Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86InstrInfo.h"
     15 #include "X86.h"
     16 #include "X86InstrBuilder.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/DerivedTypes.h"
     21 #include "llvm/LLVMContext.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/CodeGen/MachineConstantPool.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/LiveVariables.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCInst.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Target/TargetOptions.h"
     35 #include <limits>
     36 
     37 #define GET_INSTRINFO_CTOR
     38 #include "X86GenInstrInfo.inc"
     39 
     40 using namespace llvm;
     41 
     42 static cl::opt<bool>
     43 NoFusing("disable-spill-fusing",
     44          cl::desc("Disable fusing of spill code into instructions"));
     45 static cl::opt<bool>
     46 PrintFailedFusing("print-failed-fuse-candidates",
     47                   cl::desc("Print instructions that the allocator wants to"
     48                            " fuse, but the X86 backend currently can't"),
     49                   cl::Hidden);
     50 static cl::opt<bool>
     51 ReMatPICStubLoad("remat-pic-stub-load",
     52                  cl::desc("Re-materialize load from stub in PIC mode"),
     53                  cl::init(false), cl::Hidden);
     54 
     55 enum {
     56   // Select which memory operand is being unfolded.
     57   // (stored in bits 0 - 7)
     58   TB_INDEX_0    = 0,
     59   TB_INDEX_1    = 1,
     60   TB_INDEX_2    = 2,
     61   TB_INDEX_MASK = 0xff,
     62 
     63   // Minimum alignment required for load/store.
     64   // Used for RegOp->MemOp conversion.
     65   // (stored in bits 8 - 15)
     66   TB_ALIGN_SHIFT = 8,
     67   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
     68   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
     69   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
     70   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT,
     71 
     72   // Do not insert the reverse map (MemOp -> RegOp) into the table.
     73   // This may be needed because there is a many -> one mapping.
     74   TB_NO_REVERSE   = 1 << 16,
     75 
     76   // Do not insert the forward map (RegOp -> MemOp) into the table.
     77   // This is needed for Native Client, which prohibits branch
     78   // instructions from using a memory operand.
     79   TB_NO_FORWARD   = 1 << 17,
     80 
     81   TB_FOLDED_LOAD  = 1 << 18,
     82   TB_FOLDED_STORE = 1 << 19
     83 };
     84 
     85 struct X86OpTblEntry {
     86   uint16_t RegOp;
     87   uint16_t MemOp;
     88   uint32_t Flags;
     89 };
     90 
     91 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     92   : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
     93                      ? X86::ADJCALLSTACKDOWN64
     94                      : X86::ADJCALLSTACKDOWN32),
     95                     (tm.getSubtarget<X86Subtarget>().is64Bit()
     96                      ? X86::ADJCALLSTACKUP64
     97                      : X86::ADJCALLSTACKUP32)),
     98     TM(tm), RI(tm, *this) {
     99 
    100   static const X86OpTblEntry OpTbl2Addr[] = {
    101     { X86::ADC32ri,     X86::ADC32mi,    0 },
    102     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
    103     { X86::ADC32rr,     X86::ADC32mr,    0 },
    104     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
    105     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
    106     { X86::ADC64rr,     X86::ADC64mr,    0 },
    107     { X86::ADD16ri,     X86::ADD16mi,    0 },
    108     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
    109     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
    110     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
    111     { X86::ADD16rr,     X86::ADD16mr,    0 },
    112     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
    113     { X86::ADD32ri,     X86::ADD32mi,    0 },
    114     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
    115     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
    116     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
    117     { X86::ADD32rr,     X86::ADD32mr,    0 },
    118     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
    119     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
    120     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
    121     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
    122     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
    123     { X86::ADD64rr,     X86::ADD64mr,    0 },
    124     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
    125     { X86::ADD8ri,      X86::ADD8mi,     0 },
    126     { X86::ADD8rr,      X86::ADD8mr,     0 },
    127     { X86::AND16ri,     X86::AND16mi,    0 },
    128     { X86::AND16ri8,    X86::AND16mi8,   0 },
    129     { X86::AND16rr,     X86::AND16mr,    0 },
    130     { X86::AND32ri,     X86::AND32mi,    0 },
    131     { X86::AND32ri8,    X86::AND32mi8,   0 },
    132     { X86::AND32rr,     X86::AND32mr,    0 },
    133     { X86::AND64ri32,   X86::AND64mi32,  0 },
    134     { X86::AND64ri8,    X86::AND64mi8,   0 },
    135     { X86::AND64rr,     X86::AND64mr,    0 },
    136     { X86::AND8ri,      X86::AND8mi,     0 },
    137     { X86::AND8rr,      X86::AND8mr,     0 },
    138     { X86::DEC16r,      X86::DEC16m,     0 },
    139     { X86::DEC32r,      X86::DEC32m,     0 },
    140     { X86::DEC64_16r,   X86::DEC64_16m,  0 },
    141     { X86::DEC64_32r,   X86::DEC64_32m,  0 },
    142     { X86::DEC64r,      X86::DEC64m,     0 },
    143     { X86::DEC8r,       X86::DEC8m,      0 },
    144     { X86::INC16r,      X86::INC16m,     0 },
    145     { X86::INC32r,      X86::INC32m,     0 },
    146     { X86::INC64_16r,   X86::INC64_16m,  0 },
    147     { X86::INC64_32r,   X86::INC64_32m,  0 },
    148     { X86::INC64r,      X86::INC64m,     0 },
    149     { X86::INC8r,       X86::INC8m,      0 },
    150     { X86::NEG16r,      X86::NEG16m,     0 },
    151     { X86::NEG32r,      X86::NEG32m,     0 },
    152     { X86::NEG64r,      X86::NEG64m,     0 },
    153     { X86::NEG8r,       X86::NEG8m,      0 },
    154     { X86::NOT16r,      X86::NOT16m,     0 },
    155     { X86::NOT32r,      X86::NOT32m,     0 },
    156     { X86::NOT64r,      X86::NOT64m,     0 },
    157     { X86::NOT8r,       X86::NOT8m,      0 },
    158     { X86::OR16ri,      X86::OR16mi,     0 },
    159     { X86::OR16ri8,     X86::OR16mi8,    0 },
    160     { X86::OR16rr,      X86::OR16mr,     0 },
    161     { X86::OR32ri,      X86::OR32mi,     0 },
    162     { X86::OR32ri8,     X86::OR32mi8,    0 },
    163     { X86::OR32rr,      X86::OR32mr,     0 },
    164     { X86::OR64ri32,    X86::OR64mi32,   0 },
    165     { X86::OR64ri8,     X86::OR64mi8,    0 },
    166     { X86::OR64rr,      X86::OR64mr,     0 },
    167     { X86::OR8ri,       X86::OR8mi,      0 },
    168     { X86::OR8rr,       X86::OR8mr,      0 },
    169     { X86::ROL16r1,     X86::ROL16m1,    0 },
    170     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
    171     { X86::ROL16ri,     X86::ROL16mi,    0 },
    172     { X86::ROL32r1,     X86::ROL32m1,    0 },
    173     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
    174     { X86::ROL32ri,     X86::ROL32mi,    0 },
    175     { X86::ROL64r1,     X86::ROL64m1,    0 },
    176     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
    177     { X86::ROL64ri,     X86::ROL64mi,    0 },
    178     { X86::ROL8r1,      X86::ROL8m1,     0 },
    179     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
    180     { X86::ROL8ri,      X86::ROL8mi,     0 },
    181     { X86::ROR16r1,     X86::ROR16m1,    0 },
    182     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
    183     { X86::ROR16ri,     X86::ROR16mi,    0 },
    184     { X86::ROR32r1,     X86::ROR32m1,    0 },
    185     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
    186     { X86::ROR32ri,     X86::ROR32mi,    0 },
    187     { X86::ROR64r1,     X86::ROR64m1,    0 },
    188     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
    189     { X86::ROR64ri,     X86::ROR64mi,    0 },
    190     { X86::ROR8r1,      X86::ROR8m1,     0 },
    191     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
    192     { X86::ROR8ri,      X86::ROR8mi,     0 },
    193     { X86::SAR16r1,     X86::SAR16m1,    0 },
    194     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
    195     { X86::SAR16ri,     X86::SAR16mi,    0 },
    196     { X86::SAR32r1,     X86::SAR32m1,    0 },
    197     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
    198     { X86::SAR32ri,     X86::SAR32mi,    0 },
    199     { X86::SAR64r1,     X86::SAR64m1,    0 },
    200     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
    201     { X86::SAR64ri,     X86::SAR64mi,    0 },
    202     { X86::SAR8r1,      X86::SAR8m1,     0 },
    203     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
    204     { X86::SAR8ri,      X86::SAR8mi,     0 },
    205     { X86::SBB32ri,     X86::SBB32mi,    0 },
    206     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
    207     { X86::SBB32rr,     X86::SBB32mr,    0 },
    208     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
    209     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
    210     { X86::SBB64rr,     X86::SBB64mr,    0 },
    211     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
    212     { X86::SHL16ri,     X86::SHL16mi,    0 },
    213     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
    214     { X86::SHL32ri,     X86::SHL32mi,    0 },
    215     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
    216     { X86::SHL64ri,     X86::SHL64mi,    0 },
    217     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
    218     { X86::SHL8ri,      X86::SHL8mi,     0 },
    219     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
    220     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
    221     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
    222     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
    223     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
    224     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
    225     { X86::SHR16r1,     X86::SHR16m1,    0 },
    226     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
    227     { X86::SHR16ri,     X86::SHR16mi,    0 },
    228     { X86::SHR32r1,     X86::SHR32m1,    0 },
    229     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
    230     { X86::SHR32ri,     X86::SHR32mi,    0 },
    231     { X86::SHR64r1,     X86::SHR64m1,    0 },
    232     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
    233     { X86::SHR64ri,     X86::SHR64mi,    0 },
    234     { X86::SHR8r1,      X86::SHR8m1,     0 },
    235     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
    236     { X86::SHR8ri,      X86::SHR8mi,     0 },
    237     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
    238     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
    239     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
    240     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
    241     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
    242     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
    243     { X86::SUB16ri,     X86::SUB16mi,    0 },
    244     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
    245     { X86::SUB16rr,     X86::SUB16mr,    0 },
    246     { X86::SUB32ri,     X86::SUB32mi,    0 },
    247     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
    248     { X86::SUB32rr,     X86::SUB32mr,    0 },
    249     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
    250     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
    251     { X86::SUB64rr,     X86::SUB64mr,    0 },
    252     { X86::SUB8ri,      X86::SUB8mi,     0 },
    253     { X86::SUB8rr,      X86::SUB8mr,     0 },
    254     { X86::XOR16ri,     X86::XOR16mi,    0 },
    255     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
    256     { X86::XOR16rr,     X86::XOR16mr,    0 },
    257     { X86::XOR32ri,     X86::XOR32mi,    0 },
    258     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
    259     { X86::XOR32rr,     X86::XOR32mr,    0 },
    260     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
    261     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
    262     { X86::XOR64rr,     X86::XOR64mr,    0 },
    263     { X86::XOR8ri,      X86::XOR8mi,     0 },
    264     { X86::XOR8rr,      X86::XOR8mr,     0 }
    265   };
    266 
    267   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
    268     unsigned RegOp = OpTbl2Addr[i].RegOp;
    269     unsigned MemOp = OpTbl2Addr[i].MemOp;
    270     unsigned Flags = OpTbl2Addr[i].Flags;
    271     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
    272                   RegOp, MemOp,
    273                   // Index 0, folded load and store, no alignment requirement.
    274                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
    275   }
    276 
    277   static const X86OpTblEntry OpTbl0[] = {
    278     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
    279     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
    280     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
    281     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
    282     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
    283     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
    284     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
    285     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
    286     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
    287     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
    288     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
    289     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
    290     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
    291     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
    292     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
    293     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
    294     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
    295     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
    296     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
    297     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
    298     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 },
    299     { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
    300     { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
    301     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
    302     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
    303     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
    304     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
    305     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
    306     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
    307     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
    308     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
    309     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
    310     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
    311     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
    312     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
    313     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
    314     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
    315     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
    316     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
    317     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
    318     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
    319     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
    320     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    321     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    322     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    323     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
    324     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
    325     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
    326     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
    327     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
    328     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
    329     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
    330     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
    331     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
    332     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
    333     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
    334     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
    335     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
    336     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
    337     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
    338     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
    339     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
    340     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
    341     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
    342     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
    343     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
    344     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
    345     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
    346     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
    347     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
    348     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
    349     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
    350     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
    351     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
    352     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
    353     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
    354     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
    355     // AVX 128-bit versions of foldable instructions
    356     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 },
    357     { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
    358     { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
    359     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    360     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    361     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    362     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    363     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
    364     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
    365     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
    366     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
    367     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
    368     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
    369     // AVX 256-bit foldable instructions
    370     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    371     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    372     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    373     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    374     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
    375     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
    376   };
    377 
    378   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
    379     unsigned RegOp      = OpTbl0[i].RegOp;
    380     unsigned MemOp      = OpTbl0[i].MemOp;
    381     unsigned Flags      = OpTbl0[i].Flags;
    382     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
    383                   RegOp, MemOp, TB_INDEX_0 | Flags);
    384   }
    385 
    386   static const X86OpTblEntry OpTbl1[] = {
    387     { X86::CMP16rr,         X86::CMP16rm,             0 },
    388     { X86::CMP32rr,         X86::CMP32rm,             0 },
    389     { X86::CMP64rr,         X86::CMP64rm,             0 },
    390     { X86::CMP8rr,          X86::CMP8rm,              0 },
    391     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
    392     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
    393     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
    394     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
    395     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
    396     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
    397     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
    398     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
    399     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
    400     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
    401     { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
    402     { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
    403     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
    404     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
    405     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
    406     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
    407     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
    408     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
    409     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
    410     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
    411     { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm,      TB_ALIGN_16 },
    412     { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm,      TB_ALIGN_16 },
    413     { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm,      TB_ALIGN_16 },
    414     { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm,      TB_ALIGN_16 },
    415     { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm,      TB_ALIGN_16 },
    416     { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm,      0 },
    417     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
    418     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
    419     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
    420     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
    421     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
    422     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
    423     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
    424     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
    425     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
    426     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
    427     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
    428     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
    429     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
    430     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
    431     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
    432     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
    433     { X86::MOV16rr,         X86::MOV16rm,             0 },
    434     { X86::MOV32rr,         X86::MOV32rm,             0 },
    435     { X86::MOV64rr,         X86::MOV64rm,             0 },
    436     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
    437     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
    438     { X86::MOV8rr,          X86::MOV8rm,              0 },
    439     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
    440     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
    441     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
    442     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
    443     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
    444     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
    445     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
    446     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
    447     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
    448     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
    449     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
    450     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
    451     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
    452     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
    453     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
    454     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
    455     { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
    456     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
    457     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
    458     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
    459     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
    460     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
    461     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
    462     { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
    463     { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
    464     { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
    465     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
    466     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
    467     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
    468     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
    469     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
    470     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
    471     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
    472     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
    473     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
    474     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
    475     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
    476     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
    477     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
    478     { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 },
    479     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
    480     { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 },
    481     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
    482     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
    483     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
    484     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
    485     { X86::TEST16rr,        X86::TEST16rm,            0 },
    486     { X86::TEST32rr,        X86::TEST32rm,            0 },
    487     { X86::TEST64rr,        X86::TEST64rm,            0 },
    488     { X86::TEST8rr,         X86::TEST8rm,             0 },
    489     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    490     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
    491     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
    492     // AVX 128-bit versions of foldable instructions
    493     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
    494     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
    495     { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm,     TB_ALIGN_16 },
    496     { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm,     TB_ALIGN_16 },
    497     { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm,     TB_ALIGN_16 },
    498     { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm,     TB_ALIGN_16 },
    499     { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm,     TB_ALIGN_16 },
    500     { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm,     0 },
    501     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
    502     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
    503     { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
    504     { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
    505     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
    506     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
    507     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
    508     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
    509     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
    510     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
    511     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
    512     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
    513     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
    514     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
    515     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 },
    516     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
    517     { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
    518     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
    519     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
    520     { X86::VPABSBrr128,     X86::VPABSBrm128,         TB_ALIGN_16 },
    521     { X86::VPABSDrr128,     X86::VPABSDrm128,         TB_ALIGN_16 },
    522     { X86::VPABSWrr128,     X86::VPABSWrm128,         TB_ALIGN_16 },
    523     { X86::VPERMILPDri,     X86::VPERMILPDmi,         TB_ALIGN_16 },
    524     { X86::VPERMILPSri,     X86::VPERMILPSmi,         TB_ALIGN_16 },
    525     { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 },
    526     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 },
    527     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 },
    528     { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 },
    529     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 },
    530     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 },
    531     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 },
    532     { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 },
    533     { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 },
    534     { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 },
    535     { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 },
    536     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
    537     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
    538     // AVX 256-bit foldable instructions
    539     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
    540     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
    541     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
    542     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
    543     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
    544     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        TB_ALIGN_32 },
    545     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        TB_ALIGN_32 },
    546     // AVX2 foldable instructions
    547     { X86::VPABSBrr256,     X86::VPABSBrm256,         TB_ALIGN_32 },
    548     { X86::VPABSDrr256,     X86::VPABSDrm256,         TB_ALIGN_32 },
    549     { X86::VPABSWrr256,     X86::VPABSWrm256,         TB_ALIGN_32 },
    550     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          TB_ALIGN_32 },
    551     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         TB_ALIGN_32 },
    552     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         TB_ALIGN_32 },
    553     { X86::VRCPPSYr,        X86::VRCPPSYm,            TB_ALIGN_32 },
    554     { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        TB_ALIGN_32 },
    555     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          TB_ALIGN_32 },
    556     { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      TB_ALIGN_32 },
    557     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           TB_ALIGN_32 },
    558     { X86::VSQRTPDYr_Int,   X86::VSQRTPDYm_Int,       TB_ALIGN_32 },
    559     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           TB_ALIGN_32 },
    560     { X86::VSQRTPSYr_Int,   X86::VSQRTPSYm_Int,       TB_ALIGN_32 },
    561   };
    562 
    563   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
    564     unsigned RegOp = OpTbl1[i].RegOp;
    565     unsigned MemOp = OpTbl1[i].MemOp;
    566     unsigned Flags = OpTbl1[i].Flags;
    567     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
    568                   RegOp, MemOp,
    569                   // Index 1, folded load
    570                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
    571   }
    572 
    573   static const X86OpTblEntry OpTbl2[] = {
    574     { X86::ADC32rr,         X86::ADC32rm,       0 },
    575     { X86::ADC64rr,         X86::ADC64rm,       0 },
    576     { X86::ADD16rr,         X86::ADD16rm,       0 },
    577     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
    578     { X86::ADD32rr,         X86::ADD32rm,       0 },
    579     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
    580     { X86::ADD64rr,         X86::ADD64rm,       0 },
    581     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
    582     { X86::ADD8rr,          X86::ADD8rm,        0 },
    583     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
    584     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
    585     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
    586     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
    587     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
    588     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
    589     { X86::AND16rr,         X86::AND16rm,       0 },
    590     { X86::AND32rr,         X86::AND32rm,       0 },
    591     { X86::AND64rr,         X86::AND64rm,       0 },
    592     { X86::AND8rr,          X86::AND8rm,        0 },
    593     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
    594     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
    595     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
    596     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
    597     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
    598     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
    599     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
    600     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
    601     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
    602     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
    603     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
    604     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
    605     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
    606     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
    607     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
    608     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
    609     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
    610     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
    611     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
    612     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
    613     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
    614     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
    615     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
    616     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
    617     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
    618     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
    619     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
    620     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
    621     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
    622     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
    623     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
    624     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
    625     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
    626     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
    627     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
    628     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
    629     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
    630     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
    631     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
    632     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
    633     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
    634     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
    635     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
    636     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
    637     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
    638     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
    639     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
    640     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
    641     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
    642     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
    643     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
    644     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
    645     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
    646     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
    647     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
    648     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
    649     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
    650     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
    651     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
    652     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
    653     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
    654     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
    655     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
    656     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
    657     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
    658     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
    659     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
    660     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
    661     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
    662     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
    663     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
    664     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
    665     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
    666     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
    667     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
    668     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
    669     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
    670     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
    671     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
    672     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
    673     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
    674     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
    675     { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 },
    676     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
    677     { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 },
    678     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
    679     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
    680     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
    681     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
    682     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
    683     { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 },
    684     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
    685     { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 },
    686     { X86::MINSDrr,         X86::MINSDrm,       0 },
    687     { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
    688     { X86::MINSSrr,         X86::MINSSrm,       0 },
    689     { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
    690     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
    691     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
    692     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
    693     { X86::MULSDrr,         X86::MULSDrm,       0 },
    694     { X86::MULSSrr,         X86::MULSSrm,       0 },
    695     { X86::OR16rr,          X86::OR16rm,        0 },
    696     { X86::OR32rr,          X86::OR32rm,        0 },
    697     { X86::OR64rr,          X86::OR64rm,        0 },
    698     { X86::OR8rr,           X86::OR8rm,         0 },
    699     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
    700     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
    701     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
    702     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
    703     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
    704     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
    705     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
    706     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
    707     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
    708     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
    709     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
    710     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
    711     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
    712     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
    713     { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
    714     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
    715     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
    716     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
    717     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
    718     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
    719     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
    720     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
    721     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
    722     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
    723     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
    724     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
    725     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
    726     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
    727     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
    728     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
    729     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
    730     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
    731     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
    732     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
    733     { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
    734     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
    735     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
    736     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
    737     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
    738     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
    739     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
    740     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
    741     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
    742     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
    743     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
    744     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
    745     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
    746     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
    747     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
    748     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
    749     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
    750     { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
    751     { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
    752     { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
    753     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
    754     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
    755     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
    756     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
    757     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
    758     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
    759     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
    760     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
    761     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
    762     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
    763     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
    764     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
    765     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
    766     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
    767     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
    768     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
    769     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
    770     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
    771     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
    772     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
    773     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
    774     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
    775     { X86::SBB32rr,         X86::SBB32rm,       0 },
    776     { X86::SBB64rr,         X86::SBB64rm,       0 },
    777     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
    778     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
    779     { X86::SUB16rr,         X86::SUB16rm,       0 },
    780     { X86::SUB32rr,         X86::SUB32rm,       0 },
    781     { X86::SUB64rr,         X86::SUB64rm,       0 },
    782     { X86::SUB8rr,          X86::SUB8rm,        0 },
    783     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
    784     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
    785     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
    786     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
    787     // FIXME: TEST*rr -> swapped operand of TEST*mr.
