Home | History | Annotate | Download | only in Mips
      1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that Mips uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 #include "MipsISelLowering.h"
     15 #include "InstPrinter/MipsInstPrinter.h"
     16 #include "MCTargetDesc/MipsBaseInfo.h"
     17 #include "MipsCCState.h"
     18 #include "MipsMachineFunction.h"
     19 #include "MipsSubtarget.h"
     20 #include "MipsTargetMachine.h"
     21 #include "MipsTargetObjectFile.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/ADT/StringSwitch.h"
     24 #include "llvm/CodeGen/CallingConvLower.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     31 #include "llvm/CodeGen/SelectionDAGISel.h"
     32 #include "llvm/CodeGen/ValueTypes.h"
     33 #include "llvm/IR/CallingConv.h"
     34 #include "llvm/IR/DerivedTypes.h"
     35 #include "llvm/IR/GlobalVariable.h"
     36 #include "llvm/Support/CommandLine.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include <cctype>
     41 
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "mips-lower"
     45 
     46 STATISTIC(NumTailCalls, "Number of tail calls");
     47 
     48 static cl::opt<bool>
     49 LargeGOT("mxgot", cl::Hidden,
     50          cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
     51 
     52 static cl::opt<bool>
     53 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
     54                cl::desc("MIPS: Don't trap on integer division by zero."),
     55                cl::init(false));
     56 
     57 static const MCPhysReg Mips64DPRegs[8] = {
     58   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
     59   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
     60 };
     61 
     62 // If I is a shifted mask, set the size (Size) and the first bit of the
     63 // mask (Pos), and return true.
     64 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
     65 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
     66   if (!isShiftedMask_64(I))
     67     return false;
     68 
     69   Size = countPopulation(I);
     70   Pos = countTrailingZeros(I);
     71   return true;
     72 }
     73 
     74 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
     75   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
     76   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
     77 }
     78 
     79 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
     80                                           SelectionDAG &DAG,
     81                                           unsigned Flag) const {
     82   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
     83 }
     84 
     85 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
     86                                           SelectionDAG &DAG,
     87                                           unsigned Flag) const {
     88   return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
     89 }
     90 
     91 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
     92                                           SelectionDAG &DAG,
     93                                           unsigned Flag) const {
     94   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
     95 }
     96 
     97 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
     98                                           SelectionDAG &DAG,
     99                                           unsigned Flag) const {
    100   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
    101 }
    102 
    103 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
    104                                           SelectionDAG &DAG,
    105                                           unsigned Flag) const {
    106   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
    107                                    N->getOffset(), Flag);
    108 }
    109 
    110 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
    111   switch ((MipsISD::NodeType)Opcode) {
    112   case MipsISD::FIRST_NUMBER:      break;
    113   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
    114   case MipsISD::TailCall:          return "MipsISD::TailCall";
    115   case MipsISD::Hi:                return "MipsISD::Hi";
    116   case MipsISD::Lo:                return "MipsISD::Lo";
    117   case MipsISD::GPRel:             return "MipsISD::GPRel";
    118   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
    119   case MipsISD::Ret:               return "MipsISD::Ret";
    120   case MipsISD::ERet:              return "MipsISD::ERet";
    121   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
    122   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
    123   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
    124   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
    125   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
    126   case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
    127   case MipsISD::MFHI:              return "MipsISD::MFHI";
    128   case MipsISD::MFLO:              return "MipsISD::MFLO";
    129   case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
    130   case MipsISD::Mult:              return "MipsISD::Mult";
    131   case MipsISD::Multu:             return "MipsISD::Multu";
    132   case MipsISD::MAdd:              return "MipsISD::MAdd";
    133   case MipsISD::MAddu:             return "MipsISD::MAddu";
    134   case MipsISD::MSub:              return "MipsISD::MSub";
    135   case MipsISD::MSubu:             return "MipsISD::MSubu";
    136   case MipsISD::DivRem:            return "MipsISD::DivRem";
    137   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
    138   case MipsISD::DivRem16:          return "MipsISD::DivRem16";
    139   case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
    140   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
    141   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
    142   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
    143   case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
    144   case MipsISD::Sync:              return "MipsISD::Sync";
    145   case MipsISD::Ext:               return "MipsISD::Ext";
    146   case MipsISD::Ins:               return "MipsISD::Ins";
    147   case MipsISD::LWL:               return "MipsISD::LWL";
    148   case MipsISD::LWR:               return "MipsISD::LWR";
    149   case MipsISD::SWL:               return "MipsISD::SWL";
    150   case MipsISD::SWR:               return "MipsISD::SWR";
    151   case MipsISD::LDL:               return "MipsISD::LDL";
    152   case MipsISD::LDR:               return "MipsISD::LDR";
    153   case MipsISD::SDL:               return "MipsISD::SDL";
    154   case MipsISD::SDR:               return "MipsISD::SDR";
    155   case MipsISD::EXTP:              return "MipsISD::EXTP";
    156   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
    157   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
    158   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
    159   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
    160   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
    161   case MipsISD::SHILO:             return "MipsISD::SHILO";
    162   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
    163   case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
    164   case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
    165   case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
    166   case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
    167   case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
    168   case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
    169   case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
    170   case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
    171   case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
    172   case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
    173   case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
    174   case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
    175   case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
    176   case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
    177   case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
    178   case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
    179   case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
    180   case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
    181   case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
    182   case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
    183   case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
    184   case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
    185   case MipsISD::MULT:              return "MipsISD::MULT";
    186   case MipsISD::MULTU:             return "MipsISD::MULTU";
    187   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
    188   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
    189   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
    190   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
    191   case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
    192   case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
    193   case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
    194   case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
    195   case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
    196   case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
    197   case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
    198   case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
    199   case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
    200   case MipsISD::VCEQ:              return "MipsISD::VCEQ";
    201   case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
    202   case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
    203   case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
    204   case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
    205   case MipsISD::VSMAX:             return "MipsISD::VSMAX";
    206   case MipsISD::VSMIN:             return "MipsISD::VSMIN";
    207   case MipsISD::VUMAX:             return "MipsISD::VUMAX";
    208   case MipsISD::VUMIN:             return "MipsISD::VUMIN";
    209   case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
    210   case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
    211   case MipsISD::VNOR:              return "MipsISD::VNOR";
    212   case MipsISD::VSHF:              return "MipsISD::VSHF";
    213   case MipsISD::SHF:               return "MipsISD::SHF";
    214   case MipsISD::ILVEV:             return "MipsISD::ILVEV";
    215   case MipsISD::ILVOD:             return "MipsISD::ILVOD";
    216   case MipsISD::ILVL:              return "MipsISD::ILVL";
    217   case MipsISD::ILVR:              return "MipsISD::ILVR";
    218   case MipsISD::PCKEV:             return "MipsISD::PCKEV";
    219   case MipsISD::PCKOD:             return "MipsISD::PCKOD";
    220   case MipsISD::INSVE:             return "MipsISD::INSVE";
    221   }
    222   return nullptr;
    223 }
    224 
    225 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
    226                                        const MipsSubtarget &STI)
    227     : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
    228   // Mips does not have i1 type, so use i32 for
    229   // setcc operations results (slt, sgt, ...).
    230   setBooleanContents(ZeroOrOneBooleanContent);
    231   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    232   // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
    233   // does. Integer booleans still use 0 and 1.
    234   if (Subtarget.hasMips32r6())
    235     setBooleanContents(ZeroOrOneBooleanContent,
    236                        ZeroOrNegativeOneBooleanContent);
    237 
    238   // Load extented operations for i1 types must be promoted
    239   for (MVT VT : MVT::integer_valuetypes()) {
    240     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
    241     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
    242     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
    243   }
    244 
    245   // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
    246   // for f32, f16
    247   for (MVT VT : MVT::fp_valuetypes()) {
    248     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    249     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    250   }
    251 
    252   // Set LoadExtAction for f16 vectors to Expand
    253   for (MVT VT : MVT::fp_vector_valuetypes()) {
    254     MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
    255     if (F16VT.isValid())
    256       setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
    257   }
    258 
    259   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    260   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    261 
    262   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    263 
    264   // Used by legalize types to correctly generate the setcc result.
    265   // Without this, every float setcc comes with a AND/OR with the result,
    266   // we don't want this, since the fpcmp result goes to a flag register,
    267   // which is used implicitly by brcond and select operations.
    268   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
    269 
    270   // Mips Custom Operations
    271   setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
    272   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
    273   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
    274   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
    275   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
    276   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
    277   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
    278   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
    279   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
    280   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
    281   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
    282   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
    283   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
    284   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
    285   setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
    286 
    287   if (Subtarget.isGP64bit()) {
    288     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
    289     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
    290     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
    291     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
    292     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
    293     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
    294     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
    295     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
    296     setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
    297     setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
    298     setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
    299     setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
    300   }
    301 
    302   if (!Subtarget.isGP64bit()) {
    303     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
    304     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
    305     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
    306   }
    307 
    308   setOperationAction(ISD::ADD,                MVT::i32,   Custom);
    309   if (Subtarget.isGP64bit())
    310     setOperationAction(ISD::ADD,                MVT::i64,   Custom);
    311 
    312   setOperationAction(ISD::SDIV, MVT::i32, Expand);
    313   setOperationAction(ISD::SREM, MVT::i32, Expand);
    314   setOperationAction(ISD::UDIV, MVT::i32, Expand);
    315   setOperationAction(ISD::UREM, MVT::i32, Expand);
    316   setOperationAction(ISD::SDIV, MVT::i64, Expand);
    317   setOperationAction(ISD::SREM, MVT::i64, Expand);
    318   setOperationAction(ISD::UDIV, MVT::i64, Expand);
    319   setOperationAction(ISD::UREM, MVT::i64, Expand);
    320 
    321   // Operations not directly supported by Mips.
    322   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
    323   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
    324   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
    325   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
    326   setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
    327   setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
    328   setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
    329   setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
    330   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
    331   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
    332   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
    333   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
    334   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
    335   if (Subtarget.hasCnMips()) {
    336     setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
    337     setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
    338   } else {
    339     setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
    340     setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
    341   }
    342   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
    343   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
    344   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
    345   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
    346   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
    347   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
    348 
    349   if (!Subtarget.hasMips32r2())
    350     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
    351 
    352   if (!Subtarget.hasMips64r2())
    353     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
    354 
    355   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
    356   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
    357   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
    358   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
    359   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
    360   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
    361   setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
    362   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
    363   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
    364   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
    365   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
    366   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
    367   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
    368   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
    369   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
    370   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
    371   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
    372 
    373   // Lower f16 conversion operations into library calls
    374   setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
    375   setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
    376   setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
    377   setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
    378 
    379   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
    380 
    381   setOperationAction(ISD::VASTART,           MVT::Other, Custom);
    382   setOperationAction(ISD::VAARG,             MVT::Other, Custom);
    383   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
    384   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
    385 
    386   // Use the default for now
    387   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
    388   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
    389 
    390   if (!Subtarget.isGP64bit()) {
    391     setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
    392     setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
    393   }
    394 
    395 
    396   if (!Subtarget.hasMips32r2()) {
    397     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    398     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    399   }
    400 
    401   // MIPS16 lacks MIPS32's clz and clo instructions.
    402   if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
    403     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    404   if (!Subtarget.hasMips64())
    405     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
    406 
    407   if (!Subtarget.hasMips32r2())
    408     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    409   if (!Subtarget.hasMips64r2())
    410     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
    411 
    412   if (Subtarget.isGP64bit()) {
    413     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
    414     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
    415     setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
    416     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
    417   }
    418 
    419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    420 
    421   setTargetDAGCombine(ISD::SDIVREM);
    422   setTargetDAGCombine(ISD::UDIVREM);
    423   setTargetDAGCombine(ISD::SELECT);
    424   setTargetDAGCombine(ISD::AND);
    425   setTargetDAGCombine(ISD::OR);
    426   setTargetDAGCombine(ISD::ADD);
    427   setTargetDAGCombine(ISD::AssertZext);
    428 
    429   setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
    430 
    431   // The arguments on the stack are defined in terms of 4-byte slots on O32
    432   // and 8-byte slots on N32/N64.
    433   setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
    434 
    435   setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
    436 
    437   MaxStoresPerMemcpy = 16;
    438 
    439   isMicroMips = Subtarget.inMicroMipsMode();
    440 }
    441 
    442 const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
    443                                                      const MipsSubtarget &STI) {
    444   if (STI.inMips16Mode())
    445     return llvm::createMips16TargetLowering(TM, STI);
    446 
    447   return llvm::createMipsSETargetLowering(TM, STI);
    448 }
    449 
    450 // Create a fast isel object.
    451 FastISel *
    452 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
    453                                   const TargetLibraryInfo *libInfo) const {
    454   if (!funcInfo.MF->getTarget().Options.EnableFastISel)
    455     return TargetLowering::createFastISel(funcInfo, libInfo);
    456   return Mips::createFastISel(funcInfo, libInfo);
    457 }
    458 
    459 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
    460                                            EVT VT) const {
    461   if (!VT.isVector())
    462     return MVT::i32;
    463   return VT.changeVectorElementTypeToInteger();
    464 }
    465 
    466 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
    467                                     TargetLowering::DAGCombinerInfo &DCI,
    468                                     const MipsSubtarget &Subtarget) {
    469   if (DCI.isBeforeLegalizeOps())
    470     return SDValue();
    471 
    472   EVT Ty = N->getValueType(0);
    473   unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
    474   unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
    475   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
    476                                                   MipsISD::DivRemU16;
    477   SDLoc DL(N);
    478 
    479   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
    480                                N->getOperand(0), N->getOperand(1));
    481   SDValue InChain = DAG.getEntryNode();
    482   SDValue InGlue = DivRem;
    483 
    484   // insert MFLO
    485   if (N->hasAnyUseOfValue(0)) {
    486     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
    487                                             InGlue);
    488     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
    489     InChain = CopyFromLo.getValue(1);
    490     InGlue = CopyFromLo.getValue(2);
    491   }
    492 
    493   // insert MFHI
    494   if (N->hasAnyUseOfValue(1)) {
    495     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
    496                                             HI, Ty, InGlue);
    497     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
    498   }
    499 
    500   return SDValue();
    501 }
    502 
    503 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
    504   switch (CC) {
    505   default: llvm_unreachable("Unknown fp condition code!");
    506   case ISD::SETEQ:
    507   case ISD::SETOEQ: return Mips::FCOND_OEQ;
    508   case ISD::SETUNE: return Mips::FCOND_UNE;
    509   case ISD::SETLT:
    510   case ISD::SETOLT: return Mips::FCOND_OLT;
    511   case ISD::SETGT:
    512   case ISD::SETOGT: return Mips::FCOND_OGT;
    513   case ISD::SETLE:
    514   case ISD::SETOLE: return Mips::FCOND_OLE;
    515   case ISD::SETGE:
    516   case ISD::SETOGE: return Mips::FCOND_OGE;
    517   case ISD::SETULT: return Mips::FCOND_ULT;
    518   case ISD::SETULE: return Mips::FCOND_ULE;
    519   case ISD::SETUGT: return Mips::FCOND_UGT;
    520   case ISD::SETUGE: return Mips::FCOND_UGE;
    521   case ISD::SETUO:  return Mips::FCOND_UN;
    522   case ISD::SETO:   return Mips::FCOND_OR;
    523   case ISD::SETNE:
    524   case ISD::SETONE: return Mips::FCOND_ONE;
    525   case ISD::SETUEQ: return Mips::FCOND_UEQ;
    526   }
    527 }
    528 
    529 
    530 /// This function returns true if the floating point conditional branches and
    531 /// conditional moves which use condition code CC should be inverted.
    532 static bool invertFPCondCodeUser(Mips::CondCode CC) {
    533   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    534     return false;
    535 
    536   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
    537          "Illegal Condition Code");
    538 
    539   return true;
    540 }
    541 
    542 // Creates and returns an FPCmp node from a setcc node.
    543 // Returns Op if setcc is not a floating point comparison.
    544 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
    545   // must be a SETCC node
    546   if (Op.getOpcode() != ISD::SETCC)
    547     return Op;
    548 
    549   SDValue LHS = Op.getOperand(0);
    550 
    551   if (!LHS.getValueType().isFloatingPoint())
    552     return Op;
    553 
    554   SDValue RHS = Op.getOperand(1);
    555   SDLoc DL(Op);
    556 
    557   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
    558   // node if necessary.
    559   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    560 
    561   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
    562                      DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
    563 }
    564 
    565 // Creates and returns a CMovFPT/F node.
    566 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
    567                             SDValue False, const SDLoc &DL) {
    568   ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
    569   bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
    570   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
    571 
    572   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
    573                      True.getValueType(), True, FCC0, False, Cond);
    574 }
    575 
    576 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
    577                                     TargetLowering::DAGCombinerInfo &DCI,
    578                                     const MipsSubtarget &Subtarget) {
    579   if (DCI.isBeforeLegalizeOps())
    580     return SDValue();
    581 
    582   SDValue SetCC = N->getOperand(0);
    583 
    584   if ((SetCC.getOpcode() != ISD::SETCC) ||
    585       !SetCC.getOperand(0).getValueType().isInteger())
    586     return SDValue();
    587 
    588   SDValue False = N->getOperand(2);
    589   EVT FalseTy = False.getValueType();
    590 
    591   if (!FalseTy.isInteger())
    592     return SDValue();
    593 
    594   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
    595 
    596   // If the RHS (False) is 0, we swap the order of the operands
    597   // of ISD::SELECT (obviously also inverting the condition) so that we can
    598   // take advantage of conditional moves using the $0 register.
