Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPCMachineFunctionInfo.h"
     17 #include "PPCPerfectShuffle.h"
     18 #include "PPCTargetMachine.h"
     19 #include "PPCTargetObjectFile.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/CodeGen/MachineFrameInfo.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/SelectionDAG.h"
     27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     28 #include "llvm/IR/CallingConv.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/Intrinsics.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/MathExtras.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Target/TargetOptions.h"
     38 using namespace llvm;
     39 
     40 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
     41 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
     42 
     43 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
     44 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
     45 
     46 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
     47 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
     48 
     49 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
     50   if (TM.getSubtargetImpl()->isDarwin())
     51     return new TargetLoweringObjectFileMachO();
     52 
     53   if (TM.getSubtargetImpl()->isSVR4ABI())
     54     return new PPC64LinuxTargetObjectFile();
     55 
     56   return new TargetLoweringObjectFileELF();
     57 }
     58 
     59 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
     60   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
     61   const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
     62 
     63   setPow2DivIsCheap();
     64 
     65   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     66   setUseUnderscoreSetJmp(true);
     67   setUseUnderscoreLongJmp(true);
     68 
     69   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     70   // arguments are at least 4/8 bytes aligned.
     71   bool isPPC64 = Subtarget->isPPC64();
     72   setMinStackArgumentAlignment(isPPC64 ? 8:4);
     73 
     74   // Set up the register classes.
     75   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
     76   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
     77   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
     78 
     79   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     80   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
     81   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
     82 
     83   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     84 
     85   // PowerPC has pre-inc load and store's.
     86   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     87   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     88   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
     89   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
     90   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
     91   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
     92   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
     93   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
     94   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
     95   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
     96 
     97   // This is used in the ppcf128->int sequence.  Note it has different semantics
     98   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
     99   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    100 
    101   // We do not currently implement these libm ops for PowerPC.
    102   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    103   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    104   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    105   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    106   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    107   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
    108 
    109   // PowerPC has no SREM/UREM instructions
    110   setOperationAction(ISD::SREM, MVT::i32, Expand);
    111   setOperationAction(ISD::UREM, MVT::i32, Expand);
    112   setOperationAction(ISD::SREM, MVT::i64, Expand);
    113   setOperationAction(ISD::UREM, MVT::i64, Expand);
    114 
    115   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    116   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    117   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    118   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    119   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    120   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    121   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    122   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    123   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    124 
    125   // We don't support sin/cos/sqrt/fmod/pow
    126   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    127   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    128   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    129   setOperationAction(ISD::FREM , MVT::f64, Expand);
    130   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    131   setOperationAction(ISD::FMA  , MVT::f64, Legal);
    132   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    133   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    134   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    135   setOperationAction(ISD::FREM , MVT::f32, Expand);
    136   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    137   setOperationAction(ISD::FMA  , MVT::f32, Legal);
    138 
    139   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    140 
    141   // If we're enabling GP optimizations, use hardware square root
    142   if (!Subtarget->hasFSQRT() &&
    143       !(TM.Options.UnsafeFPMath &&
    144         Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
    145     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    146 
    147   if (!Subtarget->hasFSQRT() &&
    148       !(TM.Options.UnsafeFPMath &&
    149         Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
    150     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    151 
    152   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    153   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    154 
    155   if (Subtarget->hasFPRND()) {
    156     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    157     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    158     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    159 
    160     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    161     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    162     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    163 
    164     // frin does not implement "ties to even." Thus, this is safe only in
    165     // fast-math mode.
    166     if (TM.Options.UnsafeFPMath) {
    167       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
    168       setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
    169 
    170       // These need to set FE_INEXACT, and use a custom inserter.
    171       setOperationAction(ISD::FRINT, MVT::f64, Legal);
    172       setOperationAction(ISD::FRINT, MVT::f32, Legal);
    173     }
    174   }
    175 
    176   // PowerPC does not have BSWAP, CTPOP or CTTZ
    177   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    178   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    179   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    180   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    181   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    182   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    183   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    184   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    185 
    186   if (Subtarget->hasPOPCNTD()) {
    187     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    188     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
    189   } else {
    190     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    191     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    192   }
    193 
    194   // PowerPC does not have ROTR
    195   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    196   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    197 
    198   // PowerPC does not have Select
    199   setOperationAction(ISD::SELECT, MVT::i32, Expand);
    200   setOperationAction(ISD::SELECT, MVT::i64, Expand);
    201   setOperationAction(ISD::SELECT, MVT::f32, Expand);
    202   setOperationAction(ISD::SELECT, MVT::f64, Expand);
    203 
    204   // PowerPC wants to turn select_cc of FP into fsel when possible.
    205   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    206   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    207 
    208   // PowerPC wants to optimize integer setcc a bit
    209   setOperationAction(ISD::SETCC, MVT::i32, Custom);
    210 
    211   // PowerPC does not have BRCOND which requires SetCC
    212   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    213 
    214   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    215 
    216   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    217   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    218 
    219   // PowerPC does not have [U|S]INT_TO_FP
    220   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    221   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    222 
    223   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    224   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    225   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    226   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    227 
    228   // We cannot sextinreg(i1).  Expand to shifts.
    229   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    230 
    231   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    232   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    233   // support continuation, user-level threading, and etc.. As a result, no
    234   // other SjLj exception interfaces are implemented and please don't build
    235   // your own exception handling based on them.
    236   // LLVM/Clang supports zero-cost DWARF exception handling.
    237   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    238   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    239 
    240   // We want to legalize GlobalAddress and ConstantPool nodes into the
    241   // appropriate instructions to materialize the address.
    242   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    243   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    244   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    245   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    246   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    247   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    248   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    249   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    250   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    251   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    252 
    253   // TRAP is legal.
    254   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    255 
    256   // TRAMPOLINE is custom lowered.
    257   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    258   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    259 
    260   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    261   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    262 
    263   if (Subtarget->isSVR4ABI()) {
    264     if (isPPC64) {
    265       // VAARG always uses double-word chunks, so promote anything smaller.
    266       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    267       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    268       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    269       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    270       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    271       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    272       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    273       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    274       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    275     } else {
    276       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    277       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    278       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    279     }
    280   } else
    281     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    282 
    283   if (Subtarget->isSVR4ABI() && !isPPC64)
    284     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
    285     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
    286   else
    287     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    288 
    289   // Use the default implementation.
    290   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    291   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    292   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    293   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    294   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    295 
    296   // We want to custom lower some of our intrinsics.
    297   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    298 
    299   // To handle counter-based loop conditions.
    300   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
    301 
    302   // Comparisons that require checking two conditions.
    303   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    304   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    305   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    306   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    307   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    308   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    309   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    310   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    311   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    312   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    313   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    314   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    315 
    316   if (Subtarget->has64BitSupport()) {
    317     // They also have instructions for converting between i64 and fp.
    318     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    319     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    320     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    321     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    322     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    323     // We cannot do this with Promote because i64 is not a legal type.
    324     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    325 
    326     if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
    327       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    328   } else {
    329     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    330     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    331   }
    332 
    333   // With the instructions enabled under FPCVT, we can do everything.
    334   if (PPCSubTarget.hasFPCVT()) {
    335     if (Subtarget->has64BitSupport()) {
    336       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    337       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    338       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    339       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    340     }
    341 
    342     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    343     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    344     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    345     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    346   }
    347 
    348   if (Subtarget->use64BitRegs()) {
    349     // 64-bit PowerPC implementations can support i64 types directly
    350     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    351     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    352     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    353     // 64-bit PowerPC wants to expand i128 shifts itself.
    354     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    355     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    356     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    357   } else {
    358     // 32-bit PowerPC wants to expand i64 shifts itself.
    359     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    360     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    361     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    362   }
    363 
    364   if (Subtarget->hasAltivec()) {
    365     // First set operation action for all vector types to expand. Then we
    366     // will selectively turn on ones that can be effectively codegen'd.
    367     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    368          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    369       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
    370 
    371       // add/sub are legal for all supported vector VT's.
    372       setOperationAction(ISD::ADD , VT, Legal);
    373       setOperationAction(ISD::SUB , VT, Legal);
    374 
    375       // We promote all shuffles to v16i8.
    376       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    377       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    378 
    379       // We promote all non-typed operations to v4i32.
    380       setOperationAction(ISD::AND   , VT, Promote);
    381       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    382       setOperationAction(ISD::OR    , VT, Promote);
    383       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    384       setOperationAction(ISD::XOR   , VT, Promote);
    385       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    386       setOperationAction(ISD::LOAD  , VT, Promote);
    387       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    388       setOperationAction(ISD::SELECT, VT, Promote);
    389       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    390       setOperationAction(ISD::STORE, VT, Promote);
    391       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    392 
    393       // No other operations are legal.
    394       setOperationAction(ISD::MUL , VT, Expand);
    395       setOperationAction(ISD::SDIV, VT, Expand);
    396       setOperationAction(ISD::SREM, VT, Expand);
    397       setOperationAction(ISD::UDIV, VT, Expand);
    398       setOperationAction(ISD::UREM, VT, Expand);
    399       setOperationAction(ISD::FDIV, VT, Expand);
    400       setOperationAction(ISD::FREM, VT, Expand);
    401       setOperationAction(ISD::FNEG, VT, Expand);
    402       setOperationAction(ISD::FSQRT, VT, Expand);
    403       setOperationAction(ISD::FLOG, VT, Expand);
    404       setOperationAction(ISD::FLOG10, VT, Expand);
    405       setOperationAction(ISD::FLOG2, VT, Expand);
    406       setOperationAction(ISD::FEXP, VT, Expand);
    407       setOperationAction(ISD::FEXP2, VT, Expand);
    408       setOperationAction(ISD::FSIN, VT, Expand);
    409       setOperationAction(ISD::FCOS, VT, Expand);
    410       setOperationAction(ISD::FABS, VT, Expand);
    411       setOperationAction(ISD::FPOWI, VT, Expand);
    412       setOperationAction(ISD::FFLOOR, VT, Expand);
    413       setOperationAction(ISD::FCEIL,  VT, Expand);
    414       setOperationAction(ISD::FTRUNC, VT, Expand);
    415       setOperationAction(ISD::FRINT,  VT, Expand);
    416       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    417       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    418       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    419       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    420       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    421       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    422       setOperationAction(ISD::UDIVREM, VT, Expand);
    423       setOperationAction(ISD::SDIVREM, VT, Expand);
    424       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    425       setOperationAction(ISD::FPOW, VT, Expand);
    426       setOperationAction(ISD::CTPOP, VT, Expand);
    427       setOperationAction(ISD::CTLZ, VT, Expand);
    428       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    429       setOperationAction(ISD::CTTZ, VT, Expand);
    430       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    431       setOperationAction(ISD::VSELECT, VT, Expand);
    432       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    433 
    434       for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    435            j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
    436         MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
    437         setTruncStoreAction(VT, InnerVT, Expand);
    438       }
    439       setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
    440       setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
    441       setLoadExtAction(ISD::EXTLOAD, VT, Expand);
    442     }
    443 
    444     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    445     // with merges, splats, etc.
    446     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    447 
    448     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    449     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    450     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    451     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    452     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
    453     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    454     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    455     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    456     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    457     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    458     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    459     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    460     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    461     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    462 
    463     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    464     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    465     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    466     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    467 
    468     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    469     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    470 
    471     if (TM.Options.UnsafeFPMath) {
    472       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    473       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    474     }
    475 
    476     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    477     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    478     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    479 
    480     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    481     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    482 
    483     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    484     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    485     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    486     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    487 
    488     // Altivec does not contain unordered floating-point compare instructions
    489     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    490     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    491     setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
    492     setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
    493     setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
    494     setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
    495 
    496     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    497     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
    498   }
    499 
    500   if (Subtarget->has64BitSupport()) {
    501     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    502     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
    503   }
    504 
    505   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
    506   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
    507   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    508   setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
    509 
    510   setBooleanContents(ZeroOrOneBooleanContent);
    511   // Altivec instructions set fields to all zeros or all ones.
    512   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    513 
    514   if (isPPC64) {
    515     setStackPointerRegisterToSaveRestore(PPC::X1);
    516     setExceptionPointerRegister(PPC::X3);
    517     setExceptionSelectorRegister(PPC::X4);
    518   } else {
    519     setStackPointerRegisterToSaveRestore(PPC::R1);
    520     setExceptionPointerRegister(PPC::R3);
    521     setExceptionSelectorRegister(PPC::R4);
    522   }
    523 
    524   // We have target-specific dag combine patterns for the following nodes:
    525   setTargetDAGCombine(ISD::SINT_TO_FP);
    526   setTargetDAGCombine(ISD::LOAD);
    527   setTargetDAGCombine(ISD::STORE);
    528   setTargetDAGCombine(ISD::BR_CC);
    529   setTargetDAGCombine(ISD::BSWAP);
    530   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    531 
    532   // Use reciprocal estimates.
    533   if (TM.Options.UnsafeFPMath) {
    534     setTargetDAGCombine(ISD::FDIV);
    535     setTargetDAGCombine(ISD::FSQRT);
    536   }
    537 
    538   // Darwin long double math library functions have $LDBL128 appended.
    539   if (Subtarget->isDarwin()) {
    540     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    541     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    542     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    543     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    544     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    545     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    546     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    547     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    548     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    549     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    550   }
    551 
    552   setMinFunctionAlignment(2);
    553   if (PPCSubTarget.isDarwin())
    554     setPrefFunctionAlignment(4);
    555 
    556   if (isPPC64 && Subtarget->isJITCodeModel())
    557     // Temporary workaround for the inability of PPC64 JIT to handle jump
    558     // tables.
    559     setSupportJumpTables(false);
    560 
    561   setInsertFencesForAtomic(true);
    562 
    563   setSchedulingPreference(Sched::Hybrid);
    564 
    565   computeRegisterProperties();
    566 
    567   // The Freescale cores does better with aggressive inlining of memcpy and
    568   // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
    569   if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
    570       Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
    571     MaxStoresPerMemset = 32;
    572     MaxStoresPerMemsetOptSize = 16;
    573     MaxStoresPerMemcpy = 32;
    574     MaxStoresPerMemcpyOptSize = 8;
    575     MaxStoresPerMemmove = 32;
    576     MaxStoresPerMemmoveOptSize = 8;
    577 
    578     setPrefFunctionAlignment(4);
    579   }
    580 }
    581 
    582 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    583 /// function arguments in the caller parameter area.
    584 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
    585   const TargetMachine &TM = getTargetMachine();
    586   // Darwin passes everything on 4 byte boundary.
    587   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
    588     return 4;
    589 
    590   // 16byte and wider vectors are passed on 16byte boundary.
    591   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    592     if (VTy->getBitWidth() >= 128)
    593       return 16;
    594 
    595   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    596    if (PPCSubTarget.isPPC64())
    597      return 8;
    598 
    599   return 4;
    600 }
    601 
    602 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    603   switch (Opcode) {
    604   default: return 0;
    605   case PPCISD::FSEL:            return "PPCISD::FSEL";
    606   case PPCISD::FCFID:           return "PPCISD::FCFID";
    607   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
    608   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
    609   case PPCISD::FRE:             return "PPCISD::FRE";
    610   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
    611   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
    612   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
    613   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
    614   case PPCISD::VPERM:           return "PPCISD::VPERM";
    615   case PPCISD::Hi:              return "PPCISD::Hi";
    616   case PPCISD::Lo:              return "PPCISD::Lo";
    617   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
    618   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
    619   case PPCISD::LOAD:            return "PPCISD::LOAD";
    620   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
    621   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
    622   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
    623   case PPCISD::SRL:             return "PPCISD::SRL";
    624   case PPCISD::SRA:             return "PPCISD::SRA";
    625   case PPCISD::SHL:             return "PPCISD::SHL";
    626   case PPCISD::CALL:            return "PPCISD::CALL";
    627   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
    628   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
    629   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
    630   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
    631   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
    632   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
    633   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
    634   case PPCISD::VCMP:            return "PPCISD::VCMP";
    635   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
    636   case PPCISD::LBRX:            return "PPCISD::LBRX";
    637   case PPCISD::STBRX:           return "PPCISD::STBRX";
    638   case PPCISD::LARX:            return "PPCISD::LARX";
    639   case PPCISD::STCX:            return "PPCISD::STCX";
    640   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
    641   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
    642   case PPCISD::BDZ:             return "PPCISD::BDZ";
    643   case PPCISD::MFFS:            return "PPCISD::MFFS";
    644   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
    645   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
    646   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
    647   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
    648   case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
    649   case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
    650   case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
    651   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
    652   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
    653   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
    654   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
    655   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
    656   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
    657   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
    658   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
    659   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
    660   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
    661   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
    662   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
    663   case PPCISD::SC:              return "PPCISD::SC";
    664   }
    665 }
    666 
    667 EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
    668   if (!VT.isVector())
    669     return MVT::i32;
    670   return VT.changeVectorElementTypeToInteger();
    671 }
    672 
    673 //===----------------------------------------------------------------------===//
    674 // Node matching predicates, for use by the tblgen matching code.
    675 //===----------------------------------------------------------------------===//
    676 
    677 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
    678 static bool isFloatingPointZero(SDValue Op) {
    679   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    680     return CFP->getValueAPF().isZero();
    681   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
    682     // Maybe this has already been legalized into the constant pool?
    683     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
    684       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
    685         return CFP->getValueAPF().isZero();
    686   }
    687   return false;
    688 }
    689 
    690 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
    691 /// true if Op is undef or if it matches the specified value.
    692 static bool isConstantOrUndef(int Op, int Val) {
    693   return Op < 0 || Op == Val;
    694 }
    695 
    696 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    697 /// VPKUHUM instruction.
    698 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    699   if (!isUnary) {
    700     for (unsigned i = 0; i != 16; ++i)
    701       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
    702         return false;
    703   } else {
    704     for (unsigned i = 0; i != 8; ++i)
    705       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
    706           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
    707         return false;
    708   }
    709   return true;
    710 }
    711 
    712 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    713 /// VPKUWUM instruction.
    714 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    715   if (!isUnary) {
    716     for (unsigned i = 0; i != 16; i += 2)
    717       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    718           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
    719         return false;
    720   } else {
    721     for (unsigned i = 0; i != 8; i += 2)
    722       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    723           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
    724           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
    725           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
    726         return false;
    727   }
    728   return true;
    729 }
    730 
    731 /// isVMerge - Common function, used to match vmrg* shuffles.
    732 ///
    733 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
    734                      unsigned LHSStart, unsigned RHSStart) {
    735   assert(N->getValueType(0) == MVT::v16i8 &&
    736          "PPC only supports shuffles by bytes!");
    737   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
    738          "Unsupported merge size!");
    739 
    740   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
    741     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
    742       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
    743                              LHSStart+j+i*UnitSize) ||
    744           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
    745                              RHSStart+j+i*UnitSize))
    746         return false;
    747     }
    748   return true;
    749 }
    750 
    751 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    752 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    753 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    754                              bool isUnary) {
    755   if (!isUnary)
    756     return isVMerge(N, UnitSize, 8, 24);
    757   return isVMerge(N, UnitSize, 8, 8);
    758 }
    759 
    760 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    761 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    762 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    763                              bool isUnary) {
    764   if (!isUnary)
    765     return isVMerge(N, UnitSize, 0, 16);
    766   return isVMerge(N, UnitSize, 0, 0);
    767 }
    768 
    769 
    770 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    771 /// amount, otherwise return -1.
    772 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
    773   assert(N->getValueType(0) == MVT::v16i8 &&
    774          "PPC only supports shuffles by bytes!");
    775 
    776   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    777 
    778   // Find the first non-undef value in the shuffle mask.
    779   unsigned i;
    780   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
    781     /*search*/;
    782 
    783   if (i == 16) return -1;  // all undef.
    784 
    785   // Otherwise, check to see if the rest of the elements are consecutively
    786   // numbered from this value.
    787   unsigned ShiftAmt = SVOp->getMaskElt(i);
    788   if (ShiftAmt < i) return -1;
    789   ShiftAmt -= i;
    790 
    791   if (!isUnary) {
    792     // Check the rest of the elements to see if they are consecutive.
    793     for (++i; i != 16; ++i)
    794       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
    795         return -1;
    796   } else {
    797     // Check the rest of the elements to see if they are consecutive.
    798     for (++i; i != 16; ++i)
    799       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
    800         return -1;
    801   }
    802   return ShiftAmt;
    803 }
    804 
    805 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    806 /// specifies a splat of a single element that is suitable for input to
    807 /// VSPLTB/VSPLTH/VSPLTW.
    808 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
    809   assert(N->getValueType(0) == MVT::v16i8 &&
    810          (EltSize == 1 || EltSize == 2 || EltSize == 4));
    811 
    812   // This is a splat operation if each element of the permute is the same, and
    813   // if the value doesn't reference the second vector.
    814   unsigned ElementBase = N->getMaskElt(0);
    815 
    816   // FIXME: Handle UNDEF elements too!
    817   if (ElementBase >= 16)
    818     return false;
    819 
    820   // Check that the indices are consecutive, in the case of a multi-byte element
    821   // splatted with a v16i8 mask.
    822   for (unsigned i = 1; i != EltSize; ++i)
    823     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
    824       return false;
    825 
    826   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
    827     if (N->getMaskElt(i) < 0) continue;
    828     for (unsigned j = 0; j != EltSize; ++j)
    829       if (N->getMaskElt(i+j) != N->getMaskElt(j))
    830         return false;
    831   }
    832   return true;
    833 }
    834 
    835 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    836 /// are -0.0.
    837 bool PPC::isAllNegativeZeroVector(SDNode *N) {
    838   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
    839 
    840   APInt APVal, APUndef;
    841   unsigned BitSize;
    842   bool HasAnyUndefs;
    843 
    844   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
    845     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
    846       return CFP->getValueAPF().isNegZero();
    847 
    848   return false;
    849 }
    850 
    851 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    852 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    853 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
    854   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    855   assert(isSplatShuffleMask(SVOp, EltSize));
    856   return SVOp->getMaskElt(0) / EltSize;
    857 }
    858 
    859 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
    860 /// by using a vspltis[bhw] instruction of the specified element size, return
    861 /// the constant being splatted.  The ByteSize field indicates the number of
    862 /// bytes of each element [124] -> [bhw].
    863 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
    864   SDValue OpVal(0, 0);
    865 
    866   // If ByteSize of the splat is bigger than the element size of the
    867   // build_vector, then we have a case where we are checking for a splat where
    868   // multiple elements of the buildvector are folded together into a single
    869   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
    870   unsigned EltSize = 16/N->getNumOperands();
    871   if (EltSize < ByteSize) {
    872     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
    873     SDValue UniquedVals[4];
    874     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
    875 
    876     // See if all of the elements in the buildvector agree across.
    877     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    878       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    879       // If the element isn't a constant, bail fully out.
    880       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
    881 
    882 
    883       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
    884         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
    885       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
    886         return SDValue();  // no match.
    887     }
    888 
    889     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
    890     // either constant or undef values that are identical for each chunk.  See
    891     // if these chunks can form into a larger vspltis*.
    892 
    893     // Check to see if all of the leading entries are either 0 or -1.  If
    894     // neither, then this won't fit into the immediate field.
    895     bool LeadingZero = true;
    896     bool LeadingOnes = true;
    897     for (unsigned i = 0; i != Multiple-1; ++i) {
    898       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
    899 
    900       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
    901       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
    902     }
    903     // Finally, check the least significant entry.
    904     if (LeadingZero) {
    905       if (UniquedVals[Multiple-1].getNode() == 0)
    906         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
    907       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
    908       if (Val < 16)
    909         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
    910     }
    911     if (LeadingOnes) {
    912       if (UniquedVals[Multiple-1].getNode() == 0)
    913         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
    914       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
    915       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
    916         return DAG.getTargetConstant(Val, MVT::i32);
    917     }
    918 
    919     return SDValue();
    920   }
    921 
    922   // Check to see if this buildvec has a single non-undef value in its elements.
    923   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    924     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    925     if (OpVal.getNode() == 0)
    926       OpVal = N->getOperand(i);
    927     else if (OpVal != N->getOperand(i))
    928       return SDValue();
    929   }
    930 
    931   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
    932 
    933   unsigned ValSizeInBytes = EltSize;
    934   uint64_t Value = 0;
    935   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
    936     Value = CN->getZExtValue();
    937   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
    938     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
    939     Value = FloatToBits(CN->getValueAPF().convertToFloat());
    940   }
    941 
    942   // If the splat value is larger than the element value, then we can never do
    943   // this splat.  The only case that we could fit the replicated bits into our
    944   // immediate field for would be zero, and we prefer to use vxor for it.
    945   if (ValSizeInBytes < ByteSize) return SDValue();
    946 
    947   // If the element value is larger than the splat value, cut it in half and
    948   // check to see if the two halves are equal.  Continue doing this until we
    949   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
    950   while (ValSizeInBytes > ByteSize) {
    951     ValSizeInBytes >>= 1;
    952 
    953     // If the top half equals the bottom half, we're still ok.
    954     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
    955          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
    956       return SDValue();
    957   }
    958 
    959   // Properly sign extend the value.
    960   int MaskVal = SignExtend32(Value, ByteSize * 8);
    961 
    962   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
    963   if (MaskVal == 0) return SDValue();
    964 
    965   // Finally, if this value fits in a 5 bit sext field, return it
    966   if (SignExtend32<5>(MaskVal) == MaskVal)
    967     return DAG.getTargetConstant(MaskVal, MVT::i32);
    968   return SDValue();
    969 }
    970 
    971 //===----------------------------------------------------------------------===//
    972 //  Addressing Mode Selection
    973 //===----------------------------------------------------------------------===//
    974 
    975 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
    976 /// or 64-bit immediate, and if the value can be accurately represented as a
    977 /// sign extension from a 16-bit value.  If so, this returns true and the
    978 /// immediate.
    979 static bool isIntS16Immediate(SDNode *N, short &Imm) {
    980   if (N->getOpcode() != ISD::Constant)
    981     return false;
    982 
    983   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
    984   if (N->getValueType(0) == MVT::i32)
    985     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
    986   else
    987     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
    988 }
    989 static bool isIntS16Immediate(SDValue Op, short &Imm) {
    990   return isIntS16Immediate(Op.getNode(), Imm);
    991 }
    992 
    993 
    994 /// SelectAddressRegReg - Given the specified addressed, check to see if it
    995 /// can be represented as an indexed [r+r] operation.  Returns false if it
    996 /// can be more efficiently represented with [r+imm].