    788     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
    789     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
    790     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
    791     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
    792     { X86::XOR16rr,         X86::XOR16rm,       0 },
    793     { X86::XOR32rr,         X86::XOR32rm,       0 },
    794     { X86::XOR64rr,         X86::XOR64rm,       0 },
    795     { X86::XOR8rr,          X86::XOR8rm,        0 },
    796     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
    797     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
    798     // AVX 128-bit versions of foldable instructions
    799     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
    800     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
    801     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
    802     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
    803     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
    804     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
    805     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
    806     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
    807     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
    808     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
    809     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
    810     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
    811     { X86::VCVTTSD2SI64rr,    X86::VCVTTSD2SI64rm,     0 },
    812     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 },
    813     { X86::VCVTTSD2SIrr,      X86::VCVTTSD2SIrm,       0 },
    814     { X86::Int_VCVTTSD2SIrr,  X86::Int_VCVTTSD2SIrm,   0 },
    815     { X86::VCVTTSS2SI64rr,    X86::VCVTTSS2SI64rm,     0 },
    816     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 },
    817     { X86::VCVTTSS2SIrr,      X86::VCVTTSS2SIrm,       0 },
    818     { X86::Int_VCVTTSS2SIrr,  X86::Int_VCVTTSS2SIrm,   0 },
    819     { X86::VCVTSD2SI64rr,     X86::VCVTSD2SI64rm,      0 },
    820     { X86::VCVTSD2SIrr,       X86::VCVTSD2SIrm,        0 },
    821     { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQrm,       TB_ALIGN_16 },
    822     { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       TB_ALIGN_16 },
    823     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
    824     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
    825     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
    826     { X86::VADDPDrr,          X86::VADDPDrm,           TB_ALIGN_16 },
    827     { X86::VADDPSrr,          X86::VADDPSrm,           TB_ALIGN_16 },
    828     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
    829     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
    830     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        TB_ALIGN_16 },
    831     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        TB_ALIGN_16 },
    832     { X86::VANDNPDrr,         X86::VANDNPDrm,          TB_ALIGN_16 },
    833     { X86::VANDNPSrr,         X86::VANDNPSrm,          TB_ALIGN_16 },
    834     { X86::VANDPDrr,          X86::VANDPDrm,           TB_ALIGN_16 },
    835     { X86::VANDPSrr,          X86::VANDPSrm,           TB_ALIGN_16 },
    836     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        TB_ALIGN_16 },
    837     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        TB_ALIGN_16 },
    838     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        TB_ALIGN_16 },
    839     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        TB_ALIGN_16 },
    840     { X86::VCMPPDrri,         X86::VCMPPDrmi,          TB_ALIGN_16 },
    841     { X86::VCMPPSrri,         X86::VCMPPSrmi,          TB_ALIGN_16 },
    842     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
    843     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
    844     { X86::VDIVPDrr,          X86::VDIVPDrm,           TB_ALIGN_16 },
    845     { X86::VDIVPSrr,          X86::VDIVPSrm,           TB_ALIGN_16 },
    846     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
    847     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
    848     { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
    849     { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
    850     { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
    851     { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
    852     { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
    853     { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
    854     { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
    855     { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
    856     { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 },
    857     { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 },
    858     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 },
    859     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 },
    860     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
    861     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
    862     { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 },
    863     { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 },
    864     { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 },
    865     { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 },
    866     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
    867     { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
    868     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
    869     { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
    870     { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 },
    871     { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 },
    872     { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 },
    873     { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 },
    874     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
    875     { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
    876     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
    877     { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
    878     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        TB_ALIGN_16 },
    879     { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 },
    880     { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 },
    881     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
    882     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
    883     { X86::VORPDrr,           X86::VORPDrm,            TB_ALIGN_16 },
    884     { X86::VORPSrr,           X86::VORPSrm,            TB_ALIGN_16 },
    885     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        TB_ALIGN_16 },
    886     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        TB_ALIGN_16 },
    887     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        TB_ALIGN_16 },
    888     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        TB_ALIGN_16 },
    889     { X86::VPADDBrr,          X86::VPADDBrm,           TB_ALIGN_16 },
    890     { X86::VPADDDrr,          X86::VPADDDrm,           TB_ALIGN_16 },
    891     { X86::VPADDQrr,          X86::VPADDQrm,           TB_ALIGN_16 },
    892     { X86::VPADDSBrr,         X86::VPADDSBrm,          TB_ALIGN_16 },
    893     { X86::VPADDSWrr,         X86::VPADDSWrm,          TB_ALIGN_16 },
    894     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         TB_ALIGN_16 },
    895     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         TB_ALIGN_16 },
    896     { X86::VPADDWrr,          X86::VPADDWrm,           TB_ALIGN_16 },
    897     { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      TB_ALIGN_16 },
    898     { X86::VPANDNrr,          X86::VPANDNrm,           TB_ALIGN_16 },
    899     { X86::VPANDrr,           X86::VPANDrm,            TB_ALIGN_16 },
    900     { X86::VPAVGBrr,          X86::VPAVGBrm,           TB_ALIGN_16 },
    901     { X86::VPAVGWrr,          X86::VPAVGWrm,           TB_ALIGN_16 },
    902     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        TB_ALIGN_16 },
    903     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         TB_ALIGN_16 },
    904     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         TB_ALIGN_16 },
    905     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         TB_ALIGN_16 },
    906     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         TB_ALIGN_16 },
    907     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         TB_ALIGN_16 },
    908     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         TB_ALIGN_16 },
    909     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         TB_ALIGN_16 },
    910     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         TB_ALIGN_16 },
    911     { X86::VPHADDDrr,         X86::VPHADDDrm,          TB_ALIGN_16 },
    912     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      TB_ALIGN_16 },
    913     { X86::VPHADDWrr,         X86::VPHADDWrm,          TB_ALIGN_16 },
    914     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          TB_ALIGN_16 },
    915     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      TB_ALIGN_16 },
    916     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          TB_ALIGN_16 },
    917     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        TB_ALIGN_16 },
    918     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        TB_ALIGN_16 },
    919     { X86::VPINSRWrri,        X86::VPINSRWrmi,         TB_ALIGN_16 },
    920     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    TB_ALIGN_16 },
    921     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         TB_ALIGN_16 },
    922     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          TB_ALIGN_16 },
    923     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          TB_ALIGN_16 },
    924     { X86::VPMINSWrr,         X86::VPMINSWrm,          TB_ALIGN_16 },
    925     { X86::VPMINUBrr,         X86::VPMINUBrm,          TB_ALIGN_16 },
    926     { X86::VPMULDQrr,         X86::VPMULDQrm,          TB_ALIGN_16 },
    927     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     TB_ALIGN_16 },
    928     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         TB_ALIGN_16 },
    929     { X86::VPMULHWrr,         X86::VPMULHWrm,          TB_ALIGN_16 },
    930     { X86::VPMULLDrr,         X86::VPMULLDrm,          TB_ALIGN_16 },
    931     { X86::VPMULLWrr,         X86::VPMULLWrm,          TB_ALIGN_16 },
    932     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         TB_ALIGN_16 },
    933     { X86::VPORrr,            X86::VPORrm,             TB_ALIGN_16 },
    934     { X86::VPSADBWrr,         X86::VPSADBWrm,          TB_ALIGN_16 },
    935     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          TB_ALIGN_16 },
    936     { X86::VPSIGNBrr,         X86::VPSIGNBrm,          TB_ALIGN_16 },
    937     { X86::VPSIGNWrr,         X86::VPSIGNWrm,          TB_ALIGN_16 },
    938     { X86::VPSIGNDrr,         X86::VPSIGNDrm,          TB_ALIGN_16 },
    939     { X86::VPSLLDrr,          X86::VPSLLDrm,           TB_ALIGN_16 },
    940     { X86::VPSLLQrr,          X86::VPSLLQrm,           TB_ALIGN_16 },
    941     { X86::VPSLLWrr,          X86::VPSLLWrm,           TB_ALIGN_16 },
    942     { X86::VPSRADrr,          X86::VPSRADrm,           TB_ALIGN_16 },
    943     { X86::VPSRAWrr,          X86::VPSRAWrm,           TB_ALIGN_16 },
    944     { X86::VPSRLDrr,          X86::VPSRLDrm,           TB_ALIGN_16 },
    945     { X86::VPSRLQrr,          X86::VPSRLQrm,           TB_ALIGN_16 },
    946     { X86::VPSRLWrr,          X86::VPSRLWrm,           TB_ALIGN_16 },
    947     { X86::VPSUBBrr,          X86::VPSUBBrm,           TB_ALIGN_16 },
    948     { X86::VPSUBDrr,          X86::VPSUBDrm,           TB_ALIGN_16 },
    949     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          TB_ALIGN_16 },
    950     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          TB_ALIGN_16 },
    951     { X86::VPSUBWrr,          X86::VPSUBWrm,           TB_ALIGN_16 },
    952     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       TB_ALIGN_16 },
    953     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       TB_ALIGN_16 },
    954     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      TB_ALIGN_16 },
    955     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       TB_ALIGN_16 },
    956     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       TB_ALIGN_16 },
    957     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       TB_ALIGN_16 },
    958     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      TB_ALIGN_16 },
    959     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       TB_ALIGN_16 },
    960     { X86::VPXORrr,           X86::VPXORrm,            TB_ALIGN_16 },
    961     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         TB_ALIGN_16 },
    962     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         TB_ALIGN_16 },
    963     { X86::VSUBPDrr,          X86::VSUBPDrm,           TB_ALIGN_16 },
    964     { X86::VSUBPSrr,          X86::VSUBPSrm,           TB_ALIGN_16 },
    965     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
    966     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
    967     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        TB_ALIGN_16 },
    968     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        TB_ALIGN_16 },
    969     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        TB_ALIGN_16 },
    970     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        TB_ALIGN_16 },
    971     { X86::VXORPDrr,          X86::VXORPDrm,           TB_ALIGN_16 },
    972     { X86::VXORPSrr,          X86::VXORPSrm,           TB_ALIGN_16 },
    973     // AVX 256-bit foldable instructions
    974     { X86::VADDPDYrr,         X86::VADDPDYrm,          TB_ALIGN_32 },
    975     { X86::VADDPSYrr,         X86::VADDPSYrm,          TB_ALIGN_32 },
    976     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       TB_ALIGN_32 },
    977     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       TB_ALIGN_32 },
    978     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         TB_ALIGN_32 },
    979     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         TB_ALIGN_32 },
    980     { X86::VANDPDYrr,         X86::VANDPDYrm,          TB_ALIGN_32 },
    981     { X86::VANDPSYrr,         X86::VANDPSYrm,          TB_ALIGN_32 },
    982     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       TB_ALIGN_32 },
    983     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       TB_ALIGN_32 },
    984     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       TB_ALIGN_32 },
    985     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       TB_ALIGN_32 },
    986     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         TB_ALIGN_32 },
    987     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         TB_ALIGN_32 },
    988     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          TB_ALIGN_32 },
    989     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          TB_ALIGN_32 },
    990     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         TB_ALIGN_32 },
    991     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         TB_ALIGN_32 },
    992     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         TB_ALIGN_32 },
    993     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         TB_ALIGN_32 },
    994     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      TB_ALIGN_32 },
    995     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          TB_ALIGN_32 },
    996     { X86::VMAXPDYrr_Int,     X86::VMAXPDYrm_Int,      TB_ALIGN_32 },
    997     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          TB_ALIGN_32 },
    998     { X86::VMAXPSYrr_Int,     X86::VMAXPSYrm_Int,      TB_ALIGN_32 },
    999     { X86::VMINPDYrr,         X86::VMINPDYrm,          TB_ALIGN_32 },
   1000     { X86::VMINPDYrr_Int,     X86::VMINPDYrm_Int,      TB_ALIGN_32 },
   1001     { X86::VMINPSYrr,         X86::VMINPSYrm,          TB_ALIGN_32 },
   1002     { X86::VMINPSYrr_Int,     X86::VMINPSYrm_Int,      TB_ALIGN_32 },
   1003     { X86::VMULPDYrr,         X86::VMULPDYrm,          TB_ALIGN_32 },
   1004     { X86::VMULPSYrr,         X86::VMULPSYrm,          TB_ALIGN_32 },
   1005     { X86::VORPDYrr,          X86::VORPDYrm,           TB_ALIGN_32 },
   1006     { X86::VORPSYrr,          X86::VORPSYrm,           TB_ALIGN_32 },
   1007     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       TB_ALIGN_32 },
   1008     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       TB_ALIGN_32 },
   1009     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       TB_ALIGN_32 },
   1010     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        TB_ALIGN_32 },
   1011     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        TB_ALIGN_32 },
   1012     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          TB_ALIGN_32 },
   1013     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          TB_ALIGN_32 },
   1014     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       TB_ALIGN_32 },
   1015     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       TB_ALIGN_32 },
   1016     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       TB_ALIGN_32 },
   1017     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       TB_ALIGN_32 },
   1018     { X86::VXORPDYrr,         X86::VXORPDYrm,          TB_ALIGN_32 },
   1019     { X86::VXORPSYrr,         X86::VXORPSYrm,          TB_ALIGN_32 },
   1020     // AVX2 foldable instructions
   1021     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      TB_ALIGN_16 },
   1022     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       TB_ALIGN_32 },
   1023     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       TB_ALIGN_32 },
   1024     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       TB_ALIGN_32 },
   1025     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       TB_ALIGN_32 },
   1026     { X86::VPADDBYrr,         X86::VPADDBYrm,          TB_ALIGN_32 },
   1027     { X86::VPADDDYrr,         X86::VPADDDYrm,          TB_ALIGN_32 },
   1028     { X86::VPADDQYrr,         X86::VPADDQYrm,          TB_ALIGN_32 },
   1029     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         TB_ALIGN_32 },
   1030     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         TB_ALIGN_32 },
   1031     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        TB_ALIGN_32 },