    599   // Example:
    600   //   return (a != 0) ? x : 0;
    601   //     load $reg, x
    602   //     movz $reg, $0, a
    603   if (!FalseC)
    604     return SDValue();
    605 
    606   const SDLoc DL(N);
    607 
    608   if (!FalseC->getZExtValue()) {
    609     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    610     SDValue True = N->getOperand(1);
    611 
    612     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
    613                          SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
    614 
    615     return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
    616   }
    617 
    618   // If both operands are integer constants there's a possibility that we
    619   // can do some interesting optimizations.
    620   SDValue True = N->getOperand(1);
    621   ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
    622 
    623   if (!TrueC || !True.getValueType().isInteger())
    624     return SDValue();
    625 
    626   // We'll also ignore MVT::i64 operands as this optimizations proves
    627   // to be ineffective because of the required sign extensions as the result
    628   // of a SETCC operator is always MVT::i32 for non-vector types.
    629   if (True.getValueType() == MVT::i64)
    630     return SDValue();
    631 
    632   int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
    633 
    634   // 1)  (a < x) ? y : y-1
    635   //  slti $reg1, a, x
    636   //  addiu $reg2, $reg1, y-1
    637   if (Diff == 1)
    638     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
    639 
    640   // 2)  (a < x) ? y-1 : y
    641   //  slti $reg1, a, x
    642   //  xor $reg1, $reg1, 1
    643   //  addiu $reg2, $reg1, y-1
    644   if (Diff == -1) {
    645     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    646     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
    647                          SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
    648     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
    649   }
    650 
    651   // Couldn't optimize.
    652   return SDValue();
    653 }
    654 
    655 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
    656                                     TargetLowering::DAGCombinerInfo &DCI,
    657                                     const MipsSubtarget &Subtarget) {
    658   if (DCI.isBeforeLegalizeOps())
    659     return SDValue();
    660 
    661   SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
    662 
    663   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
    664   if (!FalseC || FalseC->getZExtValue())
    665     return SDValue();
    666 
    667   // Since RHS (False) is 0, we swap the order of the True/False operands
    668   // (obviously also inverting the condition) so that we can
    669   // take advantage of conditional moves using the $0 register.
    670   // Example:
    671   //   return (a != 0) ? x : 0;
    672   //     load $reg, x
    673   //     movz $reg, $0, a
    674   unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
    675                                                          MipsISD::CMovFP_T;
    676 
    677   SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
    678   return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
    679                      ValueIfFalse, FCC, ValueIfTrue, Glue);
    680 }
    681 
    682 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
    683                                  TargetLowering::DAGCombinerInfo &DCI,
    684                                  const MipsSubtarget &Subtarget) {
    685   // Pattern match EXT.
    686   //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
    687   //  => ext $dst, $src, size, pos
    688   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
    689     return SDValue();
    690 
    691   SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
    692   unsigned ShiftRightOpc = ShiftRight.getOpcode();
    693 
    694   // Op's first operand must be a shift right.
    695   if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
    696     return SDValue();
    697 
    698   // The second operand of the shift must be an immediate.
    699   ConstantSDNode *CN;
    700   if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
    701     return SDValue();
    702 
    703   uint64_t Pos = CN->getZExtValue();
    704   uint64_t SMPos, SMSize;
    705 
    706   // Op's second operand must be a shifted mask.
    707   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
    708       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    709     return SDValue();
    710 
    711   // Return if the shifted mask does not start at bit 0 or the sum of its size
    712   // and Pos exceeds the word's size.
    713   EVT ValTy = N->getValueType(0);
    714   if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
    715     return SDValue();
    716 
    717   SDLoc DL(N);
    718   return DAG.getNode(MipsISD::Ext, DL, ValTy,
    719                      ShiftRight.getOperand(0),
    720                      DAG.getConstant(Pos, DL, MVT::i32),
    721                      DAG.getConstant(SMSize, DL, MVT::i32));
    722 }
    723 
    724 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
    725                                 TargetLowering::DAGCombinerInfo &DCI,
    726                                 const MipsSubtarget &Subtarget) {
    727   // Pattern match INS.
    728   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
    729   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
    730   //  => ins $dst, $src, size, pos, $src1
    731   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
    732     return SDValue();
    733 
    734   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
    735   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
    736   ConstantSDNode *CN;
    737 
    738   // See if Op's first operand matches (and $src1 , mask0).
    739   if (And0.getOpcode() != ISD::AND)
    740     return SDValue();
    741 
    742   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
    743       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
    744     return SDValue();
    745 
    746   // See if Op's second operand matches (and (shl $src, pos), mask1).
    747   if (And1.getOpcode() != ISD::AND)
    748     return SDValue();
    749 
    750   if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
    751       !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
    752     return SDValue();
    753 
    754   // The shift masks must have the same position and size.
    755   if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
    756     return SDValue();
    757 
    758   SDValue Shl = And1.getOperand(0);
    759   if (Shl.getOpcode() != ISD::SHL)
    760     return SDValue();
    761 
    762   if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
    763     return SDValue();
    764 
    765   unsigned Shamt = CN->getZExtValue();
    766 
    767   // Return if the shift amount and the first bit position of mask are not the
    768   // same.
    769   EVT ValTy = N->getValueType(0);
    770   if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
    771     return SDValue();
    772 
    773   SDLoc DL(N);
    774   return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
    775                      DAG.getConstant(SMPos0, DL, MVT::i32),
    776                      DAG.getConstant(SMSize0, DL, MVT::i32),
    777                      And0.getOperand(0));
    778 }
    779 
    780 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
    781                                  TargetLowering::DAGCombinerInfo &DCI,
    782                                  const MipsSubtarget &Subtarget) {
    783   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
    784 
    785   if (DCI.isBeforeLegalizeOps())
    786     return SDValue();
    787 
    788   SDValue Add = N->getOperand(1);
    789 
    790   if (Add.getOpcode() != ISD::ADD)
    791     return SDValue();
    792 
    793   SDValue Lo = Add.getOperand(1);
    794 
    795   if ((Lo.getOpcode() != MipsISD::Lo) ||
    796       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
    797     return SDValue();
    798 
    799   EVT ValTy = N->getValueType(0);
    800   SDLoc DL(N);
    801 
    802   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
    803                              Add.getOperand(0));
    804   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
    805 }
    806 
    807 static SDValue performAssertZextCombine(SDNode *N, SelectionDAG &DAG,
    808                                         TargetLowering::DAGCombinerInfo &DCI,
    809                                         const MipsSubtarget &Subtarget) {
    810   SDValue N0 = N->getOperand(0);
    811   EVT NarrowerVT = cast<VTSDNode>(N->getOperand(1))->getVT();
    812 
    813   if (N0.getOpcode() != ISD::TRUNCATE)
    814     return SDValue();
    815 
    816   if (N0.getOperand(0).getOpcode() != ISD::AssertZext)
    817     return SDValue();
    818 
    819   // fold (AssertZext (trunc (AssertZext x))) -> (trunc (AssertZext x))
    820   // if the type of the extension of the innermost AssertZext node is
    821   // smaller from that of the outermost node, eg:
    822   // (AssertZext:i32 (trunc:i32 (AssertZext:i64 X, i32)), i8)
    823   //   -> (trunc:i32 (AssertZext X, i8))
    824   SDValue WiderAssertZext = N0.getOperand(0);
    825   EVT WiderVT = cast<VTSDNode>(WiderAssertZext->getOperand(1))->getVT();
    826 
    827   if (NarrowerVT.bitsLT(WiderVT)) {
    828     SDValue NewAssertZext = DAG.getNode(
    829         ISD::AssertZext, SDLoc(N), WiderAssertZext.getValueType(),
    830         WiderAssertZext.getOperand(0), DAG.getValueType(NarrowerVT));
    831     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0),
    832                        NewAssertZext);
    833   }
    834 
    835   return SDValue();
    836 }
    837 
    838 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
    839   const {
    840   SelectionDAG &DAG = DCI.DAG;
    841   unsigned Opc = N->getOpcode();
    842 
    843   switch (Opc) {
    844   default: break;
    845   case ISD::SDIVREM:
    846   case ISD::UDIVREM:
    847     return performDivRemCombine(N, DAG, DCI, Subtarget);
    848   case ISD::SELECT:
    849     return performSELECTCombine(N, DAG, DCI, Subtarget);
    850   case MipsISD::CMovFP_F:
    851   case MipsISD::CMovFP_T:
    852     return performCMovFPCombine(N, DAG, DCI, Subtarget);
    853   case ISD::AND:
    854     return performANDCombine(N, DAG, DCI, Subtarget);
    855   case ISD::OR:
    856     return performORCombine(N, DAG, DCI, Subtarget);
    857   case ISD::ADD:
    858     return performADDCombine(N, DAG, DCI, Subtarget);
    859   case ISD::AssertZext:
    860     return performAssertZextCombine(N, DAG, DCI, Subtarget);
    861   }
    862 
    863   return SDValue();
    864 }
    865 
    866 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
    867   return Subtarget.hasMips32();
    868 }
    869 
    870 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
    871   return Subtarget.hasMips32();
    872 }
    873 
    874 void
    875 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
    876                                           SmallVectorImpl<SDValue> &Results,
    877                                           SelectionDAG &DAG) const {
    878   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
    879 
    880   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
    881     Results.push_back(Res.getValue(I));
    882 }
    883 
    884 void
    885 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
    886                                        SmallVectorImpl<SDValue> &Results,
    887                                        SelectionDAG &DAG) const {
    888   return LowerOperationWrapper(N, Results, DAG);
    889 }
    890 
    891 SDValue MipsTargetLowering::
    892 LowerOperation(SDValue Op, SelectionDAG &DAG) const
    893 {
    894   switch (Op.getOpcode())
    895   {
    896   case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
    897   case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
    898   case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
    899   case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
    900   case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
    901   case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
    902   case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
    903   case ISD::SELECT:             return lowerSELECT(Op, DAG);
    904   case ISD::SETCC:              return lowerSETCC(Op, DAG);
    905   case ISD::VASTART:            return lowerVASTART(Op, DAG);
    906   case ISD::VAARG:              return lowerVAARG(Op, DAG);
    907   case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
    908   case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
    909   case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
    910   case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
    911   case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
    912   case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
    913   case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
    914   case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
    915   case ISD::LOAD:               return lowerLOAD(Op, DAG);
    916   case ISD::STORE:              return lowerSTORE(Op, DAG);
    917   case ISD::ADD:                return lowerADD(Op, DAG);
    918   case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
    919   }
    920   return SDValue();
    921 }
    922 
    923 //===----------------------------------------------------------------------===//
    924 //  Lower helper functions
    925 //===----------------------------------------------------------------------===//
    926 
    927 // addLiveIn - This helper function adds the specified physical register to the
    928 // MachineFunction as a live in value.  It also creates a corresponding
    929 // virtual register for it.
    930 static unsigned
    931 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
    932 {
    933   unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
    934   MF.getRegInfo().addLiveIn(PReg, VReg);
    935   return VReg;
    936 }
    937 
    938 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
    939                                               MachineBasicBlock &MBB,
    940                                               const TargetInstrInfo &TII,
    941                                               bool Is64Bit, bool IsMicroMips) {
    942   if (NoZeroDivCheck)
    943     return &MBB;
    944 
    945   // Insert instruction "teq $divisor_reg, $zero, 7".
    946   MachineBasicBlock::iterator I(MI);
    947   MachineInstrBuilder MIB;
    948   MachineOperand &Divisor = MI.getOperand(2);
    949   MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
    950                 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
    951             .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
    952             .addReg(Mips::ZERO)
    953             .addImm(7);
    954 
    955   // Use the 32-bit sub-register if this is a 64-bit division.
    956   if (Is64Bit)
    957     MIB->getOperand(0).setSubReg(Mips::sub_32);
    958 
    959   // Clear Divisor's kill flag.
    960   Divisor.setIsKill(false);
    961 
    962   // We would normally delete the original instruction here but in this case
    963   // we only needed to inject an additional instruction rather than replace it.
    964 
    965   return &MBB;
    966 }
    967 
    968 MachineBasicBlock *
    969 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
    970                                                 MachineBasicBlock *BB) const {
    971   switch (MI.getOpcode()) {
    972   default:
    973     llvm_unreachable("Unexpected instr type to insert");
    974   case Mips::ATOMIC_LOAD_ADD_I8:
    975     return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
    976   case Mips::ATOMIC_LOAD_ADD_I16:
    977     return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
    978   case Mips::ATOMIC_LOAD_ADD_I32:
    979     return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
    980   case Mips::ATOMIC_LOAD_ADD_I64:
    981     return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
    982 
    983   case Mips::ATOMIC_LOAD_AND_I8:
    984     return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
    985   case Mips::ATOMIC_LOAD_AND_I16:
    986     return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
    987   case Mips::ATOMIC_LOAD_AND_I32:
    988     return emitAtomicBinary(MI, BB, 4, Mips::AND);
    989   case Mips::ATOMIC_LOAD_AND_I64:
    990     return emitAtomicBinary(MI, BB, 8, Mips::AND64);
    991 
    992   case Mips::ATOMIC_LOAD_OR_I8:
    993     return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
    994   case Mips::ATOMIC_LOAD_OR_I16:
    995     return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
    996   case Mips::ATOMIC_LOAD_OR_I32:
    997     return emitAtomicBinary(MI, BB, 4, Mips::OR);
    998   case Mips::ATOMIC_LOAD_OR_I64:
    999     return emitAtomicBinary(MI, BB, 8, Mips::OR64);
   1000 
   1001   case Mips::ATOMIC_LOAD_XOR_I8:
   1002     return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
   1003   case Mips::ATOMIC_LOAD_XOR_I16:
   1004     return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
   1005   case Mips::ATOMIC_LOAD_XOR_I32:
   1006     return emitAtomicBinary(MI, BB, 4, Mips::XOR);
   1007   case Mips::ATOMIC_LOAD_XOR_I64:
   1008     return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
   1009 
   1010   case Mips::ATOMIC_LOAD_NAND_I8:
   1011     return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
   1012   case Mips::ATOMIC_LOAD_NAND_I16:
   1013     return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
   1014   case Mips::ATOMIC_LOAD_NAND_I32:
   1015     return emitAtomicBinary(MI, BB, 4, 0, true);
   1016   case Mips::ATOMIC_LOAD_NAND_I64:
   1017     return emitAtomicBinary(MI, BB, 8, 0, true);
   1018 
   1019   case Mips::ATOMIC_LOAD_SUB_I8:
   1020     return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
   1021   case Mips::ATOMIC_LOAD_SUB_I16:
   1022     return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
   1023   case Mips::ATOMIC_LOAD_SUB_I32:
   1024     return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
   1025   case Mips::ATOMIC_LOAD_SUB_I64:
   1026     return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
   1027 
   1028   case Mips::ATOMIC_SWAP_I8:
   1029     return emitAtomicBinaryPartword(MI, BB, 1, 0);
   1030   case Mips::ATOMIC_SWAP_I16:
   1031     return emitAtomicBinaryPartword(MI, BB, 2, 0);
   1032   case Mips::ATOMIC_SWAP_I32:
   1033     return emitAtomicBinary(MI, BB, 4, 0);
   1034   case Mips::ATOMIC_SWAP_I64:
   1035     return emitAtomicBinary(MI, BB, 8, 0);
   1036 
   1037   case Mips::ATOMIC_CMP_SWAP_I8:
   1038     return emitAtomicCmpSwapPartword(MI, BB, 1);
   1039   case Mips::ATOMIC_CMP_SWAP_I16:
   1040     return emitAtomicCmpSwapPartword(MI, BB, 2);
   1041   case Mips::ATOMIC_CMP_SWAP_I32:
   1042     return emitAtomicCmpSwap(MI, BB, 4);
   1043   case Mips::ATOMIC_CMP_SWAP_I64:
   1044     return emitAtomicCmpSwap(MI, BB, 8);
   1045   case Mips::PseudoSDIV:
   1046   case Mips::PseudoUDIV:
   1047   case Mips::DIV:
   1048   case Mips::DIVU:
   1049   case Mips::MOD:
   1050   case Mips::MODU:
   1051     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
   1052                                false);
   1053   case Mips::SDIV_MM_Pseudo:
   1054   case Mips::UDIV_MM_Pseudo:
   1055   case Mips::SDIV_MM:
   1056   case Mips::UDIV_MM:
   1057   case Mips::DIV_MMR6:
   1058   case Mips::DIVU_MMR6:
   1059   case Mips::MOD_MMR6:
   1060   case Mips::MODU_MMR6:
   1061     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
   1062   case Mips::PseudoDSDIV:
   1063   case Mips::PseudoDUDIV:
   1064   case Mips::DDIV:
   1065   case Mips::DDIVU:
   1066   case Mips::DMOD:
   1067   case Mips::DMODU:
   1068     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
   1069   case Mips::DDIV_MM64R6:
   1070   case Mips::DDIVU_MM64R6:
   1071   case Mips::DMOD_MM64R6:
   1072   case Mips::DMODU_MM64R6:
   1073     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, true);
   1074   case Mips::SEL_D:
   1075   case Mips::SEL_D_MMR6:
   1076     return emitSEL_D(MI, BB);
   1077 
   1078   case Mips::PseudoSELECT_I:
   1079   case Mips::PseudoSELECT_I64:
   1080   case Mips::PseudoSELECT_S:
   1081   case Mips::PseudoSELECT_D32:
   1082   case Mips::PseudoSELECT_D64:
   1083     return emitPseudoSELECT(MI, BB, false, Mips::BNE);
   1084   case Mips::PseudoSELECTFP_F_I:
   1085   case Mips::PseudoSELECTFP_F_I64:
   1086   case Mips::PseudoSELECTFP_F_S:
   1087   case Mips::PseudoSELECTFP_F_D32:
   1088   case Mips::PseudoSELECTFP_F_D64:
   1089     return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
   1090   case Mips::PseudoSELECTFP_T_I:
   1091   case Mips::PseudoSELECTFP_T_I64:
   1092   case Mips::PseudoSELECTFP_T_S:
   1093   case Mips::PseudoSELECTFP_T_D32:
   1094   case Mips::PseudoSELECTFP_T_D64:
   1095     return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
   1096   }
   1097 }
   1098 
   1099 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
   1100 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
   1101 MachineBasicBlock *MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
   1102                                                         MachineBasicBlock *BB,
   1103                                                         unsigned Size,
   1104                                                         unsigned BinOpcode,
   1105                                                         bool Nand) const {
   1106   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
   1107 
   1108   MachineFunction *MF = BB->getParent();
   1109   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1110   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
   1111   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   1112   const bool ArePtrs64bit = ABI.ArePtrs64bit();
   1113   DebugLoc DL = MI.getDebugLoc();
   1114   unsigned LL, SC, AND, NOR, ZERO, BEQ;
   1115 
   1116   if (Size == 4) {
   1117     if (isMicroMips) {
   1118       LL = Mips::LL_MM;
   1119       SC = Mips::SC_MM;
   1120     } else {
   1121       LL = Subtarget.hasMips32r6()
   1122                ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
   1123                : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
   1124       SC = Subtarget.hasMips32r6()
   1125                ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
   1126                : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
   1127     }
   1128 
   1129     AND = Mips::AND;
   1130     NOR = Mips::NOR;
   1131     ZERO = Mips::ZERO;
   1132     BEQ = Mips::BEQ;
   1133   } else {
   1134     LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
   1135     SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
   1136     AND = Mips::AND64;
   1137     NOR = Mips::NOR64;
   1138     ZERO = Mips::ZERO_64;
   1139     BEQ = Mips::BEQ64;
   1140   }
   1141 
   1142   unsigned OldVal = MI.getOperand(0).getReg();
   1143   unsigned Ptr = MI.getOperand(1).getReg();
   1144   unsigned Incr = MI.getOperand(2).getReg();
   1145 
   1146   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1147   unsigned AndRes = RegInfo.createVirtualRegister(RC);
   1148   unsigned Success = RegInfo.createVirtualRegister(RC);
   1149 
   1150   // insert new blocks after the current block
   1151   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1152   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1153   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1154   MachineFunction::iterator It = ++BB->getIterator();
   1155   MF->insert(It, loopMBB);
   1156   MF->insert(It, exitMBB);
   1157 
   1158   // Transfer the remainder of BB and its successor edges to exitMBB.