    997 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
    998                                             SDValue &Index,
    999                                             SelectionDAG &DAG) const {
   1000   short imm = 0;
   1001   if (N.getOpcode() == ISD::ADD) {
   1002     if (isIntS16Immediate(N.getOperand(1), imm))
   1003       return false;    // r+i
   1004     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
   1005       return false;    // r+i
   1006 
   1007     Base = N.getOperand(0);
   1008     Index = N.getOperand(1);
   1009     return true;
   1010   } else if (N.getOpcode() == ISD::OR) {
   1011     if (isIntS16Immediate(N.getOperand(1), imm))
   1012       return false;    // r+i can fold it if we can.
   1013 
   1014     // If this is an or of disjoint bitfields, we can codegen this as an add
   1015     // (for better address arithmetic) if the LHS and RHS of the OR are provably
   1016     // disjoint.
   1017     APInt LHSKnownZero, LHSKnownOne;
   1018     APInt RHSKnownZero, RHSKnownOne;
   1019     DAG.ComputeMaskedBits(N.getOperand(0),
   1020                           LHSKnownZero, LHSKnownOne);
   1021 
   1022     if (LHSKnownZero.getBoolValue()) {
   1023       DAG.ComputeMaskedBits(N.getOperand(1),
   1024                             RHSKnownZero, RHSKnownOne);
   1025       // If all of the bits are known zero on the LHS or RHS, the add won't
   1026       // carry.
   1027       if (~(LHSKnownZero | RHSKnownZero) == 0) {
   1028         Base = N.getOperand(0);
   1029         Index = N.getOperand(1);
   1030         return true;
   1031       }
   1032     }
   1033   }
   1034 
   1035   return false;
   1036 }
   1037 
   1038 // If we happen to be doing an i64 load or store into a stack slot that has
   1039 // less than a 4-byte alignment, then the frame-index elimination may need to
   1040 // use an indexed load or store instruction (because the offset may not be a
   1041 // multiple of 4). The extra register needed to hold the offset comes from the
   1042 // register scavenger, and it is possible that the scavenger will need to use
   1043 // an emergency spill slot. As a result, we need to make sure that a spill slot
   1044 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
   1045 // stack slot.
   1046 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
   1047   // FIXME: This does not handle the LWA case.
   1048   if (VT != MVT::i64)
   1049     return;
   1050 
   1051   // NOTE: We'll exclude negative FIs here, which come from argument
   1052   // lowering, because there are no known test cases triggering this problem
   1053   // using packed structures (or similar). We can remove this exclusion if
   1054   // we find such a test case. The reason why this is so test-case driven is
   1055   // because this entire 'fixup' is only to prevent crashes (from the
   1056   // register scavenger) on not-really-valid inputs. For example, if we have:
   1057   //   %a = alloca i1
   1058   //   %b = bitcast i1* %a to i64*
   1059   //   store i64* a, i64 b
   1060   // then the store should really be marked as 'align 1', but is not. If it
   1061   // were marked as 'align 1' then the indexed form would have been
   1062   // instruction-selected initially, and the problem this 'fixup' is preventing
   1063   // won't happen regardless.
   1064   if (FrameIdx < 0)
   1065     return;
   1066 
   1067   MachineFunction &MF = DAG.getMachineFunction();
   1068   MachineFrameInfo *MFI = MF.getFrameInfo();
   1069 
   1070   unsigned Align = MFI->getObjectAlignment(FrameIdx);
   1071   if (Align >= 4)
   1072     return;
   1073 
   1074   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1075   FuncInfo->setHasNonRISpills();
   1076 }
   1077 
   1078 /// Returns true if the address N can be represented by a base register plus
   1079 /// a signed 16-bit displacement [r+imm], and if it is not better
   1080 /// represented as reg+reg.  If Aligned is true, only accept displacements
   1081 /// suitable for STD and friends, i.e. multiples of 4.
   1082 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
   1083                                             SDValue &Base,
   1084                                             SelectionDAG &DAG,
   1085                                             bool Aligned) const {
   1086   // FIXME dl should come from parent load or store, not from address
   1087   SDLoc dl(N);
   1088   // If this can be more profitably realized as r+r, fail.
   1089   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1090     return false;
   1091 
   1092   if (N.getOpcode() == ISD::ADD) {
   1093     short imm = 0;
   1094     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1095         (!Aligned || (imm & 3) == 0)) {
   1096       Disp = DAG.getTargetConstant(imm, N.getValueType());
   1097       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1098         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1099         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1100       } else {
   1101         Base = N.getOperand(0);
   1102       }
   1103       return true; // [r+i]
   1104     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1105       // Match LOAD (ADD (X, Lo(G))).
   1106       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1107              && "Cannot handle constant offsets yet!");
   1108       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1109       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1110              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   1111              Disp.getOpcode() == ISD::TargetConstantPool ||
   1112              Disp.getOpcode() == ISD::TargetJumpTable);
   1113       Base = N.getOperand(0);
   1114       return true;  // [&g+r]
   1115     }
   1116   } else if (N.getOpcode() == ISD::OR) {
   1117     short imm = 0;
   1118     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1119         (!Aligned || (imm & 3) == 0)) {
   1120       // If this is an or of disjoint bitfields, we can codegen this as an add
   1121       // (for better address arithmetic) if the LHS and RHS of the OR are
   1122       // provably disjoint.
   1123       APInt LHSKnownZero, LHSKnownOne;
   1124       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1125 
   1126       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1127         // If all of the bits are known zero on the LHS or RHS, the add won't
   1128         // carry.
   1129         Base = N.getOperand(0);
   1130         Disp = DAG.getTargetConstant(imm, N.getValueType());
   1131         return true;
   1132       }
   1133     }
   1134   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1135     // Loading from a constant address.
   1136 
   1137     // If this address fits entirely in a 16-bit sext immediate field, codegen
   1138     // this as "d, 0"
   1139     short Imm;
   1140     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
   1141       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
   1142       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1143                              CN->getValueType(0));
   1144       return true;
   1145     }
   1146 
   1147     // Handle 32-bit sext immediates with LIS + addr mode.
   1148     if ((CN->getValueType(0) == MVT::i32 ||
   1149          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
   1150         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
   1151       int Addr = (int)CN->getZExtValue();
   1152 
   1153       // Otherwise, break this down into an LIS + disp.
   1154       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
   1155 
   1156       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
   1157       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1158       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   1159       return true;
   1160     }
   1161   }
   1162 
   1163   Disp = DAG.getTargetConstant(0, getPointerTy());
   1164   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
   1165     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1166     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1167   } else
   1168     Base = N;
   1169   return true;      // [r+0]
   1170 }
   1171 
   1172 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   1173 /// represented as an indexed [r+r] operation.
   1174 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   1175                                                 SDValue &Index,
   1176                                                 SelectionDAG &DAG) const {
   1177   // Check to see if we can easily represent this as an [r+r] address.  This
   1178   // will fail if it thinks that the address is more profitably represented as
   1179   // reg+imm, e.g. where imm = 0.
   1180   if (SelectAddressRegReg(N, Base, Index, DAG))
   1181     return true;
   1182 
   1183   // If the operand is an addition, always emit this as [r+r], since this is
   1184   // better (for code size, and execution, as the memop does the add for free)
   1185   // than emitting an explicit add.
   1186   if (N.getOpcode() == ISD::ADD) {
   1187     Base = N.getOperand(0);
   1188     Index = N.getOperand(1);
   1189     return true;
   1190   }
   1191 
   1192   // Otherwise, do it the hard way, using R0 as the base register.
   1193   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1194                          N.getValueType());
   1195   Index = N;
   1196   return true;
   1197 }
   1198 
   1199 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1200 /// offset pointer and addressing mode by reference if the node's address
   1201 /// can be legally represented as pre-indexed load / store address.
   1202 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1203                                                   SDValue &Offset,
   1204                                                   ISD::MemIndexedMode &AM,
   1205                                                   SelectionDAG &DAG) const {
   1206   if (DisablePPCPreinc) return false;
   1207 
   1208   bool isLoad = true;
   1209   SDValue Ptr;
   1210   EVT VT;
   1211   unsigned Alignment;
   1212   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1213     Ptr = LD->getBasePtr();
   1214     VT = LD->getMemoryVT();
   1215     Alignment = LD->getAlignment();
   1216   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1217     Ptr = ST->getBasePtr();
   1218     VT  = ST->getMemoryVT();
   1219     Alignment = ST->getAlignment();
   1220     isLoad = false;
   1221   } else
   1222     return false;
   1223 
   1224   // PowerPC doesn't have preinc load/store instructions for vectors.
   1225   if (VT.isVector())
   1226     return false;
   1227 
   1228   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
   1229 
   1230     // Common code will reject creating a pre-inc form if the base pointer
   1231     // is a frame index, or if N is a store and the base pointer is either
   1232     // the same as or a predecessor of the value being stored.  Check for
   1233     // those situations here, and try with swapped Base/Offset instead.
   1234     bool Swap = false;
   1235 
   1236     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
   1237       Swap = true;
   1238     else if (!isLoad) {
   1239       SDValue Val = cast<StoreSDNode>(N)->getValue();
   1240       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
   1241         Swap = true;
   1242     }
   1243 
   1244     if (Swap)
   1245       std::swap(Base, Offset);
   1246 
   1247     AM = ISD::PRE_INC;
   1248     return true;
   1249   }
   1250 
   1251   // LDU/STU can only handle immediates that are a multiple of 4.
   1252   if (VT != MVT::i64) {
   1253     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
   1254       return false;
   1255   } else {
   1256     // LDU/STU need an address with at least 4-byte alignment.
   1257     if (Alignment < 4)
   1258       return false;
   1259 
   1260     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
   1261       return false;
   1262   }
   1263 
   1264   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1265     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1266     // sext i32 to i64 when addr mode is r+i.
   1267     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1268         LD->getExtensionType() == ISD::SEXTLOAD &&
   1269         isa<ConstantSDNode>(Offset))
   1270       return false;
   1271   }
   1272 
   1273   AM = ISD::PRE_INC;
   1274   return true;
   1275 }
   1276 
   1277 //===----------------------------------------------------------------------===//
   1278 //  LowerOperation implementation
   1279 //===----------------------------------------------------------------------===//
   1280 
   1281 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1282 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1283 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
   1284                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
   1285   HiOpFlags = PPCII::MO_HA;
   1286   LoOpFlags = PPCII::MO_LO;
   1287 
   1288   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
   1289   // non-darwin platform.  We don't support PIC on other platforms yet.
   1290   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
   1291                TM.getSubtarget<PPCSubtarget>().isDarwin();
   1292   if (isPIC) {
   1293     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1294     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1295   }
   1296 
   1297   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1298   // sure that instruction lowering adds it.
   1299   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
   1300     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1301     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1302 
   1303     if (GV->hasHiddenVisibility()) {
   1304       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1305       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1306     }
   1307   }
   1308 
   1309   return isPIC;
   1310 }
   1311 
   1312 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1313                              SelectionDAG &DAG) {
   1314   EVT PtrVT = HiPart.getValueType();
   1315   SDValue Zero = DAG.getConstant(0, PtrVT);
   1316   SDLoc DL(HiPart);
   1317 
   1318   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1319   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1320 
   1321   // With PIC, the first instruction is actually "GR+hi(&G)".
   1322   if (isPIC)
   1323     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1324                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1325 
   1326   // Generate non-pic code that has direct accesses to the constant pool.
   1327   // The address of the global is just (hi(&g)+lo(&g)).
   1328   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1329 }
   1330 
   1331 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   1332                                              SelectionDAG &DAG) const {
   1333   EVT PtrVT = Op.getValueType();
   1334   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   1335   const Constant *C = CP->getConstVal();
   1336 
   1337   // 64-bit SVR4 ABI code is always position-independent.
   1338   // The actual address of the GlobalValue is stored in the TOC.
   1339   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1340     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   1341     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
   1342                        DAG.getRegister(PPC::X2, MVT::i64));
   1343   }
   1344 
   1345   unsigned MOHiFlag, MOLoFlag;
   1346   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1347   SDValue CPIHi =
   1348     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   1349   SDValue CPILo =
   1350     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   1351   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   1352 }
   1353 
   1354 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   1355   EVT PtrVT = Op.getValueType();
   1356   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1357 
   1358   // 64-bit SVR4 ABI code is always position-independent.
   1359   // The actual address of the GlobalValue is stored in the TOC.
   1360   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1361     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   1362     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
   1363                        DAG.getRegister(PPC::X2, MVT::i64));
   1364   }
   1365 
   1366   unsigned MOHiFlag, MOLoFlag;
   1367   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1368   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   1369   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   1370   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   1371 }
   1372 
   1373 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   1374                                              SelectionDAG &DAG) const {
   1375   EVT PtrVT = Op.getValueType();
   1376 
   1377   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1378 
   1379   unsigned MOHiFlag, MOLoFlag;
   1380   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1381   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   1382   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   1383   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   1384 }
   1385 
   1386 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   1387                                               SelectionDAG &DAG) const {
   1388 
   1389   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   1390   SDLoc dl(GA);
   1391   const GlobalValue *GV = GA->getGlobal();
   1392   EVT PtrVT = getPointerTy();
   1393   bool is64bit = PPCSubTarget.isPPC64();
   1394 
   1395   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   1396 
   1397   if (Model == TLSModel::LocalExec) {
   1398     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1399                                                PPCII::MO_TPREL_HA);
   1400     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1401                                                PPCII::MO_TPREL_LO);
   1402     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   1403                                      is64bit ? MVT::i64 : MVT::i32);
   1404     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   1405     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   1406   }
   1407 
   1408   if (!is64bit)
   1409     llvm_unreachable("only local-exec is currently supported for ppc32");
   1410 
   1411   if (Model == TLSModel::InitialExec) {
   1412     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1413     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1414                                                 PPCII::MO_TLS);
   1415     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1416     SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   1417                                      PtrVT, GOTReg, TGA);
   1418     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   1419                                    PtrVT, TGA, TPOffsetHi);
   1420     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
   1421   }
   1422 
   1423   if (Model == TLSModel::GeneralDynamic) {
   1424     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1425     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1426     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   1427                                      GOTReg, TGA);
   1428     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
   1429                                    GOTEntryHi, TGA);
   1430 
   1431     // We need a chain node, and don't have one handy.  The underlying
   1432     // call has no side effects, so using the function entry node
   1433     // suffices.
   1434     SDValue Chain = DAG.getEntryNode();
   1435     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
   1436     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
   1437     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
   1438                                   PtrVT, ParmReg, TGA);
   1439     // The return value from GET_TLS_ADDR really is in X3 already, but
   1440     // some hacks are needed here to tie everything together.  The extra
   1441     // copies dissolve during subsequent transforms.
   1442     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
   1443     return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
   1444   }
   1445 
   1446   if (Model == TLSModel::LocalDynamic) {
   1447     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1448     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1449     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   1450                                      GOTReg, TGA);
   1451     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
   1452                                    GOTEntryHi, TGA);
   1453 
   1454     // We need a chain node, and don't have one handy.  The underlying
   1455     // call has no side effects, so using the function entry node
   1456     // suffices.
   1457     SDValue Chain = DAG.getEntryNode();
   1458     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
   1459     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
   1460     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
   1461                                   PtrVT, ParmReg, TGA);
   1462     // The return value from GET_TLSLD_ADDR really is in X3 already, but
   1463     // some hacks are needed here to tie everything together.  The extra
   1464     // copies dissolve during subsequent transforms.
   1465     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
   1466     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
   1467                                       Chain, ParmReg, TGA);
   1468     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   1469   }
   1470 
   1471   llvm_unreachable("Unknown TLS model!");
   1472 }
   1473 
   1474 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   1475                                               SelectionDAG &DAG) const {
   1476   EVT PtrVT = Op.getValueType();
   1477   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   1478   SDLoc DL(GSDN);
   1479   const GlobalValue *GV = GSDN->getGlobal();
   1480 
   1481   // 64-bit SVR4 ABI code is always position-independent.
   1482   // The actual address of the GlobalValue is stored in the TOC.
   1483   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1484     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   1485     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
   1486                        DAG.getRegister(PPC::X2, MVT::i64));
   1487   }
   1488 
   1489   unsigned MOHiFlag, MOLoFlag;
   1490   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
   1491 
   1492   SDValue GAHi =
   1493     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   1494   SDValue GALo =
   1495     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   1496 
   1497   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   1498 
   1499   // If the global reference is actually to a non-lazy-pointer, we have to do an
   1500   // extra load to get the address of the global.
   1501   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   1502     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   1503                       false, false, false, 0);
   1504   return Ptr;
   1505 }
   1506 
   1507 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1508   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   1509   SDLoc dl(Op);
   1510 
   1511   // If we're comparing for equality to zero, expose the fact that this is
   1512   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   1513   // fold the new nodes.
   1514   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1515     if (C->isNullValue() && CC == ISD::SETEQ) {
   1516       EVT VT = Op.getOperand(0).getValueType();
   1517       SDValue Zext = Op.getOperand(0);
   1518       if (VT.bitsLT(MVT::i32)) {
   1519         VT = MVT::i32;
   1520         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   1521       }
   1522       unsigned Log2b = Log2_32(VT.getSizeInBits());
   1523       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   1524       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   1525                                 DAG.getConstant(Log2b, MVT::i32));
   1526       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   1527     }
   1528     // Leave comparisons against 0 and -1 alone for now, since they're usually
   1529     // optimized.  FIXME: revisit this when we can custom lower all setcc
   1530     // optimizations.
   1531     if (C->isAllOnesValue() || C->isNullValue())
   1532       return SDValue();
   1533   }
   1534 
   1535   // If we have an integer seteq/setne, turn it into a compare against zero
   1536   // by xor'ing the rhs with the lhs, which is faster than setting a
   1537   // condition register, reading it back out, and masking the correct bit.  The
   1538   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   1539   // the result to other bit-twiddling opportunities.
   1540   EVT LHSVT = Op.getOperand(0).getValueType();
   1541   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   1542     EVT VT = Op.getValueType();
   1543     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   1544                                 Op.getOperand(1));
   1545     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
   1546   }
   1547   return SDValue();
   1548 }
   1549 
   1550 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   1551                                       const PPCSubtarget &Subtarget) const {
   1552   SDNode *Node = Op.getNode();
   1553   EVT VT = Node->getValueType(0);
   1554   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1555   SDValue InChain = Node->getOperand(0);
   1556   SDValue VAListPtr = Node->getOperand(1);
   1557   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   1558   SDLoc dl(Node);
   1559 
   1560   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   1561 
   1562   // gpr_index
   1563   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1564                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   1565                                     false, false, 0);
   1566   InChain = GprIndex.getValue(1);
   1567 
   1568   if (VT == MVT::i64) {
   1569     // Check if GprIndex is even
   1570     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   1571                                  DAG.getConstant(1, MVT::i32));
   1572     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   1573                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
   1574     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   1575                                           DAG.getConstant(1, MVT::i32));
   1576     // Align GprIndex to be even if it isn't
   1577     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   1578                            GprIndex);
   1579   }
   1580 
   1581   // fpr index is 1 byte after gpr
   1582   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1583                                DAG.getConstant(1, MVT::i32));
   1584 
   1585   // fpr
   1586   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1587                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   1588                                     false, false, 0);
   1589   InChain = FprIndex.getValue(1);
   1590 
   1591   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1592                                        DAG.getConstant(8, MVT::i32));
   1593 
   1594   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1595                                         DAG.getConstant(4, MVT::i32));
   1596 
   1597   // areas
   1598   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   1599                                      MachinePointerInfo(), false, false,
   1600                                      false, 0);
   1601   InChain = OverflowArea.getValue(1);
   1602 
   1603   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   1604                                     MachinePointerInfo(), false, false,
   1605                                     false, 0);
   1606   InChain = RegSaveArea.getValue(1);
   1607 
   1608   // select overflow_area if index > 8
   1609   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   1610                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
   1611 
   1612   // adjustment constant gpr_index * 4/8
   1613   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   1614                                     VT.isInteger() ? GprIndex : FprIndex,
   1615                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
   1616                                                     MVT::i32));
   1617 
   1618   // OurReg = RegSaveArea + RegConstant
   1619   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   1620                                RegConstant);
   1621 
   1622   // Floating types are 32 bytes into RegSaveArea
   1623   if (VT.isFloatingPoint())
   1624     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   1625                          DAG.getConstant(32, MVT::i32));
   1626 
   1627   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   1628   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   1629                                    VT.isInteger() ? GprIndex : FprIndex,
   1630                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
   1631                                                    MVT::i32));
   1632 
   1633   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   1634                               VT.isInteger() ? VAListPtr : FprPtr,
   1635                               MachinePointerInfo(SV),
   1636                               MVT::i8, false, false, 0);
   1637 
   1638   // determine if we should load from reg_save_area or overflow_area
   1639   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   1640 
   1641   // increase overflow_area by 4/8 if gpr/fpr > 8
   1642   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   1643                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   1644                                           MVT::i32));
   1645 
   1646   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   1647                              OverflowAreaPlusN);
   1648 
   1649   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   1650                               OverflowAreaPtr,
   1651                               MachinePointerInfo(),
   1652                               MVT::i32, false, false, 0);
   1653 
   1654   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   1655                      false, false, false, 0);
   1656 }
   1657 
   1658 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
   1659                                        const PPCSubtarget &Subtarget) const {
   1660   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
   1661 
   1662   // We have to copy the entire va_list struct:
   1663   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
   1664   return DAG.getMemcpy(Op.getOperand(0), Op,
   1665                        Op.getOperand(1), Op.getOperand(2),
   1666                        DAG.getConstant(12, MVT::i32), 8, false, true,
   1667                        MachinePointerInfo(), MachinePointerInfo());
   1668 }
   1669 
   1670 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   1671                                                   SelectionDAG &DAG) const {
   1672   return Op.getOperand(0);
   1673 }
   1674 
   1675 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   1676                                                 SelectionDAG &DAG) const {
   1677   SDValue Chain = Op.getOperand(0);
   1678   SDValue Trmp = Op.getOperand(1); // trampoline
   1679   SDValue FPtr = Op.getOperand(2); // nested function
   1680   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   1681   SDLoc dl(Op);
   1682 
   1683   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1684   bool isPPC64 = (PtrVT == MVT::i64);
   1685   Type *IntPtrTy =
   1686     DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
   1687                                                              *DAG.getContext());
   1688 
   1689   TargetLowering::ArgListTy Args;
   1690   TargetLowering::ArgListEntry Entry;
   1691 
   1692   Entry.Ty = IntPtrTy;
   1693   Entry.Node = Trmp; Args.push_back(Entry);
   1694 
   1695   // TrampSize == (isPPC64 ? 48 : 40);
   1696   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
   1697                                isPPC64 ? MVT::i64 : MVT::i32);
   1698   Args.push_back(Entry);
   1699 
   1700   Entry.Node = FPtr; Args.push_back(Entry);
   1701   Entry.Node = Nest; Args.push_back(Entry);
   1702 
   1703   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   1704   TargetLowering::CallLoweringInfo CLI(Chain,
   1705                                        Type::getVoidTy(*DAG.getContext()),
   1706                                        false, false, false, false, 0,
   1707                                        CallingConv::C,
   1708                 /*isTailCall=*/false,
   1709                                        /*doesNotRet=*/false,
   1710                                        /*isReturnValueUsed=*/true,
   1711                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   1712                 Args, DAG, dl);
   1713   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   1714 
   1715   return CallResult.second;
   1716 }
   1717 
   1718 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   1719                                         const PPCSubtarget &Subtarget) const {
   1720   MachineFunction &MF = DAG.getMachineFunction();
   1721   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1722 
   1723   SDLoc dl(Op);
   1724 
   1725   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   1726     // vastart just stores the address of the VarArgsFrameIndex slot into the
   1727     // memory location argument.
   1728     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1729     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1730     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1731     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   1732                         MachinePointerInfo(SV),
   1733                         false, false, 0);
   1734   }
   1735 
   1736   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   1737   // We suppose the given va_list is already allocated.
   1738   //
   1739   // typedef struct {
   1740   //  char gpr;     /* index into the array of 8 GPRs
   1741   //                 * stored in the register save area
   1742   //                 * gpr=0 corresponds to r3,
   1743   //                 * gpr=1 to r4, etc.
   1744   //                 */
   1745   //  char fpr;     /* index into the array of 8 FPRs
   1746   //                 * stored in the register save area
   1747   //                 * fpr=0 corresponds to f1,
   1748   //                 * fpr=1 to f2, etc.
   1749   //                 */
   1750   //  char *overflow_arg_area;
   1751   //                /* location on stack that holds
   1752   //                 * the next overflow argument
   1753   //                 */
   1754   //  char *reg_save_area;
   1755   //               /* where r3:r10 and f1:f8 (if saved)
   1756   //                * are stored
   1757   //                */
   1758   // } va_list[1];
   1759 
   1760 
   1761   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
   1762   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
   1763 
   1764 
   1765   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1766 
   1767   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   1768                                             PtrVT);
   1769   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1770                                  PtrVT);
   1771 
   1772   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   1773   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
   1774 
   1775   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   1776   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
   1777 
   1778   uint64_t FPROffset = 1;
   1779   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
   1780 
   1781   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1782 
   1783   // Store first byte : number of int regs
   1784   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   1785                                          Op.getOperand(1),
   1786                                          MachinePointerInfo(SV),
   1787                                          MVT::i8, false, false, 0);
   1788   uint64_t nextOffset = FPROffset;
   1789   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   1790                                   ConstFPROffset);
   1791 
   1792   // Store second byte : number of float regs
   1793   SDValue secondStore =
   1794     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   1795                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   1796                       false, false, 0);
   1797   nextOffset += StackOffset;
   1798   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   1799 
   1800   // Store second word : arguments given on stack
   1801   SDValue thirdStore =
   1802     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   1803                  MachinePointerInfo(SV, nextOffset),
   1804                  false, false, 0);
   1805   nextOffset += FrameOffset;
   1806   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   1807 
   1808   // Store third word : arguments given in registers
   1809   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   1810                       MachinePointerInfo(SV, nextOffset),
   1811                       false, false, 0);
   1812 
   1813 }
   1814 
   1815 #include "PPCGenCallingConv.inc"
   1816 
   1817 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   1818                                       CCValAssign::LocInfo &LocInfo,
   1819                                       ISD::ArgFlagsTy &ArgFlags,
   1820                                       CCState &State) {
   1821   return true;
   1822 }
   1823 
   1824 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   1825                                              MVT &LocVT,
   1826                                              CCValAssign::LocInfo &LocInfo,
   1827                                              ISD::ArgFlagsTy &ArgFlags,
   1828                                              CCState &State) {
   1829   static const uint16_t ArgRegs[] = {
   1830     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1831     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1832   };
   1833   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1834 
   1835   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1836 
   1837   // Skip one register if the first unallocated register has an even register
   1838   // number and there are still argument registers available which have not been
   1839   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   1840   // need to skip a register if RegNum is odd.