   1032     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        TB_ALIGN_32 },
   1033     { X86::VPADDWYrr,         X86::VPADDWYrm,          TB_ALIGN_32 },
   1034     { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      TB_ALIGN_32 },
   1035     { X86::VPANDNYrr,         X86::VPANDNYrm,          TB_ALIGN_32 },
   1036     { X86::VPANDYrr,          X86::VPANDYrm,           TB_ALIGN_32 },
   1037     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          TB_ALIGN_32 },
   1038     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          TB_ALIGN_32 },
   1039     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        TB_ALIGN_32 },
   1040     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       TB_ALIGN_32 },
   1041     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       TB_ALIGN_32 },
   1042     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        TB_ALIGN_32 },
   1043     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        TB_ALIGN_32 },
   1044     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        TB_ALIGN_32 },
   1045     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        TB_ALIGN_32 },
   1046     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        TB_ALIGN_32 },
   1047     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        TB_ALIGN_32 },
   1048     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        TB_ALIGN_32 },
   1049     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        TB_ALIGN_32 },
   1050     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       TB_ALIGN_32 },
   1051     { X86::VPERMDYrr,         X86::VPERMDYrm,          TB_ALIGN_32 },
   1052     { X86::VPERMPDYri,        X86::VPERMPDYmi,         TB_ALIGN_32 },
   1053     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         TB_ALIGN_32 },
   1054     { X86::VPERMQYri,         X86::VPERMQYmi,          TB_ALIGN_32 },
   1055     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         TB_ALIGN_32 },
   1056     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      TB_ALIGN_32 },
   1057     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         TB_ALIGN_32 },
   1058     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         TB_ALIGN_32 },
   1059     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      TB_ALIGN_32 },
   1060     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         TB_ALIGN_32 },
   1061     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    TB_ALIGN_32 },
   1062     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        TB_ALIGN_32 },
   1063     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         TB_ALIGN_32 },
   1064     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         TB_ALIGN_32 },
   1065     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         TB_ALIGN_32 },
   1066     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         TB_ALIGN_32 },
   1067     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       TB_ALIGN_32 },
   1068     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         TB_ALIGN_32 },
   1069     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     TB_ALIGN_32 },
   1070     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        TB_ALIGN_32 },
   1071     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         TB_ALIGN_32 },
   1072     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         TB_ALIGN_32 },
   1073     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         TB_ALIGN_32 },
   1074     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        TB_ALIGN_32 },
   1075     { X86::VPORYrr,           X86::VPORYrm,            TB_ALIGN_32 },
   1076     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         TB_ALIGN_32 },
   1077     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         TB_ALIGN_32 },
   1078     { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         TB_ALIGN_32 },
   1079     { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         TB_ALIGN_32 },
   1080     { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         TB_ALIGN_32 },
   1081     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          TB_ALIGN_16 },
   1082     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          TB_ALIGN_16 },
   1083     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          TB_ALIGN_16 },
   1084     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          TB_ALIGN_16 },
   1085     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         TB_ALIGN_32 },
   1086     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          TB_ALIGN_16 },
   1087     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         TB_ALIGN_32 },
   1088     { X86::VPSRADYrr,         X86::VPSRADYrm,          TB_ALIGN_16 },
   1089     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          TB_ALIGN_16 },
   1090     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          TB_ALIGN_16 },
   1091     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         TB_ALIGN_32 },
   1092     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          TB_ALIGN_16 },
   1093     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          TB_ALIGN_16 },
   1094     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          TB_ALIGN_16 },
   1095     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          TB_ALIGN_16 },
   1096     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         TB_ALIGN_32 },
   1097     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          TB_ALIGN_16 },
   1098     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         TB_ALIGN_32 },
   1099     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          TB_ALIGN_32 },
   1100     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          TB_ALIGN_32 },
   1101     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         TB_ALIGN_32 },
   1102     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         TB_ALIGN_32 },
   1103     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          TB_ALIGN_32 },
   1104     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      TB_ALIGN_32 },
   1105     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      TB_ALIGN_32 },
   1106     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     TB_ALIGN_16 },
   1107     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      TB_ALIGN_32 },
   1108     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      TB_ALIGN_32 },
   1109     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      TB_ALIGN_32 },
   1110     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     TB_ALIGN_32 },
   1111     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      TB_ALIGN_32 },
   1112     { X86::VPXORYrr,          X86::VPXORYrm,           TB_ALIGN_32 },
   1113     // FIXME: add AVX 256-bit foldable instructions
   1114   };
   1115 
   1116   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
   1117     unsigned RegOp = OpTbl2[i].RegOp;
   1118     unsigned MemOp = OpTbl2[i].MemOp;
   1119     unsigned Flags = OpTbl2[i].Flags;
   1120     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
   1121                   RegOp, MemOp,
   1122                   // Index 2, folded load
   1123                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
   1124   }
   1125 }
   1126 
   1127 void
   1128 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
   1129                             MemOp2RegOpTableType &M2RTable,
   1130                             unsigned RegOp, unsigned MemOp, unsigned Flags) {
   1131     if ((Flags & TB_NO_FORWARD) == 0) {
   1132       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
   1133       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
   1134     }
   1135     if ((Flags & TB_NO_REVERSE) == 0) {
   1136       assert(!M2RTable.count(MemOp) &&
   1137            "Duplicated entries in unfolding maps?");
   1138       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
   1139     }
   1140 }
   1141 
   1142 bool
   1143 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
   1144                                     unsigned &SrcReg, unsigned &DstReg,
   1145                                     unsigned &SubIdx) const {
   1146   switch (MI.getOpcode()) {
   1147   default: break;
   1148   case X86::MOVSX16rr8:
   1149   case X86::MOVZX16rr8:
   1150   case X86::MOVSX32rr8:
   1151   case X86::MOVZX32rr8:
   1152   case X86::MOVSX64rr8:
   1153   case X86::MOVZX64rr8:
   1154     if (!TM.getSubtarget<X86Subtarget>().is64Bit())
   1155       // It's not always legal to reference the low 8-bit of the larger
   1156       // register in 32-bit mode.
   1157       return false;
   1158   case X86::MOVSX32rr16:
   1159   case X86::MOVZX32rr16:
   1160   case X86::MOVSX64rr16:
   1161   case X86::MOVZX64rr16:
   1162   case X86::MOVSX64rr32:
   1163   case X86::MOVZX64rr32: {
   1164     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
   1165       // Be conservative.
   1166       return false;
   1167     SrcReg = MI.getOperand(1).getReg();
   1168     DstReg = MI.getOperand(0).getReg();
   1169     switch (MI.getOpcode()) {
   1170     default:
   1171       llvm_unreachable(0);
   1172     case X86::MOVSX16rr8:
   1173     case X86::MOVZX16rr8:
   1174     case X86::MOVSX32rr8:
   1175     case X86::MOVZX32rr8:
   1176     case X86::MOVSX64rr8:
   1177     case X86::MOVZX64rr8:
   1178       SubIdx = X86::sub_8bit;
   1179       break;
   1180     case X86::MOVSX32rr16:
   1181     case X86::MOVZX32rr16:
   1182     case X86::MOVSX64rr16:
   1183     case X86::MOVZX64rr16:
   1184       SubIdx = X86::sub_16bit;
   1185       break;
   1186     case X86::MOVSX64rr32:
   1187     case X86::MOVZX64rr32:
   1188       SubIdx = X86::sub_32bit;
   1189       break;
   1190     }
   1191     return true;
   1192   }
   1193   }
   1194   return false;
   1195 }
   1196 
   1197 /// isFrameOperand - Return true and the FrameIndex if the specified
   1198 /// operand and follow operands form a reference to the stack frame.
   1199 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
   1200                                   int &FrameIndex) const {
   1201   if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
   1202       MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
   1203       MI->getOperand(Op+1).getImm() == 1 &&
   1204       MI->getOperand(Op+2).getReg() == 0 &&
   1205       MI->getOperand(Op+3).getImm() == 0) {
   1206     FrameIndex = MI->getOperand(Op).getIndex();
   1207     return true;
   1208   }
   1209   return false;
   1210 }
   1211 
   1212 static bool isFrameLoadOpcode(int Opcode) {
   1213   switch (Opcode) {
   1214   default:
   1215     return false;
   1216   case X86::MOV8rm:
   1217   case X86::MOV16rm:
   1218   case X86::MOV32rm:
   1219   case X86::MOV64rm:
   1220   case X86::LD_Fp64m:
   1221   case X86::MOVSSrm:
   1222   case X86::MOVSDrm:
   1223   case X86::MOVAPSrm:
   1224   case X86::MOVAPDrm:
   1225   case X86::MOVDQArm:
   1226   case X86::VMOVSSrm:
   1227   case X86::VMOVSDrm:
   1228   case X86::VMOVAPSrm:
   1229   case X86::VMOVAPDrm:
   1230   case X86::VMOVDQArm:
   1231   case X86::VMOVAPSYrm:
   1232   case X86::VMOVAPDYrm:
   1233   case X86::VMOVDQAYrm:
   1234   case X86::MMX_MOVD64rm:
   1235   case X86::MMX_MOVQ64rm:
   1236     return true;
   1237   }
   1238 }
   1239 
   1240 static bool isFrameStoreOpcode(int Opcode) {
   1241   switch (Opcode) {
   1242   default: break;
   1243   case X86::MOV8mr:
   1244   case X86::MOV16mr:
   1245   case X86::MOV32mr:
   1246   case X86::MOV64mr:
   1247   case X86::ST_FpP64m:
   1248   case X86::MOVSSmr:
   1249   case X86::MOVSDmr:
   1250   case X86::MOVAPSmr:
   1251   case X86::MOVAPDmr:
   1252   case X86::MOVDQAmr:
   1253   case X86::VMOVSSmr:
   1254   case X86::VMOVSDmr:
   1255   case X86::VMOVAPSmr:
   1256   case X86::VMOVAPDmr:
   1257   case X86::VMOVDQAmr:
   1258   case X86::VMOVAPSYmr:
   1259   case X86::VMOVAPDYmr:
   1260   case X86::VMOVDQAYmr:
   1261   case X86::MMX_MOVD64mr:
   1262   case X86::MMX_MOVQ64mr:
   1263   case X86::MMX_MOVNTQmr:
   1264     return true;
   1265   }
   1266   return false;
   1267 }
   1268 
   1269 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
   1270                                            int &FrameIndex) const {
   1271   if (isFrameLoadOpcode(MI->getOpcode()))
   1272     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
   1273       return MI->getOperand(0).getReg();
   1274   return 0;
   1275 }
   1276 
   1277 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   1278                                                  int &FrameIndex) const {
   1279   if (isFrameLoadOpcode(MI->getOpcode())) {
   1280     unsigned Reg;
   1281     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
   1282       return Reg;
   1283     // Check for post-frame index elimination operations
   1284     const MachineMemOperand *Dummy;
   1285     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1286   }
   1287   return 0;
   1288 }
   1289 
   1290 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
   1291                                           int &FrameIndex) const {
   1292   if (isFrameStoreOpcode(MI->getOpcode()))
   1293     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
   1294         isFrameOperand(MI, 0, FrameIndex))
   1295       return MI->getOperand(X86::AddrNumOperands).getReg();
   1296   return 0;
   1297 }
   1298 
   1299 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
   1300                                                 int &FrameIndex) const {
   1301   if (isFrameStoreOpcode(MI->getOpcode())) {
   1302     unsigned Reg;
   1303     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
   1304       return Reg;
   1305     // Check for post-frame index elimination operations
   1306     const MachineMemOperand *Dummy;
   1307     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
   1308   }
   1309   return 0;
   1310 }
   1311 
   1312 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
   1313 /// X86::MOVPC32r.
   1314 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
   1315   bool isPICBase = false;
   1316   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
   1317          E = MRI.def_end(); I != E; ++I) {
   1318     MachineInstr *DefMI = I.getOperand().getParent();
   1319     if (DefMI->getOpcode() != X86::MOVPC32r)
   1320       return false;
   1321     assert(!isPICBase && "More than one PIC base?");
   1322     isPICBase = true;
   1323   }
   1324   return isPICBase;
   1325 }
   1326 
   1327 bool
   1328 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
   1329                                                 AliasAnalysis *AA) const {
   1330   switch (MI->getOpcode()) {
   1331   default: break;
   1332     case X86::MOV8rm:
   1333     case X86::MOV16rm:
   1334     case X86::MOV32rm:
   1335     case X86::MOV64rm:
   1336     case X86::LD_Fp64m:
   1337     case X86::MOVSSrm:
   1338     case X86::MOVSDrm:
   1339     case X86::MOVAPSrm:
   1340     case X86::MOVUPSrm:
   1341     case X86::MOVAPDrm:
   1342     case X86::MOVDQArm:
   1343     case X86::VMOVSSrm:
   1344     case X86::VMOVSDrm:
   1345     case X86::VMOVAPSrm:
   1346     case X86::VMOVUPSrm:
   1347     case X86::VMOVAPDrm:
   1348     case X86::VMOVDQArm:
   1349     case X86::VMOVAPSYrm:
   1350     case X86::VMOVUPSYrm:
   1351     case X86::VMOVAPDYrm:
   1352     case X86::VMOVDQAYrm:
   1353     case X86::MMX_MOVD64rm:
   1354     case X86::MMX_MOVQ64rm:
   1355     case X86::FsVMOVAPSrm:
   1356     case X86::FsVMOVAPDrm:
   1357     case X86::FsMOVAPSrm:
   1358     case X86::FsMOVAPDrm: {
   1359       // Loads from constant pools are trivially rematerializable.
   1360       if (MI->getOperand(1).isReg() &&
   1361           MI->getOperand(2).isImm() &&
   1362           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
   1363           MI->isInvariantLoad(AA)) {
   1364         unsigned BaseReg = MI->getOperand(1).getReg();
   1365         if (BaseReg == 0 || BaseReg == X86::RIP)
   1366           return true;
   1367         // Allow re-materialization of PIC load.
   1368         if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
   1369           return false;
   1370         const MachineFunction &MF = *MI->getParent()->getParent();
   1371         const MachineRegisterInfo &MRI = MF.getRegInfo();
   1372         bool isPICBase = false;
   1373         for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
   1374                E = MRI.def_end(); I != E; ++I) {
   1375           MachineInstr *DefMI = I.getOperand().getParent();
   1376           if (DefMI->getOpcode() != X86::MOVPC32r)
   1377             return false;
   1378           assert(!isPICBase && "More than one PIC base?");
   1379           isPICBase = true;
   1380         }
   1381         return isPICBase;
   1382       }
   1383       return false;
   1384     }
   1385 
   1386      case X86::LEA32r:
   1387      case X86::LEA64r: {
   1388        if (MI->getOperand(2).isImm() &&
   1389            MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
   1390            !MI->getOperand(4).isReg()) {
   1391          // lea fi#, lea GV, etc. are all rematerializable.
   1392          if (!MI->getOperand(1).isReg())
   1393            return true;
   1394          unsigned BaseReg = MI->getOperand(1).getReg();
   1395          if (BaseReg == 0)
   1396            return true;
   1397          // Allow re-materialization of lea PICBase + x.
   1398          const MachineFunction &MF = *MI->getParent()->getParent();
   1399          const MachineRegisterInfo &MRI = MF.getRegInfo();
   1400          return regIsPICBase(BaseReg, MRI);
   1401        }
   1402        return false;
   1403      }
   1404   }
   1405 
   1406   // All other instructions marked M_REMATERIALIZABLE are always trivially
   1407   // rematerializable.
   1408   return true;
   1409 }
   1410 
   1411 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
   1412 /// would clobber the EFLAGS condition register. Note the result may be
   1413 /// conservative. If it cannot definitely determine the safety after visiting
   1414 /// a few instructions in each direction it assumes it's not safe.
   1415 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
   1416                                   MachineBasicBlock::iterator I) {
   1417   MachineBasicBlock::iterator E = MBB.end();
   1418 
   1419   // For compile time consideration, if we are not able to determine the
   1420   // safety after visiting 4 instructions in each direction, we will assume
   1421   // it's not safe.