   1159   exitMBB->splice(exitMBB->begin(), BB,
   1160                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1161   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1162 
   1163   //  thisMBB:
   1164   //    ...
   1165   //    fallthrough --> loopMBB
   1166   BB->addSuccessor(loopMBB);
   1167   loopMBB->addSuccessor(loopMBB);
   1168   loopMBB->addSuccessor(exitMBB);
   1169 
   1170   //  loopMBB:
   1171   //    ll oldval, 0(ptr)
   1172   //    <binop> storeval, oldval, incr
   1173   //    sc success, storeval, 0(ptr)
   1174   //    beq success, $0, loopMBB
   1175   BB = loopMBB;
   1176   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
   1177   if (Nand) {
   1178     //  and andres, oldval, incr
   1179     //  nor storeval, $0, andres
   1180     BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
   1181     BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
   1182   } else if (BinOpcode) {
   1183     //  <binop> storeval, oldval, incr
   1184     BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
   1185   } else {
   1186     StoreVal = Incr;
   1187   }
   1188   BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
   1189   BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
   1190 
   1191   MI.eraseFromParent(); // The instruction is gone now.
   1192 
   1193   return exitMBB;
   1194 }
   1195 
   1196 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
   1197     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
   1198     unsigned SrcReg) const {
   1199   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   1200   const DebugLoc &DL = MI.getDebugLoc();
   1201 
   1202   if (Subtarget.hasMips32r2() && Size == 1) {
   1203     BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
   1204     return BB;
   1205   }
   1206 
   1207   if (Subtarget.hasMips32r2() && Size == 2) {
   1208     BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
   1209     return BB;
   1210   }
   1211 
   1212   MachineFunction *MF = BB->getParent();
   1213   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1214   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1215   unsigned ScrReg = RegInfo.createVirtualRegister(RC);
   1216 
   1217   assert(Size < 32);
   1218   int64_t ShiftImm = 32 - (Size * 8);
   1219 
   1220   BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
   1221   BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
   1222 
   1223   return BB;
   1224 }
   1225 
   1226 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
   1227     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
   1228     bool Nand) const {
   1229   assert((Size == 1 || Size == 2) &&
   1230          "Unsupported size for EmitAtomicBinaryPartial.");
   1231 
   1232   MachineFunction *MF = BB->getParent();
   1233   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1234   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1235   const bool ArePtrs64bit = ABI.ArePtrs64bit();
   1236   const TargetRegisterClass *RCp =
   1237     getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
   1238   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   1239   DebugLoc DL = MI.getDebugLoc();
   1240 
   1241   unsigned Dest = MI.getOperand(0).getReg();
   1242   unsigned Ptr = MI.getOperand(1).getReg();
   1243   unsigned Incr = MI.getOperand(2).getReg();
   1244 
   1245   unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
   1246   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
   1247   unsigned Mask = RegInfo.createVirtualRegister(RC);
   1248   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
   1249   unsigned NewVal = RegInfo.createVirtualRegister(RC);
   1250   unsigned OldVal = RegInfo.createVirtualRegister(RC);
   1251   unsigned Incr2 = RegInfo.createVirtualRegister(RC);
   1252   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
   1253   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
   1254   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
   1255   unsigned AndRes = RegInfo.createVirtualRegister(RC);
   1256   unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
   1257   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
   1258   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1259   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
   1260   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
   1261   unsigned Success = RegInfo.createVirtualRegister(RC);
   1262 
   1263   unsigned LL, SC;
   1264   if (isMicroMips) {
   1265     LL = Mips::LL_MM;
   1266     SC = Mips::SC_MM;
   1267   } else {
   1268     LL = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
   1269                                  : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
   1270     SC = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
   1271                                  : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
   1272   }
   1273 
   1274   // insert new blocks after the current block
   1275   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1276   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1277   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1278   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1279   MachineFunction::iterator It = ++BB->getIterator();
   1280   MF->insert(It, loopMBB);
   1281   MF->insert(It, sinkMBB);
   1282   MF->insert(It, exitMBB);
   1283 
   1284   // Transfer the remainder of BB and its successor edges to exitMBB.
   1285   exitMBB->splice(exitMBB->begin(), BB,
   1286                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1287   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1288 
   1289   BB->addSuccessor(loopMBB);
   1290   loopMBB->addSuccessor(loopMBB);
   1291   loopMBB->addSuccessor(sinkMBB);
   1292   sinkMBB->addSuccessor(exitMBB);
   1293 
   1294   //  thisMBB:
   1295   //    addiu   masklsb2,$0,-4                # 0xfffffffc
   1296   //    and     alignedaddr,ptr,masklsb2
   1297   //    andi    ptrlsb2,ptr,3
   1298   //    sll     shiftamt,ptrlsb2,3
   1299   //    ori     maskupper,$0,255               # 0xff
   1300   //    sll     mask,maskupper,shiftamt
   1301   //    nor     mask2,$0,mask
   1302   //    sll     incr2,incr,shiftamt
   1303 
   1304   int64_t MaskImm = (Size == 1) ? 255 : 65535;
   1305   BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
   1306     .addReg(ABI.GetNullPtr()).addImm(-4);
   1307   BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
   1308     .addReg(Ptr).addReg(MaskLSB2);
   1309   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
   1310       .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
   1311   if (Subtarget.isLittle()) {
   1312     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
   1313   } else {
   1314     unsigned Off = RegInfo.createVirtualRegister(RC);
   1315     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
   1316       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
   1317     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
   1318   }
   1319   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
   1320     .addReg(Mips::ZERO).addImm(MaskImm);
   1321   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
   1322     .addReg(MaskUpper).addReg(ShiftAmt);
   1323   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
   1324   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
   1325 
   1326   // atomic.load.binop
   1327   // loopMBB:
   1328   //   ll      oldval,0(alignedaddr)
   1329   //   binop   binopres,oldval,incr2
   1330   //   and     newval,binopres,mask
   1331   //   and     maskedoldval0,oldval,mask2
   1332   //   or      storeval,maskedoldval0,newval
   1333   //   sc      success,storeval,0(alignedaddr)
   1334   //   beq     success,$0,loopMBB
   1335 
   1336   // atomic.swap
   1337   // loopMBB:
   1338   //   ll      oldval,0(alignedaddr)
   1339   //   and     newval,incr2,mask
   1340   //   and     maskedoldval0,oldval,mask2
   1341   //   or      storeval,maskedoldval0,newval
   1342   //   sc      success,storeval,0(alignedaddr)
   1343   //   beq     success,$0,loopMBB
   1344 
   1345   BB = loopMBB;
   1346   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
   1347   if (Nand) {
   1348     //  and andres, oldval, incr2
   1349     //  nor binopres, $0, andres
   1350     //  and newval, binopres, mask
   1351     BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
   1352     BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
   1353       .addReg(Mips::ZERO).addReg(AndRes);
   1354     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
   1355   } else if (BinOpcode) {
   1356     //  <binop> binopres, oldval, incr2
   1357     //  and newval, binopres, mask
   1358     BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
   1359     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
   1360   } else { // atomic.swap
   1361     //  and newval, incr2, mask
   1362     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
   1363   }
   1364 
   1365   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
   1366     .addReg(OldVal).addReg(Mask2);
   1367   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
   1368     .addReg(MaskedOldVal0).addReg(NewVal);
   1369   BuildMI(BB, DL, TII->get(SC), Success)
   1370     .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
   1371   BuildMI(BB, DL, TII->get(Mips::BEQ))
   1372     .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
   1373 
   1374   //  sinkMBB:
   1375   //    and     maskedoldval1,oldval,mask
   1376   //    srl     srlres,maskedoldval1,shiftamt
   1377   //    sign_extend dest,srlres
   1378   BB = sinkMBB;
   1379 
   1380   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
   1381     .addReg(OldVal).addReg(Mask);
   1382   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
   1383       .addReg(MaskedOldVal1).addReg(ShiftAmt);
   1384   BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
   1385 
   1386   MI.eraseFromParent(); // The instruction is gone now.
   1387 
   1388   return exitMBB;
   1389 }
   1390 
   1391 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
   1392                                                          MachineBasicBlock *BB,
   1393                                                          unsigned Size) const {
   1394   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
   1395 
   1396   MachineFunction *MF = BB->getParent();
   1397   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1398   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
   1399   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   1400   const bool ArePtrs64bit = ABI.ArePtrs64bit();
   1401   DebugLoc DL = MI.getDebugLoc();
   1402   unsigned LL, SC, ZERO, BNE, BEQ;
   1403 
   1404   if (Size == 4) {
   1405     if (isMicroMips) {
   1406       LL = Mips::LL_MM;
   1407       SC = Mips::SC_MM;
   1408     } else {
   1409       LL = Subtarget.hasMips32r6()
   1410                ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
   1411                : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
   1412       SC = Subtarget.hasMips32r6()
   1413                ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
   1414                : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
   1415     }
   1416 
   1417     ZERO = Mips::ZERO;
   1418     BNE = Mips::BNE;
   1419     BEQ = Mips::BEQ;
   1420   } else {
   1421     LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
   1422     SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
   1423     ZERO = Mips::ZERO_64;
   1424     BNE = Mips::BNE64;
   1425     BEQ = Mips::BEQ64;
   1426   }
   1427 
   1428   unsigned Dest = MI.getOperand(0).getReg();
   1429   unsigned Ptr = MI.getOperand(1).getReg();
   1430   unsigned OldVal = MI.getOperand(2).getReg();
   1431   unsigned NewVal = MI.getOperand(3).getReg();
   1432 
   1433   unsigned Success = RegInfo.createVirtualRegister(RC);
   1434 
   1435   // insert new blocks after the current block
   1436   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1437   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1438   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1439   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1440   MachineFunction::iterator It = ++BB->getIterator();
   1441   MF->insert(It, loop1MBB);
   1442   MF->insert(It, loop2MBB);
   1443   MF->insert(It, exitMBB);
   1444 
   1445   // Transfer the remainder of BB and its successor edges to exitMBB.
   1446   exitMBB->splice(exitMBB->begin(), BB,
   1447                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1448   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1449 
   1450   //  thisMBB:
   1451   //    ...
   1452   //    fallthrough --> loop1MBB
   1453   BB->addSuccessor(loop1MBB);
   1454   loop1MBB->addSuccessor(exitMBB);
   1455   loop1MBB->addSuccessor(loop2MBB);
   1456   loop2MBB->addSuccessor(loop1MBB);
   1457   loop2MBB->addSuccessor(exitMBB);
   1458 
   1459   // loop1MBB:
   1460   //   ll dest, 0(ptr)
   1461   //   bne dest, oldval, exitMBB
   1462   BB = loop1MBB;
   1463   BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
   1464   BuildMI(BB, DL, TII->get(BNE))
   1465     .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
   1466 
   1467   // loop2MBB:
   1468   //   sc success, newval, 0(ptr)
   1469   //   beq success, $0, loop1MBB
   1470   BB = loop2MBB;
   1471   BuildMI(BB, DL, TII->get(SC), Success)
   1472     .addReg(NewVal).addReg(Ptr).addImm(0);
   1473   BuildMI(BB, DL, TII->get(BEQ))
   1474     .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
   1475 
   1476   MI.eraseFromParent(); // The instruction is gone now.
   1477 
   1478   return exitMBB;
   1479 }
   1480 
   1481 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
   1482     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
   1483   assert((Size == 1 || Size == 2) &&
   1484       "Unsupported size for EmitAtomicCmpSwapPartial.");
   1485 
   1486   MachineFunction *MF = BB->getParent();
   1487   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1488   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1489   const bool ArePtrs64bit = ABI.ArePtrs64bit();
   1490   const TargetRegisterClass *RCp =
   1491     getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
   1492   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   1493   DebugLoc DL = MI.getDebugLoc();
   1494 
   1495   unsigned Dest = MI.getOperand(0).getReg();
   1496   unsigned Ptr = MI.getOperand(1).getReg();
   1497   unsigned CmpVal = MI.getOperand(2).getReg();
   1498   unsigned NewVal = MI.getOperand(3).getReg();
   1499 
   1500   unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
   1501   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
   1502   unsigned Mask = RegInfo.createVirtualRegister(RC);
   1503   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
   1504   unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
   1505   unsigned OldVal = RegInfo.createVirtualRegister(RC);
   1506   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
   1507   unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
   1508   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
   1509   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
   1510   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
   1511   unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
   1512   unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
   1513   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
   1514   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1515   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
   1516   unsigned Success = RegInfo.createVirtualRegister(RC);
   1517   unsigned LL, SC;
   1518 
   1519   if (isMicroMips) {
   1520     LL = Mips::LL_MM;
   1521     SC = Mips::SC_MM;
   1522   } else {
   1523     LL = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::LL64_R6 : Mips::LL_R6)
   1524                                  : (ArePtrs64bit ? Mips::LL64 : Mips::LL);
   1525     SC = Subtarget.hasMips32r6() ? (ArePtrs64bit ? Mips::SC64_R6 : Mips::SC_R6)
   1526                                  : (ArePtrs64bit ? Mips::SC64 : Mips::SC);
   1527   }
   1528 
   1529   // insert new blocks after the current block
   1530   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1531   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1532   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1533   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1534   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1535   MachineFunction::iterator It = ++BB->getIterator();
   1536   MF->insert(It, loop1MBB);
   1537   MF->insert(It, loop2MBB);
   1538   MF->insert(It, sinkMBB);
   1539   MF->insert(It, exitMBB);
   1540 
   1541   // Transfer the remainder of BB and its successor edges to exitMBB.