   1841   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   1842     State.AllocateReg(ArgRegs[RegNum]);
   1843   }
   1844 
   1845   // Always return false here, as this function only makes sure that the first
   1846   // unallocated register has an odd register number and does not actually
   1847   // allocate a register for the current argument.
   1848   return false;
   1849 }
   1850 
   1851 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   1852                                                MVT &LocVT,
   1853                                                CCValAssign::LocInfo &LocInfo,
   1854                                                ISD::ArgFlagsTy &ArgFlags,
   1855                                                CCState &State) {
   1856   static const uint16_t ArgRegs[] = {
   1857     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1858     PPC::F8
   1859   };
   1860 
   1861   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1862 
   1863   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1864 
   1865   // If there is only one Floating-point register left we need to put both f64
   1866   // values of a split ppc_fp128 value on the stack.
   1867   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   1868     State.AllocateReg(ArgRegs[RegNum]);
   1869   }
   1870 
   1871   // Always return false here, as this function only makes sure that the two f64
   1872   // values a ppc_fp128 value is split into are both passed in registers or both
   1873   // passed on the stack and does not actually allocate a register for the
   1874   // current argument.
   1875   return false;
   1876 }
   1877 
   1878 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
   1879 /// on Darwin.
   1880 static const uint16_t *GetFPR() {
   1881   static const uint16_t FPR[] = {
   1882     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1883     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
   1884   };
   1885 
   1886   return FPR;
   1887 }
   1888 
   1889 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   1890 /// the stack.
   1891 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   1892                                        unsigned PtrByteSize) {
   1893   unsigned ArgSize = ArgVT.getSizeInBits()/8;
   1894   if (Flags.isByVal())
   1895     ArgSize = Flags.getByValSize();
   1896   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   1897 
   1898   return ArgSize;
   1899 }
   1900 
   1901 SDValue
   1902 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   1903                                         CallingConv::ID CallConv, bool isVarArg,
   1904                                         const SmallVectorImpl<ISD::InputArg>
   1905                                           &Ins,
   1906                                         SDLoc dl, SelectionDAG &DAG,
   1907                                         SmallVectorImpl<SDValue> &InVals)
   1908                                           const {
   1909   if (PPCSubTarget.isSVR4ABI()) {
   1910     if (PPCSubTarget.isPPC64())
   1911       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   1912                                          dl, DAG, InVals);
   1913     else
   1914       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   1915                                          dl, DAG, InVals);
   1916   } else {
   1917     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   1918                                        dl, DAG, InVals);
   1919   }
   1920 }
   1921 
   1922 SDValue
   1923 PPCTargetLowering::LowerFormalArguments_32SVR4(
   1924                                       SDValue Chain,
   1925                                       CallingConv::ID CallConv, bool isVarArg,
   1926                                       const SmallVectorImpl<ISD::InputArg>
   1927                                         &Ins,
   1928                                       SDLoc dl, SelectionDAG &DAG,
   1929                                       SmallVectorImpl<SDValue> &InVals) const {
   1930 
   1931   // 32-bit SVR4 ABI Stack Frame Layout:
   1932   //              +-----------------------------------+
   1933   //        +-->  |            Back chain             |
   1934   //        |     +-----------------------------------+
   1935   //        |     | Floating-point register save area |
   1936   //        |     +-----------------------------------+
   1937   //        |     |    General register save area     |
   1938   //        |     +-----------------------------------+
   1939   //        |     |          CR save word             |
   1940   //        |     +-----------------------------------+
   1941   //        |     |         VRSAVE save word          |
   1942   //        |     +-----------------------------------+
   1943   //        |     |         Alignment padding         |
   1944   //        |     +-----------------------------------+
   1945   //        |     |     Vector register save area     |
   1946   //        |     +-----------------------------------+
   1947   //        |     |       Local variable space        |
   1948   //        |     +-----------------------------------+
   1949   //        |     |        Parameter list area        |
   1950   //        |     +-----------------------------------+
   1951   //        |     |           LR save word            |
   1952   //        |     +-----------------------------------+
   1953   // SP-->  +---  |            Back chain             |
   1954   //              +-----------------------------------+
   1955   //
   1956   // Specifications:
   1957   //   System V Application Binary Interface PowerPC Processor Supplement
   1958   //   AltiVec Technology Programming Interface Manual
   1959 
   1960   MachineFunction &MF = DAG.getMachineFunction();
   1961   MachineFrameInfo *MFI = MF.getFrameInfo();
   1962   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1963 
   1964   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1965   // Potential tail calls could cause overwriting of argument stack slots.
   1966   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   1967                        (CallConv == CallingConv::Fast));
   1968   unsigned PtrByteSize = 4;
   1969 
   1970   // Assign locations to all of the incoming arguments.
   1971   SmallVector<CCValAssign, 16> ArgLocs;
   1972   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1973                  getTargetMachine(), ArgLocs, *DAG.getContext());
   1974 
   1975   // Reserve space for the linkage area on the stack.
   1976   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   1977 
   1978   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   1979 
   1980   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1981     CCValAssign &VA = ArgLocs[i];
   1982 
   1983     // Arguments stored in registers.
   1984     if (VA.isRegLoc()) {
   1985       const TargetRegisterClass *RC;
   1986       EVT ValVT = VA.getValVT();
   1987 
   1988       switch (ValVT.getSimpleVT().SimpleTy) {
   1989         default:
   1990           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   1991         case MVT::i32:
   1992           RC = &PPC::GPRCRegClass;
   1993           break;
   1994         case MVT::f32:
   1995           RC = &PPC::F4RCRegClass;
   1996           break;
   1997         case MVT::f64:
   1998           RC = &PPC::F8RCRegClass;
   1999           break;
   2000         case MVT::v16i8:
   2001         case MVT::v8i16:
   2002         case MVT::v4i32:
   2003         case MVT::v4f32:
   2004           RC = &PPC::VRRCRegClass;
   2005           break;
   2006       }
   2007 
   2008       // Transform the arguments stored in physical registers into virtual ones.
   2009       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2010       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
   2011 
   2012       InVals.push_back(ArgValue);
   2013     } else {
   2014       // Argument stored in memory.
   2015       assert(VA.isMemLoc());
   2016 
   2017       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
   2018       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   2019                                       isImmutable);
   2020 
   2021       // Create load nodes to retrieve arguments from the stack.
   2022       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2023       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2024                                    MachinePointerInfo(),
   2025                                    false, false, false, 0));
   2026     }
   2027   }
   2028 
   2029   // Assign locations to all of the incoming aggregate by value arguments.
   2030   // Aggregates passed by value are stored in the local variable space of the
   2031   // caller's stack frame, right above the parameter list area.
   2032   SmallVector<CCValAssign, 16> ByValArgLocs;
   2033   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2034                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
   2035 
   2036   // Reserve stack space for the allocations in CCInfo.
   2037   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   2038 
   2039   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   2040 
   2041   // Area that is at least reserved in the caller of this function.
   2042   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   2043 
   2044   // Set the size that is at least reserved in caller of this function.  Tail
   2045   // call optimized function's reserved stack space needs to be aligned so that
   2046   // taking the difference between two stack areas will result in an aligned
   2047   // stack.
   2048   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   2049 
   2050   MinReservedArea =
   2051     std::max(MinReservedArea,
   2052              PPCFrameLowering::getMinCallFrameSize(false, false));
   2053 
   2054   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
   2055     getStackAlignment();
   2056   unsigned AlignMask = TargetAlign-1;
   2057   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   2058 
   2059   FI->setMinReservedArea(MinReservedArea);
   2060 
   2061   SmallVector<SDValue, 8> MemOps;
   2062 
   2063   // If the function takes variable number of arguments, make a frame index for
   2064   // the start of the first vararg value... for expansion of llvm.va_start.
   2065   if (isVarArg) {
   2066     static const uint16_t GPArgRegs[] = {
   2067       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2068       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2069     };
   2070     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   2071 
   2072     static const uint16_t FPArgRegs[] = {
   2073       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2074       PPC::F8
   2075     };
   2076     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   2077 
   2078     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
   2079                                                           NumGPArgRegs));
   2080     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
   2081                                                           NumFPArgRegs));
   2082 
   2083     // Make room for NumGPArgRegs and NumFPArgRegs.
   2084     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   2085                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
   2086 
   2087     FuncInfo->setVarArgsStackOffset(
   2088       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2089                              CCInfo.getNextStackOffset(), true));
   2090 
   2091     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   2092     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2093 
   2094     // The fixed integer arguments of a variadic function are stored to the
   2095     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   2096     // the result of va_next.
   2097     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   2098       // Get an existing live-in vreg, or add a new one.
   2099       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   2100       if (!VReg)
   2101         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   2102 
   2103       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2104       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2105                                    MachinePointerInfo(), false, false, 0);
   2106       MemOps.push_back(Store);
   2107       // Increment the address by four for the next argument to store
   2108       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2109       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2110     }
   2111 
   2112     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   2113     // is set.
   2114     // The double arguments are stored to the VarArgsFrameIndex
   2115     // on the stack.
   2116     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   2117       // Get an existing live-in vreg, or add a new one.
   2118       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   2119       if (!VReg)
   2120         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   2121 
   2122       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   2123       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2124                                    MachinePointerInfo(), false, false, 0);
   2125       MemOps.push_back(Store);
   2126       // Increment the address by eight for the next argument to store
   2127       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
   2128                                          PtrVT);
   2129       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2130     }
   2131   }
   2132 
   2133   if (!MemOps.empty())
   2134     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2135                         MVT::Other, &MemOps[0], MemOps.size());
   2136 
   2137   return Chain;
   2138 }
   2139 
   2140 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2141 // value to MVT::i64 and then truncate to the correct register size.
   2142 SDValue
   2143 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
   2144                                      SelectionDAG &DAG, SDValue ArgVal,
   2145                                      SDLoc dl) const {
   2146   if (Flags.isSExt())
   2147     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   2148                          DAG.getValueType(ObjectVT));
   2149   else if (Flags.isZExt())
   2150     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   2151                          DAG.getValueType(ObjectVT));
   2152 
   2153   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   2154 }
   2155 
   2156 // Set the size that is at least reserved in caller of this function.  Tail
   2157 // call optimized functions' reserved stack space needs to be aligned so that
   2158 // taking the difference between two stack areas will result in an aligned
   2159 // stack.
   2160 void
   2161 PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
   2162                                       unsigned nAltivecParamsAtEnd,
   2163                                       unsigned MinReservedArea,
   2164                                       bool isPPC64) const {
   2165   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   2166   // Add the Altivec parameters at the end, if needed.
   2167   if (nAltivecParamsAtEnd) {
   2168     MinReservedArea = ((MinReservedArea+15)/16)*16;
   2169     MinReservedArea += 16*nAltivecParamsAtEnd;
   2170   }
   2171   MinReservedArea =
   2172     std::max(MinReservedArea,
   2173              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2174   unsigned TargetAlign
   2175     = DAG.getMachineFunction().getTarget().getFrameLowering()->
   2176         getStackAlignment();
   2177   unsigned AlignMask = TargetAlign-1;
   2178   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   2179   FI->setMinReservedArea(MinReservedArea);
   2180 }
   2181 
   2182 SDValue
   2183 PPCTargetLowering::LowerFormalArguments_64SVR4(
   2184                                       SDValue Chain,
   2185                                       CallingConv::ID CallConv, bool isVarArg,
   2186                                       const SmallVectorImpl<ISD::InputArg>
   2187                                         &Ins,
   2188                                       SDLoc dl, SelectionDAG &DAG,
   2189                                       SmallVectorImpl<SDValue> &InVals) const {
   2190   // TODO: add description of PPC stack frame format, or at least some docs.
   2191   //
   2192   MachineFunction &MF = DAG.getMachineFunction();
   2193   MachineFrameInfo *MFI = MF.getFrameInfo();
   2194   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2195 
   2196   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2197   // Potential tail calls could cause overwriting of argument stack slots.
   2198   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2199                        (CallConv == CallingConv::Fast));
   2200   unsigned PtrByteSize = 8;
   2201 
   2202   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
   2203   // Area that is at least reserved in caller of this function.
   2204   unsigned MinReservedArea = ArgOffset;
   2205 
   2206   static const uint16_t GPR[] = {
   2207     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   2208     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   2209   };
   2210 
   2211   static const uint16_t *FPR = GetFPR();
   2212 
   2213   static const uint16_t VR[] = {
   2214     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   2215     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   2216   };
   2217 
   2218   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   2219   const unsigned Num_FPR_Regs = 13;
   2220   const unsigned Num_VR_Regs  = array_lengthof(VR);
   2221 
   2222   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   2223 
   2224   // Add DAG nodes to load the arguments or copy them out of registers.  On
   2225   // entry to a function on PPC, the arguments start after the linkage area,
   2226   // although the first ones are often in registers.
   2227 
   2228   SmallVector<SDValue, 8> MemOps;
   2229   unsigned nAltivecParamsAtEnd = 0;
   2230   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   2231   unsigned CurArgIdx = 0;
   2232   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   2233     SDValue ArgVal;
   2234     bool needsLoad = false;
   2235     EVT ObjectVT = Ins[ArgNo].VT;
   2236     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   2237     unsigned ArgSize = ObjSize;
   2238     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2239     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
   2240     CurArgIdx = Ins[ArgNo].OrigArgIndex;
   2241 
   2242     unsigned CurArgOffset = ArgOffset;
   2243 
   2244     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   2245     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   2246         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   2247       if (isVarArg) {
   2248         MinReservedArea = ((MinReservedArea+15)/16)*16;
   2249         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   2250                                                   Flags,
   2251                                                   PtrByteSize);
   2252       } else
   2253         nAltivecParamsAtEnd++;
   2254     } else
   2255       // Calculate min reserved area.
   2256       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   2257                                                 Flags,
   2258                                                 PtrByteSize);
   2259 
   2260     // FIXME the codegen can be much improved in some cases.
   2261     // We do not have to keep everything in memory.
   2262     if (Flags.isByVal()) {
   2263       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2264       ObjSize = Flags.getByValSize();
   2265       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2266       // Empty aggregate parameters do not take up registers.  Examples:
   2267       //   struct { } a;
   2268       //   union  { } b;
   2269       //   int c[0];
   2270       // etc.  However, we have to provide a place-holder in InVals, so
   2271       // pretend we have an 8-byte item at the current address for that
   2272       // purpose.
   2273       if (!ObjSize) {
   2274         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2275         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2276         InVals.push_back(FIN);
   2277         continue;
   2278       }
   2279       // All aggregates smaller than 8 bytes must be passed right-justified.
   2280       if (ObjSize < PtrByteSize)
   2281         CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
   2282       // The value of the object is its address.
   2283       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   2284       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2285       InVals.push_back(FIN);
   2286 
   2287       if (ObjSize < 8) {
   2288         if (GPR_idx != Num_GPR_Regs) {
   2289           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2290           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2291           SDValue Store;
   2292 
   2293           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   2294             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   2295                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   2296             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   2297                                       MachinePointerInfo(FuncArg, CurArgOffset),
   2298                                       ObjType, false, false, 0);
   2299           } else {
   2300             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   2301             // store the whole register as-is to the parameter save area
   2302             // slot.  The address of the parameter was already calculated
   2303             // above (InVals.push_back(FIN)) to be the right-justified
   2304             // offset within the slot.  For this store, we need a new
   2305             // frame index that points at the beginning of the slot.
   2306             int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2307             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2308             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2309                                  MachinePointerInfo(FuncArg, ArgOffset),
   2310                                  false, false, 0);
   2311           }
   2312 
   2313           MemOps.push_back(Store);
   2314           ++GPR_idx;
   2315         }
   2316         // Whether we copied from a register or not, advance the offset
   2317         // into the parameter save area by a full doubleword.
   2318         ArgOffset += PtrByteSize;
   2319         continue;
   2320       }
   2321 
   2322       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2323         // Store whatever pieces of the object are in registers
   2324         // to memory.  ArgOffset will be the address of the beginning
   2325         // of the object.
   2326         if (GPR_idx != Num_GPR_Regs) {
   2327           unsigned VReg;
   2328           VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2329           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2330           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2331           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2332           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2333                                        MachinePointerInfo(FuncArg, ArgOffset),
   2334                                        false, false, 0);
   2335           MemOps.push_back(Store);
   2336           ++GPR_idx;
   2337           ArgOffset += PtrByteSize;
   2338         } else {
   2339           ArgOffset += ArgSize - j;
   2340           break;
   2341         }
   2342       }
   2343       continue;
   2344     }
   2345 
   2346     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2347     default: llvm_unreachable("Unhandled argument type!");
   2348     case MVT::i32:
   2349     case MVT::i64:
   2350       if (GPR_idx != Num_GPR_Regs) {
   2351         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2352         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2353 
   2354         if (ObjectVT == MVT::i32)
   2355           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2356           // value to MVT::i64 and then truncate to the correct register size.
   2357           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   2358 
   2359         ++GPR_idx;
   2360       } else {
   2361         needsLoad = true;
   2362         ArgSize = PtrByteSize;
   2363       }
   2364       ArgOffset += 8;
   2365       break;
   2366 
   2367     case MVT::f32:
   2368     case MVT::f64:
   2369       // Every 8 bytes of argument space consumes one of the GPRs available for
   2370       // argument passing.
   2371       if (GPR_idx != Num_GPR_Regs) {
   2372         ++GPR_idx;
   2373       }
   2374       if (FPR_idx != Num_FPR_Regs) {
   2375         unsigned VReg;
   2376 
   2377         if (ObjectVT == MVT::f32)
   2378           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2379         else
   2380           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   2381 
   2382         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2383         ++FPR_idx;
   2384       } else {
   2385         needsLoad = true;
   2386         ArgSize = PtrByteSize;
   2387       }
   2388 
   2389       ArgOffset += 8;
   2390       break;
   2391     case MVT::v4f32:
   2392     case MVT::v4i32:
   2393     case MVT::v8i16:
   2394     case MVT::v16i8:
   2395       // Note that vector arguments in registers don't reserve stack space,
   2396       // except in varargs functions.
   2397       if (VR_idx != Num_VR_Regs) {
   2398         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2399         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2400         if (isVarArg) {
   2401           while ((ArgOffset % 16) != 0) {
   2402             ArgOffset += PtrByteSize;
   2403             if (GPR_idx != Num_GPR_Regs)
   2404               GPR_idx++;
   2405           }
   2406           ArgOffset += 16;
   2407           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   2408         }
   2409         ++VR_idx;
   2410       } else {
   2411         // Vectors are aligned.
   2412         ArgOffset = ((ArgOffset+15)/16)*16;
   2413         CurArgOffset = ArgOffset;
   2414         ArgOffset += 16;
   2415         needsLoad = true;
   2416       }
   2417       break;
   2418     }
   2419 
   2420     // We need to load the argument to a virtual register if we determined
   2421     // above that we ran out of physical registers of the appropriate type.
   2422     if (needsLoad) {
   2423       int FI = MFI->CreateFixedObject(ObjSize,
   2424                                       CurArgOffset + (ArgSize - ObjSize),
   2425                                       isImmutable);
   2426       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2427       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   2428                            false, false, false, 0);
   2429     }
   2430 
   2431     InVals.push_back(ArgVal);
   2432   }
   2433 
   2434   // Set the size that is at least reserved in caller of this function.  Tail
   2435   // call optimized functions' reserved stack space needs to be aligned so that
   2436   // taking the difference between two stack areas will result in an aligned
   2437   // stack.
   2438   setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
   2439 
   2440   // If the function takes variable number of arguments, make a frame index for
   2441   // the start of the first vararg value... for expansion of llvm.va_start.
   2442   if (isVarArg) {
   2443     int Depth = ArgOffset;
   2444 
   2445     FuncInfo->setVarArgsFrameIndex(
   2446       MFI->CreateFixedObject(PtrByteSize, Depth, true));
   2447     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2448 
   2449     // If this function is vararg, store any remaining integer argument regs
   2450     // to their spots on the stack so that they may be loaded by deferencing the
   2451     // result of va_next.
   2452     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   2453       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2454       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2455       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2456                                    MachinePointerInfo(), false, false, 0);
   2457       MemOps.push_back(Store);
   2458       // Increment the address by four for the next argument to store
   2459       SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
   2460       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2461     }
   2462   }
   2463 
   2464   if (!MemOps.empty())
   2465     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2466                         MVT::Other, &MemOps[0], MemOps.size());
   2467 
   2468   return Chain;
   2469 }
   2470 
   2471 SDValue
   2472 PPCTargetLowering::LowerFormalArguments_Darwin(
   2473                                       SDValue Chain,
   2474                                       CallingConv::ID CallConv, bool isVarArg,
   2475                                       const SmallVectorImpl<ISD::InputArg>
   2476                                         &Ins,
   2477                                       SDLoc dl, SelectionDAG &DAG,
   2478                                       SmallVectorImpl<SDValue> &InVals) const {
   2479   // TODO: add description of PPC stack frame format, or at least some docs.
   2480   //
   2481   MachineFunction &MF = DAG.getMachineFunction();
   2482   MachineFrameInfo *MFI = MF.getFrameInfo();
   2483   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2484 
   2485   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2486   bool isPPC64 = PtrVT == MVT::i64;
   2487   // Potential tail calls could cause overwriting of argument stack slots.
   2488   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2489                        (CallConv == CallingConv::Fast));
   2490   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   2491 
   2492   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   2493   // Area that is at least reserved in caller of this function.
   2494   unsigned MinReservedArea = ArgOffset;
   2495 
   2496   static const uint16_t GPR_32[] = {           // 32-bit registers.
   2497     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2498     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2499   };
   2500   static const uint16_t GPR_64[] = {           // 64-bit registers.
   2501     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   2502     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   2503   };
   2504 
   2505   static const uint16_t *FPR = GetFPR();
   2506 
   2507   static const uint16_t VR[] = {
   2508     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   2509     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   2510   };
   2511 
   2512   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   2513   const unsigned Num_FPR_Regs = 13;
   2514   const unsigned Num_VR_Regs  = array_lengthof( VR);
   2515 
   2516   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   2517 
   2518   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
   2519 
   2520   // In 32-bit non-varargs functions, the stack space for vectors is after the
   2521   // stack space for non-vectors.  We do not use this space unless we have
   2522   // too many vectors to fit in registers, something that only occurs in
   2523   // constructed examples:), but we have to walk the arglist to figure
   2524   // that out...for the pathological case, compute VecArgOffset as the
   2525   // start of the vector parameter area.  Computing VecArgOffset is the
   2526   // entire point of the following loop.
   2527   unsigned VecArgOffset = ArgOffset;
   2528   if (!isVarArg && !isPPC64) {
   2529     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   2530          ++ArgNo) {
   2531       EVT ObjectVT = Ins[ArgNo].VT;
   2532       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2533 
   2534       if (Flags.isByVal()) {
   2535         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   2536         unsigned ObjSize = Flags.getByValSize();
   2537         unsigned ArgSize =
   2538                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2539         VecArgOffset += ArgSize;
   2540         continue;
   2541       }
   2542 
   2543       switch(ObjectVT.getSimpleVT().SimpleTy) {
   2544       default: llvm_unreachable("Unhandled argument type!");
   2545       case MVT::i32:
   2546       case MVT::f32:
   2547         VecArgOffset += 4;
   2548         break;
   2549       case MVT::i64:  // PPC64
   2550       case MVT::f64:
   2551         // FIXME: We are guaranteed to be !isPPC64 at this point.
   2552         // Does MVT::i64 apply?
   2553         VecArgOffset += 8;
   2554         break;
   2555       case MVT::v4f32:
   2556       case MVT::v4i32:
   2557       case MVT::v8i16:
   2558       case MVT::v16i8:
   2559         // Nothing to do, we're only looking at Nonvector args here.
   2560         break;
   2561       }
   2562     }
   2563   }
   2564   // We've found where the vector parameter area in memory is.  Skip the
   2565   // first 12 parameters; these don't use that memory.
   2566   VecArgOffset = ((VecArgOffset+15)/16)*16;
   2567   VecArgOffset += 12*16;
   2568 
   2569   // Add DAG nodes to load the arguments or copy them out of registers.  On
   2570   // entry to a function on PPC, the arguments start after the linkage area,
   2571   // although the first ones are often in registers.
   2572 
   2573   SmallVector<SDValue, 8> MemOps;
   2574   unsigned nAltivecParamsAtEnd = 0;
   2575   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   2576   unsigned CurArgIdx = 0;
   2577   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   2578     SDValue ArgVal;
   2579     bool needsLoad = false;
   2580     EVT ObjectVT = Ins[ArgNo].VT;
   2581     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   2582     unsigned ArgSize = ObjSize;
   2583     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2584     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
   2585     CurArgIdx = Ins[ArgNo].OrigArgIndex;
   2586 
   2587     unsigned CurArgOffset = ArgOffset;
   2588 
   2589     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   2590     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   2591         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   2592       if (isVarArg || isPPC64) {
   2593         MinReservedArea = ((MinReservedArea+15)/16)*16;
   2594         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   2595                                                   Flags,
   2596                                                   PtrByteSize);
   2597       } else  nAltivecParamsAtEnd++;
   2598     } else
   2599       // Calculate min reserved area.
   2600       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   2601                                                 Flags,
   2602                                                 PtrByteSize);
   2603 
   2604     // FIXME the codegen can be much improved in some cases.
   2605     // We do not have to keep everything in memory.
   2606     if (Flags.isByVal()) {
   2607       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2608       ObjSize = Flags.getByValSize();
   2609       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2610       // Objects of size 1 and 2 are right justified, everything else is
   2611       // left justified.  This means the memory address is adjusted forwards.
   2612       if (ObjSize==1 || ObjSize==2) {
   2613         CurArgOffset = CurArgOffset + (4 - ObjSize);
   2614       }
   2615       // The value of the object is its address.
