   2789   llvm_unreachable("bogus TLS model");
   2790 }
   2791 
   2792 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   2793                                                  SelectionDAG &DAG) const {
   2794   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2795   SDLoc dl(Op);
   2796   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2797   const TargetMachine &TM = getTargetMachine();
   2798   if (isPositionIndependent()) {
   2799     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
   2800 
   2801     MachineFunction &MF = DAG.getMachineFunction();
   2802     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2803     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2804     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2805     SDLoc dl(Op);
   2806     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2807     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
   2808         GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
   2809         UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
   2810         /*AddCurrentAddress=*/UseGOT_PREL);
   2811     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2812     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2813     SDValue Result = DAG.getLoad(
   2814         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2815         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2816         false, false, 0);
   2817     SDValue Chain = Result.getValue(1);
   2818     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2819     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2820     if (UseGOT_PREL)
   2821       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
   2822                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2823                            false, false, false, 0);
   2824     return Result;
   2825   }
   2826 
   2827   // If we have T2 ops, we can materialize the address directly via movt/movw
   2828   // pair. This is always cheaper.
   2829   if (Subtarget->useMovt(DAG.getMachineFunction())) {
   2830     ++NumMovwMovt;
   2831     // FIXME: Once remat is capable of dealing with instructions with register
   2832     // operands, expand this into two nodes.
   2833     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2834                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2835   } else {
   2836     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2837     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2838     return DAG.getLoad(
   2839         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2840         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2841         false, false, 0);
   2842   }
   2843 }
   2844 
   2845 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   2846                                                     SelectionDAG &DAG) const {
   2847   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2848   SDLoc dl(Op);
   2849   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2850 
   2851   if (Subtarget->useMovt(DAG.getMachineFunction()))
   2852     ++NumMovwMovt;
   2853 
   2854   // FIXME: Once remat is capable of dealing with instructions with register
   2855   // operands, expand this into multiple nodes
   2856   unsigned Wrapper =
   2857       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
   2858 
   2859   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
   2860   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
   2861 
   2862   if (Subtarget->isGVIndirectSymbol(GV))
   2863     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   2864                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2865                          false, false, false, 0);
   2866   return Result;
   2867 }
   2868 
   2869 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
   2870                                                      SelectionDAG &DAG) const {
   2871   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
   2872   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
   2873          "Windows on ARM expects to use movw/movt");
   2874 
   2875   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2876   const ARMII::TOF TargetFlags =
   2877     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
   2878   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2879   SDValue Result;
   2880   SDLoc DL(Op);
   2881 
   2882   ++NumMovwMovt;
   2883 
   2884   // FIXME: Once remat is capable of dealing with instructions with register
   2885   // operands, expand this into two nodes.
   2886   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
   2887                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
   2888                                                   TargetFlags));
   2889   if (GV->hasDLLImportStorageClass())
   2890     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   2891                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2892                          false, false, false, 0);
   2893   return Result;
   2894 }
   2895 
   2896 SDValue
   2897 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   2898   SDLoc dl(Op);
   2899   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
   2900   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   2901                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   2902                      Op.getOperand(1), Val);
   2903 }
   2904 
   2905 SDValue
   2906 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   2907   SDLoc dl(Op);
   2908   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   2909                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
   2910 }
   2911 
   2912 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
   2913                                                       SelectionDAG &DAG) const {
   2914   SDLoc dl(Op);
   2915   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
   2916                      Op.getOperand(0));
   2917 }
   2918 
   2919 SDValue
   2920 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   2921                                           const ARMSubtarget *Subtarget) const {
   2922   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2923   SDLoc dl(Op);
   2924   switch (IntNo) {
   2925   default: return SDValue();    // Don't custom lower most intrinsics.
   2926   case Intrinsic::arm_rbit: {
   2927     assert(Op.getOperand(1).getValueType() == MVT::i32 &&
   2928            "RBIT intrinsic must have i32 type!");
   2929     return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
   2930   }
   2931   case Intrinsic::thread_pointer: {
   2932     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2933     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2934   }
   2935   case Intrinsic::eh_sjlj_lsda: {
   2936     MachineFunction &MF = DAG.getMachineFunction();
   2937     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2938     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2939     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2940     SDValue CPAddr;
   2941     bool IsPositionIndependent = isPositionIndependent();
   2942     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
   2943     ARMConstantPoolValue *CPV =
   2944       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
   2945                                       ARMCP::CPLSDA, PCAdj);
   2946     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2947     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2948     SDValue Result = DAG.getLoad(
   2949         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2950         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2951         false, false, 0);
   2952 
   2953     if (IsPositionIndependent) {
   2954       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2955       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2956     }
   2957     return Result;
   2958   }
   2959   case Intrinsic::arm_neon_vmulls:
   2960   case Intrinsic::arm_neon_vmullu: {
   2961     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   2962       ? ARMISD::VMULLs : ARMISD::VMULLu;
   2963     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2964                        Op.getOperand(1), Op.getOperand(2));
   2965   }
   2966   case Intrinsic::arm_neon_vminnm:
   2967   case Intrinsic::arm_neon_vmaxnm: {
   2968     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
   2969       ? ISD::FMINNUM : ISD::FMAXNUM;
   2970     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2971                        Op.getOperand(1), Op.getOperand(2));
   2972   }
   2973   case Intrinsic::arm_neon_vminu:
   2974   case Intrinsic::arm_neon_vmaxu: {
   2975     if (Op.getValueType().isFloatingPoint())
   2976       return SDValue();
   2977     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
   2978       ? ISD::UMIN : ISD::UMAX;
   2979     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2980                          Op.getOperand(1), Op.getOperand(2));
   2981   }
   2982   case Intrinsic::arm_neon_vmins:
   2983   case Intrinsic::arm_neon_vmaxs: {
   2984     // v{min,max}s is overloaded between signed integers and floats.
   2985     if (!Op.getValueType().isFloatingPoint()) {
   2986       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
   2987         ? ISD::SMIN : ISD::SMAX;
   2988       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2989                          Op.getOperand(1), Op.getOperand(2));
   2990     }
   2991     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
   2992       ? ISD::FMINNAN : ISD::FMAXNAN;
   2993     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2994                        Op.getOperand(1), Op.getOperand(2));
   2995   }
   2996   }
   2997 }
   2998 
   2999 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   3000                                  const ARMSubtarget *Subtarget) {
   3001   // FIXME: handle "fence singlethread" more efficiently.
   3002   SDLoc dl(Op);
   3003   if (!Subtarget->hasDataBarrier()) {
   3004     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   3005     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   3006     // here.
   3007     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   3008            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
   3009     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   3010                        DAG.getConstant(0, dl, MVT::i32));
   3011   }
   3012 
   3013   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
   3014   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
   3015   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
   3016   if (Subtarget->isMClass()) {
   3017     // Only a full system barrier exists in the M-class architectures.
   3018     Domain = ARM_MB::SY;
   3019   } else if (Subtarget->preferISHSTBarriers() &&
   3020              Ord == AtomicOrdering::Release) {
   3021     // Swift happens to implement ISHST barriers in a way that's compatible with
   3022     // Release semantics but weaker than ISH so we'd be fools not to use
   3023     // it. Beware: other processors probably don't!
   3024     Domain = ARM_MB::ISHST;
   3025   }
   3026 
   3027   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
   3028                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
   3029                      DAG.getConstant(Domain, dl, MVT::i32));
   3030 }
   3031 
   3032 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   3033                              const ARMSubtarget *Subtarget) {
   3034   // ARM pre v5TE and Thumb1 does not have preload instructions.
   3035   if (!(Subtarget->isThumb2() ||
   3036         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   3037     // Just preserve the chain.
   3038     return Op.getOperand(0);
   3039 
   3040   SDLoc dl(Op);
   3041   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   3042   if (!isRead &&
   3043       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   3044     // ARMv7 with MP extension has PLDW.
   3045     return Op.getOperand(0);
   3046 
   3047   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   3048   if (Subtarget->isThumb()) {
   3049     // Invert the bits.
   3050     isRead = ~isRead & 1;
   3051     isData = ~isData & 1;
   3052   }
   3053 
   3054   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   3055                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
   3056                      DAG.getConstant(isData, dl, MVT::i32));
   3057 }
   3058 
   3059 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   3060   MachineFunction &MF = DAG.getMachineFunction();
   3061   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   3062 
   3063   // vastart just stores the address of the VarArgsFrameIndex slot into the
   3064   // memory location argument.
   3065   SDLoc dl(Op);
   3066   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   3067   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3068   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   3069   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   3070                       MachinePointerInfo(SV), false, false, 0);
   3071 }
   3072 
   3073 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
   3074                                                 CCValAssign &NextVA,
   3075                                                 SDValue &Root,
   3076                                                 SelectionDAG &DAG,
   3077                                                 const SDLoc &dl) const {
   3078   MachineFunction &MF = DAG.getMachineFunction();
   3079   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3080 
   3081   const TargetRegisterClass *RC;
   3082   if (AFI->isThumb1OnlyFunction())
   3083     RC = &ARM::tGPRRegClass;
   3084   else
   3085     RC = &ARM::GPRRegClass;
   3086 
   3087   // Transform the arguments stored in physical registers into virtual ones.
   3088   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3089   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   3090 
   3091   SDValue ArgValue2;
   3092   if (NextVA.isMemLoc()) {
   3093     MachineFrameInfo *MFI = MF.getFrameInfo();
   3094     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   3095 
   3096     // Create load node to retrieve arguments from the stack.
   3097     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   3098     ArgValue2 = DAG.getLoad(
   3099         MVT::i32, dl, Root, FIN,
   3100         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
   3101         false, false, 0);
   3102   } else {
   3103     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   3104     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   3105   }
   3106   if (!Subtarget->isLittle())
   3107     std::swap (ArgValue, ArgValue2);
   3108   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   3109 }
   3110 
   3111 // The remaining GPRs hold either the beginning of variable-argument
   3112 // data, or the beginning of an aggregate passed by value (usually
   3113 // byval).  Either way, we allocate stack slots adjacent to the data
   3114 // provided by our caller, and store the unallocated registers there.
   3115 // If this is a variadic function, the va_list pointer will begin with
   3116 // these values; otherwise, this reassembles a (byval) structure that
   3117 // was split between registers and memory.
   3118 // Return: The frame index registers were stored into.
   3119 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
   3120                                       const SDLoc &dl, SDValue &Chain,
   3121                                       const Value *OrigArg,
   3122                                       unsigned InRegsParamRecordIdx,
   3123                                       int ArgOffset, unsigned ArgSize) const {
   3124   // Currently, two use-cases possible:
   3125   // Case #1. Non-var-args function, and we meet first byval parameter.
   3126   //          Setup first unallocated register as first byval register;
   3127   //          eat all remained registers
   3128   //          (these two actions are performed by HandleByVal method).
   3129   //          Then, here, we initialize stack frame with
   3130   //          "store-reg" instructions.
   3131   // Case #2. Var-args function, that doesn't contain byval parameters.
   3132   //          The same: eat all remained unallocated registers,
   3133   //          initialize stack frame.
   3134 
   3135   MachineFunction &MF = DAG.getMachineFunction();
   3136   MachineFrameInfo *MFI = MF.getFrameInfo();
   3137   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3138   unsigned RBegin, REnd;
   3139   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
   3140     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
   3141   } else {
   3142     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   3143     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
   3144     REnd = ARM::R4;
   3145   }
   3146 
   3147   if (REnd != RBegin)
   3148     ArgOffset = -4 * (ARM::R4 - RBegin);
   3149 
   3150   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3151   int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
   3152   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
   3153 
   3154   SmallVector<SDValue, 4> MemOps;
   3155   const TargetRegisterClass *RC =
   3156       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   3157 
   3158   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
   3159     unsigned VReg = MF.addLiveIn(Reg, RC);
   3160     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   3161     SDValue Store =
   3162         DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3163                      MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
   3164     MemOps.push_back(Store);
   3165     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
   3166   }
   3167 
   3168   if (!MemOps.empty())
   3169     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3170   return FrameIndex;
   3171 }
   3172 
   3173 // Setup stack frame, the va_list pointer will start from.
   3174 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   3175                                              const SDLoc &dl, SDValue &Chain,
   3176                                              unsigned ArgOffset,
   3177                                              unsigned TotalArgRegsSaveSize,
   3178                                              bool ForceMutable) const {
   3179   MachineFunction &MF = DAG.getMachineFunction();
   3180   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3181 
   3182   // Try to store any remaining integer argument regs
   3183   // to their spots on the stack so that they may be loaded by dereferencing
   3184   // the result of va_next.
   3185   // If there is no regs to be stored, just point address after last
   3186   // argument passed via stack.
   3187   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
   3188                                   CCInfo.getInRegsParamsCount(),
   3189                                   CCInfo.getNextStackOffset(), 4);
   3190   AFI->setVarArgsFrameIndex(FrameIndex);
   3191 }
   3192 
   3193 SDValue ARMTargetLowering::LowerFormalArguments(
   3194     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   3195     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   3196     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3197   MachineFunction &MF = DAG.getMachineFunction();
   3198   MachineFrameInfo *MFI = MF.getFrameInfo();
   3199 
   3200   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3201 
   3202   // Assign locations to all of the incoming arguments.
   3203   SmallVector<CCValAssign, 16> ArgLocs;
   3204   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   3205                     *DAG.getContext(), Prologue);
   3206   CCInfo.AnalyzeFormalArguments(Ins,
   3207                                 CCAssignFnForNode(CallConv, /* Return*/ false,
   3208                                                   isVarArg));
   3209 
   3210   SmallVector<SDValue, 16> ArgValues;
   3211   SDValue ArgValue;
   3212   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
   3213   unsigned CurArgIdx = 0;
   3214 
   3215   // Initially ArgRegsSaveSize is zero.
   3216   // Then we increase this value each time we meet byval parameter.
   3217   // We also increase this value in case of varargs function.
   3218   AFI->setArgRegsSaveSize(0);
   3219 
   3220   // Calculate the amount of stack space that we need to allocate to store
   3221   // byval and variadic arguments that are passed in registers.
   3222   // We need to know this before we allocate the first byval or variadic
   3223   // argument, as they will be allocated a stack slot below the CFA (Canonical
   3224   // Frame Address, the stack pointer at entry to the function).
   3225   unsigned ArgRegBegin = ARM::R4;
   3226   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3227     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
   3228       break;
   3229 
   3230     CCValAssign &VA = ArgLocs[i];
   3231     unsigned Index = VA.getValNo();
   3232     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
   3233     if (!Flags.isByVal())
   3234       continue;
   3235 
   3236     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
   3237     unsigned RBegin, REnd;
   3238     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
   3239     ArgRegBegin = std::min(ArgRegBegin, RBegin);
   3240 
   3241     CCInfo.nextInRegsParam();
   3242   }
   3243   CCInfo.rewindByValRegsInfo();
   3244 
   3245   int lastInsIndex = -1;
   3246   if (isVarArg && MFI->hasVAStart()) {
   3247     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   3248     if (RegIdx != array_lengthof(GPRArgRegs))
   3249       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
   3250   }
   3251 
   3252   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
   3253   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
   3254   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3255 
   3256   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3257     CCValAssign &VA = ArgLocs[i];
   3258     if (Ins[VA.getValNo()].isOrigArg()) {
   3259       std::advance(CurOrigArg,
   3260                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
   3261       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
   3262     }
   3263     // Arguments stored in registers.
   3264     if (VA.isRegLoc()) {
   3265       EVT RegVT = VA.getLocVT();
   3266 
   3267       if (VA.needsCustom()) {
   3268         // f64 and vector types are split up into multiple registers or
   3269         // combinations of registers and stack slots.
   3270         if (VA.getLocVT() == MVT::v2f64) {
   3271           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   3272                                                    Chain, DAG, dl);
   3273           VA = ArgLocs[++i]; // skip ahead to next loc
   3274           SDValue ArgValue2;
   3275           if (VA.isMemLoc()) {
   3276             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
   3277             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3278             ArgValue2 = DAG.getLoad(
   3279                 MVT::f64, dl, Chain, FIN,
   3280                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
   3281                 false, false, false, 0);
   3282           } else {
   3283             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   3284                                              Chain, DAG, dl);
   3285           }
   3286           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   3287           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3288                                  ArgValue, ArgValue1,
   3289                                  DAG.getIntPtrConstant(0, dl));
   3290           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3291                                  ArgValue, ArgValue2,
   3292                                  DAG.getIntPtrConstant(1, dl));
   3293         } else
   3294           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   3295 
   3296       } else {
   3297         const TargetRegisterClass *RC;
   3298 
   3299         if (RegVT == MVT::f32)
   3300           RC = &ARM::SPRRegClass;
   3301         else if (RegVT == MVT::f64)
   3302           RC = &ARM::DPRRegClass;
   3303         else if (RegVT == MVT::v2f64)
   3304           RC = &ARM::QPRRegClass;
   3305         else if (RegVT == MVT::i32)
   3306           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
   3307                                            : &ARM::GPRRegClass;
   3308         else
   3309           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   3310 
   3311         // Transform the arguments in physical registers into virtual ones.
   3312         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3313         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   3314       }
   3315 
   3316       // If this is an 8 or 16-bit value, it is really passed promoted
   3317       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   3318       // truncate to the right size.
   3319       switch (VA.getLocInfo()) {
   3320       default: llvm_unreachable("Unknown loc info!");
   3321       case CCValAssign::Full: break;
   3322       case CCValAssign::BCvt:
   3323         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   3324         break;
   3325       case CCValAssign::SExt:
   3326         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   3327                                DAG.getValueType(VA.getValVT()));
   3328         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3329         break;
   3330       case CCValAssign::ZExt:
   3331         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   3332                                DAG.getValueType(VA.getValVT()));
   3333         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3334         break;
   3335       }
   3336 
   3337       InVals.push_back(ArgValue);
   3338 
   3339     } else { // VA.isRegLoc()
   3340 
   3341       // sanity check
   3342       assert(VA.isMemLoc());
   3343       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   3344 
   3345       int index = VA.getValNo();
   3346 
   3347       // Some Ins[] entries become multiple ArgLoc[] entries.
   3348       // Process them only once.
   3349       if (index != lastInsIndex)
   3350         {
   3351           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   3352           // FIXME: For now, all byval parameter objects are marked mutable.
   3353           // This can be changed with more analysis.
   3354           // In case of tail call optimization mark all arguments mutable.
   3355           // Since they could be overwritten by lowering of arguments in case of
   3356           // a tail call.
   3357           if (Flags.isByVal()) {
   3358             assert(Ins[index].isOrigArg() &&
   3359                    "Byval arguments cannot be implicit");
   3360             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
   3361 
   3362             int FrameIndex = StoreByValRegs(
   3363                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
   3364                 VA.getLocMemOffset(), Flags.getByValSize());
   3365             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
   3366             CCInfo.nextInRegsParam();
   3367           } else {
   3368             unsigned FIOffset = VA.getLocMemOffset();
   3369             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   3370                                             FIOffset, true);
   3371 
   3372             // Create load nodes to retrieve arguments from the stack.
   3373             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3374             InVals.push_back(DAG.getLoad(
   3375                 VA.getValVT(), dl, Chain, FIN,
   3376                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
   3377                 false, false, false, 0));
   3378           }
   3379           lastInsIndex = index;
   3380         }
   3381     }
   3382   }
   3383 
   3384   // varargs
   3385   if (isVarArg && MFI->hasVAStart())
   3386     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
   3387                          CCInfo.getNextStackOffset(),
   3388                          TotalArgRegsSaveSize);
   3389 
   3390   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
   3391 
   3392   return Chain;
   3393 }
   3394 
   3395 /// isFloatingPointZero - Return true if this is +0.0.
   3396 static bool isFloatingPointZero(SDValue Op) {
   3397   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   3398     return CFP->getValueAPF().isPosZero();
   3399   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   3400     // Maybe this has already been legalized into the constant pool?
   3401     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   3402       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   3403       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   3404         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   3405           return CFP->getValueAPF().isPosZero();
   3406     }
   3407   } else if (Op->getOpcode() == ISD::BITCAST &&
   3408              Op->getValueType(0) == MVT::f64) {
   3409     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
   3410     // created by LowerConstantFP().
   3411     SDValue BitcastOp = Op->getOperand(0);
   3412     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
   3413         isNullConstant(BitcastOp->getOperand(0)))
   3414       return true;
   3415   }
   3416   return false;
   3417 }
   3418 
   3419 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   3420 /// the given operands.
   3421 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   3422                                      SDValue &ARMcc, SelectionDAG &DAG,
   3423                                      const SDLoc &dl) const {
   3424   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   3425     unsigned C = RHSC->getZExtValue();
   3426     if (!isLegalICmpImmediate(C)) {
   3427       // Constant does not fit, try adjusting it by one?
   3428       switch (CC) {
   3429       default: break;
   3430       case ISD::SETLT:
   3431       case ISD::SETGE:
   3432         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   3433           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   3434           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
   3435         }
   3436         break;
   3437       case ISD::SETULT:
   3438       case ISD::SETUGE:
   3439         if (C != 0 && isLegalICmpImmediate(C-1)) {
   3440           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   3441           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
   3442         }
   3443         break;
   3444       case ISD::SETLE:
   3445       case ISD::SETGT:
   3446         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   3447           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   3448           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
   3449         }
   3450         break;
   3451       case ISD::SETULE:
   3452       case ISD::SETUGT:
   3453         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   3454           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   3455           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
   3456         }
   3457         break;
   3458       }
   3459     }
   3460   }
   3461 
   3462   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3463   ARMISD::NodeType CompareType;
   3464   switch (CondCode) {
   3465   default:
   3466     CompareType = ARMISD::CMP;
   3467     break;
   3468   case ARMCC::EQ:
   3469   case ARMCC::NE:
   3470     // Uses only Z Flag
   3471     CompareType = ARMISD::CMPZ;
   3472     break;
   3473   }
   3474   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   3475   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   3476 }
   3477 
   3478 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   3479 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
   3480                                      SelectionDAG &DAG, const SDLoc &dl) const {
   3481   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
   3482   SDValue Cmp;
   3483   if (!isFloatingPointZero(RHS))
   3484     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
   3485   else
   3486     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
   3487   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   3488 }
   3489 
   3490 /// duplicateCmp - Glue values can have only one use, so this function
   3491 /// duplicates a comparison node.
   3492 SDValue
   3493 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   3494   unsigned Opc = Cmp.getOpcode();
   3495   SDLoc DL(Cmp);
   3496   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   3497     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3498 
   3499   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   3500   Cmp = Cmp.getOperand(0);
   3501   Opc = Cmp.getOpcode();
   3502   if (Opc == ARMISD::CMPFP)
   3503     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3504   else {
   3505     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   3506     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
   3507   }
   3508   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   3509 }
   3510 
   3511 std::pair<SDValue, SDValue>
   3512 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
   3513                                  SDValue &ARMcc) const {
   3514   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
   3515 
   3516   SDValue Value, OverflowCmp;
   3517   SDValue LHS = Op.getOperand(0);
   3518   SDValue RHS = Op.getOperand(1);
   3519   SDLoc dl(Op);
   3520 
   3521   // FIXME: We are currently always generating CMPs because we don't support
   3522   // generating CMN through the backend. This is not as good as the natural
   3523   // CMP case because it causes a register dependency and cannot be folded
   3524   // later.
   3525 
   3526   switch (Op.getOpcode()) {
   3527   default:
   3528     llvm_unreachable("Unknown overflow instruction!");
   3529   case ISD::SADDO:
   3530     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
   3531     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
   3532     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
   3533     break;
   3534   case ISD::UADDO:
   3535     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
   3536     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
   3537     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
   3538     break;
   3539   case ISD::SSUBO:
   3540     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
   3541     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
   3542     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
   3543     break;
   3544   case ISD::USUBO:
   3545     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
   3546     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
   3547     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
   3548     break;
   3549   } // switch (...)
   3550 
   3551   return std::make_pair(Value, OverflowCmp);
   3552 }
   3553 
   3554 
   3555 SDValue
   3556 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   3557   // Let legalize expand this if it isn't a legal type yet.
   3558   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
   3559     return SDValue();
   3560 
   3561   SDValue Value, OverflowCmp;
   3562   SDValue ARMcc;
   3563   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
   3564   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3565   SDLoc dl(Op);
   3566   // We use 0 and 1 as false and true values.
   3567   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
   3568   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
   3569   EVT VT = Op.getValueType();
   3570 
   3571   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
   3572                                  ARMcc, CCR, OverflowCmp);
   3573 
   3574   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   3575   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
   3576 }
   3577 
   3578 
   3579 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   3580   SDValue Cond = Op.getOperand(0);
   3581   SDValue SelectTrue = Op.getOperand(1);
   3582   SDValue SelectFalse = Op.getOperand(2);
   3583   SDLoc dl(Op);
   3584   unsigned Opc = Cond.getOpcode();
   3585 
   3586   if (Cond.getResNo() == 1 &&
   3587       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   3588        Opc == ISD::USUBO)) {
   3589     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
   3590       return SDValue();
   3591 
   3592     SDValue Value, OverflowCmp;
   3593     SDValue ARMcc;
   3594     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
   3595     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3596     EVT VT = Op.getValueType();
   3597 
   3598     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
   3599                    OverflowCmp, DAG);
   3600   }
   3601 
   3602   // Convert:
   3603   //
   3604   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   3605   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   3606   //
   3607   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   3608     const ConstantSDNode *CMOVTrue =
   3609       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   3610     const ConstantSDNode *CMOVFalse =
   3611       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   3612 
   3613     if (CMOVTrue && CMOVFalse) {
   3614       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   3615       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   3616 
   3617       SDValue True;
   3618       SDValue False;
   3619       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   3620         True = SelectTrue;
   3621         False = SelectFalse;
   3622       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   3623         True = SelectFalse;
   3624         False = SelectTrue;
   3625       }
   3626 
   3627       if (True.getNode() && False.getNode()) {
   3628         EVT VT = Op.getValueType();
   3629         SDValue ARMcc = Cond.getOperand(2);
   3630         SDValue CCR = Cond.getOperand(3);
   3631         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   3632         assert(True.getValueType() == VT);
   3633         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
   3634       }
   3635     }
   3636   }
   3637 
   3638   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
   3639   // undefined bits before doing a full-word comparison with zero.
   3640   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
   3641                      DAG.getConstant(1, dl, Cond.getValueType()));
   3642 
   3643   return DAG.getSelectCC(dl, Cond,
   3644                          DAG.getConstant(0, dl, Cond.getValueType()),
   3645                          SelectTrue, SelectFalse, ISD::SETNE);
   3646 }
   3647 
   3648 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   3649                                  bool &swpCmpOps, bool &swpVselOps) {
   3650   // Start by selecting the GE condition code for opcodes that return true for
   3651   // 'equality'
   3652   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
   3653       CC == ISD::SETULE)
   3654     CondCode = ARMCC::GE;
   3655 
   3656   // and GT for opcodes that return false for 'equality'.
   3657   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
   3658            CC == ISD::SETULT)
   3659     CondCode = ARMCC::GT;
   3660 
   3661   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
   3662   // to swap the compare operands.
   3663   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
   3664       CC == ISD::SETULT)
   3665     swpCmpOps = true;
   3666 
   3667   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
   3668   // If we have an unordered opcode, we need to swap the operands to the VSEL
   3669   // instruction (effectively negating the condition).
   3670   //
   3671   // This also has the effect of swapping which one of 'less' or 'greater'
   3672   // returns true, so we also swap the compare operands. It also switches
   3673   // whether we return true for 'equality', so we compensate by picking the
   3674   // opposite condition code to our original choice.
   3675   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
   3676       CC == ISD::SETUGT) {
   3677     swpCmpOps = !swpCmpOps;
   3678     swpVselOps = !swpVselOps;
   3679     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
   3680   }
   3681 
   3682   // 'ordered' is 'anything but unordered', so use the VS condition code and
   3683   // swap the VSEL operands.
   3684   if (CC == ISD::SETO) {
   3685     CondCode = ARMCC::VS;
   3686     swpVselOps = true;
   3687   }
   3688 
   3689   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
   3690   // code and swap the VSEL operands.
   3691   if (CC == ISD::SETUNE) {
   3692     CondCode = ARMCC::EQ;
   3693     swpVselOps = true;
   3694   }
   3695 }
   3696 
   3697 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
   3698                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
   3699                                    SDValue Cmp, SelectionDAG &DAG) const {
   3700   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
   3701     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   3702                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
   3703     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   3704                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
   3705 
   3706     SDValue TrueLow = TrueVal.getValue(0);
   3707     SDValue TrueHigh = TrueVal.getValue(1);
   3708     SDValue FalseLow = FalseVal.getValue(0);
   3709     SDValue FalseHigh = FalseVal.getValue(1);
   3710 
   3711     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
   3712                               ARMcc, CCR, Cmp);
   3713     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
   3714                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
   3715 
   3716     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
   3717   } else {
   3718     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
   3719                        Cmp);
   3720   }
   3721 }
   3722 
   3723 static bool isGTorGE(ISD::CondCode CC) {
   3724   return CC == ISD::SETGT || CC == ISD::SETGE;
   3725 }
   3726 
   3727 static bool isLTorLE(ISD::CondCode CC) {
   3728   return CC == ISD::SETLT || CC == ISD::SETLE;
   3729 }
   3730 
   3731 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
   3732 // All of these conditions (and their <= and >= counterparts) will do:
   3733 //          x < k ? k : x
   3734 //          x > k ? x : k
   3735 //          k < x ? x : k
   3736 //          k > x ? k : x
   3737 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
   3738                             const SDValue TrueVal, const SDValue FalseVal,
   3739                             const ISD::CondCode CC, const SDValue K) {
   3740   return (isGTorGE(CC) &&
   3741           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
   3742          (isLTorLE(CC) &&
   3743           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
   3744 }
   3745 
   3746 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
   3747 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
   3748                             const SDValue TrueVal, const SDValue FalseVal,
   3749                             const ISD::CondCode CC, const SDValue K) {
   3750   return (isGTorGE(CC) &&
   3751           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
   3752          (isLTorLE(CC) &&
   3753           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
   3754 }
   3755 
   3756 // Check if two chained conditionals could be converted into SSAT.
   3757 //
   3758 // SSAT can replace a set of two conditional selectors that bound a number to an
   3759 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
   3760 //
   3761 //     x < -k ? -k : (x > k ? k : x)
   3762 //     x < -k ? -k : (x < k ? x : k)
   3763 //     x > -k ? (x > k ? k : x) : -k
   3764 //     x < k ? (x < -k ? -k : x) : k
   3765 //     etc.
   3766 //
   3767 // It returns true if the conversion can be done, false otherwise.
   3768 // Additionally, the variable is returned in parameter V and the constant in K.
   3769 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
   3770                                     uint64_t &K) {
   3771 
   3772   SDValue LHS1 = Op.getOperand(0);
   3773   SDValue RHS1 = Op.getOperand(1);
   3774   SDValue TrueVal1 = Op.getOperand(2);
   3775   SDValue FalseVal1 = Op.getOperand(3);
   3776   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   3777 
   3778   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
   3779   if (Op2.getOpcode() != ISD::SELECT_CC)
   3780     return false;
   3781 
   3782   SDValue LHS2 = Op2.getOperand(0);
   3783   SDValue RHS2 = Op2.getOperand(1);
   3784   SDValue TrueVal2 = Op2.getOperand(2);
   3785   SDValue FalseVal2 = Op2.getOperand(3);
   3786   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
   3787 
   3788   // Find out which are the constants and which are the variables
   3789   // in each conditional
   3790   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
   3791                                                         ? &RHS1
   3792                                                         : NULL;
   3793   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
   3794                                                         ? &RHS2
   3795                                                         : NULL;
   3796   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
   3797   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
   3798   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
   3799   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
   3800 
   3801   // We must detect cases where the original operations worked with 16- or
   3802   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
   3803   // must work with sign-extended values but the select operations return
   3804   // the original non-extended value.
   3805   SDValue V2TmpReg = V2Tmp;
   3806   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
   3807     V2TmpReg = V2Tmp->getOperand(0);
   3808 
   3809   // Check that the registers and the constants have the correct values
   3810   // in both conditionals
   3811   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
   3812       V2TmpReg != V2)
   3813     return false;
   3814 
   3815   // Figure out which conditional is saturating the lower/upper bound.
   3816   const SDValue *LowerCheckOp =
   3817       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
   3818           ? &Op
   3819           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
   3820                                                                        : NULL;
   3821   const SDValue *UpperCheckOp =
   3822       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
   3823           ? &Op
   3824           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
   3825                                                                        : NULL;
   3826 
   3827   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
   3828     return false;
   3829 
   3830   // Check that the constant in the lower-bound check is
   3831   // the opposite of the constant in the upper-bound check
   3832   // in 1's complement.
   3833   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
   3834   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
   3835   int64_t PosVal = std::max(Val1, Val2);
   3836 
   3837   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
   3838        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
   3839       Val1 == ~Val2 && isPowerOf2_64(PosVal + 1)) {
   3840 
   3841     V = V2;
   3842     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
   3843     return true;
   3844   }
   3845 
   3846   return false;
   3847 }
   3848 
   3849 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   3850 
   3851   EVT VT = Op.getValueType();
   3852   SDLoc dl(Op);
   3853 
   3854   // Try to convert two saturating conditional selects into a single SSAT
   3855   SDValue SatValue;
   3856   uint64_t SatConstant;
   3857   if (isSaturatingConditional(Op, SatValue, SatConstant))
   3858     return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
   3859                        DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
   3860 
   3861   SDValue LHS = Op.getOperand(0);
   3862   SDValue RHS = Op.getOperand(1);
   3863   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   3864   SDValue TrueVal = Op.getOperand(2);
   3865   SDValue FalseVal = Op.getOperand(3);
   3866 
   3867   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   3868     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   3869                                                     dl);
   3870 
   3871     // If softenSetCCOperands only returned one value, we should compare it to
   3872     // zero.
   3873     if (!RHS.getNode()) {
   3874       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   3875       CC = ISD::SETNE;
   3876     }
   3877   }
   3878 
   3879   if (LHS.getValueType() == MVT::i32) {
   3880     // Try to generate VSEL on ARMv8.
   3881     // The VSEL instruction can't use all the usual ARM condition
   3882     // codes: it only has two bits to select the condition code, so it's
   3883     // constrained to use only GE, GT, VS and EQ.
   3884     //
   3885     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
   3886     // swap the operands of the previous compare instruction (effectively
   3887     // inverting the compare condition, swapping 'less' and 'greater') and
   3888     // sometimes need to swap the operands to the VSEL (which inverts the
   3889     // condition in the sense of firing whenever the previous condition didn't)
   3890     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3891                                     TrueVal.getValueType() == MVT::f64)) {
   3892       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3893       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
   3894           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
   3895         CC = ISD::getSetCCInverse(CC, true);
   3896         std::swap(TrueVal, FalseVal);
   3897       }
   3898     }
   3899 
   3900     SDValue ARMcc;
   3901     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3902     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3903     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   3904   }
   3905 
   3906   ARMCC::CondCodes CondCode, CondCode2;
   3907   FPCCToARMCC(CC, CondCode, CondCode2);
   3908 
   3909   // Try to generate VMAXNM/VMINNM on ARMv8.
   3910   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3911                                   TrueVal.getValueType() == MVT::f64)) {
   3912     bool swpCmpOps = false;
   3913     bool swpVselOps = false;
   3914     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
   3915 
   3916     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
   3917         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
   3918       if (swpCmpOps)
   3919         std::swap(LHS, RHS);
   3920       if (swpVselOps)
   3921         std::swap(TrueVal, FalseVal);
   3922     }
   3923   }
   3924 
   3925   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   3926   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3927   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3928   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   3929   if (CondCode2 != ARMCC::AL) {
   3930     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
   3931     // FIXME: Needs another CMP because flag can have but one use.
   3932     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
   3933     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
   3934   }
   3935   return Result;
   3936 }
   3937 
   3938 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   3939 /// to morph to an integer compare sequence.
   3940 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   3941                            const ARMSubtarget *Subtarget) {
   3942   SDNode *N = Op.getNode();
   3943   if (!N->hasOneUse())
   3944     // Otherwise it requires moving the value from fp to integer registers.
   3945     return false;
   3946   if (!N->getNumValues())
   3947     return false;
   3948   EVT VT = Op.getValueType();
   3949   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   3950     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   3951     // vmrs are very slow, e.g. cortex-a8.
   3952     return false;
   3953 
   3954   if (isFloatingPointZero(Op)) {
   3955     SeenZero = true;
   3956     return true;
   3957   }
   3958   return ISD::isNormalLoad(N);
   3959 }
   3960 
   3961 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   3962   if (isFloatingPointZero(Op))
   3963     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
   3964 
   3965   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   3966     return DAG.getLoad(MVT::i32, SDLoc(Op),
   3967                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
   3968                        Ld->isVolatile(), Ld->isNonTemporal(),
   3969                        Ld->isInvariant(), Ld->getAlignment());
   3970 
   3971   llvm_unreachable("Unknown VFP cmp argument!");
   3972 }
   3973 
   3974 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   3975                            SDValue &RetVal1, SDValue &RetVal2) {
   3976   SDLoc dl(Op);
   3977 
   3978   if (isFloatingPointZero(Op)) {
   3979     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
   3980     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
   3981     return;
   3982   }
   3983 
   3984   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   3985     SDValue Ptr = Ld->getBasePtr();
   3986     RetVal1 = DAG.getLoad(MVT::i32, dl,
   3987                           Ld->getChain(), Ptr,
   3988                           Ld->getPointerInfo(),
   3989                           Ld->isVolatile(), Ld->isNonTemporal(),
   3990                           Ld->isInvariant(), Ld->getAlignment());
   3991 
   3992     EVT PtrType = Ptr.getValueType();
   3993     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   3994     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
   3995                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
   3996     RetVal2 = DAG.getLoad(MVT::i32, dl,
   3997                           Ld->getChain(), NewPtr,
   3998                           Ld->getPointerInfo().getWithOffset(4),
   3999                           Ld->isVolatile(), Ld->isNonTemporal(),
   4000                           Ld->isInvariant(), NewAlign);
   4001     return;
   4002   }
   4003 
   4004   llvm_unreachable("Unknown VFP cmp argument!");
   4005 }
   4006 
   4007 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   4008 /// f32 and even f64 comparisons to integer ones.
   4009 SDValue
   4010 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   4011   SDValue Chain = Op.getOperand(0);
   4012   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   4013   SDValue LHS = Op.getOperand(2);
   4014   SDValue RHS = Op.getOperand(3);
   4015   SDValue Dest = Op.getOperand(4);
   4016   SDLoc dl(Op);
   4017 
   4018   bool LHSSeenZero = false;
   4019   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
   4020   bool RHSSeenZero = false;
   4021   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
   4022   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
   4023     // If unsafe fp math optimization is enabled and there are no other uses of
   4024     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   4025     // to an integer comparison.
   4026     if (CC == ISD::SETOEQ)
   4027       CC = ISD::SETEQ;
   4028     else if (CC == ISD::SETUNE)
   4029       CC = ISD::SETNE;
   4030 
   4031     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
   4032     SDValue ARMcc;
   4033     if (LHS.getValueType() == MVT::f32) {
   4034       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   4035                         bitcastf32Toi32(LHS, DAG), Mask);
   4036       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   4037                         bitcastf32Toi32(RHS, DAG), Mask);
   4038       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   4039       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4040       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   4041                          Chain, Dest, ARMcc, CCR, Cmp);
   4042     }
   4043 
   4044     SDValue LHS1, LHS2;
   4045     SDValue RHS1, RHS2;
   4046     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   4047     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   4048     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
   4049     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
   4050     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   4051     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   4052     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   4053     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   4054     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
   4055   }
   4056 
   4057   return SDValue();
   4058 }
   4059 
   4060 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   4061   SDValue Chain = Op.getOperand(0);
   4062   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   4063   SDValue LHS = Op.getOperand(2);
   4064   SDValue RHS = Op.getOperand(3);
   4065   SDValue Dest = Op.getOperand(4);
   4066   SDLoc dl(Op);
   4067 
   4068   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   4069     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   4070                                                     dl);
   4071 
   4072     // If softenSetCCOperands only returned one value, we should compare it to
   4073     // zero.
   4074     if (!RHS.getNode()) {
   4075       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   4076       CC = ISD::SETNE;
   4077     }
   4078   }
   4079 
   4080   if (LHS.getValueType() == MVT::i32) {
   4081     SDValue ARMcc;
   4082     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   4083     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4084     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   4085                        Chain, Dest, ARMcc, CCR, Cmp);
   4086   }
   4087 
   4088   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
   4089 
   4090   if (getTargetMachine().Options.UnsafeFPMath &&
   4091       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   4092        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   4093     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
   4094       return Result;
   4095   }
   4096 
   4097   ARMCC::CondCodes CondCode, CondCode2;
   4098   FPCCToARMCC(CC, CondCode, CondCode2);
   4099 
   4100   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   4101   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   4102   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4103   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   4104   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   4105   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   4106   if (CondCode2 != ARMCC::AL) {
   4107     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
   4108     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   4109     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   4110   }
   4111   return Res;
   4112 }
   4113 
   4114 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   4115   SDValue Chain = Op.getOperand(0);
   4116   SDValue Table = Op.getOperand(1);
   4117   SDValue Index = Op.getOperand(2);
   4118   SDLoc dl(Op);
   4119 
   4120   EVT PTy = getPointerTy(DAG.getDataLayout());
   4121   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   4122   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   4123   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
   4124   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
   4125   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   4126   if (Subtarget->isThumb2()) {
   4127     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
   4128     // which does another jump to the destination. This also makes it easier
   4129     // to translate it to TBB / TBH later.
   4130     // FIXME: This might not work if the function is extremely large.
