1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interfaces that Hexagon uses to lower LLVM code 11 // into a selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "HexagonISelLowering.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonSubtarget.h" 18 #include "HexagonTargetMachine.h" 19 #include "HexagonTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "hexagon-lowering" 43 44 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", 45 cl::init(true), cl::Hidden, 46 cl::desc("Control jump table emission on Hexagon target")); 47 48 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", 49 cl::Hidden, cl::ZeroOrMore, cl::init(false), 50 cl::desc("Enable Hexagon SDNode scheduling")); 51 52 static cl::opt<bool> EnableFastMath("ffast-math", 53 cl::Hidden, cl::ZeroOrMore, cl::init(false), 54 cl::desc("Enable Fast Math processing")); 55 56 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", 57 cl::Hidden, cl::ZeroOrMore, cl::init(5), 58 cl::desc("Set minimum jump tables")); 59 60 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", 61 cl::Hidden, cl::ZeroOrMore, cl::init(6), 62 cl::desc("Max #stores to inline memcpy")); 63 64 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", 65 cl::Hidden, cl::ZeroOrMore, cl::init(4), 66 cl::desc("Max #stores to inline memcpy")); 67 68 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", 69 cl::Hidden, cl::ZeroOrMore, cl::init(6), 70 cl::desc("Max #stores to inline memmove")); 71 72 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", 73 cl::Hidden, cl::ZeroOrMore, cl::init(4), 74 cl::desc("Max #stores to inline memmove")); 75 76 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", 77 cl::Hidden, cl::ZeroOrMore, cl::init(8), 78 cl::desc("Max #stores to inline memset")); 79 80 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", 81 cl::Hidden, cl::ZeroOrMore, cl::init(4), 82 cl::desc("Max #stores to inline memset")); 83 84 85 namespace { 86 class HexagonCCState : public CCState { 87 unsigned NumNamedVarArgParams; 88 89 public: 90 HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, 91 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, 92 int NumNamedVarArgParams) 93 : CCState(CC, isVarArg, MF, locs, C), 94 NumNamedVarArgParams(NumNamedVarArgParams) {} 95 96 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } 97 }; 98 } 99 100 // Implement calling convention for Hexagon. 101 102 static bool IsHvxVectorType(MVT ty); 103 104 static bool 105 CC_Hexagon(unsigned ValNo, MVT ValVT, 106 MVT LocVT, CCValAssign::LocInfo LocInfo, 107 ISD::ArgFlagsTy ArgFlags, CCState &State); 108 109 static bool 110 CC_Hexagon32(unsigned ValNo, MVT ValVT, 111 MVT LocVT, CCValAssign::LocInfo LocInfo, 112 ISD::ArgFlagsTy ArgFlags, CCState &State); 113 114 static bool 115 CC_Hexagon64(unsigned ValNo, MVT ValVT, 116 MVT LocVT, CCValAssign::LocInfo LocInfo, 117 ISD::ArgFlagsTy ArgFlags, CCState &State); 118 119 static bool 120 CC_HexagonVector(unsigned ValNo, MVT ValVT, 121 MVT LocVT, CCValAssign::LocInfo LocInfo, 122 ISD::ArgFlagsTy ArgFlags, CCState &State); 123 124 static bool 125 RetCC_Hexagon(unsigned ValNo, MVT ValVT, 126 MVT LocVT, CCValAssign::LocInfo LocInfo, 127 ISD::ArgFlagsTy ArgFlags, CCState &State); 128 129 static bool 130 RetCC_Hexagon32(unsigned ValNo, MVT ValVT, 131 MVT LocVT, CCValAssign::LocInfo LocInfo, 132 ISD::ArgFlagsTy ArgFlags, CCState &State); 133 134 static bool 135 RetCC_Hexagon64(unsigned ValNo, MVT ValVT, 136 MVT LocVT, CCValAssign::LocInfo LocInfo, 137 ISD::ArgFlagsTy ArgFlags, CCState &State); 138 139 static bool 140 RetCC_HexagonVector(unsigned ValNo, MVT ValVT, 141 MVT LocVT, CCValAssign::LocInfo LocInfo, 142 ISD::ArgFlagsTy ArgFlags, CCState &State); 143 144 static bool 145 CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT, 146 MVT LocVT, CCValAssign::LocInfo LocInfo, 147 ISD::ArgFlagsTy ArgFlags, CCState &State) { 148 HexagonCCState &HState = static_cast<HexagonCCState &>(State); 149 150 if (ValNo < HState.getNumNamedVarArgParams()) { 151 // Deal with named arguments. 152 return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); 153 } 154 155 // Deal with un-named arguments. 156 unsigned ofst; 157 if (ArgFlags.isByVal()) { 158 // If pass-by-value, the size allocated on stack is decided 159 // by ArgFlags.getByValSize(), not by the size of LocVT. 160 ofst = State.AllocateStack(ArgFlags.getByValSize(), 161 ArgFlags.getByValAlign()); 162 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 163 return false; 164 } 165 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { 166 LocVT = MVT::i32; 167 ValVT = MVT::i32; 168 if (ArgFlags.isSExt()) 169 LocInfo = CCValAssign::SExt; 170 else if (ArgFlags.isZExt()) 171 LocInfo = CCValAssign::ZExt; 172 else 173 LocInfo = CCValAssign::AExt; 174 } 175 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 176 ofst = State.AllocateStack(4, 4); 177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 178 return false; 179 } 180 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 181 ofst = State.AllocateStack(8, 8); 182 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 183 return false; 184 } 185 if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 || 186 LocVT == MVT::v16i8) { 187 ofst = State.AllocateStack(16, 16); 188 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 189 return false; 190 } 191 if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || 192 LocVT == MVT::v32i8) { 193 ofst = State.AllocateStack(32, 32); 194 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 195 return false; 196 } 197 if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || 198 LocVT == MVT::v64i8 || LocVT == MVT::v512i1) { 199 ofst = State.AllocateStack(64, 64); 200 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 201 return false; 202 } 203 if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || 204 LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) { 205 ofst = State.AllocateStack(128, 128); 206 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 207 return false; 208 } 209 if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || 210 LocVT == MVT::v256i8) { 211 ofst = State.AllocateStack(256, 256); 212 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 213 return false; 214 } 215 216 llvm_unreachable(nullptr); 217 } 218 219 220 static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT, 221 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { 222 if (ArgFlags.isByVal()) { 223 // Passed on stack. 224 unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 225 ArgFlags.getByValAlign()); 226 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 227 return false; 228 } 229 230 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { 231 LocVT = MVT::i32; 232 ValVT = MVT::i32; 233 if (ArgFlags.isSExt()) 234 LocInfo = CCValAssign::SExt; 235 else if (ArgFlags.isZExt()) 236 LocInfo = CCValAssign::ZExt; 237 else 238 LocInfo = CCValAssign::AExt; 239 } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { 240 LocVT = MVT::i32; 241 LocInfo = CCValAssign::BCvt; 242 } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { 243 LocVT = MVT::i64; 244 LocInfo = CCValAssign::BCvt; 245 } 246 247 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 248 if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 249 return false; 250 } 251 252 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 253 if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 254 return false; 255 } 256 257 if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) { 258 unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32); 259 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 260 return false; 261 } 262 263 if (IsHvxVectorType(LocVT)) { 264 if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 265 return false; 266 } 267 268 return true; // CC didn't match. 269 } 270 271 272 static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, 273 MVT LocVT, CCValAssign::LocInfo LocInfo, 274 ISD::ArgFlagsTy ArgFlags, CCState &State) { 275 276 static const MCPhysReg RegList[] = { 277 Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, 278 Hexagon::R5 279 }; 280 if (unsigned Reg = State.AllocateReg(RegList)) { 281 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 282 return false; 283 } 284 285 unsigned Offset = State.AllocateStack(4, 4); 286 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 287 return false; 288 } 289 290 static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, 291 MVT LocVT, CCValAssign::LocInfo LocInfo, 292 ISD::ArgFlagsTy ArgFlags, CCState &State) { 293 294 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { 295 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 296 return false; 297 } 298 299 static const MCPhysReg RegList1[] = { 300 Hexagon::D1, Hexagon::D2 301 }; 302 static const MCPhysReg RegList2[] = { 303 Hexagon::R1, Hexagon::R3 304 }; 305 if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) { 306 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 307 return false; 308 } 309 310 unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2); 311 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 312 return false; 313 } 314 315 static bool CC_HexagonVector(unsigned ValNo, MVT ValVT, 316 MVT LocVT, CCValAssign::LocInfo LocInfo, 317 ISD::ArgFlagsTy ArgFlags, CCState &State) { 318 319 static const MCPhysReg VecLstS[] = { Hexagon::V0, Hexagon::V1, 320 Hexagon::V2, Hexagon::V3, 321 Hexagon::V4, Hexagon::V5, 322 Hexagon::V6, Hexagon::V7, 323 Hexagon::V8, Hexagon::V9, 324 Hexagon::V10, Hexagon::V11, 325 Hexagon::V12, Hexagon::V13, 326 Hexagon::V14, Hexagon::V15}; 327 static const MCPhysReg VecLstD[] = { Hexagon::W0, Hexagon::W1, 328 Hexagon::W2, Hexagon::W3, 329 Hexagon::W4, Hexagon::W5, 330 Hexagon::W6, Hexagon::W7}; 331 auto &MF = State.getMachineFunction(); 332 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 333 bool UseHVX = HST.useHVXOps(); 334 bool UseHVXDbl = HST.useHVXDblOps(); 335 336 if ((UseHVX && !UseHVXDbl) && 337 (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || 338 LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) { 339 if (unsigned Reg = State.AllocateReg(VecLstS)) { 340 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 341 return false; 342 } 343 unsigned Offset = State.AllocateStack(64, 64); 344 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 345 return false; 346 } 347 if ((UseHVX && !UseHVXDbl) && 348 (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || 349 LocVT == MVT::v128i8)) { 350 if (unsigned Reg = State.AllocateReg(VecLstD)) { 351 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 352 return false; 353 } 354 unsigned Offset = State.AllocateStack(128, 128); 355 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 356 return false; 357 } 358 // 128B Mode 359 if ((UseHVX && UseHVXDbl) && 360 (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || 361 LocVT == MVT::v256i8)) { 362 if (unsigned Reg = State.AllocateReg(VecLstD)) { 363 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 364 return false; 365 } 366 unsigned Offset = State.AllocateStack(256, 256); 367 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 368 return false; 369 } 370 if ((UseHVX && UseHVXDbl) && 371 (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || 372 LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) { 373 if (unsigned Reg = State.AllocateReg(VecLstS)) { 374 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 375 return false; 376 } 377 unsigned Offset = State.AllocateStack(128, 128); 378 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 379 return false; 380 } 381 return true; 382 } 383 384 static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, 385 MVT LocVT, CCValAssign::LocInfo LocInfo, 386 ISD::ArgFlagsTy ArgFlags, CCState &State) { 387 auto &MF = State.getMachineFunction(); 388 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 389 bool UseHVX = HST.useHVXOps(); 390 bool UseHVXDbl = HST.useHVXDblOps(); 391 392 if (LocVT == MVT::i1) { 393 // Return values of type MVT::i1 still need to be assigned to R0, but 394 // the value type needs to remain i1. LowerCallResult will deal with it, 395 // but it needs to recognize i1 as the value type. 396 LocVT = MVT::i32; 397 } else if (LocVT == MVT::i8 || LocVT == MVT::i16) { 398 LocVT = MVT::i32; 399 ValVT = MVT::i32; 400 if (ArgFlags.isSExt()) 401 LocInfo = CCValAssign::SExt; 402 else if (ArgFlags.isZExt()) 403 LocInfo = CCValAssign::ZExt; 404 else 405 LocInfo = CCValAssign::AExt; 406 } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { 407 LocVT = MVT::i32; 408 LocInfo = CCValAssign::BCvt; 409 } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { 410 LocVT = MVT::i64; 411 LocInfo = CCValAssign::BCvt; 412 } else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 || 413 LocVT == MVT::v16i32 || LocVT == MVT::v8i64 || 414 LocVT == MVT::v512i1) { 415 LocVT = MVT::v16i32; 416 ValVT = MVT::v16i32; 417 LocInfo = CCValAssign::Full; 418 } else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 || 419 LocVT == MVT::v32i32 || LocVT == MVT::v16i64 || 420 (LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) { 421 LocVT = MVT::v32i32; 422 ValVT = MVT::v32i32; 423 LocInfo = CCValAssign::Full; 424 } else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 || 425 LocVT == MVT::v64i32 || LocVT == MVT::v32i64) { 426 LocVT = MVT::v64i32; 427 ValVT = MVT::v64i32; 428 LocInfo = CCValAssign::Full; 429 } 430 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 431 if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 432 return false; 433 } 434 435 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 436 if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 437 return false; 438 } 439 if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) { 440 if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 441 return false; 442 } 443 return true; // CC didn't match. 