   2616       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   2617       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2618       InVals.push_back(FIN);
   2619       if (ObjSize==1 || ObjSize==2) {
   2620         if (GPR_idx != Num_GPR_Regs) {
   2621           unsigned VReg;
   2622           if (isPPC64)
   2623             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2624           else
   2625             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2626           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2627           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   2628           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   2629                                             MachinePointerInfo(FuncArg,
   2630                                               CurArgOffset),
   2631                                             ObjType, false, false, 0);
   2632           MemOps.push_back(Store);
   2633           ++GPR_idx;
   2634         }
   2635 
   2636         ArgOffset += PtrByteSize;
   2637 
   2638         continue;
   2639       }
   2640       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2641         // Store whatever pieces of the object are in registers
   2642         // to memory.  ArgOffset will be the address of the beginning
   2643         // of the object.
   2644         if (GPR_idx != Num_GPR_Regs) {
   2645           unsigned VReg;
   2646           if (isPPC64)
   2647             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2648           else
   2649             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2650           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2651           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2652           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2653           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2654                                        MachinePointerInfo(FuncArg, ArgOffset),
   2655                                        false, false, 0);
   2656           MemOps.push_back(Store);
   2657           ++GPR_idx;
   2658           ArgOffset += PtrByteSize;
   2659         } else {
   2660           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   2661           break;
   2662         }
   2663       }
   2664       continue;
   2665     }
   2666 
   2667     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2668     default: llvm_unreachable("Unhandled argument type!");
   2669     case MVT::i32:
   2670       if (!isPPC64) {
   2671         if (GPR_idx != Num_GPR_Regs) {
   2672           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2673           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2674           ++GPR_idx;
   2675         } else {
   2676           needsLoad = true;
   2677           ArgSize = PtrByteSize;
   2678         }
   2679         // All int arguments reserve stack space in the Darwin ABI.
   2680         ArgOffset += PtrByteSize;
   2681         break;
   2682       }
   2683       // FALLTHROUGH
   2684     case MVT::i64:  // PPC64
   2685       if (GPR_idx != Num_GPR_Regs) {
   2686         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2687         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2688 
   2689         if (ObjectVT == MVT::i32)
   2690           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2691           // value to MVT::i64 and then truncate to the correct register size.
   2692           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   2693 
   2694         ++GPR_idx;
   2695       } else {
   2696         needsLoad = true;
   2697         ArgSize = PtrByteSize;
   2698       }
   2699       // All int arguments reserve stack space in the Darwin ABI.
   2700       ArgOffset += 8;
   2701       break;
   2702 
   2703     case MVT::f32:
   2704     case MVT::f64:
   2705       // Every 4 bytes of argument space consumes one of the GPRs available for
   2706       // argument passing.
   2707       if (GPR_idx != Num_GPR_Regs) {
   2708         ++GPR_idx;
   2709         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   2710           ++GPR_idx;
   2711       }
   2712       if (FPR_idx != Num_FPR_Regs) {
   2713         unsigned VReg;
   2714 
   2715         if (ObjectVT == MVT::f32)
   2716           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2717         else
   2718           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   2719 
   2720         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2721         ++FPR_idx;
   2722       } else {
   2723         needsLoad = true;
   2724       }
   2725 
   2726       // All FP arguments reserve stack space in the Darwin ABI.
   2727       ArgOffset += isPPC64 ? 8 : ObjSize;
   2728       break;
   2729     case MVT::v4f32:
   2730     case MVT::v4i32:
   2731     case MVT::v8i16:
   2732     case MVT::v16i8:
   2733       // Note that vector arguments in registers don't reserve stack space,
   2734       // except in varargs functions.
   2735       if (VR_idx != Num_VR_Regs) {
   2736         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2737         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2738         if (isVarArg) {
   2739           while ((ArgOffset % 16) != 0) {
   2740             ArgOffset += PtrByteSize;
   2741             if (GPR_idx != Num_GPR_Regs)
   2742               GPR_idx++;
   2743           }
   2744           ArgOffset += 16;
   2745           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   2746         }
   2747         ++VR_idx;
   2748       } else {
   2749         if (!isVarArg && !isPPC64) {
   2750           // Vectors go after all the nonvectors.
   2751           CurArgOffset = VecArgOffset;
   2752           VecArgOffset += 16;
   2753         } else {
   2754           // Vectors are aligned.
   2755           ArgOffset = ((ArgOffset+15)/16)*16;
   2756           CurArgOffset = ArgOffset;
   2757           ArgOffset += 16;
   2758         }
   2759         needsLoad = true;
   2760       }
   2761       break;
   2762     }
   2763 
   2764     // We need to load the argument to a virtual register if we determined above
   2765     // that we ran out of physical registers of the appropriate type.
   2766     if (needsLoad) {
   2767       int FI = MFI->CreateFixedObject(ObjSize,
   2768                                       CurArgOffset + (ArgSize - ObjSize),
   2769                                       isImmutable);
   2770       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2771       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   2772                            false, false, false, 0);
   2773     }
   2774 
   2775     InVals.push_back(ArgVal);
   2776   }
   2777 
   2778   // Set the size that is at least reserved in caller of this function.  Tail
   2779   // call optimized functions' reserved stack space needs to be aligned so that
   2780   // taking the difference between two stack areas will result in an aligned
   2781   // stack.
   2782   setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
   2783 
   2784   // If the function takes variable number of arguments, make a frame index for
   2785   // the start of the first vararg value... for expansion of llvm.va_start.
   2786   if (isVarArg) {
   2787     int Depth = ArgOffset;
   2788 
   2789     FuncInfo->setVarArgsFrameIndex(
   2790       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2791                              Depth, true));
   2792     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2793 
   2794     // If this function is vararg, store any remaining integer argument regs
   2795     // to their spots on the stack so that they may be loaded by deferencing the
   2796     // result of va_next.
   2797     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   2798       unsigned VReg;
   2799 
   2800       if (isPPC64)
   2801         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2802       else
   2803         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2804 
   2805       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2806       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2807                                    MachinePointerInfo(), false, false, 0);
   2808       MemOps.push_back(Store);
   2809       // Increment the address by four for the next argument to store
   2810       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2811       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2812     }
   2813   }
   2814 
   2815   if (!MemOps.empty())
   2816     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2817                         MVT::Other, &MemOps[0], MemOps.size());
   2818 
   2819   return Chain;
   2820 }
   2821 
   2822 /// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
   2823 /// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
   2824 static unsigned
   2825 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
   2826                                      bool isPPC64,
   2827                                      bool isVarArg,
   2828                                      unsigned CC,
   2829                                      const SmallVectorImpl<ISD::OutputArg>
   2830                                        &Outs,
   2831                                      const SmallVectorImpl<SDValue> &OutVals,
   2832                                      unsigned &nAltivecParamsAtEnd) {
   2833   // Count how many bytes are to be pushed on the stack, including the linkage
   2834   // area, and parameter passing area.  We start with 24/48 bytes, which is
   2835   // prereserved space for [SP][CR][LR][3 x unused].
   2836   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
   2837   unsigned NumOps = Outs.size();
   2838   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   2839 
   2840   // Add up all the space actually used.
   2841   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   2842   // they all go in registers, but we must reserve stack space for them for
   2843   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   2844   // assigned stack space in order, with padding so Altivec parameters are
   2845   // 16-byte aligned.
   2846   nAltivecParamsAtEnd = 0;
   2847   for (unsigned i = 0; i != NumOps; ++i) {
   2848     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2849     EVT ArgVT = Outs[i].VT;
   2850     // Varargs Altivec parameters are padded to a 16 byte boundary.
   2851     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
   2852         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
   2853       if (!isVarArg && !isPPC64) {
   2854         // Non-varargs Altivec parameters go after all the non-Altivec
   2855         // parameters; handle those later so we know how much padding we need.
   2856         nAltivecParamsAtEnd++;
   2857         continue;
   2858       }
   2859       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   2860       NumBytes = ((NumBytes+15)/16)*16;
   2861     }
   2862     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2863   }
   2864 
   2865    // Allow for Altivec parameters at the end, if needed.
   2866   if (nAltivecParamsAtEnd) {
   2867     NumBytes = ((NumBytes+15)/16)*16;
   2868     NumBytes += 16*nAltivecParamsAtEnd;
   2869   }
   2870 
   2871   // The prolog code of the callee may store up to 8 GPR argument registers to
   2872   // the stack, allowing va_start to index over them in memory if its varargs.
   2873   // Because we cannot tell if this is needed on the caller side, we have to
   2874   // conservatively assume that it is needed.  As such, make sure we have at
   2875   // least enough stack space for the caller to store the 8 GPRs.
   2876   NumBytes = std::max(NumBytes,
   2877                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2878 
   2879   // Tail call needs the stack to be aligned.
   2880   if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
   2881     unsigned TargetAlign = DAG.getMachineFunction().getTarget().
   2882       getFrameLowering()->getStackAlignment();
   2883     unsigned AlignMask = TargetAlign-1;
   2884     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2885   }
   2886 
   2887   return NumBytes;
   2888 }
   2889 
   2890 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   2891 /// adjusted to accommodate the arguments for the tailcall.
   2892 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   2893                                    unsigned ParamSize) {
   2894 
   2895   if (!isTailCall) return 0;
   2896 
   2897   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   2898   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   2899   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   2900   // Remember only if the new adjustement is bigger.
   2901   if (SPDiff < FI->getTailCallSPDelta())
   2902     FI->setTailCallSPDelta(SPDiff);
   2903 
   2904   return SPDiff;
   2905 }
   2906 
   2907 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2908 /// for tail call optimization. Targets which want to do tail call
   2909 /// optimization should implement this function.
   2910 bool
   2911 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2912                                                      CallingConv::ID CalleeCC,
   2913                                                      bool isVarArg,
   2914                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   2915                                                      SelectionDAG& DAG) const {
   2916   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   2917     return false;
   2918 
   2919   // Variable argument functions are not supported.
   2920   if (isVarArg)
   2921     return false;
   2922 
   2923   MachineFunction &MF = DAG.getMachineFunction();
   2924   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   2925   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   2926     // Functions containing by val parameters are not supported.
   2927     for (unsigned i = 0; i != Ins.size(); i++) {
   2928        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   2929        if (Flags.isByVal()) return false;
   2930     }
   2931 
   2932     // Non PIC/GOT  tail calls are supported.
   2933     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   2934       return true;
   2935 
   2936     // At the moment we can only do local tail calls (in same module, hidden
   2937     // or protected) if we are generating PIC.
   2938     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   2939       return G->getGlobal()->hasHiddenVisibility()
   2940           || G->getGlobal()->hasProtectedVisibility();
   2941   }
   2942 
   2943   return false;
   2944 }
   2945 
   2946 /// isCallCompatibleAddress - Return the immediate to use if the specified
   2947 /// 32-bit value is representable in the immediate field of a BxA instruction.
   2948 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   2949   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2950   if (!C) return 0;
   2951 
   2952   int Addr = C->getZExtValue();
   2953   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   2954       SignExtend32<26>(Addr) != Addr)
   2955     return 0;  // Top 6 bits have to be sext of immediate.
   2956 
   2957   return DAG.getConstant((int)C->getZExtValue() >> 2,
   2958                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
   2959 }
   2960 
   2961 namespace {
   2962 
   2963 struct TailCallArgumentInfo {
   2964   SDValue Arg;
   2965   SDValue FrameIdxOp;
   2966   int       FrameIdx;
   2967 
   2968   TailCallArgumentInfo() : FrameIdx(0) {}
   2969 };
   2970 
   2971 }
   2972 
   2973 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   2974 static void
   2975 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   2976                                            SDValue Chain,
   2977                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
   2978                    SmallVectorImpl<SDValue> &MemOpChains,
   2979                    SDLoc dl) {
   2980   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   2981     SDValue Arg = TailCallArgs[i].Arg;
   2982     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   2983     int FI = TailCallArgs[i].FrameIdx;
   2984     // Store relative to framepointer.
   2985     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
   2986                                        MachinePointerInfo::getFixedStack(FI),
   2987                                        false, false, 0));
   2988   }
   2989 }
   2990 
   2991 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   2992 /// the appropriate stack slot for the tail call optimized function call.
   2993 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   2994                                                MachineFunction &MF,
   2995                                                SDValue Chain,
   2996                                                SDValue OldRetAddr,
   2997                                                SDValue OldFP,
   2998                                                int SPDiff,
   2999                                                bool isPPC64,
   3000                                                bool isDarwinABI,
   3001                                                SDLoc dl) {
   3002   if (SPDiff) {
   3003     // Calculate the new stack slot for the return address.
   3004     int SlotSize = isPPC64 ? 8 : 4;
   3005     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
   3006                                                                    isDarwinABI);
   3007     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   3008                                                           NewRetAddrLoc, true);
   3009     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3010     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   3011     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   3012                          MachinePointerInfo::getFixedStack(NewRetAddr),
   3013                          false, false, 0);
   3014 
   3015     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   3016     // slot as the FP is never overwritten.
   3017     if (isDarwinABI) {
   3018       int NewFPLoc =
   3019         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
   3020       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   3021                                                           true);
   3022       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   3023       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
   3024                            MachinePointerInfo::getFixedStack(NewFPIdx),
   3025                            false, false, 0);
   3026     }
   3027   }
   3028   return Chain;
   3029 }
   3030 
   3031 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   3032 /// the position of the argument.
   3033 static void
   3034 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   3035                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   3036                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
   3037   int Offset = ArgOffset + SPDiff;
   3038   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   3039   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   3040   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3041   SDValue FIN = DAG.getFrameIndex(FI, VT);
   3042   TailCallArgumentInfo Info;
   3043   Info.Arg = Arg;
   3044   Info.FrameIdxOp = FIN;
   3045   Info.FrameIdx = FI;
   3046   TailCallArguments.push_back(Info);
   3047 }
   3048 
   3049 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   3050 /// stack slot. Returns the chain as result and the loaded frame pointers in
   3051 /// LROpOut/FPOpout. Used when tail calling.
   3052 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   3053                                                         int SPDiff,
   3054                                                         SDValue Chain,
   3055                                                         SDValue &LROpOut,
   3056                                                         SDValue &FPOpOut,
   3057                                                         bool isDarwinABI,
   3058                                                         SDLoc dl) const {
   3059   if (SPDiff) {
   3060     // Load the LR and FP stack slot for later adjusting.
   3061     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
   3062     LROpOut = getReturnAddrFrameIndex(DAG);
   3063     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   3064                           false, false, false, 0);
   3065     Chain = SDValue(LROpOut.getNode(), 1);
   3066 
   3067     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   3068     // slot as the FP is never overwritten.
   3069     if (isDarwinABI) {
   3070       FPOpOut = getFramePointerFrameIndex(DAG);
   3071       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   3072                             false, false, false, 0);
   3073       Chain = SDValue(FPOpOut.getNode(), 1);
   3074     }
   3075   }
   3076   return Chain;
   3077 }
   3078 
   3079 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   3080 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   3081 /// specified by the specific parameter attribute. The copy will be passed as
   3082 /// a byval function parameter.
   3083 /// Sometimes what we are copying is the end of a larger object, the part that
   3084 /// does not fit in registers.
   3085 static SDValue
   3086 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   3087                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   3088                           SDLoc dl) {
   3089   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   3090   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   3091                        false, false, MachinePointerInfo(0),
   3092                        MachinePointerInfo(0));
   3093 }
   3094 
   3095 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   3096 /// tail calls.
   3097 static void
   3098 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   3099                  SDValue Arg, SDValue PtrOff, int SPDiff,
   3100                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   3101                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
   3102                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
   3103                  SDLoc dl) {
   3104   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3105   if (!isTailCall) {
   3106     if (isVector) {
   3107       SDValue StackPtr;
   3108       if (isPPC64)
   3109         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3110       else
   3111         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3112       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   3113                            DAG.getConstant(ArgOffset, PtrVT));
   3114     }
   3115     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3116                                        MachinePointerInfo(), false, false, 0));
   3117   // Calculate and remember argument location.
   3118   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   3119                                   TailCallArguments);
   3120 }
   3121 
   3122 static
   3123 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   3124                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   3125                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   3126                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
   3127   MachineFunction &MF = DAG.getMachineFunction();
   3128 
   3129   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   3130   // might overwrite each other in case of tail call optimization.
   3131   SmallVector<SDValue, 8> MemOpChains2;
   3132   // Do not flag preceding copytoreg stuff together with the following stuff.
   3133   InFlag = SDValue();
   3134   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   3135                                     MemOpChains2, dl);
   3136   if (!MemOpChains2.empty())
   3137     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3138                         &MemOpChains2[0], MemOpChains2.size());
   3139 
   3140   // Store the return address to the appropriate stack slot.
   3141   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   3142                                         isPPC64, isDarwinABI, dl);
   3143 
   3144   // Emit callseq_end just before tailcall node.
   3145   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3146                              DAG.getIntPtrConstant(0, true), InFlag, dl);
   3147   InFlag = Chain.getValue(1);
   3148 }
   3149 
   3150 static
   3151 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   3152                      SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
   3153                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
   3154                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
   3155                      const PPCSubtarget &PPCSubTarget) {
   3156 
   3157   bool isPPC64 = PPCSubTarget.isPPC64();
   3158   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
   3159 
   3160   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3161   NodeTys.push_back(MVT::Other);   // Returns a chain
   3162   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   3163 
   3164   unsigned CallOpc = PPCISD::CALL;
   3165 
   3166   bool needIndirectCall = true;
   3167   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   3168     // If this is an absolute destination address, use the munged value.
   3169     Callee = SDValue(Dest, 0);
   3170     needIndirectCall = false;
   3171   }
   3172 
   3173   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   3174     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
   3175     // Use indirect calls for ALL functions calls in JIT mode, since the
   3176     // far-call stubs may be outside relocation limits for a BL instruction.
   3177     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
   3178       unsigned OpFlags = 0;
   3179       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3180           (PPCSubTarget.getTargetTriple().isMacOSX() &&
   3181            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   3182           (G->getGlobal()->isDeclaration() ||
   3183            G->getGlobal()->isWeakForLinker())) {
   3184         // PC-relative references to external symbols should go through $stub,
   3185         // unless we're building with the leopard linker or later, which
   3186         // automatically synthesizes these stubs.
   3187         OpFlags = PPCII::MO_DARWIN_STUB;
   3188       }
   3189 
   3190       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   3191       // every direct call is) turn it into a TargetGlobalAddress /
   3192       // TargetExternalSymbol node so that legalize doesn't hack it.
   3193       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   3194                                           Callee.getValueType(),
   3195                                           0, OpFlags);
   3196       needIndirectCall = false;
   3197     }
   3198   }
   3199 
   3200   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   3201     unsigned char OpFlags = 0;
   3202 
   3203     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3204         (PPCSubTarget.getTargetTriple().isMacOSX() &&
   3205          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
   3206       // PC-relative references to external symbols should go through $stub,
   3207       // unless we're building with the leopard linker or later, which
   3208       // automatically synthesizes these stubs.
   3209       OpFlags = PPCII::MO_DARWIN_STUB;
   3210     }
   3211 
   3212     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   3213                                          OpFlags);
   3214     needIndirectCall = false;
   3215   }
   3216 
   3217   if (needIndirectCall) {
   3218     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   3219     // to do the call, we can't use PPCISD::CALL.
   3220     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   3221 
   3222     if (isSVR4ABI && isPPC64) {
   3223       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   3224       // entry point, but to the function descriptor (the function entry point
   3225       // address is part of the function descriptor though).
   3226       // The function descriptor is a three doubleword structure with the
   3227       // following fields: function entry point, TOC base address and
   3228       // environment pointer.
   3229       // Thus for a call through a function pointer, the following actions need
   3230       // to be performed:
   3231       //   1. Save the TOC of the caller in the TOC save area of its stack
   3232       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   3233       //   2. Load the address of the function entry point from the function
   3234       //      descriptor.
   3235       //   3. Load the TOC of the callee from the function descriptor into r2.
   3236       //   4. Load the environment pointer from the function descriptor into
   3237       //      r11.
   3238       //   5. Branch to the function entry point address.
   3239       //   6. On return of the callee, the TOC of the caller needs to be
   3240       //      restored (this is done in FinishCall()).
   3241       //
   3242       // All those operations are flagged together to ensure that no other
   3243       // operations can be scheduled in between. E.g. without flagging the
   3244       // operations together, a TOC access in the caller could be scheduled
   3245       // between the load of the callee TOC and the branch to the callee, which
   3246       // results in the TOC access going through the TOC of the callee instead
   3247       // of going through the TOC of the caller, which leads to incorrect code.
   3248 
   3249       // Load the address of the function entry point from the function
   3250       // descriptor.
   3251       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
   3252       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
   3253                                         InFlag.getNode() ? 3 : 2);
   3254       Chain = LoadFuncPtr.getValue(1);
   3255       InFlag = LoadFuncPtr.getValue(2);
   3256 
   3257       // Load environment pointer into r11.
   3258       // Offset of the environment pointer within the function descriptor.
   3259       SDValue PtrOff = DAG.getIntPtrConstant(16);
   3260 
   3261       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   3262       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
   3263                                        InFlag);
   3264       Chain = LoadEnvPtr.getValue(1);
   3265       InFlag = LoadEnvPtr.getValue(2);
   3266 
   3267       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   3268                                         InFlag);
   3269       Chain = EnvVal.getValue(0);
   3270       InFlag = EnvVal.getValue(1);
   3271 
   3272       // Load TOC of the callee into r2. We are using a target-specific load
   3273       // with r2 hard coded, because the result of a target-independent load
   3274       // would never go directly into r2, since r2 is a reserved register (which
   3275       // prevents the register allocator from allocating it), resulting in an
   3276       // additional register being allocated and an unnecessary move instruction
   3277       // being generated.
   3278       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3279       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
   3280                                        Callee, InFlag);
   3281       Chain = LoadTOCPtr.getValue(0);
   3282       InFlag = LoadTOCPtr.getValue(1);
   3283 
   3284       MTCTROps[0] = Chain;
   3285       MTCTROps[1] = LoadFuncPtr;
   3286       MTCTROps[2] = InFlag;
   3287     }
   3288 
   3289     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
   3290                         2 + (InFlag.getNode() != 0));
   3291     InFlag = Chain.getValue(1);
   3292 
   3293     NodeTys.clear();
   3294     NodeTys.push_back(MVT::Other);
   3295     NodeTys.push_back(MVT::Glue);
   3296     Ops.push_back(Chain);
   3297     CallOpc = PPCISD::BCTRL;
   3298     Callee.setNode(0);
   3299     // Add use of X11 (holding environment pointer)
   3300     if (isSVR4ABI && isPPC64)
   3301       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
   3302     // Add CTR register as callee so a bctr can be emitted later.
   3303     if (isTailCall)
   3304       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   3305   }
   3306 
   3307   // If this is a direct call, pass the chain and the callee.
   3308   if (Callee.getNode()) {
   3309     Ops.push_back(Chain);
   3310     Ops.push_back(Callee);
   3311   }
   3312   // If this is a tail call add stack pointer delta.
   3313   if (isTailCall)
   3314     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
   3315 
   3316   // Add argument registers to the end of the list so that they are known live
   3317   // into the call.
   3318   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   3319     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   3320                                   RegsToPass[i].second.getValueType()));
   3321 
   3322   return CallOpc;
   3323 }
   3324 
   3325 static
   3326 bool isLocalCall(const SDValue &Callee)
   3327 {
   3328   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   3329     return !G->getGlobal()->isDeclaration() &&
   3330            !G->getGlobal()->isWeakForLinker();
   3331   return false;
   3332 }
   3333 
   3334 SDValue
   3335 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   3336                                    CallingConv::ID CallConv, bool isVarArg,
   3337                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   3338                                    SDLoc dl, SelectionDAG &DAG,
   3339                                    SmallVectorImpl<SDValue> &InVals) const {
   3340 
   3341   SmallVector<CCValAssign, 16> RVLocs;
   3342   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3343                     getTargetMachine(), RVLocs, *DAG.getContext());
   3344   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   3345 
   3346   // Copy all of the result registers out of their specified physreg.
   3347   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   3348     CCValAssign &VA = RVLocs[i];
   3349     assert(VA.isRegLoc() && "Can only return in registers!");
   3350 
   3351     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   3352                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   3353     Chain = Val.getValue(1);
   3354     InFlag = Val.getValue(2);
   3355 
   3356     switch (VA.getLocInfo()) {
   3357     default: llvm_unreachable("Unknown loc info!");
   3358     case CCValAssign::Full: break;
   3359     case CCValAssign::AExt:
   3360       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3361       break;
   3362     case CCValAssign::ZExt:
   3363       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   3364                         DAG.getValueType(VA.getValVT()));
   3365       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3366       break;
   3367     case CCValAssign::SExt:
   3368       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   3369                         DAG.getValueType(VA.getValVT()));
   3370       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   3371       break;
   3372     }
   3373 
   3374     InVals.push_back(Val);
   3375   }
   3376 
   3377   return Chain;
   3378 }
   3379 
   3380 SDValue
   3381 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
   3382                               bool isTailCall, bool isVarArg,
   3383                               SelectionDAG &DAG,
   3384                               SmallVector<std::pair<unsigned, SDValue>, 8>
   3385                                 &RegsToPass,
   3386                               SDValue InFlag, SDValue Chain,
   3387                               SDValue &Callee,
   3388                               int SPDiff, unsigned NumBytes,
   3389                               const SmallVectorImpl<ISD::InputArg> &Ins,
   3390                               SmallVectorImpl<SDValue> &InVals) const {
   3391   std::vector<EVT> NodeTys;
   3392   SmallVector<SDValue, 8> Ops;
   3393   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
   3394                                  isTailCall, RegsToPass, Ops, NodeTys,
   3395                                  PPCSubTarget);
   3396 
   3397   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   3398   if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
   3399     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   3400 
   3401   // When performing tail call optimization the callee pops its arguments off
   3402   // the stack. Account for this here so these bytes can be pushed back on in
   3403   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   3404   int BytesCalleePops =
   3405     (CallConv == CallingConv::Fast &&
   3406      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   3407 
   3408   // Add a register mask operand representing the call-preserved registers.
   3409   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   3410   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   3411   assert(Mask && "Missing call preserved mask for calling convention");
   3412   Ops.push_back(DAG.getRegisterMask(Mask));
   3413 
   3414   if (InFlag.getNode())
   3415     Ops.push_back(InFlag);
   3416 
   3417   // Emit tail call.
