1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86InstrInfo.h" 15 #include "X86.h" 16 #include "X86InstrBuilder.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <limits> 36 37 #define GET_INSTRINFO_CTOR 38 #include "X86GenInstrInfo.inc" 39 40 using namespace llvm; 41 42 static cl::opt<bool> 43 NoFusing("disable-spill-fusing", 44 cl::desc("Disable fusing of spill code into instructions")); 45 static cl::opt<bool> 46 PrintFailedFusing("print-failed-fuse-candidates", 47 cl::desc("Print instructions that the allocator wants to" 48 " fuse, but the X86 backend currently can't"), 49 cl::Hidden); 50 static cl::opt<bool> 51 ReMatPICStubLoad("remat-pic-stub-load", 52 cl::desc("Re-materialize load from stub in PIC mode"), 53 cl::init(false), cl::Hidden); 54 55 enum { 56 // Select which memory operand is being unfolded. 57 // (stored in bits 0 - 7) 58 TB_INDEX_0 = 0, 59 TB_INDEX_1 = 1, 60 TB_INDEX_2 = 2, 61 TB_INDEX_MASK = 0xff, 62 63 // Minimum alignment required for load/store. 64 // Used for RegOp->MemOp conversion. 65 // (stored in bits 8 - 15) 66 TB_ALIGN_SHIFT = 8, 67 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, 68 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, 69 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, 70 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT, 71 72 // Do not insert the reverse map (MemOp -> RegOp) into the table. 73 // This may be needed because there is a many -> one mapping. 74 TB_NO_REVERSE = 1 << 16, 75 76 // Do not insert the forward map (RegOp -> MemOp) into the table. 77 // This is needed for Native Client, which prohibits branch 78 // instructions from using a memory operand. 79 TB_NO_FORWARD = 1 << 17, 80 81 TB_FOLDED_LOAD = 1 << 18, 82 TB_FOLDED_STORE = 1 << 19 83 }; 84 85 struct X86OpTblEntry { 86 uint16_t RegOp; 87 uint16_t MemOp; 88 uint32_t Flags; 89 }; 90 91 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) 92 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit() 93 ? X86::ADJCALLSTACKDOWN64 94 : X86::ADJCALLSTACKDOWN32), 95 (tm.getSubtarget<X86Subtarget>().is64Bit() 96 ? X86::ADJCALLSTACKUP64 97 : X86::ADJCALLSTACKUP32)), 98 TM(tm), RI(tm, *this) { 99 100 static const X86OpTblEntry OpTbl2Addr[] = { 101 { X86::ADC32ri, X86::ADC32mi, 0 }, 102 { X86::ADC32ri8, X86::ADC32mi8, 0 }, 103 { X86::ADC32rr, X86::ADC32mr, 0 }, 104 { X86::ADC64ri32, X86::ADC64mi32, 0 }, 105 { X86::ADC64ri8, X86::ADC64mi8, 0 }, 106 { X86::ADC64rr, X86::ADC64mr, 0 }, 107 { X86::ADD16ri, X86::ADD16mi, 0 }, 108 { X86::ADD16ri8, X86::ADD16mi8, 0 }, 109 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, 110 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, 111 { X86::ADD16rr, X86::ADD16mr, 0 }, 112 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, 113 { X86::ADD32ri, X86::ADD32mi, 0 }, 114 { X86::ADD32ri8, X86::ADD32mi8, 0 }, 115 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, 116 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, 117 { X86::ADD32rr, X86::ADD32mr, 0 }, 118 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, 119 { X86::ADD64ri32, X86::ADD64mi32, 0 }, 120 { X86::ADD64ri8, X86::ADD64mi8, 0 }, 121 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, 122 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, 123 { X86::ADD64rr, X86::ADD64mr, 0 }, 124 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, 125 { X86::ADD8ri, X86::ADD8mi, 0 }, 126 { X86::ADD8rr, X86::ADD8mr, 0 }, 127 { X86::AND16ri, X86::AND16mi, 0 }, 128 { X86::AND16ri8, X86::AND16mi8, 0 }, 129 { X86::AND16rr, X86::AND16mr, 0 }, 130 { X86::AND32ri, X86::AND32mi, 0 }, 131 { X86::AND32ri8, X86::AND32mi8, 0 }, 132 { X86::AND32rr, X86::AND32mr, 0 }, 133 { X86::AND64ri32, X86::AND64mi32, 0 }, 134 { X86::AND64ri8, X86::AND64mi8, 0 }, 135 { X86::AND64rr, X86::AND64mr, 0 }, 136 { X86::AND8ri, X86::AND8mi, 0 }, 137 { X86::AND8rr, X86::AND8mr, 0 }, 138 { X86::DEC16r, X86::DEC16m, 0 }, 139 { X86::DEC32r, X86::DEC32m, 0 }, 140 { X86::DEC64_16r, X86::DEC64_16m, 0 }, 141 { X86::DEC64_32r, X86::DEC64_32m, 0 }, 142 { X86::DEC64r, X86::DEC64m, 0 }, 143 { X86::DEC8r, X86::DEC8m, 0 }, 144 { X86::INC16r, X86::INC16m, 0 }, 145 { X86::INC32r, X86::INC32m, 0 }, 146 { X86::INC64_16r, X86::INC64_16m, 0 }, 147 { X86::INC64_32r, X86::INC64_32m, 0 }, 148 { X86::INC64r, X86::INC64m, 0 }, 149 { X86::INC8r, X86::INC8m, 0 }, 150 { X86::NEG16r, X86::NEG16m, 0 }, 151 { X86::NEG32r, X86::NEG32m, 0 }, 152 { X86::NEG64r, X86::NEG64m, 0 }, 153 { X86::NEG8r, X86::NEG8m, 0 }, 154 { X86::NOT16r, X86::NOT16m, 0 }, 155 { X86::NOT32r, X86::NOT32m, 0 }, 156 { X86::NOT64r, X86::NOT64m, 0 }, 157 { X86::NOT8r, X86::NOT8m, 0 }, 158 { X86::OR16ri, X86::OR16mi, 0 }, 159 { X86::OR16ri8, X86::OR16mi8, 0 }, 160 { X86::OR16rr, X86::OR16mr, 0 }, 161 { X86::OR32ri, X86::OR32mi, 0 }, 162 { X86::OR32ri8, X86::OR32mi8, 0 }, 163 { X86::OR32rr, X86::OR32mr, 0 }, 164 { X86::OR64ri32, X86::OR64mi32, 0 }, 165 { X86::OR64ri8, X86::OR64mi8, 0 }, 166 { X86::OR64rr, X86::OR64mr, 0 }, 167 { X86::OR8ri, X86::OR8mi, 0 }, 168 { X86::OR8rr, X86::OR8mr, 0 }, 169 { X86::ROL16r1, X86::ROL16m1, 0 }, 170 { X86::ROL16rCL, X86::ROL16mCL, 0 }, 171 { X86::ROL16ri, X86::ROL16mi, 0 }, 172 { X86::ROL32r1, X86::ROL32m1, 0 }, 173 { X86::ROL32rCL, X86::ROL32mCL, 0 }, 174 { X86::ROL32ri, X86::ROL32mi, 0 }, 175 { X86::ROL64r1, X86::ROL64m1, 0 }, 176 { X86::ROL64rCL, X86::ROL64mCL, 0 }, 177 { X86::ROL64ri, X86::ROL64mi, 0 }, 178 { X86::ROL8r1, X86::ROL8m1, 0 }, 179 { X86::ROL8rCL, X86::ROL8mCL, 0 }, 180 { X86::ROL8ri, X86::ROL8mi, 0 }, 181 { X86::ROR16r1, X86::ROR16m1, 0 }, 182 { X86::ROR16rCL, X86::ROR16mCL, 0 }, 183 { X86::ROR16ri, X86::ROR16mi, 0 }, 184 { X86::ROR32r1, X86::ROR32m1, 0 }, 185 { X86::ROR32rCL, X86::ROR32mCL, 0 }, 186 { X86::ROR32ri, X86::ROR32mi, 0 }, 187 { X86::ROR64r1, X86::ROR64m1, 0 }, 188 { X86::ROR64rCL, X86::ROR64mCL, 0 }, 189 { X86::ROR64ri, X86::ROR64mi, 0 }, 190 { X86::ROR8r1, X86::ROR8m1, 0 }, 191 { X86::ROR8rCL, X86::ROR8mCL, 0 }, 192 { X86::ROR8ri, X86::ROR8mi, 0 }, 193 { X86::SAR16r1, X86::SAR16m1, 0 }, 194 { X86::SAR16rCL, X86::SAR16mCL, 0 }, 195 { X86::SAR16ri, X86::SAR16mi, 0 }, 196 { X86::SAR32r1, X86::SAR32m1, 0 }, 197 { X86::SAR32rCL, X86::SAR32mCL, 0 }, 198 { X86::SAR32ri, X86::SAR32mi, 0 }, 199 { X86::SAR64r1, X86::SAR64m1, 0 }, 200 { X86::SAR64rCL, X86::SAR64mCL, 0 }, 201 { X86::SAR64ri, X86::SAR64mi, 0 }, 202 { X86::SAR8r1, X86::SAR8m1, 0 }, 203 { X86::SAR8rCL, X86::SAR8mCL, 0 }, 204 { X86::SAR8ri, X86::SAR8mi, 0 }, 205 { X86::SBB32ri, X86::SBB32mi, 0 }, 206 { X86::SBB32ri8, X86::SBB32mi8, 0 }, 207 { X86::SBB32rr, X86::SBB32mr, 0 }, 208 { X86::SBB64ri32, X86::SBB64mi32, 0 }, 209 { X86::SBB64ri8, X86::SBB64mi8, 0 }, 210 { X86::SBB64rr, X86::SBB64mr, 0 }, 211 { X86::SHL16rCL, X86::SHL16mCL, 0 }, 212 { X86::SHL16ri, X86::SHL16mi, 0 }, 213 { X86::SHL32rCL, X86::SHL32mCL, 0 }, 214 { X86::SHL32ri, X86::SHL32mi, 0 }, 215 { X86::SHL64rCL, X86::SHL64mCL, 0 }, 216 { X86::SHL64ri, X86::SHL64mi, 0 }, 217 { X86::SHL8rCL, X86::SHL8mCL, 0 }, 218 { X86::SHL8ri, X86::SHL8mi, 0 }, 219 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, 220 { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, 221 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, 222 { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, 223 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, 224 { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, 225 { X86::SHR16r1, X86::SHR16m1, 0 }, 226 { X86::SHR16rCL, X86::SHR16mCL, 0 }, 227 { X86::SHR16ri, X86::SHR16mi, 0 }, 228 { X86::SHR32r1, X86::SHR32m1, 0 }, 229 { X86::SHR32rCL, X86::SHR32mCL, 0 }, 230 { X86::SHR32ri, X86::SHR32mi, 0 }, 231 { X86::SHR64r1, X86::SHR64m1, 0 }, 232 { X86::SHR64rCL, X86::SHR64mCL, 0 }, 233 { X86::SHR64ri, X86::SHR64mi, 0 }, 234 { X86::SHR8r1, X86::SHR8m1, 0 }, 235 { X86::SHR8rCL, X86::SHR8mCL, 0 }, 236 { X86::SHR8ri, X86::SHR8mi, 0 }, 237 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, 238 { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, 239 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, 240 { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, 241 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, 242 { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, 243 { X86::SUB16ri, X86::SUB16mi, 0 }, 244 { X86::SUB16ri8, X86::SUB16mi8, 0 }, 245 { X86::SUB16rr, X86::SUB16mr, 0 }, 246 { X86::SUB32ri, X86::SUB32mi, 0 }, 247 { X86::SUB32ri8, X86::SUB32mi8, 0 }, 248 { X86::SUB32rr, X86::SUB32mr, 0 }, 249 { X86::SUB64ri32, X86::SUB64mi32, 0 }, 250 { X86::SUB64ri8, X86::SUB64mi8, 0 }, 251 { X86::SUB64rr, X86::SUB64mr, 0 }, 252 { X86::SUB8ri, X86::SUB8mi, 0 }, 253 { X86::SUB8rr, X86::SUB8mr, 0 }, 254 { X86::XOR16ri, X86::XOR16mi, 0 }, 255 { X86::XOR16ri8, X86::XOR16mi8, 0 }, 256 { X86::XOR16rr, X86::XOR16mr, 0 }, 257 { X86::XOR32ri, X86::XOR32mi, 0 }, 258 { X86::XOR32ri8, X86::XOR32mi8, 0 }, 259 { X86::XOR32rr, X86::XOR32mr, 0 }, 260 { X86::XOR64ri32, X86::XOR64mi32, 0 }, 261 { X86::XOR64ri8, X86::XOR64mi8, 0 }, 262 { X86::XOR64rr, X86::XOR64mr, 0 }, 263 { X86::XOR8ri, X86::XOR8mi, 0 }, 264 { X86::XOR8rr, X86::XOR8mr, 0 } 265 }; 266 267 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { 268 unsigned RegOp = OpTbl2Addr[i].RegOp; 269 unsigned MemOp = OpTbl2Addr[i].MemOp; 270 unsigned Flags = OpTbl2Addr[i].Flags; 271 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, 272 RegOp, MemOp, 273 // Index 0, folded load and store, no alignment requirement. 274 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); 275 } 276 277 static const X86OpTblEntry OpTbl0[] = { 278 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, 279 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, 280 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, 281 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, 282 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, 283 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, 284 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, 285 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, 286 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, 287 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, 288 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, 289 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, 290 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, 291 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, 292 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, 293 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, 294 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, 295 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, 296 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, 297 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, 298 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 299 { X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 300 { X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 301 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, 302 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, 303 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, 304 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, 305 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, 306 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, 307 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, 308 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, 309 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, 310 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, 311 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, 312 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, 313 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, 314 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, 315 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, 316 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, 317 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, 318 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, 319 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, 320 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 321 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 322 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 323 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, 324 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, 325 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, 326 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, 327 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, 328 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, 329 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, 330 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, 331 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, 332 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, 333 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, 334 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, 335 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, 336 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, 337 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, 338 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, 339 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, 340 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, 341 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, 342 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, 343 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, 344 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, 345 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, 346 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, 347 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, 348 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, 349 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, 350 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, 351 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, 352 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, 353 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, 354 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, 355 // AVX 128-bit versions of foldable instructions 356 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 357 { X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 358 { X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 359 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 360 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 361 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 362 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 363 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, 364 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, 365 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, 366 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, 367 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, 368 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, 369 // AVX 256-bit foldable instructions 370 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, 371 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 372 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 373 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 374 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, 375 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE } 376 }; 377 378 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { 379 unsigned RegOp = OpTbl0[i].RegOp; 380 unsigned MemOp = OpTbl0[i].MemOp; 381 unsigned Flags = OpTbl0[i].Flags; 382 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, 383 RegOp, MemOp, TB_INDEX_0 | Flags); 384 } 385 386 static const X86OpTblEntry OpTbl1[] = { 387 { X86::CMP16rr, X86::CMP16rm, 0 }, 388 { X86::CMP32rr, X86::CMP32rm, 0 }, 389 { X86::CMP64rr, X86::CMP64rm, 0 }, 390 { X86::CMP8rr, X86::CMP8rm, 0 }, 391 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, 392 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, 393 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, 394 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, 395 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, 396 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, 397 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, 398 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, 399 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, 400 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, 401 { X86::FsMOVAPDrr, X86::MOVSDrm, TB_NO_REVERSE }, 402 { X86::FsMOVAPSrr, X86::MOVSSrm, TB_NO_REVERSE }, 403 { X86::IMUL16rri, X86::IMUL16rmi, 0 }, 404 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, 405 { X86::IMUL32rri, X86::IMUL32rmi, 0 }, 406 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, 407 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, 408 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, 409 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, 410 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, 411 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, TB_ALIGN_16 }, 412 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, TB_ALIGN_16 }, 413 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, TB_ALIGN_16 }, 414 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, TB_ALIGN_16 }, 415 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, TB_ALIGN_16 }, 416 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 }, 417 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, 418 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, 419 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, 420 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, 421 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, 422 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, 423 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, 424 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, 425 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, 426 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, 427 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, 428 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, 429 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, 430 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, 431 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, 432 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, 433 { X86::MOV16rr, X86::MOV16rm, 0 }, 434 { X86::MOV32rr, X86::MOV32rm, 0 }, 435 { X86::MOV64rr, X86::MOV64rm, 0 }, 436 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, 437 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, 438 { X86::MOV8rr, X86::MOV8rm, 0 }, 439 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, 440 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, 441 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, 442 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, 443 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, 444 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, 445 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, 446 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, 447 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, 448 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, 449 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, 450 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, 451 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, 452 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, 