   1542   exitMBB->splice(exitMBB->begin(), BB,
   1543                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1544   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1545 
   1546   BB->addSuccessor(loop1MBB);
   1547   loop1MBB->addSuccessor(sinkMBB);
   1548   loop1MBB->addSuccessor(loop2MBB);
   1549   loop2MBB->addSuccessor(loop1MBB);
   1550   loop2MBB->addSuccessor(sinkMBB);
   1551   sinkMBB->addSuccessor(exitMBB);
   1552 
   1553   // FIXME: computation of newval2 can be moved to loop2MBB.
   1554   //  thisMBB:
   1555   //    addiu   masklsb2,$0,-4                # 0xfffffffc
   1556   //    and     alignedaddr,ptr,masklsb2
   1557   //    andi    ptrlsb2,ptr,3
   1558   //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
   1559   //    sll     shiftamt,ptrlsb2,3
   1560   //    ori     maskupper,$0,255               # 0xff
   1561   //    sll     mask,maskupper,shiftamt
   1562   //    nor     mask2,$0,mask
   1563   //    andi    maskedcmpval,cmpval,255
   1564   //    sll     shiftedcmpval,maskedcmpval,shiftamt
   1565   //    andi    maskednewval,newval,255
   1566   //    sll     shiftednewval,maskednewval,shiftamt
   1567   int64_t MaskImm = (Size == 1) ? 255 : 65535;
   1568   BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
   1569     .addReg(ABI.GetNullPtr()).addImm(-4);
   1570   BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
   1571     .addReg(Ptr).addReg(MaskLSB2);
   1572   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
   1573       .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
   1574   if (Subtarget.isLittle()) {
   1575     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
   1576   } else {
   1577     unsigned Off = RegInfo.createVirtualRegister(RC);
   1578     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
   1579       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
   1580     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
   1581   }
   1582   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
   1583     .addReg(Mips::ZERO).addImm(MaskImm);
   1584   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
   1585     .addReg(MaskUpper).addReg(ShiftAmt);
   1586   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
   1587   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
   1588     .addReg(CmpVal).addImm(MaskImm);
   1589   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
   1590     .addReg(MaskedCmpVal).addReg(ShiftAmt);
   1591   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
   1592     .addReg(NewVal).addImm(MaskImm);
   1593   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
   1594     .addReg(MaskedNewVal).addReg(ShiftAmt);
   1595 
   1596   //  loop1MBB:
   1597   //    ll      oldval,0(alginedaddr)
   1598   //    and     maskedoldval0,oldval,mask
   1599   //    bne     maskedoldval0,shiftedcmpval,sinkMBB
   1600   BB = loop1MBB;
   1601   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
   1602   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
   1603     .addReg(OldVal).addReg(Mask);
   1604   BuildMI(BB, DL, TII->get(Mips::BNE))
   1605     .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
   1606 
   1607   //  loop2MBB:
   1608   //    and     maskedoldval1,oldval,mask2
   1609   //    or      storeval,maskedoldval1,shiftednewval
   1610   //    sc      success,storeval,0(alignedaddr)
   1611   //    beq     success,$0,loop1MBB
   1612   BB = loop2MBB;
   1613   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
   1614     .addReg(OldVal).addReg(Mask2);
   1615   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
   1616     .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
   1617   BuildMI(BB, DL, TII->get(SC), Success)
   1618       .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
   1619   BuildMI(BB, DL, TII->get(Mips::BEQ))
   1620       .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
   1621 
   1622   //  sinkMBB:
   1623   //    srl     srlres,maskedoldval0,shiftamt
   1624   //    sign_extend dest,srlres
   1625   BB = sinkMBB;
   1626 
   1627   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
   1628       .addReg(MaskedOldVal0).addReg(ShiftAmt);
   1629   BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
   1630 
   1631   MI.eraseFromParent(); // The instruction is gone now.
   1632 
   1633   return exitMBB;
   1634 }
   1635 
   1636 MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr &MI,
   1637                                                  MachineBasicBlock *BB) const {
   1638   MachineFunction *MF = BB->getParent();
   1639   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   1640   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   1641   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1642   DebugLoc DL = MI.getDebugLoc();
   1643   MachineBasicBlock::iterator II(MI);
   1644 
   1645   unsigned Fc = MI.getOperand(1).getReg();
   1646   const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
   1647 
   1648   unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
   1649 
   1650   BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
   1651       .addImm(0)
   1652       .addReg(Fc)
   1653       .addImm(Mips::sub_lo);
   1654 
   1655   // We don't erase the original instruction, we just replace the condition
   1656   // register with the 64-bit super-register.
   1657   MI.getOperand(1).setReg(Fc2);
   1658 
   1659   return BB;
   1660 }
   1661 
   1662 //===----------------------------------------------------------------------===//
   1663 //  Misc Lower Operation implementation
   1664 //===----------------------------------------------------------------------===//
   1665 SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   1666   SDValue Chain = Op.getOperand(0);
   1667   SDValue Table = Op.getOperand(1);
   1668   SDValue Index = Op.getOperand(2);
   1669   SDLoc DL(Op);
   1670   auto &TD = DAG.getDataLayout();
   1671   EVT PTy = getPointerTy(TD);
   1672   unsigned EntrySize =
   1673       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
   1674 
   1675   Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
   1676                       DAG.getConstant(EntrySize, DL, PTy));
   1677   SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
   1678 
   1679   EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
   1680   Addr =
   1681       DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
   1682                      MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
   1683                      MemVT, false, false, false, 0);
   1684   Chain = Addr.getValue(1);
   1685 
   1686   if (isPositionIndependent() || ABI.IsN64()) {
   1687     // For PIC, the sequence is:
   1688     // BRIND(load(Jumptable + index) + RelocBase)
   1689     // RelocBase can be JumpTable, GOT or some sort of global base.
   1690     Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
   1691                        getPICJumpTableRelocBase(Table, DAG));
   1692   }
   1693 
   1694   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
   1695 }
   1696 
   1697 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   1698   // The first operand is the chain, the second is the condition, the third is
   1699   // the block to branch to if the condition is true.
   1700   SDValue Chain = Op.getOperand(0);
   1701   SDValue Dest = Op.getOperand(2);
   1702   SDLoc DL(Op);
   1703 
   1704   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
   1705   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
   1706 
   1707   // Return if flag is not set by a floating point comparison.
   1708   if (CondRes.getOpcode() != MipsISD::FPCmp)
   1709     return Op;
   1710 
   1711   SDValue CCNode  = CondRes.getOperand(2);
   1712   Mips::CondCode CC =
   1713     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
   1714   unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
   1715   SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
   1716   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
   1717   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
   1718                      FCC0, Dest, CondRes);
   1719 }
   1720 
   1721 SDValue MipsTargetLowering::
   1722 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
   1723 {
   1724   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
   1725   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
   1726 
   1727   // Return if flag is not set by a floating point comparison.
   1728   if (Cond.getOpcode() != MipsISD::FPCmp)
   1729     return Op;
   1730 
   1731   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
   1732                       SDLoc(Op));
   1733 }
   1734 
   1735 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1736   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
   1737   SDValue Cond = createFPCmp(DAG, Op);
   1738 
   1739   assert(Cond.getOpcode() == MipsISD::FPCmp &&
   1740          "Floating point operand expected.");
   1741 
   1742   SDLoc DL(Op);
   1743   SDValue True  = DAG.getConstant(1, DL, MVT::i32);
   1744   SDValue False = DAG.getConstant(0, DL, MVT::i32);
   1745 
   1746   return createCMovFP(DAG, Cond, True, False, DL);
   1747 }
   1748 
   1749 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
   1750                                                SelectionDAG &DAG) const {
   1751   EVT Ty = Op.getValueType();
   1752   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
   1753   const GlobalValue *GV = N->getGlobal();
   1754 
   1755   if (!isPositionIndependent() && !ABI.IsN64()) {
   1756     const MipsTargetObjectFile *TLOF =
   1757         static_cast<const MipsTargetObjectFile *>(
   1758             getTargetMachine().getObjFileLowering());
   1759     if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine()))
   1760       // %gp_rel relocation
   1761       return getAddrGPRel(N, SDLoc(N), Ty, DAG);
   1762 
   1763     // %hi/%lo relocation
   1764     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
   1765   }
   1766 
   1767   // Every other architecture would use shouldAssumeDSOLocal in here, but
   1768   // mips is special.
   1769   // * In PIC code mips requires got loads even for local statics!
   1770   // * To save on got entries, for local statics the got entry contains the
   1771   //   page and an additional add instruction takes care of the low bits.
   1772   // * It is legal to access a hidden symbol with a non hidden undefined,
   1773   //   so one cannot guarantee that all access to a hidden symbol will know
   1774   //   it is hidden.
   1775   // * Mips linkers don't support creating a page and a full got entry for
   1776   //   the same symbol.
   1777   // * Given all that, we have to use a full got entry for hidden symbols :-(
   1778   if (GV->hasLocalLinkage())
   1779     return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
   1780 
   1781   if (LargeGOT)
   1782     return getAddrGlobalLargeGOT(
   1783         N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
   1784         DAG.getEntryNode(),
   1785         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   1786 
   1787   return getAddrGlobal(
   1788       N, SDLoc(N), Ty, DAG,
   1789       (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
   1790       DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   1791 }
   1792 
   1793 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
   1794                                               SelectionDAG &DAG) const {
   1795   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
   1796   EVT Ty = Op.getValueType();
   1797 
   1798   if (!isPositionIndependent() && !ABI.IsN64())
   1799     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
   1800 
   1801   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
   1802 }
   1803 
   1804 SDValue MipsTargetLowering::
   1805 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
   1806 {
   1807   // If the relocation model is PIC, use the General Dynamic TLS Model or
   1808   // Local Dynamic TLS model, otherwise use the Initial Exec or
   1809   // Local Exec TLS Model.
   1810 
   1811   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   1812   if (DAG.getTarget().Options.EmulatedTLS)
   1813     return LowerToTLSEmulatedModel(GA, DAG);
   1814 
   1815   SDLoc DL(GA);
   1816   const GlobalValue *GV = GA->getGlobal();
   1817   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   1818 
   1819   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
   1820 
   1821   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
   1822     // General Dynamic and Local Dynamic TLS Model.
   1823     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
   1824                                                       : MipsII::MO_TLSGD;
   1825 
   1826     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
   1827     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
   1828                                    getGlobalReg(DAG, PtrVT), TGA);
   1829     unsigned PtrSize = PtrVT.getSizeInBits();
   1830     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
   1831 
   1832     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
   1833 
   1834     ArgListTy Args;
   1835     ArgListEntry Entry;
   1836     Entry.Node = Argument;
   1837     Entry.Ty = PtrTy;
   1838     Args.push_back(Entry);
   1839 
   1840     TargetLowering::CallLoweringInfo CLI(DAG);
   1841     CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
   1842       .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
   1843     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   1844 
   1845     SDValue Ret = CallResult.first;
   1846 
   1847     if (model != TLSModel::LocalDynamic)
   1848       return Ret;
   1849 
   1850     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1851                                                MipsII::MO_DTPREL_HI);
   1852     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
   1853     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1854                                                MipsII::MO_DTPREL_LO);
   1855     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
   1856     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
   1857     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
   1858   }
   1859 
   1860   SDValue Offset;
   1861   if (model == TLSModel::InitialExec) {
   1862     // Initial Exec TLS Model
   1863     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1864                                              MipsII::MO_GOTTPREL);
   1865     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
   1866                       TGA);
   1867     Offset = DAG.getLoad(PtrVT, DL,
   1868                          DAG.getEntryNode(), TGA, MachinePointerInfo(),
   1869                          false, false, false, 0);
   1870   } else {
   1871     // Local Exec TLS Model
   1872     assert(model == TLSModel::LocalExec);
   1873     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1874                                                MipsII::MO_TPREL_HI);
   1875     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1876                                                MipsII::MO_TPREL_LO);
   1877     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
   1878     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
   1879     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1880   }
   1881 
   1882   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
   1883   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
   1884 }
   1885 
   1886 SDValue MipsTargetLowering::
   1887 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
   1888 {
   1889   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
   1890   EVT Ty = Op.getValueType();
   1891 
   1892   if (!isPositionIndependent() && !ABI.IsN64())
   1893     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
   1894 
   1895   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
   1896 }
   1897 
   1898 SDValue MipsTargetLowering::
   1899 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
   1900 {
   1901   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
   1902   EVT Ty = Op.getValueType();
   1903 
   1904   if (!isPositionIndependent() && !ABI.IsN64()) {
   1905     const MipsTargetObjectFile *TLOF =
   1906         static_cast<const MipsTargetObjectFile *>(
   1907             getTargetMachine().getObjFileLowering());
   1908 
   1909     if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
   1910                                        getTargetMachine()))
   1911       // %gp_rel relocation
   1912       return getAddrGPRel(N, SDLoc(N), Ty, DAG);
   1913 
   1914     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
   1915   }
   1916 
   1917   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
   1918 }
   1919 
   1920 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   1921   MachineFunction &MF = DAG.getMachineFunction();
   1922   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
   1923 
   1924   SDLoc DL(Op);
   1925   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1926                                  getPointerTy(MF.getDataLayout()));
   1927 
   1928   // vastart just stores the address of the VarArgsFrameIndex slot into the
   1929   // memory location argument.
   1930   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1931   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
   1932                       MachinePointerInfo(SV), false, false, 0);
   1933 }
   1934 
   1935 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   1936   SDNode *Node = Op.getNode();
   1937   EVT VT = Node->getValueType(0);
   1938   SDValue Chain = Node->getOperand(0);
   1939   SDValue VAListPtr = Node->getOperand(1);
   1940   unsigned Align = Node->getConstantOperandVal(3);
   1941   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   1942   SDLoc DL(Node);
   1943   unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
   1944 
   1945   SDValue VAListLoad =
   1946       DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, VAListPtr,
   1947                   MachinePointerInfo(SV), false, false, false, 0);
   1948   SDValue VAList = VAListLoad;
   1949 
   1950   // Re-align the pointer if necessary.
   1951   // It should only ever be necessary for 64-bit types on O32 since the minimum
   1952   // argument alignment is the same as the maximum type alignment for N32/N64.
   1953   //
   1954   // FIXME: We currently align too often. The code generator doesn't notice
   1955   //        when the pointer is still aligned from the last va_arg (or pair of
   1956   //        va_args for the i64 on O32 case).
   1957   if (Align > getMinStackArgumentAlignment()) {
   1958     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
   1959 
   1960     VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
   1961                          DAG.getConstant(Align - 1, DL, VAList.getValueType()));
   1962 
   1963     VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
   1964                          DAG.getConstant(-(int64_t)Align, DL,
   1965                                          VAList.getValueType()));
   1966   }
   1967 
   1968   // Increment the pointer, VAList, to the next vaarg.
   1969   auto &TD = DAG.getDataLayout();
   1970   unsigned ArgSizeInBytes =
   1971       TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
   1972   SDValue Tmp3 =
   1973       DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
   1974                   DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
   1975                                   DL, VAList.getValueType()));
   1976   // Store the incremented VAList to the legalized pointer
   1977   Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
   1978                       MachinePointerInfo(SV), false, false, 0);
   1979 
   1980   // In big-endian mode we must adjust the pointer when the load size is smaller
   1981   // than the argument slot size. We must also reduce the known alignment to
   1982   // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
   1983   // the correct half of the slot, and reduce the alignment from 8 (slot
   1984   // alignment) down to 4 (type alignment).
   1985   if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
   1986     unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
   1987     VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
   1988                          DAG.getIntPtrConstant(Adjustment, DL));
   1989   }
   1990   // Load the actual argument out of the pointer VAList
   1991   return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false,
   1992                      false, 0);
   1993 }
   1994 
   1995 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
   1996                                 bool HasExtractInsert) {
   1997   EVT TyX = Op.getOperand(0).getValueType();
   1998   EVT TyY = Op.getOperand(1).getValueType();
   1999   SDLoc DL(Op);
   2000   SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
   2001   SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
   2002   SDValue Res;
   2003 
   2004   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
   2005   // to i32.
   2006   SDValue X = (TyX == MVT::f32) ?
   2007     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
   2008     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
   2009                 Const1);
   2010   SDValue Y = (TyY == MVT::f32) ?
   2011     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
   2012     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
   2013                 Const1);
   2014 
   2015   if (HasExtractInsert) {
   2016     // ext  E, Y, 31, 1  ; extract bit31 of Y
   2017     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
   2018     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
   2019     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
   2020   } else {
   2021     // sll SllX, X, 1
   2022     // srl SrlX, SllX, 1
   2023     // srl SrlY, Y, 31
   2024     // sll SllY, SrlX, 31
   2025     // or  Or, SrlX, SllY
   2026     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
   2027     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
   2028     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
   2029     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
   2030     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
   2031   }
   2032 
   2033   if (TyX == MVT::f32)
   2034     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
   2035 
   2036   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   2037                              Op.getOperand(0),
   2038                              DAG.getConstant(0, DL, MVT::i32));
   2039   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
   2040 }
   2041 
   2042 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
   2043                                 bool HasExtractInsert) {
   2044   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
   2045   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
   2046   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
   2047   SDLoc DL(Op);
   2048   SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
   2049 
   2050   // Bitcast to integer nodes.