   3418   if (isTailCall) {
   3419     assert(((Callee.getOpcode() == ISD::Register &&
   3420              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   3421             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   3422             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   3423             isa<ConstantSDNode>(Callee)) &&
   3424     "Expecting an global address, external symbol, absolute value or register");
   3425 
   3426     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
   3427   }
   3428 
   3429   // Add a NOP immediately after the branch instruction when using the 64-bit
   3430   // SVR4 ABI. At link time, if caller and callee are in a different module and
   3431   // thus have a different TOC, the call will be replaced with a call to a stub
   3432   // function which saves the current TOC, loads the TOC of the callee and
   3433   // branches to the callee. The NOP will be replaced with a load instruction
   3434   // which restores the TOC of the caller from the TOC save slot of the current
   3435   // stack frame. If caller and callee belong to the same module (and have the
   3436   // same TOC), the NOP will remain unchanged.
   3437 
   3438   bool needsTOCRestore = false;
   3439   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
   3440     if (CallOpc == PPCISD::BCTRL) {
   3441       // This is a call through a function pointer.
   3442       // Restore the caller TOC from the save area into R2.
   3443       // See PrepareCall() for more information about calls through function
   3444       // pointers in the 64-bit SVR4 ABI.
   3445       // We are using a target-specific load with r2 hard coded, because the
   3446       // result of a target-independent load would never go directly into r2,
   3447       // since r2 is a reserved register (which prevents the register allocator
   3448       // from allocating it), resulting in an additional register being
   3449       // allocated and an unnecessary move instruction being generated.
   3450       needsTOCRestore = true;
   3451     } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
   3452       // Otherwise insert NOP for non-local calls.
   3453       CallOpc = PPCISD::CALL_NOP;
   3454     }
   3455   }
   3456 
   3457   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
   3458   InFlag = Chain.getValue(1);
   3459 
   3460   if (needsTOCRestore) {
   3461     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3462     Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
   3463     InFlag = Chain.getValue(1);
   3464   }
   3465 
   3466   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3467                              DAG.getIntPtrConstant(BytesCalleePops, true),
   3468                              InFlag, dl);
   3469   if (!Ins.empty())
   3470     InFlag = Chain.getValue(1);
   3471 
   3472   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   3473                          Ins, dl, DAG, InVals);
   3474 }
   3475 
   3476 SDValue
   3477 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   3478                              SmallVectorImpl<SDValue> &InVals) const {
   3479   SelectionDAG &DAG                     = CLI.DAG;
   3480   SDLoc &dl                             = CLI.DL;
   3481   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   3482   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   3483   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   3484   SDValue Chain                         = CLI.Chain;
   3485   SDValue Callee                        = CLI.Callee;
   3486   bool &isTailCall                      = CLI.IsTailCall;
   3487   CallingConv::ID CallConv              = CLI.CallConv;
   3488   bool isVarArg                         = CLI.IsVarArg;
   3489 
   3490   if (isTailCall)
   3491     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   3492                                                    Ins, DAG);
   3493 
   3494   if (PPCSubTarget.isSVR4ABI()) {
   3495     if (PPCSubTarget.isPPC64())
   3496       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   3497                               isTailCall, Outs, OutVals, Ins,
   3498                               dl, DAG, InVals);
   3499     else
   3500       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   3501                               isTailCall, Outs, OutVals, Ins,
   3502                               dl, DAG, InVals);
   3503   }
   3504 
   3505   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   3506                           isTailCall, Outs, OutVals, Ins,
   3507                           dl, DAG, InVals);
   3508 }
   3509 
   3510 SDValue
   3511 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
   3512                                     CallingConv::ID CallConv, bool isVarArg,
   3513                                     bool isTailCall,
   3514                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3515                                     const SmallVectorImpl<SDValue> &OutVals,
   3516                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3517                                     SDLoc dl, SelectionDAG &DAG,
   3518                                     SmallVectorImpl<SDValue> &InVals) const {
   3519   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   3520   // of the 32-bit SVR4 ABI stack frame layout.
   3521 
   3522   assert((CallConv == CallingConv::C ||
   3523           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   3524 
   3525   unsigned PtrByteSize = 4;
   3526 
   3527   MachineFunction &MF = DAG.getMachineFunction();
   3528 
   3529   // Mark this function as potentially containing a function that contains a
   3530   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3531   // and restoring the callers stack pointer in this functions epilog. This is
   3532   // done because by tail calling the called function might overwrite the value
   3533   // in this function's (MF) stack pointer stack slot 0(SP).
   3534   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3535       CallConv == CallingConv::Fast)
   3536     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3537 
   3538   // Count how many bytes are to be pushed on the stack, including the linkage
   3539   // area, parameter list area and the part of the local variable space which
   3540   // contains copies of aggregates which are passed by value.
   3541 
   3542   // Assign locations to all of the outgoing arguments.
   3543   SmallVector<CCValAssign, 16> ArgLocs;
   3544   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3545                  getTargetMachine(), ArgLocs, *DAG.getContext());
   3546 
   3547   // Reserve space for the linkage area on the stack.
   3548   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   3549 
   3550   if (isVarArg) {
   3551     // Handle fixed and variable vector arguments differently.
   3552     // Fixed vector arguments go into registers as long as registers are
   3553     // available. Variable vector arguments always go into memory.
   3554     unsigned NumArgs = Outs.size();
   3555 
   3556     for (unsigned i = 0; i != NumArgs; ++i) {
   3557       MVT ArgVT = Outs[i].VT;
   3558       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   3559       bool Result;
   3560 
   3561       if (Outs[i].IsFixed) {
   3562         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   3563                                CCInfo);
   3564       } else {
   3565         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   3566                                       ArgFlags, CCInfo);
   3567       }
   3568 
   3569       if (Result) {
   3570 #ifndef NDEBUG
   3571         errs() << "Call operand #" << i << " has unhandled type "
   3572              << EVT(ArgVT).getEVTString() << "\n";
   3573 #endif
   3574         llvm_unreachable(0);
   3575       }
   3576     }
   3577   } else {
   3578     // All arguments are treated the same.
   3579     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   3580   }
   3581 
   3582   // Assign locations to all of the outgoing aggregate by value arguments.
   3583   SmallVector<CCValAssign, 16> ByValArgLocs;
   3584   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3585                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
   3586 
   3587   // Reserve stack space for the allocations in CCInfo.
   3588   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   3589 
   3590   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   3591 
   3592   // Size of the linkage area, parameter list area and the part of the local
   3593   // space variable where copies of aggregates which are passed by value are
   3594   // stored.
   3595   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   3596 
   3597   // Calculate by how many bytes the stack has to be adjusted in case of tail
   3598   // call optimization.
   3599   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   3600 
   3601   // Adjust the stack pointer for the new arguments...
   3602   // These operations are automatically eliminated by the prolog/epilog pass
   3603   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3604                                dl);
   3605   SDValue CallSeqStart = Chain;
   3606 
   3607   // Load the return address and frame pointer so it can be moved somewhere else
   3608   // later.
   3609   SDValue LROp, FPOp;
   3610   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   3611                                        dl);
   3612 
   3613   // Set up a copy of the stack pointer for use loading and storing any
   3614   // arguments that may not fit in the registers available for argument
   3615   // passing.
   3616   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3617 
   3618   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3619   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   3620   SmallVector<SDValue, 8> MemOpChains;
   3621 
   3622   bool seenFloatArg = false;
   3623   // Walk the register/memloc assignments, inserting copies/loads.
   3624   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   3625        i != e;
   3626        ++i) {
   3627     CCValAssign &VA = ArgLocs[i];
   3628     SDValue Arg = OutVals[i];
   3629     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3630 
   3631     if (Flags.isByVal()) {
   3632       // Argument is an aggregate which is passed by value, thus we need to
   3633       // create a copy of it in the local variable space of the current stack
   3634       // frame (which is the stack frame of the caller) and pass the address of
   3635       // this copy to the callee.
   3636       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   3637       CCValAssign &ByValVA = ByValArgLocs[j++];
   3638       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   3639 
   3640       // Memory reserved in the local variable space of the callers stack frame.
   3641       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   3642 
   3643       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3644       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3645 
   3646       // Create a copy of the argument in the local area of the current
   3647       // stack frame.
   3648       SDValue MemcpyCall =
   3649         CreateCopyOfByValArgument(Arg, PtrOff,
   3650                                   CallSeqStart.getNode()->getOperand(0),
   3651                                   Flags, DAG, dl);
   3652 
   3653       // This must go outside the CALLSEQ_START..END.
   3654       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3655                            CallSeqStart.getNode()->getOperand(1),
   3656                            SDLoc(MemcpyCall));
   3657       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3658                              NewCallSeqStart.getNode());
   3659       Chain = CallSeqStart = NewCallSeqStart;
   3660 
   3661       // Pass the address of the aggregate copy on the stack either in a
   3662       // physical register or in the parameter list area of the current stack
   3663       // frame to the callee.
   3664       Arg = PtrOff;
   3665     }
   3666 
   3667     if (VA.isRegLoc()) {
   3668       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   3669       // Put argument in a physical register.
   3670       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   3671     } else {
   3672       // Put argument in the parameter list area of the current stack frame.
   3673       assert(VA.isMemLoc());
   3674       unsigned LocMemOffset = VA.getLocMemOffset();
   3675 
   3676       if (!isTailCall) {
   3677         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3678         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3679 
   3680         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3681                                            MachinePointerInfo(),
   3682                                            false, false, 0));
   3683       } else {
   3684         // Calculate and remember argument location.
   3685         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   3686                                  TailCallArguments);
   3687       }
   3688     }
   3689   }
   3690 
   3691   if (!MemOpChains.empty())
   3692     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3693                         &MemOpChains[0], MemOpChains.size());
   3694 
   3695   // Build a sequence of copy-to-reg nodes chained together with token chain
   3696   // and flag operands which copy the outgoing args into the appropriate regs.
   3697   SDValue InFlag;
   3698   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   3699     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   3700                              RegsToPass[i].second, InFlag);
   3701     InFlag = Chain.getValue(1);
   3702   }
   3703 
   3704   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   3705   // registers.
   3706   if (isVarArg) {
   3707     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   3708     SDValue Ops[] = { Chain, InFlag };
   3709 
   3710     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   3711                         dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
   3712 
   3713     InFlag = Chain.getValue(1);
   3714   }
   3715 
   3716   if (isTailCall)
   3717     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   3718                     false, TailCallArguments);
   3719 
   3720   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   3721                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   3722                     Ins, InVals);
   3723 }
   3724 
   3725 // Copy an argument into memory, being careful to do this outside the
   3726 // call sequence for the call to which the argument belongs.
   3727 SDValue
   3728 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
   3729                                               SDValue CallSeqStart,
   3730                                               ISD::ArgFlagsTy Flags,
   3731                                               SelectionDAG &DAG,
   3732                                               SDLoc dl) const {
   3733   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   3734                         CallSeqStart.getNode()->getOperand(0),
   3735                         Flags, DAG, dl);
   3736   // The MEMCPY must go outside the CALLSEQ_START..END.
   3737   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3738                              CallSeqStart.getNode()->getOperand(1),
   3739                              SDLoc(MemcpyCall));
   3740   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3741                          NewCallSeqStart.getNode());
   3742   return NewCallSeqStart;
   3743 }
   3744 
   3745 SDValue
   3746 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
   3747                                     CallingConv::ID CallConv, bool isVarArg,
   3748                                     bool isTailCall,
   3749                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3750                                     const SmallVectorImpl<SDValue> &OutVals,
   3751                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3752                                     SDLoc dl, SelectionDAG &DAG,
   3753                                     SmallVectorImpl<SDValue> &InVals) const {
   3754 
   3755   unsigned NumOps = Outs.size();
   3756 
   3757   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3758   unsigned PtrByteSize = 8;
   3759 
   3760   MachineFunction &MF = DAG.getMachineFunction();
   3761 
   3762   // Mark this function as potentially containing a function that contains a
   3763   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3764   // and restoring the callers stack pointer in this functions epilog. This is
   3765   // done because by tail calling the called function might overwrite the value
   3766   // in this function's (MF) stack pointer stack slot 0(SP).
   3767   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3768       CallConv == CallingConv::Fast)
   3769     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3770 
   3771   unsigned nAltivecParamsAtEnd = 0;
   3772 
   3773   // Count how many bytes are to be pushed on the stack, including the linkage
   3774   // area, and parameter passing area.  We start with at least 48 bytes, which
   3775   // is reserved space for [SP][CR][LR][3 x unused].
   3776   // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
   3777   // of this call.
   3778   unsigned NumBytes =
   3779     CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
   3780                                          Outs, OutVals, nAltivecParamsAtEnd);
   3781 
   3782   // Calculate by how many bytes the stack has to be adjusted in case of tail
   3783   // call optimization.
   3784   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   3785 
   3786   // To protect arguments on the stack from being clobbered in a tail call,
   3787   // force all the loads to happen before doing any other lowering.
   3788   if (isTailCall)
   3789     Chain = DAG.getStackArgumentTokenFactor(Chain);
   3790 
   3791   // Adjust the stack pointer for the new arguments...
   3792   // These operations are automatically eliminated by the prolog/epilog pass
   3793   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3794                                dl);
   3795   SDValue CallSeqStart = Chain;
   3796 
   3797   // Load the return address and frame pointer so it can be move somewhere else
   3798   // later.
   3799   SDValue LROp, FPOp;
   3800   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   3801                                        dl);
   3802 
   3803   // Set up a copy of the stack pointer for use loading and storing any
   3804   // arguments that may not fit in the registers available for argument
   3805   // passing.
   3806   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3807 
   3808   // Figure out which arguments are going to go in registers, and which in
   3809   // memory.  Also, if this is a vararg function, floating point operations
   3810   // must be stored to our stack, and loaded into integer regs as well, if
   3811   // any integer regs are available for argument passing.
   3812   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
   3813   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3814 
   3815   static const uint16_t GPR[] = {
   3816     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3817     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3818   };
   3819   static const uint16_t *FPR = GetFPR();
   3820 
   3821   static const uint16_t VR[] = {
   3822     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3823     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3824   };
   3825   const unsigned NumGPRs = array_lengthof(GPR);
   3826   const unsigned NumFPRs = 13;
   3827   const unsigned NumVRs  = array_lengthof(VR);
   3828 
   3829   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3830   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   3831 
   3832   SmallVector<SDValue, 8> MemOpChains;
   3833   for (unsigned i = 0; i != NumOps; ++i) {
   3834     SDValue Arg = OutVals[i];
   3835     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3836 
   3837     // PtrOff will be used to store the current argument to the stack if a
   3838     // register cannot be found for it.
   3839     SDValue PtrOff;
   3840 
   3841     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   3842 
   3843     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   3844 
   3845     // Promote integers to 64-bit values.
   3846     if (Arg.getValueType() == MVT::i32) {
   3847       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   3848       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   3849       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   3850     }
   3851 
   3852     // FIXME memcpy is used way more than necessary.  Correctness first.
   3853     // Note: "by value" is code for passing a structure by value, not
   3854     // basic types.
   3855     if (Flags.isByVal()) {
   3856       // Note: Size includes alignment padding, so
   3857       //   struct x { short a; char b; }
   3858       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   3859       // These are the proper values we need for right-justifying the
   3860       // aggregate in a parameter register.
   3861       unsigned Size = Flags.getByValSize();
   3862 
   3863       // An empty aggregate parameter takes up no storage and no
   3864       // registers.
   3865       if (Size == 0)
   3866         continue;
   3867 
   3868       // All aggregates smaller than 8 bytes must be passed right-justified.
   3869       if (Size==1 || Size==2 || Size==4) {
   3870         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   3871         if (GPR_idx != NumGPRs) {
   3872           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   3873                                         MachinePointerInfo(), VT,
   3874                                         false, false, 0);
   3875           MemOpChains.push_back(Load.getValue(1));
   3876           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3877 
   3878           ArgOffset += PtrByteSize;
   3879           continue;
   3880         }
   3881       }
   3882 
   3883       if (GPR_idx == NumGPRs && Size < 8) {
   3884         SDValue Const = DAG.getConstant(PtrByteSize - Size,
   3885                                         PtrOff.getValueType());
   3886         SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   3887         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   3888                                                           CallSeqStart,
   3889                                                           Flags, DAG, dl);
   3890         ArgOffset += PtrByteSize;
   3891         continue;
   3892       }
   3893       // Copy entire object into memory.  There are cases where gcc-generated
   3894       // code assumes it is there, even if it could be put entirely into
   3895       // registers.  (This is not what the doc says.)
   3896 
   3897       // FIXME: The above statement is likely due to a misunderstanding of the
   3898       // documents.  All arguments must be copied into the parameter area BY
   3899       // THE CALLEE in the event that the callee takes the address of any
   3900       // formal argument.  That has not yet been implemented.  However, it is
   3901       // reasonable to use the stack area as a staging area for the register
   3902       // load.
   3903 
   3904       // Skip this for small aggregates, as we will use the same slot for a
   3905       // right-justified copy, below.
   3906       if (Size >= 8)
   3907         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   3908                                                           CallSeqStart,
   3909                                                           Flags, DAG, dl);
   3910 
   3911       // When a register is available, pass a small aggregate right-justified.
   3912       if (Size < 8 && GPR_idx != NumGPRs) {
   3913         // The easiest way to get this right-justified in a register
   3914         // is to copy the structure into the rightmost portion of a
   3915         // local variable slot, then load the whole slot into the
   3916         // register.
   3917         // FIXME: The memcpy seems to produce pretty awful code for
   3918         // small aggregates, particularly for packed ones.
   3919         // FIXME: It would be preferable to use the slot in the
   3920         // parameter save area instead of a new local variable.
   3921         SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
   3922         SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   3923         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   3924                                                           CallSeqStart,
   3925                                                           Flags, DAG, dl);
   3926 
   3927         // Load the slot into the register.
   3928         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
   3929                                    MachinePointerInfo(),
   3930                                    false, false, false, 0);
   3931         MemOpChains.push_back(Load.getValue(1));
   3932         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3933 
   3934         // Done with this argument.
   3935         ArgOffset += PtrByteSize;
   3936         continue;
   3937       }
   3938 
   3939       // For aggregates larger than PtrByteSize, copy the pieces of the
   3940       // object that fit into registers from the parameter save area.
   3941       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   3942         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   3943         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   3944         if (GPR_idx != NumGPRs) {
   3945           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   3946                                      MachinePointerInfo(),
   3947                                      false, false, false, 0);
   3948           MemOpChains.push_back(Load.getValue(1));
   3949           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3950           ArgOffset += PtrByteSize;
   3951         } else {
   3952           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   3953           break;
   3954         }
   3955       }
   3956       continue;
   3957     }
   3958 
   3959     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
   3960     default: llvm_unreachable("Unexpected ValueType for argument!");
   3961     case MVT::i32:
   3962     case MVT::i64:
   3963       if (GPR_idx != NumGPRs) {
   3964         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   3965       } else {
   3966         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3967                          true, isTailCall, false, MemOpChains,
   3968                          TailCallArguments, dl);
   3969       }
   3970       ArgOffset += PtrByteSize;
   3971       break;
   3972     case MVT::f32:
   3973     case MVT::f64:
   3974       if (FPR_idx != NumFPRs) {
   3975         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   3976 
   3977         if (isVarArg) {
   3978           // A single float or an aggregate containing only a single float
   3979           // must be passed right-justified in the stack doubleword, and
   3980           // in the GPR, if one is available.
   3981           SDValue StoreOff;
   3982           if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
   3983             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   3984             StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   3985           } else
   3986             StoreOff = PtrOff;
   3987 
   3988           SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
   3989                                        MachinePointerInfo(), false, false, 0);
   3990           MemOpChains.push_back(Store);
   3991 
   3992           // Float varargs are always shadowed in available integer registers
   3993           if (GPR_idx != NumGPRs) {
   3994             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   3995                                        MachinePointerInfo(), false, false,
   3996                                        false, 0);
   3997             MemOpChains.push_back(Load.getValue(1));
   3998             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3999           }
   4000         } else if (GPR_idx != NumGPRs)
   4001           // If we have any FPRs remaining, we may also have GPRs remaining.
   4002           ++GPR_idx;
   4003       } else {
   4004         // Single-precision floating-point values are mapped to the
   4005         // second (rightmost) word of the stack doubleword.
   4006         if (Arg.getValueType() == MVT::f32) {
   4007           SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   4008           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   4009         }
   4010 
   4011         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4012                          true, isTailCall, false, MemOpChains,
   4013                          TailCallArguments, dl);
   4014       }
   4015       ArgOffset += 8;
   4016       break;
   4017     case MVT::v4f32:
   4018     case MVT::v4i32:
   4019     case MVT::v8i16:
   4020     case MVT::v16i8:
   4021       if (isVarArg) {
   4022         // These go aligned on the stack, or in the corresponding R registers
   4023         // when within range.  The Darwin PPC ABI doc claims they also go in
   4024         // V registers; in fact gcc does this only for arguments that are
   4025         // prototyped, not for those that match the ...  We do it for all
   4026         // arguments, seems to work.
   4027         while (ArgOffset % 16 !=0) {
   4028           ArgOffset += PtrByteSize;
   4029           if (GPR_idx != NumGPRs)
   4030             GPR_idx++;
   4031         }
   4032         // We could elide this store in the case where the object fits
   4033         // entirely in R registers.  Maybe later.
   4034         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4035                             DAG.getConstant(ArgOffset, PtrVT));
   4036         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4037                                      MachinePointerInfo(), false, false, 0);
   4038         MemOpChains.push_back(Store);
   4039         if (VR_idx != NumVRs) {
   4040           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   4041                                      MachinePointerInfo(),
   4042                                      false, false, false, 0);
   4043           MemOpChains.push_back(Load.getValue(1));
   4044           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   4045         }
   4046         ArgOffset += 16;
   4047         for (unsigned i=0; i<16; i+=PtrByteSize) {
   4048           if (GPR_idx == NumGPRs)
   4049             break;
   4050           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   4051                                   DAG.getConstant(i, PtrVT));
   4052           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   4053                                      false, false, false, 0);
   4054           MemOpChains.push_back(Load.getValue(1));
   4055           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4056         }
   4057         break;
   4058       }
   4059 
   4060       // Non-varargs Altivec params generally go in registers, but have
   4061       // stack space allocated at the end.
   4062       if (VR_idx != NumVRs) {
   4063         // Doesn't have GPR space allocated.
   4064         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   4065       } else {
   4066         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4067                          true, isTailCall, true, MemOpChains,
   4068                          TailCallArguments, dl);
   4069         ArgOffset += 16;
   4070       }
   4071       break;
   4072     }
   4073   }
   4074 
   4075   if (!MemOpChains.empty())
   4076     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   4077                         &MemOpChains[0], MemOpChains.size());
   4078 
   4079   // Check if this is an indirect call (MTCTR/BCTRL).
   4080   // See PrepareCall() for more information about calls through function
   4081   // pointers in the 64-bit SVR4 ABI.
   4082   if (!isTailCall &&
   4083       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   4084       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   4085       !isBLACompatibleAddress(Callee, DAG)) {
   4086     // Load r2 into a virtual register and store it to the TOC save area.
   4087     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   4088     // TOC save area offset.
   4089     SDValue PtrOff = DAG.getIntPtrConstant(40);
   4090     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4091     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
   4092                          false, false, 0);
   4093     // R12 must contain the address of an indirect callee.  This does not
   4094     // mean the MTCTR instruction must use R12; it's easier to model this
   4095     // as an extra parameter, so do that.
   4096     RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
   4097   }
   4098 
   4099   // Build a sequence of copy-to-reg nodes chained together with token chain
   4100   // and flag operands which copy the outgoing args into the appropriate regs.
   4101   SDValue InFlag;
   4102   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4103     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4104                              RegsToPass[i].second, InFlag);
   4105     InFlag = Chain.getValue(1);
   4106   }
   4107 
   4108   if (isTailCall)
   4109     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
   4110                     FPOp, true, TailCallArguments);
   4111 
   4112   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   4113                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   4114                     Ins, InVals);
   4115 }
   4116 
   4117 SDValue
   4118 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   4119                                     CallingConv::ID CallConv, bool isVarArg,
   4120                                     bool isTailCall,
   4121                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4122                                     const SmallVectorImpl<SDValue> &OutVals,
   4123                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4124                                     SDLoc dl, SelectionDAG &DAG,
   4125                                     SmallVectorImpl<SDValue> &InVals) const {
   4126 
   4127   unsigned NumOps = Outs.size();
   4128 
   4129   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4130   bool isPPC64 = PtrVT == MVT::i64;
   4131   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   4132 
   4133   MachineFunction &MF = DAG.getMachineFunction();
   4134 
   4135   // Mark this function as potentially containing a function that contains a
   4136   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4137   // and restoring the callers stack pointer in this functions epilog. This is
   4138   // done because by tail calling the called function might overwrite the value
   4139   // in this function's (MF) stack pointer stack slot 0(SP).
   4140   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4141       CallConv == CallingConv::Fast)
   4142     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4143 
   4144   unsigned nAltivecParamsAtEnd = 0;
   4145 
   4146   // Count how many bytes are to be pushed on the stack, including the linkage
   4147   // area, and parameter passing area.  We start with 24/48 bytes, which is
   4148   // prereserved space for [SP][CR][LR][3 x unused].
   4149   unsigned NumBytes =
   4150     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
   4151                                          Outs, OutVals,
   4152                                          nAltivecParamsAtEnd);
   4153 
   4154   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4155   // call optimization.
   4156   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4157 
   4158   // To protect arguments on the stack from being clobbered in a tail call,
   4159   // force all the loads to happen before doing any other lowering.
   4160   if (isTailCall)
   4161     Chain = DAG.getStackArgumentTokenFactor(Chain);
   4162 
   4163   // Adjust the stack pointer for the new arguments...
   4164   // These operations are automatically eliminated by the prolog/epilog pass
   4165   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   4166                                dl);
   4167   SDValue CallSeqStart = Chain;
   4168 
   4169   // Load the return address and frame pointer so it can be move somewhere else
   4170   // later.
   4171   SDValue LROp, FPOp;
   4172   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   4173                                        dl);
   4174 
   4175   // Set up a copy of the stack pointer for use loading and storing any
   4176   // arguments that may not fit in the registers available for argument
   4177   // passing.
   4178   SDValue StackPtr;
   4179   if (isPPC64)
   4180     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4181   else
   4182     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4183 
   4184   // Figure out which arguments are going to go in registers, and which in
   4185   // memory.  Also, if this is a vararg function, floating point operations
   4186   // must be stored to our stack, and loaded into integer regs as well, if
   4187   // any integer regs are available for argument passing.