453 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 }, 454 { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, 455 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 }, 456 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, 457 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 }, 458 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, 459 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, 460 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, 461 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, 462 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 }, 463 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 }, 464 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 }, 465 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 }, 466 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 }, 467 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 }, 468 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, 469 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, 470 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, 471 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, 472 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 }, 473 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, 474 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 }, 475 { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, 476 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, 477 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, 478 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 }, 479 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, 480 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 }, 481 { X86::SQRTSDr, X86::SQRTSDm, 0 }, 482 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, 483 { X86::SQRTSSr, X86::SQRTSSm, 0 }, 484 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, 485 { X86::TEST16rr, X86::TEST16rm, 0 }, 486 { X86::TEST32rr, X86::TEST32rm, 0 }, 487 { X86::TEST64rr, X86::TEST64rm, 0 }, 488 { X86::TEST8rr, X86::TEST8rm, 0 }, 489 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 490 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, 491 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, 492 // AVX 128-bit versions of foldable instructions 493 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, 494 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, 495 { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm, TB_ALIGN_16 }, 496 { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm, TB_ALIGN_16 }, 497 { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm, TB_ALIGN_16 }, 498 { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm, TB_ALIGN_16 }, 499 { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm, TB_ALIGN_16 }, 500 { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm, 0 }, 501 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, 502 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, 503 { X86::FsVMOVAPDrr, X86::VMOVSDrm, TB_NO_REVERSE }, 504 { X86::FsVMOVAPSrr, X86::VMOVSSrm, TB_NO_REVERSE }, 505 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, 506 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, 507 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, 508 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, 509 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 }, 510 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, 511 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, 512 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, 513 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 }, 514 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 }, 515 { X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 }, 516 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, 517 { X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 }, 518 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 }, 519 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, 520 { X86::VPABSBrr128, X86::VPABSBrm128, TB_ALIGN_16 }, 521 { X86::VPABSDrr128, X86::VPABSDrm128, TB_ALIGN_16 }, 522 { X86::VPABSWrr128, X86::VPABSWrm128, TB_ALIGN_16 }, 523 { X86::VPERMILPDri, X86::VPERMILPDmi, TB_ALIGN_16 }, 524 { X86::VPERMILPSri, X86::VPERMILPSmi, TB_ALIGN_16 }, 525 { X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 }, 526 { X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 }, 527 { X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 }, 528 { X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 }, 529 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 }, 530 { X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 }, 531 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 }, 532 { X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 }, 533 { X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 }, 534 { X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 }, 535 { X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 }, 536 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, 537 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, 538 // AVX 256-bit foldable instructions 539 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, 540 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, 541 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, 542 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, 543 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, 544 { X86::VPERMILPDYri, X86::VPERMILPDYmi, TB_ALIGN_32 }, 545 { X86::VPERMILPSYri, X86::VPERMILPSYmi, TB_ALIGN_32 }, 546 // AVX2 foldable instructions 547 { X86::VPABSBrr256, X86::VPABSBrm256, TB_ALIGN_32 }, 548 { X86::VPABSDrr256, X86::VPABSDrm256, TB_ALIGN_32 }, 549 { X86::VPABSWrr256, X86::VPABSWrm256, TB_ALIGN_32 }, 550 { X86::VPSHUFDYri, X86::VPSHUFDYmi, TB_ALIGN_32 }, 551 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, TB_ALIGN_32 }, 552 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, TB_ALIGN_32 }, 553 { X86::VRCPPSYr, X86::VRCPPSYm, TB_ALIGN_32 }, 554 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, TB_ALIGN_32 }, 555 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, TB_ALIGN_32 }, 556 { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, TB_ALIGN_32 }, 557 { X86::VSQRTPDYr, X86::VSQRTPDYm, TB_ALIGN_32 }, 558 { X86::VSQRTPDYr_Int, X86::VSQRTPDYm_Int, TB_ALIGN_32 }, 559 { X86::VSQRTPSYr, X86::VSQRTPSYm, TB_ALIGN_32 }, 560 { X86::VSQRTPSYr_Int, X86::VSQRTPSYm_Int, TB_ALIGN_32 }, 561 }; 562 563 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { 564 unsigned RegOp = OpTbl1[i].RegOp; 565 unsigned MemOp = OpTbl1[i].MemOp; 566 unsigned Flags = OpTbl1[i].Flags; 567 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, 568 RegOp, MemOp, 569 // Index 1, folded load 570 Flags | TB_INDEX_1 | TB_FOLDED_LOAD); 571 } 572 573 static const X86OpTblEntry OpTbl2[] = { 574 { X86::ADC32rr, X86::ADC32rm, 0 }, 575 { X86::ADC64rr, X86::ADC64rm, 0 }, 576 { X86::ADD16rr, X86::ADD16rm, 0 }, 577 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, 578 { X86::ADD32rr, X86::ADD32rm, 0 }, 579 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, 580 { X86::ADD64rr, X86::ADD64rm, 0 }, 581 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, 582 { X86::ADD8rr, X86::ADD8rm, 0 }, 583 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, 584 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, 585 { X86::ADDSDrr, X86::ADDSDrm, 0 }, 586 { X86::ADDSSrr, X86::ADDSSrm, 0 }, 587 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, 588 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, 589 { X86::AND16rr, X86::AND16rm, 0 }, 590 { X86::AND32rr, X86::AND32rm, 0 }, 591 { X86::AND64rr, X86::AND64rm, 0 }, 592 { X86::AND8rr, X86::AND8rm, 0 }, 593 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, 594 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, 595 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, 596 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, 597 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 }, 598 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 }, 599 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 }, 600 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 }, 601 { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, 602 { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, 603 { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, 604 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, 605 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, 606 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, 607 { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, 608 { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, 609 { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, 610 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, 611 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, 612 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, 613 { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, 614 { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, 615 { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, 616 { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, 617 { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, 618 { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, 619 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, 620 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, 621 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, 622 { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, 623 { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, 624 { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, 625 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, 626 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, 627 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, 628 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, 629 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, 630 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, 631 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, 632 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, 633 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, 634 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, 635 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, 636 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, 637 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, 638 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, 639 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, 640 { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, 641 { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, 642 { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, 643 { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, 644 { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, 645 { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, 646 { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, 647 { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, 648 { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, 649 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, 650 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, 651 { X86::CMPSDrr, X86::CMPSDrm, 0 }, 652 { X86::CMPSSrr, X86::CMPSSrm, 0 }, 653 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, 654 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, 655 { X86::DIVSDrr, X86::DIVSDrm, 0 }, 656 { X86::DIVSSrr, X86::DIVSSrm, 0 }, 657 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 }, 658 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 }, 659 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 }, 660 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 }, 661 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 }, 662 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 }, 663 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 }, 664 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 }, 665 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, 666 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, 667 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, 668 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, 669 { X86::IMUL16rr, X86::IMUL16rm, 0 }, 670 { X86::IMUL32rr, X86::IMUL32rm, 0 }, 671 { X86::IMUL64rr, X86::IMUL64rm, 0 }, 672 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, 673 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, 674 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, 675 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 }, 676 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, 677 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 }, 678 { X86::MAXSDrr, X86::MAXSDrm, 0 }, 679 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, 680 { X86::MAXSSrr, X86::MAXSSrm, 0 }, 681 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, 682 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, 683 { X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 }, 684 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, 685 { X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 }, 686 { X86::MINSDrr, X86::MINSDrm, 0 }, 687 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, 688 { X86::MINSSrr, X86::MINSSrm, 0 }, 689 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, 690 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, 691 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, 692 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, 693 { X86::MULSDrr, X86::MULSDrm, 0 }, 694 { X86::MULSSrr, X86::MULSSrm, 0 }, 695 { X86::OR16rr, X86::OR16rm, 0 }, 696 { X86::OR32rr, X86::OR32rm, 0 }, 697 { X86::OR64rr, X86::OR64rm, 0 }, 698 { X86::OR8rr, X86::OR8rm, 0 }, 699 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, 700 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, 701 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, 702 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, 703 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 }, 704 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, 705 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, 706 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, 707 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, 708 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, 709 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, 710 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 }, 711 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 }, 712 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, 713 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 }, 714 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, 715 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, 716 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, 717 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, 718 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 }, 719 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, 720 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, 721 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 }, 722 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, 723 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, 724 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, 725 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 }, 726 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, 727 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 }, 728 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 }, 729 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 }, 730 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 }, 731 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 }, 732 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 }, 733 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 }, 734 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 }, 735 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, 736 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, 737 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, 738 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, 739 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, 740 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, 741 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 }, 742 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, 743 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, 744 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, 745 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, 746 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, 747 { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, 748 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, 749 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 }, 750 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 }, 751 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 }, 752 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 }, 753 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, 754 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, 755 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, 756 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, 757 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, 758 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, 759 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, 760 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, 761 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, 762 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, 763 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, 764 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, 765 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, 766 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, 767 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, 768 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, 769 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, 770 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, 771 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, 772 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, 773 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, 774 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, 775 { X86::SBB32rr, X86::SBB32rm, 0 }, 776 { X86::SBB64rr, X86::SBB64rm, 0 }, 777 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, 778 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, 779 { X86::SUB16rr, X86::SUB16rm, 0 }, 780 { X86::SUB32rr, X86::SUB32rm, 0 }, 781 { X86::SUB64rr, X86::SUB64rm, 0 }, 782 { X86::SUB8rr, X86::SUB8rm, 0 }, 783 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, 784 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, 785 { X86::SUBSDrr, X86::SUBSDrm, 0 }, 786 { X86::SUBSSrr, X86::SUBSSrm, 0 }, 787 // FIXME: TEST*rr -> swapped operand of TEST*mr. 788 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, 789 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, 790 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, 791 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, 792 { X86::XOR16rr, X86::XOR16rm, 0 }, 793 { X86::XOR32rr, X86::XOR32rm, 0 }, 794 { X86::XOR64rr, X86::XOR64rm, 0 }, 795 { X86::XOR8rr, X86::XOR8rm, 0 }, 796 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, 797 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, 798 // AVX 128-bit versions of