444 } 445 446 static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, 447 MVT LocVT, CCValAssign::LocInfo LocInfo, 448 ISD::ArgFlagsTy ArgFlags, CCState &State) { 449 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 450 if (unsigned Reg = State.AllocateReg(Hexagon::R0)) { 451 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 452 return false; 453 } 454 } 455 456 unsigned Offset = State.AllocateStack(4, 4); 457 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 458 return false; 459 } 460 461 static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, 462 MVT LocVT, CCValAssign::LocInfo LocInfo, 463 ISD::ArgFlagsTy ArgFlags, CCState &State) { 464 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 465 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { 466 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 467 return false; 468 } 469 } 470 471 unsigned Offset = State.AllocateStack(8, 8); 472 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 473 return false; 474 } 475 476 static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT, 477 MVT LocVT, CCValAssign::LocInfo LocInfo, 478 ISD::ArgFlagsTy ArgFlags, CCState &State) { 479 auto &MF = State.getMachineFunction(); 480 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 481 bool UseHVX = HST.useHVXOps(); 482 bool UseHVXDbl = HST.useHVXDblOps(); 483 484 unsigned OffSiz = 64; 485 if (LocVT == MVT::v16i32) { 486 if (unsigned Reg = State.AllocateReg(Hexagon::V0)) { 487 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 488 return false; 489 } 490 } else if (LocVT == MVT::v32i32) { 491 unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0; 492 if (unsigned Reg = State.AllocateReg(Req)) { 493 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 494 return false; 495 } 496 OffSiz = 128; 497 } else if (LocVT == MVT::v64i32) { 498 if (unsigned Reg = State.AllocateReg(Hexagon::W0)) { 499 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 500 return false; 501 } 502 OffSiz = 256; 503 } 504 505 unsigned Offset = State.AllocateStack(OffSiz, OffSiz); 506 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 507 return false; 508 } 509 510 void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) { 511 if (VT != PromotedLdStVT) { 512 setOperationAction(ISD::LOAD, VT, Promote); 513 AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT); 514 515 setOperationAction(ISD::STORE, VT, Promote); 516 AddPromotedToType(ISD::STORE, VT, PromotedLdStVT); 517 } 518 } 519 520 SDValue 521 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) 522 const { 523 return SDValue(); 524 } 525 526 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 527 /// by "Src" to address "Dst" of size "Size". Alignment information is 528 /// specified by the specific parameter attribute. The copy will be passed as 529 /// a byval function parameter. Sometimes what we are copying is the end of a 530 /// larger object, the part that does not fit in registers. 531 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 532 SDValue Chain, ISD::ArgFlagsTy Flags, 533 SelectionDAG &DAG, const SDLoc &dl) { 534 535 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 536 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 537 /*isVolatile=*/false, /*AlwaysInline=*/false, 538 /*isTailCall=*/false, 539 MachinePointerInfo(), MachinePointerInfo()); 540 } 541 542 static bool IsHvxVectorType(MVT ty) { 543 return (ty == MVT::v8i64 || ty == MVT::v16i32 || ty == MVT::v32i16 || 544 ty == MVT::v64i8 || 545 ty == MVT::v16i64 || ty == MVT::v32i32 || ty == MVT::v64i16 || 546 ty == MVT::v128i8 || 547 ty == MVT::v32i64 || ty == MVT::v64i32 || ty == MVT::v128i16 || 548 ty == MVT::v256i8 || 549 ty == MVT::v512i1 || ty == MVT::v1024i1); 550 } 551 552 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is 553 // passed by value, the function prototype is modified to return void and 554 // the value is stored in memory pointed by a pointer passed by caller. 555 SDValue 556 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 557 bool isVarArg, 558 const SmallVectorImpl<ISD::OutputArg> &Outs, 559 const SmallVectorImpl<SDValue> &OutVals, 560 const SDLoc &dl, SelectionDAG &DAG) const { 561 562 // CCValAssign - represent the assignment of the return value to locations. 563 SmallVector<CCValAssign, 16> RVLocs; 564 565 // CCState - Info about the registers and stack slot. 566 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 567 *DAG.getContext()); 568 569 // Analyze return values of ISD::RET 570 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); 571 572 SDValue Flag; 573 SmallVector<SDValue, 4> RetOps(1, Chain); 574 575 // Copy the result values into the output registers. 576 for (unsigned i = 0; i != RVLocs.size(); ++i) { 577 CCValAssign &VA = RVLocs[i]; 578 579 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 580 581 // Guarantee that all emitted copies are stuck together with flags. 582 Flag = Chain.getValue(1); 583 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 584 } 585 586 RetOps[0] = Chain; // Update chain. 587 588 // Add the flag if we have it. 589 if (Flag.getNode()) 590 RetOps.push_back(Flag); 591 592 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); 593 } 594 595 bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 596 // If either no tail call or told not to tail call at all, don't. 597 auto Attr = 598 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); 599 if (!CI->isTailCall() || Attr.getValueAsString() == "true") 600 return false; 601 602 return true; 603 } 604 605 /// LowerCallResult - Lower the result values of an ISD::CALL into the 606 /// appropriate copies out of appropriate physical registers. This assumes that 607 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call 608 /// being lowered. Returns a SDNode with the same number of values as the 609 /// ISD::CALL. 610 SDValue HexagonTargetLowering::LowerCallResult( 611 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 612 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 613 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 614 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const { 615 // Assign locations to each value returned by this call. 616 SmallVector<CCValAssign, 16> RVLocs; 617 618 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 619 *DAG.getContext()); 620 621 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); 622 623 // Copy all of the result registers out of their specified physreg. 624 for (unsigned i = 0; i != RVLocs.size(); ++i) { 625 SDValue RetVal; 626 if (RVLocs[i].getValVT() == MVT::i1) { 627 // Return values of type MVT::i1 require special handling. The reason 628 // is that MVT::i1 is associated with the PredRegs register class, but 629 // values of that type are still returned in R0. Generate an explicit 630 // copy into a predicate register from R0, and treat the value of the 631 // predicate register as the call result. 632 auto &MRI = DAG.getMachineFunction().getRegInfo(); 633 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 634 MVT::i32, InFlag); 635 // FR0 = (Value, Chain, Glue) 636 unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 637 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, 638 FR0.getValue(0), FR0.getValue(2)); 639 // TPR = (Chain, Glue) 640 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1, 641 TPR.getValue(1)); 642 } else { 643 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 644 RVLocs[i].getValVT(), InFlag); 645 } 646 InVals.push_back(RetVal.getValue(0)); 647 Chain = RetVal.getValue(1); 648 InFlag = RetVal.getValue(2); 649 } 650 651 return Chain; 652 } 653 654 /// LowerCall - Functions arguments are copied from virtual regs to 655 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 656 SDValue 657 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 658 SmallVectorImpl<SDValue> &InVals) const { 659 SelectionDAG &DAG = CLI.DAG; 660 SDLoc &dl = CLI.DL; 661 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 662 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 663 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 664 SDValue Chain = CLI.Chain; 665 SDValue Callee = CLI.Callee; 666 bool &isTailCall = CLI.IsTailCall; 667 CallingConv::ID CallConv = CLI.CallConv; 668 bool isVarArg = CLI.IsVarArg; 669 bool doesNotReturn = CLI.DoesNotReturn; 670 671 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 672 MachineFunction &MF = DAG.getMachineFunction(); 673 auto PtrVT = getPointerTy(MF.getDataLayout()); 674 675 // Check for varargs. 676 int NumNamedVarArgParams = -1; 677 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) { 678 const GlobalValue *GV = GAN->getGlobal(); 679 Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); 680 if (const Function* F = dyn_cast<Function>(GV)) { 681 // If a function has zero args and is a vararg function, that's 682 // disallowed so it must be an undeclared function. Do not assume 683 // varargs if the callee is undefined. 684 if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0) 685 NumNamedVarArgParams = F->getFunctionType()->getNumParams(); 686 } 687 } 688 689 // Analyze operands of the call, assigning locations to each operand. 690 SmallVector<CCValAssign, 16> ArgLocs; 691 HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 692 *DAG.getContext(), NumNamedVarArgParams); 693 694 if (isVarArg) 695 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg); 696 else 697 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); 698 699 auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); 700 if (Attr.getValueAsString() == "true") 701 isTailCall = false; 702 703 if (isTailCall) { 704 bool StructAttrFlag = MF.getFunction()->hasStructRetAttr(); 705 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 706 isVarArg, IsStructRet, 707 StructAttrFlag, 708 Outs, OutVals, Ins, DAG); 709 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 710 CCValAssign &VA = ArgLocs[i]; 711 if (VA.isMemLoc()) { 712 isTailCall = false; 713 break; 714 } 715 } 716 DEBUG(dbgs() << (isTailCall ? "Eligible for Tail Call\n" 717 : "Argument must be passed on stack. " 718 "Not eligible for Tail Call\n")); 719 } 720 // Get a count of how many bytes are to be pushed on the stack. 721 unsigned NumBytes = CCInfo.getNextStackOffset(); 722 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; 723 SmallVector<SDValue, 8> MemOpChains; 724 725 auto &HRI = *Subtarget.getRegisterInfo(); 726 SDValue StackPtr = 727 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); 728 729 bool NeedsArgAlign = false; 730 unsigned LargestAlignSeen = 0; 731 // Walk the register/memloc assignments, inserting copies/loads. 732 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 733 CCValAssign &VA = ArgLocs[i]; 734 SDValue Arg = OutVals[i]; 735 ISD::ArgFlagsTy Flags = Outs[i].Flags; 736 // Record if we need > 8 byte alignment on an argument. 737 bool ArgAlign = IsHvxVectorType(VA.getValVT()); 738 NeedsArgAlign |= ArgAlign; 739 740 // Promote the value if needed. 741 switch (VA.getLocInfo()) { 742 default: 743 // Loc info must be one of Full, SExt, ZExt, or AExt. 744 llvm_unreachable("Unknown loc info!"); 745 case CCValAssign::BCvt: 746 case CCValAssign::Full: 747 break; 748 case CCValAssign::SExt: 749 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 750 break; 751 case CCValAssign::ZExt: 752 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 753 break; 754 case CCValAssign::AExt: 755 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 756 break; 757 } 758 759 if (VA.isMemLoc()) { 760 unsigned LocMemOffset = VA.getLocMemOffset(); 761 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, 762 StackPtr.getValueType()); 763 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); 764 if (ArgAlign) 765 LargestAlignSeen = std::max(LargestAlignSeen, 766 VA.getLocVT().getStoreSizeInBits() >> 3); 767 if (Flags.isByVal()) { 768 // The argument is a struct passed by value. According to LLVM, "Arg" 769 // is is pointer. 770 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, 771 Flags, DAG, dl)); 772 } else { 773 MachinePointerInfo LocPI = MachinePointerInfo::getStack( 774 DAG.getMachineFunction(), LocMemOffset); 775 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI, false, 776 false, 0); 777 MemOpChains.push_back(S); 778 } 779 continue; 780 } 781 782 // Arguments that can be passed on register must be kept at RegsToPass 783 // vector. 784 if (VA.isRegLoc()) 785 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 786 } 787 788 if (NeedsArgAlign && Subtarget.hasV60TOps()) { 789 DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); 790 MachineFrameInfo* MFI = DAG.getMachineFunction().getFrameInfo(); 791 // V6 vectors passed by value have 64 or 128 byte alignment depending 792 // on whether we are 64 byte vector mode or 128 byte. 793 bool UseHVXDbl = Subtarget.useHVXDblOps(); 794 assert(Subtarget.useHVXOps()); 795 const unsigned ObjAlign = UseHVXDbl ? 128 : 64; 796 LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign); 797 MFI->ensureMaxAlignment(LargestAlignSeen); 798 } 799 // Transform all store nodes into one single node because all store 800 // nodes are independent of each other. 801 if (!MemOpChains.empty()) 802 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 803 804 if (!isTailCall) { 805 SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true); 806 Chain = DAG.getCALLSEQ_START(Chain, C, dl); 807 } 808 809 // Build a sequence of copy-to-reg nodes chained together with token 810 // chain and flag operands which copy the outgoing args into registers. 811 // The InFlag in necessary since all emitted instructions must be 812 // stuck together. 813 SDValue InFlag; 814 if (!isTailCall) { 815 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 816 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 817 RegsToPass[i].second, InFlag); 818 InFlag = Chain.getValue(1); 819 } 820 } else { 821 // For tail calls lower the arguments to the 'real' stack slot. 822 // 823 // Force all the incoming stack arguments to be loaded from the stack 824 // before any new outgoing arguments are stored to the stack, because the 825 // outgoing stack slots may alias the incoming argument stack slots, and 826 // the alias isn't otherwise explicit. This is slightly more conservative 827 // than necessary, because it means that each store effectively depends 828 // on every argument instead of just those arguments it would clobber. 829 // 830 // Do not flag preceding copytoreg stuff together with the following stuff. 