   4188   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   4189   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   4190 
   4191   static const uint16_t GPR_32[] = {           // 32-bit registers.
   4192     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   4193     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   4194   };
   4195   static const uint16_t GPR_64[] = {           // 64-bit registers.
   4196     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4197     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4198   };
   4199   static const uint16_t *FPR = GetFPR();
   4200 
   4201   static const uint16_t VR[] = {
   4202     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4203     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4204   };
   4205   const unsigned NumGPRs = array_lengthof(GPR_32);
   4206   const unsigned NumFPRs = 13;
   4207   const unsigned NumVRs  = array_lengthof(VR);
   4208 
   4209   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
   4210 
   4211   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4212   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4213 
   4214   SmallVector<SDValue, 8> MemOpChains;
   4215   for (unsigned i = 0; i != NumOps; ++i) {
   4216     SDValue Arg = OutVals[i];
   4217     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4218 
   4219     // PtrOff will be used to store the current argument to the stack if a
   4220     // register cannot be found for it.
   4221     SDValue PtrOff;
   4222 
   4223     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   4224 
   4225     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4226 
   4227     // On PPC64, promote integers to 64-bit values.
   4228     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   4229       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   4230       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   4231       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   4232     }
   4233 
   4234     // FIXME memcpy is used way more than necessary.  Correctness first.
   4235     // Note: "by value" is code for passing a structure by value, not
   4236     // basic types.
   4237     if (Flags.isByVal()) {
   4238       unsigned Size = Flags.getByValSize();
   4239       // Very small objects are passed right-justified.  Everything else is
   4240       // passed left-justified.
   4241       if (Size==1 || Size==2) {
   4242         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   4243         if (GPR_idx != NumGPRs) {
   4244           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   4245                                         MachinePointerInfo(), VT,
   4246                                         false, false, 0);
   4247           MemOpChains.push_back(Load.getValue(1));
   4248           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4249 
   4250           ArgOffset += PtrByteSize;
   4251         } else {
   4252           SDValue Const = DAG.getConstant(PtrByteSize - Size,
   4253                                           PtrOff.getValueType());
   4254           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4255           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   4256                                                             CallSeqStart,
   4257                                                             Flags, DAG, dl);
   4258           ArgOffset += PtrByteSize;
   4259         }
   4260         continue;
   4261       }
   4262       // Copy entire object into memory.  There are cases where gcc-generated
   4263       // code assumes it is there, even if it could be put entirely into
   4264       // registers.  (This is not what the doc says.)
   4265       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   4266                                                         CallSeqStart,
   4267                                                         Flags, DAG, dl);
   4268 
   4269       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   4270       // copy the pieces of the object that fit into registers from the
   4271       // parameter save area.
   4272       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   4273         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   4274         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   4275         if (GPR_idx != NumGPRs) {
   4276           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   4277                                      MachinePointerInfo(),
   4278                                      false, false, false, 0);
   4279           MemOpChains.push_back(Load.getValue(1));
   4280           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4281           ArgOffset += PtrByteSize;
   4282         } else {
   4283           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   4284           break;
   4285         }
   4286       }
   4287       continue;
   4288     }
   4289 
   4290     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
   4291     default: llvm_unreachable("Unexpected ValueType for argument!");
   4292     case MVT::i32:
   4293     case MVT::i64:
   4294       if (GPR_idx != NumGPRs) {
   4295         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   4296       } else {
   4297         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4298                          isPPC64, isTailCall, false, MemOpChains,
   4299                          TailCallArguments, dl);
   4300       }
   4301       ArgOffset += PtrByteSize;
   4302       break;
   4303     case MVT::f32:
   4304     case MVT::f64:
   4305       if (FPR_idx != NumFPRs) {
   4306         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   4307 
   4308         if (isVarArg) {
   4309           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4310                                        MachinePointerInfo(), false, false, 0);
   4311           MemOpChains.push_back(Store);
   4312 
   4313           // Float varargs are always shadowed in available integer registers
   4314           if (GPR_idx != NumGPRs) {
   4315             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   4316                                        MachinePointerInfo(), false, false,
   4317                                        false, 0);
   4318             MemOpChains.push_back(Load.getValue(1));
   4319             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4320           }
   4321           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   4322             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   4323             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   4324             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   4325                                        MachinePointerInfo(),
   4326                                        false, false, false, 0);
   4327             MemOpChains.push_back(Load.getValue(1));
   4328             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4329           }
   4330         } else {
   4331           // If we have any FPRs remaining, we may also have GPRs remaining.
   4332           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   4333           // GPRs.
   4334           if (GPR_idx != NumGPRs)
   4335             ++GPR_idx;
   4336           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   4337               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   4338             ++GPR_idx;
   4339         }
   4340       } else
   4341         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4342                          isPPC64, isTailCall, false, MemOpChains,
   4343                          TailCallArguments, dl);
   4344       if (isPPC64)
   4345         ArgOffset += 8;
   4346       else
   4347         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   4348       break;
   4349     case MVT::v4f32:
   4350     case MVT::v4i32:
   4351     case MVT::v8i16:
   4352     case MVT::v16i8:
   4353       if (isVarArg) {
   4354         // These go aligned on the stack, or in the corresponding R registers
   4355         // when within range.  The Darwin PPC ABI doc claims they also go in
   4356         // V registers; in fact gcc does this only for arguments that are
   4357         // prototyped, not for those that match the ...  We do it for all
   4358         // arguments, seems to work.
   4359         while (ArgOffset % 16 !=0) {
   4360           ArgOffset += PtrByteSize;
   4361           if (GPR_idx != NumGPRs)
   4362             GPR_idx++;
   4363         }
   4364         // We could elide this store in the case where the object fits
   4365         // entirely in R registers.  Maybe later.
   4366         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4367                             DAG.getConstant(ArgOffset, PtrVT));
   4368         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4369                                      MachinePointerInfo(), false, false, 0);
   4370         MemOpChains.push_back(Store);
   4371         if (VR_idx != NumVRs) {
   4372           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   4373                                      MachinePointerInfo(),
   4374                                      false, false, false, 0);
   4375           MemOpChains.push_back(Load.getValue(1));
   4376           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   4377         }
   4378         ArgOffset += 16;
   4379         for (unsigned i=0; i<16; i+=PtrByteSize) {
   4380           if (GPR_idx == NumGPRs)
   4381             break;
   4382           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   4383                                   DAG.getConstant(i, PtrVT));
   4384           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   4385                                      false, false, false, 0);
   4386           MemOpChains.push_back(Load.getValue(1));
   4387           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4388         }
   4389         break;
   4390       }
   4391 
   4392       // Non-varargs Altivec params generally go in registers, but have
   4393       // stack space allocated at the end.
   4394       if (VR_idx != NumVRs) {
   4395         // Doesn't have GPR space allocated.
   4396         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   4397       } else if (nAltivecParamsAtEnd==0) {
   4398         // We are emitting Altivec params in order.
   4399         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4400                          isPPC64, isTailCall, true, MemOpChains,
   4401                          TailCallArguments, dl);
   4402         ArgOffset += 16;
   4403       }
   4404       break;
   4405     }
   4406   }
   4407   // If all Altivec parameters fit in registers, as they usually do,
   4408   // they get stack space following the non-Altivec parameters.  We
   4409   // don't track this here because nobody below needs it.
   4410   // If there are more Altivec parameters than fit in registers emit
   4411   // the stores here.
   4412   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   4413     unsigned j = 0;
   4414     // Offset is aligned; skip 1st 12 params which go in V registers.
   4415     ArgOffset = ((ArgOffset+15)/16)*16;
   4416     ArgOffset += 12*16;
   4417     for (unsigned i = 0; i != NumOps; ++i) {
   4418       SDValue Arg = OutVals[i];
   4419       EVT ArgType = Outs[i].VT;
   4420       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   4421           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   4422         if (++j > NumVRs) {
   4423           SDValue PtrOff;
   4424           // We are emitting Altivec params in order.
   4425           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4426                            isPPC64, isTailCall, true, MemOpChains,
   4427                            TailCallArguments, dl);
   4428           ArgOffset += 16;
   4429         }
   4430       }
   4431     }
   4432   }
   4433 
   4434   if (!MemOpChains.empty())
   4435     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   4436                         &MemOpChains[0], MemOpChains.size());
   4437 
   4438   // On Darwin, R12 must contain the address of an indirect callee.  This does
   4439   // not mean the MTCTR instruction must use R12; it's easier to model this as
   4440   // an extra parameter, so do that.
   4441   if (!isTailCall &&
   4442       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   4443       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   4444       !isBLACompatibleAddress(Callee, DAG))
   4445     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   4446                                                    PPC::R12), Callee));
   4447 
   4448   // Build a sequence of copy-to-reg nodes chained together with token chain
   4449   // and flag operands which copy the outgoing args into the appropriate regs.
   4450   SDValue InFlag;
   4451   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4452     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4453                              RegsToPass[i].second, InFlag);
   4454     InFlag = Chain.getValue(1);
   4455   }
   4456 
   4457   if (isTailCall)
   4458     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   4459                     FPOp, true, TailCallArguments);
   4460 
   4461   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   4462                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   4463                     Ins, InVals);
   4464 }
   4465 
   4466 bool
   4467 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   4468                                   MachineFunction &MF, bool isVarArg,
   4469                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   4470                                   LLVMContext &Context) const {
   4471   SmallVector<CCValAssign, 16> RVLocs;
   4472   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   4473                  RVLocs, Context);
   4474   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   4475 }
   4476 
   4477 SDValue
   4478 PPCTargetLowering::LowerReturn(SDValue Chain,
   4479                                CallingConv::ID CallConv, bool isVarArg,
   4480                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   4481                                const SmallVectorImpl<SDValue> &OutVals,
   4482                                SDLoc dl, SelectionDAG &DAG) const {
   4483 
   4484   SmallVector<CCValAssign, 16> RVLocs;
   4485   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   4486                  getTargetMachine(), RVLocs, *DAG.getContext());
   4487   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   4488 
   4489   SDValue Flag;
   4490   SmallVector<SDValue, 4> RetOps(1, Chain);
   4491 
   4492   // Copy the result values into the output registers.
   4493   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   4494     CCValAssign &VA = RVLocs[i];
   4495     assert(VA.isRegLoc() && "Can only return in registers!");
   4496 
   4497     SDValue Arg = OutVals[i];
   4498 
   4499     switch (VA.getLocInfo()) {
   4500     default: llvm_unreachable("Unknown loc info!");
   4501     case CCValAssign::Full: break;
   4502     case CCValAssign::AExt:
   4503       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   4504       break;
   4505     case CCValAssign::ZExt:
   4506       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   4507       break;
   4508     case CCValAssign::SExt:
   4509       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   4510       break;
   4511     }
   4512 
   4513     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   4514     Flag = Chain.getValue(1);
   4515     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   4516   }
   4517 
   4518   RetOps[0] = Chain;  // Update chain.
   4519 
   4520   // Add the flag if we have it.
   4521   if (Flag.getNode())
   4522     RetOps.push_back(Flag);
   4523 
   4524   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
   4525                      &RetOps[0], RetOps.size());
   4526 }
   4527 
   4528 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   4529                                    const PPCSubtarget &Subtarget) const {
   4530   // When we pop the dynamic allocation we need to restore the SP link.
   4531   SDLoc dl(Op);
   4532 
   4533   // Get the corect type for pointers.
   4534   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4535 
   4536   // Construct the stack pointer operand.
   4537   bool isPPC64 = Subtarget.isPPC64();
   4538   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   4539   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   4540 
   4541   // Get the operands for the STACKRESTORE.
   4542   SDValue Chain = Op.getOperand(0);
   4543   SDValue SaveSP = Op.getOperand(1);
   4544 
   4545   // Load the old link SP.
   4546   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   4547                                    MachinePointerInfo(),
   4548                                    false, false, false, 0);
   4549 
   4550   // Restore the stack pointer.
   4551   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   4552 
   4553   // Store the old link SP.
   4554   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   4555                       false, false, 0);
   4556 }
   4557 
   4558 
   4559 
   4560 SDValue
   4561 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
   4562   MachineFunction &MF = DAG.getMachineFunction();
   4563   bool isPPC64 = PPCSubTarget.isPPC64();
   4564   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   4565   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4566 
   4567   // Get current frame pointer save index.  The users of this index will be
   4568   // primarily DYNALLOC instructions.
   4569   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   4570   int RASI = FI->getReturnAddrSaveIndex();
   4571 
   4572   // If the frame pointer save index hasn't been defined yet.
   4573   if (!RASI) {
   4574     // Find out what the fix offset of the frame pointer save area.
   4575     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
   4576     // Allocate the frame index for frame pointer save area.
   4577     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
   4578     // Save the result.
   4579     FI->setReturnAddrSaveIndex(RASI);
   4580   }
   4581   return DAG.getFrameIndex(RASI, PtrVT);
   4582 }
   4583 
   4584 SDValue
   4585 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   4586   MachineFunction &MF = DAG.getMachineFunction();
   4587   bool isPPC64 = PPCSubTarget.isPPC64();
   4588   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   4589   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4590 
   4591   // Get current frame pointer save index.  The users of this index will be
   4592   // primarily DYNALLOC instructions.
   4593   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   4594   int FPSI = FI->getFramePointerSaveIndex();
   4595 
   4596   // If the frame pointer save index hasn't been defined yet.
   4597   if (!FPSI) {
   4598     // Find out what the fix offset of the frame pointer save area.
   4599     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
   4600                                                            isDarwinABI);
   4601 
   4602     // Allocate the frame index for frame pointer save area.
   4603     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   4604     // Save the result.
   4605     FI->setFramePointerSaveIndex(FPSI);
   4606   }
   4607   return DAG.getFrameIndex(FPSI, PtrVT);
   4608 }
   4609 
   4610 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   4611                                          SelectionDAG &DAG,
   4612                                          const PPCSubtarget &Subtarget) const {
   4613   // Get the inputs.
   4614   SDValue Chain = Op.getOperand(0);
   4615   SDValue Size  = Op.getOperand(1);
   4616   SDLoc dl(Op);
   4617 
   4618   // Get the corect type for pointers.
   4619   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4620   // Negate the size.
   4621   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   4622                                   DAG.getConstant(0, PtrVT), Size);
   4623   // Construct a node for the frame pointer save index.
   4624   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   4625   // Build a DYNALLOC node.
   4626   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   4627   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   4628   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
   4629 }
   4630 
   4631 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   4632                                                SelectionDAG &DAG) const {
   4633   SDLoc DL(Op);
   4634   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
   4635                      DAG.getVTList(MVT::i32, MVT::Other),
   4636                      Op.getOperand(0), Op.getOperand(1));
   4637 }
   4638 
   4639 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   4640                                                 SelectionDAG &DAG) const {
   4641   SDLoc DL(Op);
   4642   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   4643                      Op.getOperand(0), Op.getOperand(1));
   4644 }
   4645 
   4646 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   4647 /// possible.
   4648 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   4649   // Not FP? Not a fsel.
   4650   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   4651       !Op.getOperand(2).getValueType().isFloatingPoint())
   4652     return Op;
   4653 
   4654   // We might be able to do better than this under some circumstances, but in
   4655   // general, fsel-based lowering of select is a finite-math-only optimization.
   4656   // For more information, see section F.3 of the 2.06 ISA specification.
   4657   if (!DAG.getTarget().Options.NoInfsFPMath ||
   4658       !DAG.getTarget().Options.NoNaNsFPMath)
   4659     return Op;
   4660 
   4661   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   4662 
   4663   EVT ResVT = Op.getValueType();
   4664   EVT CmpVT = Op.getOperand(0).getValueType();
   4665   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4666   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   4667   SDLoc dl(Op);
   4668 
   4669   // If the RHS of the comparison is a 0.0, we don't need to do the
   4670   // subtraction at all.
   4671   SDValue Sel1;
   4672   if (isFloatingPointZero(RHS))
   4673     switch (CC) {
   4674     default: break;       // SETUO etc aren't handled by fsel.
   4675     case ISD::SETNE:
   4676       std::swap(TV, FV);
   4677     case ISD::SETEQ:
   4678       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4679         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   4680       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   4681       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4682         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   4683       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   4684                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
   4685     case ISD::SETULT:
   4686     case ISD::SETLT:
   4687       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   4688     case ISD::SETOGE:
   4689     case ISD::SETGE:
   4690       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4691         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   4692       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   4693     case ISD::SETUGT:
   4694     case ISD::SETGT:
   4695       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   4696     case ISD::SETOLE:
   4697     case ISD::SETLE:
   4698       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4699         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   4700       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   4701                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   4702     }
   4703 
   4704   SDValue Cmp;
   4705   switch (CC) {
   4706   default: break;       // SETUO etc aren't handled by fsel.
   4707   case ISD::SETNE:
   4708     std::swap(TV, FV);
   4709   case ISD::SETEQ:
   4710     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   4711     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4712       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4713     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   4714     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4715       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   4716     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   4717                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
   4718   case ISD::SETULT:
   4719   case ISD::SETLT:
   4720     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   4721     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4722       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4723     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   4724   case ISD::SETOGE:
   4725   case ISD::SETGE:
   4726     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   4727     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4728       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4729     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   4730   case ISD::SETUGT:
   4731   case ISD::SETGT:
   4732     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   4733     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4734       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4735     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   4736   case ISD::SETOLE:
   4737   case ISD::SETLE:
   4738     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   4739     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   4740       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   4741     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   4742   }
   4743   return Op;
   4744 }
   4745 
   4746 // FIXME: Split this code up when LegalizeDAGTypes lands.
   4747 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   4748                                            SDLoc dl) const {
   4749   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   4750   SDValue Src = Op.getOperand(0);
   4751   if (Src.getValueType() == MVT::f32)
   4752     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   4753 
   4754   SDValue Tmp;
   4755   switch (Op.getValueType().getSimpleVT().SimpleTy) {
   4756   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   4757   case MVT::i32:
   4758     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
   4759                         (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
   4760                                                    PPCISD::FCTIDZ),
   4761                       dl, MVT::f64, Src);
   4762     break;
   4763   case MVT::i64:
   4764     assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
   4765            "i64 FP_TO_UINT is supported only with FPCVT");
   4766     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   4767                                                         PPCISD::FCTIDUZ,
   4768                       dl, MVT::f64, Src);
   4769     break;
   4770   }
   4771 
   4772   // Convert the FP value to an int value through memory.
   4773   bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
   4774     (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
   4775   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
   4776   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
   4777   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
   4778 
   4779   // Emit a store to the stack slot.
   4780   SDValue Chain;
   4781   if (i32Stack) {
   4782     MachineFunction &MF = DAG.getMachineFunction();
   4783     MachineMemOperand *MMO =
   4784       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
   4785     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
   4786     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   4787               DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
   4788               MVT::i32, MMO);
   4789   } else
   4790     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   4791                          MPI, false, false, 0);
   4792 
   4793   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   4794   // add in a bias.
   4795   if (Op.getValueType() == MVT::i32 && !i32Stack) {
   4796     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   4797                         DAG.getConstant(4, FIPtr.getValueType()));
   4798     MPI = MachinePointerInfo();
   4799   }
   4800 
   4801   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
   4802                      false, false, false, 0);
   4803 }
   4804 
   4805 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
   4806                                            SelectionDAG &DAG) const {
   4807   SDLoc dl(Op);
   4808   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   4809   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   4810     return SDValue();
   4811 
   4812   assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
   4813          "UINT_TO_FP is supported only with FPCVT");
   4814 
   4815   // If we have FCFIDS, then use it when converting to single-precision.
   4816   // Otherwise, convert to double-precision and then round.
   4817   unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
   4818                    (Op.getOpcode() == ISD::UINT_TO_FP ?
   4819                     PPCISD::FCFIDUS : PPCISD::FCFIDS) :
   4820                    (Op.getOpcode() == ISD::UINT_TO_FP ?
   4821                     PPCISD::FCFIDU : PPCISD::FCFID);
   4822   MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
   4823                    MVT::f32 : MVT::f64;
   4824 
   4825   if (Op.getOperand(0).getValueType() == MVT::i64) {
   4826     SDValue SINT = Op.getOperand(0);
   4827     // When converting to single-precision, we actually need to convert
   4828     // to double-precision first and then round to single-precision.
   4829     // To avoid double-rounding effects during that operation, we have
   4830     // to prepare the input operand.  Bits that might be truncated when
   4831     // converting to double-precision are replaced by a bit that won't
   4832     // be lost at this stage, but is below the single-precision rounding
   4833     // position.
   4834     //
   4835     // However, if -enable-unsafe-fp-math is in effect, accept double
   4836     // rounding to avoid the extra overhead.
   4837     if (Op.getValueType() == MVT::f32 &&
   4838         !PPCSubTarget.hasFPCVT() &&
   4839         !DAG.getTarget().Options.UnsafeFPMath) {
   4840 
   4841       // Twiddle input to make sure the low 11 bits are zero.  (If this
   4842       // is the case, we are guaranteed the value will fit into the 53 bit
   4843       // mantissa of an IEEE double-precision value without rounding.)
   4844       // If any of those low 11 bits were not zero originally, make sure
   4845       // bit 12 (value 2048) is set instead, so that the final rounding
   4846       // to single-precision gets the correct result.
   4847       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   4848                                   SINT, DAG.getConstant(2047, MVT::i64));
   4849       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
   4850                           Round, DAG.getConstant(2047, MVT::i64));
   4851       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
   4852       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   4853                           Round, DAG.getConstant(-2048, MVT::i64));
   4854 
   4855       // However, we cannot use that value unconditionally: if the magnitude
   4856       // of the input value is small, the bit-twiddling we did above might
   4857       // end up visibly changing the output.  Fortunately, in that case, we
   4858       // don't need to twiddle bits since the original input will convert
   4859       // exactly to double-precision floating-point already.  Therefore,
   4860       // construct a conditional to use the original value if the top 11
   4861       // bits are all sign-bit copies, and use the rounded value computed
   4862       // above otherwise.
   4863       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
   4864                                  SINT, DAG.getConstant(53, MVT::i32));
   4865       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
   4866                          Cond, DAG.getConstant(1, MVT::i64));
   4867       Cond = DAG.getSetCC(dl, MVT::i32,
   4868                           Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
   4869 
   4870       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
   4871     }
   4872 
   4873     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
   4874     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
   4875 
   4876     if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
   4877       FP = DAG.getNode(ISD::FP_ROUND, dl,
   4878                        MVT::f32, FP, DAG.getIntPtrConstant(0));
   4879     return FP;
   4880   }
   4881 
   4882   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   4883          "Unhandled INT_TO_FP type in custom expander!");
   4884   // Since we only generate this in 64-bit mode, we can take advantage of
   4885   // 64-bit registers.  In particular, sign extend the input value into the
   4886   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   4887   // then lfd it and fcfid it.
   4888   MachineFunction &MF = DAG.getMachineFunction();
   4889   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   4890   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4891 
   4892   SDValue Ld;
   4893   if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
   4894     int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   4895     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   4896 
   4897     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
   4898                                  MachinePointerInfo::getFixedStack(FrameIdx),
   4899                                  false, false, 0);
   4900 
   4901     assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   4902            "Expected an i32 store");
   4903     MachineMemOperand *MMO =
   4904       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
   4905                               MachineMemOperand::MOLoad, 4, 4);
   4906     SDValue Ops[] = { Store, FIdx };
   4907     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
   4908                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
   4909                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
   4910                                  Ops, 2, MVT::i32, MMO);
   4911   } else {
   4912     assert(PPCSubTarget.isPPC64() &&
   4913            "i32->FP without LFIWAX supported only on PPC64");
   4914 
   4915     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   4916     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   4917 
   4918     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
   4919                                 Op.getOperand(0));
   4920 
   4921     // STD the extended value into the stack slot.
   4922     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
   4923                                  MachinePointerInfo::getFixedStack(FrameIdx),
   4924                                  false, false, 0);
   4925 
   4926     // Load the value as a double.
   4927     Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
   4928                      MachinePointerInfo::getFixedStack(FrameIdx),
   4929                      false, false, false, 0);
   4930   }
   4931 
   4932   // FCFID it and return it.
   4933   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
   4934   if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
   4935     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
   4936   return FP;
   4937 }
   4938 
   4939 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   4940                                             SelectionDAG &DAG) const {
   4941   SDLoc dl(Op);
   4942   /*
   4943    The rounding mode is in bits 30:31 of FPSR, and has the following
   4944    settings:
   4945      00 Round to nearest
   4946      01 Round to 0
   4947      10 Round to +inf
   4948      11 Round to -inf
   4949 
   4950   FLT_ROUNDS, on the other hand, expects the following:
   4951     -1 Undefined
   4952      0 Round to 0
   4953      1 Round to nearest
   4954      2 Round to +inf
   4955      3 Round to -inf
   4956 
   4957   To perform the conversion, we do:
   4958     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   4959   */
   4960 
   4961   MachineFunction &MF = DAG.getMachineFunction();
   4962   EVT VT = Op.getValueType();
   4963   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4964   SDValue MFFSreg, InFlag;
   4965 
   4966   // Save FP Control Word to register
   4967   EVT NodeTys[] = {
   4968     MVT::f64,    // return register
   4969     MVT::Glue    // unused in this context
   4970   };
   4971   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
   4972 
   4973   // Save FP register to stack slot
   4974   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   4975   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   4976   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   4977                                StackSlot, MachinePointerInfo(), false, false,0);
   4978 
   4979   // Load FP Control Word from low 32 bits of stack slot.
   4980   SDValue Four = DAG.getConstant(4, PtrVT);
   4981   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   4982   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   4983                             false, false, false, 0);
   4984 
   4985   // Transform as necessary
   4986   SDValue CWD1 =
   4987     DAG.getNode(ISD::AND, dl, MVT::i32,
   4988                 CWD, DAG.getConstant(3, MVT::i32));
   4989   SDValue CWD2 =
   4990     DAG.getNode(ISD::SRL, dl, MVT::i32,
   4991                 DAG.getNode(ISD::AND, dl, MVT::i32,
   4992                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   4993                                         CWD, DAG.getConstant(3, MVT::i32)),
   4994                             DAG.getConstant(3, MVT::i32)),
   4995                 DAG.getConstant(1, MVT::i32));
   4996 
   4997   SDValue RetVal =
   4998     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   4999 
   5000   return DAG.getNode((VT.getSizeInBits() < 16 ?