   4131     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   4132                        Addr, Op.getOperand(2), JTI);
   4133   }
   4134   if (isPositionIndependent()) {
   4135     Addr =
   4136         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   4137                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
   4138                     false, false, false, 0);
   4139     Chain = Addr.getValue(1);
   4140     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
   4141     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
   4142   } else {
   4143     Addr =
   4144         DAG.getLoad(PTy, dl, Chain, Addr,
   4145                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
   4146                     false, false, false, 0);
   4147     Chain = Addr.getValue(1);
   4148     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
   4149   }
   4150 }
   4151 
   4152 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   4153   EVT VT = Op.getValueType();
   4154   SDLoc dl(Op);
   4155 
   4156   if (Op.getValueType().getVectorElementType() == MVT::i32) {
   4157     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
   4158       return Op;
   4159     return DAG.UnrollVectorOp(Op.getNode());
   4160   }
   4161 
   4162   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
   4163          "Invalid type for custom lowering!");
   4164   if (VT != MVT::v4i16)
   4165     return DAG.UnrollVectorOp(Op.getNode());
   4166 
   4167   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
   4168   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
   4169 }
   4170 
   4171 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
   4172   EVT VT = Op.getValueType();
   4173   if (VT.isVector())
   4174     return LowerVectorFP_TO_INT(Op, DAG);
   4175   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
   4176     RTLIB::Libcall LC;
   4177     if (Op.getOpcode() == ISD::FP_TO_SINT)
   4178       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
   4179                               Op.getValueType());
   4180     else
   4181       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
   4182                               Op.getValueType());
   4183     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
   4184                        /*isSigned*/ false, SDLoc(Op)).first;
   4185   }
   4186 
   4187   return Op;
   4188 }
   4189 
   4190 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   4191   EVT VT = Op.getValueType();
   4192   SDLoc dl(Op);
   4193 
   4194   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
   4195     if (VT.getVectorElementType() == MVT::f32)
   4196       return Op;
   4197     return DAG.UnrollVectorOp(Op.getNode());
   4198   }
   4199 
   4200   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   4201          "Invalid type for custom lowering!");
   4202   if (VT != MVT::v4f32)
   4203     return DAG.UnrollVectorOp(Op.getNode());
   4204 
   4205   unsigned CastOpc;
   4206   unsigned Opc;
   4207   switch (Op.getOpcode()) {
   4208   default: llvm_unreachable("Invalid opcode!");
   4209   case ISD::SINT_TO_FP:
   4210     CastOpc = ISD::SIGN_EXTEND;
   4211     Opc = ISD::SINT_TO_FP;
   4212     break;
   4213   case ISD::UINT_TO_FP:
   4214     CastOpc = ISD::ZERO_EXTEND;
   4215     Opc = ISD::UINT_TO_FP;
   4216     break;
   4217   }
   4218 
   4219   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   4220   return DAG.getNode(Opc, dl, VT, Op);
   4221 }
   4222 
   4223 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
   4224   EVT VT = Op.getValueType();
   4225   if (VT.isVector())
   4226     return LowerVectorINT_TO_FP(Op, DAG);
   4227   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
   4228     RTLIB::Libcall LC;
   4229     if (Op.getOpcode() == ISD::SINT_TO_FP)
   4230       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
   4231                               Op.getValueType());
   4232     else
   4233       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
   4234                               Op.getValueType());
   4235     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
   4236                        /*isSigned*/ false, SDLoc(Op)).first;
   4237   }
   4238 
   4239   return Op;
   4240 }
   4241 
   4242 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   4243   // Implement fcopysign with a fabs and a conditional fneg.
   4244   SDValue Tmp0 = Op.getOperand(0);
   4245   SDValue Tmp1 = Op.getOperand(1);
   4246   SDLoc dl(Op);
   4247   EVT VT = Op.getValueType();
   4248   EVT SrcVT = Tmp1.getValueType();
   4249   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   4250     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   4251   bool UseNEON = !InGPR && Subtarget->hasNEON();
   4252 
   4253   if (UseNEON) {
   4254     // Use VBSL to copy the sign bit.
   4255     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   4256     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   4257                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
   4258     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   4259     if (VT == MVT::f64)
   4260       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   4261                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   4262                          DAG.getConstant(32, dl, MVT::i32));
   4263     else /*if (VT == MVT::f32)*/
   4264       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   4265     if (SrcVT == MVT::f32) {
   4266       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   4267       if (VT == MVT::f64)
   4268         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   4269                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   4270                            DAG.getConstant(32, dl, MVT::i32));
   4271     } else if (VT == MVT::f32)
   4272       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   4273                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   4274                          DAG.getConstant(32, dl, MVT::i32));
   4275     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   4276     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   4277 
   4278     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   4279                                             dl, MVT::i32);
   4280     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   4281     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   4282                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   4283 
   4284     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   4285                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   4286                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   4287     if (VT == MVT::f32) {
   4288       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   4289       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   4290                         DAG.getConstant(0, dl, MVT::i32));
   4291     } else {
   4292       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   4293     }
   4294 
   4295     return Res;
   4296   }
   4297 
   4298   // Bitcast operand 1 to i32.
   4299   if (SrcVT == MVT::f64)
   4300     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   4301                        Tmp1).getValue(1);
   4302   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   4303 
   4304   // Or in the signbit with integer operations.
   4305   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
   4306   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
   4307   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   4308   if (VT == MVT::f32) {
   4309     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   4310                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   4311     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   4312                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   4313   }
   4314 
   4315   // f64: Or the high part with signbit and then combine two parts.
   4316   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   4317                      Tmp0);
   4318   SDValue Lo = Tmp0.getValue(0);
   4319   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   4320   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   4321   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   4322 }
   4323 
   4324 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   4325   MachineFunction &MF = DAG.getMachineFunction();
   4326   MachineFrameInfo *MFI = MF.getFrameInfo();
   4327   MFI->setReturnAddressIsTaken(true);
   4328 
   4329   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   4330     return SDValue();
   4331 
   4332   EVT VT = Op.getValueType();
   4333   SDLoc dl(Op);
   4334   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   4335   if (Depth) {
   4336     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   4337     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
   4338     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   4339                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   4340                        MachinePointerInfo(), false, false, false, 0);
   4341   }
   4342 
   4343   // Return LR, which contains the return address. Mark it an implicit live-in.
   4344   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   4345   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   4346 }
   4347 
   4348 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   4349   const ARMBaseRegisterInfo &ARI =
   4350     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
   4351   MachineFunction &MF = DAG.getMachineFunction();
   4352   MachineFrameInfo *MFI = MF.getFrameInfo();
   4353   MFI->setFrameAddressIsTaken(true);
   4354 
   4355   EVT VT = Op.getValueType();
   4356   SDLoc dl(Op);  // FIXME probably not meaningful
   4357   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   4358   unsigned FrameReg = ARI.getFrameRegister(MF);
   4359   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   4360   while (Depth--)
   4361     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   4362                             MachinePointerInfo(),
   4363                             false, false, false, 0);
   4364   return FrameAddr;
   4365 }
   4366 
   4367 // FIXME? Maybe this could be a TableGen attribute on some registers and
   4368 // this table could be generated automatically from RegInfo.
   4369 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
   4370                                               SelectionDAG &DAG) const {
   4371   unsigned Reg = StringSwitch<unsigned>(RegName)
   4372                        .Case("sp", ARM::SP)
   4373                        .Default(0);
   4374   if (Reg)
   4375     return Reg;
   4376   report_fatal_error(Twine("Invalid register name \""
   4377                               + StringRef(RegName)  + "\"."));
   4378 }
   4379 
   4380 // Result is 64 bit value so split into two 32 bit values and return as a
   4381 // pair of values.
   4382 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
   4383                                 SelectionDAG &DAG) {
   4384   SDLoc DL(N);
   4385 
   4386   // This function is only supposed to be called for i64 type destination.
   4387   assert(N->getValueType(0) == MVT::i64
   4388           && "ExpandREAD_REGISTER called for non-i64 type result.");
   4389 
   4390   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
   4391                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
   4392                              N->getOperand(0),
   4393                              N->getOperand(1));
   4394 
   4395   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
   4396                     Read.getValue(1)));
   4397   Results.push_back(Read.getOperand(0));
   4398 }
   4399 
   4400 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
   4401 /// When \p DstVT, the destination type of \p BC, is on the vector
   4402 /// register bank and the source of bitcast, \p Op, operates on the same bank,
   4403 /// it might be possible to combine them, such that everything stays on the
   4404 /// vector register bank.
   4405 /// \p return The node that would replace \p BT, if the combine
   4406 /// is possible.
   4407 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
   4408                                                 SelectionDAG &DAG) {
   4409   SDValue Op = BC->getOperand(0);
   4410   EVT DstVT = BC->getValueType(0);
   4411 
   4412   // The only vector instruction that can produce a scalar (remember,
   4413   // since the bitcast was about to be turned into VMOVDRR, the source
   4414   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
   4415   // Moreover, we can do this combine only if there is one use.
   4416   // Finally, if the destination type is not a vector, there is not
   4417   // much point on forcing everything on the vector bank.
   4418   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   4419       !Op.hasOneUse())
   4420     return SDValue();
   4421 
   4422   // If the index is not constant, we will introduce an additional
   4423   // multiply that will stick.
   4424   // Give up in that case.
   4425   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   4426   if (!Index)
   4427     return SDValue();
   4428   unsigned DstNumElt = DstVT.getVectorNumElements();
   4429 
   4430   // Compute the new index.
   4431   const APInt &APIntIndex = Index->getAPIntValue();
   4432   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
   4433   NewIndex *= APIntIndex;
   4434   // Check if the new constant index fits into i32.
   4435   if (NewIndex.getBitWidth() > 32)
   4436     return SDValue();
   4437 
   4438   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
   4439   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
   4440   SDLoc dl(Op);
   4441   SDValue ExtractSrc = Op.getOperand(0);
   4442   EVT VecVT = EVT::getVectorVT(
   4443       *DAG.getContext(), DstVT.getScalarType(),
   4444       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
   4445   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
   4446   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
   4447                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
   4448 }
   4449 
   4450 /// ExpandBITCAST - If the target supports VFP, this function is called to
   4451 /// expand a bit convert where either the source or destination type is i64 to
   4452 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   4453 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   4454 /// vectors), since the legalizer won't know what to do with that.
   4455 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
   4456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   4457   SDLoc dl(N);
   4458   SDValue Op = N->getOperand(0);
   4459 
   4460   // This function is only supposed to be called for i64 types, either as the
   4461   // source or destination of the bit convert.
   4462   EVT SrcVT = Op.getValueType();
   4463   EVT DstVT = N->getValueType(0);
   4464   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
   4465          "ExpandBITCAST called for non-i64 type");
   4466 
   4467   // Turn i64->f64 into VMOVDRR.
   4468   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   4469     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
   4470     // if we can combine the bitcast with its source.
   4471     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
   4472       return Val;
   4473 
   4474     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   4475                              DAG.getConstant(0, dl, MVT::i32));
   4476     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   4477                              DAG.getConstant(1, dl, MVT::i32));
   4478     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   4479                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   4480   }
   4481 
   4482   // Turn f64->i64 into VMOVRRD.
   4483   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   4484     SDValue Cvt;
   4485     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
   4486         SrcVT.getVectorNumElements() > 1)
   4487       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   4488                         DAG.getVTList(MVT::i32, MVT::i32),
   4489                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
   4490     else
   4491       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   4492                         DAG.getVTList(MVT::i32, MVT::i32), Op);
   4493     // Merge the pieces into a single i64 value.
   4494     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   4495   }
   4496 
   4497   return SDValue();
   4498 }
   4499 
   4500 /// getZeroVector - Returns a vector of specified type with all zero elements.
   4501 /// Zero vectors are used to represent vector negation and in those cases
   4502 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   4503 /// not support i64 elements, so sometimes the zero vectors will need to be
   4504 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   4505 /// zero vector.
   4506 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
   4507   assert(VT.isVector() && "Expected a vector type");
   4508   // The canonical modified immediate encoding of a zero vector is....0!
   4509   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
   4510   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   4511   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   4512   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4513 }
   4514 
   4515 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   4516 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4517 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   4518                                                 SelectionDAG &DAG) const {
   4519   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4520   EVT VT = Op.getValueType();
   4521   unsigned VTBits = VT.getSizeInBits();
   4522   SDLoc dl(Op);
   4523   SDValue ShOpLo = Op.getOperand(0);
   4524   SDValue ShOpHi = Op.getOperand(1);
   4525   SDValue ShAmt  = Op.getOperand(2);
   4526   SDValue ARMcc;
   4527   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   4528 
   4529   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   4530 
   4531   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4532                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
   4533   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   4534   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4535                                    DAG.getConstant(VTBits, dl, MVT::i32));
   4536   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   4537   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4538   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   4539 
   4540   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4541   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   4542                           ISD::SETGE, ARMcc, DAG, dl);
   4543   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   4544   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
   4545                            CCR, Cmp);
   4546 
   4547   SDValue Ops[2] = { Lo, Hi };
   4548   return DAG.getMergeValues(Ops, dl);
   4549 }
   4550 
   4551 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   4552 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4553 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   4554                                                SelectionDAG &DAG) const {
   4555   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4556   EVT VT = Op.getValueType();
   4557   unsigned VTBits = VT.getSizeInBits();
   4558   SDLoc dl(Op);
   4559   SDValue ShOpLo = Op.getOperand(0);
   4560   SDValue ShOpHi = Op.getOperand(1);
   4561   SDValue ShAmt  = Op.getOperand(2);
   4562   SDValue ARMcc;
   4563 
   4564   assert(Op.getOpcode() == ISD::SHL_PARTS);
   4565   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4566                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
   4567   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   4568   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4569                                    DAG.getConstant(VTBits, dl, MVT::i32));
   4570   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   4571   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   4572 
   4573   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4574   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4575   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   4576                           ISD::SETGE, ARMcc, DAG, dl);
   4577   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   4578   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
   4579                            CCR, Cmp);
   4580 
   4581   SDValue Ops[2] = { Lo, Hi };
   4582   return DAG.getMergeValues(Ops, dl);
   4583 }
   4584 
   4585 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   4586                                             SelectionDAG &DAG) const {
   4587   // The rounding mode is in bits 23:22 of the FPSCR.
   4588   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   4589   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   4590   // so that the shift + and get folded into a bitfield extract.
   4591   SDLoc dl(Op);
   4592   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
   4593                               DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
   4594                                               MVT::i32));
   4595   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   4596                                   DAG.getConstant(1U << 22, dl, MVT::i32));
   4597   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   4598                               DAG.getConstant(22, dl, MVT::i32));
   4599   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   4600                      DAG.getConstant(3, dl, MVT::i32));
   4601 }
   4602 
   4603 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   4604                          const ARMSubtarget *ST) {
   4605   SDLoc dl(N);
   4606   EVT VT = N->getValueType(0);
   4607   if (VT.isVector()) {
   4608     assert(ST->hasNEON());
   4609 
   4610     // Compute the least significant set bit: LSB = X & -X
   4611     SDValue X = N->getOperand(0);
   4612     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
   4613     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
   4614 
   4615     EVT ElemTy = VT.getVectorElementType();
   4616 
   4617     if (ElemTy == MVT::i8) {
   4618       // Compute with: cttz(x) = ctpop(lsb - 1)
   4619       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4620                                 DAG.getTargetConstant(1, dl, ElemTy));
   4621       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
   4622       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
   4623     }
   4624 
   4625     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
   4626         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
   4627       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
   4628       unsigned NumBits = ElemTy.getSizeInBits();
   4629       SDValue WidthMinus1 =
   4630           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4631                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
   4632       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
   4633       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
   4634     }
   4635 
   4636     // Compute with: cttz(x) = ctpop(lsb - 1)
   4637 
   4638     // Since we can only compute the number of bits in a byte with vcnt.8, we
   4639     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
   4640     // and i64.
   4641 
   4642     // Compute LSB - 1.
   4643     SDValue Bits;
   4644     if (ElemTy == MVT::i64) {
   4645       // Load constant 0xffff'ffff'ffff'ffff to register.
   4646       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4647                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
   4648       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
   4649     } else {
   4650       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4651                                 DAG.getTargetConstant(1, dl, ElemTy));
   4652       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
   4653     }
   4654 
   4655     // Count #bits with vcnt.8.
   4656     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   4657     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
   4658     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
   4659 
   4660     // Gather the #bits with vpaddl (pairwise add.)
   4661     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   4662     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
   4663         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   4664         Cnt8);
   4665     if (ElemTy == MVT::i16)
   4666       return Cnt16;
   4667 
   4668     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
   4669     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
   4670         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   4671         Cnt16);
   4672     if (ElemTy == MVT::i32)
   4673       return Cnt32;
   4674 
   4675     assert(ElemTy == MVT::i64);
   4676     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4677         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   4678         Cnt32);
   4679     return Cnt64;
   4680   }
   4681 
   4682   if (!ST->hasV6T2Ops())
   4683     return SDValue();
   4684 
   4685   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
   4686   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   4687 }
   4688 
   4689 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
   4690 /// for each 16-bit element from operand, repeated.  The basic idea is to
   4691 /// leverage vcnt to get the 8-bit counts, gather and add the results.
   4692 ///
   4693 /// Trace for v4i16:
   4694 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
   4695 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
   4696 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
   4697 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
   4698 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
   4699 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
   4700 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
   4701 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
   4702 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
   4703   EVT VT = N->getValueType(0);
   4704   SDLoc DL(N);
   4705 
   4706   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   4707   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
   4708   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
   4709   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
   4710   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
   4711   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
   4712 }
   4713 
   4714 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
   4715 /// bit-count for each 16-bit element from the operand.  We need slightly
   4716 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
   4717 /// 64/128-bit registers.
   4718 ///
   4719 /// Trace for v4i16:
   4720 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
   4721 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
   4722 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
   4723 /// v4i16:Extracted = [k0    k1    k2    k3    ]
   4724 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
   4725   EVT VT = N->getValueType(0);
   4726   SDLoc DL(N);
   4727 
   4728   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
   4729   if (VT.is64BitVector()) {
   4730     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
   4731     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
   4732                        DAG.getIntPtrConstant(0, DL));
   4733   } else {
   4734     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
   4735                                     BitCounts, DAG.getIntPtrConstant(0, DL));
   4736     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
   4737   }
   4738 }
   4739 
   4740 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
   4741 /// bit-count for each 32-bit element from the operand.  The idea here is
   4742 /// to split the vector into 16-bit elements, leverage the 16-bit count
   4743 /// routine, and then combine the results.
   4744 ///
   4745 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
   4746 /// input    = [v0    v1    ] (vi: 32-bit elements)
   4747 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
   4748 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
   4749 /// vrev: N0 = [k1 k0 k3 k2 ]
   4750 ///            [k0 k1 k2 k3 ]
   4751 ///       N1 =+[k1 k0 k3 k2 ]
   4752 ///            [k0 k2 k1 k3 ]
   4753 ///       N2 =+[k1 k3 k0 k2 ]
   4754 ///            [k0    k2    k1    k3    ]
   4755 /// Extended =+[k1    k3    k0    k2    ]
   4756 ///            [k0    k2    ]
   4757 /// Extracted=+[k1    k3    ]
   4758 ///
   4759 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
   4760   EVT VT = N->getValueType(0);
   4761   SDLoc DL(N);
   4762 
   4763   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   4764 
   4765   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
   4766   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
   4767   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
   4768   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
   4769   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
   4770 
   4771   if (VT.is64BitVector()) {
   4772     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
   4773     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
   4774                        DAG.getIntPtrConstant(0, DL));
   4775   } else {
   4776     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
   4777                                     DAG.getIntPtrConstant(0, DL));
   4778     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
   4779   }
   4780 }
   4781 
   4782 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
   4783                           const ARMSubtarget *ST) {
   4784   EVT VT = N->getValueType(0);
   4785 
   4786   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
   4787   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
   4788           VT == MVT::v4i16 || VT == MVT::v8i16) &&
   4789          "Unexpected type for custom ctpop lowering");
   4790 
   4791   if (VT.getVectorElementType() == MVT::i32)
   4792     return lowerCTPOP32BitElements(N, DAG);
   4793   else
   4794     return lowerCTPOP16BitElements(N, DAG);
   4795 }
   4796 
   4797 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   4798                           const ARMSubtarget *ST) {
   4799   EVT VT = N->getValueType(0);
   4800   SDLoc dl(N);
   4801 
   4802   if (!VT.isVector())
   4803     return SDValue();
   4804 
   4805   // Lower vector shifts on NEON to use VSHL.
   4806   assert(ST->hasNEON() && "unexpected vector shift");
   4807 
   4808   // Left shifts translate directly to the vshiftu intrinsic.
   4809   if (N->getOpcode() == ISD::SHL)
   4810     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4811                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
   4812                                        MVT::i32),
   4813                        N->getOperand(0), N->getOperand(1));
   4814 
   4815   assert((N->getOpcode() == ISD::SRA ||
   4816           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   4817 
   4818   // NEON uses the same intrinsics for both left and right shifts.  For
   4819   // right shifts, the shift amounts are negative, so negate the vector of
   4820   // shift amounts.
   4821   EVT ShiftVT = N->getOperand(1).getValueType();
   4822   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   4823                                      getZeroVector(ShiftVT, DAG, dl),
   4824                                      N->getOperand(1));
   4825   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   4826                              Intrinsic::arm_neon_vshifts :
   4827                              Intrinsic::arm_neon_vshiftu);
   4828   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4829                      DAG.getConstant(vshiftInt, dl, MVT::i32),
   4830                      N->getOperand(0), NegatedCount);
   4831 }
   4832 
   4833 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   4834                                 const ARMSubtarget *ST) {
   4835   EVT VT = N->getValueType(0);
   4836   SDLoc dl(N);
   4837 
   4838   // We can get here for a node like i32 = ISD::SHL i32, i64
   4839   if (VT != MVT::i64)
   4840     return SDValue();
   4841 
   4842   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   4843          "Unknown shift to lower!");
   4844 
   4845   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   4846   if (!isOneConstant(N->getOperand(1)))
   4847     return SDValue();
   4848 
   4849   // If we are in thumb mode, we don't have RRX.
   4850   if (ST->isThumb1Only()) return SDValue();
   4851 
   4852   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   4853   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4854                            DAG.getConstant(0, dl, MVT::i32));
   4855   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4856                            DAG.getConstant(1, dl, MVT::i32));
   4857 
   4858   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   4859   // captures the result into a carry flag.
   4860   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   4861   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
   4862 
   4863   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   4864   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   4865 
   4866   // Merge the pieces into a single i64 value.
   4867  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   4868 }
   4869 
   4870 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   4871   SDValue TmpOp0, TmpOp1;
   4872   bool Invert = false;
   4873   bool Swap = false;
   4874   unsigned Opc = 0;
   4875 
   4876   SDValue Op0 = Op.getOperand(0);
   4877   SDValue Op1 = Op.getOperand(1);
   4878   SDValue CC = Op.getOperand(2);
   4879   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
   4880   EVT VT = Op.getValueType();
   4881   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   4882   SDLoc dl(Op);
   4883 
   4884   if (CmpVT.getVectorElementType() == MVT::i64)
   4885     // 64-bit comparisons are not legal. We've marked SETCC as non-Custom,
   4886     // but it's possible that our operands are 64-bit but our result is 32-bit.
   4887     // Bail in this case.
   4888     return SDValue();
   4889 
   4890   if (Op1.getValueType().isFloatingPoint()) {
   4891     switch (SetCCOpcode) {
   4892     default: llvm_unreachable("Illegal FP comparison");
   4893     case ISD::SETUNE:
   4894     case ISD::SETNE:  Invert = true; // Fallthrough
   4895     case ISD::SETOEQ:
   4896     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4897     case ISD::SETOLT:
   4898     case ISD::SETLT: Swap = true; // Fallthrough
   4899     case ISD::SETOGT:
   4900     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4901     case ISD::SETOLE:
   4902     case ISD::SETLE:  Swap = true; // Fallthrough
   4903     case ISD::SETOGE:
   4904     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   4905     case ISD::SETUGE: Swap = true; // Fallthrough
   4906     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   4907     case ISD::SETUGT: Swap = true; // Fallthrough
   4908     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   4909     case ISD::SETUEQ: Invert = true; // Fallthrough
   4910     case ISD::SETONE:
   4911       // Expand this to (OLT | OGT).
   4912       TmpOp0 = Op0;
   4913       TmpOp1 = Op1;
   4914       Opc = ISD::OR;
   4915       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   4916       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
   4917       break;
   4918     case ISD::SETUO: Invert = true; // Fallthrough
   4919     case ISD::SETO:
   4920       // Expand this to (OLT | OGE).
   4921       TmpOp0 = Op0;
   4922       TmpOp1 = Op1;
   4923       Opc = ISD::OR;
   4924       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   4925       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
   4926       break;
   4927     }
   4928   } else {
   4929     // Integer comparisons.
   4930     switch (SetCCOpcode) {
   4931     default: llvm_unreachable("Illegal integer comparison");
   4932     case ISD::SETNE:  Invert = true;
   4933     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4934     case ISD::SETLT:  Swap = true;
   4935     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4936     case ISD::SETLE:  Swap = true;
   4937     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   4938     case ISD::SETULT: Swap = true;
   4939     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   4940     case ISD::SETULE: Swap = true;
   4941     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   4942     }
   4943 
   4944     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   4945     if (Opc == ARMISD::VCEQ) {
   4946 
   4947       SDValue AndOp;
   4948       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4949         AndOp = Op0;
   4950       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   4951         AndOp = Op1;
   4952 
   4953       // Ignore bitconvert.
   4954       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   4955         AndOp = AndOp.getOperand(0);
   4956 
   4957       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   4958         Opc = ARMISD::VTST;
   4959         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
   4960         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
   4961         Invert = !Invert;
   4962       }
   4963     }
   4964   }
   4965 
   4966   if (Swap)
   4967     std::swap(Op0, Op1);
   4968 
   4969   // If one of the operands is a constant vector zero, attempt to fold the
   4970   // comparison to a specialized compare-against-zero form.
   4971   SDValue SingleOp;
   4972   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4973     SingleOp = Op0;
   4974   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   4975     if (Opc == ARMISD::VCGE)
   4976       Opc = ARMISD::VCLEZ;
   4977     else if (Opc == ARMISD::VCGT)
   4978       Opc = ARMISD::VCLTZ;
   4979     SingleOp = Op1;
   4980   }
   4981 
   4982   SDValue Result;
   4983   if (SingleOp.getNode()) {
   4984     switch (Opc) {
   4985     case ARMISD::VCEQ:
   4986       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
   4987     case ARMISD::VCGE:
   4988       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
   4989     case ARMISD::VCLEZ:
   4990       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
   4991     case ARMISD::VCGT:
   4992       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
   4993     case ARMISD::VCLTZ:
   4994       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
   4995     default:
   4996       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   4997     }
   4998   } else {
   4999      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   5000   }
   5001 
   5002   Result = DAG.getSExtOrTrunc(Result, dl, VT);
   5003 
   5004   if (Invert)
   5005     Result = DAG.getNOT(dl, Result, VT);
   5006 
   5007   return Result;
   5008 }
   5009 
   5010 static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
   5011   SDValue LHS = Op.getOperand(0);
   5012   SDValue RHS = Op.getOperand(1);
   5013   SDValue Carry = Op.getOperand(2);
   5014   SDValue Cond = Op.getOperand(3);
   5015   SDLoc DL(Op);
   5016 
   5017   assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
   5018 
   5019   assert(Carry.getOpcode() != ISD::CARRY_FALSE);
   5020   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
   5021   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
   5022 
   5023   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
   5024   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
   5025   SDValue ARMcc = DAG.getConstant(
   5026       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
   5027   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   5028   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
   5029                                    Cmp.getValue(1), SDValue());
   5030   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
   5031                      CCR, Chain.getValue(1));
   5032 }
   5033 
   5034 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   5035 /// valid vector constant for a NEON instruction with a "modified immediate"
   5036 /// operand (e.g., VMOV).  If so, return the encoded value.
   5037 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   5038                                  unsigned SplatBitSize, SelectionDAG &DAG,
   5039                                  const SDLoc &dl, EVT &VT, bool is128Bits,
   5040                                  NEONModImmType type) {
   5041   unsigned OpCmode, Imm;
   5042 
   5043   // SplatBitSize is set to the smallest size that splats the vector, so a
   5044   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   5045   // immediate instructions others than VMOV do not support the 8-bit encoding
   5046   // of a zero vector, and the default encoding of zero is supposed to be the
   5047   // 32-bit version.
   5048   if (SplatBits == 0)
   5049     SplatBitSize = 32;
   5050 
   5051   switch (SplatBitSize) {
   5052   case 8:
   5053     if (type != VMOVModImm)
   5054       return SDValue();
   5055     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   5056     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   5057     OpCmode = 0xe;
   5058     Imm = SplatBits;
   5059     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   5060     break;
   5061 
   5062   case 16:
   5063     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   5064     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   5065     if ((SplatBits & ~0xff) == 0) {
   5066       // Value = 0x00nn: Op=x, Cmode=100x.
   5067       OpCmode = 0x8;
   5068       Imm = SplatBits;
   5069       break;
   5070     }
   5071     if ((SplatBits & ~0xff00) == 0) {
   5072       // Value = 0xnn00: Op=x, Cmode=101x.
   5073       OpCmode = 0xa;
   5074       Imm = SplatBits >> 8;
   5075       break;
   5076     }
   5077     return SDValue();
   5078 
   5079   case 32:
   5080     // NEON's 32-bit VMOV supports splat values where:
   5081     // * only one byte is nonzero, or
   5082     // * the least significant byte is 0xff and the second byte is nonzero, or
   5083     // * the least significant 2 bytes are 0xff and the third is nonzero.
   5084     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   5085     if ((SplatBits & ~0xff) == 0) {
   5086       // Value = 0x000000nn: Op=x, Cmode=000x.
   5087       OpCmode = 0;
   5088       Imm = SplatBits;
   5089       break;
   5090     }
   5091     if ((SplatBits & ~0xff00) == 0) {
   5092       // Value = 0x0000nn00: Op=x, Cmode=001x.
   5093       OpCmode = 0x2;
   5094       Imm = SplatBits >> 8;
   5095       break;
   5096     }
   5097     if ((SplatBits & ~0xff0000) == 0) {
   5098       // Value = 0x00nn0000: Op=x, Cmode=010x.
   5099       OpCmode = 0x4;
   5100       Imm = SplatBits >> 16;
   5101       break;
   5102     }
   5103     if ((SplatBits & ~0xff000000) == 0) {
   5104       // Value = 0xnn000000: Op=x, Cmode=011x.
   5105       OpCmode = 0x6;
   5106       Imm = SplatBits >> 24;
   5107       break;
   5108     }
   5109 
   5110     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   5111     if (type == OtherModImm) return SDValue();
   5112 
   5113     if ((SplatBits & ~0xffff) == 0 &&
   5114         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   5115       // Value = 0x0000nnff: Op=x, Cmode=1100.
   5116       OpCmode = 0xc;
   5117       Imm = SplatBits >> 8;
   5118       break;
   5119     }
   5120 
   5121     if ((SplatBits & ~0xffffff) == 0 &&
   5122         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   5123       // Value = 0x00nnffff: Op=x, Cmode=1101.
   5124       OpCmode = 0xd;
   5125       Imm = SplatBits >> 16;
   5126       break;
   5127     }
   5128 
   5129     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   5130     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   5131     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   5132     // and fall through here to test for a valid 64-bit splat.  But, then the
   5133     // caller would also need to check and handle the change in size.
   5134     return SDValue();
   5135 
   5136   case 64: {
   5137     if (type != VMOVModImm)
   5138       return SDValue();
   5139     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   5140     uint64_t BitMask = 0xff;
   5141     uint64_t Val = 0;
   5142     unsigned ImmMask = 1;
   5143     Imm = 0;
   5144     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   5145       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   5146         Val |= BitMask;
   5147         Imm |= ImmMask;
   5148       } else if ((SplatBits & BitMask) != 0) {
   5149         return SDValue();
   5150       }
   5151       BitMask <<= 8;
   5152       ImmMask <<= 1;
   5153     }
   5154 
   5155     if (DAG.getDataLayout().isBigEndian())
   5156       // swap higher and lower 32 bit word
   5157       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
   5158 
   5159     // Op=1, Cmode=1110.
   5160     OpCmode = 0x1e;
   5161     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   5162     break;
   5163   }
   5164 
   5165   default:
   5166     llvm_unreachable("unexpected size for isNEONModifiedImm");
   5167   }
   5168 
   5169   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   5170   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
   5171 }
   5172 
   5173 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
   5174                                            const ARMSubtarget *ST) const {
   5175   if (!ST->hasVFP3())
   5176     return SDValue();
   5177 
   5178   bool IsDouble = Op.getValueType() == MVT::f64;
   5179   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
   5180 
   5181   // Use the default (constant pool) lowering for double constants when we have
   5182   // an SP-only FPU
   5183   if (IsDouble && Subtarget->isFPOnlySP())
   5184     return SDValue();
   5185 
   5186   // Try splatting with a VMOV.f32...
   5187   const APFloat &FPVal = CFP->getValueAPF();
   5188   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
   5189 
   5190   if (ImmVal != -1) {
   5191     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
   5192       // We have code in place to select a valid ConstantFP already, no need to
   5193       // do any mangling.
   5194       return Op;
   5195     }
   5196 
   5197     // It's a float and we are trying to use NEON operations where
   5198     // possible. Lower it to a splat followed by an extract.
   5199     SDLoc DL(Op);
   5200     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
   5201     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
   5202                                       NewVal);
   5203     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
   5204                        DAG.getConstant(0, DL, MVT::i32));
   5205   }
   5206 
   5207   // The rest of our options are NEON only, make sure that's allowed before
   5208   // proceeding..
   5209   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
   5210     return SDValue();
   5211 
   5212   EVT VMovVT;
   5213   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
   5214 
   5215   // It wouldn't really be worth bothering for doubles except for one very
   5216   // important value, which does happen to match: 0.0. So make sure we don't do
   5217   // anything stupid.
   5218   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
   5219     return SDValue();
   5220 
   5221   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
   5222   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
   5223                                      VMovVT, false, VMOVModImm);
   5224   if (NewVal != SDValue()) {
   5225     SDLoc DL(Op);
   5226     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
   5227                                       NewVal);
   5228     if (IsDouble)
   5229       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   5230 
   5231     // It's a float: cast and extract a vector element.
   5232     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   5233                                        VecConstant);
   5234     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   5235                        DAG.getConstant(0, DL, MVT::i32));
   5236   }
   5237 
   5238   // Finally, try a VMVN.i32
   5239   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
   5240                              false, VMVNModImm);
   5241   if (NewVal != SDValue()) {
   5242     SDLoc DL(Op);
   5243     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
   5244 
   5245     if (IsDouble)
   5246       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   5247 
   5248     // It's a float: cast and extract a vector element.
   5249     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   5250                                        VecConstant);
   5251     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   5252                        DAG.getConstant(0, DL, MVT::i32));
   5253   }
   5254 
   5255   return SDValue();
   5256 }
   5257 
   5258 // check if an VEXT instruction can handle the shuffle mask when the
   5259 // vector sources of the shuffle are the same.
   5260 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
   5261   unsigned NumElts = VT.getVectorNumElements();
   5262 
   5263   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   5264   if (M[0] < 0)
   5265     return false;
   5266 
   5267   Imm = M[0];
   5268 
   5269   // If this is a VEXT shuffle, the immediate value is the index of the first
   5270   // element.  The other shuffle indices must be the successive elements after
   5271   // the first one.
   5272   unsigned ExpectedElt = Imm;
   5273   for (unsigned i = 1; i < NumElts; ++i) {
   5274     // Increment the expected index.  If it wraps around, just follow it
   5275     // back to index zero and keep going.
   5276     ++ExpectedElt;
   5277     if (ExpectedElt == NumElts)
   5278       ExpectedElt = 0;
   5279 
   5280     if (M[i] < 0) continue; // ignore UNDEF indices
   5281     if (ExpectedElt != static_cast<unsigned>(M[i]))
   5282       return false;
   5283   }
   5284 
   5285   return true;
   5286 }
   5287 
   5288 
   5289 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
   5290                        bool &ReverseVEXT, unsigned &Imm) {
   5291   unsigned NumElts = VT.getVectorNumElements();
   5292   ReverseVEXT = false;
   5293 
   5294   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   5295   if (M[0] < 0)
   5296     return false;
   5297 
   5298   Imm = M[0];
   5299 
   5300   // If this is a VEXT shuffle, the immediate value is the index of the first
   5301   // element.  The other shuffle indices must be the successive elements after
   5302   // the first one.
   5303   unsigned ExpectedElt = Imm;
   5304   for (unsigned i = 1; i < NumElts; ++i) {
   5305     // Increment the expected index.  If it wraps around, it may still be
   5306     // a VEXT but the source vectors must be swapped.
   5307     ExpectedElt += 1;
   5308     if (ExpectedElt == NumElts * 2) {
   5309       ExpectedElt = 0;
   5310       ReverseVEXT = true;
   5311     }
   5312 
   5313     if (M[i] < 0) continue; // ignore UNDEF indices
   5314     if (ExpectedElt != static_cast<unsigned>(M[i]))
   5315       return false;
   5316   }
   5317 
   5318   // Adjust the index value if the source operands will be swapped.
   5319   if (ReverseVEXT)
   5320     Imm -= NumElts;
   5321 
   5322   return true;
   5323 }
   5324 
   5325 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   5326 /// instruction with the specified blocksize.  (The order of the elements
   5327 /// within each block of the vector is reversed.)
   5328 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   5329   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   5330          "Only possible block sizes for VREV are: 16, 32, 64");
   5331 
   5332   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5333   if (EltSz == 64)
   5334     return false;
   5335 
   5336   unsigned NumElts = VT.getVectorNumElements();
   5337   unsigned BlockElts = M[0] + 1;
   5338   // If the first shuffle index is UNDEF, be optimistic.
   5339   if (M[0] < 0)
   5340     BlockElts = BlockSize / EltSz;
   5341 
   5342   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   5343     return false;
   5344 
   5345   for (unsigned i = 0; i < NumElts; ++i) {
   5346     if (M[i] < 0) continue; // ignore UNDEF indices
   5347     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   5348       return false;
   5349   }
   5350 
   5351   return true;
   5352 }
   5353 
   5354 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
   5355   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   5356   // range, then 0 is placed into the resulting vector. So pretty much any mask
   5357   // of 8 elements can work here.
   5358   return VT == MVT::v8i8 && M.size() == 8;
   5359 }
   5360 
   5361 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
   5362 // checking that pairs of elements in the shuffle mask represent the same index
   5363 // in each vector, incrementing the expected index by 2 at each step.
   5364 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
   5365 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
   5366 //  v2={e,f,g,h}
   5367 // WhichResult gives the offset for each element in the mask based on which
   5368 // of the two results it belongs to.
   5369 //
   5370 // The transpose can be represented either as:
   5371 // result1 = shufflevector v1, v2, result1_shuffle_mask
   5372 // result2 = shufflevector v1, v2, result2_shuffle_mask
   5373 // where v1/v2 and the shuffle masks have the same number of elements
   5374 // (here WhichResult (see below) indicates which result is being checked)
   5375 //
   5376 // or as:
   5377 // results = shufflevector v1, v2, shuffle_mask
   5378 // where both results are returned in one vector and the shuffle mask has twice
   5379 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
   5380 // want to check the low half and high half of the shuffle mask as if it were
   5381 // the other case
   5382 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   5383   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5384   if (EltSz == 64)
   5385     return false;
   5386 
   5387   unsigned NumElts = VT.getVectorNumElements();
   5388   if (M.size() != NumElts && M.size() != NumElts*2)
   5389     return false;
   5390 
   5391   // If the mask is twice as long as the input vector then we need to check the
   5392   // upper and lower parts of the mask with a matching value for WhichResult
   5393   // FIXME: A mask with only even values will be rejected in case the first
   5394   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
   5395   // M[0] is used to determine WhichResult
   5396   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5397     if (M.size() == NumElts * 2)
   5398       WhichResult = i / NumElts;
   5399     else
   5400       WhichResult = M[i] == 0 ? 0 : 1;
   5401     for (unsigned j = 0; j < NumElts; j += 2) {
   5402       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
   5403           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
   5404         return false;
   5405     }
   5406   }
   5407 
   5408   if (M.size() == NumElts*2)
   5409     WhichResult = 0;
   5410 
   5411   return true;
   5412 }
   5413 
   5414 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   5415 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   5416 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   5417 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   5418   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5419   if (EltSz == 64)
   5420     return false;
   5421 
   5422   unsigned NumElts = VT.getVectorNumElements();
   5423   if (M.size() != NumElts && M.size() != NumElts*2)
   5424     return false;
   5425 
   5426   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5427     if (M.size() == NumElts * 2)
   5428       WhichResult = i / NumElts;
   5429     else
   5430       WhichResult = M[i] == 0 ? 0 : 1;
   5431     for (unsigned j = 0; j < NumElts; j += 2) {
   5432       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
   5433           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
   5434         return false;
   5435     }
   5436   }
   5437 
   5438   if (M.size() == NumElts*2)
   5439     WhichResult = 0;
   5440 
   5441   return true;
   5442 }
   5443 
   5444 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
   5445 // that the mask elements are either all even and in steps of size 2 or all odd
   5446 // and in steps of size 2.
   5447 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
   5448 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
   5449 //  v2={e,f,g,h}
   5450 // Requires similar checks to that of isVTRNMask with
   5451 // respect the how results are returned.
   5452 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   5453   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5454   if (EltSz == 64)
   5455     return false;
   5456 
   5457   unsigned NumElts = VT.getVectorNumElements();
   5458   if (M.size() != NumElts && M.size() != NumElts*2)
   5459     return false;
   5460 
   5461   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5462     WhichResult = M[i] == 0 ? 0 : 1;
   5463     for (unsigned j = 0; j < NumElts; ++j) {
   5464       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
   5465         return false;
   5466     }
   5467   }
   5468 
   5469   if (M.size() == NumElts*2)
   5470     WhichResult = 0;
   5471 
   5472   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5473   if (VT.is64BitVector() && EltSz == 32)
   5474     return false;
   5475 
   5476   return true;
   5477 }
   5478 
   5479 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   5480 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   5481 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   5482 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   5483   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5484   if (EltSz == 64)
   5485     return false;
   5486 
   5487   unsigned NumElts = VT.getVectorNumElements();
   5488   if (M.size() != NumElts && M.size() != NumElts*2)
   5489     return false;
   5490 
   5491   unsigned Half = NumElts / 2;
   5492   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5493     WhichResult = M[i] == 0 ? 0 : 1;
   5494     for (unsigned j = 0; j < NumElts; j += Half) {
   5495       unsigned Idx = WhichResult;
   5496       for (unsigned k = 0; k < Half; ++k) {
   5497         int MIdx = M[i + j + k];
   5498         if (MIdx >= 0 && (unsigned) MIdx != Idx)
   5499           return false;
   5500         Idx += 2;
   5501       }
   5502     }
   5503   }
   5504 
   5505   if (M.size() == NumElts*2)
   5506     WhichResult = 0;
   5507 
   5508   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5509   if (VT.is64BitVector() && EltSz == 32)
   5510     return false;
   5511 
   5512   return true;
   5513 }
   5514 
   5515 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
   5516 // that pairs of elements of the shufflemask represent the same index in each
   5517 // vector incrementing sequentially through the vectors.