831 InFlag = SDValue(); 832 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 833 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 834 RegsToPass[i].second, InFlag); 835 InFlag = Chain.getValue(1); 836 } 837 InFlag = SDValue(); 838 } 839 840 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 841 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 842 // node so that legalize doesn't hack it. 843 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 844 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT); 845 } else if (ExternalSymbolSDNode *S = 846 dyn_cast<ExternalSymbolSDNode>(Callee)) { 847 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT); 848 } 849 850 // Returns a chain & a flag for retval copy to use. 851 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 852 SmallVector<SDValue, 8> Ops; 853 Ops.push_back(Chain); 854 Ops.push_back(Callee); 855 856 // Add argument registers to the end of the list so that they are 857 // known live into the call. 858 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 859 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 860 RegsToPass[i].second.getValueType())); 861 } 862 863 if (InFlag.getNode()) 864 Ops.push_back(InFlag); 865 866 if (isTailCall) { 867 MF.getFrameInfo()->setHasTailCall(); 868 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); 869 } 870 871 int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3; 872 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); 873 InFlag = Chain.getValue(1); 874 875 // Create the CALLSEQ_END node. 876 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 877 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 878 InFlag = Chain.getValue(1); 879 880 // Handle result values, copying them out of physregs into vregs that we 881 // return. 882 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, 883 InVals, OutVals, Callee); 884 } 885 886 static bool getIndexedAddressParts(SDNode *Ptr, EVT VT, 887 bool isSEXTLoad, SDValue &Base, 888 SDValue &Offset, bool &isInc, 889 SelectionDAG &DAG) { 890 if (Ptr->getOpcode() != ISD::ADD) 891 return false; 892 893 auto &HST = static_cast<const HexagonSubtarget&>(DAG.getSubtarget()); 894 bool UseHVX = HST.useHVXOps(); 895 bool UseHVXDbl = HST.useHVXDblOps(); 896 897 bool ValidHVXDblType = 898 (UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 || 899 VT == MVT::v64i16 || VT == MVT::v128i8); 900 bool ValidHVXType = 901 UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 || 902 VT == MVT::v32i16 || VT == MVT::v64i8); 903 904 if (ValidHVXDblType || ValidHVXType || 905 VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { 906 isInc = (Ptr->getOpcode() == ISD::ADD); 907 Base = Ptr->getOperand(0); 908 Offset = Ptr->getOperand(1); 909 // Ensure that Offset is a constant. 910 return (isa<ConstantSDNode>(Offset)); 911 } 912 913 return false; 914 } 915 916 /// getPostIndexedAddressParts - returns true by value, base pointer and 917 /// offset pointer and addressing mode by reference if this node can be 918 /// combined with a load / store to form a post-indexed load / store. 919 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 920 SDValue &Base, 921 SDValue &Offset, 922 ISD::MemIndexedMode &AM, 923 SelectionDAG &DAG) const 924 { 925 EVT VT; 926 SDValue Ptr; 927 bool isSEXTLoad = false; 928 929 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 930 VT = LD->getMemoryVT(); 931 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 932 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 933 VT = ST->getMemoryVT(); 934 if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) { 935 return false; 936 } 937 } else { 938 return false; 939 } 940 941 bool isInc = false; 942 bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 943 isInc, DAG); 944 if (isLegal) { 945 auto &HII = *Subtarget.getInstrInfo(); 946 int32_t OffsetVal = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 947 if (HII.isValidAutoIncImm(VT, OffsetVal)) { 948 AM = isInc ? ISD::POST_INC : ISD::POST_DEC; 949 return true; 950 } 951 } 952 953 return false; 954 } 955 956 SDValue 957 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 958 SDNode *Node = Op.getNode(); 959 MachineFunction &MF = DAG.getMachineFunction(); 960 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>(); 961 switch (Node->getOpcode()) { 962 case ISD::INLINEASM: { 963 unsigned NumOps = Node->getNumOperands(); 964 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 965 --NumOps; // Ignore the flag operand. 966 967 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 968 if (FuncInfo.hasClobberLR()) 969 break; 970 unsigned Flags = 971 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 972 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 973 ++i; // Skip the ID value. 974 975 switch (InlineAsm::getKind(Flags)) { 976 default: llvm_unreachable("Bad flags!"); 977 case InlineAsm::Kind_RegDef: 978 case InlineAsm::Kind_RegUse: 979 case InlineAsm::Kind_Imm: 980 case InlineAsm::Kind_Clobber: 981 case InlineAsm::Kind_Mem: { 982 for (; NumVals; --NumVals, ++i) {} 983 break; 984 } 985 case InlineAsm::Kind_RegDefEarlyClobber: { 986 for (; NumVals; --NumVals, ++i) { 987 unsigned Reg = 988 cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 989 990 // Check it to be lr 991 const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo(); 992 if (Reg == QRI->getRARegister()) { 993 FuncInfo.setHasClobberLR(true); 994 break; 995 } 996 } 997 break; 998 } 999 } 1000 } 1001 } 1002 } // Node->getOpcode 1003 return Op; 1004 } 1005 1006 // Need to transform ISD::PREFETCH into something that doesn't inherit 1007 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and 1008 // SDNPMayStore. 1009 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, 1010 SelectionDAG &DAG) const { 1011 SDValue Chain = Op.getOperand(0); 1012 SDValue Addr = Op.getOperand(1); 1013 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in, 1014 // if the "reg" is fed by an "add". 1015 SDLoc DL(Op); 1016 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1017 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 1018 } 1019 1020 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 1021 SelectionDAG &DAG) const { 1022 SDValue Chain = Op.getOperand(0); 1023 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1024 // Lower the hexagon_prefetch builtin to DCFETCH, as above. 1025 if (IntNo == Intrinsic::hexagon_prefetch) { 1026 SDValue Addr = Op.getOperand(2); 1027 SDLoc DL(Op); 1028 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1029 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); 1030 } 1031 return SDValue(); 1032 } 1033 1034 SDValue 1035 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1036 SelectionDAG &DAG) const { 1037 SDValue Chain = Op.getOperand(0); 1038 SDValue Size = Op.getOperand(1); 1039 SDValue Align = Op.getOperand(2); 1040 SDLoc dl(Op); 1041 1042 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); 1043 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); 1044 1045 unsigned A = AlignConst->getSExtValue(); 1046 auto &HFI = *Subtarget.getFrameLowering(); 1047 // "Zero" means natural stack alignment. 1048 if (A == 0) 1049 A = HFI.getStackAlignment(); 1050 1051 DEBUG({ 1052 dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: "; 1053 Size.getNode()->dump(&DAG); 1054 dbgs() << "\n"; 1055 }); 1056 1057 SDValue AC = DAG.getConstant(A, dl, MVT::i32); 1058 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1059 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); 1060 1061 DAG.ReplaceAllUsesOfValueWith(Op, AA); 1062 return AA; 1063 } 1064 1065 SDValue HexagonTargetLowering::LowerFormalArguments( 1066 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1067 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 1068 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1069 1070 MachineFunction &MF = DAG.getMachineFunction(); 1071 MachineFrameInfo *MFI = MF.getFrameInfo(); 1072 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1073 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>(); 1074 1075 // Assign locations to all of the incoming arguments. 1076 SmallVector<CCValAssign, 16> ArgLocs; 1077 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1078 *DAG.getContext()); 1079 1080 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); 1081 1082 // For LLVM, in the case when returning a struct by value (>8byte), 1083 // the first argument is a pointer that points to the location on caller's 1084 // stack where the return value will be stored. For Hexagon, the location on 1085 // caller's stack is passed only when the struct size is smaller than (and 1086 // equal to) 8 bytes. If not, no address will be passed into callee and 1087 // callee return the result direclty through R0/R1. 1088 1089 SmallVector<SDValue, 8> MemOps; 1090 bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); 1091 1092 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1093 CCValAssign &VA = ArgLocs[i]; 1094 ISD::ArgFlagsTy Flags = Ins[i].Flags; 1095 unsigned ObjSize; 1096 unsigned StackLocation; 1097 int FI; 1098 1099 if ( (VA.isRegLoc() && !Flags.isByVal()) 1100 || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) { 1101 // Arguments passed in registers 1102 // 1. int, long long, ptr args that get allocated in register. 1103 // 2. Large struct that gets an register to put its address in. 1104 EVT RegVT = VA.getLocVT(); 1105 if (RegVT == MVT::i8 || RegVT == MVT::i16 || 1106 RegVT == MVT::i32 || RegVT == MVT::f32) { 1107 unsigned VReg = 1108 RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass); 1109 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1110 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1111 } else if (RegVT == MVT::i64 || RegVT == MVT::f64) { 1112 unsigned VReg = 1113 RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass); 1114 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1115 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1116 1117 // Single Vector 1118 } else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 || 1119 RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) { 1120 unsigned VReg = 1121 RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass); 1122 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1123 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1124 } else if (UseHVX && UseHVXDbl && 1125 ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || 1126 RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) { 1127 unsigned VReg = 1128 RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass); 1129 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1130 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1131 1132 // Double Vector 1133 } else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || 1134 RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) { 1135 unsigned VReg = 1136 RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass); 1137 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1138 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1139 } else if (UseHVX && UseHVXDbl && 1140 ((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 || 1141 RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) { 1142 unsigned VReg = 1143 RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass); 1144 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1145 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1146 } else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) { 1147 assert(0 && "need to support VecPred regs"); 1148 unsigned VReg = 1149 RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass); 1150 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1151 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1152 } else { 1153 assert (0); 1154 } 1155 } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) { 1156 assert (0 && "ByValSize must be bigger than 8 bytes"); 1157 } else { 1158 // Sanity check. 1159 assert(VA.isMemLoc()); 1160 1161 if (Flags.isByVal()) { 1162 // If it's a byval parameter, then we need to compute the 1163 // "real" size, not the size of the pointer. 1164 ObjSize = Flags.getByValSize(); 1165 } else { 1166 ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3; 1167 } 1168 1169 StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); 1170 // Create the frame index object for this incoming parameter... 1171 FI = MFI->CreateFixedObject(ObjSize, StackLocation, true); 1172 1173 // Create the SelectionDAG nodes cordl, responding to a load 1174 // from this parameter. 1175 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1176 1177 if (Flags.isByVal()) { 1178 // If it's a pass-by-value aggregate, then do not dereference the stack 1179 // location. Instead, we should generate a reference to the stack 1180 // location. 1181 InVals.push_back(FIN); 1182 } else { 1183 InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1184 MachinePointerInfo(), false, false, 1185 false, 0)); 1186 } 1187 } 1188 } 1189 1190 if (!MemOps.empty()) 1191 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1192 1193 if (isVarArg) { 1194 // This will point to the next argument passed via stack. 1195 int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize, 1196 HEXAGON_LRFP_SIZE + 1197 CCInfo.getNextStackOffset(), 1198 true); 1199 FuncInfo.setVarArgsFrameIndex(FrameIndex); 1200 } 1201 1202 return Chain; 1203 } 1204 1205 SDValue 1206 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1207 // VASTART stores the address of the VarArgsFrameIndex slot into the 1208 // memory location argument. 1209 MachineFunction &MF = DAG.getMachineFunction(); 1210 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); 1211 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); 1212 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1213 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, 1214 Op.getOperand(1), MachinePointerInfo(SV), false, 1215 false, 0); 1216 } 1217 1218 // Creates a SPLAT instruction for a constant value VAL. 1219 static SDValue createSplat(SelectionDAG &DAG, const SDLoc &dl, EVT VT, 1220 SDValue Val) { 1221 if (VT.getSimpleVT() == MVT::v4i8) 1222 return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val); 1223 1224 if (VT.getSimpleVT() == MVT::v4i16) 1225 return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val); 1226 1227 return SDValue(); 1228 } 1229 1230 static bool isSExtFree(SDValue N) { 1231 // A sign-extend of a truncate of a sign-extend is free. 1232 if (N.getOpcode() == ISD::TRUNCATE && 1233 N.getOperand(0).getOpcode() == ISD::AssertSext) 1234 return true; 1235 // We have sign-extended loads. 1236 if (N.getOpcode() == ISD::LOAD) 1237 return true; 1238 return false; 1239 } 1240 1241 SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { 1242 SDLoc dl(Op); 1243 SDValue InpVal = Op.getOperand(0); 1244 if (isa<ConstantSDNode>(InpVal)) { 1245 uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue(); 1246 return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64); 1247 } 1248 SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal); 1249 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut); 1250 } 1251 1252 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1253 SDLoc dl(Op); 1254 1255 SDValue LHS = Op.getOperand(0); 1256 SDValue RHS = Op.getOperand(1); 1257 SDValue Cmp = Op.getOperand(2); 1258 ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get(); 1259 1260 EVT VT = Op.getValueType(); 1261 EVT LHSVT = LHS.getValueType(); 1262 EVT RHSVT = RHS.getValueType(); 1263 1264 if (LHSVT == MVT::v2i16) { 1265 assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC)); 1266 unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND 1267 : ISD::ZERO_EXTEND; 1268 SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS); 1269 SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS); 1270 SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp); 1271 return SC; 1272 } 1273 1274 // Treat all other vector types as legal. 