   1422   MachineBasicBlock::iterator Iter = I;
   1423   for (unsigned i = 0; Iter != E && i < 4; ++i) {
   1424     bool SeenDef = false;
   1425     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1426       MachineOperand &MO = Iter->getOperand(j);
   1427       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1428         SeenDef = true;
   1429       if (!MO.isReg())
   1430         continue;
   1431       if (MO.getReg() == X86::EFLAGS) {
   1432         if (MO.isUse())
   1433           return false;
   1434         SeenDef = true;
   1435       }
   1436     }
   1437 
   1438     if (SeenDef)
   1439       // This instruction defines EFLAGS, no need to look any further.
   1440       return true;
   1441     ++Iter;
   1442     // Skip over DBG_VALUE.
   1443     while (Iter != E && Iter->isDebugValue())
   1444       ++Iter;
   1445   }
   1446 
   1447   // It is safe to clobber EFLAGS at the end of a block of no successor has it
   1448   // live in.
   1449   if (Iter == E) {
   1450     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
   1451            SE = MBB.succ_end(); SI != SE; ++SI)
   1452       if ((*SI)->isLiveIn(X86::EFLAGS))
   1453         return false;
   1454     return true;
   1455   }
   1456 
   1457   MachineBasicBlock::iterator B = MBB.begin();
   1458   Iter = I;
   1459   for (unsigned i = 0; i < 4; ++i) {
   1460     // If we make it to the beginning of the block, it's safe to clobber
   1461     // EFLAGS iff EFLAGS is not live-in.
   1462     if (Iter == B)
   1463       return !MBB.isLiveIn(X86::EFLAGS);
   1464 
   1465     --Iter;
   1466     // Skip over DBG_VALUE.
   1467     while (Iter != B && Iter->isDebugValue())
   1468       --Iter;
   1469 
   1470     bool SawKill = false;
   1471     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1472       MachineOperand &MO = Iter->getOperand(j);
   1473       // A register mask may clobber EFLAGS, but we should still look for a
   1474       // live EFLAGS def.
   1475       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1476         SawKill = true;
   1477       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
   1478         if (MO.isDef()) return MO.isDead();
   1479         if (MO.isKill()) SawKill = true;
   1480       }
   1481     }
   1482 
   1483     if (SawKill)
   1484       // This instruction kills EFLAGS and doesn't redefine it, so
   1485       // there's no need to look further.
   1486       return true;
   1487   }
   1488 
   1489   // Conservative answer.
   1490   return false;
   1491 }
   1492 
   1493 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
   1494                                  MachineBasicBlock::iterator I,
   1495                                  unsigned DestReg, unsigned SubIdx,
   1496                                  const MachineInstr *Orig,
   1497                                  const TargetRegisterInfo &TRI) const {
   1498   DebugLoc DL = Orig->getDebugLoc();
   1499 
   1500   // MOV32r0 etc. are implemented with xor which clobbers condition code.
   1501   // Re-materialize them as movri instructions to avoid side effects.
   1502   bool Clone = true;
   1503   unsigned Opc = Orig->getOpcode();
   1504   switch (Opc) {
   1505   default: break;
   1506   case X86::MOV8r0:
   1507   case X86::MOV16r0:
   1508   case X86::MOV32r0:
   1509   case X86::MOV64r0: {
   1510     if (!isSafeToClobberEFLAGS(MBB, I)) {
   1511       switch (Opc) {
   1512       default: break;
   1513       case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
   1514       case X86::MOV16r0: Opc = X86::MOV16ri; break;
   1515       case X86::MOV32r0: Opc = X86::MOV32ri; break;
   1516       case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
   1517       }
   1518       Clone = false;
   1519     }
   1520     break;
   1521   }
   1522   }
   1523 
   1524   if (Clone) {
   1525     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1526     MBB.insert(I, MI);
   1527   } else {
   1528     BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
   1529   }
   1530 
   1531   MachineInstr *NewMI = prior(I);
   1532   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1533 }
   1534 
   1535 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
   1536 /// is not marked dead.
   1537 static bool hasLiveCondCodeDef(MachineInstr *MI) {
   1538   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1539     MachineOperand &MO = MI->getOperand(i);
   1540     if (MO.isReg() && MO.isDef() &&
   1541         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
   1542       return true;
   1543     }
   1544   }
   1545   return false;
   1546 }
   1547 
   1548 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
   1549 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
   1550 /// to a 32-bit superregister and then truncating back down to a 16-bit
   1551 /// subregister.
   1552 MachineInstr *
   1553 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
   1554                                            MachineFunction::iterator &MFI,
   1555                                            MachineBasicBlock::iterator &MBBI,
   1556                                            LiveVariables *LV) const {
   1557   MachineInstr *MI = MBBI;
   1558   unsigned Dest = MI->getOperand(0).getReg();
   1559   unsigned Src = MI->getOperand(1).getReg();
   1560   bool isDead = MI->getOperand(0).isDead();
   1561   bool isKill = MI->getOperand(1).isKill();
   1562 
   1563   unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
   1564     ? X86::LEA64_32r : X86::LEA32r;
   1565   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
   1566   unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   1567   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   1568 
   1569   // Build and insert into an implicit UNDEF value. This is OK because
   1570   // well be shifting and then extracting the lower 16-bits.
   1571   // This has the potential to cause partial register stall. e.g.
   1572   //   movw    (%rbp,%rcx,2), %dx
   1573   //   leal    -65(%rdx), %esi
   1574   // But testing has shown this *does* help performance in 64-bit mode (at
   1575   // least on modern x86 machines).
   1576   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
   1577   MachineInstr *InsMI =
   1578     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1579     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
   1580     .addReg(Src, getKillRegState(isKill));
   1581 
   1582   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
   1583                                     get(Opc), leaOutReg);
   1584   switch (MIOpc) {
   1585   default:
   1586     llvm_unreachable(0);
   1587   case X86::SHL16ri: {
   1588     unsigned ShAmt = MI->getOperand(2).getImm();
   1589     MIB.addReg(0).addImm(1 << ShAmt)
   1590        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
   1591     break;
   1592   }
   1593   case X86::INC16r:
   1594   case X86::INC64_16r:
   1595     addRegOffset(MIB, leaInReg, true, 1);
   1596     break;
   1597   case X86::DEC16r:
   1598   case X86::DEC64_16r:
   1599     addRegOffset(MIB, leaInReg, true, -1);
   1600     break;
   1601   case X86::ADD16ri:
   1602   case X86::ADD16ri8:
   1603   case X86::ADD16ri_DB:
   1604   case X86::ADD16ri8_DB:
   1605     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
   1606     break;
   1607   case X86::ADD16rr:
   1608   case X86::ADD16rr_DB: {
   1609     unsigned Src2 = MI->getOperand(2).getReg();
   1610     bool isKill2 = MI->getOperand(2).isKill();
   1611     unsigned leaInReg2 = 0;
   1612     MachineInstr *InsMI2 = 0;
   1613     if (Src == Src2) {
   1614       // ADD16rr %reg1028<kill>, %reg1028
   1615       // just a single insert_subreg.
   1616       addRegReg(MIB, leaInReg, true, leaInReg, false);
   1617     } else {
   1618       leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   1619       // Build and insert into an implicit UNDEF value. This is OK because
   1620       // well be shifting and then extracting the lower 16-bits.
   1621       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
   1622       InsMI2 =
   1623         BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1624         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
   1625         .addReg(Src2, getKillRegState(isKill2));
   1626       addRegReg(MIB, leaInReg, true, leaInReg2, true);
   1627     }
   1628     if (LV && isKill2 && InsMI2)
   1629       LV->replaceKillInstruction(Src2, MI, InsMI2);
   1630     break;
   1631   }
   1632   }
   1633 
   1634   MachineInstr *NewMI = MIB;
   1635   MachineInstr *ExtMI =
   1636     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1637     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   1638     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
   1639 
   1640   if (LV) {
   1641     // Update live variables
   1642     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
   1643     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
   1644     if (isKill)
   1645       LV->replaceKillInstruction(Src, MI, InsMI);
   1646     if (isDead)
   1647       LV->replaceKillInstruction(Dest, MI, ExtMI);
   1648   }
   1649 
   1650   return ExtMI;
   1651 }
   1652 
   1653 /// convertToThreeAddress - This method must be implemented by targets that
   1654 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
   1655 /// may be able to convert a two-address instruction into a true
   1656 /// three-address instruction on demand.  This allows the X86 target (for
   1657 /// example) to convert ADD and SHL instructions into LEA instructions if they
   1658 /// would require register copies due to two-addressness.
   1659 ///
   1660 /// This method returns a null pointer if the transformation cannot be
   1661 /// performed, otherwise it returns the new instruction.
   1662 ///
   1663 MachineInstr *
   1664 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   1665                                     MachineBasicBlock::iterator &MBBI,
   1666                                     LiveVariables *LV) const {
   1667   MachineInstr *MI = MBBI;
   1668   MachineFunction &MF = *MI->getParent()->getParent();
   1669   // All instructions input are two-addr instructions.  Get the known operands.
   1670   unsigned Dest = MI->getOperand(0).getReg();
   1671   unsigned Src = MI->getOperand(1).getReg();
   1672   bool isDead = MI->getOperand(0).isDead();
   1673   bool isKill = MI->getOperand(1).isKill();
   1674 
   1675   MachineInstr *NewMI = NULL;
   1676   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
   1677   // we have better subtarget support, enable the 16-bit LEA generation here.
   1678   // 16-bit LEA is also slow on Core2.
   1679   bool DisableLEA16 = true;
   1680   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
   1681 
   1682   unsigned MIOpc = MI->getOpcode();
   1683   switch (MIOpc) {
   1684   case X86::SHUFPSrri: {
   1685     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
   1686     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
   1687 
   1688     unsigned B = MI->getOperand(1).getReg();
   1689     unsigned C = MI->getOperand(2).getReg();
   1690     if (B != C) return 0;
   1691     unsigned A = MI->getOperand(0).getReg();
   1692     unsigned M = MI->getOperand(3).getImm();
   1693     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   1694       .addReg(A, RegState::Define | getDeadRegState(isDead))
   1695       .addReg(B, getKillRegState(isKill)).addImm(M);
   1696     break;
   1697   }
   1698   case X86::SHUFPDrri: {
   1699     assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
   1700     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
   1701 
   1702     unsigned B = MI->getOperand(1).getReg();
   1703     unsigned C = MI->getOperand(2).getReg();
   1704     if (B != C) return 0;
   1705     unsigned A = MI->getOperand(0).getReg();
   1706     unsigned M = MI->getOperand(3).getImm();
   1707 
   1708     // Convert to PSHUFD mask.
   1709     M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
   1710 
   1711     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   1712       .addReg(A, RegState::Define | getDeadRegState(isDead))
   1713       .addReg(B, getKillRegState(isKill)).addImm(M);
   1714     break;
   1715   }
   1716   case X86::SHL64ri: {
   1717     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   1718     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
   1719     // the flags produced by a shift yet, so this is safe.
   1720     unsigned ShAmt = MI->getOperand(2).getImm();
   1721     if (ShAmt == 0 || ShAmt >= 4) return 0;
   1722 
   1723     // LEA can't handle RSP.
   1724     if (TargetRegisterInfo::isVirtualRegister(Src) &&
   1725         !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
   1726       return 0;
   1727 
   1728     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   1729       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   1730       .addReg(0).addImm(1 << ShAmt)
   1731       .addReg(Src, getKillRegState(isKill))
   1732       .addImm(0).addReg(0);
   1733     break;
   1734   }
   1735   case X86::SHL32ri: {
   1736     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   1737     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
   1738     // the flags produced by a shift yet, so this is safe.
   1739     unsigned ShAmt = MI->getOperand(2).getImm();
   1740     if (ShAmt == 0 || ShAmt >= 4) return 0;
   1741 
   1742     // LEA can't handle ESP.
   1743     if (TargetRegisterInfo::isVirtualRegister(Src) &&
   1744         !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
   1745       return 0;
   1746 
   1747     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   1748     NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   1749       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   1750       .addReg(0).addImm(1 << ShAmt)
   1751       .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
   1752     break;
   1753   }
   1754   case X86::SHL16ri: {
   1755     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   1756     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
   1757     // the flags produced by a shift yet, so this is safe.
   1758     unsigned ShAmt = MI->getOperand(2).getImm();
   1759     if (ShAmt == 0 || ShAmt >= 4) return 0;
   1760 
   1761     if (DisableLEA16)
   1762       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   1763     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   1764       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   1765       .addReg(0).addImm(1 << ShAmt)
   1766       .addReg(Src, getKillRegState(isKill))
   1767       .addImm(0).addReg(0);
   1768     break;
   1769   }
   1770   default: {
   1771     // The following opcodes also sets the condition code register(s). Only
   1772     // convert them to equivalent lea if the condition code register def's
   1773     // are dead!
   1774     if (hasLiveCondCodeDef(MI))
   1775       return 0;
   1776 
   1777     switch (MIOpc) {
   1778     default: return 0;
   1779     case X86::INC64r:
   1780     case X86::INC32r:
   1781     case X86::INC64_32r: {
   1782       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   1783       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
   1784         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   1785 
   1786       // LEA can't handle RSP.
   1787       if (TargetRegisterInfo::isVirtualRegister(Src) &&
   1788           !MF.getRegInfo().constrainRegClass(Src,
   1789                             MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
   1790                                                    X86::GR32_NOSPRegisterClass))
   1791         return 0;
   1792 
   1793       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   1794                               .addReg(Dest, RegState::Define |
   1795                                       getDeadRegState(isDead)),
   1796                               Src, isKill, 1);
   1797       break;
   1798     }
   1799     case X86::INC16r:
   1800     case X86::INC64_16r:
   1801       if (DisableLEA16)
   1802         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   1803       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   1804       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   1805                            .addReg(Dest, RegState::Define |
   1806                                    getDeadRegState(isDead)),
   1807                            Src, isKill, 1);
   1808       break;
   1809     case X86::DEC64r:
   1810     case X86::DEC32r:
   1811     case X86::DEC64_32r: {
   1812       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   1813       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
   1814         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   1815       // LEA can't handle RSP.
   1816       if (TargetRegisterInfo::isVirtualRegister(Src) &&
   1817           !MF.getRegInfo().constrainRegClass(Src,
   1818                             MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
   1819                                                    X86::GR32_NOSPRegisterClass))
   1820         return 0;
   1821 
   1822       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   1823                               .addReg(Dest, RegState::Define |
   1824                                       getDeadRegState(isDead)),
   1825                               Src, isKill, -1);
   1826       break;
   1827     }
   1828     case X86::DEC16r:
   1829     case X86::DEC64_16r:
   1830       if (DisableLEA16)
   1831         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   1832       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   1833       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   1834                            .addReg(Dest, RegState::Define |
   1835                                    getDeadRegState(isDead)),
   1836                            Src, isKill, -1);
   1837       break;
   1838     case X86::ADD64rr:
   1839     case X86::ADD64rr_DB:
   1840     case X86::ADD32rr:
   1841     case X86::ADD32rr_DB: {
   1842       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   1843       unsigned Opc;
   1844       const TargetRegisterClass *RC;
   1845       if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
   1846         Opc = X86::LEA64r;
   1847         RC = X86::GR64_NOSPRegisterClass;
   1848       } else {
   1849         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   1850         RC = X86::GR32_NOSPRegisterClass;
   1851       }
   1852 
   1853 
   1854       unsigned Src2 = MI->getOperand(2).getReg();
   1855       bool isKill2 = MI->getOperand(2).isKill();
   1856 
   1857       // LEA can't handle RSP.
   1858       if (TargetRegisterInfo::isVirtualRegister(Src2) &&
   1859           !MF.getRegInfo().constrainRegClass(Src2, RC))
   1860         return 0;
   1861 
   1862       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   1863                         .addReg(Dest, RegState::Define |
   1864                                 getDeadRegState(isDead)),
   1865                         Src, isKill, Src2, isKill2);
   1866       if (LV && isKill2)
   1867         LV->replaceKillInstruction(Src2, MI, NewMI);
   1868       break;
   1869     }
   1870     case X86::ADD16rr:
   1871     case X86::ADD16rr_DB: {
   1872       if (DisableLEA16)
   1873         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   1874       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   1875       unsigned Src2 = MI->getOperand(2).getReg();
   1876       bool isKill2 = MI->getOperand(2).isKill();
   1877       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   1878                         .addReg(Dest, RegState::Define |
   1879                                 getDeadRegState(isDead)),
   1880                         Src, isKill, Src2, isKill2);
   1881       if (LV && isKill2)
   1882         LV->replaceKillInstruction(Src2, MI, NewMI);
   1883       break;
   1884     }
   1885     case X86::ADD64ri32:
   1886     case X86::ADD64ri8:
   1887     case X86::ADD64ri32_DB:
   1888     case X86::ADD64ri8_DB:
   1889       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   1890       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   1891                               .addReg(Dest, RegState::Define |
   1892                                       getDeadRegState(isDead)),
   1893                               Src, isKill, MI->getOperand(2).getImm());
   1894       break;
   1895     case X86::ADD32ri:
   1896     case X86::ADD32ri8:
   1897     case X86::ADD32ri_DB:
   1898     case X86::ADD32ri8_DB: {
   1899       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   1900       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   1901       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
   1902                               .addReg(Dest, RegState::Define |
   1903                                       getDeadRegState(isDead)),
   1904                                 Src, isKill, MI->getOperand(2).getImm());
   1905       break;
   1906     }
   1907     case X86::ADD16ri:
   1908     case X86::ADD16ri8:
   1909     case X86::ADD16ri_DB:
   1910     case X86::ADD16ri8_DB:
   1911       if (DisableLEA16)
   1912         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   1913       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   1914       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   1915                               .addReg(Dest, RegState::Define |
   1916                                       getDeadRegState(isDead)),
   1917                               Src, isKill, MI->getOperand(2).getImm());
   1918       break;
   1919     }
   1920   }
   1921   }
   1922 
   1923   if (!NewMI) return 0;
   1924 
   1925   if (LV) {  // Update live variables
   1926     if (isKill)
   1927       LV->replaceKillInstruction(Src, MI, NewMI);
   1928     if (isDead)
   1929       LV->replaceKillInstruction(Dest, MI, NewMI);
   1930   }
   1931 
   1932   MFI->insert(MBBI, NewMI);          // Insert the new inst
   1933   return NewMI;
   1934 }
   1935 
   1936 /// commuteInstruction - We have a few instructions that must be hacked on to
   1937 /// commute them.