foldable instructions 799 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, 800 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, 801 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, 802 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, 803 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, 804 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, 805 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, 806 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, 807 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, 808 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, 809 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, 810 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, 811 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, 812 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 }, 813 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, 814 { X86::Int_VCVTTSD2SIrr, X86::Int_VCVTTSD2SIrm, 0 }, 815 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, 816 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 }, 817 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, 818 { X86::Int_VCVTTSS2SIrr, X86::Int_VCVTTSS2SIrm, 0 }, 819 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 }, 820 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 }, 821 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQrm, TB_ALIGN_16 }, 822 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 }, 823 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, 824 { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, 825 { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, 826 { X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 }, 827 { X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 }, 828 { X86::VADDSDrr, X86::VADDSDrm, 0 }, 829 { X86::VADDSSrr, X86::VADDSSrm, 0 }, 830 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 }, 831 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 }, 832 { X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 }, 833 { X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 }, 834 { X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 }, 835 { X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 }, 836 { X86::VBLENDPDrri, X86::VBLENDPDrmi, TB_ALIGN_16 }, 837 { X86::VBLENDPSrri, X86::VBLENDPSrmi, TB_ALIGN_16 }, 838 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, TB_ALIGN_16 }, 839 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, TB_ALIGN_16 }, 840 { X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 }, 841 { X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 }, 842 { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, 843 { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, 844 { X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 }, 845 { X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 }, 846 { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, 847 { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, 848 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 }, 849 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 }, 850 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 }, 851 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 }, 852 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 }, 853 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 }, 854 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 }, 855 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 }, 856 { X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 }, 857 { X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 }, 858 { X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 }, 859 { X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 }, 860 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, 861 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, 862 { X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 }, 863 { X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 }, 864 { X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 }, 865 { X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 }, 866 { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, 867 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 }, 868 { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, 869 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 }, 870 { X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 }, 871 { X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 }, 872 { X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 }, 873 { X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 }, 874 { X86::VMINSDrr, X86::VMINSDrm, 0 }, 875 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 }, 876 { X86::VMINSSrr, X86::VMINSSrm, 0 }, 877 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 }, 878 { X86::VMPSADBWrri, X86::VMPSADBWrmi, TB_ALIGN_16 }, 879 { X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 }, 880 { X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 }, 881 { X86::VMULSDrr, X86::VMULSDrm, 0 }, 882 { X86::VMULSSrr, X86::VMULSSrm, 0 }, 883 { X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 }, 884 { X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 }, 885 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 }, 886 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 }, 887 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, TB_ALIGN_16 }, 888 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 }, 889 { X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 }, 890 { X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 }, 891 { X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 }, 892 { X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 }, 893 { X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 }, 894 { X86::VPADDUSBrr, X86::VPADDUSBrm, TB_ALIGN_16 }, 895 { X86::VPADDUSWrr, X86::VPADDUSWrm, TB_ALIGN_16 }, 896 { X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 }, 897 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, TB_ALIGN_16 }, 898 { X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 }, 899 { X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 }, 900 { X86::VPAVGBrr, X86::VPAVGBrm, TB_ALIGN_16 }, 901 { X86::VPAVGWrr, X86::VPAVGWrm, TB_ALIGN_16 }, 902 { X86::VPBLENDWrri, X86::VPBLENDWrmi, TB_ALIGN_16 }, 903 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 }, 904 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 }, 905 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, TB_ALIGN_16 }, 906 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 }, 907 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 }, 908 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 }, 909 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, TB_ALIGN_16 }, 910 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 }, 911 { X86::VPHADDDrr, X86::VPHADDDrm, TB_ALIGN_16 }, 912 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, TB_ALIGN_16 }, 913 { X86::VPHADDWrr, X86::VPHADDWrm, TB_ALIGN_16 }, 914 { X86::VPHSUBDrr, X86::VPHSUBDrm, TB_ALIGN_16 }, 915 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, TB_ALIGN_16 }, 916 { X86::VPHSUBWrr, X86::VPHSUBWrm, TB_ALIGN_16 }, 917 { X86::VPERMILPDrr, X86::VPERMILPDrm, TB_ALIGN_16 }, 918 { X86::VPERMILPSrr, X86::VPERMILPSrm, TB_ALIGN_16 }, 919 { X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 }, 920 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, TB_ALIGN_16 }, 921 { X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 }, 922 { X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 }, 923 { X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 }, 924 { X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 }, 925 { X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 }, 926 { X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 }, 927 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, TB_ALIGN_16 }, 928 { X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 }, 929 { X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 }, 930 { X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 }, 931 { X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 }, 932 { X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 }, 933 { X86::VPORrr, X86::VPORrm, TB_ALIGN_16 }, 934 { X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 }, 935 { X86::VPSHUFBrr, X86::VPSHUFBrm, TB_ALIGN_16 }, 936 { X86::VPSIGNBrr, X86::VPSIGNBrm, TB_ALIGN_16 }, 937 { X86::VPSIGNWrr, X86::VPSIGNWrm, TB_ALIGN_16 }, 938 { X86::VPSIGNDrr, X86::VPSIGNDrm, TB_ALIGN_16 }, 939 { X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 }, 940 { X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 }, 941 { X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 }, 942 { X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 }, 943 { X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 }, 944 { X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 }, 945 { X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 }, 946 { X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 }, 947 { X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 }, 948 { X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 }, 949 { X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 }, 950 { X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 }, 951 { X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 }, 952 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 }, 953 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 }, 954 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 }, 955 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 }, 956 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 }, 957 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 }, 958 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 }, 959 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 }, 960 { X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 }, 961 { X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 }, 962 { X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 }, 963 { X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 }, 964 { X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 }, 965 { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, 966 { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, 967 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 }, 968 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 }, 969 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 }, 970 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 }, 971 { X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 }, 972 { X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 }, 973 // AVX 256-bit foldable instructions 974 { X86::VADDPDYrr, X86::VADDPDYrm, TB_ALIGN_32 }, 975 { X86::VADDPSYrr, X86::VADDPSYrm, TB_ALIGN_32 }, 976 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, TB_ALIGN_32 }, 977 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, TB_ALIGN_32 }, 978 { X86::VANDNPDYrr, X86::VANDNPDYrm, TB_ALIGN_32 }, 979 { X86::VANDNPSYrr, X86::VANDNPSYrm, TB_ALIGN_32 }, 980 { X86::VANDPDYrr, X86::VANDPDYrm, TB_ALIGN_32 }, 981 { X86::VANDPSYrr, X86::VANDPSYrm, TB_ALIGN_32 }, 982 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, TB_ALIGN_32 }, 983 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, TB_ALIGN_32 }, 984 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, TB_ALIGN_32 }, 985 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, TB_ALIGN_32 }, 986 { X86::VCMPPDYrri, X86::VCMPPDYrmi, TB_ALIGN_32 }, 987 { X86::VCMPPSYrri, X86::VCMPPSYrmi, TB_ALIGN_32 }, 988 { X86::VDIVPDYrr, X86::VDIVPDYrm, TB_ALIGN_32 }, 989 { X86::VDIVPSYrr, X86::VDIVPSYrm, TB_ALIGN_32 }, 990 { X86::VHADDPDYrr, X86::VHADDPDYrm, TB_ALIGN_32 }, 991 { X86::VHADDPSYrr, X86::VHADDPSYrm, TB_ALIGN_32 }, 992 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, TB_ALIGN_32 }, 993 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, TB_ALIGN_32 }, 994 { X86::VINSERTF128rr, X86::VINSERTF128rm, TB_ALIGN_32 }, 995 { X86::VMAXPDYrr, X86::VMAXPDYrm, TB_ALIGN_32 }, 996 { X86::VMAXPDYrr_Int, X86::VMAXPDYrm_Int, TB_ALIGN_32 }, 997 { X86::VMAXPSYrr, X86::VMAXPSYrm, TB_ALIGN_32 }, 998 { X86::VMAXPSYrr_Int, X86::VMAXPSYrm_Int, TB_ALIGN_32 }, 999 { X86::VMINPDYrr, X86::VMINPDYrm, TB_ALIGN_32 }, 1000 { X86::VMINPDYrr_Int, X86::VMINPDYrm_Int, TB_ALIGN_32 }, 1001 { X86::VMINPSYrr, X86::VMINPSYrm, TB_ALIGN_32 }, 1002 { X86::VMINPSYrr_Int, X86::VMINPSYrm_Int, TB_ALIGN_32 }, 1003 { X86::VMULPDYrr, X86::VMULPDYrm, TB_ALIGN_32 }, 1004 { X86::VMULPSYrr, X86::VMULPSYrm, TB_ALIGN_32 }, 1005 { X86::VORPDYrr, X86::VORPDYrm, TB_ALIGN_32 }, 1006 { X86::VORPSYrr, X86::VORPSYrm, TB_ALIGN_32 }, 1007 { X86::VPERM2F128rr, X86::VPERM2F128rm, TB_ALIGN_32 }, 1008 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, TB_ALIGN_32 }, 1009 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, TB_ALIGN_32 }, 1010 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, TB_ALIGN_32 }, 1011 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, TB_ALIGN_32 }, 1012 { X86::VSUBPDYrr, X86::VSUBPDYrm, TB_ALIGN_32 }, 1013 { X86::VSUBPSYrr, X86::VSUBPSYrm, TB_ALIGN_32 }, 1014 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, TB_ALIGN_32 }, 1015 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, TB_ALIGN_32 }, 1016 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, TB_ALIGN_32 }, 1017 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, TB_ALIGN_32 }, 1018 { X86::VXORPDYrr, X86::VXORPDYrm, TB_ALIGN_32 }, 1019 { X86::VXORPSYrr, X86::VXORPSYrm, TB_ALIGN_32 }, 1020 // AVX2 foldable instructions 1021 { X86::VINSERTI128rr, X86::VINSERTI128rm, TB_ALIGN_16 }, 1022 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, TB_ALIGN_32 }, 1023 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, TB_ALIGN_32 }, 1024 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, TB_ALIGN_32 }, 1025 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, TB_ALIGN_32 }, 1026 { X86::VPADDBYrr, X86::VPADDBYrm, TB_ALIGN_32 }, 1027 { X86::VPADDDYrr, X86::VPADDDYrm, TB_ALIGN_32 }, 1028 { X86::VPADDQYrr, X86::VPADDQYrm, TB_ALIGN_32 }, 1029 { X86::VPADDSBYrr, X86::VPADDSBYrm, TB_ALIGN_32 }, 1030 { X86::VPADDSWYrr, X86::VPADDSWYrm, TB_ALIGN_32 }, 1031 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, TB_ALIGN_32 }, 1032 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, TB_ALIGN_32 }, 1033 { X86::VPADDWYrr, X86::VPADDWYrm, TB_ALIGN_32 }, 1034 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, TB_ALIGN_32 }, 1035 { X86::VPANDNYrr, X86::VPANDNYrm, TB_ALIGN_32 }, 1036 { X86::VPANDYrr, X86::VPANDYrm, TB_ALIGN_32 }, 1037 { X86::VPAVGBYrr, X86::VPAVGBYrm, TB_ALIGN_32 }, 1038 { X86::VPAVGWYrr, X86::VPAVGWYrm, TB_ALIGN_32 }, 1039 { X86::VPBLENDDrri, X86::VPBLENDDrmi, TB_ALIGN_32 }, 1040 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, TB_ALIGN_32 }, 1041 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, TB_ALIGN_32 }, 1042 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, TB_ALIGN_32 }, 1043 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, TB_ALIGN_32 }, 1044 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, TB_ALIGN_32 }, 1045 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, TB_ALIGN_32 }, 1046 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, TB_ALIGN_32 }, 1047 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, TB_ALIGN_32 }, 1048 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, TB_ALIGN_32 }, 1049 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, TB_ALIGN_32 }, 1050 { X86::VPERM2I128rr, X86::VPERM2I128rm, TB_ALIGN_32 }, 1051 { X86::VPERMDYrr, X86::VPERMDYrm, TB_ALIGN_32 }, 1052 { X86::VPERMPDYri, X86::VPERMPDYmi, TB_ALIGN_32 }, 1053 { X86::VPERMPSYrr, X86::VPERMPSYrm, TB_ALIGN_32 }, 1054 { X86::VPERMQYri, X86::VPERMQYmi, TB_ALIGN_32 }, 1055 { X86::VPHADDDYrr, X86::VPHADDDYrm, TB_ALIGN_32 }, 1056 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, TB_ALIGN_32 }, 1057 { X86::VPHADDWYrr, X86::VPHADDWYrm, TB_ALIGN_32 }, 1058 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, TB_ALIGN_32 }, 1059 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, TB_ALIGN_32 }, 1060 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, TB_ALIGN_32 }, 1061 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, TB_ALIGN_32 }, 1062 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, TB_ALIGN_32 }, 1063 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, TB_ALIGN_32 }, 1064 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, TB_ALIGN_32 }, 1065 { X86::VPMINSWYrr, X86::VPMINSWYrm, TB_ALIGN_32 }, 1066 { X86::VPMINUBYrr, X86::VPMINUBYrm, TB_ALIGN_32 }, 1067 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, TB_ALIGN_32 }, 1068 { X86::VPMULDQYrr, X86::VPMULDQYrm, TB_ALIGN_32 }, 1069 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, TB_ALIGN_32 }, 1070 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, TB_ALIGN_32 }, 1071 { X86::VPMULHWYrr, X86::VPMULHWYrm, TB_ALIGN_32 }, 1072 { X86::VPMULLDYrr, X86::VPMULLDYrm, TB_ALIGN_32 }, 1073 { X86::VPMULLWYrr, X86::VPMULLWYrm, TB_ALIGN_32 }, 1074 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, TB_ALIGN_32 }, 1075 { X86::VPORYrr, X86::VPORYrm, TB_ALIGN_32 }, 1076 { X86::VPSADBWYrr, X86::VPSADBWYrm, TB_ALIGN_32 }, 1077 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, TB_ALIGN_32 }, 1078 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, TB_ALIGN_32 }, 1079 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, TB_ALIGN_32 }, 1080 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, TB_ALIGN_32 }, 1081 { X86::VPSLLDYrr, X86::VPSLLDYrm, TB_ALIGN_16 }, 1082 { X86::VPSLLQYrr, X86::VPSLLQYrm, TB_ALIGN_16 }, 1083 { X86::VPSLLWYrr, X86::VPSLLWYrm, TB_ALIGN_16 }, 1084 { X86::VPSLLVDrr, X86::VPSLLVDrm, TB_ALIGN_16 }, 1085 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, TB_ALIGN_32 }, 1086 { X86::VPSLLVQrr, X86::VPSLLVQrm, TB_ALIGN_16 }, 1087 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, TB_ALIGN_32 }, 1088 { X86::VPSRADYrr, X86::VPSRADYrm, TB_ALIGN_16 }, 1089 { X86::VPSRAWYrr, X86::VPSRAWYrm, TB_ALIGN_16 }, 1090 { X86::VPSRAVDrr, X86::VPSRAVDrm, TB_ALIGN_16 }, 1091 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, TB_ALIGN_32 }, 1092 { X86::VPSRLDYrr, X86::VPSRLDYrm, TB_ALIGN_16 }, 1093 { X86::VPSRLQYrr, X86::VPSRLQYrm, TB_ALIGN_16 }, 1094 { X86::VPSRLWYrr, X86::VPSRLWYrm, TB_ALIGN_16 }, 1095 { X86::VPSRLVDrr, X86::VPSRLVDrm, TB_ALIGN_16 }, 1096 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, TB_ALIGN_32 }, 1097 { X86::VPSRLVQrr, X86::VPSRLVQrm, TB_ALIGN_16 }, 1098 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, TB_ALIGN_32 }, 1099 { X86::VPSUBBYrr, X86::VPSUBBYrm, TB_ALIGN_32 }, 1100 { X86::VPSUBDYrr, X86::VPSUBDYrm, TB_ALIGN_32 }, 1101 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, TB_ALIGN_32 }, 1102 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, TB_ALIGN_32 }, 1103 { X86::VPSUBWYrr, X86::VPSUBWYrm, TB_ALIGN_32 }, 1104 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, TB_ALIGN_32 }, 1105 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, TB_ALIGN_32 }, 1106 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, TB_ALIGN_16 }, 1107 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, TB_ALIGN_32 }, 1108 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, TB_ALIGN_32 }, 1109 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, TB_ALIGN_32 }, 1110 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, TB_ALIGN_32 }, 1111 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, TB_ALIGN_32 }, 1112 { X86::VPXORYrr, X86::VPXORYrm, TB_ALIGN_32 }, 1113 // FIXME: add AVX 256-bit foldable instructions 1114 }; 1115 1116 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { 1117 unsigned RegOp = OpTbl2[i].RegOp; 1118 unsigned MemOp = OpTbl2[i].MemOp; 1119 unsigned Flags = OpTbl2[i].Flags; 1120 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, 1121 RegOp, MemOp, 1122 // Index 2, folded load 1123 Flags | TB_INDEX_2 | TB_FOLDED_LOAD); 1124 } 1125 } 1126 1127 void 1128 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, 1129 MemOp2RegOpTableType &M2RTable, 1130 unsigned RegOp, unsigned MemOp, unsigned Flags) { 1131 if ((Flags & TB_NO_FORWARD) == 0) { 1132 assert(!R2MTable.count(RegOp) && "Duplicate entry!"); 1133 R2MTable[RegOp] = std::make_pair(MemOp, Flags); 1134 } 1135 if ((Flags & TB_NO_REVERSE) == 0) { 1136 assert(!M2RTable.count(MemOp) && 1137 "Duplicated entries in unfolding maps?"); 1138 M2RTable[MemOp] = std::make_pair(RegOp, Flags); 1139 } 1140 } 1141 1142 bool 1143 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1144 unsigned &SrcReg, unsigned &DstReg, 1145 unsigned &SubIdx) const { 1146 switch (MI.getOpcode()) { 1147 default: break; 1148 case X86::MOVSX16rr8: 1149 case X86::MOVZX16rr8: 1150 case X86::MOVSX32rr8: 1151 case X86::MOVZX32rr8: 1152 case X86::MOVSX64rr8: 1153 case X86::MOVZX64rr8: 1154 if (!TM.getSubtarget<X86Subtarget>().is64Bit()) 1155 // It's not always legal to reference the low 8-bit of the larger 1156 // register in 32-bit mode. 1157 return false; 1158 case X86::MOVSX32rr16: 1159 case X86::MOVZX32rr16: 1160 case X86::MOVSX64rr16: 1161 case X86::MOVZX64rr16: 1162 case X86::MOVSX64rr32: 1163 case X86::MOVZX64rr32: { 1164 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 1165 // Be conservative. 