   5518 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
   5519 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
   5520 //  v2={e,f,g,h}
   5521 // Requires similar checks to that of isVTRNMask with respect the how results
   5522 // are returned.
   5523 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   5524   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5525   if (EltSz == 64)
   5526     return false;
   5527 
   5528   unsigned NumElts = VT.getVectorNumElements();
   5529   if (M.size() != NumElts && M.size() != NumElts*2)
   5530     return false;
   5531 
   5532   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5533     WhichResult = M[i] == 0 ? 0 : 1;
   5534     unsigned Idx = WhichResult * NumElts / 2;
   5535     for (unsigned j = 0; j < NumElts; j += 2) {
   5536       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
   5537           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
   5538         return false;
   5539       Idx += 1;
   5540     }
   5541   }
   5542 
   5543   if (M.size() == NumElts*2)
   5544     WhichResult = 0;
   5545 
   5546   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5547   if (VT.is64BitVector() && EltSz == 32)
   5548     return false;
   5549 
   5550   return true;
   5551 }
   5552 
   5553 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   5554 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   5555 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   5556 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   5557   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5558   if (EltSz == 64)
   5559     return false;
   5560 
   5561   unsigned NumElts = VT.getVectorNumElements();
   5562   if (M.size() != NumElts && M.size() != NumElts*2)
   5563     return false;
   5564 
   5565   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5566     WhichResult = M[i] == 0 ? 0 : 1;
   5567     unsigned Idx = WhichResult * NumElts / 2;
   5568     for (unsigned j = 0; j < NumElts; j += 2) {
   5569       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
   5570           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
   5571         return false;
   5572       Idx += 1;
   5573     }
   5574   }
   5575 
   5576   if (M.size() == NumElts*2)
   5577     WhichResult = 0;
   5578 
   5579   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5580   if (VT.is64BitVector() && EltSz == 32)
   5581     return false;
   5582 
   5583   return true;
   5584 }
   5585 
   5586 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
   5587 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
   5588 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
   5589                                            unsigned &WhichResult,
   5590                                            bool &isV_UNDEF) {
   5591   isV_UNDEF = false;
   5592   if (isVTRNMask(ShuffleMask, VT, WhichResult))
   5593     return ARMISD::VTRN;
   5594   if (isVUZPMask(ShuffleMask, VT, WhichResult))
   5595     return ARMISD::VUZP;
   5596   if (isVZIPMask(ShuffleMask, VT, WhichResult))
   5597     return ARMISD::VZIP;
   5598 
   5599   isV_UNDEF = true;
   5600   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5601     return ARMISD::VTRN;
   5602   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5603     return ARMISD::VUZP;
   5604   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5605     return ARMISD::VZIP;
   5606 
   5607   return 0;
   5608 }
   5609 
   5610 /// \return true if this is a reverse operation on an vector.
   5611 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
   5612   unsigned NumElts = VT.getVectorNumElements();
   5613   // Make sure the mask has the right size.
   5614   if (NumElts != M.size())
   5615       return false;
   5616 
   5617   // Look for <15, ..., 3, -1, 1, 0>.
   5618   for (unsigned i = 0; i != NumElts; ++i)
   5619     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
   5620       return false;
   5621 
   5622   return true;
   5623 }
   5624 
   5625 // If N is an integer constant that can be moved into a register in one
   5626 // instruction, return an SDValue of such a constant (will become a MOV
   5627 // instruction).  Otherwise return null.
   5628 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   5629                                      const ARMSubtarget *ST, const SDLoc &dl) {
   5630   uint64_t Val;
   5631   if (!isa<ConstantSDNode>(N))
   5632     return SDValue();
   5633   Val = cast<ConstantSDNode>(N)->getZExtValue();
   5634 
   5635   if (ST->isThumb1Only()) {
   5636     if (Val <= 255 || ~Val <= 255)
   5637       return DAG.getConstant(Val, dl, MVT::i32);
   5638   } else {
   5639     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   5640       return DAG.getConstant(Val, dl, MVT::i32);
   5641   }
   5642   return SDValue();
   5643 }
   5644 
   5645 // If this is a case we can't handle, return null and let the default
   5646 // expansion code take care of it.
   5647 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   5648                                              const ARMSubtarget *ST) const {
   5649   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   5650   SDLoc dl(Op);
   5651   EVT VT = Op.getValueType();
   5652 
   5653   APInt SplatBits, SplatUndef;
   5654   unsigned SplatBitSize;
   5655   bool HasAnyUndefs;
   5656   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   5657     if (SplatBitSize <= 64) {
   5658       // Check if an immediate VMOV works.
   5659       EVT VmovVT;
   5660       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   5661                                       SplatUndef.getZExtValue(), SplatBitSize,
   5662                                       DAG, dl, VmovVT, VT.is128BitVector(),
   5663                                       VMOVModImm);
   5664       if (Val.getNode()) {
   5665         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   5666         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   5667       }
   5668 
   5669       // Try an immediate VMVN.
   5670       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   5671       Val = isNEONModifiedImm(NegatedImm,
   5672                                       SplatUndef.getZExtValue(), SplatBitSize,
   5673                                       DAG, dl, VmovVT, VT.is128BitVector(),
   5674                                       VMVNModImm);
   5675       if (Val.getNode()) {
   5676         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   5677         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   5678       }
   5679 
   5680       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
   5681       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
   5682         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
   5683         if (ImmVal != -1) {
   5684           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
   5685           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
   5686         }
   5687       }
   5688     }
   5689   }
   5690 
   5691   // Scan through the operands to see if only one value is used.
   5692   //
   5693   // As an optimisation, even if more than one value is used it may be more
   5694   // profitable to splat with one value then change some lanes.
   5695   //
   5696   // Heuristically we decide to do this if the vector has a "dominant" value,
   5697   // defined as splatted to more than half of the lanes.
   5698   unsigned NumElts = VT.getVectorNumElements();
   5699   bool isOnlyLowElement = true;
   5700   bool usesOnlyOneValue = true;
   5701   bool hasDominantValue = false;
   5702   bool isConstant = true;
   5703 
   5704   // Map of the number of times a particular SDValue appears in the
   5705   // element list.
   5706   DenseMap<SDValue, unsigned> ValueCounts;
   5707   SDValue Value;
   5708   for (unsigned i = 0; i < NumElts; ++i) {
   5709     SDValue V = Op.getOperand(i);
   5710     if (V.isUndef())
   5711       continue;
   5712     if (i > 0)
   5713       isOnlyLowElement = false;
   5714     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   5715       isConstant = false;
   5716 
   5717     ValueCounts.insert(std::make_pair(V, 0));
   5718     unsigned &Count = ValueCounts[V];
   5719 
   5720     // Is this value dominant? (takes up more than half of the lanes)
   5721     if (++Count > (NumElts / 2)) {
   5722       hasDominantValue = true;
   5723       Value = V;
   5724     }
   5725   }
   5726   if (ValueCounts.size() != 1)
   5727     usesOnlyOneValue = false;
   5728   if (!Value.getNode() && ValueCounts.size() > 0)
   5729     Value = ValueCounts.begin()->first;
   5730 
   5731   if (ValueCounts.size() == 0)
   5732     return DAG.getUNDEF(VT);
   5733 
   5734   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
   5735   // Keep going if we are hitting this case.
   5736   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
   5737     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   5738 
   5739   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5740 
   5741   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   5742   // i32 and try again.
   5743   if (hasDominantValue && EltSize <= 32) {
   5744     if (!isConstant) {
   5745       SDValue N;
   5746 
   5747       // If we are VDUPing a value that comes directly from a vector, that will
   5748       // cause an unnecessary move to and from a GPR, where instead we could
   5749       // just use VDUPLANE. We can only do this if the lane being extracted
   5750       // is at a constant index, as the VDUP from lane instructions only have
   5751       // constant-index forms.
   5752       ConstantSDNode *constIndex;
   5753       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   5754           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
   5755         // We need to create a new undef vector to use for the VDUPLANE if the
   5756         // size of the vector from which we get the value is different than the
   5757         // size of the vector that we need to create. We will insert the element
   5758         // such that the register coalescer will remove unnecessary copies.
   5759         if (VT != Value->getOperand(0).getValueType()) {
   5760           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
   5761                              VT.getVectorNumElements();
   5762           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5763                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
   5764                         Value, DAG.getConstant(index, dl, MVT::i32)),
   5765                            DAG.getConstant(index, dl, MVT::i32));
   5766         } else
   5767           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5768                         Value->getOperand(0), Value->getOperand(1));
   5769       } else
   5770         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   5771 
   5772       if (!usesOnlyOneValue) {
   5773         // The dominant value was splatted as 'N', but we now have to insert
   5774         // all differing elements.
   5775         for (unsigned I = 0; I < NumElts; ++I) {
   5776           if (Op.getOperand(I) == Value)
   5777             continue;
   5778           SmallVector<SDValue, 3> Ops;
   5779           Ops.push_back(N);
   5780           Ops.push_back(Op.getOperand(I));
   5781           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
   5782           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
   5783         }
   5784       }
   5785       return N;
   5786     }
   5787     if (VT.getVectorElementType().isFloatingPoint()) {
   5788       SmallVector<SDValue, 8> Ops;
   5789       for (unsigned i = 0; i < NumElts; ++i)
   5790         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   5791                                   Op.getOperand(i)));
   5792       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   5793       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
   5794       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   5795       if (Val.getNode())
   5796         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5797     }
   5798     if (usesOnlyOneValue) {
   5799       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   5800       if (isConstant && Val.getNode())
   5801         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   5802     }
   5803   }
   5804 
   5805   // If all elements are constants and the case above didn't get hit, fall back
   5806   // to the default expansion, which will generate a load from the constant
   5807   // pool.
   5808   if (isConstant)
   5809     return SDValue();
   5810 
   5811   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   5812   if (NumElts >= 4) {
   5813     SDValue shuffle = ReconstructShuffle(Op, DAG);
   5814     if (shuffle != SDValue())
   5815       return shuffle;
   5816   }
   5817 
   5818   // Vectors with 32- or 64-bit elements can be built by directly assigning
   5819   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   5820   // will be legalized.
   5821   if (EltSize >= 32) {
   5822     // Do the expansion with floating-point types, since that is what the VFP
   5823     // registers are defined to use, and since i64 is not legal.
   5824     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   5825     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   5826     SmallVector<SDValue, 8> Ops;
   5827     for (unsigned i = 0; i < NumElts; ++i)
   5828       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   5829     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   5830     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5831   }
   5832 
   5833   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
   5834   // know the default expansion would otherwise fall back on something even
   5835   // worse. For a vector with one or two non-undef values, that's
   5836   // scalar_to_vector for the elements followed by a shuffle (provided the
   5837   // shuffle is valid for the target) and materialization element by element
   5838   // on the stack followed by a load for everything else.
   5839   if (!isConstant && !usesOnlyOneValue) {
   5840     SDValue Vec = DAG.getUNDEF(VT);
   5841     for (unsigned i = 0 ; i < NumElts; ++i) {
   5842       SDValue V = Op.getOperand(i);
   5843       if (V.isUndef())
   5844         continue;
   5845       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
   5846       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
   5847     }
   5848     return Vec;
   5849   }
   5850 
   5851   return SDValue();
   5852 }
   5853 
   5854 // Gather data to see if the operation can be modelled as a
   5855 // shuffle in combination with VEXTs.
   5856 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   5857                                               SelectionDAG &DAG) const {
   5858   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
   5859   SDLoc dl(Op);
   5860   EVT VT = Op.getValueType();
   5861   unsigned NumElts = VT.getVectorNumElements();
   5862 
   5863   struct ShuffleSourceInfo {
   5864     SDValue Vec;
   5865     unsigned MinElt;
   5866     unsigned MaxElt;
   5867 
   5868     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
   5869     // be compatible with the shuffle we intend to construct. As a result
   5870     // ShuffleVec will be some sliding window into the original Vec.
   5871     SDValue ShuffleVec;
   5872 
   5873     // Code should guarantee that element i in Vec starts at element "WindowBase
   5874     // + i * WindowScale in ShuffleVec".
   5875     int WindowBase;
   5876     int WindowScale;
   5877 
   5878     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
   5879     ShuffleSourceInfo(SDValue Vec)
   5880         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
   5881           WindowScale(1) {}
   5882   };
   5883 
   5884   // First gather all vectors used as an immediate source for this BUILD_VECTOR
   5885   // node.
   5886   SmallVector<ShuffleSourceInfo, 2> Sources;
   5887   for (unsigned i = 0; i < NumElts; ++i) {
   5888     SDValue V = Op.getOperand(i);
   5889     if (V.isUndef())
   5890       continue;
   5891     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   5892       // A shuffle can only come from building a vector from various
   5893       // elements of other vectors.
   5894       return SDValue();
   5895     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
   5896       // Furthermore, shuffles require a constant mask, whereas extractelts
   5897       // accept variable indices.
   5898       return SDValue();
   5899     }
   5900 
   5901     // Add this element source to the list if it's not already there.
   5902     SDValue SourceVec = V.getOperand(0);
   5903     auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
   5904     if (Source == Sources.end())
   5905       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
   5906 
   5907     // Update the minimum and maximum lane number seen.
   5908     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   5909     Source->MinElt = std::min(Source->MinElt, EltNo);
   5910     Source->MaxElt = std::max(Source->MaxElt, EltNo);
   5911   }
   5912 
   5913   // Currently only do something sane when at most two source vectors
   5914   // are involved.
   5915   if (Sources.size() > 2)
   5916     return SDValue();
   5917 
   5918   // Find out the smallest element size among result and two sources, and use
   5919   // it as element size to build the shuffle_vector.
   5920   EVT SmallestEltTy = VT.getVectorElementType();
   5921   for (auto &Source : Sources) {
   5922     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
   5923     if (SrcEltTy.bitsLT(SmallestEltTy))
   5924       SmallestEltTy = SrcEltTy;
   5925   }
   5926   unsigned ResMultiplier =
   5927       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
   5928   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
   5929   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
   5930 
   5931   // If the source vector is too wide or too narrow, we may nevertheless be able
   5932   // to construct a compatible shuffle either by concatenating it with UNDEF or
   5933   // extracting a suitable range of elements.
   5934   for (auto &Src : Sources) {
   5935     EVT SrcVT = Src.ShuffleVec.getValueType();
   5936 
   5937     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
   5938       continue;
   5939 
   5940     // This stage of the search produces a source with the same element type as
   5941     // the original, but with a total width matching the BUILD_VECTOR output.
   5942     EVT EltVT = SrcVT.getVectorElementType();
   5943     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
   5944     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
   5945 
   5946     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
   5947       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
   5948         return SDValue();
   5949       // We can pad out the smaller vector for free, so if it's part of a
   5950       // shuffle...
   5951       Src.ShuffleVec =
   5952           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
   5953                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
   5954       continue;
   5955     }
   5956 
   5957     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
   5958       return SDValue();
   5959 
   5960     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
   5961       // Span too large for a VEXT to cope
   5962       return SDValue();
   5963     }
   5964 
   5965     if (Src.MinElt >= NumSrcElts) {
   5966       // The extraction can just take the second half
   5967       Src.ShuffleVec =
   5968           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5969                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
   5970       Src.WindowBase = -NumSrcElts;
   5971     } else if (Src.MaxElt < NumSrcElts) {
   5972       // The extraction can just take the first half
   5973       Src.ShuffleVec =
   5974           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5975                       DAG.getConstant(0, dl, MVT::i32));
   5976     } else {
   5977       // An actual VEXT is needed
   5978       SDValue VEXTSrc1 =
   5979           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5980                       DAG.getConstant(0, dl, MVT::i32));
   5981       SDValue VEXTSrc2 =
   5982           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5983                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
   5984 
   5985       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
   5986                                    VEXTSrc2,
   5987                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
   5988       Src.WindowBase = -Src.MinElt;
   5989     }
   5990   }
   5991 
   5992   // Another possible incompatibility occurs from the vector element types. We
   5993   // can fix this by bitcasting the source vectors to the same type we intend
   5994   // for the shuffle.
   5995   for (auto &Src : Sources) {
   5996     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
   5997     if (SrcEltTy == SmallestEltTy)
   5998       continue;
   5999     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
   6000     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
   6001     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
   6002     Src.WindowBase *= Src.WindowScale;
   6003   }
   6004 
   6005   // Final sanity check before we try to actually produce a shuffle.
   6006   DEBUG(
   6007     for (auto Src : Sources)
   6008       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
   6009   );
   6010 
   6011   // The stars all align, our next step is to produce the mask for the shuffle.
   6012   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
   6013   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
   6014   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
   6015     SDValue Entry = Op.getOperand(i);
   6016     if (Entry.isUndef())
   6017       continue;
   6018 
   6019     auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
   6020     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
   6021 
   6022     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
   6023     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
   6024     // segment.
   6025     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
   6026     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
   6027                                VT.getVectorElementType().getSizeInBits());
   6028     int LanesDefined = BitsDefined / BitsPerShuffleLane;
   6029 
   6030     // This source is expected to fill ResMultiplier lanes of the final shuffle,
   6031     // starting at the appropriate offset.
   6032     int *LaneMask = &Mask[i * ResMultiplier];
   6033 
   6034     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
   6035     ExtractBase += NumElts * (Src - Sources.begin());
   6036     for (int j = 0; j < LanesDefined; ++j)
   6037       LaneMask[j] = ExtractBase + j;
   6038   }
   6039 
   6040   // Final check before we try to produce nonsense...
   6041   if (!isShuffleMaskLegal(Mask, ShuffleVT))
   6042     return SDValue();
   6043 
   6044   // We can't handle more than two sources. This should have already
   6045   // been checked before this point.
   6046   assert(Sources.size() <= 2 && "Too many sources!");
   6047 
   6048   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
   6049   for (unsigned i = 0; i < Sources.size(); ++i)
   6050     ShuffleOps[i] = Sources[i].ShuffleVec;
   6051 
   6052   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
   6053                                          ShuffleOps[1], Mask);
   6054   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
   6055 }
   6056 
   6057 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   6058 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   6059 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   6060 /// are assumed to be legal.
   6061 bool
   6062 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   6063                                       EVT VT) const {
   6064   if (VT.getVectorNumElements() == 4 &&
   6065       (VT.is128BitVector() || VT.is64BitVector())) {
   6066     unsigned PFIndexes[4];
   6067     for (unsigned i = 0; i != 4; ++i) {
   6068       if (M[i] < 0)
   6069         PFIndexes[i] = 8;
   6070       else
   6071         PFIndexes[i] = M[i];
   6072     }
   6073 
   6074     // Compute the index in the perfect shuffle table.
   6075     unsigned PFTableIndex =
   6076       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   6077     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   6078     unsigned Cost = (PFEntry >> 30);
   6079 
   6080     if (Cost <= 4)
   6081       return true;
   6082   }
   6083 
   6084   bool ReverseVEXT, isV_UNDEF;
   6085   unsigned Imm, WhichResult;
   6086 
   6087   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   6088   return (EltSize >= 32 ||
   6089           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   6090           isVREVMask(M, VT, 64) ||
   6091           isVREVMask(M, VT, 32) ||
   6092           isVREVMask(M, VT, 16) ||
   6093           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   6094           isVTBLMask(M, VT) ||
   6095           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
   6096           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
   6097 }
   6098 
   6099 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   6100 /// the specified operations to build the shuffle.
   6101 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   6102                                       SDValue RHS, SelectionDAG &DAG,
   6103                                       const SDLoc &dl) {
   6104   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   6105   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   6106   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   6107 
   6108   enum {
   6109     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   6110     OP_VREV,
   6111     OP_VDUP0,
   6112     OP_VDUP1,
   6113     OP_VDUP2,
   6114     OP_VDUP3,
   6115     OP_VEXT1,
   6116     OP_VEXT2,
   6117     OP_VEXT3,
   6118     OP_VUZPL, // VUZP, left result
   6119     OP_VUZPR, // VUZP, right result
   6120     OP_VZIPL, // VZIP, left result
   6121     OP_VZIPR, // VZIP, right result
   6122     OP_VTRNL, // VTRN, left result
   6123     OP_VTRNR  // VTRN, right result
   6124   };
   6125 
   6126   if (OpNum == OP_COPY) {
   6127     if (LHSID == (1*9+2)*9+3) return LHS;
   6128     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   6129     return RHS;
   6130   }
   6131 
   6132   SDValue OpLHS, OpRHS;
   6133   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   6134   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   6135   EVT VT = OpLHS.getValueType();
   6136 
   6137   switch (OpNum) {
   6138   default: llvm_unreachable("Unknown shuffle opcode!");
   6139   case OP_VREV:
   6140     // VREV divides the vector in half and swaps within the half.
   6141     if (VT.getVectorElementType() == MVT::i32 ||
   6142         VT.getVectorElementType() == MVT::f32)
   6143       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   6144     // vrev <4 x i16> -> VREV32
   6145     if (VT.getVectorElementType() == MVT::i16)
   6146       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   6147     // vrev <4 x i8> -> VREV16
   6148     assert(VT.getVectorElementType() == MVT::i8);
   6149     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   6150   case OP_VDUP0:
   6151   case OP_VDUP1:
   6152   case OP_VDUP2:
   6153   case OP_VDUP3:
   6154     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   6155                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
   6156   case OP_VEXT1:
   6157   case OP_VEXT2:
   6158   case OP_VEXT3:
   6159     return DAG.getNode(ARMISD::VEXT, dl, VT,
   6160                        OpLHS, OpRHS,
   6161                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
   6162   case OP_VUZPL:
   6163   case OP_VUZPR:
   6164     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   6165                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   6166   case OP_VZIPL:
   6167   case OP_VZIPR:
   6168     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   6169                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   6170   case OP_VTRNL:
   6171   case OP_VTRNR:
   6172     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   6173                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   6174   }
   6175 }
   6176 
   6177 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   6178                                        ArrayRef<int> ShuffleMask,
   6179                                        SelectionDAG &DAG) {
   6180   // Check to see if we can use the VTBL instruction.
   6181   SDValue V1 = Op.getOperand(0);
   6182   SDValue V2 = Op.getOperand(1);
   6183   SDLoc DL(Op);
   6184 
   6185   SmallVector<SDValue, 8> VTBLMask;
   6186   for (ArrayRef<int>::iterator
   6187          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   6188     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
   6189 
   6190   if (V2.getNode()->isUndef())
   6191     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   6192                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
   6193 
   6194   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   6195                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
   6196 }
   6197 
   6198 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
   6199                                                       SelectionDAG &DAG) {
   6200   SDLoc DL(Op);
   6201   SDValue OpLHS = Op.getOperand(0);
   6202   EVT VT = OpLHS.getValueType();
   6203 
   6204   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
   6205          "Expect an v8i16/v16i8 type");
   6206   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
   6207   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
   6208   // extract the first 8 bytes into the top double word and the last 8 bytes
   6209   // into the bottom double word. The v8i16 case is similar.
   6210   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
   6211   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
   6212                      DAG.getConstant(ExtractNum, DL, MVT::i32));
   6213 }
   6214 
   6215 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   6216   SDValue V1 = Op.getOperand(0);
   6217   SDValue V2 = Op.getOperand(1);
   6218   SDLoc dl(Op);
   6219   EVT VT = Op.getValueType();
   6220   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   6221 
   6222   // Convert shuffles that are directly supported on NEON to target-specific
   6223   // DAG nodes, instead of keeping them as shuffles and matching them again
   6224   // during code selection.  This is more efficient and avoids the possibility
   6225   // of inconsistencies between legalization and selection.
   6226   // FIXME: floating-point vectors should be canonicalized to integer vectors
   6227   // of the same time so that they get CSEd properly.
   6228   ArrayRef<int> ShuffleMask = SVN->getMask();
   6229 
   6230   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   6231   if (EltSize <= 32) {
   6232     if (SVN->isSplat()) {
   6233       int Lane = SVN->getSplatIndex();
   6234       // If this is undef splat, generate it via "just" vdup, if possible.
   6235       if (Lane == -1) Lane = 0;
   6236 
   6237       // Test if V1 is a SCALAR_TO_VECTOR.
   6238       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   6239         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   6240       }
   6241       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
   6242       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
   6243       // reaches it).
   6244       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
   6245           !isa<ConstantSDNode>(V1.getOperand(0))) {
   6246         bool IsScalarToVector = true;
   6247         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
   6248           if (!V1.getOperand(i).isUndef()) {
   6249             IsScalarToVector = false;
   6250             break;
   6251           }
   6252         if (IsScalarToVector)
   6253           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   6254       }
   6255       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   6256                          DAG.getConstant(Lane, dl, MVT::i32));
   6257     }
   6258 
   6259     bool ReverseVEXT;
   6260     unsigned Imm;
   6261     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   6262       if (ReverseVEXT)
   6263         std::swap(V1, V2);
   6264       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   6265                          DAG.getConstant(Imm, dl, MVT::i32));
   6266     }
   6267 
   6268     if (isVREVMask(ShuffleMask, VT, 64))
   6269       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   6270     if (isVREVMask(ShuffleMask, VT, 32))
   6271       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   6272     if (isVREVMask(ShuffleMask, VT, 16))
   6273       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   6274 
   6275     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
   6276       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
   6277                          DAG.getConstant(Imm, dl, MVT::i32));
   6278     }
   6279 
   6280     // Check for Neon shuffles that modify both input vectors in place.
   6281     // If both results are used, i.e., if there are two shuffles with the same
   6282     // source operands and with masks corresponding to both results of one of
   6283     // these operations, DAG memoization will ensure that a single node is
   6284     // used for both shuffles.
   6285     unsigned WhichResult;
   6286     bool isV_UNDEF;
   6287     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
   6288             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
   6289       if (isV_UNDEF)
   6290         V2 = V1;
   6291       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
   6292           .getValue(WhichResult);
   6293     }
   6294 
   6295     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
   6296     // shuffles that produce a result larger than their operands with:
   6297     //   shuffle(concat(v1, undef), concat(v2, undef))
   6298     // ->
   6299     //   shuffle(concat(v1, v2), undef)
   6300     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
   6301     //
   6302     // This is useful in the general case, but there are special cases where
   6303     // native shuffles produce larger results: the two-result ops.
   6304     //
   6305     // Look through the concat when lowering them:
   6306     //   shuffle(concat(v1, v2), undef)
   6307     // ->
   6308     //   concat(VZIP(v1, v2):0, :1)
   6309     //
   6310     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
   6311       SDValue SubV1 = V1->getOperand(0);
   6312       SDValue SubV2 = V1->getOperand(1);
   6313       EVT SubVT = SubV1.getValueType();
   6314 
   6315       // We expect these to have been canonicalized to -1.
   6316       assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) {
   6317         return i < (int)VT.getVectorNumElements();
   6318       }) && "Unexpected shuffle index into UNDEF operand!");
   6319 
   6320       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
   6321               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
   6322         if (isV_UNDEF)
   6323           SubV2 = SubV1;
   6324         assert((WhichResult == 0) &&
   6325                "In-place shuffle of concat can only have one result!");
   6326         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
   6327                                   SubV1, SubV2);
   6328         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
   6329                            Res.getValue(1));
   6330       }
   6331     }
   6332   }
   6333 
   6334   // If the shuffle is not directly supported and it has 4 elements, use
   6335   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   6336   unsigned NumElts = VT.getVectorNumElements();
   6337   if (NumElts == 4) {
   6338     unsigned PFIndexes[4];
   6339     for (unsigned i = 0; i != 4; ++i) {
   6340       if (ShuffleMask[i] < 0)
   6341         PFIndexes[i] = 8;
   6342       else
   6343         PFIndexes[i] = ShuffleMask[i];
   6344     }
   6345 
   6346     // Compute the index in the perfect shuffle table.
   6347     unsigned PFTableIndex =
   6348       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   6349     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   6350     unsigned Cost = (PFEntry >> 30);
   6351 
   6352     if (Cost <= 4)
   6353       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   6354   }
   6355 
   6356   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   6357   if (EltSize >= 32) {
   6358     // Do the expansion with floating-point types, since that is what the VFP
   6359     // registers are defined to use, and since i64 is not legal.
   6360     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   6361     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   6362     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   6363     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   6364     SmallVector<SDValue, 8> Ops;
   6365     for (unsigned i = 0; i < NumElts; ++i) {
   6366       if (ShuffleMask[i] < 0)
   6367         Ops.push_back(DAG.getUNDEF(EltVT));
   6368       else
   6369         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   6370                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   6371                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   6372                                                   dl, MVT::i32)));
   6373     }
   6374     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   6375     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   6376   }
   6377 
   6378   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
   6379     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
   6380 
   6381   if (VT == MVT::v8i8)
   6382     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
   6383       return NewOp;
   6384 
   6385   return SDValue();
   6386 }
   6387 
   6388 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   6389   // INSERT_VECTOR_ELT is legal only for immediate indexes.
   6390   SDValue Lane = Op.getOperand(2);
   6391   if (!isa<ConstantSDNode>(Lane))
   6392     return SDValue();
   6393 
   6394   return Op;
   6395 }
   6396 
   6397 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   6398   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   6399   SDValue Lane = Op.getOperand(1);
   6400   if (!isa<ConstantSDNode>(Lane))
   6401     return SDValue();
   6402 
   6403   SDValue Vec = Op.getOperand(0);
   6404   if (Op.getValueType() == MVT::i32 &&
   6405       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
   6406     SDLoc dl(Op);
   6407     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   6408   }
   6409 
   6410   return Op;
   6411 }
   6412 
   6413 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   6414   // The only time a CONCAT_VECTORS operation can have legal types is when
   6415   // two 64-bit vectors are concatenated to a 128-bit vector.
   6416   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   6417          "unexpected CONCAT_VECTORS");
   6418   SDLoc dl(Op);
   6419   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   6420   SDValue Op0 = Op.getOperand(0);
   6421   SDValue Op1 = Op.getOperand(1);
   6422   if (!Op0.isUndef())
   6423     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   6424                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   6425                       DAG.getIntPtrConstant(0, dl));
   6426   if (!Op1.isUndef())
   6427     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   6428                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   6429                       DAG.getIntPtrConstant(1, dl));
   6430   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   6431 }
   6432 
   6433 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   6434 /// element has been zero/sign-extended, depending on the isSigned parameter,
   6435 /// from an integer type half its size.
   6436 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   6437                                    bool isSigned) {
   6438   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   6439   EVT VT = N->getValueType(0);
   6440   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   6441     SDNode *BVN = N->getOperand(0).getNode();
   6442     if (BVN->getValueType(0) != MVT::v4i32 ||
   6443         BVN->getOpcode() != ISD::BUILD_VECTOR)
   6444       return false;
   6445     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
   6446     unsigned HiElt = 1 - LoElt;
   6447     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   6448     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   6449     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   6450     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   6451     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   6452       return false;
   6453     if (isSigned) {
   6454       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   6455           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   6456         return true;
   6457     } else {
   6458       if (Hi0->isNullValue() && Hi1->isNullValue())
   6459         return true;
   6460     }
   6461     return false;
   6462   }
   6463 
   6464   if (N->getOpcode() != ISD::BUILD_VECTOR)
   6465     return false;
   6466 
   6467   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   6468     SDNode *Elt = N->getOperand(i).getNode();
   6469     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   6470       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   6471       unsigned HalfSize = EltSize / 2;
   6472       if (isSigned) {
   6473         if (!isIntN(HalfSize, C->getSExtValue()))
   6474           return false;
   6475       } else {
   6476         if (!isUIntN(HalfSize, C->getZExtValue()))
   6477           return false;
   6478       }
   6479       continue;
   6480     }
   6481     return false;
   6482   }
   6483 
   6484   return true;
   6485 }
   6486 
   6487 /// isSignExtended - Check if a node is a vector value that is sign-extended
   6488 /// or a constant BUILD_VECTOR with sign-extended elements.
   6489 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   6490   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   6491     return true;
   6492   if (isExtendedBUILD_VECTOR(N, DAG, true))
   6493     return true;
   6494   return false;
   6495 }
   6496 
   6497 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   6498 /// or a constant BUILD_VECTOR with zero-extended elements.
   6499 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   6500   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   6501     return true;
   6502   if (isExtendedBUILD_VECTOR(N, DAG, false))
   6503     return true;
   6504   return false;
   6505 }
   6506 
   6507 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
   6508   if (OrigVT.getSizeInBits() >= 64)
   6509     return OrigVT;
   6510 
   6511   assert(OrigVT.isSimple() && "Expecting a simple value type");
   6512 
   6513   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
   6514   switch (OrigSimpleTy) {
   6515   default: llvm_unreachable("Unexpected Vector Type");
   6516   case MVT::v2i8:
   6517   case MVT::v2i16:
   6518      return MVT::v2i32;
   6519   case MVT::v4i8:
   6520     return  MVT::v4i16;
   6521   }
   6522 }
   6523 
   6524 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
   6525 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
   6526 /// We insert the required extension here to get the vector to fill a D register.
   6527 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
   6528                                             const EVT &OrigTy,
   6529                                             const EVT &ExtTy,
   6530                                             unsigned ExtOpcode) {
   6531   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
   6532   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
   6533   // 64-bits we need to insert a new extension so that it will be 64-bits.
   6534   assert(ExtTy.is128BitVector() && "Unexpected extension size");
   6535   if (OrigTy.getSizeInBits() >= 64)
   6536     return N;
   6537 
   6538   // Must extend size to at least 64 bits to be used as an operand for VMULL.
   6539   EVT NewVT = getExtensionTo64Bits(OrigTy);
   6540 
   6541   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
   6542 }
   6543 
   6544 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
   6545 /// does not do any sign/zero extension. If the original vector is less
   6546 /// than 64 bits, an appropriate extension will be added after the load to
   6547 /// reach a total size of 64 bits. We have to add the extension separately
   6548 /// because ARM does not have a sign/zero extending load for vectors.
   6549 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
   6550   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
   6551 
   6552   // The load already has the right type.
   6553   if (ExtendedTy == LD->getMemoryVT())
   6554     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
   6555                 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
   6556                 LD->isNonTemporal(), LD->isInvariant(),
   6557                 LD->getAlignment());
   6558 
   6559   // We need to create a zextload/sextload. We cannot just create a load
   6560   // followed by a zext/zext node because LowerMUL is also run during normal
   6561   // operation legalization where we can't create illegal types.
   6562   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
   6563                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
   6564                         LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
   6565                         LD->isNonTemporal(), LD->getAlignment());
   6566 }
   6567 
   6568 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
   6569 /// extending load, or BUILD_VECTOR with extended elements, return the
   6570 /// unextended value. The unextended vector should be 64 bits so that it can
   6571 /// be used as an operand to a VMULL instruction. If the original vector size
   6572 /// before extension is less than 64 bits we add a an extension to resize
   6573 /// the vector to 64 bits.
   6574 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
   6575   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   6576     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
   6577                                         N->getOperand(0)->getValueType(0),
   6578                                         N->getValueType(0),
   6579                                         N->getOpcode());
   6580 
   6581   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
   6582     return SkipLoadExtensionForVMULL(LD, DAG);
   6583 
   6584   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   6585   // have been legalized as a BITCAST from v4i32.
   6586   if (N->getOpcode() == ISD::BITCAST) {
   6587     SDNode *BVN = N->getOperand(0).getNode();
   6588     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   6589            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   6590     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
   6591     return DAG.getBuildVector(
   6592         MVT::v2i32, SDLoc(N),
   6593         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
   6594   }
   6595   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   6596   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   6597   EVT VT = N->getValueType(0);
   6598   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
   6599   unsigned NumElts = VT.getVectorNumElements();
   6600   MVT TruncVT = MVT::getIntegerVT(EltSize);
   6601   SmallVector<SDValue, 8> Ops;
   6602   SDLoc dl(N);
   6603   for (unsigned i = 0; i != NumElts; ++i) {
   6604     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   6605     const APInt &CInt = C->getAPIntValue();
   6606     // Element types smaller than 32 bits are not legal, so use i32 elements.
   6607     // The values are implicitly truncated so sext vs. zext doesn't matter.
   6608     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
   6609   }
   6610   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
   6611 }
   6612 
   6613 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   6614   unsigned Opcode = N->getOpcode();
   6615   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   6616     SDNode *N0 = N->getOperand(0).getNode();
   6617     SDNode *N1 = N->getOperand(1).getNode();
   6618     return N0->hasOneUse() && N1->hasOneUse() &&
   6619       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   6620   }
   6621   return false;
   6622 }
   6623 
   6624 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   6625   unsigned Opcode = N->getOpcode();
   6626   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   6627     SDNode *N0 = N->getOperand(0).getNode();
   6628     SDNode *N1 = N->getOperand(1).getNode();
   6629     return N0->hasOneUse() && N1->hasOneUse() &&
   6630       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   6631   }
   6632   return false;
   6633 }
   6634 
   6635 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   6636   // Multiplications are only custom-lowered for 128-bit vectors so that
   6637   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   6638   EVT VT = Op.getValueType();
   6639   assert(VT.is128BitVector() && VT.isInteger() &&
   6640          "unexpected type for custom-lowering ISD::MUL");
   6641   SDNode *N0 = Op.getOperand(0).getNode();
   6642   SDNode *N1 = Op.getOperand(1).getNode();
   6643   unsigned NewOpc = 0;
   6644   bool isMLA = false;
   6645   bool isN0SExt = isSignExtended(N0, DAG);
   6646   bool isN1SExt = isSignExtended(N1, DAG);
   6647   if (isN0SExt && isN1SExt)
   6648     NewOpc = ARMISD::VMULLs;
   6649   else {
   6650     bool isN0ZExt = isZeroExtended(N0, DAG);
   6651     bool isN1ZExt = isZeroExtended(N1, DAG);
   6652     if (isN0ZExt && isN1ZExt)
   6653       NewOpc = ARMISD::VMULLu;
   6654     else if (isN1SExt || isN1ZExt) {
   6655       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   6656       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   6657       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   6658         NewOpc = ARMISD::VMULLs;
   6659         isMLA = true;
   6660       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   6661         NewOpc = ARMISD::VMULLu;
   6662         isMLA = true;
   6663       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   6664         std::swap(N0, N1);
   6665         NewOpc = ARMISD::VMULLu;
   6666         isMLA = true;
   6667       }
   6668     }
   6669 
   6670     if (!NewOpc) {
   6671       if (VT == MVT::v2i64)
   6672         // Fall through to expand this.  It is not legal.
   6673         return SDValue();
   6674       else
   6675         // Other vector multiplications are legal.
   6676         return Op;
   6677     }
   6678   }
   6679 
   6680   // Legalize to a VMULL instruction.
   6681   SDLoc DL(Op);
   6682   SDValue Op0;
   6683   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
   6684   if (!isMLA) {
   6685     Op0 = SkipExtensionForVMULL(N0, DAG);
   6686     assert(Op0.getValueType().is64BitVector() &&
   6687            Op1.getValueType().is64BitVector() &&
   6688            "unexpected types for extended operands to VMULL");
   6689     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   6690   }
   6691 
   6692   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   6693   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   6694   //   vmull q0, d4, d6
   6695   //   vmlal q0, d5, d6
   6696   // is faster than
   6697   //   vaddl q0, d4, d5
   6698   //   vmovl q1, d6
   6699   //   vmul  q0, q0, q1
   6700   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
   6701   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
   6702   EVT Op1VT = Op1.getValueType();
   6703   return DAG.getNode(N0->getOpcode(), DL, VT,
   6704                      DAG.getNode(NewOpc, DL, VT,
   6705                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   6706                      DAG.getNode(NewOpc, DL, VT,
   6707                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   6708 }
   6709 
   6710 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
   6711                               SelectionDAG &DAG) {
   6712   // TODO: Should this propagate fast-math-flags?
   6713 
   6714   // Convert to float
   6715   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   6716   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   6717   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   6718   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   6719   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   6720   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   6721   // Get reciprocal estimate.
   6722   // float4 recip = vrecpeq_f32(yf);
   6723   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6724                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   6725                    Y);
   6726   // Because char has a smaller range than uchar, we can actually get away
   6727   // without any newton steps.  This requires that we use a weird bias
   6728   // of 0xb000, however (again, this has been exhaustively tested).
   6729   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   6730   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   6731   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   6732   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
   6733   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   6734   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   6735   // Convert back to short.
   6736   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   6737   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   6738   return X;
   6739 }
   6740 
   6741 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
   6742                                SelectionDAG &DAG) {
   6743   // TODO: Should this propagate fast-math-flags?
   6744 
   6745   SDValue N2;
   6746   // Convert to float.
   6747   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   6748   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   6749   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   6750   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   6751   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   6752   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   6753 
   6754   // Use reciprocal estimate and one refinement step.
   6755   // float4 recip = vrecpeq_f32(yf);
   6756   // recip *= vrecpsq_f32(yf, recip);
   6757   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6758                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   6759                    N1);
   6760   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6761                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   6762                    N1, N2);
   6763   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6764   // Because short has a smaller range than ushort, we can actually get away
   6765   // with only a single newton step.  This requires that we use a weird bias
   6766   // of 89, however (again, this has been exhaustively tested).
   6767   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   6768   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   6769   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   6770   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
   6771   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   6772   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   6773   // Convert back to integer and return.
   6774   // return vmovn_s32(vcvt_s32_f32(result));
   6775   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   6776   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   6777   return N0;
   6778 }
   6779 
   6780 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   6781   EVT VT = Op.getValueType();
   6782   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   6783          "unexpected type for custom-lowering ISD::SDIV");
   6784 
   6785   SDLoc dl(Op);
   6786   SDValue N0 = Op.getOperand(0);
   6787   SDValue N1 = Op.getOperand(1);
   6788   SDValue N2, N3;
   6789 
   6790   if (VT == MVT::v8i8) {
   6791     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   6792     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   6793 
   6794     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6795                      DAG.getIntPtrConstant(4, dl));
   6796     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6797                      DAG.getIntPtrConstant(4, dl));
   6798     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6799                      DAG.getIntPtrConstant(0, dl));
   6800     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6801                      DAG.getIntPtrConstant(0, dl));
   6802 
   6803     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   6804     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   6805 
   6806     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   6807     N0 = LowerCONCAT_VECTORS(N0, DAG);
   6808 
   6809     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   6810     return N0;
   6811   }
   6812   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   6813 }
   6814 
   6815 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   6816   // TODO: Should this propagate fast-math-flags?