   2051   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
   2052   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
   2053 
   2054   if (HasExtractInsert) {
   2055     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
   2056     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
   2057     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
   2058                             DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
   2059 
   2060     if (WidthX > WidthY)
   2061       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
   2062     else if (WidthY > WidthX)
   2063       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
   2064 
   2065     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
   2066                             DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
   2067                             X);
   2068     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
   2069   }
   2070 
   2071   // (d)sll SllX, X, 1
   2072   // (d)srl SrlX, SllX, 1
   2073   // (d)srl SrlY, Y, width(Y)-1
   2074   // (d)sll SllY, SrlX, width(Y)-1
   2075   // or     Or, SrlX, SllY
   2076   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
   2077   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
   2078   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
   2079                              DAG.getConstant(WidthY - 1, DL, MVT::i32));
   2080 
   2081   if (WidthX > WidthY)
   2082     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
   2083   else if (WidthY > WidthX)
   2084     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
   2085 
   2086   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
   2087                              DAG.getConstant(WidthX - 1, DL, MVT::i32));
   2088   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
   2089   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
   2090 }
   2091 
   2092 SDValue
   2093 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   2094   if (Subtarget.isGP64bit())
   2095     return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
   2096 
   2097   return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
   2098 }
   2099 
   2100 SDValue MipsTargetLowering::
   2101 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   2102   // check the depth
   2103   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
   2104          "Frame address can only be determined for current frame.");
   2105 
   2106   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   2107   MFI->setFrameAddressIsTaken(true);
   2108   EVT VT = Op.getValueType();
   2109   SDLoc DL(Op);
   2110   SDValue FrameAddr = DAG.getCopyFromReg(
   2111       DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
   2112   return FrameAddr;
   2113 }
   2114 
   2115 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
   2116                                             SelectionDAG &DAG) const {
   2117   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   2118     return SDValue();
   2119 
   2120   // check the depth
   2121   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
   2122          "Return address can be determined only for current frame.");
   2123 
   2124   MachineFunction &MF = DAG.getMachineFunction();
   2125   MachineFrameInfo *MFI = MF.getFrameInfo();
   2126   MVT VT = Op.getSimpleValueType();
   2127   unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
   2128   MFI->setReturnAddressIsTaken(true);
   2129 
   2130   // Return RA, which contains the return address. Mark it an implicit live-in.
   2131   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
   2132   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
   2133 }
   2134 
   2135 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
   2136 // generated from __builtin_eh_return (offset, handler)
   2137 // The effect of this is to adjust the stack pointer by "offset"
   2138 // and then branch to "handler".
   2139 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
   2140                                                                      const {
   2141   MachineFunction &MF = DAG.getMachineFunction();
   2142   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   2143 
   2144   MipsFI->setCallsEhReturn();
   2145   SDValue Chain     = Op.getOperand(0);
   2146   SDValue Offset    = Op.getOperand(1);
   2147   SDValue Handler   = Op.getOperand(2);
   2148   SDLoc DL(Op);
   2149   EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
   2150 
   2151   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
   2152   // EH_RETURN nodes, so that instructions are emitted back-to-back.
   2153   unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
   2154   unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
   2155   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
   2156   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
   2157   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
   2158                      DAG.getRegister(OffsetReg, Ty),
   2159                      DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
   2160                      Chain.getValue(1));
   2161 }
   2162 
   2163 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
   2164                                               SelectionDAG &DAG) const {
   2165   // FIXME: Need pseudo-fence for 'singlethread' fences
   2166   // FIXME: Set SType for weaker fences where supported/appropriate.
   2167   unsigned SType = 0;
   2168   SDLoc DL(Op);
   2169   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
   2170                      DAG.getConstant(SType, DL, MVT::i32));
   2171 }
   2172 
   2173 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
   2174                                                 SelectionDAG &DAG) const {
   2175   SDLoc DL(Op);
   2176   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
   2177 
   2178   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
   2179   SDValue Shamt = Op.getOperand(2);
   2180   // if shamt < (VT.bits):
   2181   //  lo = (shl lo, shamt)
   2182   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
   2183   // else:
   2184   //  lo = 0
   2185   //  hi = (shl lo, shamt[4:0])
   2186   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
   2187                             DAG.getConstant(-1, DL, MVT::i32));
   2188   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
   2189                                       DAG.getConstant(1, DL, VT));
   2190   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
   2191   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
   2192   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
   2193   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
   2194   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
   2195                              DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
   2196   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
   2197                    DAG.getConstant(0, DL, VT), ShiftLeftLo);
   2198   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
   2199 
   2200   SDValue Ops[2] = {Lo, Hi};
   2201   return DAG.getMergeValues(Ops, DL);
   2202 }
   2203 
   2204 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
   2205                                                  bool IsSRA) const {
   2206   SDLoc DL(Op);
   2207   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
   2208   SDValue Shamt = Op.getOperand(2);
   2209   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
   2210 
   2211   // if shamt < (VT.bits):
   2212   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
   2213   //  if isSRA:
   2214   //    hi = (sra hi, shamt)
   2215   //  else:
   2216   //    hi = (srl hi, shamt)
   2217   // else:
   2218   //  if isSRA:
   2219   //   lo = (sra hi, shamt[4:0])
   2220   //   hi = (sra hi, 31)
   2221   //  else:
   2222   //   lo = (srl hi, shamt[4:0])
   2223   //   hi = 0
   2224   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
   2225                             DAG.getConstant(-1, DL, MVT::i32));
   2226   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
   2227                                      DAG.getConstant(1, DL, VT));
   2228   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
   2229   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
   2230   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
   2231   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
   2232                                      DL, VT, Hi, Shamt);
   2233   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
   2234                              DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
   2235   SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
   2236                             DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
   2237   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
   2238   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
   2239                    IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
   2240 
   2241   SDValue Ops[2] = {Lo, Hi};
   2242   return DAG.getMergeValues(Ops, DL);
   2243 }
   2244 
   2245 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
   2246                             SDValue Chain, SDValue Src, unsigned Offset) {
   2247   SDValue Ptr = LD->getBasePtr();
   2248   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
   2249   EVT BasePtrVT = Ptr.getValueType();
   2250   SDLoc DL(LD);
   2251   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
   2252 
   2253   if (Offset)
   2254     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
   2255                       DAG.getConstant(Offset, DL, BasePtrVT));
   2256 
   2257   SDValue Ops[] = { Chain, Ptr, Src };
   2258   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
   2259                                  LD->getMemOperand());
   2260 }
   2261 
   2262 // Expand an unaligned 32 or 64-bit integer load node.
   2263 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   2264   LoadSDNode *LD = cast<LoadSDNode>(Op);
   2265   EVT MemVT = LD->getMemoryVT();
   2266 
   2267   if (Subtarget.systemSupportsUnalignedAccess())
   2268     return Op;
   2269 
   2270   // Return if load is aligned or if MemVT is neither i32 nor i64.
   2271   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
   2272       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
   2273     return SDValue();
   2274 
   2275   bool IsLittle = Subtarget.isLittle();
   2276   EVT VT = Op.getValueType();
   2277   ISD::LoadExtType ExtType = LD->getExtensionType();
   2278   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
   2279 
   2280   assert((VT == MVT::i32) || (VT == MVT::i64));
   2281 
   2282   // Expand
   2283   //  (set dst, (i64 (load baseptr)))
   2284   // to
   2285   //  (set tmp, (ldl (add baseptr, 7), undef))
   2286   //  (set dst, (ldr baseptr, tmp))
   2287   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
   2288     SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
   2289                                IsLittle ? 7 : 0);
   2290     return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
   2291                         IsLittle ? 0 : 7);
   2292   }
   2293 
   2294   SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
   2295                              IsLittle ? 3 : 0);
   2296   SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
   2297                              IsLittle ? 0 : 3);
   2298 
   2299   // Expand
   2300   //  (set dst, (i32 (load baseptr))) or
   2301   //  (set dst, (i64 (sextload baseptr))) or
   2302   //  (set dst, (i64 (extload baseptr)))
   2303   // to
   2304   //  (set tmp, (lwl (add baseptr, 3), undef))
   2305   //  (set dst, (lwr baseptr, tmp))
   2306   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
   2307       (ExtType == ISD::EXTLOAD))
   2308     return LWR;
   2309 
   2310   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
   2311 
   2312   // Expand
   2313   //  (set dst, (i64 (zextload baseptr)))
   2314   // to
   2315   //  (set tmp0, (lwl (add baseptr, 3), undef))
   2316   //  (set tmp1, (lwr baseptr, tmp0))
   2317   //  (set tmp2, (shl tmp1, 32))
   2318   //  (set dst, (srl tmp2, 32))
   2319   SDLoc DL(LD);
   2320   SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
   2321   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
   2322   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
   2323   SDValue Ops[] = { SRL, LWR.getValue(1) };
   2324   return DAG.getMergeValues(Ops, DL);
   2325 }
   2326 
   2327 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
   2328                              SDValue Chain, unsigned Offset) {
   2329   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
   2330   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
   2331   SDLoc DL(SD);
   2332   SDVTList VTList = DAG.getVTList(MVT::Other);
   2333 
   2334   if (Offset)
   2335     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
   2336                       DAG.getConstant(Offset, DL, BasePtrVT));
   2337 
   2338   SDValue Ops[] = { Chain, Value, Ptr };
   2339   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
   2340                                  SD->getMemOperand());
   2341 }
   2342 
   2343 // Expand an unaligned 32 or 64-bit integer store node.
   2344 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
   2345                                       bool IsLittle) {
   2346   SDValue Value = SD->getValue(), Chain = SD->getChain();
   2347   EVT VT = Value.getValueType();
   2348 
   2349   // Expand
   2350   //  (store val, baseptr) or
   2351   //  (truncstore val, baseptr)
   2352   // to
   2353   //  (swl val, (add baseptr, 3))
   2354   //  (swr val, baseptr)
   2355   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
   2356     SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
   2357                                 IsLittle ? 3 : 0);
   2358     return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
   2359   }
   2360 
   2361   assert(VT == MVT::i64);
   2362 
   2363   // Expand
   2364   //  (store val, baseptr)
   2365   // to
   2366   //  (sdl val, (add baseptr, 7))
   2367   //  (sdr val, baseptr)
   2368   SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
   2369   return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
   2370 }
   2371 
   2372 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
   2373 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
   2374   SDValue Val = SD->getValue();
   2375 
   2376   if (Val.getOpcode() != ISD::FP_TO_SINT)
   2377     return SDValue();
   2378 
   2379   EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
   2380   SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
   2381                            Val.getOperand(0));
   2382 
   2383   return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
   2384                       SD->getPointerInfo(), SD->isVolatile(),
   2385                       SD->isNonTemporal(), SD->getAlignment());
   2386 }
   2387 
   2388 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   2389   StoreSDNode *SD = cast<StoreSDNode>(Op);
   2390   EVT MemVT = SD->getMemoryVT();
   2391 
   2392   // Lower unaligned integer stores.
   2393   if (!Subtarget.systemSupportsUnalignedAccess() &&
   2394       (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
   2395       ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
   2396     return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
   2397 
   2398   return lowerFP_TO_SINT_STORE(SD, DAG);
   2399 }
   2400 
   2401 SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
   2402   if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
   2403       || cast<ConstantSDNode>
   2404         (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
   2405       || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
   2406     return SDValue();
   2407 
   2408   // The pattern
   2409   //   (add (frameaddr 0), (frame_to_args_offset))
   2410   // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
   2411   //   (add FrameObject, 0)
   2412   // where FrameObject is a fixed StackObject with offset 0 which points to
   2413   // the old stack pointer.
   2414   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   2415   EVT ValTy = Op->getValueType(0);
   2416   int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
   2417   SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
   2418   SDLoc DL(Op);
   2419   return DAG.getNode(ISD::ADD, DL, ValTy, InArgsAddr,
   2420                      DAG.getConstant(0, DL, ValTy));
   2421 }
   2422 
   2423 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
   2424                                             SelectionDAG &DAG) const {
   2425   EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
   2426   SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
   2427                               Op.getOperand(0));
   2428   return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
   2429 }
   2430 
   2431 //===----------------------------------------------------------------------===//
   2432 //                      Calling Convention Implementation
   2433 //===----------------------------------------------------------------------===//
   2434 
   2435 //===----------------------------------------------------------------------===//
   2436 // TODO: Implement a generic logic using tblgen that can support this.
   2437 // Mips O32 ABI rules:
   2438 // ---
   2439 // i32 - Passed in A0, A1, A2, A3 and stack
   2440 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
   2441 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
   2442 // f64 - Only passed in two aliased f32 registers if no int reg has been used
   2443 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
   2444 //       not used, it must be shadowed. If only A3 is available, shadow it and
   2445 //       go to stack.
   2446 //
   2447 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
   2448 //===----------------------------------------------------------------------===//
   2449 
   2450 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
   2451                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
   2452                        CCState &State, ArrayRef<MCPhysReg> F64Regs) {
   2453   const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
   2454       State.getMachineFunction().getSubtarget());
   2455 
   2456   static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
   2457   static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
   2458 
   2459   // Do not process byval args here.
   2460   if (ArgFlags.isByVal())
   2461     return true;
   2462 
   2463   // Promote i8 and i16
   2464   if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
   2465     if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
   2466       LocVT = MVT::i32;
   2467       if (ArgFlags.isSExt())
   2468         LocInfo = CCValAssign::SExtUpper;
   2469       else if (ArgFlags.isZExt())
   2470         LocInfo = CCValAssign::ZExtUpper;
   2471       else
   2472         LocInfo = CCValAssign::AExtUpper;
   2473     }
   2474   }
   2475 
   2476   // Promote i8 and i16
   2477   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
   2478     LocVT = MVT::i32;
   2479     if (ArgFlags.isSExt())
   2480       LocInfo = CCValAssign::SExt;
   2481     else if (ArgFlags.isZExt())
   2482       LocInfo = CCValAssign::ZExt;
   2483     else
   2484       LocInfo = CCValAssign::AExt;
   2485   }
   2486 
   2487   unsigned Reg;
   2488 
   2489   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
   2490   // is true: function is vararg, argument is 3rd or higher, there is previous
   2491   // argument which is not f32 or f64.
   2492   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
   2493                                 State.getFirstUnallocated(F32Regs) != ValNo;
   2494   unsigned OrigAlign = ArgFlags.getOrigAlign();
   2495   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
   2496 
   2497   if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
   2498     Reg = State.AllocateReg(IntRegs);
   2499     // If this is the first part of an i64 arg,
   2500     // the allocated register must be either A0 or A2.
   2501     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
   2502       Reg = State.AllocateReg(IntRegs);
   2503     LocVT = MVT::i32;
   2504   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
   2505     // Allocate int register and shadow next int register. If first
   2506     // available register is Mips::A1 or Mips::A3, shadow it too.
   2507     Reg = State.AllocateReg(IntRegs);
   2508     if (Reg == Mips::A1 || Reg == Mips::A3)
   2509       Reg = State.AllocateReg(IntRegs);
   2510     State.AllocateReg(IntRegs);
   2511     LocVT = MVT::i32;
   2512   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
   2513     // we are guaranteed to find an available float register
   2514     if (ValVT == MVT::f32) {
   2515       Reg = State.AllocateReg(F32Regs);
   2516       // Shadow int register
   2517       State.AllocateReg(IntRegs);
   2518     } else {
   2519       Reg = State.AllocateReg(F64Regs);
   2520       // Shadow int registers
   2521       unsigned Reg2 = State.AllocateReg(IntRegs);
   2522       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
   2523         State.AllocateReg(IntRegs);
   2524       State.AllocateReg(IntRegs);
   2525     }
   2526   } else
   2527     llvm_unreachable("Cannot handle this ValVT.");
   2528 
   2529   if (!Reg) {
   2530     unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
   2531                                           OrigAlign);
   2532     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
   2533   } else
   2534     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
   2535 
   2536   return false;
   2537 }
   2538 
   2539 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
   2540                             MVT LocVT, CCValAssign::LocInfo LocInfo,
   2541                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
   2542   static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
   2543 
   2544   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
   2545 }
   2546 
   2547 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
   2548                             MVT LocVT, CCValAssign::LocInfo LocInfo,
   2549                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
   2550   static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
   2551 
   2552   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
   2553 }
   2554 
   2555 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
   2556                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
   2557                        CCState &State) LLVM_ATTRIBUTE_UNUSED;
   2558 
   2559 #include "MipsGenCallingConv.inc"
   2560 
   2561 //===----------------------------------------------------------------------===//
   2562 //                  Call Calling Convention Implementation
   2563 //===----------------------------------------------------------------------===//
   2564 
   2565 // Return next O32 integer argument register.
   2566 static unsigned getNextIntArgReg(unsigned Reg) {
   2567   assert((Reg == Mips::A0) || (Reg == Mips::A2));
   2568   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
   2569 }
   2570 
   2571 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
   2572                                            SDValue Chain, SDValue Arg,
   2573                                            const SDLoc &DL, bool IsTailCall,
   2574                                            SelectionDAG &DAG) const {
   2575   if (!IsTailCall) {
   2576     SDValue PtrOff =
   2577         DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
   2578                     DAG.getIntPtrConstant(Offset, DL));
   2579     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
   2580                         false, 0);
   2581   }
   2582 
   2583   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   2584   int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
   2585   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   2586   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
   2587                       /*isVolatile=*/ true, false, 0);
   2588 }
   2589 
   2590 void MipsTargetLowering::
   2591 getOpndList(SmallVectorImpl<SDValue> &Ops,
   2592             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   2593             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
   2594             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
   2595             SDValue Chain) const {
   2596   // Insert node "GP copy globalreg" before call to function.