   5001                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   5002 }
   5003 
   5004 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   5005   EVT VT = Op.getValueType();
   5006   unsigned BitWidth = VT.getSizeInBits();
   5007   SDLoc dl(Op);
   5008   assert(Op.getNumOperands() == 3 &&
   5009          VT == Op.getOperand(1).getValueType() &&
   5010          "Unexpected SHL!");
   5011 
   5012   // Expand into a bunch of logical ops.  Note that these ops
   5013   // depend on the PPC behavior for oversized shift amounts.
   5014   SDValue Lo = Op.getOperand(0);
   5015   SDValue Hi = Op.getOperand(1);
   5016   SDValue Amt = Op.getOperand(2);
   5017   EVT AmtVT = Amt.getValueType();
   5018 
   5019   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   5020                              DAG.getConstant(BitWidth, AmtVT), Amt);
   5021   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   5022   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   5023   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   5024   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   5025                              DAG.getConstant(-BitWidth, AmtVT));
   5026   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   5027   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   5028   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   5029   SDValue OutOps[] = { OutLo, OutHi };
   5030   return DAG.getMergeValues(OutOps, 2, dl);
   5031 }
   5032 
   5033 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   5034   EVT VT = Op.getValueType();
   5035   SDLoc dl(Op);
   5036   unsigned BitWidth = VT.getSizeInBits();
   5037   assert(Op.getNumOperands() == 3 &&
   5038          VT == Op.getOperand(1).getValueType() &&
   5039          "Unexpected SRL!");
   5040 
   5041   // Expand into a bunch of logical ops.  Note that these ops
   5042   // depend on the PPC behavior for oversized shift amounts.
   5043   SDValue Lo = Op.getOperand(0);
   5044   SDValue Hi = Op.getOperand(1);
   5045   SDValue Amt = Op.getOperand(2);
   5046   EVT AmtVT = Amt.getValueType();
   5047 
   5048   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   5049                              DAG.getConstant(BitWidth, AmtVT), Amt);
   5050   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   5051   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   5052   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   5053   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   5054                              DAG.getConstant(-BitWidth, AmtVT));
   5055   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   5056   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   5057   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   5058   SDValue OutOps[] = { OutLo, OutHi };
   5059   return DAG.getMergeValues(OutOps, 2, dl);
   5060 }
   5061 
   5062 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   5063   SDLoc dl(Op);
   5064   EVT VT = Op.getValueType();
   5065   unsigned BitWidth = VT.getSizeInBits();
   5066   assert(Op.getNumOperands() == 3 &&
   5067          VT == Op.getOperand(1).getValueType() &&
   5068          "Unexpected SRA!");
   5069 
   5070   // Expand into a bunch of logical ops, followed by a select_cc.
   5071   SDValue Lo = Op.getOperand(0);
   5072   SDValue Hi = Op.getOperand(1);
   5073   SDValue Amt = Op.getOperand(2);
   5074   EVT AmtVT = Amt.getValueType();
   5075 
   5076   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   5077                              DAG.getConstant(BitWidth, AmtVT), Amt);
   5078   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   5079   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   5080   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   5081   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   5082                              DAG.getConstant(-BitWidth, AmtVT));
   5083   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   5084   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   5085   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
   5086                                   Tmp4, Tmp6, ISD::SETLE);
   5087   SDValue OutOps[] = { OutLo, OutHi };
   5088   return DAG.getMergeValues(OutOps, 2, dl);
   5089 }
   5090 
   5091 //===----------------------------------------------------------------------===//
   5092 // Vector related lowering.
   5093 //
   5094 
   5095 /// BuildSplatI - Build a canonical splati of Val with an element size of
   5096 /// SplatSize.  Cast the result to VT.
   5097 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   5098                              SelectionDAG &DAG, SDLoc dl) {
   5099   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   5100 
   5101   static const EVT VTys[] = { // canonical VT to use for each size.
   5102     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   5103   };
   5104 
   5105   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   5106 
   5107   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   5108   if (Val == -1)
   5109     SplatSize = 1;
   5110 
   5111   EVT CanonicalVT = VTys[SplatSize-1];
   5112 
   5113   // Build a canonical splat for this value.
   5114   SDValue Elt = DAG.getConstant(Val, MVT::i32);
   5115   SmallVector<SDValue, 8> Ops;
   5116   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
   5117   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
   5118                               &Ops[0], Ops.size());
   5119   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
   5120 }
   5121 
   5122 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
   5123 /// specified intrinsic ID.
   5124 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
   5125                                 SelectionDAG &DAG, SDLoc dl,
   5126                                 EVT DestVT = MVT::Other) {
   5127   if (DestVT == MVT::Other) DestVT = Op.getValueType();
   5128   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   5129                      DAG.getConstant(IID, MVT::i32), Op);
   5130 }
   5131 
   5132 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   5133 /// specified intrinsic ID.
   5134 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   5135                                 SelectionDAG &DAG, SDLoc dl,
   5136                                 EVT DestVT = MVT::Other) {
   5137   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   5138   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   5139                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
   5140 }
   5141 
   5142 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   5143 /// specified intrinsic ID.
   5144 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   5145                                 SDValue Op2, SelectionDAG &DAG,
   5146                                 SDLoc dl, EVT DestVT = MVT::Other) {
   5147   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   5148   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   5149                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
   5150 }
   5151 
   5152 
   5153 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   5154 /// amount.  The result has the specified value type.
   5155 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
   5156                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
   5157   // Force LHS/RHS to be the right type.
   5158   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   5159   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   5160 
   5161   int Ops[16];
   5162   for (unsigned i = 0; i != 16; ++i)
   5163     Ops[i] = i + Amt;
   5164   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   5165   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   5166 }
   5167 
   5168 // If this is a case we can't handle, return null and let the default
   5169 // expansion code take care of it.  If we CAN select this case, and if it
   5170 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   5171 // this case more efficiently than a constant pool load, lower it to the
   5172 // sequence of ops that should be used.
   5173 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   5174                                              SelectionDAG &DAG) const {
   5175   SDLoc dl(Op);
   5176   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   5177   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   5178 
   5179   // Check if this is a splat of a constant value.
   5180   APInt APSplatBits, APSplatUndef;
   5181   unsigned SplatBitSize;
   5182   bool HasAnyUndefs;
   5183   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   5184                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
   5185     return SDValue();
   5186 
   5187   unsigned SplatBits = APSplatBits.getZExtValue();
   5188   unsigned SplatUndef = APSplatUndef.getZExtValue();
   5189   unsigned SplatSize = SplatBitSize / 8;
   5190 
   5191   // First, handle single instruction cases.
   5192 
   5193   // All zeros?
   5194   if (SplatBits == 0) {
   5195     // Canonicalize all zero vectors to be v4i32.
   5196     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   5197       SDValue Z = DAG.getConstant(0, MVT::i32);
   5198       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
   5199       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   5200     }
   5201     return Op;
   5202   }
   5203 
   5204   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   5205   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   5206                     (32-SplatBitSize));
   5207   if (SextVal >= -16 && SextVal <= 15)
   5208     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   5209 
   5210 
   5211   // Two instruction sequences.
   5212 
   5213   // If this value is in the range [-32,30] and is even, use:
   5214   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
   5215   // If this value is in the range [17,31] and is odd, use:
   5216   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
   5217   // If this value is in the range [-31,-17] and is odd, use:
   5218   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
   5219   // Note the last two are three-instruction sequences.
   5220   if (SextVal >= -32 && SextVal <= 31) {
   5221     // To avoid having these optimizations undone by constant folding,
   5222     // we convert to a pseudo that will be expanded later into one of
   5223     // the above forms.
   5224     SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
   5225     EVT VT = Op.getValueType();
   5226     int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
   5227     SDValue EltSize = DAG.getConstant(Size, MVT::i32);
   5228     return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   5229   }
   5230 
   5231   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   5232   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   5233   // for fneg/fabs.
   5234   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   5235     // Make -1 and vspltisw -1:
   5236     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   5237 
   5238     // Make the VSLW intrinsic, computing 0x8000_0000.
   5239     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   5240                                    OnesV, DAG, dl);
   5241 
   5242     // xor by OnesV to invert it.
   5243     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   5244     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5245   }
   5246 
   5247   // Check to see if this is a wide variety of vsplti*, binop self cases.
   5248   static const signed char SplatCsts[] = {
   5249     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   5250     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   5251   };
   5252 
   5253   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   5254     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   5255     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   5256     int i = SplatCsts[idx];
   5257 
   5258     // Figure out what shift amount will be used by altivec if shifted by i in
   5259     // this splat size.
   5260     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   5261 
   5262     // vsplti + shl self.
   5263     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
   5264       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5265       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5266         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   5267         Intrinsic::ppc_altivec_vslw
   5268       };
   5269       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5270       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5271     }
   5272 
   5273     // vsplti + srl self.
   5274     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   5275       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5276       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5277         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   5278         Intrinsic::ppc_altivec_vsrw
   5279       };
   5280       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5281       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5282     }
   5283 
   5284     // vsplti + sra self.
   5285     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   5286       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5287       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5288         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   5289         Intrinsic::ppc_altivec_vsraw
   5290       };
   5291       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5292       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5293     }
   5294 
   5295     // vsplti + rol self.
   5296     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   5297                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   5298       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   5299       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   5300         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   5301         Intrinsic::ppc_altivec_vrlw
   5302       };
   5303       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   5304       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   5305     }
   5306 
   5307     // t = vsplti c, result = vsldoi t, t, 1
   5308     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
   5309       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5310       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
   5311     }
   5312     // t = vsplti c, result = vsldoi t, t, 2
   5313     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
   5314       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5315       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
   5316     }
   5317     // t = vsplti c, result = vsldoi t, t, 3
   5318     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   5319       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   5320       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
   5321     }
   5322   }
   5323 
   5324   return SDValue();
   5325 }
   5326 
   5327 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   5328 /// the specified operations to build the shuffle.
   5329 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   5330                                       SDValue RHS, SelectionDAG &DAG,
   5331                                       SDLoc dl) {
   5332   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   5333   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   5334   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   5335 
   5336   enum {
   5337     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   5338     OP_VMRGHW,
   5339     OP_VMRGLW,
   5340     OP_VSPLTISW0,
   5341     OP_VSPLTISW1,
   5342     OP_VSPLTISW2,
   5343     OP_VSPLTISW3,
   5344     OP_VSLDOI4,
   5345     OP_VSLDOI8,
   5346     OP_VSLDOI12
   5347   };
   5348 
   5349   if (OpNum == OP_COPY) {
   5350     if (LHSID == (1*9+2)*9+3) return LHS;
   5351     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   5352     return RHS;
   5353   }
   5354 
   5355   SDValue OpLHS, OpRHS;
   5356   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   5357   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   5358 
   5359   int ShufIdxs[16];
   5360   switch (OpNum) {
   5361   default: llvm_unreachable("Unknown i32 permute!");
   5362   case OP_VMRGHW:
   5363     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   5364     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   5365     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   5366     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   5367     break;
   5368   case OP_VMRGLW:
   5369     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   5370     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   5371     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   5372     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   5373     break;
   5374   case OP_VSPLTISW0:
   5375     for (unsigned i = 0; i != 16; ++i)
   5376       ShufIdxs[i] = (i&3)+0;
   5377     break;
   5378   case OP_VSPLTISW1:
   5379     for (unsigned i = 0; i != 16; ++i)
   5380       ShufIdxs[i] = (i&3)+4;
   5381     break;
   5382   case OP_VSPLTISW2:
   5383     for (unsigned i = 0; i != 16; ++i)
   5384       ShufIdxs[i] = (i&3)+8;
   5385     break;
   5386   case OP_VSPLTISW3:
   5387     for (unsigned i = 0; i != 16; ++i)
   5388       ShufIdxs[i] = (i&3)+12;
   5389     break;
   5390   case OP_VSLDOI4:
   5391     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   5392   case OP_VSLDOI8:
   5393     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   5394   case OP_VSLDOI12:
   5395     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   5396   }
   5397   EVT VT = OpLHS.getValueType();
   5398   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   5399   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   5400   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   5401   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   5402 }
   5403 
   5404 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   5405 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   5406 /// return the code it can be lowered into.  Worst case, it can always be
   5407 /// lowered into a vperm.
   5408 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   5409                                                SelectionDAG &DAG) const {
   5410   SDLoc dl(Op);
   5411   SDValue V1 = Op.getOperand(0);
   5412   SDValue V2 = Op.getOperand(1);
   5413   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5414   EVT VT = Op.getValueType();
   5415 
   5416   // Cases that are handled by instructions that take permute immediates
   5417   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   5418   // selected by the instruction selector.
   5419   if (V2.getOpcode() == ISD::UNDEF) {
   5420     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   5421         PPC::isSplatShuffleMask(SVOp, 2) ||
   5422         PPC::isSplatShuffleMask(SVOp, 4) ||
   5423         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
   5424         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
   5425         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
   5426         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
   5427         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
   5428         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
   5429         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
   5430         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
   5431         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
   5432       return Op;
   5433     }
   5434   }
   5435 
   5436   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   5437   // and produce a fixed permutation.  If any of these match, do not lower to
   5438   // VPERM.
   5439   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
   5440       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
   5441       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
   5442       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
   5443       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
   5444       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
   5445       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
   5446       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
   5447       PPC::isVMRGHShuffleMask(SVOp, 4, false))
   5448     return Op;
   5449 
   5450   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   5451   // perfect shuffle table to emit an optimal matching sequence.
   5452   ArrayRef<int> PermMask = SVOp->getMask();
   5453 
   5454   unsigned PFIndexes[4];
   5455   bool isFourElementShuffle = true;
   5456   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   5457     unsigned EltNo = 8;   // Start out undef.
   5458     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   5459       if (PermMask[i*4+j] < 0)
   5460         continue;   // Undef, ignore it.
   5461 
   5462       unsigned ByteSource = PermMask[i*4+j];
   5463       if ((ByteSource & 3) != j) {
   5464         isFourElementShuffle = false;
   5465         break;
   5466       }
   5467 
   5468       if (EltNo == 8) {
   5469         EltNo = ByteSource/4;
   5470       } else if (EltNo != ByteSource/4) {
   5471         isFourElementShuffle = false;
   5472         break;
   5473       }
   5474     }
   5475     PFIndexes[i] = EltNo;
   5476   }
   5477 
   5478   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   5479   // perfect shuffle vector to determine if it is cost effective to do this as
   5480   // discrete instructions, or whether we should use a vperm.
   5481   if (isFourElementShuffle) {
   5482     // Compute the index in the perfect shuffle table.
   5483     unsigned PFTableIndex =
   5484       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5485 
   5486     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5487     unsigned Cost  = (PFEntry >> 30);
   5488 
   5489     // Determining when to avoid vperm is tricky.  Many things affect the cost
   5490     // of vperm, particularly how many times the perm mask needs to be computed.
   5491     // For example, if the perm mask can be hoisted out of a loop or is already
   5492     // used (perhaps because there are multiple permutes with the same shuffle
   5493     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   5494     // the loop requires an extra register.
   5495     //
   5496     // As a compromise, we only emit discrete instructions if the shuffle can be
   5497     // generated in 3 or fewer operations.  When we have loop information
   5498     // available, if this block is within a loop, we should avoid using vperm
   5499     // for 3-operation perms and use a constant pool load instead.
   5500     if (Cost < 3)
   5501       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   5502   }
   5503 
   5504   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   5505   // vector that will get spilled to the constant pool.
   5506   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   5507 
   5508   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   5509   // that it is in input element units, not in bytes.  Convert now.
   5510   EVT EltVT = V1.getValueType().getVectorElementType();
   5511   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   5512 
   5513   SmallVector<SDValue, 16> ResultMask;
   5514   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   5515     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   5516 
   5517     for (unsigned j = 0; j != BytesPerElement; ++j)
   5518       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
   5519                                            MVT::i32));
   5520   }
   5521 
   5522   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
   5523                                     &ResultMask[0], ResultMask.size());
   5524   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
   5525 }
   5526 
   5527 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
   5528 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
   5529 /// information about the intrinsic.
   5530 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
   5531                                   bool &isDot) {
   5532   unsigned IntrinsicID =
   5533     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   5534   CompareOpc = -1;
   5535   isDot = false;
   5536   switch (IntrinsicID) {
   5537   default: return false;
   5538     // Comparison predicates.
   5539   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   5540   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   5541   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   5542   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   5543   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   5544   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   5545   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   5546   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   5547   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   5548   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   5549   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   5550   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   5551   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   5552 
   5553     // Normal Comparisons.
   5554   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   5555   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   5556   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   5557   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   5558   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   5559   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   5560   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   5561   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   5562   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   5563   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   5564   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   5565   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   5566   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   5567   }
   5568   return true;
   5569 }
   5570 
   5571 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   5572 /// lower, do it, otherwise return null.
   5573 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   5574                                                    SelectionDAG &DAG) const {
   5575   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   5576   // opcode number of the comparison.
   5577   SDLoc dl(Op);
   5578   int CompareOpc;
   5579   bool isDot;
   5580   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
   5581     return SDValue();    // Don't custom lower most intrinsics.
   5582 
   5583   // If this is a non-dot comparison, make the VCMP node and we are done.
   5584   if (!isDot) {
   5585     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   5586                               Op.getOperand(1), Op.getOperand(2),
   5587                               DAG.getConstant(CompareOpc, MVT::i32));
   5588     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   5589   }
   5590 
   5591   // Create the PPCISD altivec 'dot' comparison node.
   5592   SDValue Ops[] = {
   5593     Op.getOperand(2),  // LHS
   5594     Op.getOperand(3),  // RHS
   5595     DAG.getConstant(CompareOpc, MVT::i32)
   5596   };
   5597   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   5598   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   5599 
   5600   // Now that we have the comparison, emit a copy from the CR to a GPR.
   5601   // This is flagged to the above dot comparison.
   5602   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
   5603                                 DAG.getRegister(PPC::CR6, MVT::i32),
   5604                                 CompNode.getValue(1));
   5605 
   5606   // Unpack the result based on how the target uses it.
   5607   unsigned BitNo;   // Bit # of CR6.
   5608   bool InvertBit;   // Invert result?
   5609   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   5610   default:  // Can't happen, don't crash on invalid number though.
   5611   case 0:   // Return the value of the EQ bit of CR6.
   5612     BitNo = 0; InvertBit = false;
   5613     break;
   5614   case 1:   // Return the inverted value of the EQ bit of CR6.
   5615     BitNo = 0; InvertBit = true;
   5616     break;
   5617   case 2:   // Return the value of the LT bit of CR6.
   5618     BitNo = 2; InvertBit = false;
   5619     break;
   5620   case 3:   // Return the inverted value of the LT bit of CR6.
   5621     BitNo = 2; InvertBit = true;
   5622     break;
   5623   }
   5624 
   5625   // Shift the bit into the low position.
   5626   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   5627                       DAG.getConstant(8-(3-BitNo), MVT::i32));
   5628   // Isolate the bit.
   5629   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   5630                       DAG.getConstant(1, MVT::i32));
   5631 
   5632   // If we are supposed to, toggle the bit.
   5633   if (InvertBit)
   5634     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   5635                         DAG.getConstant(1, MVT::i32));
   5636   return Flags;
   5637 }
   5638 
   5639 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   5640                                                    SelectionDAG &DAG) const {
   5641   SDLoc dl(Op);
   5642   // Create a stack slot that is 16-byte aligned.
   5643   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   5644   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   5645   EVT PtrVT = getPointerTy();
   5646   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   5647 
   5648   // Store the input value into Value#0 of the stack slot.
   5649   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   5650                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   5651                                false, false, 0);
   5652   // Load it out.
   5653   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   5654                      false, false, false, 0);
   5655 }
   5656 
   5657 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   5658   SDLoc dl(Op);
   5659   if (Op.getValueType() == MVT::v4i32) {
   5660     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   5661 
   5662     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   5663     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   5664 
   5665     SDValue RHSSwap =   // = vrlw RHS, 16
   5666       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   5667 
   5668     // Shrinkify inputs to v8i16.
   5669     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   5670     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   5671     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   5672 
   5673     // Low parts multiplied together, generating 32-bit results (we ignore the
   5674     // top parts).
   5675     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   5676                                         LHS, RHS, DAG, dl, MVT::v4i32);
   5677 
   5678     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   5679                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   5680     // Shift the high parts up 16 bits.
   5681     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   5682                               Neg16, DAG, dl);
   5683     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   5684   } else if (Op.getValueType() == MVT::v8i16) {
   5685     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   5686 
   5687     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   5688 
   5689     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   5690                             LHS, RHS, Zero, DAG, dl);
   5691   } else if (Op.getValueType() == MVT::v16i8) {
   5692     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   5693 
   5694     // Multiply the even 8-bit parts, producing 16-bit sums.
   5695     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   5696                                            LHS, RHS, DAG, dl, MVT::v8i16);
   5697     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   5698 
   5699     // Multiply the odd 8-bit parts, producing 16-bit sums.
   5700     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   5701                                           LHS, RHS, DAG, dl, MVT::v8i16);
   5702     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   5703 
   5704     // Merge the results together.
   5705     int Ops[16];
   5706     for (unsigned i = 0; i != 8; ++i) {
   5707       Ops[i*2  ] = 2*i+1;
   5708       Ops[i*2+1] = 2*i+1+16;
   5709     }
   5710     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   5711   } else {
   5712     llvm_unreachable("Unknown mul to lower!");
   5713   }
   5714 }
   5715 
   5716 /// LowerOperation - Provide custom lowering hooks for some operations.
   5717 ///
   5718 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   5719   switch (Op.getOpcode()) {
   5720   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   5721   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   5722   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   5723   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   5724   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   5725   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   5726   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   5727   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   5728   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   5729   case ISD::VASTART:
   5730     return LowerVASTART(Op, DAG, PPCSubTarget);
   5731 
   5732   case ISD::VAARG:
   5733     return LowerVAARG(Op, DAG, PPCSubTarget);
   5734 
   5735   case ISD::VACOPY:
   5736     return LowerVACOPY(Op, DAG, PPCSubTarget);
   5737 
   5738   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
   5739   case ISD::DYNAMIC_STACKALLOC:
   5740     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
   5741 
   5742   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   5743   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   5744 
   5745   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   5746   case ISD::FP_TO_UINT:
   5747   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   5748                                                        SDLoc(Op));
   5749   case ISD::UINT_TO_FP:
   5750   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
   5751   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   5752 
   5753   // Lower 64-bit shifts.
   5754   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   5755   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   5756   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   5757 
   5758   // Vector-related lowering.
   5759   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   5760   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   5761   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   5762   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   5763   case ISD::MUL:                return LowerMUL(Op, DAG);
   5764 
   5765   // For counter-based loop handling.
   5766   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
   5767 
   5768   // Frame & Return address.
   5769   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   5770   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   5771   }
   5772 }
   5773 
   5774 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   5775                                            SmallVectorImpl<SDValue>&Results,
   5776                                            SelectionDAG &DAG) const {
   5777   const TargetMachine &TM = getTargetMachine();
   5778   SDLoc dl(N);
   5779   switch (N->getOpcode()) {
   5780   default:
   5781     llvm_unreachable("Do not know how to custom type legalize this operation!");
   5782   case ISD::INTRINSIC_W_CHAIN: {
   5783     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
   5784         Intrinsic::ppc_is_decremented_ctr_nonzero)
   5785       break;
   5786 
   5787     assert(N->getValueType(0) == MVT::i1 &&
   5788            "Unexpected result type for CTR decrement intrinsic");
   5789     EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
   5790     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
   5791     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
   5792                                  N->getOperand(1));
   5793 
   5794     Results.push_back(NewInt);
   5795     Results.push_back(NewInt.getValue(1));
   5796     break;
   5797   }
   5798   case ISD::VAARG: {
   5799     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
   5800         || TM.getSubtarget<PPCSubtarget>().isPPC64())
   5801       return;
   5802 
   5803     EVT VT = N->getValueType(0);
   5804 
   5805     if (VT == MVT::i64) {
   5806       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
   5807 
   5808       Results.push_back(NewNode);
   5809       Results.push_back(NewNode.getValue(1));
   5810     }
   5811     return;
   5812   }
   5813   case ISD::FP_ROUND_INREG: {
   5814     assert(N->getValueType(0) == MVT::ppcf128);
   5815     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   5816     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   5817                              MVT::f64, N->getOperand(0),
   5818                              DAG.getIntPtrConstant(0));
   5819     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   5820                              MVT::f64, N->getOperand(0),
   5821                              DAG.getIntPtrConstant(1));
   5822 
   5823     // Add the two halves of the long double in round-to-zero mode.
   5824     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
   5825 
   5826     // We know the low half is about to be thrown away, so just use something
   5827     // convenient.
   5828     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   5829                                 FPreg, FPreg));
   5830     return;
   5831   }
   5832   case ISD::FP_TO_SINT:
   5833     // LowerFP_TO_INT() can only handle f32 and f64.
   5834     if (N->getOperand(0).getValueType() == MVT::ppcf128)
   5835       return;
   5836     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   5837     return;
   5838   }
   5839 }
   5840 
   5841 
   5842 //===----------------------------------------------------------------------===//
   5843 //  Other Lowering Code
   5844 //===----------------------------------------------------------------------===//
   5845 
   5846 MachineBasicBlock *
   5847 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   5848                                     bool is64bit, unsigned BinOpcode) const {
   5849   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   5850   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5851 
   5852   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5853   MachineFunction *F = BB->getParent();
   5854   MachineFunction::iterator It = BB;
   5855   ++It;
   5856 
   5857   unsigned dest = MI->getOperand(0).getReg();
   5858   unsigned ptrA = MI->getOperand(1).getReg();
   5859   unsigned ptrB = MI->getOperand(2).getReg();
   5860   unsigned incr = MI->getOperand(3).getReg();
   5861   DebugLoc dl = MI->getDebugLoc();
   5862 
   5863   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5864   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5865   F->insert(It, loopMBB);
   5866   F->insert(It, exitMBB);
   5867   exitMBB->splice(exitMBB->begin(), BB,
   5868                   llvm::next(MachineBasicBlock::iterator(MI)),
   5869                   BB->end());
   5870   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5871 
   5872   MachineRegisterInfo &RegInfo = F->getRegInfo();
   5873   unsigned TmpReg = (!BinOpcode) ? incr :
   5874     RegInfo.createVirtualRegister(
   5875        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   5876                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
   5877 
   5878   //  thisMBB:
   5879   //   ...