   6817   EVT VT = Op.getValueType();
   6818   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   6819          "unexpected type for custom-lowering ISD::UDIV");
   6820 
   6821   SDLoc dl(Op);
   6822   SDValue N0 = Op.getOperand(0);
   6823   SDValue N1 = Op.getOperand(1);
   6824   SDValue N2, N3;
   6825 
   6826   if (VT == MVT::v8i8) {
   6827     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   6828     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   6829 
   6830     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6831                      DAG.getIntPtrConstant(4, dl));
   6832     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6833                      DAG.getIntPtrConstant(4, dl));
   6834     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6835                      DAG.getIntPtrConstant(0, dl));
   6836     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6837                      DAG.getIntPtrConstant(0, dl));
   6838 
   6839     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   6840     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   6841 
   6842     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   6843     N0 = LowerCONCAT_VECTORS(N0, DAG);
   6844 
   6845     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   6846                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
   6847                                      MVT::i32),
   6848                      N0);
   6849     return N0;
   6850   }
   6851 
   6852   // v4i16 sdiv ... Convert to float.
   6853   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   6854   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   6855   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   6856   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   6857   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   6858   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   6859 
   6860   // Use reciprocal estimate and two refinement steps.
   6861   // float4 recip = vrecpeq_f32(yf);
   6862   // recip *= vrecpsq_f32(yf, recip);
   6863   // recip *= vrecpsq_f32(yf, recip);
   6864   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6865                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   6866                    BN1);
   6867   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6868                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   6869                    BN1, N2);
   6870   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6871   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6872                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   6873                    BN1, N2);
   6874   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6875   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   6876   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   6877   // and that it will never cause us to return an answer too large).
   6878   // float4 result = as_float4(as_int4(xf*recip) + 2);
   6879   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   6880   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   6881   N1 = DAG.getConstant(2, dl, MVT::v4i32);
   6882   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   6883   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   6884   // Convert back to integer and return.
   6885   // return vmovn_u32(vcvt_s32_f32(result));
   6886   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   6887   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   6888   return N0;
   6889 }
   6890 
   6891 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   6892   EVT VT = Op.getNode()->getValueType(0);
   6893   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   6894 
   6895   unsigned Opc;
   6896   bool ExtraOp = false;
   6897   switch (Op.getOpcode()) {
   6898   default: llvm_unreachable("Invalid code");
   6899   case ISD::ADDC: Opc = ARMISD::ADDC; break;
   6900   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
   6901   case ISD::SUBC: Opc = ARMISD::SUBC; break;
   6902   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
   6903   }
   6904 
   6905   if (!ExtraOp)
   6906     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6907                        Op.getOperand(1));
   6908   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6909                      Op.getOperand(1), Op.getOperand(2));
   6910 }
   6911 
   6912 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
   6913   assert(Subtarget->isTargetDarwin());
   6914 
   6915   // For iOS, we want to call an alternative entry point: __sincos_stret,
   6916   // return values are passed via sret.
   6917   SDLoc dl(Op);
   6918   SDValue Arg = Op.getOperand(0);
   6919   EVT ArgVT = Arg.getValueType();
   6920   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   6921   auto PtrVT = getPointerTy(DAG.getDataLayout());
   6922 
   6923   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   6924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6925 
   6926   // Pair of floats / doubles used to pass the result.
   6927   Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
   6928   auto &DL = DAG.getDataLayout();
   6929 
   6930   ArgListTy Args;
   6931   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
   6932   SDValue SRet;
   6933   if (ShouldUseSRet) {
   6934     // Create stack object for sret.
   6935     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
   6936     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
   6937     int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
   6938     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
   6939 
   6940     ArgListEntry Entry;
   6941     Entry.Node = SRet;
   6942     Entry.Ty = RetTy->getPointerTo();
   6943     Entry.isSExt = false;
   6944     Entry.isZExt = false;
   6945     Entry.isSRet = true;
   6946     Args.push_back(Entry);
   6947     RetTy = Type::getVoidTy(*DAG.getContext());
   6948   }
   6949 
   6950   ArgListEntry Entry;
   6951   Entry.Node = Arg;
   6952   Entry.Ty = ArgTy;
   6953   Entry.isSExt = false;
   6954   Entry.isZExt = false;
   6955   Args.push_back(Entry);
   6956 
   6957   const char *LibcallName =
   6958       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
   6959   RTLIB::Libcall LC =
   6960       (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
   6961   CallingConv::ID CC = getLibcallCallingConv(LC);
   6962   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
   6963 
   6964   TargetLowering::CallLoweringInfo CLI(DAG);
   6965   CLI.setDebugLoc(dl)
   6966       .setChain(DAG.getEntryNode())
   6967       .setCallee(CC, RetTy, Callee, std::move(Args))
   6968       .setDiscardResult(ShouldUseSRet);
   6969   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   6970 
   6971   if (!ShouldUseSRet)
   6972     return CallResult.first;
   6973 
   6974   SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
   6975                                 MachinePointerInfo(), false, false, false, 0);
   6976 
   6977   // Address of cos field.
   6978   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
   6979                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
   6980   SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
   6981                                 MachinePointerInfo(), false, false, false, 0);
   6982 
   6983   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
   6984   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
   6985                      LoadSin.getValue(0), LoadCos.getValue(0));
   6986 }
   6987 
   6988 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
   6989                                                   bool Signed,
   6990                                                   SDValue &Chain) const {
   6991   EVT VT = Op.getValueType();
   6992   assert((VT == MVT::i32 || VT == MVT::i64) &&
   6993          "unexpected type for custom lowering DIV");
   6994   SDLoc dl(Op);
   6995 
   6996   const auto &DL = DAG.getDataLayout();
   6997   const auto &TLI = DAG.getTargetLoweringInfo();
   6998 
   6999   const char *Name = nullptr;
   7000   if (Signed)
   7001     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
   7002   else
   7003     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
   7004 
   7005   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
   7006 
   7007   ARMTargetLowering::ArgListTy Args;
   7008 
   7009   for (auto AI : {1, 0}) {
   7010     ArgListEntry Arg;
   7011     Arg.Node = Op.getOperand(AI);
   7012     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
   7013     Args.push_back(Arg);
   7014   }
   7015 
   7016   CallLoweringInfo CLI(DAG);
   7017   CLI.setDebugLoc(dl)
   7018     .setChain(Chain)
   7019     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
   7020                ES, std::move(Args));
   7021 
   7022   return LowerCallTo(CLI).first;
   7023 }
   7024 
   7025 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
   7026                                             bool Signed) const {
   7027   assert(Op.getValueType() == MVT::i32 &&
   7028          "unexpected type for custom lowering DIV");
   7029   SDLoc dl(Op);
   7030 
   7031   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
   7032                                DAG.getEntryNode(), Op.getOperand(1));
   7033 
   7034   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
   7035 }
   7036 
   7037 void ARMTargetLowering::ExpandDIV_Windows(
   7038     SDValue Op, SelectionDAG &DAG, bool Signed,
   7039     SmallVectorImpl<SDValue> &Results) const {
   7040   const auto &DL = DAG.getDataLayout();
   7041   const auto &TLI = DAG.getTargetLoweringInfo();
   7042 
   7043   assert(Op.getValueType() == MVT::i64 &&
   7044          "unexpected type for custom lowering DIV");
   7045   SDLoc dl(Op);
   7046 
   7047   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
   7048                            DAG.getConstant(0, dl, MVT::i32));
   7049   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
   7050                            DAG.getConstant(1, dl, MVT::i32));
   7051   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi);
   7052 
   7053   SDValue DBZCHK =
   7054       DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or);
   7055 
   7056   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
   7057 
   7058   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
   7059   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
   7060                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
   7061   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
   7062 
   7063   Results.push_back(Lower);
   7064   Results.push_back(Upper);
   7065 }
   7066 
   7067 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   7068   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
   7069     // Acquire/Release load/store is not legal for targets without a dmb or
   7070     // equivalent available.
   7071     return SDValue();
   7072 
   7073   // Monotonic load/store is legal for all targets.
   7074   return Op;
   7075 }
   7076 
   7077 static void ReplaceREADCYCLECOUNTER(SDNode *N,
   7078                                     SmallVectorImpl<SDValue> &Results,
   7079                                     SelectionDAG &DAG,
   7080                                     const ARMSubtarget *Subtarget) {
   7081   SDLoc DL(N);
   7082   // Under Power Management extensions, the cycle-count is:
   7083   //    mrc p15, #0, <Rt>, c9, c13, #0
   7084   SDValue Ops[] = { N->getOperand(0), // Chain
   7085                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
   7086                     DAG.getConstant(15, DL, MVT::i32),
   7087                     DAG.getConstant(0, DL, MVT::i32),
   7088                     DAG.getConstant(9, DL, MVT::i32),
   7089                     DAG.getConstant(13, DL, MVT::i32),
   7090                     DAG.getConstant(0, DL, MVT::i32)
   7091   };
   7092 
   7093   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
   7094                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
   7095   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
   7096                                 DAG.getConstant(0, DL, MVT::i32)));
   7097   Results.push_back(Cycles32.getValue(1));
   7098 }
   7099 
   7100 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
   7101   SDLoc dl(V.getNode());
   7102   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
   7103   SDValue VHi = DAG.getAnyExtOrTrunc(
   7104       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
   7105       dl, MVT::i32);
   7106   SDValue RegClass =
   7107       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
   7108   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
   7109   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
   7110   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
   7111   return SDValue(
   7112       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
   7113 }
   7114 
   7115 static void ReplaceCMP_SWAP_64Results(SDNode *N,
   7116                                        SmallVectorImpl<SDValue> & Results,
   7117                                        SelectionDAG &DAG) {
   7118   assert(N->getValueType(0) == MVT::i64 &&
   7119          "AtomicCmpSwap on types less than 64 should be legal");
   7120   SDValue Ops[] = {N->getOperand(1),
   7121                    createGPRPairNode(DAG, N->getOperand(2)),
   7122                    createGPRPairNode(DAG, N->getOperand(3)),
   7123                    N->getOperand(0)};
   7124   SDNode *CmpSwap = DAG.getMachineNode(
   7125       ARM::CMP_SWAP_64, SDLoc(N),
   7126       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
   7127 
   7128   MachineFunction &MF = DAG.getMachineFunction();
   7129   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
   7130   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
   7131   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
   7132 
   7133   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_0, SDLoc(N), MVT::i32,
   7134                                                SDValue(CmpSwap, 0)));
   7135   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_1, SDLoc(N), MVT::i32,
   7136                                                SDValue(CmpSwap, 0)));
   7137   Results.push_back(SDValue(CmpSwap, 2));
   7138 }
   7139 
   7140 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   7141   switch (Op.getOpcode()) {
   7142   default: llvm_unreachable("Don't know how to custom lower this!");
   7143   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
   7144   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
   7145   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   7146   case ISD::GlobalAddress:
   7147     switch (Subtarget->getTargetTriple().getObjectFormat()) {
   7148     default: llvm_unreachable("unknown object format");
   7149     case Triple::COFF:
   7150       return LowerGlobalAddressWindows(Op, DAG);
   7151     case Triple::ELF:
   7152       return LowerGlobalAddressELF(Op, DAG);
   7153     case Triple::MachO:
   7154       return LowerGlobalAddressDarwin(Op, DAG);
   7155     }
   7156   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   7157   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   7158   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   7159   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   7160   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   7161   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   7162   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   7163   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   7164   case ISD::SINT_TO_FP:
   7165   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   7166   case ISD::FP_TO_SINT:
   7167   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   7168   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   7169   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   7170   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   7171   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   7172   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   7173   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
   7174   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   7175                                                                Subtarget);
   7176   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
   7177   case ISD::SHL:
   7178   case ISD::SRL:
   7179   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   7180   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
   7181   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
   7182   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   7183   case ISD::SRL_PARTS:
   7184   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   7185   case ISD::CTTZ:
   7186   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   7187   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
   7188   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   7189   case ISD::SETCCE:        return LowerSETCCE(Op, DAG);
   7190   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
   7191   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   7192   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   7193   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
   7194   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   7195   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   7196   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   7197   case ISD::MUL:           return LowerMUL(Op, DAG);
   7198   case ISD::SDIV:
   7199     if (Subtarget->isTargetWindows())
   7200       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
   7201     return LowerSDIV(Op, DAG);
   7202   case ISD::UDIV:
   7203     if (Subtarget->isTargetWindows())
   7204       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
   7205     return LowerUDIV(Op, DAG);
   7206   case ISD::ADDC:
   7207   case ISD::ADDE:
   7208   case ISD::SUBC:
   7209   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   7210   case ISD::SADDO:
   7211   case ISD::UADDO:
   7212   case ISD::SSUBO:
   7213   case ISD::USUBO:
   7214     return LowerXALUO(Op, DAG);
   7215   case ISD::ATOMIC_LOAD:
   7216   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   7217   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
   7218   case ISD::SDIVREM:
   7219   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
   7220   case ISD::DYNAMIC_STACKALLOC:
   7221     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
   7222       return LowerDYNAMIC_STACKALLOC(Op, DAG);
   7223     llvm_unreachable("Don't know how to custom lower this!");
   7224   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
   7225   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
   7226   case ARMISD::WIN__DBZCHK: return SDValue();
   7227   }
   7228 }
   7229 
   7230 /// ReplaceNodeResults - Replace the results of node with an illegal result
   7231 /// type with new values built out of custom code.
   7232 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   7233                                            SmallVectorImpl<SDValue> &Results,
   7234                                            SelectionDAG &DAG) const {
   7235   SDValue Res;
   7236   switch (N->getOpcode()) {
   7237   default:
   7238     llvm_unreachable("Don't know how to custom expand this!");
   7239   case ISD::READ_REGISTER:
   7240     ExpandREAD_REGISTER(N, Results, DAG);
   7241     break;
   7242   case ISD::BITCAST:
   7243     Res = ExpandBITCAST(N, DAG);
   7244     break;
   7245   case ISD::SRL:
   7246   case ISD::SRA:
   7247     Res = Expand64BitShift(N, DAG, Subtarget);
   7248     break;
   7249   case ISD::SREM:
   7250   case ISD::UREM:
   7251     Res = LowerREM(N, DAG);
   7252     break;
   7253   case ISD::SDIVREM:
   7254   case ISD::UDIVREM:
   7255     Res = LowerDivRem(SDValue(N, 0), DAG);
   7256     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
   7257     Results.push_back(Res.getValue(0));
   7258     Results.push_back(Res.getValue(1));
   7259     return;
   7260   case ISD::READCYCLECOUNTER:
   7261     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
   7262     return;
   7263   case ISD::UDIV:
   7264   case ISD::SDIV:
   7265     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
   7266     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
   7267                              Results);
   7268   case ISD::ATOMIC_CMP_SWAP:
   7269     ReplaceCMP_SWAP_64Results(N, Results, DAG);
   7270     return;
   7271   }
   7272   if (Res.getNode())
   7273     Results.push_back(Res);
   7274 }
   7275 
   7276 //===----------------------------------------------------------------------===//
   7277 //                           ARM Scheduler Hooks
   7278 //===----------------------------------------------------------------------===//
   7279 
   7280 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   7281 /// registers the function context.
   7282 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
   7283                                                MachineBasicBlock *MBB,
   7284                                                MachineBasicBlock *DispatchBB,
   7285                                                int FI) const {
   7286   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7287   DebugLoc dl = MI.getDebugLoc();
   7288   MachineFunction *MF = MBB->getParent();
   7289   MachineRegisterInfo *MRI = &MF->getRegInfo();
   7290   MachineConstantPool *MCP = MF->getConstantPool();
   7291   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   7292   const Function *F = MF->getFunction();
   7293 
   7294   bool isThumb = Subtarget->isThumb();
   7295   bool isThumb2 = Subtarget->isThumb2();
   7296 
   7297   unsigned PCLabelId = AFI->createPICLabelUId();
   7298   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   7299   ARMConstantPoolValue *CPV =
   7300     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
   7301   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   7302 
   7303   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
   7304                                            : &ARM::GPRRegClass;
   7305 
   7306   // Grab constant pool and fixed stack memory operands.
   7307   MachineMemOperand *CPMMO =
   7308       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
   7309                                MachineMemOperand::MOLoad, 4, 4);
   7310 
   7311   MachineMemOperand *FIMMOSt =
   7312       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
   7313                                MachineMemOperand::MOStore, 4, 4);
   7314 
   7315   // Load the address of the dispatch MBB into the jump buffer.
   7316   if (isThumb2) {
   7317     // Incoming value: jbuf
   7318     //   ldr.n  r5, LCPI1_1
   7319     //   orr    r5, r5, #1
   7320     //   add    r5, pc
   7321     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   7322     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7323     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   7324                    .addConstantPoolIndex(CPI)
   7325                    .addMemOperand(CPMMO));
   7326     // Set the low bit because of thumb mode.
   7327     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   7328     AddDefaultCC(
   7329       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   7330                      .addReg(NewVReg1, RegState::Kill)
   7331                      .addImm(0x01)));
   7332     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7333     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   7334       .addReg(NewVReg2, RegState::Kill)
   7335       .addImm(PCLabelId);
   7336     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   7337                    .addReg(NewVReg3, RegState::Kill)
   7338                    .addFrameIndex(FI)
   7339                    .addImm(36)  // &jbuf[1] :: pc
   7340                    .addMemOperand(FIMMOSt));
   7341   } else if (isThumb) {
   7342     // Incoming value: jbuf
   7343     //   ldr.n  r1, LCPI1_4
   7344     //   add    r1, pc
   7345     //   mov    r2, #1
   7346     //   orrs   r1, r2
   7347     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   7348     //   str    r1, [r2]
   7349     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7350     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   7351                    .addConstantPoolIndex(CPI)
   7352                    .addMemOperand(CPMMO));
   7353     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   7354     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   7355       .addReg(NewVReg1, RegState::Kill)
   7356       .addImm(PCLabelId);
   7357     // Set the low bit because of thumb mode.
   7358     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7359     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   7360                    .addReg(ARM::CPSR, RegState::Define)
   7361                    .addImm(1));
   7362     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7363     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   7364                    .addReg(ARM::CPSR, RegState::Define)
   7365                    .addReg(NewVReg2, RegState::Kill)
   7366                    .addReg(NewVReg3, RegState::Kill));
   7367     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   7368     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
   7369             .addFrameIndex(FI)
   7370             .addImm(36); // &jbuf[1] :: pc
   7371     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   7372                    .addReg(NewVReg4, RegState::Kill)
   7373                    .addReg(NewVReg5, RegState::Kill)
   7374                    .addImm(0)
   7375                    .addMemOperand(FIMMOSt));
   7376   } else {
   7377     // Incoming value: jbuf
   7378     //   ldr  r1, LCPI1_1
   7379     //   add  r1, pc, r1
   7380     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   7381     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7382     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
   7383                    .addConstantPoolIndex(CPI)
   7384                    .addImm(0)
   7385                    .addMemOperand(CPMMO));
   7386     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   7387     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   7388                    .addReg(NewVReg1, RegState::Kill)
   7389                    .addImm(PCLabelId));
   7390     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   7391                    .addReg(NewVReg2, RegState::Kill)
   7392                    .addFrameIndex(FI)
   7393                    .addImm(36)  // &jbuf[1] :: pc
   7394                    .addMemOperand(FIMMOSt));
   7395   }
   7396 }
   7397 
   7398 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
   7399                                               MachineBasicBlock *MBB) const {
   7400   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7401   DebugLoc dl = MI.getDebugLoc();
   7402   MachineFunction *MF = MBB->getParent();
   7403   MachineRegisterInfo *MRI = &MF->getRegInfo();
   7404   MachineFrameInfo *MFI = MF->getFrameInfo();
   7405   int FI = MFI->getFunctionContextIndex();
   7406 
   7407   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
   7408                                                         : &ARM::GPRnopcRegClass;
   7409 
   7410   // Get a mapping of the call site numbers to all of the landing pads they're
   7411   // associated with.
   7412   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
   7413   unsigned MaxCSNum = 0;
   7414   MachineModuleInfo &MMI = MF->getMMI();
   7415   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
   7416        ++BB) {
   7417     if (!BB->isEHPad()) continue;
   7418 
   7419     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   7420     // pad.
   7421     for (MachineBasicBlock::iterator
   7422            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   7423       if (!II->isEHLabel()) continue;
   7424 
   7425       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   7426       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
   7427 
   7428       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
   7429       for (SmallVectorImpl<unsigned>::iterator
   7430              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   7431            CSI != CSE; ++CSI) {
   7432         CallSiteNumToLPad[*CSI].push_back(&*BB);
   7433         MaxCSNum = std::max(MaxCSNum, *CSI);
   7434       }
   7435       break;
   7436     }
   7437   }
   7438 
   7439   // Get an ordered list of the machine basic blocks for the jump table.
   7440   std::vector<MachineBasicBlock*> LPadList;
   7441   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
   7442   LPadList.reserve(CallSiteNumToLPad.size());
   7443   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   7444     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   7445     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   7446            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   7447       LPadList.push_back(*II);
   7448       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   7449     }
   7450   }
   7451 
   7452   assert(!LPadList.empty() &&
   7453          "No landing pad destinations for the dispatch jump table!");
   7454 
   7455   // Create the jump table and associated information.
   7456   MachineJumpTableInfo *JTI =
   7457     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   7458   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   7459 
   7460   // Create the MBBs for the dispatch code.
   7461 
   7462   // Shove the dispatch's address into the return slot in the function context.
   7463   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   7464   DispatchBB->setIsEHPad();
   7465 
   7466   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   7467   unsigned trap_opcode;
   7468   if (Subtarget->isThumb())
   7469     trap_opcode = ARM::tTRAP;
   7470   else
   7471     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
   7472 
   7473   BuildMI(TrapBB, dl, TII->get(trap_opcode));
   7474   DispatchBB->addSuccessor(TrapBB);
   7475 
   7476   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   7477   DispatchBB->addSuccessor(DispContBB);
   7478 
   7479   // Insert and MBBs.
   7480   MF->insert(MF->end(), DispatchBB);
   7481   MF->insert(MF->end(), DispContBB);
   7482   MF->insert(MF->end(), TrapBB);
   7483 
   7484   // Insert code into the entry block that creates and registers the function
   7485   // context.
   7486   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   7487 
   7488   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
   7489       MachinePointerInfo::getFixedStack(*MF, FI),
   7490       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
   7491 
   7492   MachineInstrBuilder MIB;
   7493   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
   7494 
   7495   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   7496   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   7497 
   7498   // Add a register mask with no preserved registers.  This results in all
   7499   // registers being marked as clobbered.
   7500   MIB.addRegMask(RI.getNoPreservedMask());
   7501 
   7502   bool IsPositionIndependent = isPositionIndependent();
   7503   unsigned NumLPads = LPadList.size();
   7504   if (Subtarget->isThumb2()) {
   7505     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7506     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   7507                    .addFrameIndex(FI)
   7508                    .addImm(4)
   7509                    .addMemOperand(FIMMOLd));
   7510 
   7511     if (NumLPads < 256) {
   7512       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   7513                      .addReg(NewVReg1)
   7514                      .addImm(LPadList.size()));
   7515     } else {
   7516       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7517       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   7518                      .addImm(NumLPads & 0xFFFF));
   7519 
   7520       unsigned VReg2 = VReg1;
   7521       if ((NumLPads & 0xFFFF0000) != 0) {
   7522         VReg2 = MRI->createVirtualRegister(TRC);
   7523         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   7524                        .addReg(VReg1)
   7525                        .addImm(NumLPads >> 16));
   7526       }
   7527 
   7528       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   7529                      .addReg(NewVReg1)
   7530                      .addReg(VReg2));
   7531     }
   7532 
   7533     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   7534       .addMBB(TrapBB)
   7535       .addImm(ARMCC::HI)
   7536       .addReg(ARM::CPSR);
   7537 
   7538     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7539     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
   7540                    .addJumpTableIndex(MJTI));
   7541 
   7542     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7543     AddDefaultCC(
   7544       AddDefaultPred(
   7545         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   7546         .addReg(NewVReg3, RegState::Kill)
   7547         .addReg(NewVReg1)
   7548         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   7549 
   7550     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   7551       .addReg(NewVReg4, RegState::Kill)
   7552       .addReg(NewVReg1)
   7553       .addJumpTableIndex(MJTI);
   7554   } else if (Subtarget->isThumb()) {
   7555     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7556     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   7557                    .addFrameIndex(FI)
   7558                    .addImm(1)
   7559                    .addMemOperand(FIMMOLd));
   7560 
   7561     if (NumLPads < 256) {
   7562       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   7563                      .addReg(NewVReg1)
   7564                      .addImm(NumLPads));
   7565     } else {
   7566       MachineConstantPool *ConstantPool = MF->getConstantPool();
   7567       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   7568       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   7569 
   7570       // MachineConstantPool wants an explicit alignment.
   7571       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   7572       if (Align == 0)
   7573         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   7574       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   7575 
   7576       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7577       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   7578                      .addReg(VReg1, RegState::Define)
   7579                      .addConstantPoolIndex(Idx));
   7580       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   7581                      .addReg(NewVReg1)
   7582                      .addReg(VReg1));
   7583     }
   7584 
   7585     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   7586       .addMBB(TrapBB)
   7587       .addImm(ARMCC::HI)
   7588       .addReg(ARM::CPSR);
   7589 
   7590     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   7591     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   7592                    .addReg(ARM::CPSR, RegState::Define)
   7593                    .addReg(NewVReg1)
   7594                    .addImm(2));
   7595 
   7596     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7597     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   7598                    .addJumpTableIndex(MJTI));
   7599 
   7600     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7601     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   7602                    .addReg(ARM::CPSR, RegState::Define)
   7603                    .addReg(NewVReg2, RegState::Kill)
   7604                    .addReg(NewVReg3));
   7605 
   7606     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
   7607         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
   7608 
   7609     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   7610     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   7611                    .addReg(NewVReg4, RegState::Kill)
   7612                    .addImm(0)
   7613                    .addMemOperand(JTMMOLd));
   7614 
   7615     unsigned NewVReg6 = NewVReg5;
   7616     if (IsPositionIndependent) {
   7617       NewVReg6 = MRI->createVirtualRegister(TRC);
   7618       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   7619                      .addReg(ARM::CPSR, RegState::Define)
   7620                      .addReg(NewVReg5, RegState::Kill)
   7621                      .addReg(NewVReg3));
   7622     }
   7623 
   7624     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   7625       .addReg(NewVReg6, RegState::Kill)
   7626       .addJumpTableIndex(MJTI);
   7627   } else {
   7628     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7629     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   7630                    .addFrameIndex(FI)
   7631                    .addImm(4)
   7632                    .addMemOperand(FIMMOLd));
   7633 
   7634     if (NumLPads < 256) {
   7635       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   7636                      .addReg(NewVReg1)
   7637                      .addImm(NumLPads));
   7638     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   7639       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7640       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   7641                      .addImm(NumLPads & 0xFFFF));
   7642 
   7643       unsigned VReg2 = VReg1;
   7644       if ((NumLPads & 0xFFFF0000) != 0) {
   7645         VReg2 = MRI->createVirtualRegister(TRC);
   7646         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   7647                        .addReg(VReg1)
   7648                        .addImm(NumLPads >> 16));
   7649       }
   7650 
   7651       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   7652                      .addReg(NewVReg1)
   7653                      .addReg(VReg2));
   7654     } else {
   7655       MachineConstantPool *ConstantPool = MF->getConstantPool();
   7656       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   7657       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   7658 
   7659       // MachineConstantPool wants an explicit alignment.
   7660       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   7661       if (Align == 0)
   7662         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   7663       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   7664 
   7665       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7666       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   7667                      .addReg(VReg1, RegState::Define)
   7668                      .addConstantPoolIndex(Idx)
   7669                      .addImm(0));
   7670       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   7671                      .addReg(NewVReg1)
   7672                      .addReg(VReg1, RegState::Kill));
   7673     }
   7674 
   7675     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   7676       .addMBB(TrapBB)
   7677       .addImm(ARMCC::HI)
   7678       .addReg(ARM::CPSR);
   7679 
   7680     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7681     AddDefaultCC(
   7682       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   7683                      .addReg(NewVReg1)
   7684                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   7685     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7686     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   7687                    .addJumpTableIndex(MJTI));
   7688 
   7689     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
   7690         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
   7691     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   7692     AddDefaultPred(
   7693       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   7694       .addReg(NewVReg3, RegState::Kill)
   7695       .addReg(NewVReg4)
   7696       .addImm(0)
   7697       .addMemOperand(JTMMOLd));
   7698 
   7699     if (IsPositionIndependent) {
   7700       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   7701         .addReg(NewVReg5, RegState::Kill)
   7702         .addReg(NewVReg4)
   7703         .addJumpTableIndex(MJTI);
   7704     } else {
   7705       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
   7706         .addReg(NewVReg5, RegState::Kill)
   7707         .addJumpTableIndex(MJTI);
   7708     }
   7709   }
   7710 
   7711   // Add the jump table entries as successors to the MBB.
   7712   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
   7713   for (std::vector<MachineBasicBlock*>::iterator
   7714          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   7715     MachineBasicBlock *CurMBB = *I;
   7716     if (SeenMBBs.insert(CurMBB).second)
   7717       DispContBB->addSuccessor(CurMBB);
   7718   }
   7719 
   7720   // N.B. the order the invoke BBs are processed in doesn't matter here.
   7721   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
   7722   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   7723   for (MachineBasicBlock *BB : InvokeBBs) {
   7724 
   7725     // Remove the landing pad successor from the invoke block and replace it
   7726     // with the new dispatch block.
   7727     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
   7728                                                   BB->succ_end());
   7729     while (!Successors.empty()) {
   7730       MachineBasicBlock *SMBB = Successors.pop_back_val();
   7731       if (SMBB->isEHPad()) {
   7732         BB->removeSuccessor(SMBB);
   7733         MBBLPads.push_back(SMBB);
   7734       }
   7735     }
   7736 
   7737     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
   7738     BB->normalizeSuccProbs();
   7739 
   7740     // Find the invoke call and mark all of the callee-saved registers as
   7741     // 'implicit defined' so that they're spilled. This prevents code from
   7742     // moving instructions to before the EH block, where they will never be
   7743     // executed.
   7744     for (MachineBasicBlock::reverse_iterator
   7745            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   7746       if (!II->isCall()) continue;
   7747 
   7748       DenseMap<unsigned, bool> DefRegs;
   7749       for (MachineInstr::mop_iterator
   7750              OI = II->operands_begin(), OE = II->operands_end();
   7751            OI != OE; ++OI) {
   7752         if (!OI->isReg()) continue;
   7753         DefRegs[OI->getReg()] = true;
   7754       }
   7755 
   7756       MachineInstrBuilder MIB(*MF, &*II);
   7757 
   7758       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   7759         unsigned Reg = SavedRegs[i];
   7760         if (Subtarget->isThumb2() &&
   7761             !ARM::tGPRRegClass.contains(Reg) &&
   7762             !ARM::hGPRRegClass.contains(Reg))
   7763           continue;
   7764         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
   7765           continue;
   7766         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
   7767           continue;
   7768         if (!DefRegs[Reg])
   7769           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
   7770       }
   7771 
   7772       break;
   7773     }
   7774   }
   7775 
   7776   // Mark all former landing pads as non-landing pads. The dispatch is the only
   7777   // landing pad now.
   7778   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   7779          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   7780     (*I)->setIsEHPad(false);
   7781 
   7782   // The instruction is gone now.
   7783   MI.eraseFromParent();
   7784 }
   7785 
   7786 static
   7787 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   7788   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   7789        E = MBB->succ_end(); I != E; ++I)
   7790     if (*I != Succ)
   7791       return *I;
   7792   llvm_unreachable("Expecting a BB with two successors!");
   7793 }
   7794 
   7795 /// Return the load opcode for a given load size. If load size >= 8,
   7796 /// neon opcode will be returned.
   7797 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
   7798   if (LdSize >= 8)
   7799     return LdSize == 16 ? ARM::VLD1q32wb_fixed
   7800                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
   7801   if (IsThumb1)
   7802     return LdSize == 4 ? ARM::tLDRi
   7803                        : LdSize == 2 ? ARM::tLDRHi
   7804                                      : LdSize == 1 ? ARM::tLDRBi : 0;
   7805   if (IsThumb2)
   7806     return LdSize == 4 ? ARM::t2LDR_POST
   7807                        : LdSize == 2 ? ARM::t2LDRH_POST
   7808                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
   7809   return LdSize == 4 ? ARM::LDR_POST_IMM
   7810                      : LdSize == 2 ? ARM::LDRH_POST
   7811                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
   7812 }
   7813 
   7814 /// Return the store opcode for a given store size. If store size >= 8,
   7815 /// neon opcode will be returned.
   7816 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
   7817   if (StSize >= 8)
   7818     return StSize == 16 ? ARM::VST1q32wb_fixed
   7819                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
   7820   if (IsThumb1)
   7821     return StSize == 4 ? ARM::tSTRi
   7822                        : StSize == 2 ? ARM::tSTRHi
   7823                                      : StSize == 1 ? ARM::tSTRBi : 0;
   7824   if (IsThumb2)
   7825     return StSize == 4 ? ARM::t2STR_POST
   7826                        : StSize == 2 ? ARM::t2STRH_POST
   7827                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
   7828   return StSize == 4 ? ARM::STR_POST_IMM
   7829                      : StSize == 2 ? ARM::STRH_POST
   7830                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
   7831 }
   7832 
   7833 /// Emit a post-increment load operation with given size. The instructions
   7834 /// will be added to BB at Pos.
   7835 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
   7836                        const TargetInstrInfo *TII, const DebugLoc &dl,
   7837                        unsigned LdSize, unsigned Data, unsigned AddrIn,
   7838                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   7839   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
   7840   assert(LdOpc != 0 && "Should have a load opcode");
   7841   if (LdSize >= 8) {
   7842     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7843                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   7844                        .addImm(0));
   7845   } else if (IsThumb1) {
   7846     // load + update AddrIn
   7847     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7848                        .addReg(AddrIn).addImm(0));
   7849     MachineInstrBuilder MIB =
   7850         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   7851     MIB = AddDefaultT1CC(MIB);
   7852     MIB.addReg(AddrIn).addImm(LdSize);
   7853     AddDefaultPred(MIB);
   7854   } else if (IsThumb2) {
   7855     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7856                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   7857                        .addImm(LdSize));
   7858   } else { // arm
   7859     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7860                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   7861                        .addReg(0).addImm(LdSize));
   7862   }
   7863 }
   7864 
   7865 /// Emit a post-increment store operation with given size. The instructions
   7866 /// will be added to BB at Pos.
   7867 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
   7868                        const TargetInstrInfo *TII, const DebugLoc &dl,
   7869                        unsigned StSize, unsigned Data, unsigned AddrIn,
   7870                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   7871   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
   7872   assert(StOpc != 0 && "Should have a store opcode");
   7873   if (StSize >= 8) {
   7874     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   7875                        .addReg(AddrIn).addImm(0).addReg(Data));
   7876   } else if (IsThumb1) {
   7877     // store + update AddrIn
   7878     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
   7879                        .addReg(AddrIn).addImm(0));
   7880     MachineInstrBuilder MIB =
   7881         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   7882     MIB = AddDefaultT1CC(MIB);
   7883     MIB.addReg(AddrIn).addImm(StSize);
   7884     AddDefaultPred(MIB);
   7885   } else if (IsThumb2) {
   7886     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   7887                        .addReg(Data).addReg(AddrIn).addImm(StSize));
   7888   } else { // arm
   7889     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   7890                        .addReg(Data).addReg(AddrIn).addReg(0)
   7891                        .addImm(StSize));
   7892   }
   7893 }
   7894 
   7895 MachineBasicBlock *
   7896 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
   7897                                    MachineBasicBlock *BB) const {
   7898   // This pseudo instruction has 3 operands: dst, src, size
   7899   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
   7900   // Otherwise, we will generate unrolled scalar copies.
   7901   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7902   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7903   MachineFunction::iterator It = ++BB->getIterator();
   7904 
   7905   unsigned dest = MI.getOperand(0).getReg();
   7906   unsigned src = MI.getOperand(1).getReg();
   7907   unsigned SizeVal = MI.getOperand(2).getImm();
   7908   unsigned Align = MI.getOperand(3).getImm();
   7909   DebugLoc dl = MI.getDebugLoc();
   7910 
   7911   MachineFunction *MF = BB->getParent();
   7912   MachineRegisterInfo &MRI = MF->getRegInfo();
   7913   unsigned UnitSize = 0;
   7914   const TargetRegisterClass *TRC = nullptr;
   7915   const TargetRegisterClass *VecTRC = nullptr;
   7916 
   7917   bool IsThumb1 = Subtarget->isThumb1Only();
   7918   bool IsThumb2 = Subtarget->isThumb2();
   7919 
   7920   if (Align & 1) {
   7921     UnitSize = 1;
   7922   } else if (Align & 2) {
   7923     UnitSize = 2;
   7924   } else {
   7925     // Check whether we can use NEON instructions.
   7926     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
   7927         Subtarget->hasNEON()) {
   7928       if ((Align % 16 == 0) && SizeVal >= 16)
   7929         UnitSize = 16;
   7930       else if ((Align % 8 == 0) && SizeVal >= 8)
   7931         UnitSize = 8;
   7932     }
   7933     // Can't use NEON instructions.
   7934     if (UnitSize == 0)
   7935       UnitSize = 4;
   7936   }
   7937 
   7938   // Select the correct opcode and register class for unit size load/store
   7939   bool IsNeon = UnitSize >= 8;
   7940   TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   7941   if (IsNeon)
   7942     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
   7943                             : UnitSize == 8 ? &ARM::DPRRegClass
   7944                                             : nullptr;
   7945 
   7946   unsigned BytesLeft = SizeVal % UnitSize;
   7947   unsigned LoopSize = SizeVal - BytesLeft;
   7948 
   7949   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
   7950     // Use LDR and STR to copy.
   7951     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
   7952     // [destOut] = STR_POST(scratch, destIn, UnitSize)
   7953     unsigned srcIn = src;
   7954     unsigned destIn = dest;
   7955     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
   7956       unsigned srcOut = MRI.createVirtualRegister(TRC);
   7957       unsigned destOut = MRI.createVirtualRegister(TRC);
   7958       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   7959       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
   7960                  IsThumb1, IsThumb2);
   7961       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
   7962                  IsThumb1, IsThumb2);
   7963       srcIn = srcOut;
   7964       destIn = destOut;
   7965     }
   7966 
   7967     // Handle the leftover bytes with LDRB and STRB.
   7968     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
   7969     // [destOut] = STRB_POST(scratch, destIn, 1)
   7970     for (unsigned i = 0; i < BytesLeft; i++) {
   7971       unsigned srcOut = MRI.createVirtualRegister(TRC);
   7972       unsigned destOut = MRI.createVirtualRegister(TRC);
   7973       unsigned scratch = MRI.createVirtualRegister(TRC);
   7974       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
   7975                  IsThumb1, IsThumb2);
   7976       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
   7977                  IsThumb1, IsThumb2);
   7978       srcIn = srcOut;
   7979       destIn = destOut;
   7980     }
   7981     MI.eraseFromParent(); // The instruction is gone now.
   7982     return BB;
   7983   }
   7984 
   7985   // Expand the pseudo op to a loop.
   7986   // thisMBB:
   7987   //   ...
   7988   //   movw varEnd, # --> with thumb2
   7989   //   movt varEnd, #
   7990   //   ldrcp varEnd, idx --> without thumb2
   7991   //   fallthrough --> loopMBB
   7992   // loopMBB:
   7993   //   PHI varPhi, varEnd, varLoop
   7994   //   PHI srcPhi, src, srcLoop
   7995   //   PHI destPhi, dst, destLoop
   7996   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   7997   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
   7998   //   subs varLoop, varPhi, #UnitSize
   7999   //   bne loopMBB
   8000   //   fallthrough --> exitMBB
   8001   // exitMBB:
   8002   //   epilogue to handle left-over bytes
   8003   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   8004   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   8005   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   8006   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   8007   MF->insert(It, loopMBB);
   8008   MF->insert(It, exitMBB);
   8009 
   8010   // Transfer the remainder of BB and its successor edges to exitMBB.
   8011   exitMBB->splice(exitMBB->begin(), BB,
   8012                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8013   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8014 
   8015   // Load an immediate to varEnd.
   8016   unsigned varEnd = MRI.createVirtualRegister(TRC);
   8017   if (Subtarget->useMovt(*MF)) {
   8018     unsigned Vtmp = varEnd;
   8019     if ((LoopSize & 0xFFFF0000) != 0)
   8020       Vtmp = MRI.createVirtualRegister(TRC);
   8021     AddDefaultPred(BuildMI(BB, dl,
   8022                            TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
   8023                            Vtmp).addImm(LoopSize & 0xFFFF));
   8024 
   8025     if ((LoopSize & 0xFFFF0000) != 0)
   8026       AddDefaultPred(BuildMI(BB, dl,
   8027                              TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
   8028                              varEnd)
   8029                          .addReg(Vtmp)
   8030                          .addImm(LoopSize >> 16));
   8031   } else {
   8032     MachineConstantPool *ConstantPool = MF->getConstantPool();
   8033     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   8034     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
   8035 
   8036     // MachineConstantPool wants an explicit alignment.