1275 if (VT.isVector()) 1276 return Op; 1277 1278 // Equals and not equals should use sign-extend, not zero-extend, since 1279 // we can represent small negative values in the compare instructions. 1280 // The LLVM default is to use zero-extend arbitrarily in these cases. 1281 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 1282 (RHSVT == MVT::i8 || RHSVT == MVT::i16) && 1283 (LHSVT == MVT::i8 || LHSVT == MVT::i16)) { 1284 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); 1285 if (C && C->getAPIntValue().isNegative()) { 1286 LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); 1287 RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); 1288 return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), 1289 LHS, RHS, Op.getOperand(2)); 1290 } 1291 if (isSExtFree(LHS) || isSExtFree(RHS)) { 1292 LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); 1293 RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); 1294 return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), 1295 LHS, RHS, Op.getOperand(2)); 1296 } 1297 } 1298 return SDValue(); 1299 } 1300 1301 SDValue 1302 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { 1303 SDValue PredOp = Op.getOperand(0); 1304 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); 1305 EVT OpVT = Op1.getValueType(); 1306 SDLoc DL(Op); 1307 1308 if (OpVT == MVT::v2i16) { 1309 SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1); 1310 SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2); 1311 SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2); 1312 SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL); 1313 return TR; 1314 } 1315 1316 return SDValue(); 1317 } 1318 1319 // Handle only specific vector loads. 1320 SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1321 EVT VT = Op.getValueType(); 1322 SDLoc DL(Op); 1323 LoadSDNode *LoadNode = cast<LoadSDNode>(Op); 1324 SDValue Chain = LoadNode->getChain(); 1325 SDValue Ptr = Op.getOperand(1); 1326 SDValue LoweredLoad; 1327 SDValue Result; 1328 SDValue Base = LoadNode->getBasePtr(); 1329 ISD::LoadExtType Ext = LoadNode->getExtensionType(); 1330 unsigned Alignment = LoadNode->getAlignment(); 1331 SDValue LoadChain; 1332 1333 if(Ext == ISD::NON_EXTLOAD) 1334 Ext = ISD::ZEXTLOAD; 1335 1336 if (VT == MVT::v4i16) { 1337 if (Alignment == 2) { 1338 SDValue Loads[4]; 1339 // Base load. 1340 Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base, 1341 LoadNode->getPointerInfo(), MVT::i16, 1342 LoadNode->isVolatile(), 1343 LoadNode->isNonTemporal(), 1344 LoadNode->isInvariant(), 1345 Alignment); 1346 // Base+2 load. 1347 SDValue Increment = DAG.getConstant(2, DL, MVT::i32); 1348 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); 1349 Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, 1350 LoadNode->getPointerInfo(), MVT::i16, 1351 LoadNode->isVolatile(), 1352 LoadNode->isNonTemporal(), 1353 LoadNode->isInvariant(), 1354 Alignment); 1355 // SHL 16, then OR base and base+2. 1356 SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32); 1357 SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount); 1358 SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]); 1359 // Base + 4. 1360 Increment = DAG.getConstant(4, DL, MVT::i32); 1361 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); 1362 Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, 1363 LoadNode->getPointerInfo(), MVT::i16, 1364 LoadNode->isVolatile(), 1365 LoadNode->isNonTemporal(), 1366 LoadNode->isInvariant(), 1367 Alignment); 1368 // Base + 6. 1369 Increment = DAG.getConstant(6, DL, MVT::i32); 1370 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); 1371 Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, 1372 LoadNode->getPointerInfo(), MVT::i16, 1373 LoadNode->isVolatile(), 1374 LoadNode->isNonTemporal(), 1375 LoadNode->isInvariant(), 1376 Alignment); 1377 // SHL 16, then OR base+4 and base+6. 1378 Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount); 1379 SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]); 1380 // Combine to i64. This could be optimised out later if we can 1381 // affect reg allocation of this code. 1382 Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2); 1383 LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1384 Loads[0].getValue(1), Loads[1].getValue(1), 1385 Loads[2].getValue(1), Loads[3].getValue(1)); 1386 } else { 1387 // Perform default type expansion. 1388 Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(), 1389 LoadNode->isVolatile(), LoadNode->isNonTemporal(), 1390 LoadNode->isInvariant(), LoadNode->getAlignment()); 1391 LoadChain = Result.getValue(1); 1392 } 1393 } else 1394 llvm_unreachable("Custom lowering unsupported load"); 1395 1396 Result = DAG.getNode(ISD::BITCAST, DL, VT, Result); 1397 // Since we pretend to lower a load, we need the original chain 1398 // info attached to the result. 1399 SDValue Ops[] = { Result, LoadChain }; 1400 1401 return DAG.getMergeValues(Ops, DL); 1402 } 1403 1404 1405 SDValue 1406 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { 1407 EVT ValTy = Op.getValueType(); 1408 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); 1409 unsigned Align = CPN->getAlignment(); 1410 bool IsPositionIndependent = isPositionIndependent(); 1411 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; 1412 1413 SDValue T; 1414 if (CPN->isMachineConstantPoolEntry()) 1415 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, TF); 1416 else 1417 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, TF); 1418 if (IsPositionIndependent) 1419 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); 1420 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); 1421 } 1422 1423 SDValue 1424 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1425 EVT VT = Op.getValueType(); 1426 int Idx = cast<JumpTableSDNode>(Op)->getIndex(); 1427 if (isPositionIndependent()) { 1428 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 1429 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); 1430 } 1431 1432 SDValue T = DAG.getTargetJumpTable(Idx, VT); 1433 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); 1434 } 1435 1436 SDValue 1437 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 1438 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1439 MachineFunction &MF = DAG.getMachineFunction(); 1440 MachineFrameInfo &MFI = *MF.getFrameInfo(); 1441 MFI.setReturnAddressIsTaken(true); 1442 1443 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1444 return SDValue(); 1445 1446 EVT VT = Op.getValueType(); 1447 SDLoc dl(Op); 1448 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1449 if (Depth) { 1450 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1451 SDValue Offset = DAG.getConstant(4, dl, MVT::i32); 1452 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 1453 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 1454 MachinePointerInfo(), false, false, false, 0); 1455 } 1456 1457 // Return LR, which contains the return address. Mark it an implicit live-in. 1458 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); 1459 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 1460 } 1461 1462 SDValue 1463 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 1464 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1465 MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo(); 1466 MFI.setFrameAddressIsTaken(true); 1467 1468 EVT VT = Op.getValueType(); 1469 SDLoc dl(Op); 1470 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1471 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1472 HRI.getFrameRegister(), VT); 1473 while (Depth--) 1474 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1475 MachinePointerInfo(), 1476 false, false, false, 0); 1477 return FrameAddr; 1478 } 1479 1480 SDValue 1481 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { 1482 SDLoc dl(Op); 1483 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); 1484 } 1485 1486 1487 SDValue 1488 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { 1489 SDLoc dl(Op); 1490 auto *GAN = cast<GlobalAddressSDNode>(Op); 1491 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1492 auto *GV = GAN->getGlobal(); 1493 int64_t Offset = GAN->getOffset(); 1494 1495 auto &HLOF = *HTM.getObjFileLowering(); 1496 Reloc::Model RM = HTM.getRelocationModel(); 1497 1498 if (RM == Reloc::Static) { 1499 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); 1500 if (HLOF.isGlobalInSmallSection(GV, HTM)) 1501 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); 1502 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); 1503 } 1504 1505 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 1506 if (UsePCRel) { 1507 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, 1508 HexagonII::MO_PCREL); 1509 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); 1510 } 1511 1512 // Use GOT index. 1513 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 1514 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); 1515 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); 1516 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); 1517 } 1518 1519 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. 1520 SDValue 1521 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { 1522 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1523 SDLoc dl(Op); 1524 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1525 1526 Reloc::Model RM = HTM.getRelocationModel(); 1527 if (RM == Reloc::Static) { 1528 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); 1529 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); 1530 } 1531 1532 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); 1533 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); 1534 } 1535 1536 SDValue 1537 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) 1538 const { 1539 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1540 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, 1541 HexagonII::MO_PCREL); 1542 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); 1543 } 1544 1545 SDValue 1546 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, 1547 GlobalAddressSDNode *GA, SDValue *InFlag, EVT PtrVT, unsigned ReturnReg, 1548 unsigned char OperandFlags) const { 1549 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1550 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1551 SDLoc dl(GA); 1552 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, 1553 GA->getValueType(0), 1554 GA->getOffset(), 1555 OperandFlags); 1556 // Create Operands for the call.The Operands should have the following: 1557 // 1. Chain SDValue 1558 // 2. Callee which in this case is the Global address value. 1559 // 3. Registers live into the call.In this case its R0, as we 1560 // have just one argument to be passed. 1561 // 4. InFlag if there is any. 1562 // Note: The order is important. 1563 1564 if (InFlag) { 1565 SDValue Ops[] = { Chain, TGA, 1566 DAG.getRegister(Hexagon::R0, PtrVT), *InFlag }; 1567 Chain = DAG.getNode(HexagonISD::CALLv3, dl, NodeTys, Ops); 1568 } else { 1569 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT)}; 1570 Chain = DAG.getNode(HexagonISD::CALLv3, dl, NodeTys, Ops); 1571 } 1572 1573 // Inform MFI that function has calls. 1574 MFI->setAdjustsStack(true); 1575 1576 SDValue Flag = Chain.getValue(1); 1577 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); 1578 } 1579 1580 // 1581 // Lower using the intial executable model for TLS addresses 1582 // 1583 SDValue 1584 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, 1585 SelectionDAG &DAG) const { 1586 SDLoc dl(GA); 1587 int64_t Offset = GA->getOffset(); 1588 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1589 1590 // Get the thread pointer. 1591 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1592 1593 bool IsPositionIndependent = isPositionIndependent(); 1594 unsigned char TF = 1595 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; 1596 1597 // First generate the TLS symbol address 1598 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, 1599 Offset, TF); 1600 1601 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1602 1603 if (IsPositionIndependent) { 1604 // Generate the GOT pointer in case of position independent code 1605 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); 1606 1607 // Add the TLS Symbol address to GOT pointer.This gives 1608 // GOT relative relocation for the symbol. 1609 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1610 } 1611 1612 // Load the offset value for TLS symbol.This offset is relative to 1613 // thread pointer. 1614 SDValue LoadOffset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, 1615 MachinePointerInfo(), 1616 false, false, false, 0); 1617 1618 // Address of the thread local variable is the add of thread 1619 // pointer and the offset of the variable. 1620 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); 1621 } 1622 1623 // 1624 // Lower using the local executable model for TLS addresses 1625 // 1626 SDValue 1627 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, 1628 SelectionDAG &DAG) const { 1629 SDLoc dl(GA); 1630 int64_t Offset = GA->getOffset(); 1631 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1632 1633 // Get the thread pointer. 1634 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); 1635 // Generate the TLS symbol address 1636 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1637 HexagonII::MO_TPREL); 1638 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1639 1640 // Address of the thread local variable is the add of thread 1641 // pointer and the offset of the variable. 1642 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); 1643 } 1644 1645 // 1646 // Lower using the general dynamic model for TLS addresses 1647 // 1648 SDValue 1649 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 1650 SelectionDAG &DAG) const { 1651 SDLoc dl(GA); 1652 int64_t Offset = GA->getOffset(); 1653 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1654 1655 // First generate the TLS symbol address 1656 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, 1657 HexagonII::MO_GDGOT); 1658 1659 // Then, generate the GOT pointer 1660 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); 1661 1662 // Add the TLS symbol and the GOT pointer 1663 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); 1664 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); 1665 1666 // Copy over the argument to R0 1667 SDValue InFlag; 1668 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag); 1669 InFlag = Chain.getValue(1); 1670 1671 return GetDynamicTLSAddr(DAG, Chain, GA, &InFlag, PtrVT, 1672 Hexagon::R0, HexagonII::MO_GDPLT); 1673 } 1674 1675 // 1676 // Lower TLS addresses. 