   1938 ///
   1939 MachineInstr *
   1940 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   1941   switch (MI->getOpcode()) {
   1942   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
   1943   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
   1944   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
   1945   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
   1946   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
   1947   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
   1948     unsigned Opc;
   1949     unsigned Size;
   1950     switch (MI->getOpcode()) {
   1951     default: llvm_unreachable("Unreachable!");
   1952     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
   1953     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
   1954     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
   1955     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
   1956     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
   1957     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
   1958     }
   1959     unsigned Amt = MI->getOperand(3).getImm();
   1960     if (NewMI) {
   1961       MachineFunction &MF = *MI->getParent()->getParent();
   1962       MI = MF.CloneMachineInstr(MI);
   1963       NewMI = false;
   1964     }
   1965     MI->setDesc(get(Opc));
   1966     MI->getOperand(3).setImm(Size-Amt);
   1967     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
   1968   }
   1969   case X86::CMOVB16rr:
   1970   case X86::CMOVB32rr:
   1971   case X86::CMOVB64rr:
   1972   case X86::CMOVAE16rr:
   1973   case X86::CMOVAE32rr:
   1974   case X86::CMOVAE64rr:
   1975   case X86::CMOVE16rr:
   1976   case X86::CMOVE32rr:
   1977   case X86::CMOVE64rr:
   1978   case X86::CMOVNE16rr:
   1979   case X86::CMOVNE32rr:
   1980   case X86::CMOVNE64rr:
   1981   case X86::CMOVBE16rr:
   1982   case X86::CMOVBE32rr:
   1983   case X86::CMOVBE64rr:
   1984   case X86::CMOVA16rr:
   1985   case X86::CMOVA32rr:
   1986   case X86::CMOVA64rr:
   1987   case X86::CMOVL16rr:
   1988   case X86::CMOVL32rr:
   1989   case X86::CMOVL64rr:
   1990   case X86::CMOVGE16rr:
   1991   case X86::CMOVGE32rr:
   1992   case X86::CMOVGE64rr:
   1993   case X86::CMOVLE16rr:
   1994   case X86::CMOVLE32rr:
   1995   case X86::CMOVLE64rr:
   1996   case X86::CMOVG16rr:
   1997   case X86::CMOVG32rr:
   1998   case X86::CMOVG64rr:
   1999   case X86::CMOVS16rr:
   2000   case X86::CMOVS32rr:
   2001   case X86::CMOVS64rr:
   2002   case X86::CMOVNS16rr:
   2003   case X86::CMOVNS32rr:
   2004   case X86::CMOVNS64rr:
   2005   case X86::CMOVP16rr:
   2006   case X86::CMOVP32rr:
   2007   case X86::CMOVP64rr:
   2008   case X86::CMOVNP16rr:
   2009   case X86::CMOVNP32rr:
   2010   case X86::CMOVNP64rr:
   2011   case X86::CMOVO16rr:
   2012   case X86::CMOVO32rr:
   2013   case X86::CMOVO64rr:
   2014   case X86::CMOVNO16rr:
   2015   case X86::CMOVNO32rr:
   2016   case X86::CMOVNO64rr: {
   2017     unsigned Opc = 0;
   2018     switch (MI->getOpcode()) {
   2019     default: break;
   2020     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
   2021     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
   2022     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
   2023     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
   2024     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
   2025     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
   2026     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
   2027     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
   2028     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
   2029     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
   2030     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
   2031     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
   2032     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
   2033     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
   2034     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
   2035     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
   2036     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
   2037     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
   2038     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
   2039     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
   2040     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
   2041     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
   2042     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
   2043     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
   2044     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
   2045     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
   2046     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
   2047     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
   2048     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
   2049     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
   2050     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
   2051     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
   2052     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
   2053     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
   2054     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
   2055     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
   2056     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
   2057     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
   2058     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
   2059     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
   2060     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
   2061     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
   2062     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
   2063     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
   2064     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
   2065     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
   2066     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
   2067     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
   2068     }
   2069     if (NewMI) {
   2070       MachineFunction &MF = *MI->getParent()->getParent();
   2071       MI = MF.CloneMachineInstr(MI);
   2072       NewMI = false;
   2073     }
   2074     MI->setDesc(get(Opc));
   2075     // Fallthrough intended.
   2076   }
   2077   default:
   2078     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
   2079   }
   2080 }
   2081 
   2082 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
   2083   switch (BrOpc) {
   2084   default: return X86::COND_INVALID;
   2085   case X86::JE_4:  return X86::COND_E;
   2086   case X86::JNE_4: return X86::COND_NE;
   2087   case X86::JL_4:  return X86::COND_L;
   2088   case X86::JLE_4: return X86::COND_LE;
   2089   case X86::JG_4:  return X86::COND_G;
   2090   case X86::JGE_4: return X86::COND_GE;
   2091   case X86::JB_4:  return X86::COND_B;
   2092   case X86::JBE_4: return X86::COND_BE;
   2093   case X86::JA_4:  return X86::COND_A;
   2094   case X86::JAE_4: return X86::COND_AE;
   2095   case X86::JS_4:  return X86::COND_S;
   2096   case X86::JNS_4: return X86::COND_NS;
   2097   case X86::JP_4:  return X86::COND_P;
   2098   case X86::JNP_4: return X86::COND_NP;
   2099   case X86::JO_4:  return X86::COND_O;
   2100   case X86::JNO_4: return X86::COND_NO;
   2101   }
   2102 }
   2103 
   2104 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
   2105   switch (CC) {
   2106   default: llvm_unreachable("Illegal condition code!");
   2107   case X86::COND_E:  return X86::JE_4;
   2108   case X86::COND_NE: return X86::JNE_4;
   2109   case X86::COND_L:  return X86::JL_4;
   2110   case X86::COND_LE: return X86::JLE_4;
   2111   case X86::COND_G:  return X86::JG_4;
   2112   case X86::COND_GE: return X86::JGE_4;
   2113   case X86::COND_B:  return X86::JB_4;
   2114   case X86::COND_BE: return X86::JBE_4;
   2115   case X86::COND_A:  return X86::JA_4;
   2116   case X86::COND_AE: return X86::JAE_4;
   2117   case X86::COND_S:  return X86::JS_4;
   2118   case X86::COND_NS: return X86::JNS_4;
   2119   case X86::COND_P:  return X86::JP_4;
   2120   case X86::COND_NP: return X86::JNP_4;
   2121   case X86::COND_O:  return X86::JO_4;
   2122   case X86::COND_NO: return X86::JNO_4;
   2123   }
   2124 }
   2125 
   2126 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
   2127 /// e.g. turning COND_E to COND_NE.
   2128 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
   2129   switch (CC) {
   2130   default: llvm_unreachable("Illegal condition code!");
   2131   case X86::COND_E:  return X86::COND_NE;
   2132   case X86::COND_NE: return X86::COND_E;
   2133   case X86::COND_L:  return X86::COND_GE;
   2134   case X86::COND_LE: return X86::COND_G;
   2135   case X86::COND_G:  return X86::COND_LE;
   2136   case X86::COND_GE: return X86::COND_L;
   2137   case X86::COND_B:  return X86::COND_AE;
   2138   case X86::COND_BE: return X86::COND_A;
   2139   case X86::COND_A:  return X86::COND_BE;
   2140   case X86::COND_AE: return X86::COND_B;
   2141   case X86::COND_S:  return X86::COND_NS;
   2142   case X86::COND_NS: return X86::COND_S;
   2143   case X86::COND_P:  return X86::COND_NP;
   2144   case X86::COND_NP: return X86::COND_P;
   2145   case X86::COND_O:  return X86::COND_NO;
   2146   case X86::COND_NO: return X86::COND_O;
   2147   }
   2148 }
   2149 
   2150 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
   2151   if (!MI->isTerminator()) return false;
   2152 
   2153   // Conditional branch is a special case.
   2154   if (MI->isBranch() && !MI->isBarrier())
   2155     return true;
   2156   if (!MI->isPredicable())
   2157     return true;
   2158   return !isPredicated(MI);
   2159 }
   2160 
   2161 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   2162                                  MachineBasicBlock *&TBB,
   2163                                  MachineBasicBlock *&FBB,
   2164                                  SmallVectorImpl<MachineOperand> &Cond,
   2165                                  bool AllowModify) const {
   2166   // Start from the bottom of the block and work up, examining the
   2167   // terminator instructions.
   2168   MachineBasicBlock::iterator I = MBB.end();
   2169   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
   2170   while (I != MBB.begin()) {
   2171     --I;
   2172     if (I->isDebugValue())
   2173       continue;
   2174 
   2175     // Working from the bottom, when we see a non-terminator instruction, we're
   2176     // done.
   2177     if (!isUnpredicatedTerminator(I))
   2178       break;
   2179 
   2180     // A terminator that isn't a branch can't easily be handled by this
   2181     // analysis.
   2182     if (!I->isBranch())
   2183       return true;
   2184 
   2185     // Handle unconditional branches.
   2186     if (I->getOpcode() == X86::JMP_4) {
   2187       UnCondBrIter = I;
   2188 
   2189       if (!AllowModify) {
   2190         TBB = I->getOperand(0).getMBB();
   2191         continue;
   2192       }
   2193 
   2194       // If the block has any instructions after a JMP, delete them.
   2195       while (llvm::next(I) != MBB.end())
   2196         llvm::next(I)->eraseFromParent();
   2197 
   2198       Cond.clear();
   2199       FBB = 0;
   2200 
   2201       // Delete the JMP if it's equivalent to a fall-through.
   2202       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
   2203         TBB = 0;
   2204         I->eraseFromParent();
   2205         I = MBB.end();
   2206         UnCondBrIter = MBB.end();
   2207         continue;
   2208       }
   2209 
   2210       // TBB is used to indicate the unconditional destination.
   2211       TBB = I->getOperand(0).getMBB();
   2212       continue;
   2213     }
   2214 
   2215     // Handle conditional branches.
   2216     X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
   2217     if (BranchCode == X86::COND_INVALID)
   2218       return true;  // Can't handle indirect branch.
   2219 
   2220     // Working from the bottom, handle the first conditional branch.
   2221     if (Cond.empty()) {
   2222       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
   2223       if (AllowModify && UnCondBrIter != MBB.end() &&
   2224           MBB.isLayoutSuccessor(TargetBB)) {
   2225         // If we can modify the code and it ends in something like:
   2226         //
   2227         //     jCC L1
   2228         //     jmp L2
   2229         //   L1:
   2230         //     ...
   2231         //   L2:
   2232         //
   2233         // Then we can change this to:
   2234         //
   2235         //     jnCC L2
   2236         //   L1:
   2237         //     ...
   2238         //   L2:
   2239         //
   2240         // Which is a bit more efficient.
   2241         // We conditionally jump to the fall-through block.
   2242         BranchCode = GetOppositeBranchCondition(BranchCode);
   2243         unsigned JNCC = GetCondBranchFromCond(BranchCode);
   2244         MachineBasicBlock::iterator OldInst = I;
   2245 
   2246         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
   2247           .addMBB(UnCondBrIter->getOperand(0).getMBB());
   2248         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
   2249           .addMBB(TargetBB);
   2250 
   2251         OldInst->eraseFromParent();
   2252         UnCondBrIter->eraseFromParent();
   2253 
   2254         // Restart the analysis.
   2255         UnCondBrIter = MBB.end();
   2256         I = MBB.end();
   2257         continue;
   2258       }
   2259 
   2260       FBB = TBB;
   2261       TBB = I->getOperand(0).getMBB();
   2262       Cond.push_back(MachineOperand::CreateImm(BranchCode));
   2263       continue;
   2264     }
   2265 
   2266     // Handle subsequent conditional branches. Only handle the case where all
   2267     // conditional branches branch to the same destination and their condition
   2268     // opcodes fit one of the special multi-branch idioms.
   2269     assert(Cond.size() == 1);
   2270     assert(TBB);
   2271 
   2272     // Only handle the case where all conditional branches branch to the same
   2273     // destination.
   2274     if (TBB != I->getOperand(0).getMBB())
   2275       return true;
   2276 
   2277     // If the conditions are the same, we can leave them alone.
   2278     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
   2279     if (OldBranchCode == BranchCode)
   2280       continue;
   2281 
   2282     // If they differ, see if they fit one of the known patterns. Theoretically,
   2283     // we could handle more patterns here, but we shouldn't expect to see them
   2284     // if instruction selection has done a reasonable job.
   2285     if ((OldBranchCode == X86::COND_NP &&
   2286          BranchCode == X86::COND_E) ||
   2287         (OldBranchCode == X86::COND_E &&
   2288          BranchCode == X86::COND_NP))
   2289       BranchCode = X86::COND_NP_OR_E;
   2290     else if ((OldBranchCode == X86::COND_P &&
   2291               BranchCode == X86::COND_NE) ||
   2292              (OldBranchCode == X86::COND_NE &&
   2293               BranchCode == X86::COND_P))
   2294       BranchCode = X86::COND_NE_OR_P;
   2295     else
   2296       return true;
   2297 
   2298     // Update the MachineOperand.
   2299     Cond[0].setImm(BranchCode);
   2300   }
   2301 
   2302   return false;
   2303 }
   2304 
   2305 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
   2306   MachineBasicBlock::iterator I = MBB.end();
   2307   unsigned Count = 0;
   2308 
   2309   while (I != MBB.begin()) {
   2310     --I;
   2311     if (I->isDebugValue())
   2312       continue;
   2313     if (I->getOpcode() != X86::JMP_4 &&
   2314         GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
   2315       break;
   2316     // Remove the branch.
   2317     I->eraseFromParent();
   2318     I = MBB.end();
   2319     ++Count;
   2320   }
   2321 
   2322   return Count;
   2323 }
   2324 
   2325 unsigned
   2326 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
   2327                            MachineBasicBlock *FBB,
   2328                            const SmallVectorImpl<MachineOperand> &Cond,
   2329                            DebugLoc DL) const {
   2330   // Shouldn't be a fall through.
   2331   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
   2332   assert((Cond.size() == 1 || Cond.size() == 0) &&
   2333          "X86 branch conditions have one component!");
   2334 
   2335   if (Cond.empty()) {
   2336     // Unconditional branch?
   2337     assert(!FBB && "Unconditional branch with multiple successors!");
   2338     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
   2339     return 1;
   2340   }
   2341 
   2342   // Conditional branch.
   2343   unsigned Count = 0;
   2344   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
   2345   switch (CC) {
   2346   case X86::COND_NP_OR_E:
   2347     // Synthesize NP_OR_E with two branches.
   2348     BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
   2349     ++Count;
   2350     BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
   2351     ++Count;
   2352     break;
   2353   case X86::COND_NE_OR_P:
   2354     // Synthesize NE_OR_P with two branches.
   2355     BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
   2356     ++Count;
   2357     BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
   2358     ++Count;
   2359     break;
   2360   default: {
   2361     unsigned Opc = GetCondBranchFromCond(CC);
   2362     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
   2363     ++Count;
   2364   }
   2365   }
   2366   if (FBB) {
   2367     // Two-way Conditional branch. Insert the second branch.
   2368     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
   2369     ++Count;
   2370   }
   2371   return Count;
   2372 }
   2373 
   2374 /// isHReg - Test if the given register is a physical h register.
   2375 static bool isHReg(unsigned Reg) {
   2376   return X86::GR8_ABCD_HRegClass.contains(Reg);
   2377 }
   2378 
   2379 // Try and copy between VR128/VR64 and GR64 registers.
   2380 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
   2381                                         bool HasAVX) {
   2382   // SrcReg(VR128) -> DestReg(GR64)
   2383   // SrcReg(VR64)  -> DestReg(GR64)
   2384   // SrcReg(GR64)  -> DestReg(VR128)
   2385   // SrcReg(GR64)  -> DestReg(VR64)
   2386 
   2387   if (X86::GR64RegClass.contains(DestReg)) {
   2388     if (X86::VR128RegClass.contains(SrcReg)) {
   2389       // Copy from a VR128 register to a GR64 register.
   2390       return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
   2391     } else if (X86::VR64RegClass.contains(SrcReg)) {
   2392       // Copy from a VR64 register to a GR64 register.
   2393       return X86::MOVSDto64rr;
   2394     }
   2395   } else if (X86::GR64RegClass.contains(SrcReg)) {
   2396     // Copy from a GR64 register to a VR128 register.
   2397     if (X86::VR128RegClass.contains(DestReg))
   2398       return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
   2399     // Copy from a GR64 register to a VR64 register.
   2400     else if (X86::VR64RegClass.contains(DestReg))
   2401       return X86::MOV64toSDrr;
   2402   }
   2403 
   2404   // SrcReg(FR32) -> DestReg(GR32)
   2405   // SrcReg(GR32) -> DestReg(FR32)
   2406 
   2407   if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
   2408       // Copy from a FR32 register to a GR32 register.