   8037     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   8038     if (Align == 0)
   8039       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   8040     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   8041 
   8042     if (IsThumb1)
   8043       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
   8044           varEnd, RegState::Define).addConstantPoolIndex(Idx));
   8045     else
   8046       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
   8047           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
   8048   }
   8049   BB->addSuccessor(loopMBB);
   8050 
   8051   // Generate the loop body:
   8052   //   varPhi = PHI(varLoop, varEnd)
   8053   //   srcPhi = PHI(srcLoop, src)
   8054   //   destPhi = PHI(destLoop, dst)
   8055   MachineBasicBlock *entryBB = BB;
   8056   BB = loopMBB;
   8057   unsigned varLoop = MRI.createVirtualRegister(TRC);
   8058   unsigned varPhi = MRI.createVirtualRegister(TRC);
   8059   unsigned srcLoop = MRI.createVirtualRegister(TRC);
   8060   unsigned srcPhi = MRI.createVirtualRegister(TRC);
   8061   unsigned destLoop = MRI.createVirtualRegister(TRC);
   8062   unsigned destPhi = MRI.createVirtualRegister(TRC);
   8063 
   8064   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
   8065     .addReg(varLoop).addMBB(loopMBB)
   8066     .addReg(varEnd).addMBB(entryBB);
   8067   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
   8068     .addReg(srcLoop).addMBB(loopMBB)
   8069     .addReg(src).addMBB(entryBB);
   8070   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
   8071     .addReg(destLoop).addMBB(loopMBB)
   8072     .addReg(dest).addMBB(entryBB);
   8073 
   8074   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   8075   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
   8076   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   8077   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
   8078              IsThumb1, IsThumb2);
   8079   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
   8080              IsThumb1, IsThumb2);
   8081 
   8082   // Decrement loop variable by UnitSize.
   8083   if (IsThumb1) {
   8084     MachineInstrBuilder MIB =
   8085         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
   8086     MIB = AddDefaultT1CC(MIB);
   8087     MIB.addReg(varPhi).addImm(UnitSize);
   8088     AddDefaultPred(MIB);
   8089   } else {
   8090     MachineInstrBuilder MIB =
   8091         BuildMI(*BB, BB->end(), dl,
   8092                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
   8093     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
   8094     MIB->getOperand(5).setReg(ARM::CPSR);
   8095     MIB->getOperand(5).setIsDef(true);
   8096   }
   8097   BuildMI(*BB, BB->end(), dl,
   8098           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
   8099       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   8100 
   8101   // loopMBB can loop back to loopMBB or fall through to exitMBB.
   8102   BB->addSuccessor(loopMBB);
   8103   BB->addSuccessor(exitMBB);
   8104 
   8105   // Add epilogue to handle BytesLeft.
   8106   BB = exitMBB;
   8107   auto StartOfExit = exitMBB->begin();
   8108 
   8109   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   8110   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   8111   unsigned srcIn = srcLoop;
   8112   unsigned destIn = destLoop;
   8113   for (unsigned i = 0; i < BytesLeft; i++) {
   8114     unsigned srcOut = MRI.createVirtualRegister(TRC);
   8115     unsigned destOut = MRI.createVirtualRegister(TRC);
   8116     unsigned scratch = MRI.createVirtualRegister(TRC);
   8117     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
   8118                IsThumb1, IsThumb2);
   8119     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
   8120                IsThumb1, IsThumb2);
   8121     srcIn = srcOut;
   8122     destIn = destOut;
   8123   }
   8124 
   8125   MI.eraseFromParent(); // The instruction is gone now.
   8126   return BB;
   8127 }
   8128 
   8129 MachineBasicBlock *
   8130 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
   8131                                        MachineBasicBlock *MBB) const {
   8132   const TargetMachine &TM = getTargetMachine();
   8133   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
   8134   DebugLoc DL = MI.getDebugLoc();
   8135 
   8136   assert(Subtarget->isTargetWindows() &&
   8137          "__chkstk is only supported on Windows");
   8138   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
   8139 
   8140   // __chkstk takes the number of words to allocate on the stack in R4, and
   8141   // returns the stack adjustment in number of bytes in R4.  This will not
   8142   // clober any other registers (other than the obvious lr).
   8143   //
   8144   // Although, technically, IP should be considered a register which may be
   8145   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
   8146   // thumb-2 environment, so there is no interworking required.  As a result, we
   8147   // do not expect a veneer to be emitted by the linker, clobbering IP.
   8148   //
   8149   // Each module receives its own copy of __chkstk, so no import thunk is
   8150   // required, again, ensuring that IP is not clobbered.
   8151   //
   8152   // Finally, although some linkers may theoretically provide a trampoline for
   8153   // out of range calls (which is quite common due to a 32M range limitation of
   8154   // branches for Thumb), we can generate the long-call version via
   8155   // -mcmodel=large, alleviating the need for the trampoline which may clobber
   8156   // IP.
   8157 
   8158   switch (TM.getCodeModel()) {
   8159   case CodeModel::Small:
   8160   case CodeModel::Medium:
   8161   case CodeModel::Default:
   8162   case CodeModel::Kernel:
   8163     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
   8164       .addImm((unsigned)ARMCC::AL).addReg(0)
   8165       .addExternalSymbol("__chkstk")
   8166       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   8167       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   8168       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   8169     break;
   8170   case CodeModel::Large:
   8171   case CodeModel::JITDefault: {
   8172     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   8173     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
   8174 
   8175     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
   8176       .addExternalSymbol("__chkstk");
   8177     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
   8178       .addImm((unsigned)ARMCC::AL).addReg(0)
   8179       .addReg(Reg, RegState::Kill)
   8180       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   8181       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   8182       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   8183     break;
   8184   }
   8185   }
   8186 
   8187   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
   8188                                       ARM::SP)
   8189                          .addReg(ARM::SP, RegState::Kill)
   8190                          .addReg(ARM::R4, RegState::Kill)
   8191                          .setMIFlags(MachineInstr::FrameSetup)));
   8192 
   8193   MI.eraseFromParent();
   8194   return MBB;
   8195 }
   8196 
   8197 MachineBasicBlock *
   8198 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
   8199                                        MachineBasicBlock *MBB) const {
   8200   DebugLoc DL = MI.getDebugLoc();
   8201   MachineFunction *MF = MBB->getParent();
   8202   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   8203 
   8204   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
   8205   MF->insert(++MBB->getIterator(), ContBB);
   8206   ContBB->splice(ContBB->begin(), MBB,
   8207                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   8208   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
   8209 
   8210   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   8211   MF->push_back(TrapBB);
   8212   BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249);
   8213   MBB->addSuccessor(TrapBB);
   8214 
   8215   BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ))
   8216       .addReg(MI.getOperand(0).getReg())
   8217       .addMBB(TrapBB);
   8218   AddDefaultPred(BuildMI(*MBB, MI, DL, TII->get(ARM::t2B)).addMBB(ContBB));
   8219   MBB->addSuccessor(ContBB);
   8220 
   8221   MI.eraseFromParent();
   8222   return ContBB;
   8223 }
   8224 
   8225 MachineBasicBlock *
   8226 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
   8227                                                MachineBasicBlock *BB) const {
   8228   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   8229   DebugLoc dl = MI.getDebugLoc();
   8230   bool isThumb2 = Subtarget->isThumb2();
   8231   switch (MI.getOpcode()) {
   8232   default: {
   8233     MI.dump();
   8234     llvm_unreachable("Unexpected instr type to insert");
   8235   }
   8236   // The Thumb2 pre-indexed stores have the same MI operands, they just
   8237   // define them differently in the .td files from the isel patterns, so
   8238   // they need pseudos.
   8239   case ARM::t2STR_preidx:
   8240     MI.setDesc(TII->get(ARM::t2STR_PRE));
   8241     return BB;
   8242   case ARM::t2STRB_preidx:
   8243     MI.setDesc(TII->get(ARM::t2STRB_PRE));
   8244     return BB;
   8245   case ARM::t2STRH_preidx:
   8246     MI.setDesc(TII->get(ARM::t2STRH_PRE));
   8247     return BB;
   8248 
   8249   case ARM::STRi_preidx:
   8250   case ARM::STRBi_preidx: {
   8251     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
   8252                                                          : ARM::STRB_PRE_IMM;
   8253     // Decode the offset.
   8254     unsigned Offset = MI.getOperand(4).getImm();
   8255     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   8256     Offset = ARM_AM::getAM2Offset(Offset);
   8257     if (isSub)
   8258       Offset = -Offset;
   8259 
   8260     MachineMemOperand *MMO = *MI.memoperands_begin();
   8261     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   8262         .addOperand(MI.getOperand(0)) // Rn_wb
   8263         .addOperand(MI.getOperand(1)) // Rt
   8264         .addOperand(MI.getOperand(2)) // Rn
   8265         .addImm(Offset)               // offset (skip GPR==zero_reg)
   8266         .addOperand(MI.getOperand(5)) // pred
   8267         .addOperand(MI.getOperand(6))
   8268         .addMemOperand(MMO);
   8269     MI.eraseFromParent();
   8270     return BB;
   8271   }
   8272   case ARM::STRr_preidx:
   8273   case ARM::STRBr_preidx:
   8274   case ARM::STRH_preidx: {
   8275     unsigned NewOpc;
   8276     switch (MI.getOpcode()) {
   8277     default: llvm_unreachable("unexpected opcode!");
   8278     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   8279     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   8280     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   8281     }
   8282     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   8283     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
   8284       MIB.addOperand(MI.getOperand(i));
   8285     MI.eraseFromParent();
   8286     return BB;
   8287   }
   8288 
   8289   case ARM::tMOVCCr_pseudo: {
   8290     // To "insert" a SELECT_CC instruction, we actually have to insert the
   8291     // diamond control-flow pattern.  The incoming instruction knows the
   8292     // destination vreg to set, the condition code register to branch on, the
   8293     // true/false values to select between, and a branch opcode to use.
   8294     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8295     MachineFunction::iterator It = ++BB->getIterator();
   8296 
   8297     //  thisMBB:
   8298     //  ...
   8299     //   TrueVal = ...
   8300     //   cmpTY ccX, r1, r2
   8301     //   bCC copy1MBB
   8302     //   fallthrough --> copy0MBB
   8303     MachineBasicBlock *thisMBB  = BB;
   8304     MachineFunction *F = BB->getParent();
   8305     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8306     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   8307     F->insert(It, copy0MBB);
   8308     F->insert(It, sinkMBB);
   8309 
   8310     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8311     sinkMBB->splice(sinkMBB->begin(), BB,
   8312                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8313     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   8314 
   8315     BB->addSuccessor(copy0MBB);
   8316     BB->addSuccessor(sinkMBB);
   8317 
   8318     BuildMI(BB, dl, TII->get(ARM::tBcc))
   8319         .addMBB(sinkMBB)
   8320         .addImm(MI.getOperand(3).getImm())
   8321         .addReg(MI.getOperand(4).getReg());
   8322 
   8323     //  copy0MBB:
   8324     //   %FalseValue = ...
   8325     //   # fallthrough to sinkMBB
   8326     BB = copy0MBB;
   8327 
   8328     // Update machine-CFG edges
   8329     BB->addSuccessor(sinkMBB);
   8330 
   8331     //  sinkMBB:
   8332     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   8333     //  ...
   8334     BB = sinkMBB;
   8335     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
   8336         .addReg(MI.getOperand(1).getReg())
   8337         .addMBB(copy0MBB)
   8338         .addReg(MI.getOperand(2).getReg())
   8339         .addMBB(thisMBB);
   8340 
   8341     MI.eraseFromParent(); // The pseudo instruction is gone now.
   8342     return BB;
   8343   }
   8344 
   8345   case ARM::BCCi64:
   8346   case ARM::BCCZi64: {
   8347     // If there is an unconditional branch to the other successor, remove it.
   8348     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8349 
   8350     // Compare both parts that make up the double comparison separately for
   8351     // equality.
   8352     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
   8353 
   8354     unsigned LHS1 = MI.getOperand(1).getReg();
   8355     unsigned LHS2 = MI.getOperand(2).getReg();
   8356     if (RHSisZero) {
   8357       AddDefaultPred(BuildMI(BB, dl,
   8358                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   8359                      .addReg(LHS1).addImm(0));
   8360       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   8361         .addReg(LHS2).addImm(0)
   8362         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   8363     } else {
   8364       unsigned RHS1 = MI.getOperand(3).getReg();
   8365       unsigned RHS2 = MI.getOperand(4).getReg();
   8366       AddDefaultPred(BuildMI(BB, dl,
   8367                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   8368                      .addReg(LHS1).addReg(RHS1));
   8369       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   8370         .addReg(LHS2).addReg(RHS2)
   8371         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   8372     }
   8373 
   8374     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
   8375     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   8376     if (MI.getOperand(0).getImm() == ARMCC::NE)
   8377       std::swap(destMBB, exitMBB);
   8378 
   8379     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   8380       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   8381     if (isThumb2)
   8382       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
   8383     else
   8384       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   8385 
   8386     MI.eraseFromParent(); // The pseudo instruction is gone now.
   8387     return BB;
   8388   }
   8389 
   8390   case ARM::Int_eh_sjlj_setjmp:
   8391   case ARM::Int_eh_sjlj_setjmp_nofp:
   8392   case ARM::tInt_eh_sjlj_setjmp:
   8393   case ARM::t2Int_eh_sjlj_setjmp:
   8394   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   8395     return BB;
   8396 
   8397   case ARM::Int_eh_sjlj_setup_dispatch:
   8398     EmitSjLjDispatchBlock(MI, BB);
   8399     return BB;
   8400 
   8401   case ARM::ABS:
   8402   case ARM::t2ABS: {
   8403     // To insert an ABS instruction, we have to insert the
   8404     // diamond control-flow pattern.  The incoming instruction knows the
   8405     // source vreg to test against 0, the destination vreg to set,
   8406     // the condition code register to branch on, the
   8407     // true/false values to select between, and a branch opcode to use.
   8408     // It transforms
   8409     //     V1 = ABS V0
   8410     // into
   8411     //     V2 = MOVS V0
   8412     //     BCC                      (branch to SinkBB if V0 >= 0)
   8413     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   8414     //     SinkBB: V1 = PHI(V2, V3)
   8415     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8416     MachineFunction::iterator BBI = ++BB->getIterator();
   8417     MachineFunction *Fn = BB->getParent();
   8418     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   8419     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   8420     Fn->insert(BBI, RSBBB);
   8421     Fn->insert(BBI, SinkBB);
   8422 
   8423     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
   8424     unsigned int ABSDstReg = MI.getOperand(0).getReg();
   8425     bool ABSSrcKIll = MI.getOperand(1).isKill();
   8426     bool isThumb2 = Subtarget->isThumb2();
   8427     MachineRegisterInfo &MRI = Fn->getRegInfo();
   8428     // In Thumb mode S must not be specified if source register is the SP or
   8429     // PC and if destination register is the SP, so restrict register class
   8430     unsigned NewRsbDstReg =
   8431       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
   8432 
   8433     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8434     SinkBB->splice(SinkBB->begin(), BB,
   8435                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8436     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   8437 
   8438     BB->addSuccessor(RSBBB);
   8439     BB->addSuccessor(SinkBB);
   8440 
   8441     // fall through to SinkMBB
   8442     RSBBB->addSuccessor(SinkBB);
   8443 
   8444     // insert a cmp at the end of BB
   8445     AddDefaultPred(BuildMI(BB, dl,
   8446                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   8447                    .addReg(ABSSrcReg).addImm(0));
   8448 
   8449     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   8450     BuildMI(BB, dl,
   8451       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   8452       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   8453 
   8454     // insert rsbri in RSBBB
   8455     // Note: BCC and rsbri will be converted into predicated rsbmi
   8456     // by if-conversion pass
   8457     BuildMI(*RSBBB, RSBBB->begin(), dl,
   8458       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   8459       .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
   8460       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
   8461 
   8462     // insert PHI in SinkBB,
   8463     // reuse ABSDstReg to not change uses of ABS instruction
   8464     BuildMI(*SinkBB, SinkBB->begin(), dl,
   8465       TII->get(ARM::PHI), ABSDstReg)
   8466       .addReg(NewRsbDstReg).addMBB(RSBBB)
   8467       .addReg(ABSSrcReg).addMBB(BB);
   8468 
   8469     // remove ABS instruction
   8470     MI.eraseFromParent();
   8471 
   8472     // return last added BB
   8473     return SinkBB;
   8474   }
   8475   case ARM::COPY_STRUCT_BYVAL_I32:
   8476     ++NumLoopByVals;
   8477     return EmitStructByval(MI, BB);
   8478   case ARM::WIN__CHKSTK:
   8479     return EmitLowered__chkstk(MI, BB);
   8480   case ARM::WIN__DBZCHK:
   8481     return EmitLowered__dbzchk(MI, BB);
   8482   }
   8483 }
   8484 
   8485 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
   8486 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
   8487 /// instead of as a custom inserter because we need the use list from the SDNode.
   8488 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
   8489                                     MachineInstr &MI, const SDNode *Node) {
   8490   bool isThumb1 = Subtarget->isThumb1Only();
   8491 
   8492   DebugLoc DL = MI.getDebugLoc();
   8493   MachineFunction *MF = MI.getParent()->getParent();
   8494   MachineRegisterInfo &MRI = MF->getRegInfo();
   8495   MachineInstrBuilder MIB(*MF, MI);
   8496 
   8497   // If the new dst/src is unused mark it as dead.
   8498   if (!Node->hasAnyUseOfValue(0)) {
   8499     MI.getOperand(0).setIsDead(true);
   8500   }
   8501   if (!Node->hasAnyUseOfValue(1)) {
   8502     MI.getOperand(1).setIsDead(true);
   8503   }
   8504 
   8505   // The MEMCPY both defines and kills the scratch registers.
   8506   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
   8507     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
   8508                                                          : &ARM::GPRRegClass);
   8509     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
   8510   }
   8511 }
   8512 
   8513 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
   8514                                                       SDNode *Node) const {
   8515   if (MI.getOpcode() == ARM::MEMCPY) {
   8516     attachMEMCPYScratchRegs(Subtarget, MI, Node);
   8517     return;
   8518   }
   8519 
   8520   const MCInstrDesc *MCID = &MI.getDesc();
   8521   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   8522   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   8523   // operand is still set to noreg. If needed, set the optional operand's
   8524   // register to CPSR, and remove the redundant implicit def.
   8525   //
   8526   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
   8527 
   8528   // Rename pseudo opcodes.
   8529   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
   8530   if (NewOpc) {
   8531     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
   8532     MCID = &TII->get(NewOpc);
   8533 
   8534     assert(MCID->getNumOperands() == MI.getDesc().getNumOperands() + 1 &&
   8535            "converted opcode should be the same except for cc_out");
   8536 
   8537     MI.setDesc(*MCID);
   8538 
   8539     // Add the optional cc_out operand
   8540     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   8541   }
   8542   unsigned ccOutIdx = MCID->getNumOperands() - 1;
   8543 
   8544   // Any ARM instruction that sets the 's' bit should specify an optional
   8545   // "cc_out" operand in the last operand position.
   8546   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   8547     assert(!NewOpc && "Optional cc_out operand required");
   8548     return;
   8549   }
   8550   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   8551   // since we already have an optional CPSR def.
   8552   bool definesCPSR = false;
   8553   bool deadCPSR = false;
   8554   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
   8555        ++i) {
   8556     const MachineOperand &MO = MI.getOperand(i);
   8557     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   8558       definesCPSR = true;
   8559       if (MO.isDead())
   8560         deadCPSR = true;
   8561       MI.RemoveOperand(i);
   8562       break;
   8563     }
   8564   }
   8565   if (!definesCPSR) {
   8566     assert(!NewOpc && "Optional cc_out operand required");
   8567     return;
   8568   }
   8569   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   8570   if (deadCPSR) {
   8571     assert(!MI.getOperand(ccOutIdx).getReg() &&
   8572            "expect uninitialized optional cc_out operand");
   8573     return;
   8574   }
   8575 
   8576   // If this instruction was defined with an optional CPSR def and its dag node
   8577   // had a live implicit CPSR def, then activate the optional CPSR def.
   8578   MachineOperand &MO = MI.getOperand(ccOutIdx);
   8579   MO.setReg(ARM::CPSR);
   8580   MO.setIsDef(true);
   8581 }
   8582 
   8583 //===----------------------------------------------------------------------===//
   8584 //                           ARM Optimization Hooks
   8585 //===----------------------------------------------------------------------===//
   8586 
   8587 // Helper function that checks if N is a null or all ones constant.
   8588 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
   8589   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
   8590 }
   8591 
   8592 // Return true if N is conditionally 0 or all ones.
   8593 // Detects these expressions where cc is an i1 value:
   8594 //
   8595 //   (select cc 0, y)   [AllOnes=0]
   8596 //   (select cc y, 0)   [AllOnes=0]
   8597 //   (zext cc)          [AllOnes=0]
   8598 //   (sext cc)          [AllOnes=0/1]
   8599 //   (select cc -1, y)  [AllOnes=1]
   8600 //   (select cc y, -1)  [AllOnes=1]
   8601 //
   8602 // Invert is set when N is the null/all ones constant when CC is false.
   8603 // OtherOp is set to the alternative value of N.
   8604 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
   8605                                        SDValue &CC, bool &Invert,
   8606                                        SDValue &OtherOp,
   8607                                        SelectionDAG &DAG) {
   8608   switch (N->getOpcode()) {
   8609   default: return false;
   8610   case ISD::SELECT: {
   8611     CC = N->getOperand(0);
   8612     SDValue N1 = N->getOperand(1);
   8613     SDValue N2 = N->getOperand(2);
   8614     if (isZeroOrAllOnes(N1, AllOnes)) {
   8615       Invert = false;
   8616       OtherOp = N2;
   8617       return true;
   8618     }
   8619     if (isZeroOrAllOnes(N2, AllOnes)) {
   8620       Invert = true;
   8621       OtherOp = N1;
   8622       return true;
   8623     }
   8624     return false;
   8625   }
   8626   case ISD::ZERO_EXTEND:
   8627     // (zext cc) can never be the all ones value.
   8628     if (AllOnes)
   8629       return false;
   8630     // Fall through.
   8631   case ISD::SIGN_EXTEND: {
   8632     SDLoc dl(N);
   8633     EVT VT = N->getValueType(0);
   8634     CC = N->getOperand(0);
   8635     if (CC.getValueType() != MVT::i1)
   8636       return false;
   8637     Invert = !AllOnes;
   8638     if (AllOnes)
   8639       // When looking for an AllOnes constant, N is an sext, and the 'other'
   8640       // value is 0.
   8641       OtherOp = DAG.getConstant(0, dl, VT);
   8642     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   8643       // When looking for a 0 constant, N can be zext or sext.
   8644       OtherOp = DAG.getConstant(1, dl, VT);
   8645     else
   8646       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
   8647                                 VT);
   8648     return true;
   8649   }
   8650   }
   8651 }
   8652 
   8653 // Combine a constant select operand into its use:
   8654 //
   8655 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
   8656 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
   8657 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
   8658 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
   8659 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
   8660 //
   8661 // The transform is rejected if the select doesn't have a constant operand that
   8662 // is null, or all ones when AllOnes is set.
   8663 //
   8664 // Also recognize sext/zext from i1:
   8665 //
   8666 //   (add (zext cc), x) -> (select cc (add x, 1), x)
   8667 //   (add (sext cc), x) -> (select cc (add x, -1), x)
   8668 //
   8669 // These transformations eventually create predicated instructions.
   8670 //
   8671 // @param N       The node to transform.
   8672 // @param Slct    The N operand that is a select.
   8673 // @param OtherOp The other N operand (x above).
   8674 // @param DCI     Context.
   8675 // @param AllOnes Require the select constant to be all ones instead of null.
   8676 // @returns The new node, or SDValue() on failure.
   8677 static
   8678 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   8679                             TargetLowering::DAGCombinerInfo &DCI,
   8680                             bool AllOnes = false) {
   8681   SelectionDAG &DAG = DCI.DAG;
   8682   EVT VT = N->getValueType(0);
   8683   SDValue NonConstantVal;
   8684   SDValue CCOp;
   8685   bool SwapSelectOps;
   8686   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
   8687                                   NonConstantVal, DAG))
   8688     return SDValue();
   8689 
   8690   // Slct is now know to be the desired identity constant when CC is true.
   8691   SDValue TrueVal = OtherOp;
   8692   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
   8693                                  OtherOp, NonConstantVal);
   8694   // Unless SwapSelectOps says CC should be false.
   8695   if (SwapSelectOps)
   8696     std::swap(TrueVal, FalseVal);
   8697 
   8698   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
   8699                      CCOp, TrueVal, FalseVal);
   8700 }
   8701 
   8702 // Attempt combineSelectAndUse on each operand of a commutative operator N.
   8703 static
   8704 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
   8705                                        TargetLowering::DAGCombinerInfo &DCI) {
   8706   SDValue N0 = N->getOperand(0);
   8707   SDValue N1 = N->getOperand(1);
   8708   if (N0.getNode()->hasOneUse())
   8709     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
   8710       return Result;
   8711   if (N1.getNode()->hasOneUse())
   8712     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
   8713       return Result;
   8714   return SDValue();
   8715 }
   8716 
   8717 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
   8718 // (only after legalization).
   8719 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   8720                                  TargetLowering::DAGCombinerInfo &DCI,
   8721                                  const ARMSubtarget *Subtarget) {
   8722 
   8723   // Only perform optimization if after legalize, and if NEON is available. We
   8724   // also expected both operands to be BUILD_VECTORs.
   8725   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   8726       || N0.getOpcode() != ISD::BUILD_VECTOR
   8727       || N1.getOpcode() != ISD::BUILD_VECTOR)
   8728     return SDValue();
   8729 
   8730   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   8731   EVT VT = N->getValueType(0);
   8732   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   8733     return SDValue();
   8734 
   8735   // Check that the vector operands are of the right form.
   8736   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   8737   // operands, where N is the size of the formed vector.
   8738   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   8739   // index such that we have a pair wise add pattern.
   8740 
   8741   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   8742   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   8743     return SDValue();
   8744   SDValue Vec = N0->getOperand(0)->getOperand(0);
   8745   SDNode *V = Vec.getNode();
   8746   unsigned nextIndex = 0;
   8747 
   8748   // For each operands to the ADD which are BUILD_VECTORs,
   8749   // check to see if each of their operands are an EXTRACT_VECTOR with
   8750   // the same vector and appropriate index.
   8751   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   8752     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   8753         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   8754 
   8755       SDValue ExtVec0 = N0->getOperand(i);
   8756       SDValue ExtVec1 = N1->getOperand(i);
   8757 
   8758       // First operand is the vector, verify its the same.
   8759       if (V != ExtVec0->getOperand(0).getNode() ||
   8760           V != ExtVec1->getOperand(0).getNode())
   8761         return SDValue();
   8762 
   8763       // Second is the constant, verify its correct.
   8764       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   8765       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   8766 
   8767       // For the constant, we want to see all the even or all the odd.
   8768       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   8769           || C1->getZExtValue() != nextIndex+1)
   8770         return SDValue();
   8771 
   8772       // Increment index.
   8773       nextIndex+=2;
   8774     } else
   8775       return SDValue();
   8776   }
   8777 
   8778   // Create VPADDL node.
   8779   SelectionDAG &DAG = DCI.DAG;
   8780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8781 
   8782   SDLoc dl(N);
   8783 
   8784   // Build operand list.
   8785   SmallVector<SDValue, 8> Ops;
   8786   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
   8787                                 TLI.getPointerTy(DAG.getDataLayout())));
   8788 
   8789   // Input is the vector.
   8790   Ops.push_back(Vec);
   8791 
   8792   // Get widened type and narrowed type.
   8793   MVT widenType;
   8794   unsigned numElem = VT.getVectorNumElements();
   8795 
   8796   EVT inputLaneType = Vec.getValueType().getVectorElementType();
   8797   switch (inputLaneType.getSimpleVT().SimpleTy) {
   8798     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   8799     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   8800     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   8801     default:
   8802       llvm_unreachable("Invalid vector element type for padd optimization.");
   8803   }
   8804 
   8805   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
   8806   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
   8807   return DAG.getNode(ExtOp, dl, VT, tmp);
   8808 }
   8809 
   8810 static SDValue findMUL_LOHI(SDValue V) {
   8811   if (V->getOpcode() == ISD::UMUL_LOHI ||
   8812       V->getOpcode() == ISD::SMUL_LOHI)
   8813     return V;
   8814   return SDValue();
   8815 }
   8816 
   8817 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
   8818                                      TargetLowering::DAGCombinerInfo &DCI,
   8819                                      const ARMSubtarget *Subtarget) {
   8820 
   8821   // Look for multiply add opportunities.
   8822   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
   8823   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
   8824   // a glue link from the first add to the second add.
   8825   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
   8826   // a S/UMLAL instruction.
   8827   //                  UMUL_LOHI
   8828   //                 / :lo    \ :hi
   8829   //                /          \          [no multiline comment]
   8830   //    loAdd ->  ADDE         |
   8831   //                 \ :glue  /
   8832   //                  \      /
   8833   //                    ADDC   <- hiAdd
   8834   //
   8835   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
   8836   SDValue AddcOp0 = AddcNode->getOperand(0);
   8837   SDValue AddcOp1 = AddcNode->getOperand(1);
   8838 
   8839   // Check if the two operands are from the same mul_lohi node.
   8840   if (AddcOp0.getNode() == AddcOp1.getNode())
   8841     return SDValue();
   8842 
   8843   assert(AddcNode->getNumValues() == 2 &&
   8844          AddcNode->getValueType(0) == MVT::i32 &&
   8845          "Expect ADDC with two result values. First: i32");
   8846 
   8847   // Check that we have a glued ADDC node.
   8848   if (AddcNode->getValueType(1) != MVT::Glue)
   8849     return SDValue();
   8850 
   8851   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
   8852   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
   8853       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
   8854       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
   8855       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
   8856     return SDValue();
   8857 
   8858   // Look for the glued ADDE.
   8859   SDNode* AddeNode = AddcNode->getGluedUser();
   8860   if (!AddeNode)
   8861     return SDValue();
   8862 
   8863   // Make sure it is really an ADDE.
   8864   if (AddeNode->getOpcode() != ISD::ADDE)
   8865     return SDValue();
   8866 
   8867   assert(AddeNode->getNumOperands() == 3 &&
   8868          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
   8869          "ADDE node has the wrong inputs");
   8870 
   8871   // Check for the triangle shape.
   8872   SDValue AddeOp0 = AddeNode->getOperand(0);
   8873   SDValue AddeOp1 = AddeNode->getOperand(1);
   8874 
   8875   // Make sure that the ADDE operands are not coming from the same node.
   8876   if (AddeOp0.getNode() == AddeOp1.getNode())
   8877     return SDValue();
   8878 
   8879   // Find the MUL_LOHI node walking up ADDE's operands.
   8880   bool IsLeftOperandMUL = false;
   8881   SDValue MULOp = findMUL_LOHI(AddeOp0);
   8882   if (MULOp == SDValue())
   8883    MULOp = findMUL_LOHI(AddeOp1);
   8884   else
   8885     IsLeftOperandMUL = true;
   8886   if (MULOp == SDValue())
   8887     return SDValue();
   8888 
   8889   // Figure out the right opcode.
   8890   unsigned Opc = MULOp->getOpcode();
   8891   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
   8892 
   8893   // Figure out the high and low input values to the MLAL node.
   8894   SDValue* HiAdd = nullptr;
   8895   SDValue* LoMul = nullptr;
   8896   SDValue* LowAdd = nullptr;
   8897 
   8898   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
   8899   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
   8900     return SDValue();
   8901 
   8902   if (IsLeftOperandMUL)
   8903     HiAdd = &AddeOp1;
   8904   else
   8905     HiAdd = &AddeOp0;
   8906 
   8907 
   8908   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
   8909   // whose low result is fed to the ADDC we are checking.
   8910 
   8911   if (AddcOp0 == MULOp.getValue(0)) {
   8912     LoMul = &AddcOp0;
   8913     LowAdd = &AddcOp1;
   8914   }
   8915   if (AddcOp1 == MULOp.getValue(0)) {
   8916     LoMul = &AddcOp1;
   8917     LowAdd = &AddcOp0;
   8918   }
   8919 
   8920   if (!LoMul)
   8921     return SDValue();
   8922 
   8923   // Create the merged node.
   8924   SelectionDAG &DAG = DCI.DAG;
   8925 
   8926   // Build operand list.
   8927   SmallVector<SDValue, 8> Ops;
   8928   Ops.push_back(LoMul->getOperand(0));
   8929   Ops.push_back(LoMul->getOperand(1));
   8930   Ops.push_back(*LowAdd);
   8931   Ops.push_back(*HiAdd);
   8932 
   8933   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
   8934                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
   8935 
   8936   // Replace the ADDs' nodes uses by the MLA node's values.
   8937   SDValue HiMLALResult(MLALNode.getNode(), 1);
   8938   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
   8939 
   8940   SDValue LoMLALResult(MLALNode.getNode(), 0);
   8941   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
   8942 
   8943   // Return original node to notify the driver to stop replacing.
   8944   SDValue resNode(AddcNode, 0);
   8945   return resNode;
   8946 }
   8947 
   8948 static SDValue AddCombineTo64bitUMAAL(SDNode *AddcNode,
   8949                                       TargetLowering::DAGCombinerInfo &DCI,
   8950                                       const ARMSubtarget *Subtarget) {
   8951   // UMAAL is similar to UMLAL except that it adds two unsigned values.
   8952   // While trying to combine for the other MLAL nodes, first search for the
   8953   // chance to use UMAAL. Check if Addc uses another addc node which can first
   8954   // be combined into a UMLAL. The other pattern is AddcNode being combined
   8955   // into an UMLAL and then using another addc is handled in ISelDAGToDAG.
   8956 
   8957   if (!Subtarget->hasV6Ops())
   8958     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
   8959 
   8960   SDNode *PrevAddc = nullptr;
   8961   if (AddcNode->getOperand(0).getOpcode() == ISD::ADDC)
   8962     PrevAddc = AddcNode->getOperand(0).getNode();
   8963   else if (AddcNode->getOperand(1).getOpcode() == ISD::ADDC)
   8964     PrevAddc = AddcNode->getOperand(1).getNode();
   8965 
   8966   // If there's no addc chains, just return a search for any MLAL.
   8967   if (PrevAddc == nullptr)
   8968     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
   8969 
   8970   // Try to convert the addc operand to an MLAL and if that fails try to
   8971   // combine AddcNode.
   8972   SDValue MLAL = AddCombineTo64bitMLAL(PrevAddc, DCI, Subtarget);
   8973   if (MLAL != SDValue(PrevAddc, 0))
   8974     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
   8975 
   8976   // Find the converted UMAAL or quit if it doesn't exist.
   8977   SDNode *UmlalNode = nullptr;
   8978   SDValue AddHi;
   8979   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
   8980     UmlalNode = AddcNode->getOperand(0).getNode();
   8981     AddHi = AddcNode->getOperand(1);
   8982   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
   8983     UmlalNode = AddcNode->getOperand(1).getNode();
   8984     AddHi = AddcNode->getOperand(0);
   8985   } else {
   8986     return SDValue();
   8987   }
   8988 
   8989   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
   8990   // the ADDC as well as Zero.
   8991   auto *Zero = dyn_cast<ConstantSDNode>(UmlalNode->getOperand(3));
   8992 
   8993   if (!Zero || Zero->getZExtValue() != 0)
   8994     return SDValue();
   8995 
   8996   // Check that we have a glued ADDC node.
   8997   if (AddcNode->getValueType(1) != MVT::Glue)
   8998     return SDValue();
   8999 
   9000   // Look for the glued ADDE.
   9001   SDNode* AddeNode = AddcNode->getGluedUser();
   9002   if (!AddeNode)
   9003     return SDValue();
   9004 
   9005   if ((AddeNode->getOperand(0).getNode() == Zero &&
   9006        AddeNode->getOperand(1).getNode() == UmlalNode) ||
   9007       (AddeNode->getOperand(0).getNode() == UmlalNode &&
   9008        AddeNode->getOperand(1).getNode() == Zero)) {
   9009 
   9010     SelectionDAG &DAG = DCI.DAG;
   9011     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
   9012                       UmlalNode->getOperand(2), AddHi };
   9013     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
   9014                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
   9015 
   9016     // Replace the ADDs' nodes uses by the UMAAL node's values.
   9017     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
   9018     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
   9019 
   9020     // Return original node to notify the driver to stop replacing.
   9021     return SDValue(AddcNode, 0);
   9022   }
   9023   return SDValue();
   9024 }
   9025 
   9026 /// PerformADDCCombine - Target-specific dag combine transform from
   9027 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL or
   9028 /// ISD::ADDC, ISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
   9029 static SDValue PerformADDCCombine(SDNode *N,
   9030                                  TargetLowering::DAGCombinerInfo &DCI,
   9031                                  const ARMSubtarget *Subtarget) {
   9032 
   9033   if (Subtarget->isThumb1Only()) return SDValue();
   9034 
   9035   // Only perform the checks after legalize when the pattern is available.
   9036   if (DCI.isBeforeLegalize()) return SDValue();
   9037 
   9038   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
   9039 }
   9040 
   9041 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   9042 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   9043 /// called with the default operands, and if that fails, with commuted
   9044 /// operands.
   9045 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   9046                                           TargetLowering::DAGCombinerInfo &DCI,
   9047                                           const ARMSubtarget *Subtarget){
   9048 
   9049   // Attempt to create vpaddl for this add.
   9050   if (SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget))
   9051     return Result;
   9052 
   9053   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   9054   if (N0.getNode()->hasOneUse())
   9055     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
   9056       return Result;
   9057   return SDValue();
   9058 }
   9059 
   9060 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   9061 ///
   9062 static SDValue PerformADDCombine(SDNode *N,
   9063                                  TargetLowering::DAGCombinerInfo &DCI,
   9064                                  const ARMSubtarget *Subtarget) {
   9065   SDValue N0 = N->getOperand(0);
   9066   SDValue N1 = N->getOperand(1);
   9067 
   9068   // First try with the default operand order.
   9069   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
   9070     return Result;
   9071 
   9072   // If that didn't work, try again with the operands commuted.
   9073   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   9074 }
   9075 
   9076 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   9077 ///
   9078 static SDValue PerformSUBCombine(SDNode *N,
   9079                                  TargetLowering::DAGCombinerInfo &DCI) {
   9080   SDValue N0 = N->getOperand(0);
   9081   SDValue N1 = N->getOperand(1);
   9082 
   9083   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   9084   if (N1.getNode()->hasOneUse())
   9085     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
   9086       return Result;
   9087 
   9088   return SDValue();
   9089 }
   9090 
   9091 /// PerformVMULCombine
   9092 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   9093 /// special multiplier accumulator forwarding.
   9094 ///   vmul d3, d0, d2
   9095 ///   vmla d3, d1, d2
   9096 /// is faster than
   9097 ///   vadd d3, d0, d1
   9098 ///   vmul d3, d3, d2
   9099 //  However, for (A + B) * (A + B),
   9100 //    vadd d2, d0, d1
   9101 //    vmul d3, d0, d2
   9102 //    vmla d3, d1, d2
   9103 //  is slower than
   9104 //    vadd d2, d0, d1
   9105 //    vmul d3, d2, d2
   9106 static SDValue PerformVMULCombine(SDNode *N,
   9107                                   TargetLowering::DAGCombinerInfo &DCI,
   9108                                   const ARMSubtarget *Subtarget) {
   9109   if (!Subtarget->hasVMLxForwarding())
   9110     return SDValue();
   9111 
   9112   SelectionDAG &DAG = DCI.DAG;
   9113   SDValue N0 = N->getOperand(0);
   9114   SDValue N1 = N->getOperand(1);
   9115   unsigned Opcode = N0.getOpcode();
   9116   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   9117       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   9118     Opcode = N1.getOpcode();
   9119     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   9120         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   9121       return SDValue();
   9122     std::swap(N0, N1);
   9123   }
   9124 
   9125   if (N0 == N1)
   9126     return SDValue();
   9127 
   9128   EVT VT = N->getValueType(0);
   9129   SDLoc DL(N);
   9130   SDValue N00 = N0->getOperand(0);
   9131   SDValue N01 = N0->getOperand(1);
   9132   return DAG.getNode(Opcode, DL, VT,
   9133                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   9134                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   9135 }
   9136 
   9137 static SDValue PerformMULCombine(SDNode *N,
   9138                                  TargetLowering::DAGCombinerInfo &DCI,
   9139                                  const ARMSubtarget *Subtarget) {
   9140   SelectionDAG &DAG = DCI.DAG;
   9141 
   9142   if (Subtarget->isThumb1Only())
   9143     return SDValue();
   9144 
   9145   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   9146     return SDValue();
   9147 
   9148   EVT VT = N->getValueType(0);
   9149   if (VT.is64BitVector() || VT.is128BitVector())
   9150     return PerformVMULCombine(N, DCI, Subtarget);
   9151   if (VT != MVT::i32)
   9152     return SDValue();
   9153 
   9154   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   9155   if (!C)
   9156     return SDValue();
   9157 
   9158   int64_t MulAmt = C->getSExtValue();
   9159   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
   9160 
   9161   ShiftAmt = ShiftAmt & (32 - 1);
   9162   SDValue V = N->getOperand(0);
   9163   SDLoc DL(N);
   9164 
   9165   SDValue Res;
   9166   MulAmt >>= ShiftAmt;
   9167 
   9168   if (MulAmt >= 0) {
   9169     if (isPowerOf2_32(MulAmt - 1)) {
   9170       // (mul x, 2^N + 1) => (add (shl x, N), x)
   9171       Res = DAG.getNode(ISD::ADD, DL, VT,
   9172                         V,
   9173                         DAG.getNode(ISD::SHL, DL, VT,
   9174                                     V,
   9175                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
   9176                                                     MVT::i32)));
   9177     } else if (isPowerOf2_32(MulAmt + 1)) {
   9178       // (mul x, 2^N - 1) => (sub (shl x, N), x)
   9179       Res = DAG.getNode(ISD::SUB, DL, VT,
   9180                         DAG.getNode(ISD::SHL, DL, VT,
   9181                                     V,
   9182                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
   9183                                                     MVT::i32)),
   9184                         V);
   9185     } else
   9186       return SDValue();
   9187   } else {
   9188     uint64_t MulAmtAbs = -MulAmt;
   9189     if (isPowerOf2_32(MulAmtAbs + 1)) {
   9190       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   9191       Res = DAG.getNode(ISD::SUB, DL, VT,
   9192                         V,
   9193                         DAG.getNode(ISD::SHL, DL, VT,
   9194                                     V,
   9195                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
   9196                                                     MVT::i32)));
   9197     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
   9198       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   9199       Res = DAG.getNode(ISD::ADD, DL, VT,
   9200                         V,
   9201                         DAG.getNode(ISD::SHL, DL, VT,
   9202                                     V,
   9203                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
   9204                                                     MVT::i32)));
   9205       Res = DAG.getNode(ISD::SUB, DL, VT,
   9206                         DAG.getConstant(0, DL, MVT::i32), Res);
   9207 
   9208     } else
   9209       return SDValue();
   9210   }
   9211 
   9212   if (ShiftAmt != 0)
   9213     Res = DAG.getNode(ISD::SHL, DL, VT,
   9214                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
   9215 
   9216   // Do not add new nodes to DAG combiner worklist.