1677 // 1678 // For now for dynamic models, we only support the general dynamic model. 1679 // 1680 SDValue 1681 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1682 SelectionDAG &DAG) const { 1683 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1684 1685 switch (HTM.getTLSModel(GA->getGlobal())) { 1686 case TLSModel::GeneralDynamic: 1687 case TLSModel::LocalDynamic: 1688 return LowerToTLSGeneralDynamicModel(GA, DAG); 1689 case TLSModel::InitialExec: 1690 return LowerToTLSInitialExecModel(GA, DAG); 1691 case TLSModel::LocalExec: 1692 return LowerToTLSLocalExecModel(GA, DAG); 1693 } 1694 llvm_unreachable("Bogus TLS model"); 1695 } 1696 1697 //===----------------------------------------------------------------------===// 1698 // TargetLowering Implementation 1699 //===----------------------------------------------------------------------===// 1700 1701 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, 1702 const HexagonSubtarget &ST) 1703 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), 1704 Subtarget(ST) { 1705 bool IsV4 = !Subtarget.hasV5TOps(); 1706 auto &HRI = *Subtarget.getRegisterInfo(); 1707 bool UseHVX = Subtarget.useHVXOps(); 1708 bool UseHVXSgl = Subtarget.useHVXSglOps(); 1709 bool UseHVXDbl = Subtarget.useHVXDblOps(); 1710 1711 setPrefLoopAlignment(4); 1712 setPrefFunctionAlignment(4); 1713 setMinFunctionAlignment(2); 1714 setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); 1715 1716 setMaxAtomicSizeInBitsSupported(64); 1717 setMinCmpXchgSizeInBits(32); 1718 1719 if (EnableHexSDNodeSched) 1720 setSchedulingPreference(Sched::VLIW); 1721 else 1722 setSchedulingPreference(Sched::Source); 1723 1724 // Limits for inline expansion of memcpy/memmove 1725 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; 1726 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; 1727 MaxStoresPerMemmove = MaxStoresPerMemmoveCL; 1728 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; 1729 MaxStoresPerMemset = MaxStoresPerMemsetCL; 1730 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; 1731 1732 // 1733 // Set up register classes. 1734 // 1735 1736 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); 1737 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa 1738 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa 1739 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba 1740 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); 1741 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); 1742 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); 1743 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); 1744 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); 1745 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); 1746 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); 1747 1748 if (Subtarget.hasV5TOps()) { 1749 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); 1750 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); 1751 } 1752 1753 if (Subtarget.hasV60TOps()) { 1754 if (Subtarget.useHVXSglOps()) { 1755 addRegisterClass(MVT::v64i8, &Hexagon::VectorRegsRegClass); 1756 addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass); 1757 addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass); 1758 addRegisterClass(MVT::v8i64, &Hexagon::VectorRegsRegClass); 1759 addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass); 1760 addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass); 1761 addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass); 1762 addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass); 1763 addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass); 1764 } else if (Subtarget.useHVXDblOps()) { 1765 addRegisterClass(MVT::v128i8, &Hexagon::VectorRegs128BRegClass); 1766 addRegisterClass(MVT::v64i16, &Hexagon::VectorRegs128BRegClass); 1767 addRegisterClass(MVT::v32i32, &Hexagon::VectorRegs128BRegClass); 1768 addRegisterClass(MVT::v16i64, &Hexagon::VectorRegs128BRegClass); 1769 addRegisterClass(MVT::v256i8, &Hexagon::VecDblRegs128BRegClass); 1770 addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass); 1771 addRegisterClass(MVT::v64i32, &Hexagon::VecDblRegs128BRegClass); 1772 addRegisterClass(MVT::v32i64, &Hexagon::VecDblRegs128BRegClass); 1773 addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass); 1774 } 1775 1776 } 1777 1778 // 1779 // Handling of scalar operations. 1780 // 1781 // All operations default to "legal", except: 1782 // - indexed loads and stores (pre-/post-incremented), 1783 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, 1784 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, 1785 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, 1786 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, 1787 // which default to "expand" for at least one type. 1788 1789 // Misc operations. 1790 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand 1791 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand 1792 1793 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 1794 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 1795 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 1796 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 1797 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 1798 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 1799 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 1800 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 1801 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 1802 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 1803 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 1804 1805 // Custom legalize GlobalAddress nodes into CONST32. 1806 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 1807 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); 1808 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 1809 1810 // Hexagon needs to optimize cases with negative constants. 1811 setOperationAction(ISD::SETCC, MVT::i8, Custom); 1812 setOperationAction(ISD::SETCC, MVT::i16, Custom); 1813 1814 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1815 setOperationAction(ISD::VASTART, MVT::Other, Custom); 1816 setOperationAction(ISD::VAEND, MVT::Other, Expand); 1817 setOperationAction(ISD::VAARG, MVT::Other, Expand); 1818 1819 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 1820 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 1821 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 1822 1823 if (EmitJumpTables) 1824 setMinimumJumpTableEntries(MinimumJumpTables); 1825 else 1826 setMinimumJumpTableEntries(INT_MAX); 1827 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1828 1829 // Hexagon has instructions for add/sub with carry. The problem with 1830 // modeling these instructions is that they produce 2 results: Rdd and Px. 1831 // To model the update of Px, we will have to use Defs[p0..p3] which will 1832 // cause any predicate live range to spill. So, we pretend we dont't have 1833 // these instructions. 1834 setOperationAction(ISD::ADDE, MVT::i8, Expand); 1835 setOperationAction(ISD::ADDE, MVT::i16, Expand); 1836 setOperationAction(ISD::ADDE, MVT::i32, Expand); 1837 setOperationAction(ISD::ADDE, MVT::i64, Expand); 1838 setOperationAction(ISD::SUBE, MVT::i8, Expand); 1839 setOperationAction(ISD::SUBE, MVT::i16, Expand); 1840 setOperationAction(ISD::SUBE, MVT::i32, Expand); 1841 setOperationAction(ISD::SUBE, MVT::i64, Expand); 1842 setOperationAction(ISD::ADDC, MVT::i8, Expand); 1843 setOperationAction(ISD::ADDC, MVT::i16, Expand); 1844 setOperationAction(ISD::ADDC, MVT::i32, Expand); 1845 setOperationAction(ISD::ADDC, MVT::i64, Expand); 1846 setOperationAction(ISD::SUBC, MVT::i8, Expand); 1847 setOperationAction(ISD::SUBC, MVT::i16, Expand); 1848 setOperationAction(ISD::SUBC, MVT::i32, Expand); 1849 setOperationAction(ISD::SUBC, MVT::i64, Expand); 1850 1851 // Only add and sub that detect overflow are the saturating ones. 1852 for (MVT VT : MVT::integer_valuetypes()) { 1853 setOperationAction(ISD::UADDO, VT, Expand); 1854 setOperationAction(ISD::SADDO, VT, Expand); 1855 setOperationAction(ISD::USUBO, VT, Expand); 1856 setOperationAction(ISD::SSUBO, VT, Expand); 1857 } 1858 1859 setOperationAction(ISD::CTLZ, MVT::i8, Promote); 1860 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 1861 setOperationAction(ISD::CTTZ, MVT::i8, Promote); 1862 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 1863 1864 // In V5, popcount can count # of 1s in i64 but returns i32. 1865 // On V4 it will be expanded (set later). 1866 setOperationAction(ISD::CTPOP, MVT::i8, Promote); 1867 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 1868 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 1869 setOperationAction(ISD::CTPOP, MVT::i64, Custom); 1870 1871 // We custom lower i64 to i64 mul, so that it is not considered as a legal 1872 // operation. There is a pattern that will match i64 mul and transform it 1873 // to a series of instructions. 1874 setOperationAction(ISD::MUL, MVT::i64, Expand); 1875 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1876 1877 for (unsigned IntExpOp : 1878 { ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, 1879 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, 1880 ISD::BSWAP, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, 1881 ISD::SMUL_LOHI, ISD::UMUL_LOHI }) { 1882 setOperationAction(IntExpOp, MVT::i32, Expand); 1883 setOperationAction(IntExpOp, MVT::i64, Expand); 1884 } 1885 1886 for (unsigned FPExpOp : 1887 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, 1888 ISD::FPOW, ISD::FCOPYSIGN}) { 1889 setOperationAction(FPExpOp, MVT::f32, Expand); 1890 setOperationAction(FPExpOp, MVT::f64, Expand); 1891 } 1892 1893 // No extending loads from i32. 1894 for (MVT VT : MVT::integer_valuetypes()) { 1895 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 1896 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 1897 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 1898 } 1899 // Turn FP truncstore into trunc + store. 1900 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1901 // Turn FP extload into load/fextend. 1902 for (MVT VT : MVT::fp_valuetypes()) 1903 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1904 1905 // Expand BR_CC and SELECT_CC for all integer and fp types. 1906 for (MVT VT : MVT::integer_valuetypes()) { 1907 setOperationAction(ISD::BR_CC, VT, Expand); 1908 setOperationAction(ISD::SELECT_CC, VT, Expand); 1909 } 1910 for (MVT VT : MVT::fp_valuetypes()) { 1911 setOperationAction(ISD::BR_CC, VT, Expand); 1912 setOperationAction(ISD::SELECT_CC, VT, Expand); 1913 } 1914 setOperationAction(ISD::BR_CC, MVT::Other, Expand); 1915 1916 // 1917 // Handling of vector operations. 1918 // 1919 1920 // Custom lower v4i16 load only. Let v4i16 store to be 1921 // promoted for now. 1922 promoteLdStType(MVT::v4i8, MVT::i32); 1923 promoteLdStType(MVT::v2i16, MVT::i32); 1924 promoteLdStType(MVT::v8i8, MVT::i64); 1925 promoteLdStType(MVT::v2i32, MVT::i64); 1926 1927 setOperationAction(ISD::LOAD, MVT::v4i16, Custom); 1928 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 1929 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::i64); 1930 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64); 1931 1932 // Set the action for vector operations to "expand", then override it with 1933 // either "custom" or "legal" for specific cases. 1934 static const unsigned VectExpOps[] = { 1935 // Integer arithmetic: 1936 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, 1937 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC, 1938 ISD::SUBC, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO, 1939 ISD::SMUL_LOHI, ISD::UMUL_LOHI, 1940 // Logical/bit: 1941 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, 1942 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, 1943 // Floating point arithmetic/math functions: 1944 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, 1945 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, 1946 ISD::FCOS, ISD::FPOWI, ISD::FPOW, ISD::FLOG, ISD::FLOG2, 1947 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, 1948 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, 1949 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, 1950 // Misc: 1951 ISD::SELECT, ISD::ConstantPool, 1952 // Vector: 1953 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, 1954 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, 1955 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, 1956 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE 1957 }; 1958 1959 for (MVT VT : MVT::vector_valuetypes()) { 1960 for (unsigned VectExpOp : VectExpOps) 1961 setOperationAction(VectExpOp, VT, Expand); 1962 1963 // Expand all extended loads and truncating stores: 1964 for (MVT TargetVT : MVT::vector_valuetypes()) { 1965 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); 1966 setTruncStoreAction(VT, TargetVT, Expand); 1967 } 1968 1969 setOperationAction(ISD::SRA, VT, Custom); 1970 setOperationAction(ISD::SHL, VT, Custom); 1971 setOperationAction(ISD::SRL, VT, Custom); 1972 } 1973 1974 // Types natively supported: 1975 for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1, 1976 MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32, 1977 MVT::v2i32, MVT::v1i64}) { 1978 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); 1979 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); 1980 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); 1981 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); 1982 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); 1983 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); 1984 1985 setOperationAction(ISD::ADD, NativeVT, Legal); 1986 setOperationAction(ISD::SUB, NativeVT, Legal); 1987 setOperationAction(ISD::MUL, NativeVT, Legal); 1988 setOperationAction(ISD::AND, NativeVT, Legal); 1989 setOperationAction(ISD::OR, NativeVT, Legal); 1990 setOperationAction(ISD::XOR, NativeVT, Legal); 1991 } 1992 1993 setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1994 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); 1995 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 1996 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 1997 if (UseHVX) { 1998 if (UseHVXSgl) { 1999 setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8, Custom); 2000 setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16, Custom); 2001 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32, Custom); 2002 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64, Custom); 2003 } else if (UseHVXDbl) { 2004 setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8, Custom); 2005 setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom); 2006 setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32, Custom); 2007 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64, Custom); 2008 } else { 2009 llvm_unreachable("Unrecognized HVX mode"); 2010 } 2011 } 2012 // Subtarget-specific operation actions. 