   2409       return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
   2410 
   2411   if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
   2412       // Copy from a GR32 register to a FR32 register.
   2413       return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
   2414 
   2415   return 0;
   2416 }
   2417 
   2418 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
   2419                                MachineBasicBlock::iterator MI, DebugLoc DL,
   2420                                unsigned DestReg, unsigned SrcReg,
   2421                                bool KillSrc) const {
   2422   // First deal with the normal symmetric copies.
   2423   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   2424   unsigned Opc = 0;
   2425   if (X86::GR64RegClass.contains(DestReg, SrcReg))
   2426     Opc = X86::MOV64rr;
   2427   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
   2428     Opc = X86::MOV32rr;
   2429   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
   2430     Opc = X86::MOV16rr;
   2431   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
   2432     // Copying to or from a physical H register on x86-64 requires a NOREX
   2433     // move.  Otherwise use a normal move.
   2434     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
   2435         TM.getSubtarget<X86Subtarget>().is64Bit()) {
   2436       Opc = X86::MOV8rr_NOREX;
   2437       // Both operands must be encodable without an REX prefix.
   2438       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
   2439              "8-bit H register can not be copied outside GR8_NOREX");
   2440     } else
   2441       Opc = X86::MOV8rr;
   2442   } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
   2443     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
   2444   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
   2445     Opc = X86::VMOVAPSYrr;
   2446   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
   2447     Opc = X86::MMX_MOVQ64rr;
   2448   else
   2449     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
   2450 
   2451   if (Opc) {
   2452     BuildMI(MBB, MI, DL, get(Opc), DestReg)
   2453       .addReg(SrcReg, getKillRegState(KillSrc));
   2454     return;
   2455   }
   2456 
   2457   // Moving EFLAGS to / from another register requires a push and a pop.
   2458   if (SrcReg == X86::EFLAGS) {
   2459     if (X86::GR64RegClass.contains(DestReg)) {
   2460       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
   2461       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
   2462       return;
   2463     } else if (X86::GR32RegClass.contains(DestReg)) {
   2464       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
   2465       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
   2466       return;
   2467     }
   2468   }
   2469   if (DestReg == X86::EFLAGS) {
   2470     if (X86::GR64RegClass.contains(SrcReg)) {
   2471       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
   2472         .addReg(SrcReg, getKillRegState(KillSrc));
   2473       BuildMI(MBB, MI, DL, get(X86::POPF64));
   2474       return;
   2475     } else if (X86::GR32RegClass.contains(SrcReg)) {
   2476       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
   2477         .addReg(SrcReg, getKillRegState(KillSrc));
   2478       BuildMI(MBB, MI, DL, get(X86::POPF32));
   2479       return;
   2480     }
   2481   }
   2482 
   2483   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
   2484                << " to " << RI.getName(DestReg) << '\n');
   2485   llvm_unreachable("Cannot emit physreg copy instruction");
   2486 }
   2487 
   2488 static unsigned getLoadStoreRegOpcode(unsigned Reg,
   2489                                       const TargetRegisterClass *RC,
   2490                                       bool isStackAligned,
   2491                                       const TargetMachine &TM,
   2492                                       bool load) {
   2493   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   2494   switch (RC->getSize()) {
   2495   default:
   2496     llvm_unreachable("Unknown spill size");
   2497   case 1:
   2498     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
   2499     if (TM.getSubtarget<X86Subtarget>().is64Bit())
   2500       // Copying to or from a physical H register on x86-64 requires a NOREX
   2501       // move.  Otherwise use a normal move.
   2502       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
   2503         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
   2504     return load ? X86::MOV8rm : X86::MOV8mr;
   2505   case 2:
   2506     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
   2507     return load ? X86::MOV16rm : X86::MOV16mr;
   2508   case 4:
   2509     if (X86::GR32RegClass.hasSubClassEq(RC))
   2510       return load ? X86::MOV32rm : X86::MOV32mr;
   2511     if (X86::FR32RegClass.hasSubClassEq(RC))
   2512       return load ?
   2513         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
   2514         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
   2515     if (X86::RFP32RegClass.hasSubClassEq(RC))
   2516       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
   2517     llvm_unreachable("Unknown 4-byte regclass");
   2518   case 8:
   2519     if (X86::GR64RegClass.hasSubClassEq(RC))
   2520       return load ? X86::MOV64rm : X86::MOV64mr;
   2521     if (X86::FR64RegClass.hasSubClassEq(RC))
   2522       return load ?
   2523         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
   2524         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
   2525     if (X86::VR64RegClass.hasSubClassEq(RC))
   2526       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
   2527     if (X86::RFP64RegClass.hasSubClassEq(RC))
   2528       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
   2529     llvm_unreachable("Unknown 8-byte regclass");
   2530   case 10:
   2531     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
   2532     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
   2533   case 16: {
   2534     assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
   2535     // If stack is realigned we can use aligned stores.
   2536     if (isStackAligned)
   2537       return load ?
   2538         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
   2539         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
   2540     else
   2541       return load ?
   2542         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
   2543         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
   2544   }
   2545   case 32:
   2546     assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
   2547     // If stack is realigned we can use aligned stores.
   2548     if (isStackAligned)
   2549       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
   2550     else
   2551       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
   2552   }
   2553 }
   2554 
   2555 static unsigned getStoreRegOpcode(unsigned SrcReg,
   2556                                   const TargetRegisterClass *RC,
   2557                                   bool isStackAligned,
   2558                                   TargetMachine &TM) {
   2559   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
   2560 }
   2561 
   2562 
   2563 static unsigned getLoadRegOpcode(unsigned DestReg,
   2564                                  const TargetRegisterClass *RC,
   2565                                  bool isStackAligned,
   2566                                  const TargetMachine &TM) {
   2567   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
   2568 }
   2569 
   2570 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   2571                                        MachineBasicBlock::iterator MI,
   2572                                        unsigned SrcReg, bool isKill, int FrameIdx,
   2573                                        const TargetRegisterClass *RC,
   2574                                        const TargetRegisterInfo *TRI) const {
   2575   const MachineFunction &MF = *MBB.getParent();
   2576   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
   2577          "Stack slot too small for store");
   2578   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   2579   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
   2580     RI.canRealignStack(MF);
   2581   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
   2582   DebugLoc DL = MBB.findDebugLoc(MI);
   2583   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
   2584     .addReg(SrcReg, getKillRegState(isKill));
   2585 }
   2586 
   2587 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
   2588                                   bool isKill,
   2589                                   SmallVectorImpl<MachineOperand> &Addr,
   2590                                   const TargetRegisterClass *RC,
   2591                                   MachineInstr::mmo_iterator MMOBegin,
   2592                                   MachineInstr::mmo_iterator MMOEnd,
   2593                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
   2594   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   2595   bool isAligned = MMOBegin != MMOEnd &&
   2596                    (*MMOBegin)->getAlignment() >= Alignment;
   2597   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
   2598   DebugLoc DL;
   2599   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
   2600   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   2601     MIB.addOperand(Addr[i]);
   2602   MIB.addReg(SrcReg, getKillRegState(isKill));
   2603   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   2604   NewMIs.push_back(MIB);
   2605 }
   2606 
   2607 
   2608 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   2609                                         MachineBasicBlock::iterator MI,
   2610                                         unsigned DestReg, int FrameIdx,
   2611                                         const TargetRegisterClass *RC,
   2612                                         const TargetRegisterInfo *TRI) const {
   2613   const MachineFunction &MF = *MBB.getParent();
   2614   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   2615   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
   2616     RI.canRealignStack(MF);
   2617   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
   2618   DebugLoc DL = MBB.findDebugLoc(MI);
   2619   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
   2620 }
   2621 
   2622 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
   2623                                  SmallVectorImpl<MachineOperand> &Addr,
   2624                                  const TargetRegisterClass *RC,
   2625                                  MachineInstr::mmo_iterator MMOBegin,
   2626                                  MachineInstr::mmo_iterator MMOEnd,
   2627                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
   2628   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   2629   bool isAligned = MMOBegin != MMOEnd &&
   2630                    (*MMOBegin)->getAlignment() >= Alignment;
   2631   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
   2632   DebugLoc DL;
   2633   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
   2634   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   2635     MIB.addOperand(Addr[i]);
   2636   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   2637   NewMIs.push_back(MIB);
   2638 }
   2639 
   2640 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
   2641 /// instruction with two undef reads of the register being defined.  This is
   2642 /// used for mapping:
   2643 ///   %xmm4 = V_SET0
   2644 /// to:
   2645 ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
   2646 ///
   2647 static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
   2648   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
   2649   unsigned Reg = MI->getOperand(0).getReg();
   2650   MI->setDesc(Desc);
   2651 
   2652   // MachineInstr::addOperand() will insert explicit operands before any
   2653   // implicit operands.
   2654   MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
   2655                          .addReg(Reg, RegState::Undef);
   2656   // But we don't trust that.
   2657   assert(MI->getOperand(1).getReg() == Reg &&
   2658          MI->getOperand(2).getReg() == Reg && "Misplaced operand");
   2659   return true;
   2660 }
   2661 
   2662 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
   2663   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   2664   switch (MI->getOpcode()) {
   2665   case X86::V_SET0:
   2666   case X86::FsFLD0SS:
   2667   case X86::FsFLD0SD:
   2668     return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
   2669   case X86::TEST8ri_NOREX:
   2670     MI->setDesc(get(X86::TEST8ri));
   2671     return true;
   2672   }
   2673   return false;
   2674 }
   2675 
   2676 MachineInstr*
   2677 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
   2678                                        int FrameIx, uint64_t Offset,
   2679                                        const MDNode *MDPtr,
   2680                                        DebugLoc DL) const {
   2681   X86AddressMode AM;
   2682   AM.BaseType = X86AddressMode::FrameIndexBase;
   2683   AM.Base.FrameIndex = FrameIx;
   2684   MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
   2685   addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
   2686   return &*MIB;
   2687 }
   2688 
   2689 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
   2690                                      const SmallVectorImpl<MachineOperand> &MOs,
   2691                                      MachineInstr *MI,
   2692                                      const TargetInstrInfo &TII) {
   2693   // Create the base instruction with the memory operand as the first part.
   2694   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   2695                                               MI->getDebugLoc(), true);
   2696   MachineInstrBuilder MIB(NewMI);
   2697   unsigned NumAddrOps = MOs.size();
   2698   for (unsigned i = 0; i != NumAddrOps; ++i)
   2699     MIB.addOperand(MOs[i]);
   2700   if (NumAddrOps < 4)  // FrameIndex only
   2701     addOffset(MIB, 0);
   2702 
   2703   // Loop over the rest of the ri operands, converting them over.
   2704   unsigned NumOps = MI->getDesc().getNumOperands()-2;
   2705   for (unsigned i = 0; i != NumOps; ++i) {
   2706     MachineOperand &MO = MI->getOperand(i+2);
   2707     MIB.addOperand(MO);
   2708   }
   2709   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
   2710     MachineOperand &MO = MI->getOperand(i);
   2711     MIB.addOperand(MO);
   2712   }
   2713   return MIB;
   2714 }
   2715 
   2716 static MachineInstr *FuseInst(MachineFunction &MF,
   2717                               unsigned Opcode, unsigned OpNo,
   2718                               const SmallVectorImpl<MachineOperand> &MOs,
   2719                               MachineInstr *MI, const TargetInstrInfo &TII) {
   2720   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   2721                                               MI->getDebugLoc(), true);
   2722   MachineInstrBuilder MIB(NewMI);
   2723 
   2724   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   2725     MachineOperand &MO = MI->getOperand(i);
   2726     if (i == OpNo) {
   2727       assert(MO.isReg() && "Expected to fold into reg operand!");
   2728       unsigned NumAddrOps = MOs.size();
   2729       for (unsigned i = 0; i != NumAddrOps; ++i)
   2730         MIB.addOperand(MOs[i]);
   2731       if (NumAddrOps < 4)  // FrameIndex only
   2732         addOffset(MIB, 0);
   2733     } else {
   2734       MIB.addOperand(MO);
   2735     }
   2736   }
   2737   return MIB;
   2738 }
   2739 
   2740 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
   2741                                 const SmallVectorImpl<MachineOperand> &MOs,
   2742                                 MachineInstr *MI) {
   2743   MachineFunction &MF = *MI->getParent()->getParent();
   2744   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
   2745 
   2746   unsigned NumAddrOps = MOs.size();
   2747   for (unsigned i = 0; i != NumAddrOps; ++i)
   2748     MIB.addOperand(MOs[i]);
   2749   if (NumAddrOps < 4)  // FrameIndex only
   2750     addOffset(MIB, 0);
   2751   return MIB.addImm(0);
   2752 }
   2753 
   2754 MachineInstr*
   2755 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   2756                                     MachineInstr *MI, unsigned i,
   2757                                     const SmallVectorImpl<MachineOperand> &MOs,
   2758                                     unsigned Size, unsigned Align) const {
   2759   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
   2760   bool isTwoAddrFold = false;
   2761   unsigned NumOps = MI->getDesc().getNumOperands();
   2762   bool isTwoAddr = NumOps > 1 &&
   2763     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   2764 
   2765   // FIXME: AsmPrinter doesn't know how to handle
   2766   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   2767   if (MI->getOpcode() == X86::ADD32ri &&
   2768       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   2769     return NULL;
   2770 
   2771   MachineInstr *NewMI = NULL;
   2772   // Folding a memory location into the two-address part of a two-address
   2773   // instruction is different than folding it other places.  It requires
   2774   // replacing the *two* registers with the memory location.
   2775   if (isTwoAddr && NumOps >= 2 && i < 2 &&
   2776       MI->getOperand(0).isReg() &&
   2777       MI->getOperand(1).isReg() &&
   2778       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
   2779     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   2780     isTwoAddrFold = true;
   2781   } else if (i == 0) { // If operand 0
   2782     if (MI->getOpcode() == X86::MOV64r0)
   2783       NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
   2784     else if (MI->getOpcode() == X86::MOV32r0)
   2785       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
   2786     else if (MI->getOpcode() == X86::MOV16r0)
   2787       NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
   2788     else if (MI->getOpcode() == X86::MOV8r0)
   2789       NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
   2790     if (NewMI)
   2791       return NewMI;
   2792 
   2793     OpcodeTablePtr = &RegOp2MemOpTable0;
   2794   } else if (i == 1) {
   2795     OpcodeTablePtr = &RegOp2MemOpTable1;
   2796   } else if (i == 2) {
   2797     OpcodeTablePtr = &RegOp2MemOpTable2;
   2798   }
   2799 
   2800   // If table selected...
   2801   if (OpcodeTablePtr) {
   2802     // Find the Opcode to fuse
   2803     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   2804       OpcodeTablePtr->find(MI->getOpcode());
   2805     if (I != OpcodeTablePtr->end()) {
   2806       unsigned Opcode = I->second.first;
   2807       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
   2808       if (Align < MinAlign)
   2809         return NULL;
   2810       bool NarrowToMOV32rm = false;
   2811       if (Size) {
   2812         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
   2813         if (Size < RCSize) {
   2814           // Check if it's safe to fold the load. If the size of the object is
   2815           // narrower than the load width, then it's not.
   2816           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
   2817             return NULL;
   2818           // If this is a 64-bit load, but the spill slot is 32, then we can do
   2819           // a 32-bit load which is implicitly zero-extended. This likely is due
   2820           // to liveintervalanalysis remat'ing a load from stack slot.
   2821           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
   2822             return NULL;
   2823           Opcode = X86::MOV32rm;
   2824           NarrowToMOV32rm = true;
   2825         }
   2826       }
   2827 
   2828       if (isTwoAddrFold)
   2829         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
   2830       else
   2831         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
   2832 
   2833       if (NarrowToMOV32rm) {
   2834         // If this is the special case where we use a MOV32rm to load a 32-bit
   2835         // value and zero-extend the top bits. Change the destination register
   2836         // to a 32-bit one.
   2837         unsigned DstReg = NewMI->getOperand(0).getReg();
   2838         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
   2839           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
   2840                                                    X86::sub_32bit));
   2841         else
   2842           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
   2843       }
   2844       return NewMI;
   2845     }
   2846   }
   2847 
   2848   // No fusion
   2849   if (PrintFailedFusing && !MI->isCopy())
   2850     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
   2851   return NULL;
   2852 }
   2853 
   2854 /// hasPartialRegUpdate - Return true for all instructions that only update
   2855 /// the first 32 or 64-bits of the destination register and leave the rest
   2856 /// unmodified. This can be used to avoid folding loads if the instructions
   2857 /// only update part of the destination register, and the non-updated part is
   2858 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
   2859 /// instructions breaks the partial register dependency and it can improve
   2860 /// performance. e.g.:
   2861 ///
   2862 ///   movss (%rdi), %xmm0
   2863 ///   cvtss2sd %xmm0, %xmm0
   2864 ///
   2865 /// Instead of
   2866 ///   cvtss2sd (%rdi), %xmm0
   2867 ///
   2868 /// FIXME: This should be turned into a TSFlags.