   9217   DCI.CombineTo(N, Res, false);
   9218   return SDValue();
   9219 }
   9220 
   9221 static SDValue PerformANDCombine(SDNode *N,
   9222                                  TargetLowering::DAGCombinerInfo &DCI,
   9223                                  const ARMSubtarget *Subtarget) {
   9224 
   9225   // Attempt to use immediate-form VBIC
   9226   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   9227   SDLoc dl(N);
   9228   EVT VT = N->getValueType(0);
   9229   SelectionDAG &DAG = DCI.DAG;
   9230 
   9231   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9232     return SDValue();
   9233 
   9234   APInt SplatBits, SplatUndef;
   9235   unsigned SplatBitSize;
   9236   bool HasAnyUndefs;
   9237   if (BVN &&
   9238       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   9239     if (SplatBitSize <= 64) {
   9240       EVT VbicVT;
   9241       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   9242                                       SplatUndef.getZExtValue(), SplatBitSize,
   9243                                       DAG, dl, VbicVT, VT.is128BitVector(),
   9244                                       OtherModImm);
   9245       if (Val.getNode()) {
   9246         SDValue Input =
   9247           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   9248         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   9249         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   9250       }
   9251     }
   9252   }
   9253 
   9254   if (!Subtarget->isThumb1Only()) {
   9255     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
   9256     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
   9257       return Result;
   9258   }
   9259 
   9260   return SDValue();
   9261 }
   9262 
   9263 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   9264 static SDValue PerformORCombine(SDNode *N,
   9265                                 TargetLowering::DAGCombinerInfo &DCI,
   9266                                 const ARMSubtarget *Subtarget) {
   9267   // Attempt to use immediate-form VORR
   9268   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   9269   SDLoc dl(N);
   9270   EVT VT = N->getValueType(0);
   9271   SelectionDAG &DAG = DCI.DAG;
   9272 
   9273   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9274     return SDValue();
   9275 
   9276   APInt SplatBits, SplatUndef;
   9277   unsigned SplatBitSize;
   9278   bool HasAnyUndefs;
   9279   if (BVN && Subtarget->hasNEON() &&
   9280       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   9281     if (SplatBitSize <= 64) {
   9282       EVT VorrVT;
   9283       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   9284                                       SplatUndef.getZExtValue(), SplatBitSize,
   9285                                       DAG, dl, VorrVT, VT.is128BitVector(),
   9286                                       OtherModImm);
   9287       if (Val.getNode()) {
   9288         SDValue Input =
   9289           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   9290         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   9291         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   9292       }
   9293     }
   9294   }
   9295 
   9296   if (!Subtarget->isThumb1Only()) {
   9297     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
   9298     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
   9299       return Result;
   9300   }
   9301 
   9302   // The code below optimizes (or (and X, Y), Z).
   9303   // The AND operand needs to have a single user to make these optimizations
   9304   // profitable.
   9305   SDValue N0 = N->getOperand(0);
   9306   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
   9307     return SDValue();
   9308   SDValue N1 = N->getOperand(1);
   9309 
   9310   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   9311   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   9312       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   9313     APInt SplatUndef;
   9314     unsigned SplatBitSize;
   9315     bool HasAnyUndefs;
   9316 
   9317     APInt SplatBits0, SplatBits1;
   9318     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   9319     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   9320     // Ensure that the second operand of both ands are constants
   9321     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   9322                                       HasAnyUndefs) && !HasAnyUndefs) {
   9323         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   9324                                           HasAnyUndefs) && !HasAnyUndefs) {
   9325             // Ensure that the bit width of the constants are the same and that
   9326             // the splat arguments are logical inverses as per the pattern we
   9327             // are trying to simplify.
   9328             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
   9329                 SplatBits0 == ~SplatBits1) {
   9330                 // Canonicalize the vector type to make instruction selection
   9331                 // simpler.
   9332                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   9333                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   9334                                              N0->getOperand(1),
   9335                                              N0->getOperand(0),
   9336                                              N1->getOperand(0));
   9337                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   9338             }
   9339         }
   9340     }
   9341   }
   9342 
   9343   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   9344   // reasonable.
   9345 
   9346   // BFI is only available on V6T2+
   9347   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   9348     return SDValue();
   9349 
   9350   SDLoc DL(N);
   9351   // 1) or (and A, mask), val => ARMbfi A, val, mask
   9352   //      iff (val & mask) == val
   9353   //
   9354   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   9355   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   9356   //          && mask == ~mask2
   9357   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   9358   //          && ~mask == mask2
   9359   //  (i.e., copy a bitfield value into another bitfield of the same width)
   9360 
   9361   if (VT != MVT::i32)
   9362     return SDValue();
   9363 
   9364   SDValue N00 = N0.getOperand(0);
   9365 
   9366   // The value and the mask need to be constants so we can verify this is
   9367   // actually a bitfield set. If the mask is 0xffff, we can do better
   9368   // via a movt instruction, so don't use BFI in that case.
   9369   SDValue MaskOp = N0.getOperand(1);
   9370   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   9371   if (!MaskC)
   9372     return SDValue();
   9373   unsigned Mask = MaskC->getZExtValue();
   9374   if (Mask == 0xffff)
   9375     return SDValue();
   9376   SDValue Res;
   9377   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   9378   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   9379   if (N1C) {
   9380     unsigned Val = N1C->getZExtValue();
   9381     if ((Val & ~Mask) != Val)
   9382       return SDValue();
   9383 
   9384     if (ARM::isBitFieldInvertedMask(Mask)) {
   9385       Val >>= countTrailingZeros(~Mask);
   9386 
   9387       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   9388                         DAG.getConstant(Val, DL, MVT::i32),
   9389                         DAG.getConstant(Mask, DL, MVT::i32));
   9390 
   9391       // Do not add new nodes to DAG combiner worklist.
   9392       DCI.CombineTo(N, Res, false);
   9393       return SDValue();
   9394     }
   9395   } else if (N1.getOpcode() == ISD::AND) {
   9396     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   9397     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   9398     if (!N11C)
   9399       return SDValue();
   9400     unsigned Mask2 = N11C->getZExtValue();
   9401 
   9402     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   9403     // as is to match.
   9404     if (ARM::isBitFieldInvertedMask(Mask) &&
   9405         (Mask == ~Mask2)) {
   9406       // The pack halfword instruction works better for masks that fit it,
   9407       // so use that when it's available.
   9408       if (Subtarget->hasT2ExtractPack() &&
   9409           (Mask == 0xffff || Mask == 0xffff0000))
   9410         return SDValue();
   9411       // 2a
   9412       unsigned amt = countTrailingZeros(Mask2);
   9413       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   9414                         DAG.getConstant(amt, DL, MVT::i32));
   9415       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   9416                         DAG.getConstant(Mask, DL, MVT::i32));
   9417       // Do not add new nodes to DAG combiner worklist.
   9418       DCI.CombineTo(N, Res, false);
   9419       return SDValue();
   9420     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   9421                (~Mask == Mask2)) {
   9422       // The pack halfword instruction works better for masks that fit it,
   9423       // so use that when it's available.
   9424       if (Subtarget->hasT2ExtractPack() &&
   9425           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   9426         return SDValue();
   9427       // 2b
   9428       unsigned lsb = countTrailingZeros(Mask);
   9429       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   9430                         DAG.getConstant(lsb, DL, MVT::i32));
   9431       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   9432                         DAG.getConstant(Mask2, DL, MVT::i32));
   9433       // Do not add new nodes to DAG combiner worklist.
   9434       DCI.CombineTo(N, Res, false);
   9435       return SDValue();
   9436     }
   9437   }
   9438 
   9439   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   9440       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   9441       ARM::isBitFieldInvertedMask(~Mask)) {
   9442     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   9443     // where lsb(mask) == #shamt and masked bits of B are known zero.
   9444     SDValue ShAmt = N00.getOperand(1);
   9445     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   9446     unsigned LSB = countTrailingZeros(Mask);
   9447     if (ShAmtC != LSB)
   9448       return SDValue();
   9449 
   9450     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   9451                       DAG.getConstant(~Mask, DL, MVT::i32));
   9452 
   9453     // Do not add new nodes to DAG combiner worklist.
   9454     DCI.CombineTo(N, Res, false);
   9455   }
   9456 
   9457   return SDValue();
   9458 }
   9459 
   9460 static SDValue PerformXORCombine(SDNode *N,
   9461                                  TargetLowering::DAGCombinerInfo &DCI,
   9462                                  const ARMSubtarget *Subtarget) {
   9463   EVT VT = N->getValueType(0);
   9464   SelectionDAG &DAG = DCI.DAG;
   9465 
   9466   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9467     return SDValue();
   9468 
   9469   if (!Subtarget->isThumb1Only()) {
   9470     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
   9471     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
   9472       return Result;
   9473   }
   9474 
   9475   return SDValue();
   9476 }
   9477 
   9478 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
   9479 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
   9480 // their position in "to" (Rd).
   9481 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
   9482   assert(N->getOpcode() == ARMISD::BFI);
   9483 
   9484   SDValue From = N->getOperand(1);
   9485   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
   9486   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
   9487 
   9488   // If the Base came from a SHR #C, we can deduce that it is really testing bit
   9489   // #C in the base of the SHR.
   9490   if (From->getOpcode() == ISD::SRL &&
   9491       isa<ConstantSDNode>(From->getOperand(1))) {
   9492     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
   9493     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
   9494     FromMask <<= Shift.getLimitedValue(31);
   9495     From = From->getOperand(0);
   9496   }
   9497 
   9498   return From;
   9499 }
   9500 
   9501 // If A and B contain one contiguous set of bits, does A | B == A . B?
   9502 //
   9503 // Neither A nor B must be zero.
   9504 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
   9505   unsigned LastActiveBitInA =  A.countTrailingZeros();
   9506   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
   9507   return LastActiveBitInA - 1 == FirstActiveBitInB;
   9508 }
   9509 
   9510 static SDValue FindBFIToCombineWith(SDNode *N) {
   9511   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
   9512   // if one exists.
   9513   APInt ToMask, FromMask;
   9514   SDValue From = ParseBFI(N, ToMask, FromMask);
   9515   SDValue To = N->getOperand(0);
   9516 
   9517   // Now check for a compatible BFI to merge with. We can pass through BFIs that
   9518   // aren't compatible, but not if they set the same bit in their destination as
   9519   // we do (or that of any BFI we're going to combine with).
   9520   SDValue V = To;
   9521   APInt CombinedToMask = ToMask;
   9522   while (V.getOpcode() == ARMISD::BFI) {
   9523     APInt NewToMask, NewFromMask;
   9524     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
   9525     if (NewFrom != From) {
   9526       // This BFI has a different base. Keep going.
   9527       CombinedToMask |= NewToMask;
   9528       V = V.getOperand(0);
   9529       continue;
   9530     }
   9531 
   9532     // Do the written bits conflict with any we've seen so far?
   9533     if ((NewToMask & CombinedToMask).getBoolValue())
   9534       // Conflicting bits - bail out because going further is unsafe.
   9535       return SDValue();
   9536 
   9537     // Are the new bits contiguous when combined with the old bits?
   9538     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
   9539         BitsProperlyConcatenate(FromMask, NewFromMask))
   9540       return V;
   9541     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
   9542         BitsProperlyConcatenate(NewFromMask, FromMask))
   9543       return V;
   9544 
   9545     // We've seen a write to some bits, so track it.
   9546     CombinedToMask |= NewToMask;
   9547     // Keep going...
   9548     V = V.getOperand(0);
   9549   }
   9550 
   9551   return SDValue();
   9552 }
   9553 
   9554 static SDValue PerformBFICombine(SDNode *N,
   9555                                  TargetLowering::DAGCombinerInfo &DCI) {
   9556   SDValue N1 = N->getOperand(1);
   9557   if (N1.getOpcode() == ISD::AND) {
   9558     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   9559     // the bits being cleared by the AND are not demanded by the BFI.
   9560     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   9561     if (!N11C)
   9562       return SDValue();
   9563     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   9564     unsigned LSB = countTrailingZeros(~InvMask);
   9565     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
   9566     assert(Width <
   9567                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
   9568            "undefined behavior");
   9569     unsigned Mask = (1u << Width) - 1;
   9570     unsigned Mask2 = N11C->getZExtValue();
   9571     if ((Mask & (~Mask2)) == 0)
   9572       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
   9573                              N->getOperand(0), N1.getOperand(0),
   9574                              N->getOperand(2));
   9575   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
   9576     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
   9577     // Keep track of any consecutive bits set that all come from the same base
   9578     // value. We can combine these together into a single BFI.
   9579     SDValue CombineBFI = FindBFIToCombineWith(N);
   9580     if (CombineBFI == SDValue())
   9581       return SDValue();
   9582 
   9583     // We've found a BFI.
   9584     APInt ToMask1, FromMask1;
   9585     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
   9586 
   9587     APInt ToMask2, FromMask2;
   9588     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
   9589     assert(From1 == From2);
   9590     (void)From2;
   9591 
   9592     // First, unlink CombineBFI.
   9593     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
   9594     // Then create a new BFI, combining the two together.
   9595     APInt NewFromMask = FromMask1 | FromMask2;
   9596     APInt NewToMask = ToMask1 | ToMask2;
   9597 
   9598     EVT VT = N->getValueType(0);
   9599     SDLoc dl(N);
   9600 
   9601     if (NewFromMask[0] == 0)
   9602       From1 = DCI.DAG.getNode(
   9603         ISD::SRL, dl, VT, From1,
   9604         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
   9605     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
   9606                            DCI.DAG.getConstant(~NewToMask, dl, VT));
   9607   }
   9608   return SDValue();
   9609 }
   9610 
   9611 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   9612 /// ARMISD::VMOVRRD.
   9613 static SDValue PerformVMOVRRDCombine(SDNode *N,
   9614                                      TargetLowering::DAGCombinerInfo &DCI,
   9615                                      const ARMSubtarget *Subtarget) {
   9616   // vmovrrd(vmovdrr x, y) -> x,y
   9617   SDValue InDouble = N->getOperand(0);
   9618   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
   9619     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   9620 
   9621   // vmovrrd(load f64) -> (load i32), (load i32)
   9622   SDNode *InNode = InDouble.getNode();
   9623   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   9624       InNode->getValueType(0) == MVT::f64 &&
   9625       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   9626       !cast<LoadSDNode>(InNode)->isVolatile()) {
   9627     // TODO: Should this be done for non-FrameIndex operands?
   9628     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   9629 
   9630     SelectionDAG &DAG = DCI.DAG;
   9631     SDLoc DL(LD);
   9632     SDValue BasePtr = LD->getBasePtr();
   9633     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
   9634                                  LD->getPointerInfo(), LD->isVolatile(),
   9635                                  LD->isNonTemporal(), LD->isInvariant(),
   9636                                  LD->getAlignment());
   9637 
   9638     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   9639                                     DAG.getConstant(4, DL, MVT::i32));
   9640     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
   9641                                  LD->getPointerInfo(), LD->isVolatile(),
   9642                                  LD->isNonTemporal(), LD->isInvariant(),
   9643                                  std::min(4U, LD->getAlignment() / 2));
   9644 
   9645     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   9646     if (DCI.DAG.getDataLayout().isBigEndian())
   9647       std::swap (NewLD1, NewLD2);
   9648     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   9649     return Result;
   9650   }
   9651 
   9652   return SDValue();
   9653 }
   9654 
   9655 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   9656 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   9657 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   9658   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   9659   SDValue Op0 = N->getOperand(0);
   9660   SDValue Op1 = N->getOperand(1);
   9661   if (Op0.getOpcode() == ISD::BITCAST)
   9662     Op0 = Op0.getOperand(0);
   9663   if (Op1.getOpcode() == ISD::BITCAST)
   9664     Op1 = Op1.getOperand(0);
   9665   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   9666       Op0.getNode() == Op1.getNode() &&
   9667       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   9668     return DAG.getNode(ISD::BITCAST, SDLoc(N),
   9669                        N->getValueType(0), Op0.getOperand(0));
   9670   return SDValue();
   9671 }
   9672 
   9673 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   9674 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   9675 /// i64 vector to have f64 elements, since the value can then be loaded
   9676 /// directly into a VFP register.
   9677 static bool hasNormalLoadOperand(SDNode *N) {
   9678   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   9679   for (unsigned i = 0; i < NumElts; ++i) {
   9680     SDNode *Elt = N->getOperand(i).getNode();
   9681     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   9682       return true;
   9683   }
   9684   return false;
   9685 }
   9686 
   9687 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   9688 /// ISD::BUILD_VECTOR.
   9689 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   9690                                           TargetLowering::DAGCombinerInfo &DCI,
   9691                                           const ARMSubtarget *Subtarget) {
   9692   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   9693   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   9694   // into a pair of GPRs, which is fine when the value is used as a scalar,
   9695   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   9696   SelectionDAG &DAG = DCI.DAG;
   9697   if (N->getNumOperands() == 2)
   9698     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
   9699       return RV;
   9700 
   9701   // Load i64 elements as f64 values so that type legalization does not split
   9702   // them up into i32 values.
   9703   EVT VT = N->getValueType(0);
   9704   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   9705     return SDValue();
   9706   SDLoc dl(N);
   9707   SmallVector<SDValue, 8> Ops;
   9708   unsigned NumElts = VT.getVectorNumElements();
   9709   for (unsigned i = 0; i < NumElts; ++i) {
   9710     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   9711     Ops.push_back(V);
   9712     // Make the DAGCombiner fold the bitcast.
   9713     DCI.AddToWorklist(V.getNode());
   9714   }
   9715   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   9716   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
   9717   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   9718 }
   9719 
   9720 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
   9721 static SDValue
   9722 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   9723   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
   9724   // At that time, we may have inserted bitcasts from integer to float.
   9725   // If these bitcasts have survived DAGCombine, change the lowering of this
   9726   // BUILD_VECTOR in something more vector friendly, i.e., that does not
   9727   // force to use floating point types.
   9728 
   9729   // Make sure we can change the type of the vector.
   9730   // This is possible iff:
   9731   // 1. The vector is only used in a bitcast to a integer type. I.e.,
   9732   //    1.1. Vector is used only once.
   9733   //    1.2. Use is a bit convert to an integer type.
   9734   // 2. The size of its operands are 32-bits (64-bits are not legal).
   9735   EVT VT = N->getValueType(0);
   9736   EVT EltVT = VT.getVectorElementType();
   9737 
   9738   // Check 1.1. and 2.
   9739   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
   9740     return SDValue();
   9741 
   9742   // By construction, the input type must be float.
   9743   assert(EltVT == MVT::f32 && "Unexpected type!");
   9744 
   9745   // Check 1.2.
   9746   SDNode *Use = *N->use_begin();
   9747   if (Use->getOpcode() != ISD::BITCAST ||
   9748       Use->getValueType(0).isFloatingPoint())
   9749     return SDValue();
   9750 
   9751   // Check profitability.
   9752   // Model is, if more than half of the relevant operands are bitcast from
   9753   // i32, turn the build_vector into a sequence of insert_vector_elt.
   9754   // Relevant operands are everything that is not statically
   9755   // (i.e., at compile time) bitcasted.
   9756   unsigned NumOfBitCastedElts = 0;
   9757   unsigned NumElts = VT.getVectorNumElements();
   9758   unsigned NumOfRelevantElts = NumElts;
   9759   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
   9760     SDValue Elt = N->getOperand(Idx);
   9761     if (Elt->getOpcode() == ISD::BITCAST) {
   9762       // Assume only bit cast to i32 will go away.
   9763       if (Elt->getOperand(0).getValueType() == MVT::i32)
   9764         ++NumOfBitCastedElts;
   9765     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
   9766       // Constants are statically casted, thus do not count them as
   9767       // relevant operands.
   9768       --NumOfRelevantElts;
   9769   }
   9770 
   9771   // Check if more than half of the elements require a non-free bitcast.
   9772   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
   9773     return SDValue();
   9774 
   9775   SelectionDAG &DAG = DCI.DAG;
   9776   // Create the new vector type.
   9777   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   9778   // Check if the type is legal.
   9779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9780   if (!TLI.isTypeLegal(VecVT))
   9781     return SDValue();
   9782 
   9783   // Combine:
   9784   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
   9785   // => BITCAST INSERT_VECTOR_ELT
   9786   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
   9787   //                      (BITCAST EN), N.
   9788   SDValue Vec = DAG.getUNDEF(VecVT);
   9789   SDLoc dl(N);
   9790   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
   9791     SDValue V = N->getOperand(Idx);
   9792     if (V.isUndef())
   9793       continue;
   9794     if (V.getOpcode() == ISD::BITCAST &&
   9795         V->getOperand(0).getValueType() == MVT::i32)
   9796       // Fold obvious case.
   9797       V = V.getOperand(0);
   9798     else {
   9799       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
   9800       // Make the DAGCombiner fold the bitcasts.
   9801       DCI.AddToWorklist(V.getNode());
   9802     }
   9803     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
   9804     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
   9805   }
   9806   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   9807   // Make the DAGCombiner fold the bitcasts.
   9808   DCI.AddToWorklist(Vec.getNode());
   9809   return Vec;
   9810 }
   9811 
   9812 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   9813 /// ISD::INSERT_VECTOR_ELT.
   9814 static SDValue PerformInsertEltCombine(SDNode *N,
   9815                                        TargetLowering::DAGCombinerInfo &DCI) {
   9816   // Bitcast an i64 load inserted into a vector to f64.
   9817   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   9818   EVT VT = N->getValueType(0);
   9819   SDNode *Elt = N->getOperand(1).getNode();
   9820   if (VT.getVectorElementType() != MVT::i64 ||
   9821       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   9822     return SDValue();
   9823 
   9824   SelectionDAG &DAG = DCI.DAG;
   9825   SDLoc dl(N);
   9826   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   9827                                  VT.getVectorNumElements());
   9828   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   9829   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   9830   // Make the DAGCombiner fold the bitcasts.
   9831   DCI.AddToWorklist(Vec.getNode());
   9832   DCI.AddToWorklist(V.getNode());
   9833   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   9834                                Vec, V, N->getOperand(2));
   9835   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   9836 }
   9837 
   9838 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   9839 /// ISD::VECTOR_SHUFFLE.
   9840 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   9841   // The LLVM shufflevector instruction does not require the shuffle mask
   9842   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   9843   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   9844   // operands do not match the mask length, they are extended by concatenating
   9845   // them with undef vectors.  That is probably the right thing for other
   9846   // targets, but for NEON it is better to concatenate two double-register
   9847   // size vector operands into a single quad-register size vector.  Do that
   9848   // transformation here:
   9849   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   9850   //   shuffle(concat(v1, v2), undef)
   9851   SDValue Op0 = N->getOperand(0);
   9852   SDValue Op1 = N->getOperand(1);
   9853   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   9854       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   9855       Op0.getNumOperands() != 2 ||
   9856       Op1.getNumOperands() != 2)
   9857     return SDValue();
   9858   SDValue Concat0Op1 = Op0.getOperand(1);
   9859   SDValue Concat1Op1 = Op1.getOperand(1);
   9860   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
   9861     return SDValue();
   9862   // Skip the transformation if any of the types are illegal.
   9863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9864   EVT VT = N->getValueType(0);
   9865   if (!TLI.isTypeLegal(VT) ||
   9866       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   9867       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   9868     return SDValue();
   9869 
   9870   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
   9871                                   Op0.getOperand(0), Op1.getOperand(0));
   9872   // Translate the shuffle mask.
   9873   SmallVector<int, 16> NewMask;
   9874   unsigned NumElts = VT.getVectorNumElements();
   9875   unsigned HalfElts = NumElts/2;
   9876   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   9877   for (unsigned n = 0; n < NumElts; ++n) {
   9878     int MaskElt = SVN->getMaskElt(n);
   9879     int NewElt = -1;
   9880     if (MaskElt < (int)HalfElts)
   9881       NewElt = MaskElt;
   9882     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   9883       NewElt = HalfElts + MaskElt - NumElts;
   9884     NewMask.push_back(NewElt);
   9885   }
   9886   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
   9887                               DAG.getUNDEF(VT), NewMask);
   9888 }
   9889 
   9890 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
   9891 /// NEON load/store intrinsics, and generic vector load/stores, to merge
   9892 /// base address updates.
   9893 /// For generic load/stores, the memory type is assumed to be a vector.
   9894 /// The caller is assumed to have checked legality.
   9895 static SDValue CombineBaseUpdate(SDNode *N,
   9896                                  TargetLowering::DAGCombinerInfo &DCI) {
   9897   SelectionDAG &DAG = DCI.DAG;
   9898   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   9899                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   9900   const bool isStore = N->getOpcode() == ISD::STORE;
   9901   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
   9902   SDValue Addr = N->getOperand(AddrOpIdx);
   9903   MemSDNode *MemN = cast<MemSDNode>(N);
   9904   SDLoc dl(N);
   9905 
   9906   // Search for a use of the address operand that is an increment.
   9907   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   9908          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   9909     SDNode *User = *UI;
   9910     if (User->getOpcode() != ISD::ADD ||
   9911         UI.getUse().getResNo() != Addr.getResNo())
   9912       continue;
   9913 
   9914     // Check that the add is independent of the load/store.  Otherwise, folding
   9915     // it would create a cycle.
   9916     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   9917       continue;
   9918 
   9919     // Find the new opcode for the updating load/store.
   9920     bool isLoadOp = true;
   9921     bool isLaneOp = false;
   9922     unsigned NewOpc = 0;
   9923     unsigned NumVecs = 0;
   9924     if (isIntrinsic) {
   9925       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   9926       switch (IntNo) {
   9927       default: llvm_unreachable("unexpected intrinsic for Neon base update");
   9928       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   9929         NumVecs = 1; break;
   9930       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   9931         NumVecs = 2; break;
   9932       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   9933         NumVecs = 3; break;
   9934       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   9935         NumVecs = 4; break;
   9936       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   9937         NumVecs = 2; isLaneOp = true; break;
   9938       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   9939         NumVecs = 3; isLaneOp = true; break;
   9940       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   9941         NumVecs = 4; isLaneOp = true; break;
   9942       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   9943         NumVecs = 1; isLoadOp = false; break;
   9944       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   9945         NumVecs = 2; isLoadOp = false; break;
   9946       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   9947         NumVecs = 3; isLoadOp = false; break;
   9948       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   9949         NumVecs = 4; isLoadOp = false; break;
   9950       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   9951         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
   9952       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   9953         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
   9954       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   9955         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
   9956       }
   9957     } else {
   9958       isLaneOp = true;
   9959       switch (N->getOpcode()) {
   9960       default: llvm_unreachable("unexpected opcode for Neon base update");
   9961       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   9962       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   9963       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   9964       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
   9965         NumVecs = 1; isLaneOp = false; break;
   9966       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
   9967         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
   9968       }
   9969     }
   9970 
   9971     // Find the size of memory referenced by the load/store.
   9972     EVT VecTy;
   9973     if (isLoadOp) {
   9974       VecTy = N->getValueType(0);
   9975     } else if (isIntrinsic) {
   9976       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   9977     } else {
   9978       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
   9979       VecTy = N->getOperand(1).getValueType();
   9980     }
   9981 
   9982     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   9983     if (isLaneOp)
   9984       NumBytes /= VecTy.getVectorNumElements();
   9985 
   9986     // If the increment is a constant, it must match the memory ref size.
   9987     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   9988     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   9989       uint64_t IncVal = CInc->getZExtValue();
   9990       if (IncVal != NumBytes)
   9991         continue;
   9992     } else if (NumBytes >= 3 * 16) {
   9993       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   9994       // separate instructions that make it harder to use a non-constant update.
   9995       continue;
   9996     }
   9997 
   9998     // OK, we found an ADD we can fold into the base update.
   9999     // Now, create a _UPD node, taking care of not breaking alignment.
   10000 
   10001     EVT AlignedVecTy = VecTy;
   10002     unsigned Alignment = MemN->getAlignment();
   10003 
   10004     // If this is a less-than-standard-aligned load/store, change the type to
   10005     // match the standard alignment.
   10006     // The alignment is overlooked when selecting _UPD variants; and it's
   10007     // easier to introduce bitcasts here than fix that.
   10008     // There are 3 ways to get to this base-update combine:
   10009     // - intrinsics: they are assumed to be properly aligned (to the standard
   10010     //   alignment of the memory type), so we don't need to do anything.
   10011     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
   10012     //   intrinsics, so, likewise, there's nothing to do.
   10013     // - generic load/store instructions: the alignment is specified as an
   10014     //   explicit operand, rather than implicitly as the standard alignment
   10015     //   of the memory type (like the intrisics).  We need to change the
   10016     //   memory type to match the explicit alignment.  That way, we don't
   10017     //   generate non-standard-aligned ARMISD::VLDx nodes.
   10018     if (isa<LSBaseSDNode>(N)) {
   10019       if (Alignment == 0)
   10020         Alignment = 1;
   10021       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
   10022         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
   10023         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
   10024         assert(!isLaneOp && "Unexpected generic load/store lane.");
   10025         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
   10026         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
   10027       }
   10028       // Don't set an explicit alignment on regular load/stores that we want
   10029       // to transform to VLD/VST 1_UPD nodes.
   10030       // This matches the behavior of regular load/stores, which only get an
   10031       // explicit alignment if the MMO alignment is larger than the standard
   10032       // alignment of the memory type.
   10033       // Intrinsics, however, always get an explicit alignment, set to the
   10034       // alignment of the MMO.
   10035       Alignment = 1;
   10036     }
   10037 
   10038     // Create the new updating load/store node.
   10039     // First, create an SDVTList for the new updating node's results.
   10040     EVT Tys[6];
   10041     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
   10042     unsigned n;
   10043     for (n = 0; n < NumResultVecs; ++n)
   10044       Tys[n] = AlignedVecTy;
   10045     Tys[n++] = MVT::i32;
   10046     Tys[n] = MVT::Other;
   10047     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
   10048 
   10049     // Then, gather the new node's operands.
   10050     SmallVector<SDValue, 8> Ops;
   10051     Ops.push_back(N->getOperand(0)); // incoming chain
   10052     Ops.push_back(N->getOperand(AddrOpIdx));
   10053     Ops.push_back(Inc);
   10054 
   10055     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
   10056       // Try to match the intrinsic's signature
   10057       Ops.push_back(StN->getValue());
   10058     } else {
   10059       // Loads (and of course intrinsics) match the intrinsics' signature,
   10060       // so just add all but the alignment operand.
   10061       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
   10062         Ops.push_back(N->getOperand(i));
   10063     }
   10064 
   10065     // For all node types, the alignment operand is always the last one.
   10066     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
   10067 
   10068     // If this is a non-standard-aligned STORE, the penultimate operand is the
   10069     // stored value.  Bitcast it to the aligned type.
   10070     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
   10071       SDValue &StVal = Ops[Ops.size()-2];
   10072       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
   10073     }
   10074 
   10075     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys,
   10076                                            Ops, AlignedVecTy,
   10077                                            MemN->getMemOperand());
   10078 
   10079     // Update the uses.
   10080     SmallVector<SDValue, 5> NewResults;
   10081     for (unsigned i = 0; i < NumResultVecs; ++i)
   10082       NewResults.push_back(SDValue(UpdN.getNode(), i));
   10083 
   10084     // If this is an non-standard-aligned LOAD, the first result is the loaded
   10085     // value.  Bitcast it to the expected result type.
   10086     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
   10087       SDValue &LdVal = NewResults[0];
   10088       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
   10089     }
   10090 
   10091     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   10092     DCI.CombineTo(N, NewResults);
   10093     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   10094 
   10095     break;
   10096   }
   10097   return SDValue();
   10098 }
   10099 
   10100 static SDValue PerformVLDCombine(SDNode *N,
   10101                                  TargetLowering::DAGCombinerInfo &DCI) {
   10102   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   10103     return SDValue();
   10104 
   10105   return CombineBaseUpdate(N, DCI);
   10106 }
   10107 
   10108 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   10109 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   10110 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   10111 /// return true.
   10112 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   10113   SelectionDAG &DAG = DCI.DAG;
   10114   EVT VT = N->getValueType(0);
   10115   // vldN-dup instructions only support 64-bit vectors for N > 1.
   10116   if (!VT.is64BitVector())
   10117     return false;
   10118 
   10119   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   10120   SDNode *VLD = N->getOperand(0).getNode();
   10121   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   10122     return false;
   10123   unsigned NumVecs = 0;
   10124   unsigned NewOpc = 0;
   10125   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   10126   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   10127     NumVecs = 2;
   10128     NewOpc = ARMISD::VLD2DUP;
   10129   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   10130     NumVecs = 3;
   10131     NewOpc = ARMISD::VLD3DUP;
   10132   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   10133     NumVecs = 4;
   10134     NewOpc = ARMISD::VLD4DUP;
   10135   } else {
   10136     return false;
   10137   }
   10138 
   10139   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   10140   // numbers match the load.
   10141   unsigned VLDLaneNo =
   10142     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   10143   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   10144        UI != UE; ++UI) {
   10145     // Ignore uses of the chain result.
   10146     if (UI.getUse().getResNo() == NumVecs)
   10147       continue;
   10148     SDNode *User = *UI;
   10149     if (User->getOpcode() != ARMISD::VDUPLANE ||
   10150         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   10151       return false;
   10152   }
   10153 
   10154   // Create the vldN-dup node.
   10155   EVT Tys[5];
   10156   unsigned n;
   10157   for (n = 0; n < NumVecs; ++n)
   10158     Tys[n] = VT;
   10159   Tys[n] = MVT::Other;
   10160   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
   10161   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   10162   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   10163   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
   10164                                            Ops, VLDMemInt->getMemoryVT(),
   10165                                            VLDMemInt->getMemOperand());
   10166 
   10167   // Update the uses.
   10168   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   10169        UI != UE; ++UI) {
   10170     unsigned ResNo = UI.getUse().getResNo();
   10171     // Ignore uses of the chain result.
   10172     if (ResNo == NumVecs)
   10173       continue;
   10174     SDNode *User = *UI;
   10175     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   10176   }
   10177 
   10178   // Now the vldN-lane intrinsic is dead except for its chain result.
   10179   // Update uses of the chain.
   10180   std::vector<SDValue> VLDDupResults;
   10181   for (unsigned n = 0; n < NumVecs; ++n)
   10182     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   10183   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   10184   DCI.CombineTo(VLD, VLDDupResults);
   10185 
   10186   return true;
   10187 }
   10188 
   10189 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   10190 /// ARMISD::VDUPLANE.
   10191 static SDValue PerformVDUPLANECombine(SDNode *N,
   10192                                       TargetLowering::DAGCombinerInfo &DCI) {
   10193   SDValue Op = N->getOperand(0);
   10194 
   10195   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   10196   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   10197   if (CombineVLDDUP(N, DCI))
   10198     return SDValue(N, 0);
   10199 
   10200   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   10201   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   10202   while (Op.getOpcode() == ISD::BITCAST)
   10203     Op = Op.getOperand(0);
   10204   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   10205     return SDValue();
   10206 
   10207   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   10208   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
   10209   // The canonical VMOV for a zero vector uses a 32-bit element size.
   10210   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   10211   unsigned EltBits;
   10212   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   10213     EltSize = 8;
   10214   EVT VT = N->getValueType(0);
   10215   if (EltSize > VT.getVectorElementType().getSizeInBits())
   10216     return SDValue();
   10217 
   10218   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   10219 }
   10220 
   10221 static SDValue PerformLOADCombine(SDNode *N,
   10222                                   TargetLowering::DAGCombinerInfo &DCI) {
   10223   EVT VT = N->getValueType(0);
   10224 
   10225   // If this is a legal vector load, try to combine it into a VLD1_UPD.
   10226   if (ISD::isNormalLoad(N) && VT.isVector() &&
   10227       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   10228     return CombineBaseUpdate(N, DCI);
   10229 
   10230   return SDValue();
   10231 }
   10232 
   10233 /// PerformSTORECombine - Target-specific dag combine xforms for
   10234 /// ISD::STORE.
   10235 static SDValue PerformSTORECombine(SDNode *N,
   10236                                    TargetLowering::DAGCombinerInfo &DCI) {
   10237   StoreSDNode *St = cast<StoreSDNode>(N);
   10238   if (St->isVolatile())
   10239     return SDValue();
   10240 
   10241   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
   10242   // pack all of the elements in one place.  Next, store to memory in fewer
   10243   // chunks.
   10244   SDValue StVal = St->getValue();
   10245   EVT VT = StVal.getValueType();
   10246   if (St->isTruncatingStore() && VT.isVector()) {
   10247     SelectionDAG &DAG = DCI.DAG;
   10248     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   10249     EVT StVT = St->getMemoryVT();
   10250     unsigned NumElems = VT.getVectorNumElements();
   10251     assert(StVT != VT && "Cannot truncate to the same type");
   10252     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
   10253     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
   10254 
   10255     // From, To sizes and ElemCount must be pow of two
   10256     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
   10257 
   10258     // We are going to use the original vector elt for storing.
   10259     // Accumulated smaller vector elements must be a multiple of the store size.
   10260     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
   10261 
   10262     unsigned SizeRatio  = FromEltSz / ToEltSz;
   10263     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
   10264 
   10265     // Create a type on which we perform the shuffle.
   10266     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
   10267                                      NumElems*SizeRatio);
   10268     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   10269 
   10270     SDLoc DL(St);
   10271     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
   10272     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   10273     for (unsigned i = 0; i < NumElems; ++i)
   10274       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
   10275                           ? (i + 1) * SizeRatio - 1
   10276                           : i * SizeRatio;
   10277 
   10278     // Can't shuffle using an illegal type.
   10279     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   10280 
   10281     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
   10282                                 DAG.getUNDEF(WideVec.getValueType()),
   10283                                 ShuffleVec);
   10284     // At this point all of the data is stored at the bottom of the
   10285     // register. We now need to save it to mem.
   10286 
   10287     // Find the largest store unit
   10288     MVT StoreType = MVT::i8;
   10289     for (MVT Tp : MVT::integer_valuetypes()) {
   10290       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
   10291         StoreType = Tp;
   10292     }
   10293     // Didn't find a legal store type.
   10294     if (!TLI.isTypeLegal(StoreType))
   10295       return SDValue();
   10296 
   10297     // Bitcast the original vector into a vector of store-size units
   10298     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   10299             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   10300     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   10301     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
   10302     SmallVector<SDValue, 8> Chains;
   10303     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
   10304                                         TLI.getPointerTy(DAG.getDataLayout()));
   10305     SDValue BasePtr = St->getBasePtr();
   10306 
   10307     // Perform one or more big stores into memory.
   10308     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
   10309     for (unsigned I = 0; I < E; I++) {
   10310       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
   10311                                    StoreType, ShuffWide,
   10312                                    DAG.getIntPtrConstant(I, DL));
   10313       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
   10314                                 St->getPointerInfo(), St->isVolatile(),
   10315                                 St->isNonTemporal(), St->getAlignment());
   10316       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
   10317                             Increment);
   10318       Chains.push_back(Ch);
   10319     }
   10320     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
   10321   }
   10322 
   10323   if (!ISD::isNormalStore(St))
   10324     return SDValue();
   10325 
   10326   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
   10327   // ARM stores of arguments in the same cache line.
   10328   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   10329       StVal.getNode()->hasOneUse()) {
   10330     SelectionDAG  &DAG = DCI.DAG;
   10331     bool isBigEndian = DAG.getDataLayout().isBigEndian();
   10332     SDLoc DL(St);
   10333     SDValue BasePtr = St->getBasePtr();
   10334     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
   10335                                   StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
   10336                                   BasePtr, St->getPointerInfo(), St->isVolatile(),
   10337                                   St->isNonTemporal(), St->getAlignment());
   10338 
   10339     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   10340                                     DAG.getConstant(4, DL, MVT::i32));
   10341     return DAG.getStore(NewST1.getValue(0), DL,
   10342                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
   10343                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
   10344                         St->isNonTemporal(),
   10345                         std::min(4U, St->getAlignment() / 2));
   10346   }
   10347 
   10348   if (StVal.getValueType() == MVT::i64 &&
   10349       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   10350 
   10351     // Bitcast an i64 store extracted from a vector to f64.
   10352     // Otherwise, the i64 value will be legalized to a pair of i32 values.
   10353     SelectionDAG &DAG = DCI.DAG;
   10354     SDLoc dl(StVal);
   10355     SDValue IntVec = StVal.getOperand(0);
   10356     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   10357                                    IntVec.getValueType().getVectorNumElements());
   10358     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   10359     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   10360                                  Vec, StVal.getOperand(1));
   10361     dl = SDLoc(N);
   10362     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   10363     // Make the DAGCombiner fold the bitcasts.
   10364     DCI.AddToWorklist(Vec.getNode());
   10365     DCI.AddToWorklist(ExtElt.getNode());
   10366     DCI.AddToWorklist(V.getNode());
   10367     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   10368                         St->getPointerInfo(), St->isVolatile(),
   10369                         St->isNonTemporal(), St->getAlignment(),
   10370                         St->getAAInfo());
   10371   }
   10372 
   10373   // If this is a legal vector store, try to combine it into a VST1_UPD.
   10374   if (ISD::isNormalStore(N) && VT.isVector() &&
   10375       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   10376     return CombineBaseUpdate(N, DCI);
   10377 
   10378   return SDValue();
   10379 }
   10380 
   10381 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   10382 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   10383 /// when the VMUL has a constant operand that is a power of 2.