1166 return false; 1167 SrcReg = MI.getOperand(1).getReg(); 1168 DstReg = MI.getOperand(0).getReg(); 1169 switch (MI.getOpcode()) { 1170 default: 1171 llvm_unreachable(0); 1172 case X86::MOVSX16rr8: 1173 case X86::MOVZX16rr8: 1174 case X86::MOVSX32rr8: 1175 case X86::MOVZX32rr8: 1176 case X86::MOVSX64rr8: 1177 case X86::MOVZX64rr8: 1178 SubIdx = X86::sub_8bit; 1179 break; 1180 case X86::MOVSX32rr16: 1181 case X86::MOVZX32rr16: 1182 case X86::MOVSX64rr16: 1183 case X86::MOVZX64rr16: 1184 SubIdx = X86::sub_16bit; 1185 break; 1186 case X86::MOVSX64rr32: 1187 case X86::MOVZX64rr32: 1188 SubIdx = X86::sub_32bit; 1189 break; 1190 } 1191 return true; 1192 } 1193 } 1194 return false; 1195 } 1196 1197 /// isFrameOperand - Return true and the FrameIndex if the specified 1198 /// operand and follow operands form a reference to the stack frame. 1199 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, 1200 int &FrameIndex) const { 1201 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && 1202 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && 1203 MI->getOperand(Op+1).getImm() == 1 && 1204 MI->getOperand(Op+2).getReg() == 0 && 1205 MI->getOperand(Op+3).getImm() == 0) { 1206 FrameIndex = MI->getOperand(Op).getIndex(); 1207 return true; 1208 } 1209 return false; 1210 } 1211 1212 static bool isFrameLoadOpcode(int Opcode) { 1213 switch (Opcode) { 1214 default: 1215 return false; 1216 case X86::MOV8rm: 1217 case X86::MOV16rm: 1218 case X86::MOV32rm: 1219 case X86::MOV64rm: 1220 case X86::LD_Fp64m: 1221 case X86::MOVSSrm: 1222 case X86::MOVSDrm: 1223 case X86::MOVAPSrm: 1224 case X86::MOVAPDrm: 1225 case X86::MOVDQArm: 1226 case X86::VMOVSSrm: 1227 case X86::VMOVSDrm: 1228 case X86::VMOVAPSrm: 1229 case X86::VMOVAPDrm: 1230 case X86::VMOVDQArm: 1231 case X86::VMOVAPSYrm: 1232 case X86::VMOVAPDYrm: 1233 case X86::VMOVDQAYrm: 1234 case X86::MMX_MOVD64rm: 1235 case X86::MMX_MOVQ64rm: 1236 return true; 1237 } 1238 } 1239 1240 static bool isFrameStoreOpcode(int Opcode) { 1241 switch (Opcode) { 1242 default: break; 1243 case X86::MOV8mr: 1244 case X86::MOV16mr: 1245 case X86::MOV32mr: 1246 case X86::MOV64mr: 1247 case X86::ST_FpP64m: 1248 case X86::MOVSSmr: 1249 case X86::MOVSDmr: 1250 case X86::MOVAPSmr: 1251 case X86::MOVAPDmr: 1252 case X86::MOVDQAmr: 1253 case X86::VMOVSSmr: 1254 case X86::VMOVSDmr: 1255 case X86::VMOVAPSmr: 1256 case X86::VMOVAPDmr: 1257 case X86::VMOVDQAmr: 1258 case X86::VMOVAPSYmr: 1259 case X86::VMOVAPDYmr: 1260 case X86::VMOVDQAYmr: 1261 case X86::MMX_MOVD64mr: 1262 case X86::MMX_MOVQ64mr: 1263 case X86::MMX_MOVNTQmr: 1264 return true; 1265 } 1266 return false; 1267 } 1268 1269 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 1270 int &FrameIndex) const { 1271 if (isFrameLoadOpcode(MI->getOpcode())) 1272 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 1273 return MI->getOperand(0).getReg(); 1274 return 0; 1275 } 1276 1277 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 1278 int &FrameIndex) const { 1279 if (isFrameLoadOpcode(MI->getOpcode())) { 1280 unsigned Reg; 1281 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 1282 return Reg; 1283 // Check for post-frame index elimination operations 1284 const MachineMemOperand *Dummy; 1285 return hasLoadFromStackSlot(MI, Dummy, FrameIndex); 1286 } 1287 return 0; 1288 } 1289 1290 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, 1291 int &FrameIndex) const { 1292 if (isFrameStoreOpcode(MI->getOpcode())) 1293 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && 1294 isFrameOperand(MI, 0, FrameIndex)) 1295 return MI->getOperand(X86::AddrNumOperands).getReg(); 1296 return 0; 1297 } 1298 1299 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 1300 int &FrameIndex) const { 1301 if (isFrameStoreOpcode(MI->getOpcode())) { 1302 unsigned Reg; 1303 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 1304 return Reg; 1305 // Check for post-frame index elimination operations 1306 const MachineMemOperand *Dummy; 1307 return hasStoreToStackSlot(MI, Dummy, FrameIndex); 1308 } 1309 return 0; 1310 } 1311 1312 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by 1313 /// X86::MOVPC32r. 1314 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { 1315 bool isPICBase = false; 1316 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), 1317 E = MRI.def_end(); I != E; ++I) { 1318 MachineInstr *DefMI = I.getOperand().getParent(); 1319 if (DefMI->getOpcode() != X86::MOVPC32r) 1320 return false; 1321 assert(!isPICBase && "More than one PIC base?"); 1322 isPICBase = true; 1323 } 1324 return isPICBase; 1325 } 1326 1327 bool 1328 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, 1329 AliasAnalysis *AA) const { 1330 switch (MI->getOpcode()) { 1331 default: break; 1332 case X86::MOV8rm: 1333 case X86::MOV16rm: 1334 case X86::MOV32rm: 1335 case X86::MOV64rm: 1336 case X86::LD_Fp64m: 1337 case X86::MOVSSrm: 1338 case X86::MOVSDrm: 1339 case X86::MOVAPSrm: 1340 case X86::MOVUPSrm: 1341 case X86::MOVAPDrm: 1342 case X86::MOVDQArm: 1343 case X86::VMOVSSrm: 1344 case X86::VMOVSDrm: 1345 case X86::VMOVAPSrm: 1346 case X86::VMOVUPSrm: 1347 case X86::VMOVAPDrm: 1348 case X86::VMOVDQArm: 1349 case X86::VMOVAPSYrm: 1350 case X86::VMOVUPSYrm: 1351 case X86::VMOVAPDYrm: 1352 case X86::VMOVDQAYrm: 1353 case X86::MMX_MOVD64rm: 1354 case X86::MMX_MOVQ64rm: 1355 case X86::FsVMOVAPSrm: 1356 case X86::FsVMOVAPDrm: 1357 case X86::FsMOVAPSrm: 1358 case X86::FsMOVAPDrm: { 1359 // Loads from constant pools are trivially rematerializable. 1360 if (MI->getOperand(1).isReg() && 1361 MI->getOperand(2).isImm() && 1362 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && 1363 MI->isInvariantLoad(AA)) { 1364 unsigned BaseReg = MI->getOperand(1).getReg(); 1365 if (BaseReg == 0 || BaseReg == X86::RIP) 1366 return true; 1367 // Allow re-materialization of PIC load. 1368 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) 1369 return false; 1370 const MachineFunction &MF = *MI->getParent()->getParent(); 1371 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1372 bool isPICBase = false; 1373 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), 1374 E = MRI.def_end(); I != E; ++I) { 1375 MachineInstr *DefMI = I.getOperand().getParent(); 1376 if (DefMI->getOpcode() != X86::MOVPC32r) 1377 return false; 1378 assert(!isPICBase && "More than one PIC base?"); 1379 isPICBase = true; 1380 } 1381 return isPICBase; 1382 } 1383 return false; 1384 } 1385 1386 case X86::LEA32r: 1387 case X86::LEA64r: { 1388 if (MI->getOperand(2).isImm() && 1389 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && 1390 !MI->getOperand(4).isReg()) { 1391 // lea fi#, lea GV, etc. are all rematerializable. 1392 if (!MI->getOperand(1).isReg()) 1393 return true; 1394 unsigned BaseReg = MI->getOperand(1).getReg(); 1395 if (BaseReg == 0) 1396 return true; 1397 // Allow re-materialization of lea PICBase + x. 1398 const MachineFunction &MF = *MI->getParent()->getParent(); 1399 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1400 return regIsPICBase(BaseReg, MRI); 1401 } 1402 return false; 1403 } 1404 } 1405 1406 // All other instructions marked M_REMATERIALIZABLE are always trivially 1407 // rematerializable. 1408 return true; 1409 } 1410 1411 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that 1412 /// would clobber the EFLAGS condition register. Note the result may be 1413 /// conservative. If it cannot definitely determine the safety after visiting 1414 /// a few instructions in each direction it assumes it's not safe. 1415 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, 1416 MachineBasicBlock::iterator I) { 1417 MachineBasicBlock::iterator E = MBB.end(); 1418 1419 // For compile time consideration, if we are not able to determine the 1420 // safety after visiting 4 instructions in each direction, we will assume 1421 // it's not safe. 1422 MachineBasicBlock::iterator Iter = I; 1423 for (unsigned i = 0; Iter != E && i < 4; ++i) { 1424 bool SeenDef = false; 1425 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 1426 MachineOperand &MO = Iter->getOperand(j); 1427 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) 1428 SeenDef = true; 1429 if (!MO.isReg()) 1430 continue; 1431 if (MO.getReg() == X86::EFLAGS) { 1432 if (MO.isUse()) 1433 return false; 1434 SeenDef = true; 1435 } 1436 } 1437 1438 if (SeenDef) 1439 // This instruction defines EFLAGS, no need to look any further. 1440 return true; 1441 ++Iter; 1442 // Skip over DBG_VALUE. 1443 while (Iter != E && Iter->isDebugValue()) 1444 ++Iter; 1445 } 1446 1447 // It is safe to clobber EFLAGS at the end of a block of no successor has it 1448 // live in. 1449 if (Iter == E) { 1450 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), 1451 SE = MBB.succ_end(); SI != SE; ++SI) 1452 if ((*SI)->isLiveIn(X86::EFLAGS)) 1453 return false; 1454 return true; 1455 } 1456 1457 MachineBasicBlock::iterator B = MBB.begin(); 1458 Iter = I; 1459 for (unsigned i = 0; i < 4; ++i) { 1460 // If we make it to the beginning of the block, it's safe to clobber 1461 // EFLAGS iff EFLAGS is not live-in. 1462 if (Iter == B) 1463 return !MBB.isLiveIn(X86::EFLAGS); 1464 1465 --Iter; 1466 // Skip over DBG_VALUE. 1467 while (Iter != B && Iter->isDebugValue()) 1468 --Iter; 1469 1470 bool SawKill = false; 1471 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 1472 MachineOperand &MO = Iter->getOperand(j); 1473 // A register mask may clobber EFLAGS, but we should still look for a 1474 // live EFLAGS def. 1475 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) 1476 SawKill = true; 1477 if (MO.isReg() && MO.getReg() == X86::EFLAGS) { 1478 if (MO.isDef()) return MO.isDead(); 1479 if (MO.isKill()) SawKill = true; 1480 } 1481 } 1482 1483 if (SawKill) 1484 // This instruction kills EFLAGS and doesn't redefine it, so 1485 // there's no need to look further. 1486 return true; 1487 } 1488 1489 // Conservative answer. 1490 return false; 1491 } 1492 1493 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 1494 MachineBasicBlock::iterator I, 1495 unsigned DestReg, unsigned SubIdx, 1496 const MachineInstr *Orig, 1497 const TargetRegisterInfo &TRI) const { 1498 DebugLoc DL = Orig->getDebugLoc(); 1499 1500 // MOV32r0 etc. are implemented with xor which clobbers condition code. 1501 // Re-materialize them as movri instructions to avoid side effects. 1502 bool Clone = true; 1503 unsigned Opc = Orig->getOpcode(); 1504 switch (Opc) { 1505 default: break; 1506 case X86::MOV8r0: 1507 case X86::MOV16r0: 1508 case X86::MOV32r0: 1509 case X86::MOV64r0: { 1510 if (!isSafeToClobberEFLAGS(MBB, I)) { 1511 switch (Opc) { 1512 default: break; 1513 case X86::MOV8r0: Opc = X86::MOV8ri; break; 1514 case X86::MOV16r0: Opc = X86::MOV16ri; break; 1515 case X86::MOV32r0: Opc = X86::MOV32ri; break; 1516 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; 1517 } 1518 Clone = false; 1519 } 1520 break; 1521 } 1522 } 1523 1524 if (Clone) { 1525 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 1526 MBB.insert(I, MI); 1527 } else { 1528 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); 1529 } 1530 1531 MachineInstr *NewMI = prior(I); 1532 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 1533 } 1534 1535 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that 1536 /// is not marked dead. 1537 static bool hasLiveCondCodeDef(MachineInstr *MI) { 1538 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1539 MachineOperand &MO = MI->getOperand(i); 1540 if (MO.isReg() && MO.isDef() && 1541 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 1542 return true; 1543 } 1544 } 1545 return false; 1546 } 1547 1548 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when 1549 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting 1550 /// to a 32-bit superregister and then truncating back down to a 16-bit 1551 /// subregister. 1552 MachineInstr * 1553 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 1554 MachineFunction::iterator &MFI, 1555 MachineBasicBlock::iterator &MBBI, 1556 LiveVariables *LV) const { 1557 MachineInstr *MI = MBBI; 1558 unsigned Dest = MI->getOperand(0).getReg(); 1559 unsigned Src = MI->getOperand(1).getReg(); 1560 bool isDead = MI->getOperand(0).isDead(); 1561 bool isKill = MI->getOperand(1).isKill(); 1562 1563 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() 1564 ? X86::LEA64_32r : X86::LEA32r; 1565 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 1566 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1567 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1568 1569 // Build and insert into an implicit UNDEF value. This is OK because 1570 // well be shifting and then extracting the lower 16-bits. 1571 // This has the potential to cause partial register stall. e.g. 1572 // movw (%rbp,%rcx,2), %dx 1573 // leal -65(%rdx), %esi 1574 // But testing has shown this *does* help performance in 64-bit mode (at 1575 // least on modern x86 machines). 1576 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); 1577 MachineInstr *InsMI = 1578 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1579 .addReg(leaInReg, RegState::Define, X86::sub_16bit) 1580 .addReg(Src, getKillRegState(isKill)); 1581 1582 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), 1583 get(Opc), leaOutReg); 1584 switch (MIOpc) { 1585 default: 1586 llvm_unreachable(0); 1587 case X86::SHL16ri: { 1588 unsigned ShAmt = MI->getOperand(2).getImm(); 1589 MIB.addReg(0).addImm(1 << ShAmt) 1590 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); 1591 break; 1592 } 1593 case X86::INC16r: 1594 case X86::INC64_16r: 1595 addRegOffset(MIB, leaInReg, true, 1); 1596 break; 1597 case X86::DEC16r: 1598 case X86::DEC64_16r: 1599 addRegOffset(MIB, leaInReg, true, -1); 1600 break; 1601 case X86::ADD16ri: 1602 case X86::ADD16ri8: 1603 case X86::ADD16ri_DB: 1604 case X86::ADD16ri8_DB: 1605 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); 1606 break; 1607 case X86::ADD16rr: 1608 case X86::ADD16rr_DB: { 1609 unsigned Src2 = MI->getOperand(2).getReg(); 1610 bool isKill2 = MI->getOperand(2).isKill(); 1611 unsigned leaInReg2 = 0; 1612 MachineInstr *InsMI2 = 0; 1613 if (Src == Src2) { 1614 // ADD16rr %reg1028<kill>, %reg1028 1615 // just a single insert_subreg. 1616 addRegReg(MIB, leaInReg, true, leaInReg, false); 1617 } else { 1618 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1619 // Build and insert into an implicit UNDEF value. This is OK because 1620 // well be shifting and then extracting the lower 16-bits. 1621 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2); 1622 InsMI2 = 1623 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1624 .addReg(leaInReg2, RegState::Define, X86::sub_16bit) 1625 .addReg(Src2, getKillRegState(isKill2)); 1626 addRegReg(MIB, leaInReg, true, leaInReg2, true); 1627 } 1628 if (LV && isKill2 && InsMI2) 1629 LV->replaceKillInstruction(Src2, MI, InsMI2); 1630 break; 1631 } 1632 } 1633 1634 MachineInstr *NewMI = MIB; 1635 MachineInstr *ExtMI = 1636 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1637 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1638 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); 1639 1640 if (LV) { 1641 // Update live variables 1642 LV->getVarInfo(leaInReg).Kills.push_back(NewMI); 1643 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); 1644 if (isKill) 1645 LV->replaceKillInstruction(Src, MI, InsMI); 1646 if (isDead) 1647 LV->replaceKillInstruction(Dest, MI, ExtMI); 1648 } 1649 1650 return ExtMI; 1651 } 1652 1653 /// convertToThreeAddress - This method must be implemented by targets that 1654 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1655 /// may be able to convert a two-address instruction into a true 1656 /// three-address instruction on demand. This allows the X86 target (for 1657 /// example) to convert ADD and SHL instructions into LEA instructions if they 1658 /// would require register copies due to two-addressness. 1659 /// 1660 /// This method returns a null pointer if the transformation cannot be 1661 /// performed, otherwise it returns the new instruction. 1662 /// 1663 MachineInstr * 1664 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 1665 MachineBasicBlock::iterator &MBBI, 1666 LiveVariables *LV) const { 1667 MachineInstr *MI = MBBI; 1668 MachineFunction &MF = *MI->getParent()->getParent(); 1669 // All instructions input are two-addr instructions. Get the known operands. 1670 unsigned Dest = MI->getOperand(0).getReg(); 1671 unsigned Src = MI->getOperand(1).getReg(); 1672 bool isDead = MI->getOperand(0).isDead(); 1673 bool isKill = MI->getOperand(1).isKill(); 1674 1675 MachineInstr *NewMI = NULL; 1676 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When 1677 // we have better subtarget support, enable the 16-bit LEA generation here. 1678 // 16-bit LEA is also slow on Core2. 