   2597   //
   2598   // R_MIPS_CALL* operators (emitted when non-internal functions are called
   2599   // in PIC mode) allow symbols to be resolved via lazy binding.
   2600   // The lazy binding stub requires GP to point to the GOT.
   2601   // Note that we don't need GP to point to the GOT for indirect calls
   2602   // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
   2603   // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
   2604   // used for the function (that is, Mips linker doesn't generate lazy binding
   2605   // stub for a function whose address is taken in the program).
   2606   if (IsPICCall && !InternalLinkage && IsCallReloc) {
   2607     unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
   2608     EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
   2609     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
   2610   }
   2611 
   2612   // Build a sequence of copy-to-reg nodes chained together with token
   2613   // chain and flag operands which copy the outgoing args into registers.
   2614   // The InFlag in necessary since all emitted instructions must be
   2615   // stuck together.
   2616   SDValue InFlag;
   2617 
   2618   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2619     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
   2620                                  RegsToPass[i].second, InFlag);
   2621     InFlag = Chain.getValue(1);
   2622   }
   2623 
   2624   // Add argument registers to the end of the list so that they are
   2625   // known live into the call.
   2626   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2627     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
   2628                                       RegsToPass[i].second.getValueType()));
   2629 
   2630   // Add a register mask operand representing the call-preserved registers.
   2631   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   2632   const uint32_t *Mask =
   2633       TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
   2634   assert(Mask && "Missing call preserved mask for calling convention");
   2635   if (Subtarget.inMips16HardFloat()) {
   2636     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
   2637       llvm::StringRef Sym = G->getGlobal()->getName();
   2638       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
   2639       if (F && F->hasFnAttribute("__Mips16RetHelper")) {
   2640         Mask = MipsRegisterInfo::getMips16RetHelperMask();
   2641       }
   2642     }
   2643   }
   2644   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
   2645 
   2646   if (InFlag.getNode())
   2647     Ops.push_back(InFlag);
   2648 }
   2649 
   2650 /// LowerCall - functions arguments are copied from virtual regs to
   2651 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
   2652 SDValue
   2653 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   2654                               SmallVectorImpl<SDValue> &InVals) const {
   2655   SelectionDAG &DAG                     = CLI.DAG;
   2656   SDLoc DL                              = CLI.DL;
   2657   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   2658   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   2659   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   2660   SDValue Chain                         = CLI.Chain;
   2661   SDValue Callee                        = CLI.Callee;
   2662   bool &IsTailCall                      = CLI.IsTailCall;
   2663   CallingConv::ID CallConv              = CLI.CallConv;
   2664   bool IsVarArg                         = CLI.IsVarArg;
   2665 
   2666   MachineFunction &MF = DAG.getMachineFunction();
   2667   MachineFrameInfo *MFI = MF.getFrameInfo();
   2668   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
   2669   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
   2670   bool IsPIC = isPositionIndependent();
   2671 
   2672   // Analyze operands of the call, assigning locations to each operand.
   2673   SmallVector<CCValAssign, 16> ArgLocs;
   2674   MipsCCState CCInfo(
   2675       CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
   2676       MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
   2677 
   2678   // Allocate the reserved argument area. It seems strange to do this from the
   2679   // caller side but removing it breaks the frame size calculation.
   2680   CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
   2681 
   2682   CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), Callee.getNode());
   2683 
   2684   // Get a count of how many bytes are to be pushed on the stack.
   2685   unsigned NextStackOffset = CCInfo.getNextStackOffset();
   2686 
   2687   // Check if it's really possible to do a tail call.
   2688   if (IsTailCall)
   2689     IsTailCall = isEligibleForTailCallOptimization(
   2690         CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
   2691 
   2692   if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
   2693     report_fatal_error("failed to perform tail call elimination on a call "
   2694                        "site marked musttail");
   2695 
   2696   if (IsTailCall)
   2697     ++NumTailCalls;
   2698 
   2699   // Chain is the output chain of the last Load/Store or CopyToReg node.
   2700   // ByValChain is the output chain of the last Memcpy node created for copying
   2701   // byval arguments to the stack.
   2702   unsigned StackAlignment = TFL->getStackAlignment();
   2703   NextStackOffset = alignTo(NextStackOffset, StackAlignment);
   2704   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
   2705 
   2706   if (!IsTailCall)
   2707     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
   2708 
   2709   SDValue StackPtr =
   2710       DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
   2711                          getPointerTy(DAG.getDataLayout()));
   2712 
   2713   std::deque< std::pair<unsigned, SDValue> > RegsToPass;
   2714   SmallVector<SDValue, 8> MemOpChains;
   2715 
   2716   CCInfo.rewindByValRegsInfo();
   2717 
   2718   // Walk the register/memloc assignments, inserting copies/loads.
   2719   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2720     SDValue Arg = OutVals[i];
   2721     CCValAssign &VA = ArgLocs[i];
   2722     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
   2723     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2724     bool UseUpperBits = false;
   2725 
   2726     // ByVal Arg.
   2727     if (Flags.isByVal()) {
   2728       unsigned FirstByValReg, LastByValReg;
   2729       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
   2730       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
   2731 
   2732       assert(Flags.getByValSize() &&
   2733              "ByVal args of size 0 should have been ignored by front-end.");
   2734       assert(ByValIdx < CCInfo.getInRegsParamsCount());
   2735       assert(!IsTailCall &&
   2736              "Do not tail-call optimize if there is a byval argument.");
   2737       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
   2738                    FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
   2739                    VA);
   2740       CCInfo.nextInRegsParam();
   2741       continue;
   2742     }
   2743 
   2744     // Promote the value if needed.
   2745     switch (VA.getLocInfo()) {
   2746     default:
   2747       llvm_unreachable("Unknown loc info!");
   2748     case CCValAssign::Full:
   2749       if (VA.isRegLoc()) {
   2750         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
   2751             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
   2752             (ValVT == MVT::i64 && LocVT == MVT::f64))
   2753           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
   2754         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
   2755           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   2756                                    Arg, DAG.getConstant(0, DL, MVT::i32));
   2757           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   2758                                    Arg, DAG.getConstant(1, DL, MVT::i32));
   2759           if (!Subtarget.isLittle())
   2760             std::swap(Lo, Hi);
   2761           unsigned LocRegLo = VA.getLocReg();
   2762           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
   2763           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
   2764           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
   2765           continue;
   2766         }
   2767       }
   2768       break;
   2769     case CCValAssign::BCvt:
   2770       Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
   2771       break;
   2772     case CCValAssign::SExtUpper:
   2773       UseUpperBits = true;
   2774       // Fallthrough
   2775     case CCValAssign::SExt:
   2776       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
   2777       break;
   2778     case CCValAssign::ZExtUpper:
   2779       UseUpperBits = true;
   2780       // Fallthrough
   2781     case CCValAssign::ZExt:
   2782       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
   2783       break;
   2784     case CCValAssign::AExtUpper:
   2785       UseUpperBits = true;
   2786       // Fallthrough
   2787     case CCValAssign::AExt:
   2788       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
   2789       break;
   2790     }
   2791 
   2792     if (UseUpperBits) {
   2793       unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
   2794       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
   2795       Arg = DAG.getNode(
   2796           ISD::SHL, DL, VA.getLocVT(), Arg,
   2797           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
   2798     }
   2799 
   2800     // Arguments that can be passed on register must be kept at
   2801     // RegsToPass vector
   2802     if (VA.isRegLoc()) {
   2803       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2804       continue;
   2805     }
   2806 
   2807     // Register can't get to this point...
   2808     assert(VA.isMemLoc());
   2809 
   2810     // emit ISD::STORE whichs stores the
   2811     // parameter value to a stack Location
   2812     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
   2813                                          Chain, Arg, DL, IsTailCall, DAG));
   2814   }
   2815 
   2816   // Transform all store nodes into one single node because all store
   2817   // nodes are independent of each other.
   2818   if (!MemOpChains.empty())
   2819     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   2820 
   2821   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   2822   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   2823   // node so that legalize doesn't hack it.
   2824   bool IsPICCall = (ABI.IsN64() || IsPIC); // true if calls are translated to
   2825                                            // jalr $25
   2826   bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false;
   2827   SDValue CalleeLo;
   2828   EVT Ty = Callee.getValueType();
   2829 
   2830   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2831     if (IsPICCall) {
   2832       const GlobalValue *Val = G->getGlobal();
   2833       InternalLinkage = Val->hasInternalLinkage();
   2834 
   2835       if (InternalLinkage)
   2836         Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
   2837       else if (LargeGOT) {
   2838         Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
   2839                                        MipsII::MO_CALL_LO16, Chain,
   2840                                        FuncInfo->callPtrInfo(Val));
   2841         IsCallReloc = true;
   2842       } else {
   2843         Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
   2844                                FuncInfo->callPtrInfo(Val));
   2845         IsCallReloc = true;
   2846       }
   2847     } else
   2848       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
   2849                                           getPointerTy(DAG.getDataLayout()), 0,
   2850                                           MipsII::MO_NO_FLAG);
   2851     GlobalOrExternal = true;
   2852   }
   2853   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2854     const char *Sym = S->getSymbol();
   2855 
   2856     if (!ABI.IsN64() && !IsPIC) // !N64 && static
   2857       Callee = DAG.getTargetExternalSymbol(
   2858           Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
   2859     else if (LargeGOT) {
   2860       Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
   2861                                      MipsII::MO_CALL_LO16, Chain,
   2862                                      FuncInfo->callPtrInfo(Sym));
   2863       IsCallReloc = true;
   2864     } else { // N64 || PIC
   2865       Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
   2866                              FuncInfo->callPtrInfo(Sym));
   2867       IsCallReloc = true;
   2868     }
   2869 
   2870     GlobalOrExternal = true;
   2871   }
   2872 
   2873   SmallVector<SDValue, 8> Ops(1, Chain);
   2874   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2875 
   2876   getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
   2877               IsCallReloc, CLI, Callee, Chain);
   2878 
   2879   if (IsTailCall)
   2880     return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
   2881 
   2882   Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
   2883   SDValue InFlag = Chain.getValue(1);
   2884 
   2885   // Create the CALLSEQ_END node.
   2886   Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
   2887                              DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
   2888   InFlag = Chain.getValue(1);
   2889 
   2890   // Handle result values, copying them out of physregs into vregs that we
   2891   // return.
   2892   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
   2893                          InVals, CLI);
   2894 }
   2895 
   2896 /// LowerCallResult - Lower the result values of a call into the
   2897 /// appropriate copies out of appropriate physical registers.
   2898 SDValue MipsTargetLowering::LowerCallResult(
   2899     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
   2900     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
   2901     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
   2902     TargetLowering::CallLoweringInfo &CLI) const {
   2903   // Assign locations to each value returned by this call.
   2904   SmallVector<CCValAssign, 16> RVLocs;
   2905   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
   2906                      *DAG.getContext());
   2907   CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI);
   2908 
   2909   // Copy all of the result registers out of their specified physreg.
   2910   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   2911     CCValAssign &VA = RVLocs[i];
   2912     assert(VA.isRegLoc() && "Can only return in registers!");
   2913 
   2914     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
   2915                                      RVLocs[i].getLocVT(), InFlag);
   2916     Chain = Val.getValue(1);
   2917     InFlag = Val.getValue(2);
   2918 
   2919     if (VA.isUpperBitsInLoc()) {
   2920       unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
   2921       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
   2922       unsigned Shift =
   2923           VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
   2924       Val = DAG.getNode(
   2925           Shift, DL, VA.getLocVT(), Val,
   2926           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
   2927     }
   2928 
   2929     switch (VA.getLocInfo()) {
   2930     default:
   2931       llvm_unreachable("Unknown loc info!");
   2932     case CCValAssign::Full:
   2933       break;
   2934     case CCValAssign::BCvt:
   2935       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
   2936       break;
   2937     case CCValAssign::AExt:
   2938     case CCValAssign::AExtUpper:
   2939       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
   2940       break;
   2941     case CCValAssign::ZExt:
   2942     case CCValAssign::ZExtUpper:
   2943       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
   2944                         DAG.getValueType(VA.getValVT()));
   2945       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
   2946       break;
   2947     case CCValAssign::SExt:
   2948     case CCValAssign::SExtUpper:
   2949       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
   2950                         DAG.getValueType(VA.getValVT()));
   2951       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
   2952       break;
   2953     }
   2954 
   2955     InVals.push_back(Val);
   2956   }
   2957 
   2958   return Chain;
   2959 }
   2960 
   2961 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
   2962                                       EVT ArgVT, const SDLoc &DL,
   2963                                       SelectionDAG &DAG) {
   2964   MVT LocVT = VA.getLocVT();
   2965   EVT ValVT = VA.getValVT();
   2966 
   2967   // Shift into the upper bits if necessary.
   2968   switch (VA.getLocInfo()) {
   2969   default:
   2970     break;
   2971   case CCValAssign::AExtUpper:
   2972   case CCValAssign::SExtUpper:
   2973   case CCValAssign::ZExtUpper: {
   2974     unsigned ValSizeInBits = ArgVT.getSizeInBits();
   2975     unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
   2976     unsigned Opcode =
   2977         VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
   2978     Val = DAG.getNode(
   2979         Opcode, DL, VA.getLocVT(), Val,
   2980         DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
   2981     break;
   2982   }
   2983   }
   2984 
   2985   // If this is an value smaller than the argument slot size (32-bit for O32,
   2986   // 64-bit for N32/N64), it has been promoted in some way to the argument slot
   2987   // size. Extract the value and insert any appropriate assertions regarding
   2988   // sign/zero extension.
   2989   switch (VA.getLocInfo()) {
   2990   default:
   2991     llvm_unreachable("Unknown loc info!");
   2992   case CCValAssign::Full:
   2993     break;
   2994   case CCValAssign::AExtUpper:
   2995   case CCValAssign::AExt:
   2996     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
   2997     break;
   2998   case CCValAssign::SExtUpper:
   2999   case CCValAssign::SExt:
   3000     Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
   3001     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
   3002     break;
   3003   case CCValAssign::ZExtUpper:
   3004   case CCValAssign::ZExt:
   3005     Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
   3006     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
   3007     break;
   3008   case CCValAssign::BCvt:
   3009     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
   3010     break;
   3011   }
   3012 
   3013   return Val;
   3014 }
   3015 
   3016 //===----------------------------------------------------------------------===//
   3017 //             Formal Arguments Calling Convention Implementation
   3018 //===----------------------------------------------------------------------===//
   3019 /// LowerFormalArguments - transform physical registers into virtual registers
   3020 /// and generate load operations for arguments places on the stack.
   3021 SDValue MipsTargetLowering::LowerFormalArguments(
   3022     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
   3023     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
   3024     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3025   MachineFunction &MF = DAG.getMachineFunction();
   3026   MachineFrameInfo *MFI = MF.getFrameInfo();
   3027   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   3028 
   3029   MipsFI->setVarArgsFrameIndex(0);
   3030 
   3031   // Used with vargs to acumulate store chains.
   3032   std::vector<SDValue> OutChains;
   3033 
   3034   // Assign locations to all of the incoming arguments.
   3035   SmallVector<CCValAssign, 16> ArgLocs;
   3036   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
   3037                      *DAG.getContext());
   3038   CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
   3039   const Function *Func = DAG.getMachineFunction().getFunction();
   3040   Function::const_arg_iterator FuncArg = Func->arg_begin();
   3041 
   3042   if (Func->hasFnAttribute("interrupt") && !Func->arg_empty())
   3043     report_fatal_error(
   3044         "Functions with the interrupt attribute cannot have arguments!");
   3045 
   3046   CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
   3047   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
   3048                            CCInfo.getInRegsParamsCount() > 0);
   3049 
   3050   unsigned CurArgIdx = 0;
   3051   CCInfo.rewindByValRegsInfo();
   3052 
   3053   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3054     CCValAssign &VA = ArgLocs[i];
   3055     if (Ins[i].isOrigArg()) {
   3056       std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
   3057       CurArgIdx = Ins[i].getOrigArgIndex();
   3058     }
   3059     EVT ValVT = VA.getValVT();
   3060     ISD::ArgFlagsTy Flags = Ins[i].Flags;
   3061     bool IsRegLoc = VA.isRegLoc();
   3062 
   3063     if (Flags.isByVal()) {
   3064       assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
   3065       unsigned FirstByValReg, LastByValReg;
   3066       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
   3067       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
   3068 
   3069       assert(Flags.getByValSize() &&
   3070              "ByVal args of size 0 should have been ignored by front-end.");
   3071       assert(ByValIdx < CCInfo.getInRegsParamsCount());
   3072       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
   3073                     FirstByValReg, LastByValReg, VA, CCInfo);
   3074       CCInfo.nextInRegsParam();
   3075       continue;
   3076     }
   3077 
   3078     // Arguments stored on registers
   3079     if (IsRegLoc) {
   3080       MVT RegVT = VA.getLocVT();
   3081       unsigned ArgReg = VA.getLocReg();
   3082       const TargetRegisterClass *RC = getRegClassFor(RegVT);
   3083 
   3084       // Transform the arguments stored on
   3085       // physical registers into virtual ones
   3086       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
   3087       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
   3088 
   3089       ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
   3090 
   3091       // Handle floating point arguments passed in integer registers and
   3092       // long double arguments passed in floating point registers.