   2869 ///
   2870 static bool hasPartialRegUpdate(unsigned Opcode) {
   2871   switch (Opcode) {
   2872   case X86::CVTSI2SSrr:
   2873   case X86::CVTSI2SS64rr:
   2874   case X86::CVTSI2SDrr:
   2875   case X86::CVTSI2SD64rr:
   2876   case X86::CVTSD2SSrr:
   2877   case X86::Int_CVTSD2SSrr:
   2878   case X86::CVTSS2SDrr:
   2879   case X86::Int_CVTSS2SDrr:
   2880   case X86::RCPSSr:
   2881   case X86::RCPSSr_Int:
   2882   case X86::ROUNDSDr:
   2883   case X86::ROUNDSDr_Int:
   2884   case X86::ROUNDSSr:
   2885   case X86::ROUNDSSr_Int:
   2886   case X86::RSQRTSSr:
   2887   case X86::RSQRTSSr_Int:
   2888   case X86::SQRTSSr:
   2889   case X86::SQRTSSr_Int:
   2890   // AVX encoded versions
   2891   case X86::VCVTSD2SSrr:
   2892   case X86::Int_VCVTSD2SSrr:
   2893   case X86::VCVTSS2SDrr:
   2894   case X86::Int_VCVTSS2SDrr:
   2895   case X86::VRCPSSr:
   2896   case X86::VROUNDSDr:
   2897   case X86::VROUNDSDr_Int:
   2898   case X86::VROUNDSSr:
   2899   case X86::VROUNDSSr_Int:
   2900   case X86::VRSQRTSSr:
   2901   case X86::VSQRTSSr:
   2902     return true;
   2903   }
   2904 
   2905   return false;
   2906 }
   2907 
   2908 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
   2909 /// instructions we would like before a partial register update.
   2910 unsigned X86InstrInfo::
   2911 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
   2912                              const TargetRegisterInfo *TRI) const {
   2913   if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
   2914     return 0;
   2915 
   2916   // If MI is marked as reading Reg, the partial register update is wanted.
   2917   const MachineOperand &MO = MI->getOperand(0);
   2918   unsigned Reg = MO.getReg();
   2919   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2920     if (MO.readsReg() || MI->readsVirtualRegister(Reg))
   2921       return 0;
   2922   } else {
   2923     if (MI->readsRegister(Reg, TRI))
   2924       return 0;
   2925   }
   2926 
   2927   // If any of the preceding 16 instructions are reading Reg, insert a
   2928   // dependency breaking instruction.  The magic number is based on a few
   2929   // Nehalem experiments.
   2930   return 16;
   2931 }
   2932 
   2933 void X86InstrInfo::
   2934 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   2935                           const TargetRegisterInfo *TRI) const {
   2936   unsigned Reg = MI->getOperand(OpNum).getReg();
   2937   if (X86::VR128RegClass.contains(Reg)) {
   2938     // These instructions are all floating point domain, so xorps is the best
   2939     // choice.
   2940     bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   2941     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
   2942     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
   2943       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   2944   } else if (X86::VR256RegClass.contains(Reg)) {
   2945     // Use vxorps to clear the full ymm register.
   2946     // It wants to read and write the xmm sub-register.
   2947     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
   2948     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
   2949       .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
   2950       .addReg(Reg, RegState::ImplicitDefine);
   2951   } else
   2952     return;
   2953   MI->addRegisterKilled(Reg, TRI, true);
   2954 }
   2955 
   2956 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   2957                                                   MachineInstr *MI,
   2958                                            const SmallVectorImpl<unsigned> &Ops,
   2959                                                   int FrameIndex) const {
   2960   // Check switch flag
   2961   if (NoFusing) return NULL;
   2962 
   2963   // Unless optimizing for size, don't fold to avoid partial
   2964   // register update stalls
   2965   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
   2966       hasPartialRegUpdate(MI->getOpcode()))
   2967     return 0;
   2968 
   2969   const MachineFrameInfo *MFI = MF.getFrameInfo();
   2970   unsigned Size = MFI->getObjectSize(FrameIndex);
   2971   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
   2972   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   2973     unsigned NewOpc = 0;
   2974     unsigned RCSize = 0;
   2975     switch (MI->getOpcode()) {
   2976     default: return NULL;
   2977     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
   2978     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
   2979     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
   2980     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
   2981     }
   2982     // Check if it's safe to fold the load. If the size of the object is
   2983     // narrower than the load width, then it's not.
   2984     if (Size < RCSize)
   2985       return NULL;
   2986     // Change to CMPXXri r, 0 first.
   2987     MI->setDesc(get(NewOpc));
   2988     MI->getOperand(1).ChangeToImmediate(0);
   2989   } else if (Ops.size() != 1)
   2990     return NULL;
   2991 
   2992   SmallVector<MachineOperand,4> MOs;
   2993   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
   2994   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
   2995 }
   2996 
   2997 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   2998                                                   MachineInstr *MI,
   2999                                            const SmallVectorImpl<unsigned> &Ops,
   3000                                                   MachineInstr *LoadMI) const {
   3001   // Check switch flag
   3002   if (NoFusing) return NULL;
   3003 
   3004   // Unless optimizing for size, don't fold to avoid partial
   3005   // register update stalls
   3006   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
   3007       hasPartialRegUpdate(MI->getOpcode()))
   3008     return 0;
   3009 
   3010   // Determine the alignment of the load.
   3011   unsigned Alignment = 0;
   3012   if (LoadMI->hasOneMemOperand())
   3013     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
   3014   else
   3015     switch (LoadMI->getOpcode()) {
   3016     case X86::AVX_SET0PSY:
   3017     case X86::AVX_SET0PDY:
   3018     case X86::AVX2_SETALLONES:
   3019     case X86::AVX2_SET0:
   3020       Alignment = 32;
   3021       break;
   3022     case X86::V_SET0:
   3023     case X86::V_SETALLONES:
   3024     case X86::AVX_SETALLONES:
   3025       Alignment = 16;
   3026       break;
   3027     case X86::FsFLD0SD:
   3028       Alignment = 8;
   3029       break;
   3030     case X86::FsFLD0SS:
   3031       Alignment = 4;
   3032       break;
   3033     default:
   3034       return 0;
   3035     }
   3036   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   3037     unsigned NewOpc = 0;
   3038     switch (MI->getOpcode()) {
   3039     default: return NULL;
   3040     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
   3041     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
   3042     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
   3043     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
   3044     }
   3045     // Change to CMPXXri r, 0 first.
   3046     MI->setDesc(get(NewOpc));
   3047     MI->getOperand(1).ChangeToImmediate(0);
   3048   } else if (Ops.size() != 1)
   3049     return NULL;
   3050 
   3051   // Make sure the subregisters match.
   3052   // Otherwise we risk changing the size of the load.
   3053   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
   3054     return NULL;
   3055 
   3056   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
   3057   switch (LoadMI->getOpcode()) {
   3058   case X86::V_SET0:
   3059   case X86::V_SETALLONES:
   3060   case X86::AVX_SET0PSY:
   3061   case X86::AVX_SET0PDY:
   3062   case X86::AVX_SETALLONES:
   3063   case X86::AVX2_SETALLONES:
   3064   case X86::AVX2_SET0:
   3065   case X86::FsFLD0SD:
   3066   case X86::FsFLD0SS: {
   3067     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
   3068     // Create a constant-pool entry and operands to load from it.
   3069 
   3070     // Medium and large mode can't fold loads this way.
   3071     if (TM.getCodeModel() != CodeModel::Small &&
   3072         TM.getCodeModel() != CodeModel::Kernel)
   3073       return NULL;
   3074 
   3075     // x86-32 PIC requires a PIC base register for constant pools.
   3076     unsigned PICBase = 0;
   3077     if (TM.getRelocationModel() == Reloc::PIC_) {
   3078       if (TM.getSubtarget<X86Subtarget>().is64Bit())
   3079         PICBase = X86::RIP;
   3080       else
   3081         // FIXME: PICBase = getGlobalBaseReg(&MF);
   3082         // This doesn't work for several reasons.
   3083         // 1. GlobalBaseReg may have been spilled.
   3084         // 2. It may not be live at MI.
   3085         return NULL;
   3086     }
   3087 
   3088     // Create a constant-pool entry.
   3089     MachineConstantPool &MCP = *MF.getConstantPool();
   3090     Type *Ty;
   3091     unsigned Opc = LoadMI->getOpcode();
   3092     if (Opc == X86::FsFLD0SS)
   3093       Ty = Type::getFloatTy(MF.getFunction()->getContext());
   3094     else if (Opc == X86::FsFLD0SD)
   3095       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
   3096     else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
   3097       Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
   3098     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0)
   3099       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
   3100     else
   3101       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
   3102 
   3103     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
   3104                       Opc == X86::AVX2_SETALLONES);
   3105     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
   3106                                     Constant::getNullValue(Ty);
   3107     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
   3108 
   3109     // Create operands to load from the constant pool entry.
   3110     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
   3111     MOs.push_back(MachineOperand::CreateImm(1));
   3112     MOs.push_back(MachineOperand::CreateReg(0, false));
   3113     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
   3114     MOs.push_back(MachineOperand::CreateReg(0, false));
   3115     break;
   3116   }
   3117   default: {
   3118     // Folding a normal load. Just copy the load's address operands.
   3119     unsigned NumOps = LoadMI->getDesc().getNumOperands();
   3120     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
   3121       MOs.push_back(LoadMI->getOperand(i));
   3122     break;
   3123   }
   3124   }
   3125   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
   3126 }
   3127 
   3128 
   3129 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
   3130                                   const SmallVectorImpl<unsigned> &Ops) const {
   3131   // Check switch flag
   3132   if (NoFusing) return 0;
   3133 
   3134   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   3135     switch (MI->getOpcode()) {
   3136     default: return false;
   3137     case X86::TEST8rr:
   3138     case X86::TEST16rr:
   3139     case X86::TEST32rr:
   3140     case X86::TEST64rr:
   3141       return true;
   3142     case X86::ADD32ri:
   3143       // FIXME: AsmPrinter doesn't know how to handle
   3144       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   3145       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   3146         return false;
   3147       break;
   3148     }
   3149   }
   3150 
   3151   if (Ops.size() != 1)
   3152     return false;
   3153 
   3154   unsigned OpNum = Ops[0];
   3155   unsigned Opc = MI->getOpcode();
   3156   unsigned NumOps = MI->getDesc().getNumOperands();
   3157   bool isTwoAddr = NumOps > 1 &&
   3158     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   3159 
   3160   // Folding a memory location into the two-address part of a two-address
   3161   // instruction is different than folding it other places.  It requires
   3162   // replacing the *two* registers with the memory location.
   3163   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
   3164   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
   3165     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   3166   } else if (OpNum == 0) { // If operand 0
   3167     switch (Opc) {
   3168     case X86::MOV8r0:
   3169     case X86::MOV16r0:
   3170     case X86::MOV32r0:
   3171     case X86::MOV64r0: return true;
   3172     default: break;
   3173     }
   3174     OpcodeTablePtr = &RegOp2MemOpTable0;
   3175   } else if (OpNum == 1) {
   3176     OpcodeTablePtr = &RegOp2MemOpTable1;
   3177   } else if (OpNum == 2) {
   3178     OpcodeTablePtr = &RegOp2MemOpTable2;
   3179   }
   3180 
   3181   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
   3182     return true;
   3183   return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
   3184 }
   3185 
   3186 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
   3187                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
   3188                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
   3189   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   3190     MemOp2RegOpTable.find(MI->getOpcode());
   3191   if (I == MemOp2RegOpTable.end())
   3192     return false;
   3193   unsigned Opc = I->second.first;
   3194   unsigned Index = I->second.second & TB_INDEX_MASK;
   3195   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   3196   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   3197   if (UnfoldLoad && !FoldedLoad)
   3198     return false;
   3199   UnfoldLoad &= FoldedLoad;
   3200   if (UnfoldStore && !FoldedStore)
   3201     return false;
   3202   UnfoldStore &= FoldedStore;
   3203 
   3204   const MCInstrDesc &MCID = get(Opc);
   3205   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
   3206   if (!MI->hasOneMemOperand() &&
   3207       RC == &X86::VR128RegClass &&
   3208       !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   3209     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
   3210     // conservatively assume the address is unaligned. That's bad for
   3211     // performance.
   3212     return false;
   3213   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
   3214   SmallVector<MachineOperand,2> BeforeOps;
   3215   SmallVector<MachineOperand,2> AfterOps;
   3216   SmallVector<MachineOperand,4> ImpOps;
   3217   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   3218     MachineOperand &Op = MI->getOperand(i);
   3219     if (i >= Index && i < Index + X86::AddrNumOperands)
   3220       AddrOps.push_back(Op);
   3221     else if (Op.isReg() && Op.isImplicit())
   3222       ImpOps.push_back(Op);
   3223     else if (i < Index)
   3224       BeforeOps.push_back(Op);
   3225     else if (i > Index)
   3226       AfterOps.push_back(Op);
   3227   }
   3228 
   3229   // Emit the load instruction.
   3230   if (UnfoldLoad) {
   3231     std::pair<MachineInstr::mmo_iterator,
   3232               MachineInstr::mmo_iterator> MMOs =
   3233       MF.extractLoadMemRefs(MI->memoperands_begin(),
   3234                             MI->memoperands_end());
   3235     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
   3236     if (UnfoldStore) {
   3237       // Address operands cannot be marked isKill.
   3238       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
   3239         MachineOperand &MO = NewMIs[0]->getOperand(i);
   3240         if (MO.isReg())
   3241           MO.setIsKill(false);
   3242       }
   3243     }
   3244   }
   3245 
   3246   // Emit the data processing instruction.
   3247   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
   3248   MachineInstrBuilder MIB(DataMI);
   3249 
   3250   if (FoldedStore)
   3251     MIB.addReg(Reg, RegState::Define);
   3252   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
   3253     MIB.addOperand(BeforeOps[i]);
   3254   if (FoldedLoad)
   3255     MIB.addReg(Reg);
   3256   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
   3257     MIB.addOperand(AfterOps[i]);
   3258   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
   3259     MachineOperand &MO = ImpOps[i];
   3260     MIB.addReg(MO.getReg(),
   3261                getDefRegState(MO.isDef()) |
   3262                RegState::Implicit |
   3263                getKillRegState(MO.isKill()) |
   3264                getDeadRegState(MO.isDead()) |
   3265                getUndefRegState(MO.isUndef()));
   3266   }
   3267   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
   3268   unsigned NewOpc = 0;
   3269   switch (DataMI->getOpcode()) {
   3270   default: break;
   3271   case X86::CMP64ri32:
   3272   case X86::CMP64ri8:
   3273   case X86::CMP32ri:
   3274   case X86::CMP32ri8:
   3275   case X86::CMP16ri:
   3276   case X86::CMP16ri8:
   3277   case X86::CMP8ri: {
   3278     MachineOperand &MO0 = DataMI->getOperand(0);
   3279     MachineOperand &MO1 = DataMI->getOperand(1);
   3280     if (MO1.getImm() == 0) {
   3281       switch (DataMI->getOpcode()) {
   3282       default: break;
   3283       case X86::CMP64ri8:
   3284       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
   3285       case X86::CMP32ri8:
   3286       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
   3287       case X86::CMP16ri8:
   3288       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
   3289       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
   3290       }
   3291       DataMI->setDesc(get(NewOpc));
   3292       MO1.ChangeToRegister(MO0.getReg(), false);
   3293     }
   3294   }
   3295   }
   3296   NewMIs.push_back(DataMI);
   3297 
   3298   // Emit the store instruction.
   3299   if (UnfoldStore) {
   3300     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
   3301     std::pair<MachineInstr::mmo_iterator,
   3302               MachineInstr::mmo_iterator> MMOs =
   3303       MF.extractStoreMemRefs(MI->memoperands_begin(),
   3304                              MI->memoperands_end());
   3305     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
   3306   }
   3307 
   3308   return true;
   3309 }
   3310 
   3311 bool
   3312 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   3313                                   SmallVectorImpl<SDNode*> &NewNodes) const {
   3314   if (!N->isMachineOpcode())
   3315     return false;
   3316 
   3317   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   3318     MemOp2RegOpTable.find(N->getMachineOpcode());
   3319   if (I == MemOp2RegOpTable.end())
   3320     return false;
   3321   unsigned Opc = I->second.first;
   3322   unsigned Index = I->second.second & TB_INDEX_MASK;
   3323   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   3324   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   3325   const MCInstrDesc &MCID = get(Opc);
   3326   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
   3327   unsigned NumDefs = MCID.NumDefs;
   3328   std::vector<SDValue> AddrOps;
   3329   std::vector<SDValue> BeforeOps;
   3330   std::vector<SDValue> AfterOps;
   3331   DebugLoc dl = N->getDebugLoc();
   3332   unsigned NumOps = N->getNumOperands();
   3333   for (unsigned i = 0; i != NumOps-1; ++i) {
   3334     SDValue Op = N->getOperand(i);
   3335     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
   3336       AddrOps.push_back(Op);
   3337     else if (i < Index-NumDefs)
   3338       BeforeOps.push_back(Op);
   3339     else if (i > Index-NumDefs)
   3340       AfterOps.push_back(Op);
   3341   }
   3342   SDValue Chain = N->getOperand(NumOps-1);
   3343   AddrOps.push_back(Chain);
   3344 
   3345   // Emit the load instruction.
   3346   SDNode *Load = 0;
   3347   MachineFunction &MF = DAG.getMachineFunction();
   3348   if (FoldedLoad) {
   3349     EVT VT = *RC->vt_begin();
   3350     std::pair<MachineInstr::mmo_iterator,
   3351               MachineInstr::mmo_iterator> MMOs =
   3352       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   3353                             cast<MachineSDNode>(N)->memoperands_end());
   3354     if (!(*MMOs.first) &&
   3355         RC == &X86::VR128RegClass &&
   3356         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   3357       // Do not introduce a slow unaligned load.