1679 bool DisableLEA16 = true; 1680 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); 1681 1682 unsigned MIOpc = MI->getOpcode(); 1683 switch (MIOpc) { 1684 case X86::SHUFPSrri: { 1685 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); 1686 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; 1687 1688 unsigned B = MI->getOperand(1).getReg(); 1689 unsigned C = MI->getOperand(2).getReg(); 1690 if (B != C) return 0; 1691 unsigned A = MI->getOperand(0).getReg(); 1692 unsigned M = MI->getOperand(3).getImm(); 1693 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) 1694 .addReg(A, RegState::Define | getDeadRegState(isDead)) 1695 .addReg(B, getKillRegState(isKill)).addImm(M); 1696 break; 1697 } 1698 case X86::SHUFPDrri: { 1699 assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!"); 1700 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; 1701 1702 unsigned B = MI->getOperand(1).getReg(); 1703 unsigned C = MI->getOperand(2).getReg(); 1704 if (B != C) return 0; 1705 unsigned A = MI->getOperand(0).getReg(); 1706 unsigned M = MI->getOperand(3).getImm(); 1707 1708 // Convert to PSHUFD mask. 1709 M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44; 1710 1711 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) 1712 .addReg(A, RegState::Define | getDeadRegState(isDead)) 1713 .addReg(B, getKillRegState(isKill)).addImm(M); 1714 break; 1715 } 1716 case X86::SHL64ri: { 1717 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1718 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1719 // the flags produced by a shift yet, so this is safe. 1720 unsigned ShAmt = MI->getOperand(2).getImm(); 1721 if (ShAmt == 0 || ShAmt >= 4) return 0; 1722 1723 // LEA can't handle RSP. 1724 if (TargetRegisterInfo::isVirtualRegister(Src) && 1725 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass)) 1726 return 0; 1727 1728 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 1729 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1730 .addReg(0).addImm(1 << ShAmt) 1731 .addReg(Src, getKillRegState(isKill)) 1732 .addImm(0).addReg(0); 1733 break; 1734 } 1735 case X86::SHL32ri: { 1736 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1737 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1738 // the flags produced by a shift yet, so this is safe. 1739 unsigned ShAmt = MI->getOperand(2).getImm(); 1740 if (ShAmt == 0 || ShAmt >= 4) return 0; 1741 1742 // LEA can't handle ESP. 1743 if (TargetRegisterInfo::isVirtualRegister(Src) && 1744 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass)) 1745 return 0; 1746 1747 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1748 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1749 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1750 .addReg(0).addImm(1 << ShAmt) 1751 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0); 1752 break; 1753 } 1754 case X86::SHL16ri: { 1755 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1756 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1757 // the flags produced by a shift yet, so this is safe. 1758 unsigned ShAmt = MI->getOperand(2).getImm(); 1759 if (ShAmt == 0 || ShAmt >= 4) return 0; 1760 1761 if (DisableLEA16) 1762 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1763 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1764 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1765 .addReg(0).addImm(1 << ShAmt) 1766 .addReg(Src, getKillRegState(isKill)) 1767 .addImm(0).addReg(0); 1768 break; 1769 } 1770 default: { 1771 // The following opcodes also sets the condition code register(s). Only 1772 // convert them to equivalent lea if the condition code register def's 1773 // are dead! 1774 if (hasLiveCondCodeDef(MI)) 1775 return 0; 1776 1777 switch (MIOpc) { 1778 default: return 0; 1779 case X86::INC64r: 1780 case X86::INC32r: 1781 case X86::INC64_32r: { 1782 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 1783 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r 1784 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 1785 1786 // LEA can't handle RSP. 1787 if (TargetRegisterInfo::isVirtualRegister(Src) && 1788 !MF.getRegInfo().constrainRegClass(Src, 1789 MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass : 1790 X86::GR32_NOSPRegisterClass)) 1791 return 0; 1792 1793 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1794 .addReg(Dest, RegState::Define | 1795 getDeadRegState(isDead)), 1796 Src, isKill, 1); 1797 break; 1798 } 1799 case X86::INC16r: 1800 case X86::INC64_16r: 1801 if (DisableLEA16) 1802 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1803 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 1804 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1805 .addReg(Dest, RegState::Define | 1806 getDeadRegState(isDead)), 1807 Src, isKill, 1); 1808 break; 1809 case X86::DEC64r: 1810 case X86::DEC32r: 1811 case X86::DEC64_32r: { 1812 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 1813 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 1814 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 1815 // LEA can't handle RSP. 1816 if (TargetRegisterInfo::isVirtualRegister(Src) && 1817 !MF.getRegInfo().constrainRegClass(Src, 1818 MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass : 1819 X86::GR32_NOSPRegisterClass)) 1820 return 0; 1821 1822 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1823 .addReg(Dest, RegState::Define | 1824 getDeadRegState(isDead)), 1825 Src, isKill, -1); 1826 break; 1827 } 1828 case X86::DEC16r: 1829 case X86::DEC64_16r: 1830 if (DisableLEA16) 1831 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1832 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 1833 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1834 .addReg(Dest, RegState::Define | 1835 getDeadRegState(isDead)), 1836 Src, isKill, -1); 1837 break; 1838 case X86::ADD64rr: 1839 case X86::ADD64rr_DB: 1840 case X86::ADD32rr: 1841 case X86::ADD32rr_DB: { 1842 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1843 unsigned Opc; 1844 const TargetRegisterClass *RC; 1845 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) { 1846 Opc = X86::LEA64r; 1847 RC = X86::GR64_NOSPRegisterClass; 1848 } else { 1849 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1850 RC = X86::GR32_NOSPRegisterClass; 1851 } 1852 1853 1854 unsigned Src2 = MI->getOperand(2).getReg(); 1855 bool isKill2 = MI->getOperand(2).isKill(); 1856 1857 // LEA can't handle RSP. 1858 if (TargetRegisterInfo::isVirtualRegister(Src2) && 1859 !MF.getRegInfo().constrainRegClass(Src2, RC)) 1860 return 0; 1861 1862 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1863 .addReg(Dest, RegState::Define | 1864 getDeadRegState(isDead)), 1865 Src, isKill, Src2, isKill2); 1866 if (LV && isKill2) 1867 LV->replaceKillInstruction(Src2, MI, NewMI); 1868 break; 1869 } 1870 case X86::ADD16rr: 1871 case X86::ADD16rr_DB: { 1872 if (DisableLEA16) 1873 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1874 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1875 unsigned Src2 = MI->getOperand(2).getReg(); 1876 bool isKill2 = MI->getOperand(2).isKill(); 1877 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1878 .addReg(Dest, RegState::Define | 1879 getDeadRegState(isDead)), 1880 Src, isKill, Src2, isKill2); 1881 if (LV && isKill2) 1882 LV->replaceKillInstruction(Src2, MI, NewMI); 1883 break; 1884 } 1885 case X86::ADD64ri32: 1886 case X86::ADD64ri8: 1887 case X86::ADD64ri32_DB: 1888 case X86::ADD64ri8_DB: 1889 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1890 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 1891 .addReg(Dest, RegState::Define | 1892 getDeadRegState(isDead)), 1893 Src, isKill, MI->getOperand(2).getImm()); 1894 break; 1895 case X86::ADD32ri: 1896 case X86::ADD32ri8: 1897 case X86::ADD32ri_DB: 1898 case X86::ADD32ri8_DB: { 1899 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1900 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1901 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1902 .addReg(Dest, RegState::Define | 1903 getDeadRegState(isDead)), 1904 Src, isKill, MI->getOperand(2).getImm()); 1905 break; 1906 } 1907 case X86::ADD16ri: 1908 case X86::ADD16ri8: 1909 case X86::ADD16ri_DB: 1910 case X86::ADD16ri8_DB: 1911 if (DisableLEA16) 1912 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1913 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1914 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1915 .addReg(Dest, RegState::Define | 1916 getDeadRegState(isDead)), 1917 Src, isKill, MI->getOperand(2).getImm()); 1918 break; 1919 } 1920 } 1921 } 1922 1923 if (!NewMI) return 0; 1924 1925 if (LV) { // Update live variables 1926 if (isKill) 1927 LV->replaceKillInstruction(Src, MI, NewMI); 1928 if (isDead) 1929 LV->replaceKillInstruction(Dest, MI, NewMI); 1930 } 1931 1932 MFI->insert(MBBI, NewMI); // Insert the new inst 1933 return NewMI; 1934 } 1935 1936 /// commuteInstruction - We have a few instructions that must be hacked on to 1937 /// commute them. 1938 /// 1939 MachineInstr * 1940 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 1941 switch (MI->getOpcode()) { 1942 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 1943 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 1944 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 1945 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 1946 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 1947 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 1948 unsigned Opc; 1949 unsigned Size; 1950 switch (MI->getOpcode()) { 1951 default: llvm_unreachable("Unreachable!"); 1952 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 1953 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 1954 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 1955 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 1956 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 1957 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 1958 } 1959 unsigned Amt = MI->getOperand(3).getImm(); 1960 if (NewMI) { 1961 MachineFunction &MF = *MI->getParent()->getParent(); 1962 MI = MF.CloneMachineInstr(MI); 1963 NewMI = false; 1964 } 1965 MI->setDesc(get(Opc)); 1966 MI->getOperand(3).setImm(Size-Amt); 1967 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); 1968 } 1969 case X86::CMOVB16rr: 1970 case X86::CMOVB32rr: 1971 case X86::CMOVB64rr: 1972 case X86::CMOVAE16rr: 1973 case X86::CMOVAE32rr: 1974 case X86::CMOVAE64rr: 1975 case X86::CMOVE16rr: 1976 case X86::CMOVE32rr: 1977 case X86::CMOVE64rr: 1978 case X86::CMOVNE16rr: 1979 case X86::CMOVNE32rr: 1980 case X86::CMOVNE64rr: 1981 case X86::CMOVBE16rr: 1982 case X86::CMOVBE32rr: 1983 case X86::CMOVBE64rr: 1984 case X86::CMOVA16rr: 1985 case X86::CMOVA32rr: 1986 case X86::CMOVA64rr: 1987 case X86::CMOVL16rr: 1988 case X86::CMOVL32rr: 1989 case X86::CMOVL64rr: 1990 case X86::CMOVGE16rr: 1991 case X86::CMOVGE32rr: 1992 case X86::CMOVGE64rr: 1993 case X86::CMOVLE16rr: 1994 case X86::CMOVLE32rr: 1995 case X86::CMOVLE64rr: 1996 case X86::CMOVG16rr: 1997 case X86::CMOVG32rr: 1998 case X86::CMOVG64rr: 1999 case X86::CMOVS16rr: 2000 case X86::CMOVS32rr: 2001 case X86::CMOVS64rr: 2002 case X86::CMOVNS16rr: 2003 case X86::CMOVNS32rr: 2004 case X86::CMOVNS64rr: 2005 case X86::CMOVP16rr: 2006 case X86::CMOVP32rr: 2007 case X86::CMOVP64rr: 2008 case X86::CMOVNP16rr: 2009 case X86::CMOVNP32rr: 2010 case X86::CMOVNP64rr: 2011 case X86::CMOVO16rr: 2012 case X86::CMOVO32rr: 2013 case X86::CMOVO64rr: 2014 case X86::CMOVNO16rr: 2015 case X86::CMOVNO32rr: 2016 case X86::CMOVNO64rr: { 2017 unsigned Opc = 0; 2018 switch (MI->getOpcode()) { 2019 default: break; 2020 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; 2021 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; 2022 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; 2023 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; 2024 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; 2025 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; 2026 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; 2027 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; 2028 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; 2029 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; 2030 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; 2031 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; 2032 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; 2033 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; 2034 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; 2035 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; 2036 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; 2037 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; 2038 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; 2039 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; 2040 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; 2041 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; 2042 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; 2043 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; 2044 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; 2045 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; 2046 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; 2047 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; 2048 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; 2049 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; 2050 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; 2051 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; 2052 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; 2053 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; 2054 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; 2055 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; 2056 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; 2057 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; 2058 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; 2059 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; 2060 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; 2061 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; 2062 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; 2063 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; 2064 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; 2065 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; 2066 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; 2067 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; 2068 } 2069 if (NewMI) { 2070 MachineFunction &MF = *MI->getParent()->getParent(); 2071 MI = MF.CloneMachineInstr(MI); 2072 NewMI = false; 2073 } 2074 MI->setDesc(get(Opc)); 2075 // Fallthrough intended. 2076 } 2077 default: 2078 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); 2079 } 2080 } 2081 2082 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { 2083 switch (BrOpc) { 2084 default: return X86::COND_INVALID; 2085 case X86::JE_4: return X86::COND_E; 2086 case X86::JNE_4: return X86::COND_NE; 2087 case X86::JL_4: return X86::COND_L; 2088 case X86::JLE_4: return X86::COND_LE; 2089 case X86::JG_4: return X86::COND_G; 2090 case X86::JGE_4: return X86::COND_GE; 2091 case X86::JB_4: return X86::COND_B; 2092 case X86::JBE_4: return X86::COND_BE; 2093 case X86::JA_4: return X86::COND_A; 2094 case X86::JAE_4: return X86::COND_AE; 2095 case X86::JS_4: return X86::COND_S; 2096 case X86::JNS_4: return X86::COND_NS; 2097 case X86::JP_4: return X86::COND_P; 2098 case X86::JNP_4: return X86::COND_NP; 2099 case X86::JO_4: return X86::COND_O; 2100 case X86::JNO_4: return X86::COND_NO; 2101 } 2102 } 2103 2104 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { 2105 switch (CC) { 2106 default: llvm_unreachable("Illegal condition code!"); 2107 case X86::COND_E: return X86::JE_4; 2108 case X86::COND_NE: return X86::JNE_4; 2109 case X86::COND_L: return X86::JL_4; 2110 case X86::COND_LE: return X86::JLE_4; 2111 case X86::COND_G: return X86::JG_4; 2112 case X86::COND_GE: return X86::JGE_4; 2113 case X86::COND_B: return X86::JB_4; 2114 case X86::COND_BE: return X86::JBE_4; 2115 case X86::COND_A: return X86::JA_4; 2116 case X86::COND_AE: return X86::JAE_4; 2117 case X86::COND_S: return X86::JS_4; 2118 case X86::COND_NS: return X86::JNS_4; 2119 case X86::COND_P: return X86::JP_4; 2120 case X86::COND_NP: return X86::JNP_4; 2121 case X86::COND_O: return X86::JO_4; 2122 case X86::COND_NO: return X86::JNO_4; 2123 } 2124 } 2125 2126 /// GetOppositeBranchCondition - Return the inverse of the specified condition, 2127 /// e.g. turning COND_E to COND_NE. 2128 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 2129 switch (CC) { 2130 default: llvm_unreachable("Illegal condition code!"); 2131 case X86::COND_E: return X86::COND_NE; 2132 case X86::COND_NE: return X86::COND_E; 2133 case X86::COND_L: return X86::COND_GE; 2134 case X86::COND_LE: return X86::COND_G; 2135 case X86::COND_G: return X86::COND_LE; 2136 case X86::COND_GE: return X86::COND_L; 2137 case X86::COND_B: return X86::COND_AE; 2138 case X86::COND_BE: return X86::COND_A; 2139 case X86::COND_A: return X86::COND_BE; 2140 case X86::COND_AE: return X86::COND_B; 2141 case X86::COND_S: return X86::COND_NS; 2142 case X86::COND_NS: return X86::COND_S; 2143 case X86::COND_P: return X86::COND_NP; 2144 case X86::COND_NP: return X86::COND_P; 2145 case X86::COND_O: return X86::COND_NO; 2146 case X86::COND_NO: return X86::COND_O; 2147 } 2148 } 2149 2150 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 2151 if (!MI->isTerminator()) return false; 2152 2153 // Conditional branch is a special case. 2154 if (MI->isBranch() && !MI->isBarrier()) 2155 return true; 2156 if (!MI->isPredicable()) 2157 return true; 2158 return !isPredicated(MI); 2159 } 2160 2161 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 2162 MachineBasicBlock *&TBB, 2163 MachineBasicBlock *&FBB, 2164 SmallVectorImpl<MachineOperand> &Cond, 2165 bool AllowModify) const { 2166 // Start from the bottom of the block and work up, examining the 2167 // terminator instructions. 2168 MachineBasicBlock::iterator I = MBB.end(); 2169 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 2170 while (I != MBB.begin()) { 2171 --I; 2172 if (I->isDebugValue()) 2173 continue; 2174 2175 // Working from the bottom, when we see a non-terminator instruction, we're 2176 // done. 2177 if (!isUnpredicatedTerminator(I)) 2178 break; 2179 2180 // A terminator that isn't a branch can't easily be handled by this 2181 // analysis. 2182 if (!I->isBranch()) 2183 return true; 2184 2185 // Handle unconditional branches. 2186 if (I->getOpcode() == X86::JMP_4) { 2187 UnCondBrIter = I; 2188 2189 if (!AllowModify) { 2190 TBB = I->getOperand(0).getMBB(); 2191 continue; 2192 } 2193 2194 // If the block has any instructions after a JMP, delete them. 2195 while (llvm::next(I) != MBB.end()) 2196 llvm::next(I)->eraseFromParent(); 2197 2198 Cond.clear(); 2199 FBB = 0; 2200 2201 // Delete the JMP if it's equivalent to a fall-through. 2202 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 2203 TBB = 0; 2204 I->eraseFromParent(); 2205 I = MBB.end(); 2206 UnCondBrIter = MBB.end(); 2207 continue; 2208 } 2209 2210 // TBB is used to indicate the unconditional destination. 2211 TBB = I->getOperand(0).getMBB(); 2212 continue; 2213 } 2214 2215 // Handle conditional branches. 2216 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); 2217 if (BranchCode == X86::COND_INVALID) 2218 return true; // Can't handle indirect branch. 2219 2220 // Working from the bottom, handle the first conditional branch. 2221 if (Cond.empty()) { 2222 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 2223 if (AllowModify && UnCondBrIter != MBB.end() && 2224 MBB.isLayoutSuccessor(TargetBB)) { 2225 // If we can modify the code and it ends in something like: 2226 // 2227 // jCC L1 2228 // jmp L2 2229 // L1: 2230 // ... 2231 // L2: 2232 // 2233 // Then we can change this to: 2234 // 2235 // jnCC L2 2236 // L1: 2237 // ... 2238 // L2: 2239 // 2240 // Which is a bit more efficient. 