   3093       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
   3094           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
   3095           (RegVT == MVT::f64 && ValVT == MVT::i64))
   3096         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
   3097       else if (ABI.IsO32() && RegVT == MVT::i32 &&
   3098                ValVT == MVT::f64) {
   3099         unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
   3100                                   getNextIntArgReg(ArgReg), RC);
   3101         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
   3102         if (!Subtarget.isLittle())
   3103           std::swap(ArgValue, ArgValue2);
   3104         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
   3105                                ArgValue, ArgValue2);
   3106       }
   3107 
   3108       InVals.push_back(ArgValue);
   3109     } else { // VA.isRegLoc()
   3110       MVT LocVT = VA.getLocVT();
   3111 
   3112       if (ABI.IsO32()) {
   3113         // We ought to be able to use LocVT directly but O32 sets it to i32
   3114         // when allocating floating point values to integer registers.
   3115         // This shouldn't influence how we load the value into registers unless
   3116         // we are targeting softfloat.
   3117         if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
   3118           LocVT = VA.getValVT();
   3119       }
   3120 
   3121       // sanity check
   3122       assert(VA.isMemLoc());
   3123 
   3124       // The stack pointer offset is relative to the caller stack frame.
   3125       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
   3126                                       VA.getLocMemOffset(), true);
   3127 
   3128       // Create load nodes to retrieve arguments from the stack
   3129       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   3130       SDValue ArgValue = DAG.getLoad(
   3131           LocVT, DL, Chain, FIN,
   3132           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
   3133           false, false, false, 0);
   3134       OutChains.push_back(ArgValue.getValue(1));
   3135 
   3136       ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
   3137 
   3138       InVals.push_back(ArgValue);
   3139     }
   3140   }
   3141 
   3142   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3143     // The mips ABIs for returning structs by value requires that we copy
   3144     // the sret argument into $v0 for the return. Save the argument into
   3145     // a virtual register so that we can access it from the return points.
   3146     if (Ins[i].Flags.isSRet()) {
   3147       unsigned Reg = MipsFI->getSRetReturnReg();
   3148       if (!Reg) {
   3149         Reg = MF.getRegInfo().createVirtualRegister(
   3150             getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
   3151         MipsFI->setSRetReturnReg(Reg);
   3152       }
   3153       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
   3154       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
   3155       break;
   3156     }
   3157   }
   3158 
   3159   if (IsVarArg)
   3160     writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
   3161 
   3162   // All stores are grouped in one node to allow the matching between
   3163   // the size of Ins and InVals. This only happens when on varg functions
   3164   if (!OutChains.empty()) {
   3165     OutChains.push_back(Chain);
   3166     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
   3167   }
   3168 
   3169   return Chain;
   3170 }
   3171 
   3172 //===----------------------------------------------------------------------===//
   3173 //               Return Value Calling Convention Implementation
   3174 //===----------------------------------------------------------------------===//
   3175 
   3176 bool
   3177 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   3178                                    MachineFunction &MF, bool IsVarArg,
   3179                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
   3180                                    LLVMContext &Context) const {
   3181   SmallVector<CCValAssign, 16> RVLocs;
   3182   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
   3183   return CCInfo.CheckReturn(Outs, RetCC_Mips);
   3184 }
   3185 
   3186 bool
   3187 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
   3188   if (Subtarget.hasMips3() && Subtarget.useSoftFloat()) {
   3189     if (Type == MVT::i32)
   3190       return true;
   3191   }
   3192   return IsSigned;
   3193 }
   3194 
   3195 SDValue
   3196 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
   3197                                          const SDLoc &DL,
   3198                                          SelectionDAG &DAG) const {
   3199 
   3200   MachineFunction &MF = DAG.getMachineFunction();
   3201   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   3202 
   3203   MipsFI->setISR();
   3204 
   3205   return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
   3206 }
   3207 
   3208 SDValue
   3209 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   3210                                 bool IsVarArg,
   3211                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
   3212                                 const SmallVectorImpl<SDValue> &OutVals,
   3213                                 const SDLoc &DL, SelectionDAG &DAG) const {
   3214   // CCValAssign - represent the assignment of
   3215   // the return value to a location
   3216   SmallVector<CCValAssign, 16> RVLocs;
   3217   MachineFunction &MF = DAG.getMachineFunction();
   3218 
   3219   // CCState - Info about the registers and stack slot.
   3220   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
   3221 
   3222   // Analyze return values.
   3223   CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
   3224 
   3225   SDValue Flag;
   3226   SmallVector<SDValue, 4> RetOps(1, Chain);
   3227 
   3228   // Copy the result values into the output registers.
   3229   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   3230     SDValue Val = OutVals[i];
   3231     CCValAssign &VA = RVLocs[i];
   3232     assert(VA.isRegLoc() && "Can only return in registers!");
   3233     bool UseUpperBits = false;
   3234 
   3235     switch (VA.getLocInfo()) {
   3236     default:
   3237       llvm_unreachable("Unknown loc info!");
   3238     case CCValAssign::Full:
   3239       break;
   3240     case CCValAssign::BCvt:
   3241       Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
   3242       break;
   3243     case CCValAssign::AExtUpper:
   3244       UseUpperBits = true;
   3245       // Fallthrough
   3246     case CCValAssign::AExt:
   3247       Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
   3248       break;
   3249     case CCValAssign::ZExtUpper:
   3250       UseUpperBits = true;
   3251       // Fallthrough
   3252     case CCValAssign::ZExt:
   3253       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
   3254       break;
   3255     case CCValAssign::SExtUpper:
   3256       UseUpperBits = true;
   3257       // Fallthrough
   3258     case CCValAssign::SExt:
   3259       Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
   3260       break;
   3261     }
   3262 
   3263     if (UseUpperBits) {
   3264       unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
   3265       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
   3266       Val = DAG.getNode(
   3267           ISD::SHL, DL, VA.getLocVT(), Val,
   3268           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
   3269     }
   3270 
   3271     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
   3272 
   3273     // Guarantee that all emitted copies are stuck together with flags.
   3274     Flag = Chain.getValue(1);
   3275     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   3276   }
   3277 
   3278   // The mips ABIs for returning structs by value requires that we copy
   3279   // the sret argument into $v0 for the return. We saved the argument into
   3280   // a virtual register in the entry block, so now we copy the value out
   3281   // and into $v0.
   3282   if (MF.getFunction()->hasStructRetAttr()) {
   3283     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   3284     unsigned Reg = MipsFI->getSRetReturnReg();
   3285 
   3286     if (!Reg)
   3287       llvm_unreachable("sret virtual register not created in the entry block");
   3288     SDValue Val =
   3289         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
   3290     unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
   3291 
   3292     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
   3293     Flag = Chain.getValue(1);
   3294     RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
   3295   }
   3296 
   3297   RetOps[0] = Chain;  // Update chain.
   3298 
   3299   // Add the flag if we have it.
   3300   if (Flag.getNode())
   3301     RetOps.push_back(Flag);
   3302 
   3303   // ISRs must use "eret".
   3304   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt"))
   3305     return LowerInterruptReturn(RetOps, DL, DAG);
   3306 
   3307   // Standard return on Mips is a "jr $ra"
   3308   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
   3309 }
   3310 
   3311 //===----------------------------------------------------------------------===//
   3312 //                           Mips Inline Assembly Support
   3313 //===----------------------------------------------------------------------===//
   3314 
   3315 /// getConstraintType - Given a constraint letter, return the type of
   3316 /// constraint it is for this target.
   3317 MipsTargetLowering::ConstraintType
   3318 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
   3319   // Mips specific constraints
   3320   // GCC config/mips/constraints.md
   3321   //
   3322   // 'd' : An address register. Equivalent to r
   3323   //       unless generating MIPS16 code.
   3324   // 'y' : Equivalent to r; retained for
   3325   //       backwards compatibility.
   3326   // 'c' : A register suitable for use in an indirect
   3327   //       jump. This will always be $25 for -mabicalls.
   3328   // 'l' : The lo register. 1 word storage.
   3329   // 'x' : The hilo register pair. Double word storage.
   3330   if (Constraint.size() == 1) {
   3331     switch (Constraint[0]) {
   3332       default : break;
   3333       case 'd':
   3334       case 'y':
   3335       case 'f':
   3336       case 'c':
   3337       case 'l':
   3338       case 'x':
   3339         return C_RegisterClass;
   3340       case 'R':
   3341         return C_Memory;
   3342     }
   3343   }
   3344 
   3345   if (Constraint == "ZC")
   3346     return C_Memory;
   3347 
   3348   return TargetLowering::getConstraintType(Constraint);
   3349 }
   3350 
   3351 /// Examine constraint type and operand type and determine a weight value.
   3352 /// This object must already have been set up with the operand type
   3353 /// and the current alternative constraint selected.
   3354 TargetLowering::ConstraintWeight
   3355 MipsTargetLowering::getSingleConstraintMatchWeight(
   3356     AsmOperandInfo &info, const char *constraint) const {
   3357   ConstraintWeight weight = CW_Invalid;
   3358   Value *CallOperandVal = info.CallOperandVal;
   3359     // If we don't have a value, we can't do a match,
   3360     // but allow it at the lowest weight.
   3361   if (!CallOperandVal)
   3362     return CW_Default;
   3363   Type *type = CallOperandVal->getType();
   3364   // Look at the constraint type.
   3365   switch (*constraint) {
   3366   default:
   3367     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   3368     break;
   3369   case 'd':
   3370   case 'y':
   3371     if (type->isIntegerTy())
   3372       weight = CW_Register;
   3373     break;
   3374   case 'f': // FPU or MSA register
   3375     if (Subtarget.hasMSA() && type->isVectorTy() &&
   3376         cast<VectorType>(type)->getBitWidth() == 128)
   3377       weight = CW_Register;
   3378     else if (type->isFloatTy())
   3379       weight = CW_Register;
   3380     break;
   3381   case 'c': // $25 for indirect jumps
   3382   case 'l': // lo register
   3383   case 'x': // hilo register pair
   3384     if (type->isIntegerTy())
   3385       weight = CW_SpecificReg;
   3386     break;
   3387   case 'I': // signed 16 bit immediate
   3388   case 'J': // integer zero
   3389   case 'K': // unsigned 16 bit immediate
   3390   case 'L': // signed 32 bit immediate where lower 16 bits are 0
   3391   case 'N': // immediate in the range of -65535 to -1 (inclusive)
   3392   case 'O': // signed 15 bit immediate (+- 16383)
   3393   case 'P': // immediate in the range of 65535 to 1 (inclusive)
   3394     if (isa<ConstantInt>(CallOperandVal))
   3395       weight = CW_Constant;
   3396     break;
   3397   case 'R':
   3398     weight = CW_Memory;
   3399     break;
   3400   }
   3401   return weight;
   3402 }
   3403 
   3404 /// This is a helper function to parse a physical register string and split it
   3405 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
   3406 /// that is returned indicates whether parsing was successful. The second flag
   3407 /// is true if the numeric part exists.
   3408 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
   3409                                               unsigned long long &Reg) {
   3410   if (C.front() != '{' || C.back() != '}')
   3411     return std::make_pair(false, false);
   3412 
   3413   // Search for the first numeric character.
   3414   StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
   3415   I = std::find_if(B, E, isdigit);
   3416 
   3417   Prefix = StringRef(B, I - B);
   3418 
   3419   // The second flag is set to false if no numeric characters were found.
   3420   if (I == E)
   3421     return std::make_pair(true, false);
   3422 
   3423   // Parse the numeric characters.
   3424   return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
   3425                         true);
   3426 }
   3427 
   3428 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
   3429 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
   3430   const TargetRegisterInfo *TRI =
   3431       Subtarget.getRegisterInfo();
   3432   const TargetRegisterClass *RC;
   3433   StringRef Prefix;
   3434   unsigned long long Reg;
   3435 
   3436   std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
   3437 
   3438   if (!R.first)
   3439     return std::make_pair(0U, nullptr);
   3440 
   3441   if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
   3442     // No numeric characters follow "hi" or "lo".
   3443     if (R.second)
   3444       return std::make_pair(0U, nullptr);
   3445 
   3446     RC = TRI->getRegClass(Prefix == "hi" ?
   3447                           Mips::HI32RegClassID : Mips::LO32RegClassID);
   3448     return std::make_pair(*(RC->begin()), RC);
   3449   } else if (Prefix.startswith("$msa")) {
   3450     // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
   3451 
   3452     // No numeric characters follow the name.
   3453     if (R.second)
   3454       return std::make_pair(0U, nullptr);
   3455 
   3456     Reg = StringSwitch<unsigned long long>(Prefix)
   3457               .Case("$msair", Mips::MSAIR)
   3458               .Case("$msacsr", Mips::MSACSR)
   3459               .Case("$msaaccess", Mips::MSAAccess)
   3460               .Case("$msasave", Mips::MSASave)
   3461               .Case("$msamodify", Mips::MSAModify)
   3462               .Case("$msarequest", Mips::MSARequest)
   3463               .Case("$msamap", Mips::MSAMap)
   3464               .Case("$msaunmap", Mips::MSAUnmap)
   3465               .Default(0);
   3466 
   3467     if (!Reg)
   3468       return std::make_pair(0U, nullptr);
   3469 
   3470     RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
   3471     return std::make_pair(Reg, RC);
   3472   }
   3473 
   3474   if (!R.second)
   3475     return std::make_pair(0U, nullptr);
   3476 
   3477   if (Prefix == "$f") { // Parse $f0-$f31.
   3478     // If the size of FP registers is 64-bit or Reg is an even number, select
   3479     // the 64-bit register class. Otherwise, select the 32-bit register class.
   3480     if (VT == MVT::Other)
   3481       VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
   3482 
   3483     RC = getRegClassFor(VT);
   3484 
   3485     if (RC == &Mips::AFGR64RegClass) {
   3486       assert(Reg % 2 == 0);
   3487       Reg >>= 1;
   3488     }
   3489   } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
   3490     RC = TRI->getRegClass(Mips::FCCRegClassID);
   3491   else if (Prefix == "$w") { // Parse $w0-$w31.
   3492     RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
   3493   } else { // Parse $0-$31.
   3494     assert(Prefix == "$");
   3495     RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
   3496   }
   3497 
   3498   assert(Reg < RC->getNumRegs());
   3499   return std::make_pair(*(RC->begin() + Reg), RC);
   3500 }
   3501 
   3502 /// Given a register class constraint, like 'r', if this corresponds directly
   3503 /// to an LLVM register class, return a register of 0 and the register class
   3504 /// pointer.
   3505 std::pair<unsigned, const TargetRegisterClass *>
   3506 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   3507                                                  StringRef Constraint,
   3508                                                  MVT VT) const {
   3509   if (Constraint.size() == 1) {
   3510     switch (Constraint[0]) {
   3511     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
   3512     case 'y': // Same as 'r'. Exists for compatibility.
   3513     case 'r':
   3514       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
   3515         if (Subtarget.inMips16Mode())
   3516           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
   3517         return std::make_pair(0U, &Mips::GPR32RegClass);
   3518       }
   3519       if (VT == MVT::i64 && !Subtarget.isGP64bit())
   3520         return std::make_pair(0U, &Mips::GPR32RegClass);
   3521       if (VT == MVT::i64 && Subtarget.isGP64bit())
   3522         return std::make_pair(0U, &Mips::GPR64RegClass);
   3523       // This will generate an error message
   3524       return std::make_pair(0U, nullptr);
   3525     case 'f': // FPU or MSA register
   3526       if (VT == MVT::v16i8)
   3527         return std::make_pair(0U, &Mips::MSA128BRegClass);
   3528       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   3529         return std::make_pair(0U, &Mips::MSA128HRegClass);
   3530       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   3531         return std::make_pair(0U, &Mips::MSA128WRegClass);
   3532       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   3533         return std::make_pair(0U, &Mips::MSA128DRegClass);
   3534       else if (VT == MVT::f32)
   3535         return std::make_pair(0U, &Mips::FGR32RegClass);
   3536       else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
   3537         if (Subtarget.isFP64bit())
   3538           return std::make_pair(0U, &Mips::FGR64RegClass);
   3539         return std::make_pair(0U, &Mips::AFGR64RegClass);
   3540       }
   3541       break;
   3542     case 'c': // register suitable for indirect jump
   3543       if (VT == MVT::i32)
   3544         return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
   3545       assert(VT == MVT::i64 && "Unexpected type.");
   3546       return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
   3547     case 'l': // register suitable for indirect jump
   3548       if (VT == MVT::i32)
   3549         return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
   3550       return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
   3551     case 'x': // register suitable for indirect jump
   3552       // Fixme: Not triggering the use of both hi and low
   3553       // This will generate an error message
   3554       return std::make_pair(0U, nullptr);
   3555     }
   3556   }
   3557 
   3558   std::pair<unsigned, const TargetRegisterClass *> R;
   3559   R = parseRegForInlineAsmConstraint(Constraint, VT);
   3560 
   3561   if (R.second)
   3562     return R;
   3563 
   3564   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   3565 }
   3566 
   3567 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   3568 /// vector.  If it is invalid, don't add anything to Ops.