   10384 ///
   10385 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   10386 ///  vmul.f32        d16, d17, d16
   10387 ///  vcvt.s32.f32    d16, d16
   10388 /// becomes:
   10389 ///  vcvt.s32.f32    d16, d16, #3
   10390 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
   10391                                   const ARMSubtarget *Subtarget) {
   10392   if (!Subtarget->hasNEON())
   10393     return SDValue();
   10394 
   10395   SDValue Op = N->getOperand(0);
   10396   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
   10397       Op.getOpcode() != ISD::FMUL)
   10398     return SDValue();
   10399 
   10400   SDValue ConstVec = Op->getOperand(1);
   10401   if (!isa<BuildVectorSDNode>(ConstVec))
   10402     return SDValue();
   10403 
   10404   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
   10405   uint32_t FloatBits = FloatTy.getSizeInBits();
   10406   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
   10407   uint32_t IntBits = IntTy.getSizeInBits();
   10408   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   10409   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
   10410     // These instructions only exist converting from f32 to i32. We can handle
   10411     // smaller integers by generating an extra truncate, but larger ones would
   10412     // be lossy. We also can't handle more then 4 lanes, since these intructions
   10413     // only support v2i32/v4i32 types.
   10414     return SDValue();
   10415   }
   10416 
   10417   BitVector UndefElements;
   10418   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   10419   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
   10420   if (C == -1 || C == 0 || C > 32)
   10421     return SDValue();
   10422 
   10423   SDLoc dl(N);
   10424   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   10425   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   10426     Intrinsic::arm_neon_vcvtfp2fxu;
   10427   SDValue FixConv = DAG.getNode(
   10428       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   10429       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
   10430       DAG.getConstant(C, dl, MVT::i32));
   10431 
   10432   if (IntBits < FloatBits)
   10433     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
   10434 
   10435   return FixConv;
   10436 }
   10437 
   10438 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   10439 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   10440 /// when the VDIV has a constant operand that is a power of 2.
   10441 ///
   10442 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   10443 ///  vcvt.f32.s32    d16, d16
   10444 ///  vdiv.f32        d16, d17, d16
   10445 /// becomes:
   10446 ///  vcvt.f32.s32    d16, d16, #3
   10447 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
   10448                                   const ARMSubtarget *Subtarget) {
   10449   if (!Subtarget->hasNEON())
   10450     return SDValue();
   10451 
   10452   SDValue Op = N->getOperand(0);
   10453   unsigned OpOpcode = Op.getNode()->getOpcode();
   10454   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
   10455       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   10456     return SDValue();
   10457 
   10458   SDValue ConstVec = N->getOperand(1);
   10459   if (!isa<BuildVectorSDNode>(ConstVec))
   10460     return SDValue();
   10461 
   10462   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
   10463   uint32_t FloatBits = FloatTy.getSizeInBits();
   10464   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
   10465   uint32_t IntBits = IntTy.getSizeInBits();
   10466   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   10467   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
   10468     // These instructions only exist converting from i32 to f32. We can handle
   10469     // smaller integers by generating an extra extend, but larger ones would
   10470     // be lossy. We also can't handle more then 4 lanes, since these intructions
   10471     // only support v2i32/v4i32 types.
   10472     return SDValue();
   10473   }
   10474 
   10475   BitVector UndefElements;
   10476   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   10477   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
   10478   if (C == -1 || C == 0 || C > 32)
   10479     return SDValue();
   10480 
   10481   SDLoc dl(N);
   10482   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   10483   SDValue ConvInput = Op.getOperand(0);
   10484   if (IntBits < FloatBits)
   10485     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
   10486                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   10487                             ConvInput);
   10488 
   10489   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   10490     Intrinsic::arm_neon_vcvtfxu2fp;
   10491   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
   10492                      Op.getValueType(),
   10493                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
   10494                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
   10495 }
   10496 
   10497 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   10498 /// operand of a vector shift operation, where all the elements of the
   10499 /// build_vector must have the same constant integer value.
   10500 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   10501   // Ignore bit_converts.
   10502   while (Op.getOpcode() == ISD::BITCAST)
   10503     Op = Op.getOperand(0);
   10504   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   10505   APInt SplatBits, SplatUndef;
   10506   unsigned SplatBitSize;
   10507   bool HasAnyUndefs;
   10508   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   10509                                       HasAnyUndefs, ElementBits) ||
   10510       SplatBitSize > ElementBits)
   10511     return false;
   10512   Cnt = SplatBits.getSExtValue();
   10513   return true;
   10514 }
   10515 
   10516 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   10517 /// operand of a vector shift left operation.  That value must be in the range:
   10518 ///   0 <= Value < ElementBits for a left shift; or
   10519 ///   0 <= Value <= ElementBits for a long left shift.
   10520 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   10521   assert(VT.isVector() && "vector shift count is not a vector type");
   10522   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
   10523   if (! getVShiftImm(Op, ElementBits, Cnt))
   10524     return false;
   10525   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   10526 }
   10527 
   10528 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   10529 /// operand of a vector shift right operation.  For a shift opcode, the value
   10530 /// is positive, but for an intrinsic the value count must be negative. The
   10531 /// absolute value must be in the range:
   10532 ///   1 <= |Value| <= ElementBits for a right shift; or
   10533 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   10534 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   10535                          int64_t &Cnt) {
   10536   assert(VT.isVector() && "vector shift count is not a vector type");
   10537   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
   10538   if (! getVShiftImm(Op, ElementBits, Cnt))
   10539     return false;
   10540   if (!isIntrinsic)
   10541     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   10542   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
   10543     Cnt = -Cnt;
   10544     return true;
   10545   }
   10546   return false;
   10547 }
   10548 
   10549 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   10550 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   10551   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   10552   switch (IntNo) {
   10553   default:
   10554     // Don't do anything for most intrinsics.
   10555     break;
   10556 
   10557   // Vector shifts: check for immediate versions and lower them.
   10558   // Note: This is done during DAG combining instead of DAG legalizing because
   10559   // the build_vectors for 64-bit vector element shift counts are generally
   10560   // not legal, and it is hard to see their values after they get legalized to
   10561   // loads from a constant pool.
   10562   case Intrinsic::arm_neon_vshifts:
   10563   case Intrinsic::arm_neon_vshiftu:
   10564   case Intrinsic::arm_neon_vrshifts:
   10565   case Intrinsic::arm_neon_vrshiftu:
   10566   case Intrinsic::arm_neon_vrshiftn:
   10567   case Intrinsic::arm_neon_vqshifts:
   10568   case Intrinsic::arm_neon_vqshiftu:
   10569   case Intrinsic::arm_neon_vqshiftsu:
   10570   case Intrinsic::arm_neon_vqshiftns:
   10571   case Intrinsic::arm_neon_vqshiftnu:
   10572   case Intrinsic::arm_neon_vqshiftnsu:
   10573   case Intrinsic::arm_neon_vqrshiftns:
   10574   case Intrinsic::arm_neon_vqrshiftnu:
   10575   case Intrinsic::arm_neon_vqrshiftnsu: {
   10576     EVT VT = N->getOperand(1).getValueType();
   10577     int64_t Cnt;
   10578     unsigned VShiftOpc = 0;
   10579 
   10580     switch (IntNo) {
   10581     case Intrinsic::arm_neon_vshifts:
   10582     case Intrinsic::arm_neon_vshiftu:
   10583       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   10584         VShiftOpc = ARMISD::VSHL;
   10585         break;
   10586       }
   10587       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   10588         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   10589                      ARMISD::VSHRs : ARMISD::VSHRu);
   10590         break;
   10591       }
   10592       return SDValue();
   10593 
   10594     case Intrinsic::arm_neon_vrshifts:
   10595     case Intrinsic::arm_neon_vrshiftu:
   10596       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   10597         break;
   10598       return SDValue();
   10599 
   10600     case Intrinsic::arm_neon_vqshifts:
   10601     case Intrinsic::arm_neon_vqshiftu:
   10602       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   10603         break;
   10604       return SDValue();
   10605 
   10606     case Intrinsic::arm_neon_vqshiftsu:
   10607       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   10608         break;
   10609       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   10610 
   10611     case Intrinsic::arm_neon_vrshiftn:
   10612     case Intrinsic::arm_neon_vqshiftns:
   10613     case Intrinsic::arm_neon_vqshiftnu:
   10614     case Intrinsic::arm_neon_vqshiftnsu:
   10615     case Intrinsic::arm_neon_vqrshiftns:
   10616     case Intrinsic::arm_neon_vqrshiftnu:
   10617     case Intrinsic::arm_neon_vqrshiftnsu:
   10618       // Narrowing shifts require an immediate right shift.
   10619       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   10620         break;
   10621       llvm_unreachable("invalid shift count for narrowing vector shift "
   10622                        "intrinsic");
   10623 
   10624     default:
   10625       llvm_unreachable("unhandled vector shift");
   10626     }
   10627 
   10628     switch (IntNo) {
   10629     case Intrinsic::arm_neon_vshifts:
   10630     case Intrinsic::arm_neon_vshiftu:
   10631       // Opcode already set above.
   10632       break;
   10633     case Intrinsic::arm_neon_vrshifts:
   10634       VShiftOpc = ARMISD::VRSHRs; break;
   10635     case Intrinsic::arm_neon_vrshiftu:
   10636       VShiftOpc = ARMISD::VRSHRu; break;
   10637     case Intrinsic::arm_neon_vrshiftn:
   10638       VShiftOpc = ARMISD::VRSHRN; break;
   10639     case Intrinsic::arm_neon_vqshifts:
   10640       VShiftOpc = ARMISD::VQSHLs; break;
   10641     case Intrinsic::arm_neon_vqshiftu:
   10642       VShiftOpc = ARMISD::VQSHLu; break;
   10643     case Intrinsic::arm_neon_vqshiftsu:
   10644       VShiftOpc = ARMISD::VQSHLsu; break;
   10645     case Intrinsic::arm_neon_vqshiftns:
   10646       VShiftOpc = ARMISD::VQSHRNs; break;
   10647     case Intrinsic::arm_neon_vqshiftnu:
   10648       VShiftOpc = ARMISD::VQSHRNu; break;
   10649     case Intrinsic::arm_neon_vqshiftnsu:
   10650       VShiftOpc = ARMISD::VQSHRNsu; break;
   10651     case Intrinsic::arm_neon_vqrshiftns:
   10652       VShiftOpc = ARMISD::VQRSHRNs; break;
   10653     case Intrinsic::arm_neon_vqrshiftnu:
   10654       VShiftOpc = ARMISD::VQRSHRNu; break;
   10655     case Intrinsic::arm_neon_vqrshiftnsu:
   10656       VShiftOpc = ARMISD::VQRSHRNsu; break;
   10657     }
   10658 
   10659     SDLoc dl(N);
   10660     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
   10661                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
   10662   }
   10663 
   10664   case Intrinsic::arm_neon_vshiftins: {
   10665     EVT VT = N->getOperand(1).getValueType();
   10666     int64_t Cnt;
   10667     unsigned VShiftOpc = 0;
   10668 
   10669     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   10670       VShiftOpc = ARMISD::VSLI;
   10671     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   10672       VShiftOpc = ARMISD::VSRI;
   10673     else {
   10674       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   10675     }
   10676 
   10677     SDLoc dl(N);
   10678     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
   10679                        N->getOperand(1), N->getOperand(2),
   10680                        DAG.getConstant(Cnt, dl, MVT::i32));
   10681   }
   10682 
   10683   case Intrinsic::arm_neon_vqrshifts:
   10684   case Intrinsic::arm_neon_vqrshiftu:
   10685     // No immediate versions of these to check for.
   10686     break;
   10687   }
   10688 
   10689   return SDValue();
   10690 }
   10691 
   10692 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   10693 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   10694 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   10695 /// vector element shift counts are generally not legal, and it is hard to see
   10696 /// their values after they get legalized to loads from a constant pool.
   10697 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   10698                                    const ARMSubtarget *ST) {
   10699   EVT VT = N->getValueType(0);
   10700   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
   10701     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
   10702     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
   10703     SDValue N1 = N->getOperand(1);
   10704     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   10705       SDValue N0 = N->getOperand(0);
   10706       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
   10707           DAG.MaskedValueIsZero(N0.getOperand(0),
   10708                                 APInt::getHighBitsSet(32, 16)))
   10709         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
   10710     }
   10711   }
   10712 
   10713   // Nothing to be done for scalar shifts.
   10714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   10715   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   10716     return SDValue();
   10717 
   10718   assert(ST->hasNEON() && "unexpected vector shift");
   10719   int64_t Cnt;
   10720 
   10721   switch (N->getOpcode()) {
   10722   default: llvm_unreachable("unexpected shift opcode");
   10723 
   10724   case ISD::SHL:
   10725     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
   10726       SDLoc dl(N);
   10727       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
   10728                          DAG.getConstant(Cnt, dl, MVT::i32));
   10729     }
   10730     break;
   10731 
   10732   case ISD::SRA:
   10733   case ISD::SRL:
   10734     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   10735       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   10736                             ARMISD::VSHRs : ARMISD::VSHRu);
   10737       SDLoc dl(N);
   10738       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
   10739                          DAG.getConstant(Cnt, dl, MVT::i32));
   10740     }
   10741   }
   10742   return SDValue();
   10743 }
   10744 
   10745 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   10746 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   10747 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   10748                                     const ARMSubtarget *ST) {
   10749   SDValue N0 = N->getOperand(0);
   10750 
   10751   // Check for sign- and zero-extensions of vector extract operations of 8-
   10752   // and 16-bit vector elements.  NEON supports these directly.  They are
   10753   // handled during DAG combining because type legalization will promote them
   10754   // to 32-bit types and it is messy to recognize the operations after that.
   10755   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   10756     SDValue Vec = N0.getOperand(0);
   10757     SDValue Lane = N0.getOperand(1);
   10758     EVT VT = N->getValueType(0);
   10759     EVT EltVT = N0.getValueType();
   10760     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   10761 
   10762     if (VT == MVT::i32 &&
   10763         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   10764         TLI.isTypeLegal(Vec.getValueType()) &&
   10765         isa<ConstantSDNode>(Lane)) {
   10766 
   10767       unsigned Opc = 0;
   10768       switch (N->getOpcode()) {
   10769       default: llvm_unreachable("unexpected opcode");
   10770       case ISD::SIGN_EXTEND:
   10771         Opc = ARMISD::VGETLANEs;
   10772         break;
   10773       case ISD::ZERO_EXTEND:
   10774       case ISD::ANY_EXTEND:
   10775         Opc = ARMISD::VGETLANEu;
   10776         break;
   10777       }
   10778       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
   10779     }
   10780   }
   10781 
   10782   return SDValue();
   10783 }
   10784 
   10785 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
   10786                              APInt &KnownOne) {
   10787   if (Op.getOpcode() == ARMISD::BFI) {
   10788     // Conservatively, we can recurse down the first operand
   10789     // and just mask out all affected bits.
   10790     computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
   10791 
   10792     // The operand to BFI is already a mask suitable for removing the bits it
   10793     // sets.
   10794     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
   10795     const APInt &Mask = CI->getAPIntValue();
   10796     KnownZero &= Mask;
   10797     KnownOne &= Mask;
   10798     return;
   10799   }
   10800   if (Op.getOpcode() == ARMISD::CMOV) {
   10801     APInt KZ2(KnownZero.getBitWidth(), 0);
   10802     APInt KO2(KnownOne.getBitWidth(), 0);
   10803     computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
   10804     computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
   10805 
   10806     KnownZero &= KZ2;
   10807     KnownOne &= KO2;
   10808     return;
   10809   }
   10810   return DAG.computeKnownBits(Op, KnownZero, KnownOne);
   10811 }
   10812 
   10813 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
   10814   // If we have a CMOV, OR and AND combination such as:
   10815   //   if (x & CN)
   10816   //     y |= CM;
   10817   //
   10818   // And:
   10819   //   * CN is a single bit;
   10820   //   * All bits covered by CM are known zero in y
   10821   //
   10822   // Then we can convert this into a sequence of BFI instructions. This will
   10823   // always be a win if CM is a single bit, will always be no worse than the
   10824   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
   10825   // three bits (due to the extra IT instruction).
   10826 
   10827   SDValue Op0 = CMOV->getOperand(0);
   10828   SDValue Op1 = CMOV->getOperand(1);
   10829   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
   10830   auto CC = CCNode->getAPIntValue().getLimitedValue();
   10831   SDValue CmpZ = CMOV->getOperand(4);
   10832 
   10833   // The compare must be against zero.
   10834   if (!isNullConstant(CmpZ->getOperand(1)))
   10835     return SDValue();
   10836 
   10837   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
   10838   SDValue And = CmpZ->getOperand(0);
   10839   if (And->getOpcode() != ISD::AND)
   10840     return SDValue();
   10841   ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
   10842   if (!AndC || !AndC->getAPIntValue().isPowerOf2())
   10843     return SDValue();
   10844   SDValue X = And->getOperand(0);
   10845 
   10846   if (CC == ARMCC::EQ) {
   10847     // We're performing an "equal to zero" compare. Swap the operands so we
   10848     // canonicalize on a "not equal to zero" compare.
   10849     std::swap(Op0, Op1);
   10850   } else {
   10851     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
   10852   }
   10853 
   10854   if (Op1->getOpcode() != ISD::OR)
   10855     return SDValue();
   10856 
   10857   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
   10858   if (!OrC)
   10859     return SDValue();
   10860   SDValue Y = Op1->getOperand(0);
   10861 
   10862   if (Op0 != Y)
   10863     return SDValue();
   10864 
   10865   // Now, is it profitable to continue?
   10866   APInt OrCI = OrC->getAPIntValue();
   10867   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
   10868   if (OrCI.countPopulation() > Heuristic)
   10869     return SDValue();
   10870 
   10871   // Lastly, can we determine that the bits defined by OrCI
   10872   // are zero in Y?
   10873   APInt KnownZero, KnownOne;
   10874   computeKnownBits(DAG, Y, KnownZero, KnownOne);
   10875   if ((OrCI & KnownZero) != OrCI)
   10876     return SDValue();
   10877 
   10878   // OK, we can do the combine.
   10879   SDValue V = Y;
   10880   SDLoc dl(X);
   10881   EVT VT = X.getValueType();
   10882   unsigned BitInX = AndC->getAPIntValue().logBase2();
   10883 
   10884   if (BitInX != 0) {
   10885     // We must shift X first.
   10886     X = DAG.getNode(ISD::SRL, dl, VT, X,
   10887                     DAG.getConstant(BitInX, dl, VT));
   10888   }
   10889 
   10890   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
   10891        BitInY < NumActiveBits; ++BitInY) {
   10892     if (OrCI[BitInY] == 0)
   10893       continue;
   10894     APInt Mask(VT.getSizeInBits(), 0);
   10895     Mask.setBit(BitInY);
   10896     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
   10897                     // Confusingly, the operand is an *inverted* mask.
   10898                     DAG.getConstant(~Mask, dl, VT));
   10899   }
   10900 
   10901   return V;
   10902 }
   10903 
   10904 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
   10905 SDValue
   10906 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
   10907   SDValue Cmp = N->getOperand(4);
   10908   if (Cmp.getOpcode() != ARMISD::CMPZ)
   10909     // Only looking at NE cases.
   10910     return SDValue();
   10911 
   10912   EVT VT = N->getValueType(0);
   10913   SDLoc dl(N);
   10914   SDValue LHS = Cmp.getOperand(0);
   10915   SDValue RHS = Cmp.getOperand(1);
   10916   SDValue Chain = N->getOperand(0);
   10917   SDValue BB = N->getOperand(1);
   10918   SDValue ARMcc = N->getOperand(2);
   10919   ARMCC::CondCodes CC =
   10920     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   10921 
   10922   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
   10923   // -> (brcond Chain BB CC CPSR Cmp)
   10924   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
   10925       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
   10926       LHS->getOperand(0)->hasOneUse()) {
   10927     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
   10928     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
   10929     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
   10930     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
   10931     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
   10932         (LHS01C && LHS01C->getZExtValue() == 1) &&
   10933         (LHS1C && LHS1C->getZExtValue() == 1) &&
   10934         (RHSC && RHSC->getZExtValue() == 0)) {
   10935       return DAG.getNode(
   10936           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
   10937           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
   10938     }
   10939   }
   10940 
   10941   return SDValue();
   10942 }
   10943 
   10944 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   10945 SDValue
   10946 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   10947   SDValue Cmp = N->getOperand(4);
   10948   if (Cmp.getOpcode() != ARMISD::CMPZ)
   10949     // Only looking at EQ and NE cases.
   10950     return SDValue();
   10951 
   10952   EVT VT = N->getValueType(0);
   10953   SDLoc dl(N);
   10954   SDValue LHS = Cmp.getOperand(0);
   10955   SDValue RHS = Cmp.getOperand(1);
   10956   SDValue FalseVal = N->getOperand(0);
   10957   SDValue TrueVal = N->getOperand(1);
   10958   SDValue ARMcc = N->getOperand(2);
   10959   ARMCC::CondCodes CC =
   10960     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   10961 
   10962   // BFI is only available on V6T2+.
   10963   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
   10964     SDValue R = PerformCMOVToBFICombine(N, DAG);
   10965     if (R)
   10966       return R;
   10967   }
   10968 
   10969   // Simplify
   10970   //   mov     r1, r0
   10971   //   cmp     r1, x
   10972   //   mov     r0, y
   10973   //   moveq   r0, x
   10974   // to
   10975   //   cmp     r0, x
   10976   //   movne   r0, y
   10977   //
   10978   //   mov     r1, r0
   10979   //   cmp     r1, x
   10980   //   mov     r0, x
   10981   //   movne   r0, y
   10982   // to
   10983   //   cmp     r0, x
   10984   //   movne   r0, y
   10985   /// FIXME: Turn this into a target neutral optimization?
   10986   SDValue Res;
   10987   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   10988     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   10989                       N->getOperand(3), Cmp);
   10990   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   10991     SDValue ARMcc;
   10992     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   10993     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   10994                       N->getOperand(3), NewCmp);
   10995   }
   10996 
   10997   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
   10998   // -> (cmov F T CC CPSR Cmp)
   10999   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
   11000     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
   11001     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
   11002     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
   11003     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
   11004         (LHS1C && LHS1C->getZExtValue() == 1) &&
   11005         (RHSC && RHSC->getZExtValue() == 0)) {
   11006       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
   11007                          LHS->getOperand(2), LHS->getOperand(3),
   11008                          LHS->getOperand(4));
   11009     }
   11010   }
   11011 
   11012   if (Res.getNode()) {
   11013     APInt KnownZero, KnownOne;
   11014     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
   11015     // Capture demanded bits information that would be otherwise lost.
   11016     if (KnownZero == 0xfffffffe)
   11017       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   11018                         DAG.getValueType(MVT::i1));
   11019     else if (KnownZero == 0xffffff00)
   11020       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   11021                         DAG.getValueType(MVT::i8));
   11022     else if (KnownZero == 0xffff0000)
   11023       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   11024                         DAG.getValueType(MVT::i16));
   11025   }
   11026 
   11027   return Res;
   11028 }
   11029 
   11030 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   11031                                              DAGCombinerInfo &DCI) const {
   11032   switch (N->getOpcode()) {
   11033   default: break;
   11034   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
   11035   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   11036   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   11037   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   11038   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   11039   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
   11040   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
   11041   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   11042   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
   11043   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   11044   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   11045   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
   11046   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   11047   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   11048   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   11049   case ISD::FP_TO_SINT:
   11050   case ISD::FP_TO_UINT:
   11051     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
   11052   case ISD::FDIV:
   11053     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
   11054   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   11055   case ISD::SHL:
   11056   case ISD::SRA:
   11057   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   11058   case ISD::SIGN_EXTEND:
   11059   case ISD::ZERO_EXTEND:
   11060   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   11061   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   11062   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
   11063   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
   11064   case ARMISD::VLD2DUP:
   11065   case ARMISD::VLD3DUP:
   11066   case ARMISD::VLD4DUP:
   11067     return PerformVLDCombine(N, DCI);
   11068   case ARMISD::BUILD_VECTOR:
   11069     return PerformARMBUILD_VECTORCombine(N, DCI);
   11070   case ISD::INTRINSIC_VOID:
   11071   case ISD::INTRINSIC_W_CHAIN:
   11072     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   11073     case Intrinsic::arm_neon_vld1:
   11074     case Intrinsic::arm_neon_vld2:
   11075     case Intrinsic::arm_neon_vld3:
   11076     case Intrinsic::arm_neon_vld4:
   11077     case Intrinsic::arm_neon_vld2lane:
   11078     case Intrinsic::arm_neon_vld3lane:
   11079     case Intrinsic::arm_neon_vld4lane:
   11080     case Intrinsic::arm_neon_vst1:
   11081     case Intrinsic::arm_neon_vst2:
   11082     case Intrinsic::arm_neon_vst3:
   11083     case Intrinsic::arm_neon_vst4:
   11084     case Intrinsic::arm_neon_vst2lane:
   11085     case Intrinsic::arm_neon_vst3lane:
   11086     case Intrinsic::arm_neon_vst4lane:
   11087       return PerformVLDCombine(N, DCI);
   11088     default: break;
   11089     }
   11090     break;
   11091   }
   11092   return SDValue();
   11093 }
   11094 
   11095 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   11096                                                           EVT VT) const {
   11097   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   11098 }
   11099 
   11100 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   11101                                                        unsigned,
   11102                                                        unsigned,
   11103                                                        bool *Fast) const {
   11104   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
   11105   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
   11106 
   11107   switch (VT.getSimpleVT().SimpleTy) {
   11108   default:
   11109     return false;
   11110   case MVT::i8:
   11111   case MVT::i16:
   11112   case MVT::i32: {
   11113     // Unaligned access can use (for example) LRDB, LRDH, LDR
   11114     if (AllowsUnaligned) {
   11115       if (Fast)
   11116         *Fast = Subtarget->hasV7Ops();
   11117       return true;
   11118     }
   11119     return false;
   11120   }
   11121   case MVT::f64:
   11122   case MVT::v2f64: {
   11123     // For any little-endian targets with neon, we can support unaligned ld/st
   11124     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
   11125     // A big-endian target may also explicitly support unaligned accesses
   11126     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
   11127       if (Fast)
   11128         *Fast = true;
   11129       return true;
   11130     }
   11131     return false;
   11132   }
   11133   }
   11134 }
   11135 
   11136 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   11137                        unsigned AlignCheck) {
   11138   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   11139           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   11140 }
   11141 
   11142 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
   11143                                            unsigned DstAlign, unsigned SrcAlign,
   11144                                            bool IsMemset, bool ZeroMemset,
   11145                                            bool MemcpyStrSrc,
   11146                                            MachineFunction &MF) const {
   11147   const Function *F = MF.getFunction();
   11148 
   11149   // See if we can use NEON instructions for this...
   11150   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
   11151       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   11152     bool Fast;
   11153     if (Size >= 16 &&
   11154         (memOpAlign(SrcAlign, DstAlign, 16) ||
   11155          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
   11156       return MVT::v2f64;
   11157     } else if (Size >= 8 &&
   11158                (memOpAlign(SrcAlign, DstAlign, 8) ||
   11159                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
   11160                  Fast))) {
   11161       return MVT::f64;
   11162     }
   11163   }
   11164 
   11165   // Lowering to i32/i16 if the size permits.
   11166   if (Size >= 4)
   11167     return MVT::i32;
   11168   else if (Size >= 2)
   11169     return MVT::i16;
   11170 
   11171   // Let the target-independent logic figure it out.
   11172   return MVT::Other;
   11173 }
   11174 
   11175 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   11176   if (Val.getOpcode() != ISD::LOAD)
   11177     return false;
   11178 
   11179   EVT VT1 = Val.getValueType();
   11180   if (!VT1.isSimple() || !VT1.isInteger() ||
   11181       !VT2.isSimple() || !VT2.isInteger())
   11182     return false;
   11183 
   11184   switch (VT1.getSimpleVT().SimpleTy) {
   11185   default: break;
   11186   case MVT::i1:
   11187   case MVT::i8:
   11188   case MVT::i16:
   11189     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
   11190     return true;
   11191   }
   11192 
   11193   return false;
   11194 }
   11195 
   11196 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
   11197   EVT VT = ExtVal.getValueType();
   11198 
   11199   if (!isTypeLegal(VT))
   11200     return false;
   11201 
   11202   // Don't create a loadext if we can fold the extension into a wide/long
   11203   // instruction.
   11204   // If there's more than one user instruction, the loadext is desirable no
   11205   // matter what.  There can be two uses by the same instruction.
   11206   if (ExtVal->use_empty() ||
   11207       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
   11208     return true;
   11209 
   11210   SDNode *U = *ExtVal->use_begin();
   11211   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
   11212        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
   11213     return false;
   11214 
   11215   return true;
   11216 }
   11217 
   11218 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
   11219   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   11220     return false;
   11221 
   11222   if (!isTypeLegal(EVT::getEVT(Ty1)))
   11223     return false;
   11224 
   11225   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
   11226 
   11227   // Assuming the caller doesn't have a zeroext or signext return parameter,
   11228   // truncation all the way down to i1 is valid.
   11229   return true;
   11230 }
   11231 
   11232 
   11233 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   11234   if (V < 0)
   11235     return false;
   11236 
   11237   unsigned Scale = 1;
   11238   switch (VT.getSimpleVT().SimpleTy) {
   11239   default: return false;
   11240   case MVT::i1:
   11241   case MVT::i8:
   11242     // Scale == 1;
   11243     break;
   11244   case MVT::i16:
   11245     // Scale == 2;
   11246     Scale = 2;
   11247     break;
   11248   case MVT::i32:
   11249     // Scale == 4;
   11250     Scale = 4;
   11251     break;
   11252   }
   11253 
   11254   if ((V & (Scale - 1)) != 0)
   11255     return false;
   11256   V /= Scale;
   11257   return V == (V & ((1LL << 5) - 1));
   11258 }
   11259 
   11260 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   11261                                       const ARMSubtarget *Subtarget) {
   11262   bool isNeg = false;
   11263   if (V < 0) {
   11264     isNeg = true;
   11265     V = - V;
   11266   }
   11267 
   11268   switch (VT.getSimpleVT().SimpleTy) {
   11269   default: return false;
   11270   case MVT::i1:
   11271   case MVT::i8:
   11272   case MVT::i16:
   11273   case MVT::i32:
   11274     // + imm12 or - imm8
   11275     if (isNeg)
   11276       return V == (V & ((1LL << 8) - 1));
   11277     return V == (V & ((1LL << 12) - 1));
   11278   case MVT::f32:
   11279   case MVT::f64:
   11280     // Same as ARM mode. FIXME: NEON?
   11281     if (!Subtarget->hasVFP2())
   11282       return false;
   11283     if ((V & 3) != 0)
   11284       return false;
   11285     V >>= 2;
   11286     return V == (V & ((1LL << 8) - 1));
   11287   }
   11288 }
   11289 
   11290 /// isLegalAddressImmediate - Return true if the integer value can be used
   11291 /// as the offset of the target addressing mode for load / store of the
   11292 /// given type.
   11293 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   11294                                     const ARMSubtarget *Subtarget) {
   11295   if (V == 0)
   11296     return true;
   11297 
   11298   if (!VT.isSimple())
   11299     return false;
   11300 
   11301   if (Subtarget->isThumb1Only())
   11302     return isLegalT1AddressImmediate(V, VT);
   11303   else if (Subtarget->isThumb2())
   11304     return isLegalT2AddressImmediate(V, VT, Subtarget);
   11305 
   11306   // ARM mode.
   11307   if (V < 0)
   11308     V = - V;
   11309   switch (VT.getSimpleVT().SimpleTy) {
   11310   default: return false;
   11311   case MVT::i1:
   11312   case MVT::i8:
   11313   case MVT::i32:
   11314     // +- imm12
   11315     return V == (V & ((1LL << 12) - 1));
   11316   case MVT::i16:
   11317     // +- imm8
   11318     return V == (V & ((1LL << 8) - 1));
   11319   case MVT::f32:
   11320   case MVT::f64:
   11321     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   11322       return false;
   11323     if ((V & 3) != 0)
   11324       return false;
   11325     V >>= 2;
   11326     return V == (V & ((1LL << 8) - 1));
   11327   }
   11328 }
   11329 
   11330 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   11331                                                       EVT VT) const {
   11332   int Scale = AM.Scale;
   11333   if (Scale < 0)
   11334     return false;
   11335 
   11336   switch (VT.getSimpleVT().SimpleTy) {
   11337   default: return false;
   11338   case MVT::i1:
   11339   case MVT::i8:
   11340   case MVT::i16:
   11341   case MVT::i32:
   11342     if (Scale == 1)
   11343       return true;
   11344     // r + r << imm
   11345     Scale = Scale & ~1;
   11346     return Scale == 2 || Scale == 4 || Scale == 8;
   11347   case MVT::i64:
   11348     // r + r
   11349     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   11350       return true;
   11351     return false;
   11352   case MVT::isVoid:
   11353     // Note, we allow "void" uses (basically, uses that aren't loads or
   11354     // stores), because arm allows folding a scale into many arithmetic
   11355     // operations.  This should be made more precise and revisited later.
   11356 
   11357     // Allow r << imm, but the imm has to be a multiple of two.
   11358     if (Scale & 1) return false;
   11359     return isPowerOf2_32(Scale);
   11360   }
   11361 }
   11362 
   11363 /// isLegalAddressingMode - Return true if the addressing mode represented
   11364 /// by AM is legal for this target, for a load/store of the specified type.
   11365 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   11366                                               const AddrMode &AM, Type *Ty,
   11367                                               unsigned AS) const {
   11368   EVT VT = getValueType(DL, Ty, true);
   11369   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   11370     return false;
   11371 
   11372   // Can never fold addr of global into load/store.
   11373   if (AM.BaseGV)
   11374     return false;
   11375 
   11376   switch (AM.Scale) {
   11377   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   11378     break;
   11379   case 1:
   11380     if (Subtarget->isThumb1Only())
   11381       return false;
   11382     // FALL THROUGH.
   11383   default:
   11384     // ARM doesn't support any R+R*scale+imm addr modes.
   11385     if (AM.BaseOffs)
   11386       return false;
   11387 
   11388     if (!VT.isSimple())
   11389       return false;
   11390 
   11391     if (Subtarget->isThumb2())
   11392       return isLegalT2ScaledAddressingMode(AM, VT);
   11393 
   11394     int Scale = AM.Scale;
   11395     switch (VT.getSimpleVT().SimpleTy) {
   11396     default: return false;
   11397     case MVT::i1:
   11398     case MVT::i8:
   11399     case MVT::i32:
   11400       if (Scale < 0) Scale = -Scale;
   11401       if (Scale == 1)
   11402         return true;
   11403       // r + r << imm
   11404       return isPowerOf2_32(Scale & ~1);
   11405     case MVT::i16:
   11406     case MVT::i64:
   11407       // r + r
   11408       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   11409         return true;
   11410       return false;
   11411 
   11412     case MVT::isVoid:
   11413       // Note, we allow "void" uses (basically, uses that aren't loads or
   11414       // stores), because arm allows folding a scale into many arithmetic
   11415       // operations.  This should be made more precise and revisited later.
   11416 
   11417       // Allow r << imm, but the imm has to be a multiple of two.
   11418       if (Scale & 1) return false;
   11419       return isPowerOf2_32(Scale);
   11420     }
   11421   }
   11422   return true;
   11423 }
   11424 
   11425 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   11426 /// icmp immediate, that is the target has icmp instructions which can compare
   11427 /// a register against the immediate without having to materialize the
   11428 /// immediate into a register.
   11429 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   11430   // Thumb2 and ARM modes can use cmn for negative immediates.
   11431   if (!Subtarget->isThumb())
   11432     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
   11433   if (Subtarget->isThumb2())
   11434     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
   11435   // Thumb1 doesn't have cmn, and only 8-bit immediates.
   11436   return Imm >= 0 && Imm <= 255;
   11437 }
   11438 
   11439 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
   11440 /// *or sub* immediate, that is the target has add or sub instructions which can
   11441 /// add a register with the immediate without having to materialize the
   11442 /// immediate into a register.
   11443 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   11444   // Same encoding for add/sub, just flip the sign.
   11445   int64_t AbsImm = std::abs(Imm);
   11446   if (!Subtarget->isThumb())
   11447     return ARM_AM::getSOImmVal(AbsImm) != -1;
   11448   if (Subtarget->isThumb2())
   11449     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
   11450   // Thumb1 only has 8-bit unsigned immediate.
   11451   return AbsImm >= 0 && AbsImm <= 255;
   11452 }
   11453 
   11454 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   11455                                       bool isSEXTLoad, SDValue &Base,
   11456                                       SDValue &Offset, bool &isInc,
   11457                                       SelectionDAG &DAG) {
   11458   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   11459     return false;
   11460 
   11461   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   11462     // AddressingMode 3
   11463     Base = Ptr->getOperand(0);
   11464     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   11465       int RHSC = (int)RHS->getZExtValue();
   11466       if (RHSC < 0 && RHSC > -256) {
   11467         assert(Ptr->getOpcode() == ISD::ADD);
   11468         isInc = false;
   11469         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11470         return true;
   11471       }
   11472     }
   11473     isInc = (Ptr->getOpcode() == ISD::ADD);
   11474     Offset = Ptr->getOperand(1);
   11475     return true;
   11476   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   11477     // AddressingMode 2
   11478     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   11479       int RHSC = (int)RHS->getZExtValue();
   11480       if (RHSC < 0 && RHSC > -0x1000) {
   11481         assert(Ptr->getOpcode() == ISD::ADD);
   11482         isInc = false;
   11483         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11484         Base = Ptr->getOperand(0);
   11485         return true;
   11486       }
   11487     }
   11488 
   11489     if (Ptr->getOpcode() == ISD::ADD) {
   11490       isInc = true;
   11491       ARM_AM::ShiftOpc ShOpcVal=
   11492         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   11493       if (ShOpcVal != ARM_AM::no_shift) {
   11494         Base = Ptr->getOperand(1);
   11495         Offset = Ptr->getOperand(0);
   11496       } else {
   11497         Base = Ptr->getOperand(0);
   11498         Offset = Ptr->getOperand(1);
   11499       }
   11500       return true;
   11501     }
   11502 
   11503     isInc = (Ptr->getOpcode() == ISD::ADD);
   11504     Base = Ptr->getOperand(0);
   11505     Offset = Ptr->getOperand(1);
   11506     return true;
   11507   }
   11508 
   11509   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   11510   return false;
   11511 }
   11512 
   11513 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   11514                                      bool isSEXTLoad, SDValue &Base,
   11515                                      SDValue &Offset, bool &isInc,
   11516                                      SelectionDAG &DAG) {
   11517   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   11518     return false;
   11519 
   11520   Base = Ptr->getOperand(0);
   11521   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   11522     int RHSC = (int)RHS->getZExtValue();
   11523     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   11524       assert(Ptr->getOpcode() == ISD::ADD);
   11525       isInc = false;
   11526       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11527       return true;
   11528     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   11529       isInc = Ptr->getOpcode() == ISD::ADD;
   11530       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11531       return true;
   11532     }
   11533   }
   11534 
   11535   return false;
   11536 }
   11537 
   11538 /// getPreIndexedAddressParts - returns true by value, base pointer and
   11539 /// offset pointer and addressing mode by reference if the node's address
   11540 /// can be legally represented as pre-indexed load / store address.
   11541 bool
   11542 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   11543                                              SDValue &Offset,
   11544                                              ISD::MemIndexedMode &AM,
   11545                                              SelectionDAG &DAG) const {
   11546   if (Subtarget->isThumb1Only())
   11547     return false;
   11548 
   11549   EVT VT;
   11550   SDValue Ptr;
   11551   bool isSEXTLoad = false;
   11552   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   11553     Ptr = LD->getBasePtr();
   11554     VT  = LD->getMemoryVT();
   11555     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   11556   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   11557     Ptr = ST->getBasePtr();
   11558     VT  = ST->getMemoryVT();
   11559   } else
   11560     return false;
   11561 
   11562   bool isInc;
   11563   bool isLegal = false;
   11564   if (Subtarget->isThumb2())
   11565     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   11566                                        Offset, isInc, DAG);
   11567   else
   11568     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   11569                                         Offset, isInc, DAG);
   11570   if (!isLegal)
   11571     return false;
   11572 
   11573   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   11574   return true;
   11575 }
   11576 
   11577 /// getPostIndexedAddressParts - returns true by value, base pointer and
   11578 /// offset pointer and addressing mode by reference if this node can be
   11579 /// combined with a load / store to form a post-indexed load / store.
   11580 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   11581                                                    SDValue &Base,
   11582                                                    SDValue &Offset,
   11583                                                    ISD::MemIndexedMode &AM,
   11584                                                    SelectionDAG &DAG) const {
   11585   if (Subtarget->isThumb1Only())
   11586     return false;
   11587 
   11588   EVT VT;
   11589   SDValue Ptr;
   11590   bool isSEXTLoad = false;
   11591   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   11592     VT  = LD->getMemoryVT();
   11593     Ptr = LD->getBasePtr();
   11594     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   11595   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   11596     VT  = ST->getMemoryVT();
   11597     Ptr = ST->getBasePtr();
   11598   } else
   11599     return false;
   11600 
   11601   bool isInc;
   11602   bool isLegal = false;
   11603   if (Subtarget->isThumb2())
   11604     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   11605                                        isInc, DAG);
   11606   else
   11607     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   11608                                         isInc, DAG);
   11609   if (!isLegal)
   11610     return false;
   11611 
   11612   if (Ptr != Base) {
   11613     // Swap base ptr and offset to catch more post-index load / store when
   11614     // it's legal. In Thumb2 mode, offset must be an immediate.
   11615     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   11616         !Subtarget->isThumb2())
   11617       std::swap(Base, Offset);
   11618 
   11619     // Post-indexed load / store update the base pointer.
   11620     if (Ptr != Base)
   11621       return false;
   11622   }
   11623 
   11624   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   11625   return true;
   11626 }
   11627 
   11628 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   11629                                                       APInt &KnownZero,
   11630                                                       APInt &KnownOne,
   11631                                                       const SelectionDAG &DAG,
   11632                                                       unsigned Depth) const {
   11633   unsigned BitWidth = KnownOne.getBitWidth();
   11634   KnownZero = KnownOne = APInt(BitWidth, 0);
   11635   switch (Op.getOpcode()) {
   11636   default: break;
   11637   case ARMISD::ADDC:
   11638   case ARMISD::ADDE:
   11639   case ARMISD::SUBC:
   11640   case ARMISD::SUBE:
   11641     // These nodes' second result is a boolean
   11642     if (Op.getResNo() == 0)
   11643       break;
   11644     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   11645     break;
   11646   case ARMISD::CMOV: {
   11647     // Bits are known zero/one if known on the LHS and RHS.