2013 // 2014 if (Subtarget.hasV5TOps()) { 2015 setOperationAction(ISD::FMA, MVT::f64, Expand); 2016 setOperationAction(ISD::FADD, MVT::f64, Expand); 2017 setOperationAction(ISD::FSUB, MVT::f64, Expand); 2018 setOperationAction(ISD::FMUL, MVT::f64, Expand); 2019 2020 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 2021 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); 2022 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 2023 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 2024 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); 2025 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 2026 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 2027 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); 2028 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); 2029 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 2030 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); 2031 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); 2032 2033 } else { // V4 2034 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 2035 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand); 2036 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 2037 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 2038 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand); 2039 setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand); 2040 setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand); 2041 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); 2042 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); 2043 2044 setOperationAction(ISD::CTPOP, MVT::i8, Expand); 2045 setOperationAction(ISD::CTPOP, MVT::i16, Expand); 2046 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 2047 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 2048 2049 // Expand these operations for both f32 and f64: 2050 for (unsigned FPExpOpV4 : 2051 {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) { 2052 setOperationAction(FPExpOpV4, MVT::f32, Expand); 2053 setOperationAction(FPExpOpV4, MVT::f64, Expand); 2054 } 2055 2056 for (ISD::CondCode FPExpCCV4 : 2057 {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE, 2058 ISD::SETUO, ISD::SETO}) { 2059 setCondCodeAction(FPExpCCV4, MVT::f32, Expand); 2060 setCondCodeAction(FPExpCCV4, MVT::f64, Expand); 2061 } 2062 } 2063 2064 // Handling of indexed loads/stores: default is "expand". 2065 // 2066 for (MVT LSXTy : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { 2067 setIndexedLoadAction(ISD::POST_INC, LSXTy, Legal); 2068 setIndexedStoreAction(ISD::POST_INC, LSXTy, Legal); 2069 } 2070 2071 if (UseHVXDbl) { 2072 for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) { 2073 setIndexedLoadAction(ISD::POST_INC, VT, Legal); 2074 setIndexedStoreAction(ISD::POST_INC, VT, Legal); 2075 } 2076 } 2077 2078 computeRegisterProperties(&HRI); 2079 2080 // 2081 // Library calls for unsupported operations 2082 // 2083 bool FastMath = EnableFastMath; 2084 2085 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); 2086 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); 2087 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); 2088 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); 2089 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); 2090 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); 2091 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); 2092 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); 2093 2094 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); 2095 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); 2096 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); 2097 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); 2098 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); 2099 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); 2100 2101 if (IsV4) { 2102 // Handle single-precision floating point operations on V4. 2103 if (FastMath) { 2104 setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3"); 2105 setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3"); 2106 setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3"); 2107 setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2"); 2108 setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2"); 2109 // Double-precision compares. 2110 setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2"); 2111 setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2"); 2112 } else { 2113 setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3"); 2114 setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3"); 2115 setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3"); 2116 setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2"); 2117 setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2"); 2118 // Double-precision compares. 2119 setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2"); 2120 setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2"); 2121 } 2122 } 2123 2124 // This is the only fast library function for sqrtd. 2125 if (FastMath) 2126 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); 2127 2128 // Prefix is: nothing for "slow-math", 2129 // "fast2_" for V4 fast-math and V5+ fast-math double-precision 2130 // (actually, keep fast-math and fast-math2 separate for now) 2131 if (FastMath) { 2132 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); 2133 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); 2134 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); 2135 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); 2136 // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok). 2137 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); 2138 } else { 2139 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); 2140 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); 2141 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); 2142 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); 2143 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); 2144 } 2145 2146 if (Subtarget.hasV5TOps()) { 2147 if (FastMath) 2148 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); 2149 else 2150 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); 2151 } else { 2152 // V4 2153 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf"); 2154 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf"); 2155 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf"); 2156 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf"); 2157 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf"); 2158 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf"); 2159 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf"); 2160 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf"); 2161 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi"); 2162 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi"); 2163 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi"); 2164 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi"); 2165 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi"); 2166 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi"); 2167 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi"); 2168 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi"); 2169 setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2"); 2170 setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2"); 2171 setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2"); 2172 setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2"); 2173 setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2"); 2174 setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2"); 2175 setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2"); 2176 setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2"); 2177 setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2"); 2178 setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2"); 2179 setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2"); 2180 setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2"); 2181 setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2"); 2182 setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2"); 2183 } 2184 2185 // These cause problems when the shift amount is non-constant. 2186 setLibcallName(RTLIB::SHL_I128, nullptr); 2187 setLibcallName(RTLIB::SRL_I128, nullptr); 2188 setLibcallName(RTLIB::SRA_I128, nullptr); 2189 } 2190 2191 2192 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { 2193 switch ((HexagonISD::NodeType)Opcode) { 2194 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; 2195 case HexagonISD::ARGEXTEND: return "HexagonISD::ARGEXTEND"; 2196 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; 2197 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; 2198 case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; 2199 case HexagonISD::CALLR: return "HexagonISD::CALLR"; 2200 case HexagonISD::CALLv3nr: return "HexagonISD::CALLv3nr"; 2201 case HexagonISD::CALLv3: return "HexagonISD::CALLv3"; 2202 case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; 2203 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; 2204 case HexagonISD::CONST32: return "HexagonISD::CONST32"; 2205 case HexagonISD::CP: return "HexagonISD::CP"; 2206 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; 2207 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; 2208 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; 2209 case HexagonISD::EXTRACTURP: return "HexagonISD::EXTRACTURP"; 2210 case HexagonISD::FCONST32: return "HexagonISD::FCONST32"; 2211 case HexagonISD::INSERT: return "HexagonISD::INSERT"; 2212 case HexagonISD::INSERTRP: return "HexagonISD::INSERTRP"; 2213 case HexagonISD::JT: return "HexagonISD::JT"; 2214 case HexagonISD::PACKHL: return "HexagonISD::PACKHL"; 2215 case HexagonISD::POPCOUNT: return "HexagonISD::POPCOUNT"; 2216 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; 2217 case HexagonISD::SHUFFEB: return "HexagonISD::SHUFFEB"; 2218 case HexagonISD::SHUFFEH: return "HexagonISD::SHUFFEH"; 2219 case HexagonISD::SHUFFOB: return "HexagonISD::SHUFFOB"; 2220 case HexagonISD::SHUFFOH: return "HexagonISD::SHUFFOH"; 2221 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; 2222 case HexagonISD::VCMPBEQ: return "HexagonISD::VCMPBEQ"; 2223 case HexagonISD::VCMPBGT: return "HexagonISD::VCMPBGT"; 2224 case HexagonISD::VCMPBGTU: return "HexagonISD::VCMPBGTU"; 2225 case HexagonISD::VCMPHEQ: return "HexagonISD::VCMPHEQ"; 2226 case HexagonISD::VCMPHGT: return "HexagonISD::VCMPHGT"; 2227 case HexagonISD::VCMPHGTU: return "HexagonISD::VCMPHGTU"; 2228 case HexagonISD::VCMPWEQ: return "HexagonISD::VCMPWEQ"; 2229 case HexagonISD::VCMPWGT: return "HexagonISD::VCMPWGT"; 2230 case HexagonISD::VCMPWGTU: return "HexagonISD::VCMPWGTU"; 2231 case HexagonISD::VCOMBINE: return "HexagonISD::VCOMBINE"; 2232 case HexagonISD::VSHLH: return "HexagonISD::VSHLH"; 2233 case HexagonISD::VSHLW: return "HexagonISD::VSHLW"; 2234 case HexagonISD::VSPLATB: return "HexagonISD::VSPLTB"; 2235 case HexagonISD::VSPLATH: return "HexagonISD::VSPLATH"; 2236 case HexagonISD::VSRAH: return "HexagonISD::VSRAH"; 2237 case HexagonISD::VSRAW: return "HexagonISD::VSRAW"; 2238 case HexagonISD::VSRLH: return "HexagonISD::VSRLH"; 2239 case HexagonISD::VSRLW: return "HexagonISD::VSRLW"; 2240 case HexagonISD::VSXTBH: return "HexagonISD::VSXTBH"; 2241 case HexagonISD::VSXTBW: return "HexagonISD::VSXTBW"; 2242 case HexagonISD::OP_END: break; 2243 } 2244 return nullptr; 2245 } 2246 2247 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 2248 EVT MTy1 = EVT::getEVT(Ty1); 2249 EVT MTy2 = EVT::getEVT(Ty2); 2250 if (!MTy1.isSimple() || !MTy2.isSimple()) 2251 return false; 2252 return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32); 2253 } 2254 2255 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 2256 if (!VT1.isSimple() || !VT2.isSimple()) 2257 return false; 2258 return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32); 2259 } 2260 2261 // shouldExpandBuildVectorWithShuffles 2262 // Should we expand the build vector with shuffles? 2263 bool 2264 HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, 2265 unsigned DefinedValues) const { 2266 2267 // Hexagon vector shuffle operates on element sizes of bytes or halfwords 2268 EVT EltVT = VT.getVectorElementType(); 2269 int EltBits = EltVT.getSizeInBits(); 2270 if ((EltBits != 8) && (EltBits != 16)) 2271 return false; 2272 2273 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 2274 } 2275 2276 // LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3). V1 and 2277 // V2 are the two vectors to select data from, V3 is the permutation. 2278 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 2279 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2280 SDValue V1 = Op.getOperand(0); 2281 SDValue V2 = Op.getOperand(1); 2282 SDLoc dl(Op); 2283 EVT VT = Op.getValueType(); 2284 2285 if (V2.isUndef()) 2286 V2 = V1; 2287 2288 if (SVN->isSplat()) { 2289 int Lane = SVN->getSplatIndex(); 2290 if (Lane == -1) Lane = 0; 2291 2292 // Test if V1 is a SCALAR_TO_VECTOR. 2293 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) 2294 return createSplat(DAG, dl, VT, V1.getOperand(0)); 2295 2296 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR 2297 // (and probably will turn into a SCALAR_TO_VECTOR once legalization 2298 // reaches it). 2299 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && 2300 !isa<ConstantSDNode>(V1.getOperand(0))) { 2301 bool IsScalarToVector = true; 2302 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) 2303 if (!V1.getOperand(i).isUndef()) { 2304 IsScalarToVector = false; 2305 break; 2306 } 2307 if (IsScalarToVector) 2308 return createSplat(DAG, dl, VT, V1.getOperand(0)); 2309 } 2310 return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32)); 2311 } 2312 2313 // FIXME: We need to support more general vector shuffles. See 2314 // below the comment from the ARM backend that deals in the general 2315 // case with the vector shuffles. For now, let expand handle these. 