   3569 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   3570                                                      std::string &Constraint,
   3571                                                      std::vector<SDValue>&Ops,
   3572                                                      SelectionDAG &DAG) const {
   3573   SDLoc DL(Op);
   3574   SDValue Result;
   3575 
   3576   // Only support length 1 constraints for now.
   3577   if (Constraint.length() > 1) return;
   3578 
   3579   char ConstraintLetter = Constraint[0];
   3580   switch (ConstraintLetter) {
   3581   default: break; // This will fall through to the generic implementation
   3582   case 'I': // Signed 16 bit constant
   3583     // If this fails, the parent routine will give an error
   3584     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3585       EVT Type = Op.getValueType();
   3586       int64_t Val = C->getSExtValue();
   3587       if (isInt<16>(Val)) {
   3588         Result = DAG.getTargetConstant(Val, DL, Type);
   3589         break;
   3590       }
   3591     }
   3592     return;
   3593   case 'J': // integer zero
   3594     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3595       EVT Type = Op.getValueType();
   3596       int64_t Val = C->getZExtValue();
   3597       if (Val == 0) {
   3598         Result = DAG.getTargetConstant(0, DL, Type);
   3599         break;
   3600       }
   3601     }
   3602     return;
   3603   case 'K': // unsigned 16 bit immediate
   3604     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3605       EVT Type = Op.getValueType();
   3606       uint64_t Val = (uint64_t)C->getZExtValue();
   3607       if (isUInt<16>(Val)) {
   3608         Result = DAG.getTargetConstant(Val, DL, Type);
   3609         break;
   3610       }
   3611     }
   3612     return;
   3613   case 'L': // signed 32 bit immediate where lower 16 bits are 0
   3614     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3615       EVT Type = Op.getValueType();
   3616       int64_t Val = C->getSExtValue();
   3617       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
   3618         Result = DAG.getTargetConstant(Val, DL, Type);
   3619         break;
   3620       }
   3621     }
   3622     return;
   3623   case 'N': // immediate in the range of -65535 to -1 (inclusive)
   3624     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3625       EVT Type = Op.getValueType();
   3626       int64_t Val = C->getSExtValue();
   3627       if ((Val >= -65535) && (Val <= -1)) {
   3628         Result = DAG.getTargetConstant(Val, DL, Type);
   3629         break;
   3630       }
   3631     }
   3632     return;
   3633   case 'O': // signed 15 bit immediate
   3634     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3635       EVT Type = Op.getValueType();
   3636       int64_t Val = C->getSExtValue();
   3637       if ((isInt<15>(Val))) {
   3638         Result = DAG.getTargetConstant(Val, DL, Type);
   3639         break;
   3640       }
   3641     }
   3642     return;
   3643   case 'P': // immediate in the range of 1 to 65535 (inclusive)
   3644     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3645       EVT Type = Op.getValueType();
   3646       int64_t Val = C->getSExtValue();
   3647       if ((Val <= 65535) && (Val >= 1)) {
   3648         Result = DAG.getTargetConstant(Val, DL, Type);
   3649         break;
   3650       }
   3651     }
   3652     return;
   3653   }
   3654 
   3655   if (Result.getNode()) {
   3656     Ops.push_back(Result);
   3657     return;
   3658   }
   3659 
   3660   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   3661 }
   3662 
   3663 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   3664                                                const AddrMode &AM, Type *Ty,
   3665                                                unsigned AS) const {
   3666   // No global is ever allowed as a base.
   3667   if (AM.BaseGV)
   3668     return false;
   3669 
   3670   switch (AM.Scale) {
   3671   case 0: // "r+i" or just "i", depending on HasBaseReg.
   3672     break;
   3673   case 1:
   3674     if (!AM.HasBaseReg) // allow "r+i".
   3675       break;
   3676     return false; // disallow "r+r" or "r+r+i".
   3677   default:
   3678     return false;
   3679   }
   3680 
   3681   return true;
   3682 }
   3683 
   3684 bool
   3685 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   3686   // The Mips target isn't yet aware of offsets.
   3687   return false;
   3688 }
   3689 
   3690 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
   3691                                             unsigned SrcAlign,
   3692                                             bool IsMemset, bool ZeroMemset,
   3693                                             bool MemcpyStrSrc,
   3694                                             MachineFunction &MF) const {
   3695   if (Subtarget.hasMips64())
   3696     return MVT::i64;
   3697 
   3698   return MVT::i32;
   3699 }
   3700 
   3701 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3702   if (VT != MVT::f32 && VT != MVT::f64)
   3703     return false;
   3704   if (Imm.isNegZero())
   3705     return false;
   3706   return Imm.isZero();
   3707 }
   3708 
   3709 unsigned MipsTargetLowering::getJumpTableEncoding() const {
   3710   if (ABI.IsN64())
   3711     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
   3712 
   3713   return TargetLowering::getJumpTableEncoding();
   3714 }
   3715 
   3716 bool MipsTargetLowering::useSoftFloat() const {
   3717   return Subtarget.useSoftFloat();
   3718 }
   3719 
   3720 void MipsTargetLowering::copyByValRegs(
   3721     SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
   3722     SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
   3723     SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
   3724     unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
   3725     MipsCCState &State) const {
   3726   MachineFunction &MF = DAG.getMachineFunction();
   3727   MachineFrameInfo *MFI = MF.getFrameInfo();
   3728   unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
   3729   unsigned NumRegs = LastReg - FirstReg;
   3730   unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
   3731   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
   3732   int FrameObjOffset;
   3733   ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
   3734 
   3735   if (RegAreaSize)
   3736     FrameObjOffset =
   3737         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
   3738         (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
   3739   else
   3740     FrameObjOffset = VA.getLocMemOffset();
   3741 
   3742   // Create frame object.
   3743   EVT PtrTy = getPointerTy(DAG.getDataLayout());
   3744   int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
   3745   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   3746   InVals.push_back(FIN);
   3747 
   3748   if (!NumRegs)
   3749     return;
   3750 
   3751   // Copy arg registers.
   3752   MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
   3753   const TargetRegisterClass *RC = getRegClassFor(RegTy);
   3754 
   3755   for (unsigned I = 0; I < NumRegs; ++I) {
   3756     unsigned ArgReg = ByValArgRegs[FirstReg + I];
   3757     unsigned VReg = addLiveIn(MF, ArgReg, RC);
   3758     unsigned Offset = I * GPRSizeInBytes;
   3759     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
   3760                                    DAG.getConstant(Offset, DL, PtrTy));
   3761     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
   3762                                  StorePtr, MachinePointerInfo(FuncArg, Offset),
   3763                                  false, false, 0);
   3764     OutChains.push_back(Store);
   3765   }
   3766 }
   3767 
   3768 // Copy byVal arg to registers and stack.
   3769 void MipsTargetLowering::passByValArg(
   3770     SDValue Chain, const SDLoc &DL,
   3771     std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
   3772     SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
   3773     MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
   3774     unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
   3775     const CCValAssign &VA) const {
   3776   unsigned ByValSizeInBytes = Flags.getByValSize();
   3777   unsigned OffsetInBytes = 0; // From beginning of struct
   3778   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
   3779   unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
   3780   EVT PtrTy = getPointerTy(DAG.getDataLayout()),
   3781       RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
   3782   unsigned NumRegs = LastReg - FirstReg;
   3783 
   3784   if (NumRegs) {
   3785     ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
   3786     bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
   3787     unsigned I = 0;
   3788 
   3789     // Copy words to registers.
   3790     for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
   3791       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3792                                     DAG.getConstant(OffsetInBytes, DL, PtrTy));
   3793       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
   3794                                     MachinePointerInfo(), false, false, false,
   3795                                     Alignment);
   3796       MemOpChains.push_back(LoadVal.getValue(1));
   3797       unsigned ArgReg = ArgRegs[FirstReg + I];
   3798       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
   3799     }
   3800 
   3801     // Return if the struct has been fully copied.
   3802     if (ByValSizeInBytes == OffsetInBytes)
   3803       return;
   3804 
   3805     // Copy the remainder of the byval argument with sub-word loads and shifts.
   3806     if (LeftoverBytes) {
   3807       SDValue Val;
   3808 
   3809       for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
   3810            OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
   3811         unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
   3812 
   3813         if (RemainingSizeInBytes < LoadSizeInBytes)
   3814           continue;
   3815 
   3816         // Load subword.
   3817         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3818                                       DAG.getConstant(OffsetInBytes, DL,
   3819                                                       PtrTy));
   3820         SDValue LoadVal = DAG.getExtLoad(
   3821             ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
   3822             MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false,
   3823             Alignment);
   3824         MemOpChains.push_back(LoadVal.getValue(1));
   3825 
   3826         // Shift the loaded value.
   3827         unsigned Shamt;
   3828 
   3829         if (isLittle)
   3830           Shamt = TotalBytesLoaded * 8;
   3831         else
   3832           Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
   3833 
   3834         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
   3835                                     DAG.getConstant(Shamt, DL, MVT::i32));
   3836 
   3837         if (Val.getNode())
   3838           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
   3839         else
   3840           Val = Shift;
   3841 
   3842         OffsetInBytes += LoadSizeInBytes;
   3843         TotalBytesLoaded += LoadSizeInBytes;
   3844         Alignment = std::min(Alignment, LoadSizeInBytes);
   3845       }
   3846 
   3847       unsigned ArgReg = ArgRegs[FirstReg + I];
   3848       RegsToPass.push_back(std::make_pair(ArgReg, Val));
   3849       return;
   3850     }
   3851   }
   3852 
   3853   // Copy remainder of byval arg to it with memcpy.
   3854   unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
   3855   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3856                             DAG.getConstant(OffsetInBytes, DL, PtrTy));
   3857   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
   3858                             DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
   3859   Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
   3860                         DAG.getConstant(MemCpySize, DL, PtrTy),
   3861                         Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
   3862                         /*isTailCall=*/false,
   3863                         MachinePointerInfo(), MachinePointerInfo());
   3864   MemOpChains.push_back(Chain);
   3865 }
   3866 
   3867 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
   3868                                          SDValue Chain, const SDLoc &DL,
   3869                                          SelectionDAG &DAG,
   3870                                          CCState &State) const {
   3871   ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
   3872   unsigned Idx = State.getFirstUnallocated(ArgRegs);
   3873   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
   3874   MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
   3875   const TargetRegisterClass *RC = getRegClassFor(RegTy);
   3876   MachineFunction &MF = DAG.getMachineFunction();
   3877   MachineFrameInfo *MFI = MF.getFrameInfo();
   3878   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   3879 
   3880   // Offset of the first variable argument from stack pointer.
   3881   int VaArgOffset;
   3882 
   3883   if (ArgRegs.size() == Idx)
   3884     VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
   3885   else {
   3886     VaArgOffset =
   3887         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
   3888         (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
   3889   }
   3890 
   3891   // Record the frame index of the first variable argument
   3892   // which is a value necessary to VASTART.
   3893   int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
   3894   MipsFI->setVarArgsFrameIndex(FI);
   3895 
   3896   // Copy the integer registers that have not been used for argument passing
   3897   // to the argument register save area. For O32, the save area is allocated
   3898   // in the caller's stack frame, while for N32/64, it is allocated in the
   3899   // callee's stack frame.
   3900   for (unsigned I = Idx; I < ArgRegs.size();
   3901        ++I, VaArgOffset += RegSizeInBytes) {
   3902     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
   3903     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
   3904     FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
   3905     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   3906     SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
   3907                                  MachinePointerInfo(), false, false, 0);
   3908     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
   3909         (Value *)nullptr);
   3910     OutChains.push_back(Store);
   3911   }
   3912 }
   3913 
   3914 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
   3915                                      unsigned Align) const {
   3916   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
   3917 
   3918   assert(Size && "Byval argument's size shouldn't be 0.");
   3919 
   3920   Align = std::min(Align, TFL->getStackAlignment());
   3921 
   3922   unsigned FirstReg = 0;
   3923   unsigned NumRegs = 0;
   3924 
   3925   if (State->getCallingConv() != CallingConv::Fast) {
   3926     unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
   3927     ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
   3928     // FIXME: The O32 case actually describes no shadow registers.
   3929     const MCPhysReg *ShadowRegs =
   3930         ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
   3931 
   3932     // We used to check the size as well but we can't do that anymore since
   3933     // CCState::HandleByVal() rounds up the size after calling this function.
   3934     assert(!(Align % RegSizeInBytes) &&
   3935            "Byval argument's alignment should be a multiple of"
   3936            "RegSizeInBytes.");
   3937 
   3938     FirstReg = State->getFirstUnallocated(IntArgRegs);
   3939 
   3940     // If Align > RegSizeInBytes, the first arg register must be even.
   3941     // FIXME: This condition happens to do the right thing but it's not the
   3942     //        right way to test it. We want to check that the stack frame offset
   3943     //        of the register is aligned.
   3944     if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
   3945       State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
   3946       ++FirstReg;
   3947     }
   3948 
   3949     // Mark the registers allocated.
   3950     Size = alignTo(Size, RegSizeInBytes);
   3951     for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
   3952          Size -= RegSizeInBytes, ++I, ++NumRegs)
   3953       State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
   3954   }
   3955 
   3956   State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
   3957 }
   3958 
   3959 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
   3960                                                         MachineBasicBlock *BB,
   3961                                                         bool isFPCmp,
   3962                                                         unsigned Opc) const {
   3963   assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
   3964          "Subtarget already supports SELECT nodes with the use of"
   3965          "conditional-move instructions.");
   3966 
   3967   const TargetInstrInfo *TII =
   3968       Subtarget.getInstrInfo();
   3969   DebugLoc DL = MI.getDebugLoc();
   3970 
   3971   // To "insert" a SELECT instruction, we actually have to insert the
   3972   // diamond control-flow pattern.  The incoming instruction knows the
   3973   // destination vreg to set, the condition code register to branch on, the
   3974   // true/false values to select between, and a branch opcode to use.
   3975   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   3976   MachineFunction::iterator It = ++BB->getIterator();
   3977 
   3978   //  thisMBB:
   3979   //  ...
   3980   //   TrueVal = ...
   3981   //   setcc r1, r2, r3
   3982   //   bNE   r1, r0, copy1MBB
   3983   //   fallthrough --> copy0MBB
   3984   MachineBasicBlock *thisMBB  = BB;
   3985   MachineFunction *F = BB->getParent();
   3986   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   3987   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   3988   F->insert(It, copy0MBB);
   3989   F->insert(It, sinkMBB);
   3990 
   3991   // Transfer the remainder of BB and its successor edges to sinkMBB.
   3992   sinkMBB->splice(sinkMBB->begin(), BB,
   3993                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   3994   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   3995 
   3996   // Next, add the true and fallthrough blocks as its successors.
   3997   BB->addSuccessor(copy0MBB);
   3998   BB->addSuccessor(sinkMBB);
   3999 
   4000   if (isFPCmp) {
   4001     // bc1[tf] cc, sinkMBB
   4002     BuildMI(BB, DL, TII->get(Opc))
   4003         .addReg(MI.getOperand(1).getReg())
   4004         .addMBB(sinkMBB);
   4005   } else {
   4006     // bne rs, $0, sinkMBB
   4007     BuildMI(BB, DL, TII->get(Opc))
   4008         .addReg(MI.getOperand(1).getReg())
   4009         .addReg(Mips::ZERO)
   4010         .addMBB(sinkMBB);
   4011   }
   4012 
   4013   //  copy0MBB:
   4014   //   %FalseValue = ...
   4015   //   # fallthrough to sinkMBB
   4016   BB = copy0MBB;
   4017 
   4018   // Update machine-CFG edges
   4019   BB->addSuccessor(sinkMBB);
   4020 
   4021   //  sinkMBB:
   4022   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
   4023   //  ...
   4024   BB = sinkMBB;
   4025 
   4026   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
   4027       .addReg(MI.getOperand(2).getReg())
   4028       .addMBB(thisMBB)
   4029       .addReg(MI.getOperand(3).getReg())
   4030       .addMBB(copy0MBB);
   4031 
   4032   MI.eraseFromParent(); // The pseudo instruction is gone now.
   4033 
   4034   return BB;
   4035 }
   4036 
   4037 // FIXME? Maybe this could be a TableGen attribute on some registers and
   4038 // this table could be generated automatically from RegInfo.
   4039 unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
   4040                                                SelectionDAG &DAG) const {
   4041   // Named registers is expected to be fairly rare. For now, just support $28
   4042   // since the linux kernel uses it.
   4043   if (Subtarget.isGP64bit()) {
   4044     unsigned Reg = StringSwitch<unsigned>(RegName)
   4045                          .Case("$28", Mips::GP_64)
   4046                          .Default(0);
   4047     if (Reg)
   4048       return Reg;
   4049   } else {
   4050     unsigned Reg = StringSwitch<unsigned>(RegName)
   4051                          .Case("$28", Mips::GP)
   4052                          .Default(0);
   4053     if (Reg)
   4054       return Reg;
   4055   }
   4056   report_fatal_error("Invalid register name global variable");
   4057 }
   4058