   11648     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
   11649     if (KnownZero == 0 && KnownOne == 0) return;
   11650 
   11651     APInt KnownZeroRHS, KnownOneRHS;
   11652     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
   11653     KnownZero &= KnownZeroRHS;
   11654     KnownOne  &= KnownOneRHS;
   11655     return;
   11656   }
   11657   case ISD::INTRINSIC_W_CHAIN: {
   11658     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
   11659     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
   11660     switch (IntID) {
   11661     default: return;
   11662     case Intrinsic::arm_ldaex:
   11663     case Intrinsic::arm_ldrex: {
   11664       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
   11665       unsigned MemBits = VT.getScalarType().getSizeInBits();
   11666       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
   11667       return;
   11668     }
   11669     }
   11670   }
   11671   }
   11672 }
   11673 
   11674 //===----------------------------------------------------------------------===//
   11675 //                           ARM Inline Assembly Support
   11676 //===----------------------------------------------------------------------===//
   11677 
   11678 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   11679   // Looking for "rev" which is V6+.
   11680   if (!Subtarget->hasV6Ops())
   11681     return false;
   11682 
   11683   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   11684   std::string AsmStr = IA->getAsmString();
   11685   SmallVector<StringRef, 4> AsmPieces;
   11686   SplitString(AsmStr, AsmPieces, ";\n");
   11687 
   11688   switch (AsmPieces.size()) {
   11689   default: return false;
   11690   case 1:
   11691     AsmStr = AsmPieces[0];
   11692     AsmPieces.clear();
   11693     SplitString(AsmStr, AsmPieces, " \t,");
   11694 
   11695     // rev $0, $1
   11696     if (AsmPieces.size() == 3 &&
   11697         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   11698         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   11699       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   11700       if (Ty && Ty->getBitWidth() == 32)
   11701         return IntrinsicLowering::LowerToByteSwap(CI);
   11702     }
   11703     break;
   11704   }
   11705 
   11706   return false;
   11707 }
   11708 
   11709 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
   11710   // At this point, we have to lower this constraint to something else, so we
   11711   // lower it to an "r" or "w". However, by doing this we will force the result
   11712   // to be in register, while the X constraint is much more permissive.
   11713   //
   11714   // Although we are correct (we are free to emit anything, without
   11715   // constraints), we might break use cases that would expect us to be more
   11716   // efficient and emit something else.
   11717   if (!Subtarget->hasVFP2())
   11718     return "r";
   11719   if (ConstraintVT.isFloatingPoint())
   11720     return "w";
   11721   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
   11722      (ConstraintVT.getSizeInBits() == 64 ||
   11723       ConstraintVT.getSizeInBits() == 128))
   11724     return "w";
   11725 
   11726   return "r";
   11727 }
   11728 
   11729 /// getConstraintType - Given a constraint letter, return the type of
   11730 /// constraint it is for this target.
   11731 ARMTargetLowering::ConstraintType
   11732 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
   11733   if (Constraint.size() == 1) {
   11734     switch (Constraint[0]) {
   11735     default:  break;
   11736     case 'l': return C_RegisterClass;
   11737     case 'w': return C_RegisterClass;
   11738     case 'h': return C_RegisterClass;
   11739     case 'x': return C_RegisterClass;
   11740     case 't': return C_RegisterClass;
   11741     case 'j': return C_Other; // Constant for movw.
   11742       // An address with a single base register. Due to the way we
   11743       // currently handle addresses it is the same as an 'r' memory constraint.
   11744     case 'Q': return C_Memory;
   11745     }
   11746   } else if (Constraint.size() == 2) {
   11747     switch (Constraint[0]) {
   11748     default: break;
   11749     // All 'U+' constraints are addresses.
   11750     case 'U': return C_Memory;
   11751     }
   11752   }
   11753   return TargetLowering::getConstraintType(Constraint);
   11754 }
   11755 
   11756 /// Examine constraint type and operand type and determine a weight value.
   11757 /// This object must already have been set up with the operand type
   11758 /// and the current alternative constraint selected.
   11759 TargetLowering::ConstraintWeight
   11760 ARMTargetLowering::getSingleConstraintMatchWeight(
   11761     AsmOperandInfo &info, const char *constraint) const {
   11762   ConstraintWeight weight = CW_Invalid;
   11763   Value *CallOperandVal = info.CallOperandVal;
   11764     // If we don't have a value, we can't do a match,
   11765     // but allow it at the lowest weight.
   11766   if (!CallOperandVal)
   11767     return CW_Default;
   11768   Type *type = CallOperandVal->getType();
   11769   // Look at the constraint type.
   11770   switch (*constraint) {
   11771   default:
   11772     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   11773     break;
   11774   case 'l':
   11775     if (type->isIntegerTy()) {
   11776       if (Subtarget->isThumb())
   11777         weight = CW_SpecificReg;
   11778       else
   11779         weight = CW_Register;
   11780     }
   11781     break;
   11782   case 'w':
   11783     if (type->isFloatingPointTy())
   11784       weight = CW_Register;
   11785     break;
   11786   }
   11787   return weight;
   11788 }
   11789 
   11790 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
   11791 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
   11792     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
   11793   if (Constraint.size() == 1) {
   11794     // GCC ARM Constraint Letters
   11795     switch (Constraint[0]) {
   11796     case 'l': // Low regs or general regs.
   11797       if (Subtarget->isThumb())
   11798         return RCPair(0U, &ARM::tGPRRegClass);
   11799       return RCPair(0U, &ARM::GPRRegClass);
   11800     case 'h': // High regs or no regs.
   11801       if (Subtarget->isThumb())
   11802         return RCPair(0U, &ARM::hGPRRegClass);
   11803       break;
   11804     case 'r':
   11805       if (Subtarget->isThumb1Only())
   11806         return RCPair(0U, &ARM::tGPRRegClass);
   11807       return RCPair(0U, &ARM::GPRRegClass);
   11808     case 'w':
   11809       if (VT == MVT::Other)
   11810         break;
   11811       if (VT == MVT::f32)
   11812         return RCPair(0U, &ARM::SPRRegClass);
   11813       if (VT.getSizeInBits() == 64)
   11814         return RCPair(0U, &ARM::DPRRegClass);
   11815       if (VT.getSizeInBits() == 128)
   11816         return RCPair(0U, &ARM::QPRRegClass);
   11817       break;
   11818     case 'x':
   11819       if (VT == MVT::Other)
   11820         break;
   11821       if (VT == MVT::f32)
   11822         return RCPair(0U, &ARM::SPR_8RegClass);
   11823       if (VT.getSizeInBits() == 64)
   11824         return RCPair(0U, &ARM::DPR_8RegClass);
   11825       if (VT.getSizeInBits() == 128)
   11826         return RCPair(0U, &ARM::QPR_8RegClass);
   11827       break;
   11828     case 't':
   11829       if (VT == MVT::f32)
   11830         return RCPair(0U, &ARM::SPRRegClass);
   11831       break;
   11832     }
   11833   }
   11834   if (StringRef("{cc}").equals_lower(Constraint))
   11835     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
   11836 
   11837   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   11838 }
   11839 
   11840 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   11841 /// vector.  If it is invalid, don't add anything to Ops.
   11842 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   11843                                                      std::string &Constraint,
   11844                                                      std::vector<SDValue>&Ops,
   11845                                                      SelectionDAG &DAG) const {
   11846   SDValue Result;
   11847 
   11848   // Currently only support length 1 constraints.
   11849   if (Constraint.length() != 1) return;
   11850 
   11851   char ConstraintLetter = Constraint[0];
   11852   switch (ConstraintLetter) {
   11853   default: break;
   11854   case 'j':
   11855   case 'I': case 'J': case 'K': case 'L':
   11856   case 'M': case 'N': case 'O':
   11857     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   11858     if (!C)
   11859       return;
   11860 
   11861     int64_t CVal64 = C->getSExtValue();
   11862     int CVal = (int) CVal64;
   11863     // None of these constraints allow values larger than 32 bits.  Check
   11864     // that the value fits in an int.
   11865     if (CVal != CVal64)
   11866       return;
   11867 
   11868     switch (ConstraintLetter) {
   11869       case 'j':
   11870         // Constant suitable for movw, must be between 0 and
   11871         // 65535.
   11872         if (Subtarget->hasV6T2Ops())
   11873           if (CVal >= 0 && CVal <= 65535)
   11874             break;
   11875         return;
   11876       case 'I':
   11877         if (Subtarget->isThumb1Only()) {
   11878           // This must be a constant between 0 and 255, for ADD
   11879           // immediates.
   11880           if (CVal >= 0 && CVal <= 255)
   11881             break;
   11882         } else if (Subtarget->isThumb2()) {
   11883           // A constant that can be used as an immediate value in a
   11884           // data-processing instruction.
   11885           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   11886             break;
   11887         } else {
   11888           // A constant that can be used as an immediate value in a
   11889           // data-processing instruction.
   11890           if (ARM_AM::getSOImmVal(CVal) != -1)
   11891             break;
   11892         }
   11893         return;
   11894 
   11895       case 'J':
   11896         if (Subtarget->isThumb1Only()) {
   11897           // This must be a constant between -255 and -1, for negated ADD
   11898           // immediates. This can be used in GCC with an "n" modifier that
   11899           // prints the negated value, for use with SUB instructions. It is
   11900           // not useful otherwise but is implemented for compatibility.
   11901           if (CVal >= -255 && CVal <= -1)
   11902             break;
   11903         } else {
   11904           // This must be a constant between -4095 and 4095. It is not clear
   11905           // what this constraint is intended for. Implemented for
   11906           // compatibility with GCC.
   11907           if (CVal >= -4095 && CVal <= 4095)
   11908             break;
   11909         }
   11910         return;
   11911 
   11912       case 'K':
   11913         if (Subtarget->isThumb1Only()) {
   11914           // A 32-bit value where only one byte has a nonzero value. Exclude
   11915           // zero to match GCC. This constraint is used by GCC internally for
   11916           // constants that can be loaded with a move/shift combination.
   11917           // It is not useful otherwise but is implemented for compatibility.
   11918           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   11919             break;
   11920         } else if (Subtarget->isThumb2()) {
   11921           // A constant whose bitwise inverse can be used as an immediate
   11922           // value in a data-processing instruction. This can be used in GCC
   11923           // with a "B" modifier that prints the inverted value, for use with
   11924           // BIC and MVN instructions. It is not useful otherwise but is
   11925           // implemented for compatibility.
   11926           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   11927             break;
   11928         } else {
   11929           // A constant whose bitwise inverse can be used as an immediate
   11930           // value in a data-processing instruction. This can be used in GCC
   11931           // with a "B" modifier that prints the inverted value, for use with
   11932           // BIC and MVN instructions. It is not useful otherwise but is
   11933           // implemented for compatibility.
   11934           if (ARM_AM::getSOImmVal(~CVal) != -1)
   11935             break;
   11936         }
   11937         return;
   11938 
   11939       case 'L':
   11940         if (Subtarget->isThumb1Only()) {
   11941           // This must be a constant between -7 and 7,
   11942           // for 3-operand ADD/SUB immediate instructions.
   11943           if (CVal >= -7 && CVal < 7)
   11944             break;
   11945         } else if (Subtarget->isThumb2()) {
   11946           // A constant whose negation can be used as an immediate value in a
   11947           // data-processing instruction. This can be used in GCC with an "n"
   11948           // modifier that prints the negated value, for use with SUB
   11949           // instructions. It is not useful otherwise but is implemented for
   11950           // compatibility.
   11951           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   11952             break;
   11953         } else {
   11954           // A constant whose negation can be used as an immediate value in a
   11955           // data-processing instruction. This can be used in GCC with an "n"
   11956           // modifier that prints the negated value, for use with SUB
   11957           // instructions. It is not useful otherwise but is implemented for
   11958           // compatibility.
   11959           if (ARM_AM::getSOImmVal(-CVal) != -1)
   11960             break;
   11961         }
   11962         return;
   11963 
   11964       case 'M':
   11965         if (Subtarget->isThumb1Only()) {
   11966           // This must be a multiple of 4 between 0 and 1020, for
   11967           // ADD sp + immediate.
   11968           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   11969             break;
   11970         } else {
   11971           // A power of two or a constant between 0 and 32.  This is used in
   11972           // GCC for the shift amount on shifted register operands, but it is
   11973           // useful in general for any shift amounts.
   11974           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   11975             break;
   11976         }
   11977         return;
   11978 
   11979       case 'N':
   11980         if (Subtarget->isThumb()) {  // FIXME thumb2
   11981           // This must be a constant between 0 and 31, for shift amounts.
   11982           if (CVal >= 0 && CVal <= 31)
   11983             break;
   11984         }
   11985         return;
   11986 
   11987       case 'O':
   11988         if (Subtarget->isThumb()) {  // FIXME thumb2
   11989           // This must be a multiple of 4 between -508 and 508, for
   11990           // ADD/SUB sp = sp + immediate.
   11991           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   11992             break;
   11993         }
   11994         return;
   11995     }
   11996     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
   11997     break;
   11998   }
   11999 
   12000   if (Result.getNode()) {
   12001     Ops.push_back(Result);
   12002     return;
   12003   }
   12004   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   12005 }
   12006 
   12007 static RTLIB::Libcall getDivRemLibcall(
   12008     const SDNode *N, MVT::SimpleValueType SVT) {
   12009   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
   12010           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
   12011          "Unhandled Opcode in getDivRemLibcall");
   12012   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
   12013                   N->getOpcode() == ISD::SREM;
   12014   RTLIB::Libcall LC;
   12015   switch (SVT) {
   12016   default: llvm_unreachable("Unexpected request for libcall!");
   12017   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   12018   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   12019   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   12020   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   12021   }
   12022   return LC;
   12023 }
   12024 
   12025 static TargetLowering::ArgListTy getDivRemArgList(
   12026     const SDNode *N, LLVMContext *Context) {
   12027   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
   12028           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
   12029          "Unhandled Opcode in getDivRemArgList");
   12030   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
   12031                   N->getOpcode() == ISD::SREM;
   12032   TargetLowering::ArgListTy Args;
   12033   TargetLowering::ArgListEntry Entry;
   12034   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   12035     EVT ArgVT = N->getOperand(i).getValueType();
   12036     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
   12037     Entry.Node = N->getOperand(i);
   12038     Entry.Ty = ArgTy;
   12039     Entry.isSExt = isSigned;
   12040     Entry.isZExt = !isSigned;
   12041     Args.push_back(Entry);
   12042   }
   12043   return Args;
   12044 }
   12045 
   12046 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
   12047   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
   12048           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI()) &&
   12049          "Register-based DivRem lowering only");
   12050   unsigned Opcode = Op->getOpcode();
   12051   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
   12052          "Invalid opcode for Div/Rem lowering");
   12053   bool isSigned = (Opcode == ISD::SDIVREM);
   12054   EVT VT = Op->getValueType(0);
   12055   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
   12056 
   12057   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
   12058                                        VT.getSimpleVT().SimpleTy);
   12059   SDValue InChain = DAG.getEntryNode();
   12060 
   12061   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
   12062                                                     DAG.getContext());
   12063 
   12064   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   12065                                          getPointerTy(DAG.getDataLayout()));
   12066 
   12067   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
   12068 
   12069   SDLoc dl(Op);
   12070   TargetLowering::CallLoweringInfo CLI(DAG);
   12071   CLI.setDebugLoc(dl).setChain(InChain)
   12072     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
   12073     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
   12074 
   12075   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
   12076   return CallInfo.first;
   12077 }
   12078 
   12079 // Lowers REM using divmod helpers
   12080 // see RTABI section 4.2/4.3
   12081 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
   12082   // Build return types (div and rem)
   12083   std::vector<Type*> RetTyParams;
   12084   Type *RetTyElement;
   12085 
   12086   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
   12087   default: llvm_unreachable("Unexpected request for libcall!");
   12088   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
   12089   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
   12090   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
   12091   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
   12092   }
   12093 
   12094   RetTyParams.push_back(RetTyElement);
   12095   RetTyParams.push_back(RetTyElement);
   12096   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
   12097   Type *RetTy = StructType::get(*DAG.getContext(), ret);
   12098 
   12099   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
   12100                                                              SimpleTy);
   12101   SDValue InChain = DAG.getEntryNode();
   12102   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext());
   12103   bool isSigned = N->getOpcode() == ISD::SREM;
   12104   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   12105                                          getPointerTy(DAG.getDataLayout()));
   12106 
   12107   // Lower call
   12108   CallLoweringInfo CLI(DAG);
   12109   CLI.setChain(InChain)
   12110      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
   12111      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
   12112   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   12113 
   12114   // Return second (rem) result operand (first contains div)
   12115   SDNode *ResNode = CallResult.first.getNode();
   12116   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
   12117   return ResNode->getOperand(1);
   12118 }
   12119 
   12120 SDValue
   12121 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   12122   assert(Subtarget->isTargetWindows() && "unsupported target platform");
   12123   SDLoc DL(Op);
   12124 
   12125   // Get the inputs.
   12126   SDValue Chain = Op.getOperand(0);
   12127   SDValue Size  = Op.getOperand(1);
   12128 
   12129   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
   12130                               DAG.getConstant(2, DL, MVT::i32));
   12131 
   12132   SDValue Flag;
   12133   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
   12134   Flag = Chain.getValue(1);
   12135 
   12136   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   12137   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
   12138 
   12139   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
   12140   Chain = NewSP.getValue(1);
   12141 
   12142   SDValue Ops[2] = { NewSP, Chain };
   12143   return DAG.getMergeValues(Ops, DL);
   12144 }
   12145 
   12146 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
   12147   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
   12148          "Unexpected type for custom-lowering FP_EXTEND");
   12149 
   12150   RTLIB::Libcall LC;
   12151   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
   12152 
   12153   SDValue SrcVal = Op.getOperand(0);
   12154   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
   12155                      SDLoc(Op)).first;
   12156 }
   12157 
   12158 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
   12159   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
   12160          Subtarget->isFPOnlySP() &&
   12161          "Unexpected type for custom-lowering FP_ROUND");
   12162 
   12163   RTLIB::Libcall LC;
   12164   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
   12165 
   12166   SDValue SrcVal = Op.getOperand(0);
   12167   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
   12168                      SDLoc(Op)).first;
   12169 }
   12170 
   12171 bool
   12172 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   12173   // The ARM target isn't yet aware of offsets.
   12174   return false;
   12175 }
   12176 
   12177 bool ARM::isBitFieldInvertedMask(unsigned v) {
   12178   if (v == 0xffffffff)
   12179     return false;
   12180 
   12181   // there can be 1's on either or both "outsides", all the "inside"
   12182   // bits must be 0's
   12183   return isShiftedMask_32(~v);
   12184 }
   12185 
   12186 /// isFPImmLegal - Returns true if the target can instruction select the
   12187 /// specified FP immediate natively. If false, the legalizer will
   12188 /// materialize the FP immediate as a load from a constant pool.
   12189 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   12190   if (!Subtarget->hasVFP3())
   12191     return false;
   12192   if (VT == MVT::f32)
   12193     return ARM_AM::getFP32Imm(Imm) != -1;
   12194   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
   12195     return ARM_AM::getFP64Imm(Imm) != -1;
   12196   return false;
   12197 }
   12198 
   12199 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   12200 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   12201 /// specified in the intrinsic calls.
   12202 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   12203                                            const CallInst &I,
   12204                                            unsigned Intrinsic) const {
   12205   switch (Intrinsic) {
   12206   case Intrinsic::arm_neon_vld1:
   12207   case Intrinsic::arm_neon_vld2:
   12208   case Intrinsic::arm_neon_vld3:
   12209   case Intrinsic::arm_neon_vld4:
   12210   case Intrinsic::arm_neon_vld2lane:
   12211   case Intrinsic::arm_neon_vld3lane:
   12212   case Intrinsic::arm_neon_vld4lane: {
   12213     Info.opc = ISD::INTRINSIC_W_CHAIN;
   12214     // Conservatively set memVT to the entire set of vectors loaded.
   12215     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   12216     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
   12217     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   12218     Info.ptrVal = I.getArgOperand(0);
   12219     Info.offset = 0;
   12220     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   12221     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   12222     Info.vol = false; // volatile loads with NEON intrinsics not supported
   12223     Info.readMem = true;
   12224     Info.writeMem = false;
   12225     return true;
   12226   }
   12227   case Intrinsic::arm_neon_vst1:
   12228   case Intrinsic::arm_neon_vst2:
   12229   case Intrinsic::arm_neon_vst3:
   12230   case Intrinsic::arm_neon_vst4:
   12231   case Intrinsic::arm_neon_vst2lane:
   12232   case Intrinsic::arm_neon_vst3lane:
   12233   case Intrinsic::arm_neon_vst4lane: {
   12234     Info.opc = ISD::INTRINSIC_VOID;
   12235     // Conservatively set memVT to the entire set of vectors stored.
   12236     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   12237     unsigned NumElts = 0;
   12238     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   12239       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   12240       if (!ArgTy->isVectorTy())
   12241         break;
   12242       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
   12243     }
   12244     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   12245     Info.ptrVal = I.getArgOperand(0);
   12246     Info.offset = 0;
   12247     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   12248     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   12249     Info.vol = false; // volatile stores with NEON intrinsics not supported
   12250     Info.readMem = false;
   12251     Info.writeMem = true;
   12252     return true;
   12253   }
   12254   case Intrinsic::arm_ldaex:
   12255   case Intrinsic::arm_ldrex: {
   12256     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   12257     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
   12258     Info.opc = ISD::INTRINSIC_W_CHAIN;
   12259     Info.memVT = MVT::getVT(PtrTy->getElementType());
   12260     Info.ptrVal = I.getArgOperand(0);
   12261     Info.offset = 0;
   12262     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   12263     Info.vol = true;
   12264     Info.readMem = true;
   12265     Info.writeMem = false;
   12266     return true;
   12267   }
   12268   case Intrinsic::arm_stlex:
   12269   case Intrinsic::arm_strex: {
   12270     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   12271     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
   12272     Info.opc = ISD::INTRINSIC_W_CHAIN;
   12273     Info.memVT = MVT::getVT(PtrTy->getElementType());
   12274     Info.ptrVal = I.getArgOperand(1);
   12275     Info.offset = 0;
   12276     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   12277     Info.vol = true;
   12278     Info.readMem = false;
   12279     Info.writeMem = true;
   12280     return true;
   12281   }
   12282   case Intrinsic::arm_stlexd:
   12283   case Intrinsic::arm_strexd: {
   12284     Info.opc = ISD::INTRINSIC_W_CHAIN;
   12285     Info.memVT = MVT::i64;
   12286     Info.ptrVal = I.getArgOperand(2);
   12287     Info.offset = 0;
   12288     Info.align = 8;
   12289     Info.vol = true;
   12290     Info.readMem = false;
   12291     Info.writeMem = true;
   12292     return true;
   12293   }
   12294   case Intrinsic::arm_ldaexd:
   12295   case Intrinsic::arm_ldrexd: {
   12296     Info.opc = ISD::INTRINSIC_W_CHAIN;
   12297     Info.memVT = MVT::i64;
   12298     Info.ptrVal = I.getArgOperand(0);
   12299     Info.offset = 0;
   12300     Info.align = 8;
   12301     Info.vol = true;
   12302     Info.readMem = true;
   12303     Info.writeMem = false;
   12304     return true;
   12305   }
   12306   default:
   12307     break;
   12308   }
   12309 
   12310   return false;
   12311 }
   12312 
   12313 /// \brief Returns true if it is beneficial to convert a load of a constant
   12314 /// to just the constant itself.
   12315 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   12316                                                           Type *Ty) const {
   12317   assert(Ty->isIntegerTy());
   12318 
   12319   unsigned Bits = Ty->getPrimitiveSizeInBits();
   12320   if (Bits == 0 || Bits > 32)
   12321     return false;
   12322   return true;
   12323 }
   12324 
   12325 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
   12326                                         ARM_MB::MemBOpt Domain) const {
   12327   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   12328 
   12329   // First, if the target has no DMB, see what fallback we can use.
   12330   if (!Subtarget->hasDataBarrier()) {
   12331     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   12332     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   12333     // here.
   12334     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
   12335       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
   12336       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
   12337                         Builder.getInt32(0), Builder.getInt32(7),
   12338                         Builder.getInt32(10), Builder.getInt32(5)};
   12339       return Builder.CreateCall(MCR, args);
   12340     } else {
   12341       // Instead of using barriers, atomic accesses on these subtargets use
   12342       // libcalls.
   12343       llvm_unreachable("makeDMB on a target so old that it has no barriers");
   12344     }
   12345   } else {
   12346     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
   12347     // Only a full system barrier exists in the M-class architectures.
   12348     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
   12349     Constant *CDomain = Builder.getInt32(Domain);
   12350     return Builder.CreateCall(DMB, CDomain);
   12351   }
   12352 }
   12353 
   12354 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   12355 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   12356                                          AtomicOrdering Ord, bool IsStore,
   12357                                          bool IsLoad) const {
   12358   switch (Ord) {
   12359   case AtomicOrdering::NotAtomic:
   12360   case AtomicOrdering::Unordered:
   12361     llvm_unreachable("Invalid fence: unordered/non-atomic");
   12362   case AtomicOrdering::Monotonic:
   12363   case AtomicOrdering::Acquire:
   12364     return nullptr; // Nothing to do
   12365   case AtomicOrdering::SequentiallyConsistent:
   12366     if (!IsStore)
   12367       return nullptr; // Nothing to do
   12368     /*FALLTHROUGH*/
   12369   case AtomicOrdering::Release:
   12370   case AtomicOrdering::AcquireRelease:
   12371     if (Subtarget->preferISHSTBarriers())
   12372       return makeDMB(Builder, ARM_MB::ISHST);
   12373     // FIXME: add a comment with a link to documentation justifying this.
   12374     else
   12375       return makeDMB(Builder, ARM_MB::ISH);
   12376   }
   12377   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
   12378 }
   12379 
   12380 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   12381                                           AtomicOrdering Ord, bool IsStore,
   12382                                           bool IsLoad) const {
   12383   switch (Ord) {
   12384   case AtomicOrdering::NotAtomic:
   12385   case AtomicOrdering::Unordered:
   12386     llvm_unreachable("Invalid fence: unordered/not-atomic");
   12387   case AtomicOrdering::Monotonic:
   12388   case AtomicOrdering::Release:
   12389     return nullptr; // Nothing to do
   12390   case AtomicOrdering::Acquire:
   12391   case AtomicOrdering::AcquireRelease:
   12392   case AtomicOrdering::SequentiallyConsistent:
   12393     return makeDMB(Builder, ARM_MB::ISH);
   12394   }
   12395   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
   12396 }
   12397 
   12398 // Loads and stores less than 64-bits are already atomic; ones above that
   12399 // are doomed anyway, so defer to the default libcall and blame the OS when
   12400 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   12401 // anything for those.
   12402 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   12403   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
   12404   return (Size == 64) && !Subtarget->isMClass();
   12405 }
   12406 
   12407 // Loads and stores less than 64-bits are already atomic; ones above that
   12408 // are doomed anyway, so defer to the default libcall and blame the OS when
   12409 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   12410 // anything for those.
   12411 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
   12412 // guarantee, see DDI0406C ARM architecture reference manual,
   12413 // sections A8.8.72-74 LDRD)
   12414 TargetLowering::AtomicExpansionKind
   12415 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   12416   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
   12417   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
   12418                                                   : AtomicExpansionKind::None;
   12419 }
   12420 
   12421 // For the real atomic operations, we have ldrex/strex up to 32 bits,
   12422 // and up to 64 bits on the non-M profiles
   12423 TargetLowering::AtomicExpansionKind
   12424 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   12425   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
   12426   return (Size <= (Subtarget->isMClass() ? 32U : 64U))
   12427              ? AtomicExpansionKind::LLSC
   12428              : AtomicExpansionKind::None;
   12429 }
   12430 
   12431 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
   12432     AtomicCmpXchgInst *AI) const {
   12433   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
   12434   // implement cmpxchg without spilling. If the address being exchanged is also
   12435   // on the stack and close enough to the spill slot, this can lead to a
   12436   // situation where the monitor always gets cleared and the atomic operation
   12437   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
   12438   return getTargetMachine().getOptLevel() != 0;
   12439 }
   12440 
   12441 bool ARMTargetLowering::shouldInsertFencesForAtomic(
   12442     const Instruction *I) const {
   12443   return InsertFencesForAtomic;
   12444 }
   12445 
   12446 // This has so far only been implemented for MachO.
   12447 bool ARMTargetLowering::useLoadStackGuardNode() const {
   12448   return Subtarget->isTargetMachO();
   12449 }
   12450 
   12451 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
   12452                                                   unsigned &Cost) const {
   12453   // If we do not have NEON, vector types are not natively supported.
   12454   if (!Subtarget->hasNEON())
   12455     return false;
   12456 
   12457   // Floating point values and vector values map to the same register file.
   12458   // Therefore, although we could do a store extract of a vector type, this is
   12459   // better to leave at float as we have more freedom in the addressing mode for
   12460   // those.
   12461   if (VectorTy->isFPOrFPVectorTy())
   12462     return false;
   12463 
   12464   // If the index is unknown at compile time, this is very expensive to lower
   12465   // and it is not possible to combine the store with the extract.
   12466   if (!isa<ConstantInt>(Idx))
   12467     return false;
   12468 
   12469   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
   12470   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
   12471   // We can do a store + vector extract on any vector that fits perfectly in a D
   12472   // or Q register.
   12473   if (BitWidth == 64 || BitWidth == 128) {
   12474     Cost = 0;
   12475     return true;
   12476   }
   12477   return false;
   12478 }
   12479 
   12480 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
   12481   return Subtarget->hasV6T2Ops();
   12482 }
   12483 
   12484 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
   12485   return Subtarget->hasV6T2Ops();
   12486 }
   12487 
   12488 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   12489                                          AtomicOrdering Ord) const {
   12490   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   12491   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
   12492   bool IsAcquire = isAcquireOrStronger(Ord);
   12493 
   12494   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
   12495   // intrinsic must return {i32, i32} and we have to recombine them into a
   12496   // single i64 here.
   12497   if (ValTy->getPrimitiveSizeInBits() == 64) {
   12498     Intrinsic::ID Int =
   12499         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
   12500     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
   12501 
   12502     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   12503     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
   12504 
   12505     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
   12506     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
   12507     if (!Subtarget->isLittle())
   12508       std::swap (Lo, Hi);
   12509     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
   12510     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
   12511     return Builder.CreateOr(
   12512         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
   12513   }
   12514 
   12515   Type *Tys[] = { Addr->getType() };
   12516   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
   12517   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
   12518 
   12519   return Builder.CreateTruncOrBitCast(
   12520       Builder.CreateCall(Ldrex, Addr),
   12521       cast<PointerType>(Addr->getType())->getElementType());
   12522 }
   12523 
   12524 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
   12525     IRBuilder<> &Builder) const {
   12526   if (!Subtarget->hasV7Ops())
   12527     return;
   12528   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   12529   Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
   12530 }
   12531 
   12532 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   12533                                                Value *Addr,
   12534                                                AtomicOrdering Ord) const {
   12535   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   12536   bool IsRelease = isReleaseOrStronger(Ord);
   12537 
   12538   // Since the intrinsics must have legal type, the i64 intrinsics take two
   12539   // parameters: "i32, i32". We must marshal Val into the appropriate form
   12540   // before the call.
   12541   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
   12542     Intrinsic::ID Int =
   12543         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
   12544     Function *Strex = Intrinsic::getDeclaration(M, Int);
   12545     Type *Int32Ty = Type::getInt32Ty(M->getContext());
   12546 
   12547     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
   12548     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
   12549     if (!Subtarget->isLittle())
   12550       std::swap (Lo, Hi);
   12551     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   12552     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
   12553   }
   12554 
   12555   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
   12556   Type *Tys[] = { Addr->getType() };
   12557   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
   12558 
   12559   return Builder.CreateCall(
   12560       Strex, {Builder.CreateZExtOrBitCast(
   12561                   Val, Strex->getFunctionType()->getParamType(0)),
   12562               Addr});
   12563 }
   12564 
   12565 /// \brief Lower an interleaved load into a vldN intrinsic.
   12566 ///
   12567 /// E.g. Lower an interleaved load (Factor = 2):
   12568 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
   12569 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
   12570 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
   12571 ///
   12572 ///      Into:
   12573 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
   12574 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
   12575 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
   12576 bool ARMTargetLowering::lowerInterleavedLoad(
   12577     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
   12578     ArrayRef<unsigned> Indices, unsigned Factor) const {
   12579   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   12580          "Invalid interleave factor");
   12581   assert(!Shuffles.empty() && "Empty shufflevector input");
   12582   assert(Shuffles.size() == Indices.size() &&
   12583          "Unmatched number of shufflevectors and indices");
   12584 
   12585   VectorType *VecTy = Shuffles[0]->getType();
   12586   Type *EltTy = VecTy->getVectorElementType();
   12587 
   12588   const DataLayout &DL = LI->getModule()->getDataLayout();
   12589   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
   12590   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
   12591 
   12592   // Skip if we do not have NEON and skip illegal vector types and vector types
   12593   // with i64/f64 elements (vldN doesn't support i64/f64 elements).
   12594   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
   12595     return false;
   12596 
   12597   // A pointer vector can not be the return type of the ldN intrinsics. Need to
   12598   // load integer vectors first and then convert to pointer vectors.
   12599   if (EltTy->isPointerTy())
   12600     VecTy =
   12601         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
   12602 
   12603   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
   12604                                             Intrinsic::arm_neon_vld3,
   12605                                             Intrinsic::arm_neon_vld4};
   12606 
   12607   IRBuilder<> Builder(LI);
   12608   SmallVector<Value *, 2> Ops;
   12609 
   12610   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
   12611   Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
   12612   Ops.push_back(Builder.getInt32(LI->getAlignment()));
   12613 
   12614   Type *Tys[] = { VecTy, Int8Ptr };
   12615   Function *VldnFunc =
   12616       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
   12617   CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
   12618 
   12619   // Replace uses of each shufflevector with the corresponding vector loaded
   12620   // by ldN.
   12621   for (unsigned i = 0; i < Shuffles.size(); i++) {
   12622     ShuffleVectorInst *SV = Shuffles[i];
   12623     unsigned Index = Indices[i];
   12624 
   12625     Value *SubVec = Builder.CreateExtractValue(VldN, Index);
   12626 
   12627     // Convert the integer vector to pointer vector if the element is pointer.
   12628     if (EltTy->isPointerTy())
   12629       SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
   12630 
   12631     SV->replaceAllUsesWith(SubVec);
   12632   }
   12633 
   12634   return true;
   12635 }
   12636 
   12637 /// \brief Get a mask consisting of sequential integers starting from \p Start.
   12638 ///
   12639 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
   12640 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
   12641                                    unsigned NumElts) {
   12642   SmallVector<Constant *, 16> Mask;
   12643   for (unsigned i = 0; i < NumElts; i++)
   12644     Mask.push_back(Builder.getInt32(Start + i));
   12645 
   12646   return ConstantVector::get(Mask);
   12647 }
   12648 
   12649 /// \brief Lower an interleaved store into a vstN intrinsic.
   12650 ///
   12651 /// E.g. Lower an interleaved store (Factor = 3):
   12652 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
   12653 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
   12654 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
   12655 ///
   12656 ///      Into:
   12657 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
   12658 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
   12659 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
   12660 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
   12661 ///
   12662 /// Note that the new shufflevectors will be removed and we'll only generate one
   12663 /// vst3 instruction in CodeGen.
   12664 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
   12665                                               ShuffleVectorInst *SVI,
   12666                                               unsigned Factor) const {
   12667   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   12668          "Invalid interleave factor");
   12669 
   12670   VectorType *VecTy = SVI->getType();
   12671   assert(VecTy->getVectorNumElements() % Factor == 0 &&
   12672          "Invalid interleaved store");
   12673 
   12674   unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
   12675   Type *EltTy = VecTy->getVectorElementType();
   12676   VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
   12677 
   12678   const DataLayout &DL = SI->getModule()->getDataLayout();
   12679   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
   12680   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
   12681 
   12682   // Skip if we do not have NEON and skip illegal vector types and vector types
   12683   // with i64/f64 elements (vstN doesn't support i64/f64 elements).
   12684   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
   12685       EltIs64Bits)
   12686     return false;
   12687 
   12688   Value *Op0 = SVI->getOperand(0);
   12689   Value *Op1 = SVI->getOperand(1);
   12690   IRBuilder<> Builder(SI);
   12691 
   12692   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
   12693   // vectors to integer vectors.
   12694   if (EltTy->isPointerTy()) {
   12695     Type *IntTy = DL.getIntPtrType(EltTy);
   12696 
   12697     // Convert to the corresponding integer vector.
   12698     Type *IntVecTy =
   12699         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
   12700     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
   12701     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
   12702 
   12703     SubVecTy = VectorType::get(IntTy, NumSubElts);
   12704   }
   12705 
   12706   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
   12707                                              Intrinsic::arm_neon_vst3,
   12708                                              Intrinsic::arm_neon_vst4};
   12709   SmallVector<Value *, 6> Ops;
   12710 
   12711   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
   12712   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
   12713 
   12714   Type *Tys[] = { Int8Ptr, SubVecTy };
   12715   Function *VstNFunc = Intrinsic::getDeclaration(
   12716       SI->getModule(), StoreInts[Factor - 2], Tys);
   12717 
   12718   // Split the shufflevector operands into sub vectors for the new vstN call.
   12719   for (unsigned i = 0; i < Factor; i++)
   12720     Ops.push_back(Builder.CreateShuffleVector(
   12721         Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
   12722 
   12723   Ops.push_back(Builder.getInt32(SI->getAlignment()));
   12724   Builder.CreateCall(VstNFunc, Ops);
   12725   return true;
   12726 }
   12727 
   12728 enum HABaseType {
   12729   HA_UNKNOWN = 0,
   12730   HA_FLOAT,
   12731   HA_DOUBLE,
   12732   HA_VECT64,
   12733   HA_VECT128
   12734 };
   12735 
   12736 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
   12737                                    uint64_t &Members) {
   12738   if (auto *ST = dyn_cast<StructType>(Ty)) {
   12739     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
   12740       uint64_t SubMembers = 0;
   12741       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
   12742         return false;
   12743       Members += SubMembers;
   12744     }
   12745   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
   12746     uint64_t SubMembers = 0;
   12747     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
   12748       return false;
   12749     Members += SubMembers * AT->getNumElements();
   12750   } else if (Ty->isFloatTy()) {
   12751     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
   12752       return false;
   12753     Members = 1;
   12754     Base = HA_FLOAT;
   12755   } else if (Ty->isDoubleTy()) {
   12756     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
   12757       return false;
   12758     Members = 1;
   12759     Base = HA_DOUBLE;
   12760   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
   12761     Members = 1;
   12762     switch (Base) {
   12763     case HA_FLOAT:
   12764     case HA_DOUBLE:
   12765       return false;
   12766     case HA_VECT64:
   12767       return VT->getBitWidth() == 64;
   12768     case HA_VECT128:
   12769       return VT->getBitWidth() == 128;
   12770     case HA_UNKNOWN:
   12771       switch (VT->getBitWidth()) {
   12772       case 64:
   12773         Base = HA_VECT64;
   12774         return true;
   12775       case 128:
   12776         Base = HA_VECT128;
   12777         return true;
   12778       default:
   12779         return false;
   12780       }
   12781     }
   12782   }
   12783 
   12784   return (Members > 0 && Members <= 4);
   12785 }
   12786 
   12787 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
   12788 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
   12789 /// passing according to AAPCS rules.
   12790 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
   12791     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
   12792   if (getEffectiveCallingConv(CallConv, isVarArg) !=
   12793       CallingConv::ARM_AAPCS_VFP)
   12794     return false;
   12795 
   12796   HABaseType Base = HA_UNKNOWN;
   12797   uint64_t Members = 0;
   12798   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
   12799   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
   12800 
   12801   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
   12802   return IsHA || IsIntArray;
   12803 }
   12804 
   12805 unsigned ARMTargetLowering::getExceptionPointerRegister(
   12806     const Constant *PersonalityFn) const {
   12807   // Platforms which do not use SjLj EH may return values in these registers
   12808   // via the personality function.
   12809   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
   12810 }
   12811 
   12812 unsigned ARMTargetLowering::getExceptionSelectorRegister(
   12813     const Constant *PersonalityFn) const {
   12814   // Platforms which do not use SjLj EH may return values in these registers
   12815   // via the personality function.
   12816   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
   12817 }
   12818 
   12819 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
   12820   // Update IsSplitCSR in ARMFunctionInfo.
   12821   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
   12822   AFI->setIsSplitCSR(true);
   12823 }
   12824 
   12825 void ARMTargetLowering::insertCopiesSplitCSR(
   12826     MachineBasicBlock *Entry,
   12827     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   12828   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
   12829   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
   12830   if (!IStart)
   12831     return;
   12832 
   12833   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   12834   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
   12835   MachineBasicBlock::iterator MBBI = Entry->begin();
   12836   for (const MCPhysReg *I = IStart; *I; ++I) {
   12837     const TargetRegisterClass *RC = nullptr;
   12838     if (ARM::GPRRegClass.contains(*I))
   12839       RC = &ARM::GPRRegClass;
   12840     else if (ARM::DPRRegClass.contains(*I))
   12841       RC = &ARM::DPRRegClass;
   12842     else
   12843       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   12844 
   12845     unsigned NewVR = MRI->createVirtualRegister(RC);
   12846     // Create copy from CSR to a virtual register.
   12847     // FIXME: this currently does not emit CFI pseudo-instructions, it works
   12848     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
   12849     // nounwind. If we want to generalize this later, we may need to emit
   12850     // CFI pseudo-instructions.
   12851     assert(Entry->getParent()->getFunction()->hasFnAttribute(
   12852                Attribute::NoUnwind) &&
   12853            "Function should be nounwind in insertCopiesSplitCSR!");
   12854     Entry->addLiveIn(*I);
   12855     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
   12856         .addReg(*I);
   12857 
   12858     // Insert the copy-back instructions right before the terminator.
   12859     for (auto *Exit : Exits)
   12860       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
   12861               TII->get(TargetOpcode::COPY), *I)
   12862           .addReg(NewVR);
   12863   }
   12864 }
   12865