2241 // We conditionally jump to the fall-through block. 2242 BranchCode = GetOppositeBranchCondition(BranchCode); 2243 unsigned JNCC = GetCondBranchFromCond(BranchCode); 2244 MachineBasicBlock::iterator OldInst = I; 2245 2246 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) 2247 .addMBB(UnCondBrIter->getOperand(0).getMBB()); 2248 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) 2249 .addMBB(TargetBB); 2250 2251 OldInst->eraseFromParent(); 2252 UnCondBrIter->eraseFromParent(); 2253 2254 // Restart the analysis. 2255 UnCondBrIter = MBB.end(); 2256 I = MBB.end(); 2257 continue; 2258 } 2259 2260 FBB = TBB; 2261 TBB = I->getOperand(0).getMBB(); 2262 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 2263 continue; 2264 } 2265 2266 // Handle subsequent conditional branches. Only handle the case where all 2267 // conditional branches branch to the same destination and their condition 2268 // opcodes fit one of the special multi-branch idioms. 2269 assert(Cond.size() == 1); 2270 assert(TBB); 2271 2272 // Only handle the case where all conditional branches branch to the same 2273 // destination. 2274 if (TBB != I->getOperand(0).getMBB()) 2275 return true; 2276 2277 // If the conditions are the same, we can leave them alone. 2278 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 2279 if (OldBranchCode == BranchCode) 2280 continue; 2281 2282 // If they differ, see if they fit one of the known patterns. Theoretically, 2283 // we could handle more patterns here, but we shouldn't expect to see them 2284 // if instruction selection has done a reasonable job. 2285 if ((OldBranchCode == X86::COND_NP && 2286 BranchCode == X86::COND_E) || 2287 (OldBranchCode == X86::COND_E && 2288 BranchCode == X86::COND_NP)) 2289 BranchCode = X86::COND_NP_OR_E; 2290 else if ((OldBranchCode == X86::COND_P && 2291 BranchCode == X86::COND_NE) || 2292 (OldBranchCode == X86::COND_NE && 2293 BranchCode == X86::COND_P)) 2294 BranchCode = X86::COND_NE_OR_P; 2295 else 2296 return true; 2297 2298 // Update the MachineOperand. 2299 Cond[0].setImm(BranchCode); 2300 } 2301 2302 return false; 2303 } 2304 2305 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 2306 MachineBasicBlock::iterator I = MBB.end(); 2307 unsigned Count = 0; 2308 2309 while (I != MBB.begin()) { 2310 --I; 2311 if (I->isDebugValue()) 2312 continue; 2313 if (I->getOpcode() != X86::JMP_4 && 2314 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) 2315 break; 2316 // Remove the branch. 2317 I->eraseFromParent(); 2318 I = MBB.end(); 2319 ++Count; 2320 } 2321 2322 return Count; 2323 } 2324 2325 unsigned 2326 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 2327 MachineBasicBlock *FBB, 2328 const SmallVectorImpl<MachineOperand> &Cond, 2329 DebugLoc DL) const { 2330 // Shouldn't be a fall through. 2331 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 2332 assert((Cond.size() == 1 || Cond.size() == 0) && 2333 "X86 branch conditions have one component!"); 2334 2335 if (Cond.empty()) { 2336 // Unconditional branch? 2337 assert(!FBB && "Unconditional branch with multiple successors!"); 2338 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); 2339 return 1; 2340 } 2341 2342 // Conditional branch. 2343 unsigned Count = 0; 2344 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 2345 switch (CC) { 2346 case X86::COND_NP_OR_E: 2347 // Synthesize NP_OR_E with two branches. 2348 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); 2349 ++Count; 2350 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); 2351 ++Count; 2352 break; 2353 case X86::COND_NE_OR_P: 2354 // Synthesize NE_OR_P with two branches. 2355 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); 2356 ++Count; 2357 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); 2358 ++Count; 2359 break; 2360 default: { 2361 unsigned Opc = GetCondBranchFromCond(CC); 2362 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); 2363 ++Count; 2364 } 2365 } 2366 if (FBB) { 2367 // Two-way Conditional branch. Insert the second branch. 2368 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); 2369 ++Count; 2370 } 2371 return Count; 2372 } 2373 2374 /// isHReg - Test if the given register is a physical h register. 2375 static bool isHReg(unsigned Reg) { 2376 return X86::GR8_ABCD_HRegClass.contains(Reg); 2377 } 2378 2379 // Try and copy between VR128/VR64 and GR64 registers. 2380 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 2381 bool HasAVX) { 2382 // SrcReg(VR128) -> DestReg(GR64) 2383 // SrcReg(VR64) -> DestReg(GR64) 2384 // SrcReg(GR64) -> DestReg(VR128) 2385 // SrcReg(GR64) -> DestReg(VR64) 2386 2387 if (X86::GR64RegClass.contains(DestReg)) { 2388 if (X86::VR128RegClass.contains(SrcReg)) { 2389 // Copy from a VR128 register to a GR64 register. 2390 return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr; 2391 } else if (X86::VR64RegClass.contains(SrcReg)) { 2392 // Copy from a VR64 register to a GR64 register. 2393 return X86::MOVSDto64rr; 2394 } 2395 } else if (X86::GR64RegClass.contains(SrcReg)) { 2396 // Copy from a GR64 register to a VR128 register. 2397 if (X86::VR128RegClass.contains(DestReg)) 2398 return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr; 2399 // Copy from a GR64 register to a VR64 register. 2400 else if (X86::VR64RegClass.contains(DestReg)) 2401 return X86::MOV64toSDrr; 2402 } 2403 2404 // SrcReg(FR32) -> DestReg(GR32) 2405 // SrcReg(GR32) -> DestReg(FR32) 2406 2407 if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg)) 2408 // Copy from a FR32 register to a GR32 register. 2409 return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr; 2410 2411 if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) 2412 // Copy from a GR32 register to a FR32 register. 2413 return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr; 2414 2415 return 0; 2416 } 2417 2418 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 2419 MachineBasicBlock::iterator MI, DebugLoc DL, 2420 unsigned DestReg, unsigned SrcReg, 2421 bool KillSrc) const { 2422 // First deal with the normal symmetric copies. 2423 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); 2424 unsigned Opc = 0; 2425 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 2426 Opc = X86::MOV64rr; 2427 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 2428 Opc = X86::MOV32rr; 2429 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 2430 Opc = X86::MOV16rr; 2431 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 2432 // Copying to or from a physical H register on x86-64 requires a NOREX 2433 // move. Otherwise use a normal move. 2434 if ((isHReg(DestReg) || isHReg(SrcReg)) && 2435 TM.getSubtarget<X86Subtarget>().is64Bit()) { 2436 Opc = X86::MOV8rr_NOREX; 2437 // Both operands must be encodable without an REX prefix. 2438 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 2439 "8-bit H register can not be copied outside GR8_NOREX"); 2440 } else 2441 Opc = X86::MOV8rr; 2442 } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 2443 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 2444 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 2445 Opc = X86::VMOVAPSYrr; 2446 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 2447 Opc = X86::MMX_MOVQ64rr; 2448 else 2449 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX); 2450 2451 if (Opc) { 2452 BuildMI(MBB, MI, DL, get(Opc), DestReg) 2453 .addReg(SrcReg, getKillRegState(KillSrc)); 2454 return; 2455 } 2456 2457 // Moving EFLAGS to / from another register requires a push and a pop. 2458 if (SrcReg == X86::EFLAGS) { 2459 if (X86::GR64RegClass.contains(DestReg)) { 2460 BuildMI(MBB, MI, DL, get(X86::PUSHF64)); 2461 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); 2462 return; 2463 } else if (X86::GR32RegClass.contains(DestReg)) { 2464 BuildMI(MBB, MI, DL, get(X86::PUSHF32)); 2465 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); 2466 return; 2467 } 2468 } 2469 if (DestReg == X86::EFLAGS) { 2470 if (X86::GR64RegClass.contains(SrcReg)) { 2471 BuildMI(MBB, MI, DL, get(X86::PUSH64r)) 2472 .addReg(SrcReg, getKillRegState(KillSrc)); 2473 BuildMI(MBB, MI, DL, get(X86::POPF64)); 2474 return; 2475 } else if (X86::GR32RegClass.contains(SrcReg)) { 2476 BuildMI(MBB, MI, DL, get(X86::PUSH32r)) 2477 .addReg(SrcReg, getKillRegState(KillSrc)); 2478 BuildMI(MBB, MI, DL, get(X86::POPF32)); 2479 return; 2480 } 2481 } 2482 2483 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) 2484 << " to " << RI.getName(DestReg) << '\n'); 2485 llvm_unreachable("Cannot emit physreg copy instruction"); 2486 } 2487 2488 static unsigned getLoadStoreRegOpcode(unsigned Reg, 2489 const TargetRegisterClass *RC, 2490 bool isStackAligned, 2491 const TargetMachine &TM, 2492 bool load) { 2493 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); 2494 switch (RC->getSize()) { 2495 default: 2496 llvm_unreachable("Unknown spill size"); 2497 case 1: 2498 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 2499 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 2500 // Copying to or from a physical H register on x86-64 requires a NOREX 2501 // move. Otherwise use a normal move. 2502 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 2503 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 2504 return load ? X86::MOV8rm : X86::MOV8mr; 2505 case 2: 2506 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 2507 return load ? X86::MOV16rm : X86::MOV16mr; 2508 case 4: 2509 if (X86::GR32RegClass.hasSubClassEq(RC)) 2510 return load ? X86::MOV32rm : X86::MOV32mr; 2511 if (X86::FR32RegClass.hasSubClassEq(RC)) 2512 return load ? 2513 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : 2514 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); 2515 if (X86::RFP32RegClass.hasSubClassEq(RC)) 2516 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 2517 llvm_unreachable("Unknown 4-byte regclass"); 2518 case 8: 2519 if (X86::GR64RegClass.hasSubClassEq(RC)) 2520 return load ? X86::MOV64rm : X86::MOV64mr; 2521 if (X86::FR64RegClass.hasSubClassEq(RC)) 2522 return load ? 2523 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : 2524 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); 2525 if (X86::VR64RegClass.hasSubClassEq(RC)) 2526 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 2527 if (X86::RFP64RegClass.hasSubClassEq(RC)) 2528 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 2529 llvm_unreachable("Unknown 8-byte regclass"); 2530 case 10: 2531 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 2532 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 2533 case 16: { 2534 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); 2535 // If stack is realigned we can use aligned stores. 2536 if (isStackAligned) 2537 return load ? 2538 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : 2539 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); 2540 else 2541 return load ? 2542 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : 2543 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); 2544 } 2545 case 32: 2546 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 2547 // If stack is realigned we can use aligned stores. 2548 if (isStackAligned) 2549 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; 2550 else 2551 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; 2552 } 2553 } 2554 2555 static unsigned getStoreRegOpcode(unsigned SrcReg, 2556 const TargetRegisterClass *RC, 2557 bool isStackAligned, 2558 TargetMachine &TM) { 2559 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); 2560 } 2561 2562 2563 static unsigned getLoadRegOpcode(unsigned DestReg, 2564 const TargetRegisterClass *RC, 2565 bool isStackAligned, 2566 const TargetMachine &TM) { 2567 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); 2568 } 2569 2570 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 2571 MachineBasicBlock::iterator MI, 2572 unsigned SrcReg, bool isKill, int FrameIdx, 2573 const TargetRegisterClass *RC, 2574 const TargetRegisterInfo *TRI) const { 2575 const MachineFunction &MF = *MBB.getParent(); 2576 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && 2577 "Stack slot too small for store"); 2578 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2579 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || 2580 RI.canRealignStack(MF); 2581 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); 2582 DebugLoc DL = MBB.findDebugLoc(MI); 2583 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) 2584 .addReg(SrcReg, getKillRegState(isKill)); 2585 } 2586 2587 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, 2588 bool isKill, 2589 SmallVectorImpl<MachineOperand> &Addr, 2590 const TargetRegisterClass *RC, 2591 MachineInstr::mmo_iterator MMOBegin, 2592 MachineInstr::mmo_iterator MMOEnd, 2593 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2594 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2595 bool isAligned = MMOBegin != MMOEnd && 2596 (*MMOBegin)->getAlignment() >= Alignment; 2597 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); 2598 DebugLoc DL; 2599 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 2600 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 2601 MIB.addOperand(Addr[i]); 2602 MIB.addReg(SrcReg, getKillRegState(isKill)); 2603 (*MIB).setMemRefs(MMOBegin, MMOEnd); 2604 NewMIs.push_back(MIB); 2605 } 2606 2607 2608 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2609 MachineBasicBlock::iterator MI, 2610 unsigned DestReg, int FrameIdx, 2611 const TargetRegisterClass *RC, 2612 const TargetRegisterInfo *TRI) const { 2613 const MachineFunction &MF = *MBB.getParent(); 2614 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2615 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || 2616 RI.canRealignStack(MF); 2617 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); 2618 DebugLoc DL = MBB.findDebugLoc(MI); 2619 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); 2620 } 2621 2622 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 2623 SmallVectorImpl<MachineOperand> &Addr, 2624 const TargetRegisterClass *RC, 2625 MachineInstr::mmo_iterator MMOBegin, 2626 MachineInstr::mmo_iterator MMOEnd, 2627 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2628 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2629 bool isAligned = MMOBegin != MMOEnd && 2630 (*MMOBegin)->getAlignment() >= Alignment; 2631 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); 2632 DebugLoc DL; 2633 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); 2634 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 2635 MIB.addOperand(Addr[i]); 2636 (*MIB).setMemRefs(MMOBegin, MMOEnd); 2637 NewMIs.push_back(MIB); 2638 } 2639 2640 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr 2641 /// instruction with two undef reads of the register being defined. This is 2642 /// used for mapping: 2643 /// %xmm4 = V_SET0 2644 /// to: 2645 /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> 2646 /// 2647 static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) { 2648 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 2649 unsigned Reg = MI->getOperand(0).getReg(); 2650 MI->setDesc(Desc); 2651 2652 // MachineInstr::addOperand() will insert explicit operands before any 2653 // implicit operands. 2654 MachineInstrBuilder(MI).addReg(Reg, RegState::Undef) 2655 .addReg(Reg, RegState::Undef); 2656 // But we don't trust that. 2657 assert(MI->getOperand(1).getReg() == Reg && 2658 MI->getOperand(2).getReg() == Reg && "Misplaced operand"); 2659 return true; 2660 } 2661 2662 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 2663 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); 2664 switch (MI->getOpcode()) { 2665 case X86::V_SET0: 2666 case X86::FsFLD0SS: 2667 case X86::FsFLD0SD: 2668 return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 2669 case X86::TEST8ri_NOREX: 2670 MI->setDesc(get(X86::TEST8ri)); 2671 return true; 2672 } 2673 return false; 2674 } 2675 2676 MachineInstr* 2677 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, 2678 int FrameIx, uint64_t Offset, 2679 const MDNode *MDPtr, 2680 DebugLoc DL) const { 2681 X86AddressMode AM; 2682 AM.BaseType = X86AddressMode::FrameIndexBase; 2683 AM.Base.FrameIndex = FrameIx; 2684 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); 2685 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); 2686 return &*MIB; 2687 } 2688 2689 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 2690 const SmallVectorImpl<MachineOperand> &MOs, 2691 MachineInstr *MI, 2692 const TargetInstrInfo &TII) { 2693 // Create the base instruction with the memory operand as the first part. 2694 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 2695 MI->getDebugLoc(), true); 2696 MachineInstrBuilder MIB(NewMI); 2697 unsigned NumAddrOps = MOs.size(); 2698 for (unsigned i = 0; i != NumAddrOps; ++i) 2699 MIB.addOperand(MOs[i]); 2700 if (NumAddrOps < 4) // FrameIndex only 2701 addOffset(MIB, 0); 2702 2703 // Loop over the rest of the ri operands, converting them over. 2704 unsigned NumOps = MI->getDesc().getNumOperands()-2; 2705 for (unsigned i = 0; i != NumOps; ++i) { 2706 MachineOperand &MO = MI->getOperand(i+2); 2707 MIB.addOperand(MO); 2708 } 2709 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { 2710 MachineOperand &MO = MI->getOperand(i); 2711 MIB.addOperand(MO); 2712 } 2713 return MIB; 2714 } 2715 2716 static MachineInstr *FuseInst(MachineFunction &MF, 2717 unsigned Opcode, unsigned OpNo, 2718 const SmallVectorImpl<MachineOperand> &MOs, 2719 MachineInstr *MI, const TargetInstrInfo &TII) { 2720 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 2721 MI->getDebugLoc(), true); 2722 MachineInstrBuilder MIB(NewMI); 2723 2724 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2725 MachineOperand &MO = MI->getOperand(i); 2726 if (i == OpNo) { 2727 assert(MO.isReg() && "Expected to fold into reg operand!"); 2728 unsigned NumAddrOps = MOs.size(); 2729 for (unsigned i = 0; i != NumAddrOps; ++i) 2730 MIB.addOperand(MOs[i]); 2731 if (NumAddrOps < 4) // FrameIndex only 2732 addOffset(MIB, 0); 2733 } else { 2734 MIB.addOperand(MO); 2735 } 2736 } 2737 return MIB; 2738 } 2739 2740 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 2741 const SmallVectorImpl<MachineOperand> &MOs, 2742 MachineInstr *MI) { 2743 MachineFunction &MF = *MI->getParent()->getParent(); 2744 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); 2745 2746 unsigned NumAddrOps = MOs.size(); 2747 for (unsigned i = 0; i != NumAddrOps; ++i) 2748 MIB.addOperand(MOs[i]); 2749 if (NumAddrOps < 4) // FrameIndex only 2750 addOffset(MIB, 0); 2751 return MIB.addImm(0); 2752 } 2753 2754 MachineInstr* 2755 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2756 MachineInstr *MI, unsigned i, 2757 const SmallVectorImpl<MachineOperand> &MOs, 2758 unsigned Size, unsigned Align) const { 2759 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; 2760 bool isTwoAddrFold = false; 2761 unsigned NumOps = MI->getDesc().getNumOperands(); 2762 bool isTwoAddr = NumOps > 1 && 2763 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 2764 2765 // FIXME: AsmPrinter doesn't know how to handle 2766 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 2767 if (MI->getOpcode() == X86::ADD32ri && 2768 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 2769 return NULL; 2770 2771 MachineInstr *NewMI = NULL; 2772 // Folding a memory location into the two-address part of a two-address 2773 // instruction is different than folding it other places. It requires 2774 // replacing the *two* registers with the memory location. 