   3358       return false;
   3359     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3360     bool isAligned = (*MMOs.first) &&
   3361                      (*MMOs.first)->getAlignment() >= Alignment;
   3362     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
   3363                               VT, MVT::Other, &AddrOps[0], AddrOps.size());
   3364     NewNodes.push_back(Load);
   3365 
   3366     // Preserve memory reference information.
   3367     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   3368   }
   3369 
   3370   // Emit the data processing instruction.
   3371   std::vector<EVT> VTs;
   3372   const TargetRegisterClass *DstRC = 0;
   3373   if (MCID.getNumDefs() > 0) {
   3374     DstRC = getRegClass(MCID, 0, &RI);
   3375     VTs.push_back(*DstRC->vt_begin());
   3376   }
   3377   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
   3378     EVT VT = N->getValueType(i);
   3379     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
   3380       VTs.push_back(VT);
   3381   }
   3382   if (Load)
   3383     BeforeOps.push_back(SDValue(Load, 0));
   3384   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
   3385   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
   3386                                       BeforeOps.size());
   3387   NewNodes.push_back(NewNode);
   3388 
   3389   // Emit the store instruction.
   3390   if (FoldedStore) {
   3391     AddrOps.pop_back();
   3392     AddrOps.push_back(SDValue(NewNode, 0));
   3393     AddrOps.push_back(Chain);
   3394     std::pair<MachineInstr::mmo_iterator,
   3395               MachineInstr::mmo_iterator> MMOs =
   3396       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   3397                              cast<MachineSDNode>(N)->memoperands_end());
   3398     if (!(*MMOs.first) &&
   3399         RC == &X86::VR128RegClass &&
   3400         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   3401       // Do not introduce a slow unaligned store.
   3402       return false;
   3403     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3404     bool isAligned = (*MMOs.first) &&
   3405                      (*MMOs.first)->getAlignment() >= Alignment;
   3406     SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
   3407                                                          isAligned, TM),
   3408                                        dl, MVT::Other,
   3409                                        &AddrOps[0], AddrOps.size());
   3410     NewNodes.push_back(Store);
   3411 
   3412     // Preserve memory reference information.
   3413     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   3414   }
   3415 
   3416   return true;
   3417 }
   3418 
   3419 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
   3420                                       bool UnfoldLoad, bool UnfoldStore,
   3421                                       unsigned *LoadRegIndex) const {
   3422   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   3423     MemOp2RegOpTable.find(Opc);
   3424   if (I == MemOp2RegOpTable.end())
   3425     return 0;
   3426   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   3427   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   3428   if (UnfoldLoad && !FoldedLoad)
   3429     return 0;
   3430   if (UnfoldStore && !FoldedStore)
   3431     return 0;
   3432   if (LoadRegIndex)
   3433     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
   3434   return I->second.first;
   3435 }
   3436 
   3437 bool
   3438 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   3439                                      int64_t &Offset1, int64_t &Offset2) const {
   3440   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   3441     return false;
   3442   unsigned Opc1 = Load1->getMachineOpcode();
   3443   unsigned Opc2 = Load2->getMachineOpcode();
   3444   switch (Opc1) {
   3445   default: return false;
   3446   case X86::MOV8rm:
   3447   case X86::MOV16rm:
   3448   case X86::MOV32rm:
   3449   case X86::MOV64rm:
   3450   case X86::LD_Fp32m:
   3451   case X86::LD_Fp64m:
   3452   case X86::LD_Fp80m:
   3453   case X86::MOVSSrm:
   3454   case X86::MOVSDrm:
   3455   case X86::MMX_MOVD64rm:
   3456   case X86::MMX_MOVQ64rm:
   3457   case X86::FsMOVAPSrm:
   3458   case X86::FsMOVAPDrm:
   3459   case X86::MOVAPSrm:
   3460   case X86::MOVUPSrm:
   3461   case X86::MOVAPDrm:
   3462   case X86::MOVDQArm:
   3463   case X86::MOVDQUrm:
   3464   // AVX load instructions
   3465   case X86::VMOVSSrm:
   3466   case X86::VMOVSDrm:
   3467   case X86::FsVMOVAPSrm:
   3468   case X86::FsVMOVAPDrm:
   3469   case X86::VMOVAPSrm:
   3470   case X86::VMOVUPSrm:
   3471   case X86::VMOVAPDrm:
   3472   case X86::VMOVDQArm:
   3473   case X86::VMOVDQUrm:
   3474   case X86::VMOVAPSYrm:
   3475   case X86::VMOVUPSYrm:
   3476   case X86::VMOVAPDYrm:
   3477   case X86::VMOVDQAYrm:
   3478   case X86::VMOVDQUYrm:
   3479     break;
   3480   }
   3481   switch (Opc2) {
   3482   default: return false;
   3483   case X86::MOV8rm:
   3484   case X86::MOV16rm:
   3485   case X86::MOV32rm:
   3486   case X86::MOV64rm:
   3487   case X86::LD_Fp32m:
   3488   case X86::LD_Fp64m:
   3489   case X86::LD_Fp80m:
   3490   case X86::MOVSSrm:
   3491   case X86::MOVSDrm:
   3492   case X86::MMX_MOVD64rm:
   3493   case X86::MMX_MOVQ64rm:
   3494   case X86::FsMOVAPSrm:
   3495   case X86::FsMOVAPDrm:
   3496   case X86::MOVAPSrm:
   3497   case X86::MOVUPSrm:
   3498   case X86::MOVAPDrm:
   3499   case X86::MOVDQArm:
   3500   case X86::MOVDQUrm:
   3501   // AVX load instructions
   3502   case X86::VMOVSSrm:
   3503   case X86::VMOVSDrm:
   3504   case X86::FsVMOVAPSrm:
   3505   case X86::FsVMOVAPDrm:
   3506   case X86::VMOVAPSrm:
   3507   case X86::VMOVUPSrm:
   3508   case X86::VMOVAPDrm:
   3509   case X86::VMOVDQArm:
   3510   case X86::VMOVDQUrm:
   3511   case X86::VMOVAPSYrm:
   3512   case X86::VMOVUPSYrm:
   3513   case X86::VMOVAPDYrm:
   3514   case X86::VMOVDQAYrm:
   3515   case X86::VMOVDQUYrm:
   3516     break;
   3517   }
   3518 
   3519   // Check if chain operands and base addresses match.
   3520   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   3521       Load1->getOperand(5) != Load2->getOperand(5))
   3522     return false;
   3523   // Segment operands should match as well.
   3524   if (Load1->getOperand(4) != Load2->getOperand(4))
   3525     return false;
   3526   // Scale should be 1, Index should be Reg0.
   3527   if (Load1->getOperand(1) == Load2->getOperand(1) &&
   3528       Load1->getOperand(2) == Load2->getOperand(2)) {
   3529     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
   3530       return false;
   3531 
   3532     // Now let's examine the displacements.
   3533     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
   3534         isa<ConstantSDNode>(Load2->getOperand(3))) {
   3535       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
   3536       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
   3537       return true;
   3538     }
   3539   }
   3540   return false;
   3541 }
   3542 
   3543 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   3544                                            int64_t Offset1, int64_t Offset2,
   3545                                            unsigned NumLoads) const {
   3546   assert(Offset2 > Offset1);
   3547   if ((Offset2 - Offset1) / 8 > 64)
   3548     return false;
   3549 
   3550   unsigned Opc1 = Load1->getMachineOpcode();
   3551   unsigned Opc2 = Load2->getMachineOpcode();
   3552   if (Opc1 != Opc2)
   3553     return false;  // FIXME: overly conservative?
   3554 
   3555   switch (Opc1) {
   3556   default: break;
   3557   case X86::LD_Fp32m:
   3558   case X86::LD_Fp64m:
   3559   case X86::LD_Fp80m:
   3560   case X86::MMX_MOVD64rm:
   3561   case X86::MMX_MOVQ64rm:
   3562     return false;
   3563   }
   3564 
   3565   EVT VT = Load1->getValueType(0);
   3566   switch (VT.getSimpleVT().SimpleTy) {
   3567   default:
   3568     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
   3569     // have 16 of them to play with.
   3570     if (TM.getSubtargetImpl()->is64Bit()) {
   3571       if (NumLoads >= 3)
   3572         return false;
   3573     } else if (NumLoads) {
   3574       return false;
   3575     }
   3576     break;
   3577   case MVT::i8:
   3578   case MVT::i16:
   3579   case MVT::i32:
   3580   case MVT::i64:
   3581   case MVT::f32:
   3582   case MVT::f64:
   3583     if (NumLoads)
   3584       return false;
   3585     break;
   3586   }
   3587 
   3588   return true;
   3589 }
   3590 
   3591 
   3592 bool X86InstrInfo::
   3593 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   3594   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
   3595   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
   3596   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
   3597     return true;
   3598   Cond[0].setImm(GetOppositeBranchCondition(CC));
   3599   return false;
   3600 }
   3601 
   3602 bool X86InstrInfo::
   3603 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   3604   // FIXME: Return false for x87 stack register classes for now. We can't
   3605   // allow any loads of these registers before FpGet_ST0_80.
   3606   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
   3607            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
   3608 }
   3609 
   3610 /// getGlobalBaseReg - Return a virtual register initialized with the
   3611 /// the global base register value. Output instructions required to
   3612 /// initialize the register in the function entry block, if necessary.
   3613 ///
   3614 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
   3615 ///
   3616 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
   3617   assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
   3618          "X86-64 PIC uses RIP relative addressing");
   3619 
   3620   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
   3621   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   3622   if (GlobalBaseReg != 0)
   3623     return GlobalBaseReg;
   3624 
   3625   // Create the register. The code to initialize it is inserted
   3626   // later, by the CGBR pass (below).
   3627   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   3628   GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
   3629   X86FI->setGlobalBaseReg(GlobalBaseReg);
   3630   return GlobalBaseReg;
   3631 }
   3632 
   3633 // These are the replaceable SSE instructions. Some of these have Int variants
   3634 // that we don't include here. We don't want to replace instructions selected
   3635 // by intrinsics.
   3636 static const uint16_t ReplaceableInstrs[][3] = {
   3637   //PackedSingle     PackedDouble    PackedInt
   3638   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
   3639   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
   3640   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
   3641   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
   3642   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
   3643   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
   3644   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
   3645   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
   3646   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
   3647   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
   3648   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
   3649   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
   3650   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
   3651   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
   3652   // AVX 128-bit support
   3653   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
   3654   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
   3655   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
   3656   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
   3657   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
   3658   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
   3659   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
   3660   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
   3661   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
   3662   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
   3663   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
   3664   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
   3665   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
   3666   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
   3667   // AVX 256-bit support
   3668   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
   3669   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
   3670   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
   3671   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
   3672   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
   3673   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
   3674 };
   3675 
   3676 static const uint16_t ReplaceableInstrsAVX2[][3] = {
   3677   //PackedSingle       PackedDouble       PackedInt
   3678   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
   3679   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
   3680   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
   3681   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
   3682   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
   3683   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
   3684   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
   3685   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
   3686   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
   3687   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
   3688   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
   3689   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
   3690   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
   3691   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
   3692 };
   3693 
   3694 // FIXME: Some shuffle and unpack instructions have equivalents in different
   3695 // domains, but they require a bit more work than just switching opcodes.
   3696 
   3697 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
   3698   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
   3699     if (ReplaceableInstrs[i][domain-1] == opcode)
   3700       return ReplaceableInstrs[i];
   3701   return 0;
   3702 }
   3703 
   3704 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
   3705   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
   3706     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
   3707       return ReplaceableInstrsAVX2[i];
   3708   return 0;
   3709 }
   3710 
   3711 std::pair<uint16_t, uint16_t>
   3712 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   3713   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   3714   bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
   3715   uint16_t validDomains = 0;
   3716   if (domain && lookup(MI->getOpcode(), domain))
   3717     validDomains = 0xe;
   3718   else if (domain && lookupAVX2(MI->getOpcode(), domain))
   3719     validDomains = hasAVX2 ? 0xe : 0x6;
   3720   return std::make_pair(domain, validDomains);
   3721 }
   3722 
   3723 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   3724   assert(Domain>0 && Domain<4 && "Invalid execution domain");
   3725   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   3726   assert(dom && "Not an SSE instruction");
   3727   const uint16_t *table = lookup(MI->getOpcode(), dom);
   3728   if (!table) { // try the other table
   3729     assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
   3730            "256-bit vector operations only available in AVX2");
   3731     table = lookupAVX2(MI->getOpcode(), dom);
   3732   }
   3733   assert(table && "Cannot change domain");
   3734   MI->setDesc(get(table[Domain-1]));
   3735 }
   3736 
   3737 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
   3738 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   3739   NopInst.setOpcode(X86::NOOP);
   3740 }
   3741 
   3742 bool X86InstrInfo::isHighLatencyDef(int opc) const {
   3743   switch (opc) {
   3744   default: return false;
   3745   case X86::DIVSDrm:
   3746   case X86::DIVSDrm_Int:
   3747   case X86::DIVSDrr:
   3748   case X86::DIVSDrr_Int:
   3749   case X86::DIVSSrm:
   3750   case X86::DIVSSrm_Int:
   3751   case X86::DIVSSrr:
   3752   case X86::DIVSSrr_Int:
   3753   case X86::SQRTPDm:
   3754   case X86::SQRTPDm_Int:
   3755   case X86::SQRTPDr:
   3756   case X86::SQRTPDr_Int:
   3757   case X86::SQRTPSm:
   3758   case X86::SQRTPSm_Int:
   3759   case X86::SQRTPSr:
   3760   case X86::SQRTPSr_Int:
   3761   case X86::SQRTSDm:
   3762   case X86::SQRTSDm_Int:
   3763   case X86::SQRTSDr:
   3764   case X86::SQRTSDr_Int:
   3765   case X86::SQRTSSm:
   3766   case X86::SQRTSSm_Int:
   3767   case X86::SQRTSSr:
   3768   case X86::SQRTSSr_Int:
   3769   // AVX instructions with high latency
   3770   case X86::VDIVSDrm:
   3771   case X86::VDIVSDrm_Int:
   3772   case X86::VDIVSDrr:
   3773   case X86::VDIVSDrr_Int:
   3774   case X86::VDIVSSrm:
   3775   case X86::VDIVSSrm_Int:
   3776   case X86::VDIVSSrr:
   3777   case X86::VDIVSSrr_Int:
   3778   case X86::VSQRTPDm:
   3779   case X86::VSQRTPDm_Int:
   3780   case X86::VSQRTPDr:
   3781   case X86::VSQRTPDr_Int:
   3782   case X86::VSQRTPSm:
   3783   case X86::VSQRTPSm_Int:
   3784   case X86::VSQRTPSr:
   3785   case X86::VSQRTPSr_Int:
   3786   case X86::VSQRTSDm:
   3787   case X86::VSQRTSDm_Int:
   3788   case X86::VSQRTSDr:
   3789   case X86::VSQRTSSm:
   3790   case X86::VSQRTSSm_Int:
   3791   case X86::VSQRTSSr:
   3792     return true;
   3793   }
   3794 }
   3795 
   3796 bool X86InstrInfo::
   3797 hasHighOperandLatency(const InstrItineraryData *ItinData,
   3798                       const MachineRegisterInfo *MRI,
   3799                       const MachineInstr *DefMI, unsigned DefIdx,
   3800                       const MachineInstr *UseMI, unsigned UseIdx) const {
   3801   return isHighLatencyDef(DefMI->getOpcode());
   3802 }
   3803 
   3804 namespace {
   3805   /// CGBR - Create Global Base Reg pass. This initializes the PIC
   3806   /// global base register for x86-32.
   3807   struct CGBR : public MachineFunctionPass {
   3808     static char ID;
   3809     CGBR() : MachineFunctionPass(ID) {}
   3810 
   3811     virtual bool runOnMachineFunction(MachineFunction &MF) {
   3812       const X86TargetMachine *TM =
   3813         static_cast<const X86TargetMachine *>(&MF.getTarget());
   3814 
   3815       assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
   3816              "X86-64 PIC uses RIP relative addressing");
   3817 
   3818       // Only emit a global base reg in PIC mode.
   3819       if (TM->getRelocationModel() != Reloc::PIC_)
   3820         return false;
   3821 
   3822       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   3823       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   3824 
   3825       // If we didn't need a GlobalBaseReg, don't insert code.
   3826       if (GlobalBaseReg == 0)
   3827         return false;
   3828 
   3829       // Insert the set of GlobalBaseReg into the first MBB of the function
   3830       MachineBasicBlock &FirstMBB = MF.front();
   3831       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
   3832       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
   3833       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   3834       const X86InstrInfo *TII = TM->getInstrInfo();
   3835 
   3836       unsigned PC;
   3837       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
   3838         PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
   3839       else
   3840         PC = GlobalBaseReg;
   3841 
   3842       // Operand of MovePCtoStack is completely ignored by asm printer. It's
   3843       // only used in JIT code emission as displacement to pc.
   3844       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
   3845 
   3846       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
   3847       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
   3848       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
   3849         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
   3850         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
   3851           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
   3852                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
   3853       }
   3854 
   3855       return true;
   3856     }
   3857 
   3858     virtual const char *getPassName() const {
   3859       return "X86 PIC Global Base Reg Initialization";
   3860     }
   3861 
   3862     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   3863       AU.setPreservesCFG();
   3864       MachineFunctionPass::getAnalysisUsage(AU);
   3865     }
   3866   };
   3867 }
   3868 
   3869 char CGBR::ID = 0;
   3870 FunctionPass*
   3871 llvm::createGlobalBaseRegPass() { return new CGBR(); }
   3872