2316 return SDValue(); 2317 2318 // If the shuffle is not directly supported and it has 4 elements, use 2319 // the PerfectShuffle-generated table to synthesize it from other shuffles. 2320 } 2321 2322 // If BUILD_VECTOR has same base element repeated several times, 2323 // report true. 2324 static bool isCommonSplatElement(BuildVectorSDNode *BVN) { 2325 unsigned NElts = BVN->getNumOperands(); 2326 SDValue V0 = BVN->getOperand(0); 2327 2328 for (unsigned i = 1, e = NElts; i != e; ++i) { 2329 if (BVN->getOperand(i) != V0) 2330 return false; 2331 } 2332 return true; 2333 } 2334 2335 // LowerVECTOR_SHIFT - Lower a vector shift. Try to convert 2336 // <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific 2337 // <VT> = SHL/SRA/SRL <VT> by <IT/i32>. 2338 static SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) { 2339 BuildVectorSDNode *BVN = 0; 2340 SDValue V1 = Op.getOperand(0); 2341 SDValue V2 = Op.getOperand(1); 2342 SDValue V3; 2343 SDLoc dl(Op); 2344 EVT VT = Op.getValueType(); 2345 2346 if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) && 2347 isCommonSplatElement(BVN)) 2348 V3 = V2; 2349 else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) && 2350 isCommonSplatElement(BVN)) 2351 V3 = V1; 2352 else 2353 return SDValue(); 2354 2355 SDValue CommonSplat = BVN->getOperand(0); 2356 SDValue Result; 2357 2358 if (VT.getSimpleVT() == MVT::v4i16) { 2359 switch (Op.getOpcode()) { 2360 case ISD::SRA: 2361 Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat); 2362 break; 2363 case ISD::SHL: 2364 Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat); 2365 break; 2366 case ISD::SRL: 2367 Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat); 2368 break; 2369 default: 2370 return SDValue(); 2371 } 2372 } else if (VT.getSimpleVT() == MVT::v2i32) { 2373 switch (Op.getOpcode()) { 2374 case ISD::SRA: 2375 Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat); 2376 break; 2377 case ISD::SHL: 2378 Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat); 2379 break; 2380 case ISD::SRL: 2381 Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat); 2382 break; 2383 default: 2384 return SDValue(); 2385 } 2386 } else { 2387 return SDValue(); 2388 } 2389 2390 return DAG.getNode(ISD::BITCAST, dl, VT, Result); 2391 } 2392 2393 SDValue 2394 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { 2395 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 2396 SDLoc dl(Op); 2397 EVT VT = Op.getValueType(); 2398 2399 unsigned Size = VT.getSizeInBits(); 2400 2401 // Only handle vectors of 64 bits or shorter. 2402 if (Size > 64) 2403 return SDValue(); 2404 2405 APInt APSplatBits, APSplatUndef; 2406 unsigned SplatBitSize; 2407 bool HasAnyUndefs; 2408 unsigned NElts = BVN->getNumOperands(); 2409 2410 // Try to generate a SPLAT instruction. 2411 if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) && 2412 (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 2413 HasAnyUndefs, 0, true) && SplatBitSize <= 16)) { 2414 unsigned SplatBits = APSplatBits.getZExtValue(); 2415 int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >> 2416 (32 - SplatBitSize)); 2417 return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32)); 2418 } 2419 2420 // Try to generate COMBINE to build v2i32 vectors. 2421 if (VT.getSimpleVT() == MVT::v2i32) { 2422 SDValue V0 = BVN->getOperand(0); 2423 SDValue V1 = BVN->getOperand(1); 2424 2425 if (V0.isUndef()) 2426 V0 = DAG.getConstant(0, dl, MVT::i32); 2427 if (V1.isUndef()) 2428 V1 = DAG.getConstant(0, dl, MVT::i32); 2429 2430 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0); 2431 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1); 2432 // If the element isn't a constant, it is in a register: 2433 // generate a COMBINE Register Register instruction. 2434 if (!C0 || !C1) 2435 return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); 2436 2437 // If one of the operands is an 8 bit integer constant, generate 2438 // a COMBINE Immediate Immediate instruction. 2439 if (isInt<8>(C0->getSExtValue()) || 2440 isInt<8>(C1->getSExtValue())) 2441 return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); 2442 } 2443 2444 // Try to generate a S2_packhl to build v2i16 vectors. 2445 if (VT.getSimpleVT() == MVT::v2i16) { 2446 for (unsigned i = 0, e = NElts; i != e; ++i) { 2447 if (BVN->getOperand(i).isUndef()) 2448 continue; 2449 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i)); 2450 // If the element isn't a constant, it is in a register: 2451 // generate a S2_packhl instruction. 2452 if (!Cst) { 2453 SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16, 2454 BVN->getOperand(1), BVN->getOperand(0)); 2455 2456 return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16, 2457 pack); 2458 } 2459 } 2460 } 2461 2462 // In the general case, generate a CONST32 or a CONST64 for constant vectors, 2463 // and insert_vector_elt for all the other cases. 2464 uint64_t Res = 0; 2465 unsigned EltSize = Size / NElts; 2466 SDValue ConstVal; 2467 uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize); 2468 bool HasNonConstantElements = false; 2469 2470 for (unsigned i = 0, e = NElts; i != e; ++i) { 2471 // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's 2472 // combine, const64, etc. are Big Endian. 2473 unsigned OpIdx = NElts - i - 1; 2474 SDValue Operand = BVN->getOperand(OpIdx); 2475 if (Operand.isUndef()) 2476 continue; 2477 2478 int64_t Val = 0; 2479 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand)) 2480 Val = Cst->getSExtValue(); 2481 else 2482 HasNonConstantElements = true; 2483 2484 Val &= Mask; 2485 Res = (Res << EltSize) | Val; 2486 } 2487 2488 if (Size == 64) 2489 ConstVal = DAG.getConstant(Res, dl, MVT::i64); 2490 else 2491 ConstVal = DAG.getConstant(Res, dl, MVT::i32); 2492 2493 // When there are non constant operands, add them with INSERT_VECTOR_ELT to 2494 // ConstVal, the constant part of the vector. 2495 if (HasNonConstantElements) { 2496 EVT EltVT = VT.getVectorElementType(); 2497 SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64); 2498 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, 2499 DAG.getConstant(32, dl, MVT::i64)); 2500 2501 for (unsigned i = 0, e = NElts; i != e; ++i) { 2502 // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon 2503 // is Big Endian. 2504 unsigned OpIdx = NElts - i - 1; 2505 SDValue Operand = BVN->getOperand(OpIdx); 2506 if (isa<ConstantSDNode>(Operand)) 2507 // This operand is already in ConstVal. 2508 continue; 2509 2510 if (VT.getSizeInBits() == 64 && 2511 Operand.getValueType().getSizeInBits() == 32) { 2512 SDValue C = DAG.getConstant(0, dl, MVT::i32); 2513 Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand); 2514 } 2515 2516 SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64); 2517 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width); 2518 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); 2519 const SDValue Ops[] = {ConstVal, Operand, Combined}; 2520 2521 if (VT.getSizeInBits() == 32) 2522 ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); 2523 else 2524 ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); 2525 } 2526 } 2527 2528 return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal); 2529 } 2530 2531 SDValue 2532 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 2533 SelectionDAG &DAG) const { 2534 SDLoc dl(Op); 2535 bool UseHVX = Subtarget.useHVXOps(); 2536 EVT VT = Op.getValueType(); 2537 unsigned NElts = Op.getNumOperands(); 2538 SDValue Vec0 = Op.getOperand(0); 2539 EVT VecVT = Vec0.getValueType(); 2540 unsigned Width = VecVT.getSizeInBits(); 2541 2542 if (NElts == 2) { 2543 MVT ST = VecVT.getSimpleVT(); 2544 // We are trying to concat two v2i16 to a single v4i16, or two v4i8 2545 // into a single v8i8. 2546 if (ST == MVT::v2i16 || ST == MVT::v4i8) 2547 return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0); 2548 2549 if (UseHVX) { 2550 assert((Width == 64*8 && Subtarget.useHVXSglOps()) || 2551 (Width == 128*8 && Subtarget.useHVXDblOps())); 2552 SDValue Vec1 = Op.getOperand(1); 2553 MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32; 2554 MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32; 2555 SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0); 2556 SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1); 2557 SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0); 2558 return DAG.getNode(ISD::BITCAST, dl, VT, VC); 2559 } 2560 } 2561 2562 if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64) 2563 return SDValue(); 2564 2565 SDValue C0 = DAG.getConstant(0, dl, MVT::i64); 2566 SDValue C32 = DAG.getConstant(32, dl, MVT::i64); 2567 SDValue W = DAG.getConstant(Width, dl, MVT::i64); 2568 // Create the "width" part of the argument to insert_rp/insertp_rp. 2569 SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32); 2570 SDValue V = C0; 2571 2572 for (unsigned i = 0, e = NElts; i != e; ++i) { 2573 unsigned N = NElts-i-1; 2574 SDValue OpN = Op.getOperand(N); 2575 2576 if (VT.getSizeInBits() == 64 && OpN.getValueType().getSizeInBits() == 32) { 2577 SDValue C = DAG.getConstant(0, dl, MVT::i32); 2578 OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN); 2579 } 2580 SDValue Idx = DAG.getConstant(N, dl, MVT::i64); 2581 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W); 2582 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset); 2583 if (VT.getSizeInBits() == 32) 2584 V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or}); 2585 else 2586 V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or}); 2587 } 2588 2589 return DAG.getNode(ISD::BITCAST, dl, VT, V); 2590 } 2591 2592 SDValue 2593 HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op, 2594 SelectionDAG &DAG) const { 2595 EVT VT = Op.getValueType(); 2596 int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; 2597 SDLoc dl(Op); 2598 SDValue Idx = Op.getOperand(1); 2599 SDValue Vec = Op.getOperand(0); 2600 EVT VecVT = Vec.getValueType(); 2601 EVT EltVT = VecVT.getVectorElementType(); 2602 int EltSize = EltVT.getSizeInBits(); 2603 SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ? 2604 EltSize : VTN * EltSize, dl, MVT::i64); 2605 2606 // Constant element number. 2607 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) { 2608 uint64_t X = CI->getZExtValue(); 2609 SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32); 2610 const SDValue Ops[] = {Vec, Width, Offset}; 2611 2612 ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width); 2613 assert(CW && "Non constant width in LowerEXTRACT_VECTOR"); 2614 2615 SDValue N; 2616 MVT SVT = VecVT.getSimpleVT(); 2617 uint64_t W = CW->getZExtValue(); 2618 2619 if (W == 32) { 2620 // Translate this node into EXTRACT_SUBREG. 2621 unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0; 2622 2623 if (X == 0) 2624 Subreg = Hexagon::subreg_loreg; 2625 else if (SVT == MVT::v2i32 && X == 1) 2626 Subreg = Hexagon::subreg_hireg; 2627 else if (SVT == MVT::v4i16 && X == 2) 2628 Subreg = Hexagon::subreg_hireg; 2629 else if (SVT == MVT::v8i8 && X == 4) 2630 Subreg = Hexagon::subreg_hireg; 2631 else 2632 llvm_unreachable("Bad offset"); 2633 N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec); 2634 2635 } else if (VecVT.getSizeInBits() == 32) { 2636 N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops); 2637 } else { 2638 N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops); 2639 if (VT.getSizeInBits() == 32) 2640 N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N); 2641 } 2642 2643 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2644 } 2645 2646 // Variable element number. 2647 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, 2648 DAG.getConstant(EltSize, dl, MVT::i32)); 2649 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, 2650 DAG.getConstant(32, dl, MVT::i64)); 2651 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); 2652 2653 const SDValue Ops[] = {Vec, Combined}; 2654 2655 SDValue N; 2656 if (VecVT.getSizeInBits() == 32) { 2657 N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops); 2658 } else { 2659 N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops); 2660 if (VT.getSizeInBits() == 32) 2661 N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N); 2662 } 2663 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2664 } 2665 2666 SDValue 2667 HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op, 2668 SelectionDAG &DAG) const { 2669 EVT VT = Op.getValueType(); 2670 int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; 2671 SDLoc dl(Op); 2672 SDValue Vec = Op.getOperand(0); 2673 SDValue Val = Op.getOperand(1); 2674 SDValue Idx = Op.getOperand(2); 2675 EVT VecVT = Vec.getValueType(); 2676 EVT EltVT = VecVT.getVectorElementType(); 2677 int EltSize = EltVT.getSizeInBits(); 2678 SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ? 2679 EltSize : VTN * EltSize, dl, MVT::i64); 2680 2681 if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) { 2682 SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32); 2683 const SDValue Ops[] = {Vec, Val, Width, Offset}; 2684 2685 SDValue N; 2686 if (VT.getSizeInBits() == 32) 2687 N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops); 2688 else 2689 N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops); 2690 2691 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2692 } 2693 2694 // Variable element number. 2695 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, 2696 DAG.getConstant(EltSize, dl, MVT::i32)); 2697 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, 2698 DAG.getConstant(32, dl, MVT::i64)); 2699 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); 2700 2701 if (VT.getSizeInBits() == 64 && 2702 Val.getValueType().getSizeInBits() == 32) { 2703 SDValue C = DAG.getConstant(0, dl, MVT::i32); 2704 Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val); 2705 } 2706 2707 const SDValue Ops[] = {Vec, Val, Combined}; 2708 2709 SDValue N; 2710 if (VT.getSizeInBits() == 32) 2711 N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); 2712 else 2713 N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); 2714 2715 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2716 } 2717 2718 bool 2719 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 2720 // Assuming the caller does not have either a signext or zeroext modifier, and 2721 // only one value is accepted, any reasonable truncation is allowed. 