2775 if (isTwoAddr && NumOps >= 2 && i < 2 && 2776 MI->getOperand(0).isReg() && 2777 MI->getOperand(1).isReg() && 2778 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 2779 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 2780 isTwoAddrFold = true; 2781 } else if (i == 0) { // If operand 0 2782 if (MI->getOpcode() == X86::MOV64r0) 2783 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI); 2784 else if (MI->getOpcode() == X86::MOV32r0) 2785 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); 2786 else if (MI->getOpcode() == X86::MOV16r0) 2787 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); 2788 else if (MI->getOpcode() == X86::MOV8r0) 2789 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); 2790 if (NewMI) 2791 return NewMI; 2792 2793 OpcodeTablePtr = &RegOp2MemOpTable0; 2794 } else if (i == 1) { 2795 OpcodeTablePtr = &RegOp2MemOpTable1; 2796 } else if (i == 2) { 2797 OpcodeTablePtr = &RegOp2MemOpTable2; 2798 } 2799 2800 // If table selected... 2801 if (OpcodeTablePtr) { 2802 // Find the Opcode to fuse 2803 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 2804 OpcodeTablePtr->find(MI->getOpcode()); 2805 if (I != OpcodeTablePtr->end()) { 2806 unsigned Opcode = I->second.first; 2807 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; 2808 if (Align < MinAlign) 2809 return NULL; 2810 bool NarrowToMOV32rm = false; 2811 if (Size) { 2812 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize(); 2813 if (Size < RCSize) { 2814 // Check if it's safe to fold the load. If the size of the object is 2815 // narrower than the load width, then it's not. 2816 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 2817 return NULL; 2818 // If this is a 64-bit load, but the spill slot is 32, then we can do 2819 // a 32-bit load which is implicitly zero-extended. This likely is due 2820 // to liveintervalanalysis remat'ing a load from stack slot. 2821 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) 2822 return NULL; 2823 Opcode = X86::MOV32rm; 2824 NarrowToMOV32rm = true; 2825 } 2826 } 2827 2828 if (isTwoAddrFold) 2829 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); 2830 else 2831 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); 2832 2833 if (NarrowToMOV32rm) { 2834 // If this is the special case where we use a MOV32rm to load a 32-bit 2835 // value and zero-extend the top bits. Change the destination register 2836 // to a 32-bit one. 2837 unsigned DstReg = NewMI->getOperand(0).getReg(); 2838 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 2839 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, 2840 X86::sub_32bit)); 2841 else 2842 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 2843 } 2844 return NewMI; 2845 } 2846 } 2847 2848 // No fusion 2849 if (PrintFailedFusing && !MI->isCopy()) 2850 dbgs() << "We failed to fuse operand " << i << " in " << *MI; 2851 return NULL; 2852 } 2853 2854 /// hasPartialRegUpdate - Return true for all instructions that only update 2855 /// the first 32 or 64-bits of the destination register and leave the rest 2856 /// unmodified. This can be used to avoid folding loads if the instructions 2857 /// only update part of the destination register, and the non-updated part is 2858 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 2859 /// instructions breaks the partial register dependency and it can improve 2860 /// performance. e.g.: 2861 /// 2862 /// movss (%rdi), %xmm0 2863 /// cvtss2sd %xmm0, %xmm0 2864 /// 2865 /// Instead of 2866 /// cvtss2sd (%rdi), %xmm0 2867 /// 2868 /// FIXME: This should be turned into a TSFlags. 2869 /// 2870 static bool hasPartialRegUpdate(unsigned Opcode) { 2871 switch (Opcode) { 2872 case X86::CVTSI2SSrr: 2873 case X86::CVTSI2SS64rr: 2874 case X86::CVTSI2SDrr: 2875 case X86::CVTSI2SD64rr: 2876 case X86::CVTSD2SSrr: 2877 case X86::Int_CVTSD2SSrr: 2878 case X86::CVTSS2SDrr: 2879 case X86::Int_CVTSS2SDrr: 2880 case X86::RCPSSr: 2881 case X86::RCPSSr_Int: 2882 case X86::ROUNDSDr: 2883 case X86::ROUNDSDr_Int: 2884 case X86::ROUNDSSr: 2885 case X86::ROUNDSSr_Int: 2886 case X86::RSQRTSSr: 2887 case X86::RSQRTSSr_Int: 2888 case X86::SQRTSSr: 2889 case X86::SQRTSSr_Int: 2890 // AVX encoded versions 2891 case X86::VCVTSD2SSrr: 2892 case X86::Int_VCVTSD2SSrr: 2893 case X86::VCVTSS2SDrr: 2894 case X86::Int_VCVTSS2SDrr: 2895 case X86::VRCPSSr: 2896 case X86::VROUNDSDr: 2897 case X86::VROUNDSDr_Int: 2898 case X86::VROUNDSSr: 2899 case X86::VROUNDSSr_Int: 2900 case X86::VRSQRTSSr: 2901 case X86::VSQRTSSr: 2902 return true; 2903 } 2904 2905 return false; 2906 } 2907 2908 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle 2909 /// instructions we would like before a partial register update. 2910 unsigned X86InstrInfo:: 2911 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, 2912 const TargetRegisterInfo *TRI) const { 2913 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode())) 2914 return 0; 2915 2916 // If MI is marked as reading Reg, the partial register update is wanted. 2917 const MachineOperand &MO = MI->getOperand(0); 2918 unsigned Reg = MO.getReg(); 2919 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2920 if (MO.readsReg() || MI->readsVirtualRegister(Reg)) 2921 return 0; 2922 } else { 2923 if (MI->readsRegister(Reg, TRI)) 2924 return 0; 2925 } 2926 2927 // If any of the preceding 16 instructions are reading Reg, insert a 2928 // dependency breaking instruction. The magic number is based on a few 2929 // Nehalem experiments. 2930 return 16; 2931 } 2932 2933 void X86InstrInfo:: 2934 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, 2935 const TargetRegisterInfo *TRI) const { 2936 unsigned Reg = MI->getOperand(OpNum).getReg(); 2937 if (X86::VR128RegClass.contains(Reg)) { 2938 // These instructions are all floating point domain, so xorps is the best 2939 // choice. 2940 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); 2941 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr; 2942 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg) 2943 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 2944 } else if (X86::VR256RegClass.contains(Reg)) { 2945 // Use vxorps to clear the full ymm register. 2946 // It wants to read and write the xmm sub-register. 2947 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); 2948 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg) 2949 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef) 2950 .addReg(Reg, RegState::ImplicitDefine); 2951 } else 2952 return; 2953 MI->addRegisterKilled(Reg, TRI, true); 2954 } 2955 2956 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2957 MachineInstr *MI, 2958 const SmallVectorImpl<unsigned> &Ops, 2959 int FrameIndex) const { 2960 // Check switch flag 2961 if (NoFusing) return NULL; 2962 2963 // Unless optimizing for size, don't fold to avoid partial 2964 // register update stalls 2965 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && 2966 hasPartialRegUpdate(MI->getOpcode())) 2967 return 0; 2968 2969 const MachineFrameInfo *MFI = MF.getFrameInfo(); 2970 unsigned Size = MFI->getObjectSize(FrameIndex); 2971 unsigned Alignment = MFI->getObjectAlignment(FrameIndex); 2972 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 2973 unsigned NewOpc = 0; 2974 unsigned RCSize = 0; 2975 switch (MI->getOpcode()) { 2976 default: return NULL; 2977 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 2978 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 2979 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 2980 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 2981 } 2982 // Check if it's safe to fold the load. If the size of the object is 2983 // narrower than the load width, then it's not. 2984 if (Size < RCSize) 2985 return NULL; 2986 // Change to CMPXXri r, 0 first. 2987 MI->setDesc(get(NewOpc)); 2988 MI->getOperand(1).ChangeToImmediate(0); 2989 } else if (Ops.size() != 1) 2990 return NULL; 2991 2992 SmallVector<MachineOperand,4> MOs; 2993 MOs.push_back(MachineOperand::CreateFI(FrameIndex)); 2994 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); 2995 } 2996 2997 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2998 MachineInstr *MI, 2999 const SmallVectorImpl<unsigned> &Ops, 3000 MachineInstr *LoadMI) const { 3001 // Check switch flag 3002 if (NoFusing) return NULL; 3003 3004 // Unless optimizing for size, don't fold to avoid partial 3005 // register update stalls 3006 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && 3007 hasPartialRegUpdate(MI->getOpcode())) 3008 return 0; 3009 3010 // Determine the alignment of the load. 3011 unsigned Alignment = 0; 3012 if (LoadMI->hasOneMemOperand()) 3013 Alignment = (*LoadMI->memoperands_begin())->getAlignment(); 3014 else 3015 switch (LoadMI->getOpcode()) { 3016 case X86::AVX_SET0PSY: 3017 case X86::AVX_SET0PDY: 3018 case X86::AVX2_SETALLONES: 3019 case X86::AVX2_SET0: 3020 Alignment = 32; 3021 break; 3022 case X86::V_SET0: 3023 case X86::V_SETALLONES: 3024 case X86::AVX_SETALLONES: 3025 Alignment = 16; 3026 break; 3027 case X86::FsFLD0SD: 3028 Alignment = 8; 3029 break; 3030 case X86::FsFLD0SS: 3031 Alignment = 4; 3032 break; 3033 default: 3034 return 0; 3035 } 3036 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 3037 unsigned NewOpc = 0; 3038 switch (MI->getOpcode()) { 3039 default: return NULL; 3040 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 3041 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 3042 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 3043 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 3044 } 3045 // Change to CMPXXri r, 0 first. 3046 MI->setDesc(get(NewOpc)); 3047 MI->getOperand(1).ChangeToImmediate(0); 3048 } else if (Ops.size() != 1) 3049 return NULL; 3050 3051 // Make sure the subregisters match. 3052 // Otherwise we risk changing the size of the load. 3053 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) 3054 return NULL; 3055 3056 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 3057 switch (LoadMI->getOpcode()) { 3058 case X86::V_SET0: 3059 case X86::V_SETALLONES: 3060 case X86::AVX_SET0PSY: 3061 case X86::AVX_SET0PDY: 3062 case X86::AVX_SETALLONES: 3063 case X86::AVX2_SETALLONES: 3064 case X86::AVX2_SET0: 3065 case X86::FsFLD0SD: 3066 case X86::FsFLD0SS: { 3067 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 3068 // Create a constant-pool entry and operands to load from it. 3069 3070 // Medium and large mode can't fold loads this way. 3071 if (TM.getCodeModel() != CodeModel::Small && 3072 TM.getCodeModel() != CodeModel::Kernel) 3073 return NULL; 3074 3075 // x86-32 PIC requires a PIC base register for constant pools. 3076 unsigned PICBase = 0; 3077 if (TM.getRelocationModel() == Reloc::PIC_) { 3078 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 3079 PICBase = X86::RIP; 3080 else 3081 // FIXME: PICBase = getGlobalBaseReg(&MF); 3082 // This doesn't work for several reasons. 3083 // 1. GlobalBaseReg may have been spilled. 3084 // 2. It may not be live at MI. 3085 return NULL; 3086 } 3087 3088 // Create a constant-pool entry. 3089 MachineConstantPool &MCP = *MF.getConstantPool(); 3090 Type *Ty; 3091 unsigned Opc = LoadMI->getOpcode(); 3092 if (Opc == X86::FsFLD0SS) 3093 Ty = Type::getFloatTy(MF.getFunction()->getContext()); 3094 else if (Opc == X86::FsFLD0SD) 3095 Ty = Type::getDoubleTy(MF.getFunction()->getContext()); 3096 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY) 3097 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8); 3098 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0) 3099 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); 3100 else 3101 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); 3102 3103 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES || 3104 Opc == X86::AVX2_SETALLONES); 3105 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 3106 Constant::getNullValue(Ty); 3107 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 3108 3109 // Create operands to load from the constant pool entry. 3110 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 3111 MOs.push_back(MachineOperand::CreateImm(1)); 3112 MOs.push_back(MachineOperand::CreateReg(0, false)); 3113 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 3114 MOs.push_back(MachineOperand::CreateReg(0, false)); 3115 break; 3116 } 3117 default: { 3118 // Folding a normal load. Just copy the load's address operands. 3119 unsigned NumOps = LoadMI->getDesc().getNumOperands(); 3120 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 3121 MOs.push_back(LoadMI->getOperand(i)); 3122 break; 3123 } 3124 } 3125 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); 3126 } 3127 3128 3129 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, 3130 const SmallVectorImpl<unsigned> &Ops) const { 3131 // Check switch flag 3132 if (NoFusing) return 0; 3133 3134 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 3135 switch (MI->getOpcode()) { 3136 default: return false; 3137 case X86::TEST8rr: 3138 case X86::TEST16rr: 3139 case X86::TEST32rr: 3140 case X86::TEST64rr: 3141 return true; 3142 case X86::ADD32ri: 3143 // FIXME: AsmPrinter doesn't know how to handle 3144 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 3145 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 3146 return false; 3147 break; 3148 } 3149 } 3150 3151 if (Ops.size() != 1) 3152 return false; 3153 3154 unsigned OpNum = Ops[0]; 3155 unsigned Opc = MI->getOpcode(); 3156 unsigned NumOps = MI->getDesc().getNumOperands(); 3157 bool isTwoAddr = NumOps > 1 && 3158 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 3159 3160 // Folding a memory location into the two-address part of a two-address 3161 // instruction is different than folding it other places. It requires 3162 // replacing the *two* registers with the memory location. 3163 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; 3164 if (isTwoAddr && NumOps >= 2 && OpNum < 2) { 3165 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 3166 } else if (OpNum == 0) { // If operand 0 3167 switch (Opc) { 3168 case X86::MOV8r0: 3169 case X86::MOV16r0: 3170 case X86::MOV32r0: 3171 case X86::MOV64r0: return true; 3172 default: break; 3173 } 3174 OpcodeTablePtr = &RegOp2MemOpTable0; 3175 } else if (OpNum == 1) { 3176 OpcodeTablePtr = &RegOp2MemOpTable1; 3177 } else if (OpNum == 2) { 3178 OpcodeTablePtr = &RegOp2MemOpTable2; 3179 } 3180 3181 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) 3182 return true; 3183 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); 3184 } 3185 3186 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 3187 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 3188 SmallVectorImpl<MachineInstr*> &NewMIs) const { 3189 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 3190 MemOp2RegOpTable.find(MI->getOpcode()); 3191 if (I == MemOp2RegOpTable.end()) 3192 return false; 3193 unsigned Opc = I->second.first; 3194 unsigned Index = I->second.second & TB_INDEX_MASK; 3195 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 3196 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 3197 if (UnfoldLoad && !FoldedLoad) 3198 return false; 3199 UnfoldLoad &= FoldedLoad; 3200 if (UnfoldStore && !FoldedStore) 3201 return false; 3202 UnfoldStore &= FoldedStore; 3203 3204 const MCInstrDesc &MCID = get(Opc); 3205 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); 3206 if (!MI->hasOneMemOperand() && 3207 RC == &X86::VR128RegClass && 3208 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 3209 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 3210 // conservatively assume the address is unaligned. That's bad for 3211 // performance. 3212 return false; 3213 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 3214 SmallVector<MachineOperand,2> BeforeOps; 3215 SmallVector<MachineOperand,2> AfterOps; 3216 SmallVector<MachineOperand,4> ImpOps; 3217 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 3218 MachineOperand &Op = MI->getOperand(i); 3219 if (i >= Index && i < Index + X86::AddrNumOperands) 3220 AddrOps.push_back(Op); 3221 else if (Op.isReg() && Op.isImplicit()) 3222 ImpOps.push_back(Op); 3223 else if (i < Index) 3224 BeforeOps.push_back(Op); 3225 else if (i > Index) 3226 AfterOps.push_back(Op); 3227 } 3228 3229 // Emit the load instruction. 3230 if (UnfoldLoad) { 3231 std::pair<MachineInstr::mmo_iterator, 3232 MachineInstr::mmo_iterator> MMOs = 3233 MF.extractLoadMemRefs(MI->memoperands_begin(), 3234 MI->memoperands_end()); 3235 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); 3236 if (UnfoldStore) { 3237 // Address operands cannot be marked isKill. 3238 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 3239 MachineOperand &MO = NewMIs[0]->getOperand(i); 3240 if (MO.isReg()) 3241 MO.setIsKill(false); 3242 } 3243 } 3244 } 3245 3246 // Emit the data processing instruction. 3247 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); 3248 MachineInstrBuilder MIB(DataMI); 3249 3250 if (FoldedStore) 3251 MIB.addReg(Reg, RegState::Define); 3252 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) 3253 MIB.addOperand(BeforeOps[i]); 3254 if (FoldedLoad) 3255 MIB.addReg(Reg); 3256 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) 3257 MIB.addOperand(AfterOps[i]); 3258 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { 3259 MachineOperand &MO = ImpOps[i]; 3260 MIB.addReg(MO.getReg(), 3261 getDefRegState(MO.isDef()) | 3262 RegState::Implicit | 3263 getKillRegState(MO.isKill()) | 3264 getDeadRegState(MO.isDead()) | 3265 getUndefRegState(MO.isUndef())); 3266 } 3267 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 3268 unsigned NewOpc = 0; 3269 switch (DataMI->getOpcode()) { 3270 default: break; 3271 case X86::CMP64ri32: 3272 case X86::CMP64ri8: 3273 case X86::CMP32ri: 3274 case X86::CMP32ri8: 3275 case X86::CMP16ri: 3276 case X86::CMP16ri8: 3277 case X86::CMP8ri: { 3278 MachineOperand &MO0 = DataMI->getOperand(0); 3279 MachineOperand &MO1 = DataMI->getOperand(1); 3280 if (MO1.getImm() == 0) { 3281 switch (DataMI->getOpcode()) { 3282 default: break; 3283 case X86::CMP64ri8: 3284 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 3285 case X86::CMP32ri8: 3286 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 3287 case X86::CMP16ri8: 3288 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 3289 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 3290 } 3291 DataMI->setDesc(get(NewOpc)); 3292 MO1.ChangeToRegister(MO0.getReg(), false); 3293 } 3294 } 3295 } 3296 NewMIs.push_back(DataMI); 3297 3298 // Emit the store instruction. 