2722 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 2723 return false; 2724 2725 // FIXME: in principle up to 64-bit could be made safe, but it would be very 2726 // fragile at the moment: any support for multiple value returns would be 2727 // liable to disallow tail calls involving i64 -> iN truncation in many cases. 2728 return Ty1->getPrimitiveSizeInBits() <= 32; 2729 } 2730 2731 SDValue 2732 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 2733 SDValue Chain = Op.getOperand(0); 2734 SDValue Offset = Op.getOperand(1); 2735 SDValue Handler = Op.getOperand(2); 2736 SDLoc dl(Op); 2737 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2738 2739 // Mark function as containing a call to EH_RETURN. 2740 HexagonMachineFunctionInfo *FuncInfo = 2741 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); 2742 FuncInfo->setHasEHReturn(); 2743 2744 unsigned OffsetReg = Hexagon::R28; 2745 2746 SDValue StoreAddr = 2747 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), 2748 DAG.getIntPtrConstant(4, dl)); 2749 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), 2750 false, false, 0); 2751 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); 2752 2753 // Not needed we already use it as explict input to EH_RETURN. 2754 // MF.getRegInfo().addLiveOut(OffsetReg); 2755 2756 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); 2757 } 2758 2759 SDValue 2760 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 2761 unsigned Opc = Op.getOpcode(); 2762 switch (Opc) { 2763 default: 2764 #ifndef NDEBUG 2765 Op.getNode()->dumpr(&DAG); 2766 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) 2767 errs() << "Check for a non-legal type in this operation\n"; 2768 #endif 2769 llvm_unreachable("Should not custom lower this!"); 2770 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 2771 case ISD::INSERT_SUBVECTOR: return LowerINSERT_VECTOR(Op, DAG); 2772 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR(Op, DAG); 2773 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_VECTOR(Op, DAG); 2774 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR(Op, DAG); 2775 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 2776 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 2777 case ISD::SRA: 2778 case ISD::SHL: 2779 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); 2780 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 2781 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 2782 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 2783 // Frame & Return address. Currently unimplemented. 2784 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 2785 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 2786 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 2787 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 2788 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); 2789 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 2790 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 2791 case ISD::VASTART: return LowerVASTART(Op, DAG); 2792 // Custom lower some vector loads. 2793 case ISD::LOAD: return LowerLOAD(Op, DAG); 2794 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 2795 case ISD::SETCC: return LowerSETCC(Op, DAG); 2796 case ISD::VSELECT: return LowerVSELECT(Op, DAG); 2797 case ISD::CTPOP: return LowerCTPOP(Op, DAG); 2798 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2799 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 2800 case ISD::INLINEASM: return LowerINLINEASM(Op, DAG); 2801 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); 2802 } 2803 } 2804 2805 /// Returns relocation base for the given PIC jumptable. 2806 SDValue 2807 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2808 SelectionDAG &DAG) const { 2809 int Idx = cast<JumpTableSDNode>(Table)->getIndex(); 2810 EVT VT = Table.getValueType(); 2811 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 2812 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); 2813 } 2814 2815 MachineBasicBlock *HexagonTargetLowering::EmitInstrWithCustomInserter( 2816 MachineInstr &MI, MachineBasicBlock *BB) const { 2817 switch (MI.getOpcode()) { 2818 case Hexagon::ALLOCA: { 2819 MachineFunction *MF = BB->getParent(); 2820 auto *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>(); 2821 FuncInfo->addAllocaAdjustInst(&MI); 2822 return BB; 2823 } 2824 default: 2825 llvm_unreachable("Unexpected instr type to insert"); 2826 } // switch 2827 } 2828 2829 //===----------------------------------------------------------------------===// 2830 // Inline Assembly Support 2831 //===----------------------------------------------------------------------===// 2832 2833 TargetLowering::ConstraintType 2834 HexagonTargetLowering::getConstraintType(StringRef Constraint) const { 2835 if (Constraint.size() == 1) { 2836 switch (Constraint[0]) { 2837 case 'q': 2838 case 'v': 2839 if (Subtarget.useHVXOps()) 2840 return C_Register; 2841 break; 2842 } 2843 } 2844 return TargetLowering::getConstraintType(Constraint); 2845 } 2846 2847 std::pair<unsigned, const TargetRegisterClass *> 2848 HexagonTargetLowering::getRegForInlineAsmConstraint( 2849 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 2850 bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); 2851 2852 if (Constraint.size() == 1) { 2853 switch (Constraint[0]) { 2854 case 'r': // R0-R31 2855 switch (VT.SimpleTy) { 2856 default: 2857 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); 2858 case MVT::i32: 2859 case MVT::i16: 2860 case MVT::i8: 2861 case MVT::f32: 2862 return std::make_pair(0U, &Hexagon::IntRegsRegClass); 2863 case MVT::i64: 2864 case MVT::f64: 2865 return std::make_pair(0U, &Hexagon::DoubleRegsRegClass); 2866 } 2867 case 'q': // q0-q3 2868 switch (VT.SimpleTy) { 2869 default: 2870 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); 2871 case MVT::v1024i1: 2872 case MVT::v512i1: 2873 case MVT::v32i16: 2874 case MVT::v16i32: 2875 case MVT::v64i8: 2876 case MVT::v8i64: 2877 return std::make_pair(0U, &Hexagon::VecPredRegsRegClass); 2878 } 2879 case 'v': // V0-V31 2880 switch (VT.SimpleTy) { 2881 default: 2882 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); 2883 case MVT::v16i32: 2884 case MVT::v32i16: 2885 case MVT::v64i8: 2886 case MVT::v8i64: 2887 return std::make_pair(0U, &Hexagon::VectorRegsRegClass); 2888 case MVT::v32i32: 2889 case MVT::v64i16: 2890 case MVT::v16i64: 2891 case MVT::v128i8: 2892 if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl) 2893 return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass); 2894 else 2895 return std::make_pair(0U, &Hexagon::VecDblRegsRegClass); 2896 case MVT::v256i8: 2897 case MVT::v128i16: 2898 case MVT::v64i32: 2899 case MVT::v32i64: 2900 return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass); 2901 } 2902 2903 default: 2904 llvm_unreachable("Unknown asm register class"); 2905 } 2906 } 2907 2908 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2909 } 2910 2911 /// isFPImmLegal - Returns true if the target can instruction select the 2912 /// specified FP immediate natively. If false, the legalizer will 2913 /// materialize the FP immediate as a load from a constant pool. 2914 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 2915 return Subtarget.hasV5TOps(); 2916 } 2917 2918 /// isLegalAddressingMode - Return true if the addressing mode represented by 2919 /// AM is legal for this target, for a load/store of the specified type. 2920 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, 2921 const AddrMode &AM, Type *Ty, 2922 unsigned AS) const { 2923 // Allows a signed-extended 11-bit immediate field. 2924 if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) 2925 return false; 2926 2927 // No global is ever allowed as a base. 2928 if (AM.BaseGV) 2929 return false; 2930 2931 int Scale = AM.Scale; 2932 if (Scale < 0) Scale = -Scale; 2933 switch (Scale) { 2934 case 0: // No scale reg, "r+i", "r", or just "i". 2935 break; 2936 default: // No scaled addressing mode. 2937 return false; 2938 } 2939 return true; 2940 } 2941 2942 /// Return true if folding a constant offset with the given GlobalAddress is 2943 /// legal. It is frequently not legal in PIC relocation models. 2944 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) 2945 const { 2946 return HTM.getRelocationModel() == Reloc::Static; 2947 } 2948 2949 2950 /// isLegalICmpImmediate - Return true if the specified immediate is legal 2951 /// icmp immediate, that is the target has icmp instructions which can compare 2952 /// a register against the immediate without having to materialize the 2953 /// immediate into a register. 2954 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 2955 return Imm >= -512 && Imm <= 511; 2956 } 2957 2958 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2959 /// for tail call optimization. Targets which want to do tail call 2960 /// optimization should implement this function. 2961 bool HexagonTargetLowering::IsEligibleForTailCallOptimization( 2962 SDValue Callee, 2963 CallingConv::ID CalleeCC, 2964 bool isVarArg, 2965 bool isCalleeStructRet, 2966 bool isCallerStructRet, 2967 const SmallVectorImpl<ISD::OutputArg> &Outs, 2968 const SmallVectorImpl<SDValue> &OutVals, 2969 const SmallVectorImpl<ISD::InputArg> &Ins, 2970 SelectionDAG& DAG) const { 2971 const Function *CallerF = DAG.getMachineFunction().getFunction(); 2972 CallingConv::ID CallerCC = CallerF->getCallingConv(); 2973 bool CCMatch = CallerCC == CalleeCC; 2974 2975 // *************************************************************************** 2976 // Look for obvious safe cases to perform tail call optimization that do not 2977 // require ABI changes. 2978 // *************************************************************************** 2979 2980 // If this is a tail call via a function pointer, then don't do it! 2981 if (!(isa<GlobalAddressSDNode>(Callee)) && 2982 !(isa<ExternalSymbolSDNode>(Callee))) { 2983 return false; 2984 } 2985 2986 // Do not optimize if the calling conventions do not match. 2987 if (!CCMatch) 2988 return false; 2989 2990 // Do not tail call optimize vararg calls. 2991 if (isVarArg) 2992 return false; 2993 2994 // Also avoid tail call optimization if either caller or callee uses struct 2995 // return semantics. 2996 if (isCalleeStructRet || isCallerStructRet) 2997 return false; 2998 2999 // In addition to the cases above, we also disable Tail Call Optimization if 3000 // the calling convention code that at least one outgoing argument needs to 3001 // go on the stack. We cannot check that here because at this point that 3002 // information is not available. 3003 return true; 3004 } 3005 3006 // Return true when the given node fits in a positive half word. 3007 bool llvm::isPositiveHalfWord(SDNode *N) { 3008 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3009 if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue())) 3010 return true; 3011 3012 switch (N->getOpcode()) { 3013 default: 3014 return false; 3015 case ISD::SIGN_EXTEND_INREG: 3016 return true; 3017 } 3018 } 3019 3020 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 3021 unsigned AS, unsigned Align, bool *Fast) const { 3022 if (Fast) 3023 *Fast = false; 3024 3025 switch (VT.getSimpleVT().SimpleTy) { 3026 default: 3027 return false; 3028 case MVT::v64i8: 3029 case MVT::v128i8: 3030 case MVT::v256i8: 3031 case MVT::v32i16: 3032 case MVT::v64i16: 3033 case MVT::v128i16: 3034 case MVT::v16i32: 3035 case MVT::v32i32: 3036 case MVT::v64i32: 3037 case MVT::v8i64: 3038 case MVT::v16i64: 3039 case MVT::v32i64: 3040 return true; 3041 } 3042 return false; 3043 } 3044 3045 3046 std::pair<const TargetRegisterClass*, uint8_t> 3047 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, 3048 MVT VT) const { 3049 const TargetRegisterClass *RRC = nullptr; 3050 3051 uint8_t Cost = 1; 3052 switch (VT.SimpleTy) { 3053 default: 3054 return TargetLowering::findRepresentativeClass(TRI, VT); 3055 case MVT::v64i8: 3056 case MVT::v32i16: 3057 case MVT::v16i32: 3058 case MVT::v8i64: 3059 RRC = &Hexagon::VectorRegsRegClass; 3060 break; 3061 case MVT::v128i8: 3062 case MVT::v64i16: 3063 case MVT::v32i32: 3064 case MVT::v16i64: 3065 if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() && 3066 Subtarget.useHVXDblOps()) 3067 RRC = &Hexagon::VectorRegs128BRegClass; 3068 else 3069 RRC = &Hexagon::VecDblRegsRegClass; 3070 break; 3071 case MVT::v256i8: 3072 case MVT::v128i16: 3073 case MVT::v64i32: 3074 case MVT::v32i64: 3075 RRC = &Hexagon::VecDblRegs128BRegClass; 3076 break; 3077 } 3078 return std::make_pair(RRC, Cost); 3079 } 3080 3081 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 3082 AtomicOrdering Ord) const { 3083 BasicBlock *BB = Builder.GetInsertBlock(); 3084 Module *M = BB->getParent()->getParent(); 3085 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 3086 unsigned SZ = Ty->getPrimitiveSizeInBits(); 3087 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); 3088 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked 3089 : Intrinsic::hexagon_L4_loadd_locked; 3090 Value *Fn = Intrinsic::getDeclaration(M, IntID); 3091 return Builder.CreateCall(Fn, Addr, "larx"); 3092 } 3093 3094 /// Perform a store-conditional operation to Addr. Return the status of the 3095 /// store. This should be 0 if the store succeeded, non-zero otherwise. 3096 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, 3097 Value *Val, Value *Addr, AtomicOrdering Ord) const { 3098 BasicBlock *BB = Builder.GetInsertBlock(); 3099 Module *M = BB->getParent()->getParent(); 3100 Type *Ty = Val->getType(); 3101 unsigned SZ = Ty->getPrimitiveSizeInBits(); 3102 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); 3103 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked 3104 : Intrinsic::hexagon_S4_stored_locked; 3105 Value *Fn = Intrinsic::getDeclaration(M, IntID); 3106 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); 3107 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); 3108 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); 3109 return Ext; 3110 } 3111 3112 TargetLowering::AtomicExpansionKind 3113 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 3114 // Do not expand loads and stores that don't exceed 64 bits. 3115 return LI->getType()->getPrimitiveSizeInBits() > 64 3116 ? AtomicExpansionKind::LLOnly 3117 : AtomicExpansionKind::None; 3118 } 3119 3120 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 3121 // Do not expand loads and stores that don't exceed 64 bits. 3122 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; 3123 } 3124 3125 bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( 3126 AtomicCmpXchgInst *AI) const { 3127 const DataLayout &DL = AI->getModule()->getDataLayout(); 3128 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 3129 return Size >= 4 && Size <= 8; 3130 } 3131