3299 if (UnfoldStore) { 3300 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI); 3301 std::pair<MachineInstr::mmo_iterator, 3302 MachineInstr::mmo_iterator> MMOs = 3303 MF.extractStoreMemRefs(MI->memoperands_begin(), 3304 MI->memoperands_end()); 3305 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); 3306 } 3307 3308 return true; 3309 } 3310 3311 bool 3312 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 3313 SmallVectorImpl<SDNode*> &NewNodes) const { 3314 if (!N->isMachineOpcode()) 3315 return false; 3316 3317 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 3318 MemOp2RegOpTable.find(N->getMachineOpcode()); 3319 if (I == MemOp2RegOpTable.end()) 3320 return false; 3321 unsigned Opc = I->second.first; 3322 unsigned Index = I->second.second & TB_INDEX_MASK; 3323 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 3324 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 3325 const MCInstrDesc &MCID = get(Opc); 3326 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); 3327 unsigned NumDefs = MCID.NumDefs; 3328 std::vector<SDValue> AddrOps; 3329 std::vector<SDValue> BeforeOps; 3330 std::vector<SDValue> AfterOps; 3331 DebugLoc dl = N->getDebugLoc(); 3332 unsigned NumOps = N->getNumOperands(); 3333 for (unsigned i = 0; i != NumOps-1; ++i) { 3334 SDValue Op = N->getOperand(i); 3335 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 3336 AddrOps.push_back(Op); 3337 else if (i < Index-NumDefs) 3338 BeforeOps.push_back(Op); 3339 else if (i > Index-NumDefs) 3340 AfterOps.push_back(Op); 3341 } 3342 SDValue Chain = N->getOperand(NumOps-1); 3343 AddrOps.push_back(Chain); 3344 3345 // Emit the load instruction. 3346 SDNode *Load = 0; 3347 MachineFunction &MF = DAG.getMachineFunction(); 3348 if (FoldedLoad) { 3349 EVT VT = *RC->vt_begin(); 3350 std::pair<MachineInstr::mmo_iterator, 3351 MachineInstr::mmo_iterator> MMOs = 3352 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 3353 cast<MachineSDNode>(N)->memoperands_end()); 3354 if (!(*MMOs.first) && 3355 RC == &X86::VR128RegClass && 3356 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 3357 // Do not introduce a slow unaligned load. 3358 return false; 3359 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 3360 bool isAligned = (*MMOs.first) && 3361 (*MMOs.first)->getAlignment() >= Alignment; 3362 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, 3363 VT, MVT::Other, &AddrOps[0], AddrOps.size()); 3364 NewNodes.push_back(Load); 3365 3366 // Preserve memory reference information. 3367 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 3368 } 3369 3370 // Emit the data processing instruction. 3371 std::vector<EVT> VTs; 3372 const TargetRegisterClass *DstRC = 0; 3373 if (MCID.getNumDefs() > 0) { 3374 DstRC = getRegClass(MCID, 0, &RI); 3375 VTs.push_back(*DstRC->vt_begin()); 3376 } 3377 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 3378 EVT VT = N->getValueType(i); 3379 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 3380 VTs.push_back(VT); 3381 } 3382 if (Load) 3383 BeforeOps.push_back(SDValue(Load, 0)); 3384 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); 3385 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], 3386 BeforeOps.size()); 3387 NewNodes.push_back(NewNode); 3388 3389 // Emit the store instruction. 3390 if (FoldedStore) { 3391 AddrOps.pop_back(); 3392 AddrOps.push_back(SDValue(NewNode, 0)); 3393 AddrOps.push_back(Chain); 3394 std::pair<MachineInstr::mmo_iterator, 3395 MachineInstr::mmo_iterator> MMOs = 3396 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 3397 cast<MachineSDNode>(N)->memoperands_end()); 3398 if (!(*MMOs.first) && 3399 RC == &X86::VR128RegClass && 3400 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 3401 // Do not introduce a slow unaligned store. 3402 return false; 3403 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 3404 bool isAligned = (*MMOs.first) && 3405 (*MMOs.first)->getAlignment() >= Alignment; 3406 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, 3407 isAligned, TM), 3408 dl, MVT::Other, 3409 &AddrOps[0], AddrOps.size()); 3410 NewNodes.push_back(Store); 3411 3412 // Preserve memory reference information. 3413 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 3414 } 3415 3416 return true; 3417 } 3418 3419 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 3420 bool UnfoldLoad, bool UnfoldStore, 3421 unsigned *LoadRegIndex) const { 3422 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 3423 MemOp2RegOpTable.find(Opc); 3424 if (I == MemOp2RegOpTable.end()) 3425 return 0; 3426 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 3427 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 3428 if (UnfoldLoad && !FoldedLoad) 3429 return 0; 3430 if (UnfoldStore && !FoldedStore) 3431 return 0; 3432 if (LoadRegIndex) 3433 *LoadRegIndex = I->second.second & TB_INDEX_MASK; 3434 return I->second.first; 3435 } 3436 3437 bool 3438 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 3439 int64_t &Offset1, int64_t &Offset2) const { 3440 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 3441 return false; 3442 unsigned Opc1 = Load1->getMachineOpcode(); 3443 unsigned Opc2 = Load2->getMachineOpcode(); 3444 switch (Opc1) { 3445 default: return false; 3446 case X86::MOV8rm: 3447 case X86::MOV16rm: 3448 case X86::MOV32rm: 3449 case X86::MOV64rm: 3450 case X86::LD_Fp32m: 3451 case X86::LD_Fp64m: 3452 case X86::LD_Fp80m: 3453 case X86::MOVSSrm: 3454 case X86::MOVSDrm: 3455 case X86::MMX_MOVD64rm: 3456 case X86::MMX_MOVQ64rm: 3457 case X86::FsMOVAPSrm: 3458 case X86::FsMOVAPDrm: 3459 case X86::MOVAPSrm: 3460 case X86::MOVUPSrm: 3461 case X86::MOVAPDrm: 3462 case X86::MOVDQArm: 3463 case X86::MOVDQUrm: 3464 // AVX load instructions 3465 case X86::VMOVSSrm: 3466 case X86::VMOVSDrm: 3467 case X86::FsVMOVAPSrm: 3468 case X86::FsVMOVAPDrm: 3469 case X86::VMOVAPSrm: 3470 case X86::VMOVUPSrm: 3471 case X86::VMOVAPDrm: 3472 case X86::VMOVDQArm: 3473 case X86::VMOVDQUrm: 3474 case X86::VMOVAPSYrm: 3475 case X86::VMOVUPSYrm: 3476 case X86::VMOVAPDYrm: 3477 case X86::VMOVDQAYrm: 3478 case X86::VMOVDQUYrm: 3479 break; 3480 } 3481 switch (Opc2) { 3482 default: return false; 3483 case X86::MOV8rm: 3484 case X86::MOV16rm: 3485 case X86::MOV32rm: 3486 case X86::MOV64rm: 3487 case X86::LD_Fp32m: 3488 case X86::LD_Fp64m: 3489 case X86::LD_Fp80m: 3490 case X86::MOVSSrm: 3491 case X86::MOVSDrm: 3492 case X86::MMX_MOVD64rm: 3493 case X86::MMX_MOVQ64rm: 3494 case X86::FsMOVAPSrm: 3495 case X86::FsMOVAPDrm: 3496 case X86::MOVAPSrm: 3497 case X86::MOVUPSrm: 3498 case X86::MOVAPDrm: 3499 case X86::MOVDQArm: 3500 case X86::MOVDQUrm: 3501 // AVX load instructions 3502 case X86::VMOVSSrm: 3503 case X86::VMOVSDrm: 3504 case X86::FsVMOVAPSrm: 3505 case X86::FsVMOVAPDrm: 3506 case X86::VMOVAPSrm: 3507 case X86::VMOVUPSrm: 3508 case X86::VMOVAPDrm: 3509 case X86::VMOVDQArm: 3510 case X86::VMOVDQUrm: 3511 case X86::VMOVAPSYrm: 3512 case X86::VMOVUPSYrm: 3513 case X86::VMOVAPDYrm: 3514 case X86::VMOVDQAYrm: 3515 case X86::VMOVDQUYrm: 3516 break; 3517 } 3518 3519 // Check if chain operands and base addresses match. 3520 if (Load1->getOperand(0) != Load2->getOperand(0) || 3521 Load1->getOperand(5) != Load2->getOperand(5)) 3522 return false; 3523 // Segment operands should match as well. 3524 if (Load1->getOperand(4) != Load2->getOperand(4)) 3525 return false; 3526 // Scale should be 1, Index should be Reg0. 3527 if (Load1->getOperand(1) == Load2->getOperand(1) && 3528 Load1->getOperand(2) == Load2->getOperand(2)) { 3529 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) 3530 return false; 3531 3532 // Now let's examine the displacements. 3533 if (isa<ConstantSDNode>(Load1->getOperand(3)) && 3534 isa<ConstantSDNode>(Load2->getOperand(3))) { 3535 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); 3536 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); 3537 return true; 3538 } 3539 } 3540 return false; 3541 } 3542 3543 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 3544 int64_t Offset1, int64_t Offset2, 3545 unsigned NumLoads) const { 3546 assert(Offset2 > Offset1); 3547 if ((Offset2 - Offset1) / 8 > 64) 3548 return false; 3549 3550 unsigned Opc1 = Load1->getMachineOpcode(); 3551 unsigned Opc2 = Load2->getMachineOpcode(); 3552 if (Opc1 != Opc2) 3553 return false; // FIXME: overly conservative? 3554 3555 switch (Opc1) { 3556 default: break; 3557 case X86::LD_Fp32m: 3558 case X86::LD_Fp64m: 3559 case X86::LD_Fp80m: 3560 case X86::MMX_MOVD64rm: 3561 case X86::MMX_MOVQ64rm: 3562 return false; 3563 } 3564 3565 EVT VT = Load1->getValueType(0); 3566 switch (VT.getSimpleVT().SimpleTy) { 3567 default: 3568 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 3569 // have 16 of them to play with. 3570 if (TM.getSubtargetImpl()->is64Bit()) { 3571 if (NumLoads >= 3) 3572 return false; 3573 } else if (NumLoads) { 3574 return false; 3575 } 3576 break; 3577 case MVT::i8: 3578 case MVT::i16: 3579 case MVT::i32: 3580 case MVT::i64: 3581 case MVT::f32: 3582 case MVT::f64: 3583 if (NumLoads) 3584 return false; 3585 break; 3586 } 3587 3588 return true; 3589 } 3590 3591 3592 bool X86InstrInfo:: 3593 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 3594 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 3595 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 3596 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) 3597 return true; 3598 Cond[0].setImm(GetOppositeBranchCondition(CC)); 3599 return false; 3600 } 3601 3602 bool X86InstrInfo:: 3603 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 3604 // FIXME: Return false for x87 stack register classes for now. We can't 3605 // allow any loads of these registers before FpGet_ST0_80. 3606 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || 3607 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); 3608 } 3609 3610 /// getGlobalBaseReg - Return a virtual register initialized with the 3611 /// the global base register value. Output instructions required to 3612 /// initialize the register in the function entry block, if necessary. 3613 /// 3614 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 3615 /// 3616 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 3617 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && 3618 "X86-64 PIC uses RIP relative addressing"); 3619 3620 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 3621 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 3622 if (GlobalBaseReg != 0) 3623 return GlobalBaseReg; 3624 3625 // Create the register. The code to initialize it is inserted 3626 // later, by the CGBR pass (below). 3627 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 3628 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); 3629 X86FI->setGlobalBaseReg(GlobalBaseReg); 3630 return GlobalBaseReg; 3631 } 3632 3633 // These are the replaceable SSE instructions. Some of these have Int variants 3634 // that we don't include here. We don't want to replace instructions selected 3635 // by intrinsics. 3636 static const uint16_t ReplaceableInstrs[][3] = { 3637 //PackedSingle PackedDouble PackedInt 3638 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 3639 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 3640 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 3641 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 3642 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 3643 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 3644 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 3645 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 3646 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 3647 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 3648 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 3649 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 3650 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 3651 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 3652 // AVX 128-bit support 3653 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 3654 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 3655 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 3656 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 3657 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 3658 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 3659 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 3660 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 3661 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 3662 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 3663 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 3664 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 3665 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 3666 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 3667 // AVX 256-bit support 3668 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 3669 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 3670 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 3671 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 3672 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 3673 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr } 3674 }; 3675 3676 static const uint16_t ReplaceableInstrsAVX2[][3] = { 3677 //PackedSingle PackedDouble PackedInt 3678 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 3679 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 3680 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 3681 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 3682 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 3683 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 3684 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 3685 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 3686 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 3687 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 3688 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 3689 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 3690 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 3691 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr } 3692 }; 3693 3694 // FIXME: Some shuffle and unpack instructions have equivalents in different 3695 // domains, but they require a bit more work than just switching opcodes. 3696 3697 static const uint16_t *lookup(unsigned opcode, unsigned domain) { 3698 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) 3699 if (ReplaceableInstrs[i][domain-1] == opcode) 3700 return ReplaceableInstrs[i]; 3701 return 0; 3702 } 3703 3704 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { 3705 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i) 3706 if (ReplaceableInstrsAVX2[i][domain-1] == opcode) 3707 return ReplaceableInstrsAVX2[i]; 3708 return 0; 3709 } 3710 3711 std::pair<uint16_t, uint16_t> 3712 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { 3713 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 3714 bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2(); 3715 uint16_t validDomains = 0; 3716 if (domain && lookup(MI->getOpcode(), domain)) 3717 validDomains = 0xe; 3718 else if (domain && lookupAVX2(MI->getOpcode(), domain)) 3719 validDomains = hasAVX2 ? 0xe : 0x6; 3720 return std::make_pair(domain, validDomains); 3721 } 3722 3723 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { 3724 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 3725 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 3726 assert(dom && "Not an SSE instruction"); 3727 const uint16_t *table = lookup(MI->getOpcode(), dom); 3728 if (!table) { // try the other table 3729 assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) && 3730 "256-bit vector operations only available in AVX2"); 3731 table = lookupAVX2(MI->getOpcode(), dom); 3732 } 3733 assert(table && "Cannot change domain"); 3734 MI->setDesc(get(table[Domain-1])); 3735 } 3736 3737 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 3738 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 3739 NopInst.setOpcode(X86::NOOP); 3740 } 3741 3742 bool X86InstrInfo::isHighLatencyDef(int opc) const { 3743 switch (opc) { 3744 default: return false; 3745 case X86::DIVSDrm: 3746 case X86::DIVSDrm_Int: 3747 case X86::DIVSDrr: 3748 case X86::DIVSDrr_Int: 3749 case X86::DIVSSrm: 3750 case X86::DIVSSrm_Int: 3751 case X86::DIVSSrr: 3752 case X86::DIVSSrr_Int: 3753 case X86::SQRTPDm: 3754 case X86::SQRTPDm_Int: 3755 case X86::SQRTPDr: 3756 case X86::SQRTPDr_Int: 3757 case X86::SQRTPSm: 3758 case X86::SQRTPSm_Int: 3759 case X86::SQRTPSr: 3760 case X86::SQRTPSr_Int: 3761 case X86::SQRTSDm: 3762 case X86::SQRTSDm_Int: 3763 case X86::SQRTSDr: 3764 case X86::SQRTSDr_Int: 3765 case X86::SQRTSSm: 3766 case X86::SQRTSSm_Int: 3767 case X86::SQRTSSr: 3768 case X86::SQRTSSr_Int: 3769 // AVX instructions with high latency 3770 case X86::VDIVSDrm: 3771 case X86::VDIVSDrm_Int: 3772 case X86::VDIVSDrr: 3773 case X86::VDIVSDrr_Int: 3774 case X86::VDIVSSrm: 3775 case X86::VDIVSSrm_Int: 3776 case X86::VDIVSSrr: 3777 case X86::VDIVSSrr_Int: 3778 case X86::VSQRTPDm: 3779 case X86::VSQRTPDm_Int: 3780 case X86::VSQRTPDr: 3781 case X86::VSQRTPDr_Int: 3782 case X86::VSQRTPSm: 3783 case X86::VSQRTPSm_Int: 3784 case X86::VSQRTPSr: 3785 case X86::VSQRTPSr_Int: 3786 case X86::VSQRTSDm: 3787 case X86::VSQRTSDm_Int: 3788 case X86::VSQRTSDr: 3789 case X86::VSQRTSSm: 3790 case X86::VSQRTSSm_Int: 3791 case X86::VSQRTSSr: 3792 return true; 3793 } 3794 } 3795 3796 bool X86InstrInfo:: 3797 hasHighOperandLatency(const InstrItineraryData *ItinData, 3798 const MachineRegisterInfo *MRI, 3799 const MachineInstr *DefMI, unsigned DefIdx, 3800 const MachineInstr *UseMI, unsigned UseIdx) const { 3801 return isHighLatencyDef(DefMI->getOpcode()); 3802 } 3803 3804 namespace { 3805 /// CGBR - Create Global Base Reg pass. This initializes the PIC 3806 /// global base register for x86-32. 3807 struct CGBR : public MachineFunctionPass { 3808 static char ID; 3809 CGBR() : MachineFunctionPass(ID) {} 3810 3811 virtual bool runOnMachineFunction(MachineFunction &MF) { 3812 const X86TargetMachine *TM = 3813 static_cast<const X86TargetMachine *>(&MF.getTarget()); 3814 3815 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && 3816 "X86-64 PIC uses RIP relative addressing"); 3817 3818 // Only emit a global base reg in PIC mode. 3819 if (TM->getRelocationModel() != Reloc::PIC_) 3820 return false; 3821 3822 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3823 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 3824 3825 // If we didn't need a GlobalBaseReg, don't insert code. 3826 if (GlobalBaseReg == 0) 3827 return false; 3828 3829 // Insert the set of GlobalBaseReg into the first MBB of the function 3830 MachineBasicBlock &FirstMBB = MF.front(); 3831 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 3832 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 3833 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3834 const X86InstrInfo *TII = TM->getInstrInfo(); 3835 3836 unsigned PC; 3837 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) 3838 PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); 3839 else 3840 PC = GlobalBaseReg; 3841 3842 // Operand of MovePCtoStack is completely ignored by asm printer. It's 3843 // only used in JIT code emission as displacement to pc. 3844 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 3845 3846 // If we're using vanilla 'GOT' PIC style, we should use relative addressing 3847 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 3848 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { 3849 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register 3850 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 3851 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 3852 X86II::MO_GOT_ABSOLUTE_ADDRESS); 3853 } 3854 3855 return true; 3856 } 3857 3858 virtual const char *getPassName() const { 3859 return "X86 PIC Global Base Reg Initialization"; 3860 } 3861 3862 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 3863 AU.setPreservesCFG(); 3864 MachineFunctionPass::getAnalysisUsage(AU); 3865 } 3866 }; 3867 } 3868 3869 char CGBR::ID = 0; 3870 FunctionPass* 3871 llvm::createGlobalBaseRegPass() { return new CGBR(); } 3872