   5880   //   fallthrough --> loopMBB
   5881   BB->addSuccessor(loopMBB);
   5882 
   5883   //  loopMBB:
   5884   //   l[wd]arx dest, ptr
   5885   //   add r0, dest, incr
   5886   //   st[wd]cx. r0, ptr
   5887   //   bne- loopMBB
   5888   //   fallthrough --> exitMBB
   5889   BB = loopMBB;
   5890   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   5891     .addReg(ptrA).addReg(ptrB);
   5892   if (BinOpcode)
   5893     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   5894   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   5895     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   5896   BuildMI(BB, dl, TII->get(PPC::BCC))
   5897     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   5898   BB->addSuccessor(loopMBB);
   5899   BB->addSuccessor(exitMBB);
   5900 
   5901   //  exitMBB:
   5902   //   ...
   5903   BB = exitMBB;
   5904   return BB;
   5905 }
   5906 
   5907 MachineBasicBlock *
   5908 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
   5909                                             MachineBasicBlock *BB,
   5910                                             bool is8bit,    // operation
   5911                                             unsigned BinOpcode) const {
   5912   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   5913   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5914   // In 64 bit mode we have to use 64 bits for addresses, even though the
   5915   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   5916   // registers without caring whether they're 32 or 64, but here we're
   5917   // doing actual arithmetic on the addresses.
   5918   bool is64bit = PPCSubTarget.isPPC64();
   5919   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   5920 
   5921   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5922   MachineFunction *F = BB->getParent();
   5923   MachineFunction::iterator It = BB;
   5924   ++It;
   5925 
   5926   unsigned dest = MI->getOperand(0).getReg();
   5927   unsigned ptrA = MI->getOperand(1).getReg();
   5928   unsigned ptrB = MI->getOperand(2).getReg();
   5929   unsigned incr = MI->getOperand(3).getReg();
   5930   DebugLoc dl = MI->getDebugLoc();
   5931 
   5932   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5933   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5934   F->insert(It, loopMBB);
   5935   F->insert(It, exitMBB);
   5936   exitMBB->splice(exitMBB->begin(), BB,
   5937                   llvm::next(MachineBasicBlock::iterator(MI)),
   5938                   BB->end());
   5939   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5940 
   5941   MachineRegisterInfo &RegInfo = F->getRegInfo();
   5942   const TargetRegisterClass *RC =
   5943     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   5944               (const TargetRegisterClass *) &PPC::GPRCRegClass;
   5945   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   5946   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   5947   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   5948   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   5949   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   5950   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   5951   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   5952   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   5953   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   5954   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   5955   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   5956   unsigned Ptr1Reg;
   5957   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   5958 
   5959   //  thisMBB:
   5960   //   ...
   5961   //   fallthrough --> loopMBB
   5962   BB->addSuccessor(loopMBB);
   5963 
   5964   // The 4-byte load must be aligned, while a char or short may be
   5965   // anywhere in the word.  Hence all this nasty bookkeeping code.
   5966   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   5967   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   5968   //   xori shift, shift1, 24 [16]
   5969   //   rlwinm ptr, ptr1, 0, 0, 29
   5970   //   slw incr2, incr, shift
   5971   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   5972   //   slw mask, mask2, shift
   5973   //  loopMBB:
   5974   //   lwarx tmpDest, ptr
   5975   //   add tmp, tmpDest, incr2
   5976   //   andc tmp2, tmpDest, mask
   5977   //   and tmp3, tmp, mask
   5978   //   or tmp4, tmp3, tmp2
   5979   //   stwcx. tmp4, ptr
   5980   //   bne- loopMBB
   5981   //   fallthrough --> exitMBB
   5982   //   srw dest, tmpDest, shift
   5983   if (ptrA != ZeroReg) {
   5984     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   5985     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   5986       .addReg(ptrA).addReg(ptrB);
   5987   } else {
   5988     Ptr1Reg = ptrB;
   5989   }
   5990   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   5991       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   5992   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   5993       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   5994   if (is64bit)
   5995     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   5996       .addReg(Ptr1Reg).addImm(0).addImm(61);
   5997   else
   5998     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   5999       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   6000   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   6001       .addReg(incr).addReg(ShiftReg);
   6002   if (is8bit)
   6003     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   6004   else {
   6005     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   6006     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   6007   }
   6008   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   6009       .addReg(Mask2Reg).addReg(ShiftReg);
   6010 
   6011   BB = loopMBB;
   6012   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   6013     .addReg(ZeroReg).addReg(PtrReg);
   6014   if (BinOpcode)
   6015     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   6016       .addReg(Incr2Reg).addReg(TmpDestReg);
   6017   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   6018     .addReg(TmpDestReg).addReg(MaskReg);
   6019   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   6020     .addReg(TmpReg).addReg(MaskReg);
   6021   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   6022     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   6023   BuildMI(BB, dl, TII->get(PPC::STWCX))
   6024     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   6025   BuildMI(BB, dl, TII->get(PPC::BCC))
   6026     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   6027   BB->addSuccessor(loopMBB);
   6028   BB->addSuccessor(exitMBB);
   6029 
   6030   //  exitMBB:
   6031   //   ...
   6032   BB = exitMBB;
   6033   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   6034     .addReg(ShiftReg);
   6035   return BB;
   6036 }
   6037 
   6038 llvm::MachineBasicBlock*
   6039 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
   6040                                     MachineBasicBlock *MBB) const {
   6041   DebugLoc DL = MI->getDebugLoc();
   6042   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6043 
   6044   MachineFunction *MF = MBB->getParent();
   6045   MachineRegisterInfo &MRI = MF->getRegInfo();
   6046 
   6047   const BasicBlock *BB = MBB->getBasicBlock();
   6048   MachineFunction::iterator I = MBB;
   6049   ++I;
   6050 
   6051   // Memory Reference
   6052   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   6053   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   6054 
   6055   unsigned DstReg = MI->getOperand(0).getReg();
   6056   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   6057   assert(RC->hasType(MVT::i32) && "Invalid destination!");
   6058   unsigned mainDstReg = MRI.createVirtualRegister(RC);
   6059   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
   6060 
   6061   MVT PVT = getPointerTy();
   6062   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   6063          "Invalid Pointer Size!");
   6064   // For v = setjmp(buf), we generate
   6065   //
   6066   // thisMBB:
   6067   //  SjLjSetup mainMBB
   6068   //  bl mainMBB
   6069   //  v_restore = 1
   6070   //  b sinkMBB
   6071   //
   6072   // mainMBB:
   6073   //  buf[LabelOffset] = LR
   6074   //  v_main = 0
   6075   //
   6076   // sinkMBB:
   6077   //  v = phi(main, restore)
   6078   //
   6079 
   6080   MachineBasicBlock *thisMBB = MBB;
   6081   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   6082   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   6083   MF->insert(I, mainMBB);
   6084   MF->insert(I, sinkMBB);
   6085 
   6086   MachineInstrBuilder MIB;
   6087 
   6088   // Transfer the remainder of BB and its successor edges to sinkMBB.
   6089   sinkMBB->splice(sinkMBB->begin(), MBB,
   6090                   llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
   6091   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   6092 
   6093   // Note that the structure of the jmp_buf used here is not compatible
   6094   // with that used by libc, and is not designed to be. Specifically, it
   6095   // stores only those 'reserved' registers that LLVM does not otherwise
   6096   // understand how to spill. Also, by convention, by the time this
   6097   // intrinsic is called, Clang has already stored the frame address in the
   6098   // first slot of the buffer and stack address in the third. Following the
   6099   // X86 target code, we'll store the jump address in the second slot. We also
   6100   // need to save the TOC pointer (R2) to handle jumps between shared
   6101   // libraries, and that will be stored in the fourth slot. The thread
   6102   // identifier (R13) is not affected.
   6103 
   6104   // thisMBB:
   6105   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   6106   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   6107   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   6108 
   6109   // Prepare IP either in reg.
   6110   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
   6111   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
   6112   unsigned BufReg = MI->getOperand(1).getReg();
   6113 
   6114   if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
   6115     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
   6116             .addReg(PPC::X2)
   6117             .addImm(TOCOffset)
   6118             .addReg(BufReg);
   6119     MIB.setMemRefs(MMOBegin, MMOEnd);
   6120   }
   6121 
   6122   // Naked functions never have a base pointer, and so we use r1. For all
   6123   // other functions, this decision must be delayed until during PEI.
   6124   unsigned BaseReg;
   6125   if (MF->getFunction()->getAttributes().hasAttribute(
   6126           AttributeSet::FunctionIndex, Attribute::Naked))
   6127     BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1;
   6128   else
   6129     BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP;
   6130 
   6131   MIB = BuildMI(*thisMBB, MI, DL,
   6132                 TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW))
   6133           .addReg(BaseReg)
   6134           .addImm(BPOffset)
   6135           .addReg(BufReg);
   6136   MIB.setMemRefs(MMOBegin, MMOEnd);
   6137 
   6138   // Setup
   6139   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
   6140   const PPCRegisterInfo *TRI =
   6141     static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
   6142   MIB.addRegMask(TRI->getNoPreservedMask());
   6143 
   6144   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
   6145 
   6146   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
   6147           .addMBB(mainMBB);
   6148   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
   6149 
   6150   thisMBB->addSuccessor(mainMBB, /* weight */ 0);
   6151   thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
   6152 
   6153   // mainMBB:
   6154   //  mainDstReg = 0
   6155   MIB = BuildMI(mainMBB, DL,
   6156     TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
   6157 
   6158   // Store IP
   6159   if (PPCSubTarget.isPPC64()) {
   6160     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
   6161             .addReg(LabelReg)
   6162             .addImm(LabelOffset)
   6163             .addReg(BufReg);
   6164   } else {
   6165     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
   6166             .addReg(LabelReg)
   6167             .addImm(LabelOffset)
   6168             .addReg(BufReg);
   6169   }
   6170 
   6171   MIB.setMemRefs(MMOBegin, MMOEnd);
   6172 
   6173   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
   6174   mainMBB->addSuccessor(sinkMBB);
   6175 
   6176   // sinkMBB:
   6177   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   6178           TII->get(PPC::PHI), DstReg)
   6179     .addReg(mainDstReg).addMBB(mainMBB)
   6180     .addReg(restoreDstReg).addMBB(thisMBB);
   6181 
   6182   MI->eraseFromParent();
   6183   return sinkMBB;
   6184 }
   6185 
   6186 MachineBasicBlock *
   6187 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
   6188                                      MachineBasicBlock *MBB) const {
   6189   DebugLoc DL = MI->getDebugLoc();
   6190   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6191 
   6192   MachineFunction *MF = MBB->getParent();
   6193   MachineRegisterInfo &MRI = MF->getRegInfo();
   6194 
   6195   // Memory Reference
   6196   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   6197   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   6198 
   6199   MVT PVT = getPointerTy();
   6200   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   6201          "Invalid Pointer Size!");
   6202 
   6203   const TargetRegisterClass *RC =
   6204     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   6205   unsigned Tmp = MRI.createVirtualRegister(RC);
   6206   // Since FP is only updated here but NOT referenced, it's treated as GPR.
   6207   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
   6208   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
   6209   unsigned BP  = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
   6210 
   6211   MachineInstrBuilder MIB;
   6212 
   6213   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   6214   const int64_t SPOffset    = 2 * PVT.getStoreSize();
   6215   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   6216   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   6217 
   6218   unsigned BufReg = MI->getOperand(0).getReg();
   6219 
   6220   // Reload FP (the jumped-to function may not have had a
   6221   // frame pointer, and if so, then its r31 will be restored
   6222   // as necessary).
   6223   if (PVT == MVT::i64) {
   6224     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
   6225             .addImm(0)
   6226             .addReg(BufReg);
   6227   } else {
   6228     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
   6229             .addImm(0)
   6230             .addReg(BufReg);
   6231   }
   6232   MIB.setMemRefs(MMOBegin, MMOEnd);
   6233 
   6234   // Reload IP
   6235   if (PVT == MVT::i64) {
   6236     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
   6237             .addImm(LabelOffset)
   6238             .addReg(BufReg);
   6239   } else {
   6240     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
   6241             .addImm(LabelOffset)
   6242             .addReg(BufReg);
   6243   }
   6244   MIB.setMemRefs(MMOBegin, MMOEnd);
   6245 
   6246   // Reload SP
   6247   if (PVT == MVT::i64) {
   6248     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
   6249             .addImm(SPOffset)
   6250             .addReg(BufReg);
   6251   } else {
   6252     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
   6253             .addImm(SPOffset)
   6254             .addReg(BufReg);
   6255   }
   6256   MIB.setMemRefs(MMOBegin, MMOEnd);
   6257 
   6258   // Reload BP
   6259   if (PVT == MVT::i64) {
   6260     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
   6261             .addImm(BPOffset)
   6262             .addReg(BufReg);
   6263   } else {
   6264     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
   6265             .addImm(BPOffset)
   6266             .addReg(BufReg);
   6267   }
   6268   MIB.setMemRefs(MMOBegin, MMOEnd);
   6269 
   6270   // Reload TOC
   6271   if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
   6272     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
   6273             .addImm(TOCOffset)
   6274             .addReg(BufReg);
   6275 
   6276     MIB.setMemRefs(MMOBegin, MMOEnd);
   6277   }
   6278 
   6279   // Jump
   6280   BuildMI(*MBB, MI, DL,
   6281           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
   6282   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
   6283 
   6284   MI->eraseFromParent();
   6285   return MBB;
   6286 }
   6287 
   6288 MachineBasicBlock *
   6289 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   6290                                                MachineBasicBlock *BB) const {
   6291   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
   6292       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
   6293     return emitEHSjLjSetJmp(MI, BB);
   6294   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
   6295              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
   6296     return emitEHSjLjLongJmp(MI, BB);
   6297   }
   6298 
   6299   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6300 
   6301   // To "insert" these instructions we actually have to insert their
   6302   // control-flow patterns.
   6303   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6304   MachineFunction::iterator It = BB;
   6305   ++It;
   6306 
   6307   MachineFunction *F = BB->getParent();
   6308 
   6309   if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   6310                                  MI->getOpcode() == PPC::SELECT_CC_I8)) {
   6311     SmallVector<MachineOperand, 2> Cond;
   6312     Cond.push_back(MI->getOperand(4));
   6313     Cond.push_back(MI->getOperand(1));
   6314 
   6315     DebugLoc dl = MI->getDebugLoc();
   6316     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6317     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
   6318                       Cond, MI->getOperand(2).getReg(),
   6319                       MI->getOperand(3).getReg());
   6320   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   6321              MI->getOpcode() == PPC::SELECT_CC_I8 ||
   6322              MI->getOpcode() == PPC::SELECT_CC_F4 ||
   6323              MI->getOpcode() == PPC::SELECT_CC_F8 ||
   6324              MI->getOpcode() == PPC::SELECT_CC_VRRC) {
   6325 
   6326 
   6327     // The incoming instruction knows the destination vreg to set, the
   6328     // condition code register to branch on, the true/false values to
   6329     // select between, and a branch opcode to use.
   6330 
   6331     //  thisMBB:
   6332     //  ...
   6333     //   TrueVal = ...
   6334     //   cmpTY ccX, r1, r2
   6335     //   bCC copy1MBB
   6336     //   fallthrough --> copy0MBB
   6337     MachineBasicBlock *thisMBB = BB;
   6338     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6339     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6340     unsigned SelectPred = MI->getOperand(4).getImm();
   6341     DebugLoc dl = MI->getDebugLoc();
   6342     F->insert(It, copy0MBB);
   6343     F->insert(It, sinkMBB);
   6344 
   6345     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6346     sinkMBB->splice(sinkMBB->begin(), BB,
   6347                     llvm::next(MachineBasicBlock::iterator(MI)),
   6348                     BB->end());
   6349     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   6350 
   6351     // Next, add the true and fallthrough blocks as its successors.
   6352     BB->addSuccessor(copy0MBB);
   6353     BB->addSuccessor(sinkMBB);
   6354 
   6355     BuildMI(BB, dl, TII->get(PPC::BCC))
   6356       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   6357 
   6358     //  copy0MBB:
   6359     //   %FalseValue = ...
   6360     //   # fallthrough to sinkMBB
   6361     BB = copy0MBB;
   6362 
   6363     // Update machine-CFG edges
   6364     BB->addSuccessor(sinkMBB);
   6365 
   6366     //  sinkMBB:
   6367     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   6368     //  ...
   6369     BB = sinkMBB;
   6370     BuildMI(*BB, BB->begin(), dl,
   6371             TII->get(PPC::PHI), MI->getOperand(0).getReg())
   6372       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   6373       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   6374   }
   6375   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   6376     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   6377   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   6378     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   6379   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   6380     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
   6381   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   6382     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
   6383 
   6384   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   6385     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   6386   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   6387     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   6388   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   6389     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
   6390   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   6391     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
   6392 
   6393   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   6394     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   6395   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   6396     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   6397   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   6398     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
   6399   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   6400     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
   6401 
   6402   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   6403     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   6404   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   6405     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   6406   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   6407     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
   6408   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   6409     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
   6410 
   6411   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   6412     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
   6413   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   6414     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
   6415   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   6416     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
   6417   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   6418     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
   6419 
   6420   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   6421     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   6422   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   6423     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   6424   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   6425     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
   6426   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   6427     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
   6428 
   6429   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
   6430     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   6431   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
   6432     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   6433   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
   6434     BB = EmitAtomicBinary(MI, BB, false, 0);
   6435   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
   6436     BB = EmitAtomicBinary(MI, BB, true, 0);
   6437 
   6438   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   6439            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
   6440     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   6441 
   6442     unsigned dest   = MI->getOperand(0).getReg();
   6443     unsigned ptrA   = MI->getOperand(1).getReg();
   6444     unsigned ptrB   = MI->getOperand(2).getReg();
   6445     unsigned oldval = MI->getOperand(3).getReg();
   6446     unsigned newval = MI->getOperand(4).getReg();
   6447     DebugLoc dl     = MI->getDebugLoc();
   6448 
   6449     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6450     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6451     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6452     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6453     F->insert(It, loop1MBB);
   6454     F->insert(It, loop2MBB);
   6455     F->insert(It, midMBB);
   6456     F->insert(It, exitMBB);
   6457     exitMBB->splice(exitMBB->begin(), BB,
   6458                     llvm::next(MachineBasicBlock::iterator(MI)),
   6459                     BB->end());
   6460     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6461 
   6462     //  thisMBB:
   6463     //   ...
   6464     //   fallthrough --> loopMBB
   6465     BB->addSuccessor(loop1MBB);
   6466 
   6467     // loop1MBB:
   6468     //   l[wd]arx dest, ptr
   6469     //   cmp[wd] dest, oldval
   6470     //   bne- midMBB
   6471     // loop2MBB:
   6472     //   st[wd]cx. newval, ptr
   6473     //   bne- loopMBB
   6474     //   b exitBB
   6475     // midMBB:
   6476     //   st[wd]cx. dest, ptr
   6477     // exitBB:
   6478     BB = loop1MBB;
   6479     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   6480       .addReg(ptrA).addReg(ptrB);
   6481     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   6482       .addReg(oldval).addReg(dest);
   6483     BuildMI(BB, dl, TII->get(PPC::BCC))
   6484       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   6485     BB->addSuccessor(loop2MBB);
   6486     BB->addSuccessor(midMBB);
   6487 
   6488     BB = loop2MBB;
   6489     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   6490       .addReg(newval).addReg(ptrA).addReg(ptrB);
   6491     BuildMI(BB, dl, TII->get(PPC::BCC))
   6492       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   6493     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   6494     BB->addSuccessor(loop1MBB);
   6495     BB->addSuccessor(exitMBB);
   6496 
   6497     BB = midMBB;
   6498     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   6499       .addReg(dest).addReg(ptrA).addReg(ptrB);
   6500     BB->addSuccessor(exitMBB);
   6501 
   6502     //  exitMBB:
   6503     //   ...
   6504     BB = exitMBB;
   6505   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   6506              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   6507     // We must use 64-bit registers for addresses when targeting 64-bit,
   6508     // since we're actually doing arithmetic on them.  Other registers
   6509     // can be 32-bit.
   6510     bool is64bit = PPCSubTarget.isPPC64();
   6511     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   6512 
   6513     unsigned dest   = MI->getOperand(0).getReg();
   6514     unsigned ptrA   = MI->getOperand(1).getReg();
   6515     unsigned ptrB   = MI->getOperand(2).getReg();
   6516     unsigned oldval = MI->getOperand(3).getReg();
   6517     unsigned newval = MI->getOperand(4).getReg();
   6518     DebugLoc dl     = MI->getDebugLoc();
   6519 
   6520     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6521     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6522     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6523     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6524     F->insert(It, loop1MBB);
   6525     F->insert(It, loop2MBB);
   6526     F->insert(It, midMBB);
   6527     F->insert(It, exitMBB);
   6528     exitMBB->splice(exitMBB->begin(), BB,
   6529                     llvm::next(MachineBasicBlock::iterator(MI)),
   6530                     BB->end());
   6531     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6532 
   6533     MachineRegisterInfo &RegInfo = F->getRegInfo();
   6534     const TargetRegisterClass *RC =
   6535       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   6536                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
   6537     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   6538     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   6539     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   6540     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   6541     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   6542     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   6543     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   6544     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   6545     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   6546     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   6547     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   6548     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   6549     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   6550     unsigned Ptr1Reg;
   6551     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   6552     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   6553     //  thisMBB:
   6554     //   ...
   6555     //   fallthrough --> loopMBB
   6556     BB->addSuccessor(loop1MBB);
   6557 
   6558     // The 4-byte load must be aligned, while a char or short may be
   6559     // anywhere in the word.  Hence all this nasty bookkeeping code.
   6560     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   6561     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   6562     //   xori shift, shift1, 24 [16]
   6563     //   rlwinm ptr, ptr1, 0, 0, 29
   6564     //   slw newval2, newval, shift
   6565     //   slw oldval2, oldval,shift
   6566     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   6567     //   slw mask, mask2, shift
   6568     //   and newval3, newval2, mask
   6569     //   and oldval3, oldval2, mask
   6570     // loop1MBB:
   6571     //   lwarx tmpDest, ptr
   6572     //   and tmp, tmpDest, mask
   6573     //   cmpw tmp, oldval3
   6574     //   bne- midMBB
   6575     // loop2MBB:
   6576     //   andc tmp2, tmpDest, mask
   6577     //   or tmp4, tmp2, newval3
   6578     //   stwcx. tmp4, ptr
   6579     //   bne- loop1MBB
   6580     //   b exitBB
   6581     // midMBB:
   6582     //   stwcx. tmpDest, ptr
   6583     // exitBB:
   6584     //   srw dest, tmpDest, shift
   6585     if (ptrA != ZeroReg) {
   6586       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   6587       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   6588         .addReg(ptrA).addReg(ptrB);
   6589     } else {
   6590       Ptr1Reg = ptrB;
   6591     }
   6592     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   6593         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   6594     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   6595         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   6596     if (is64bit)
   6597       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   6598         .addReg(Ptr1Reg).addImm(0).addImm(61);
   6599     else
   6600       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   6601         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   6602     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   6603         .addReg(newval).addReg(ShiftReg);
   6604     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   6605         .addReg(oldval).addReg(ShiftReg);
   6606     if (is8bit)
   6607       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   6608     else {
   6609       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   6610       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   6611         .addReg(Mask3Reg).addImm(65535);
   6612     }
   6613     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   6614         .addReg(Mask2Reg).addReg(ShiftReg);
   6615     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   6616         .addReg(NewVal2Reg).addReg(MaskReg);
   6617     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   6618         .addReg(OldVal2Reg).addReg(MaskReg);
   6619 
   6620     BB = loop1MBB;
   6621     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   6622         .addReg(ZeroReg).addReg(PtrReg);
   6623     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   6624         .addReg(TmpDestReg).addReg(MaskReg);
   6625     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   6626         .addReg(TmpReg).addReg(OldVal3Reg);
   6627     BuildMI(BB, dl, TII->get(PPC::BCC))
   6628         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   6629     BB->addSuccessor(loop2MBB);
   6630     BB->addSuccessor(midMBB);
   6631 
   6632     BB = loop2MBB;
   6633     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   6634         .addReg(TmpDestReg).addReg(MaskReg);
   6635     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   6636         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   6637     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   6638         .addReg(ZeroReg).addReg(PtrReg);
   6639     BuildMI(BB, dl, TII->get(PPC::BCC))
   6640       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   6641     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   6642     BB->addSuccessor(loop1MBB);
   6643     BB->addSuccessor(exitMBB);
   6644 
   6645     BB = midMBB;
   6646     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   6647       .addReg(ZeroReg).addReg(PtrReg);
   6648     BB->addSuccessor(exitMBB);
   6649 
   6650     //  exitMBB:
   6651     //   ...
   6652     BB = exitMBB;
   6653     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   6654       .addReg(ShiftReg);
   6655   } else if (MI->getOpcode() == PPC::FADDrtz) {
   6656     // This pseudo performs an FADD with rounding mode temporarily forced
   6657     // to round-to-zero.  We emit this via custom inserter since the FPSCR
   6658     // is not modeled at the SelectionDAG level.
   6659     unsigned Dest = MI->getOperand(0).getReg();
   6660     unsigned Src1 = MI->getOperand(1).getReg();
   6661     unsigned Src2 = MI->getOperand(2).getReg();
   6662     DebugLoc dl   = MI->getDebugLoc();
   6663 
   6664     MachineRegisterInfo &RegInfo = F->getRegInfo();
   6665     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
   6666 
   6667     // Save FPSCR value.
   6668     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
   6669 
   6670     // Set rounding mode to round-to-zero.
   6671     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
   6672     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
   6673 
   6674     // Perform addition.
   6675     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
   6676 
   6677     // Restore FPSCR value.
   6678     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
   6679   } else if (MI->getOpcode() == PPC::FRINDrint ||
   6680              MI->getOpcode() == PPC::FRINSrint) {
   6681     bool isf32 = MI->getOpcode() == PPC::FRINSrint;
   6682     unsigned Dest = MI->getOperand(0).getReg();
   6683     unsigned Src = MI->getOperand(1).getReg();
   6684     DebugLoc dl   = MI->getDebugLoc();
   6685 
   6686     MachineRegisterInfo &RegInfo = F->getRegInfo();
   6687     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   6688 
   6689     // Perform the rounding.
   6690     BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FRINS : PPC::FRIND), Dest)
   6691       .addReg(Src);
   6692 
   6693     // Compare the results.
   6694     BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FCMPUS : PPC::FCMPUD), CRReg)
   6695       .addReg(Dest).addReg(Src);
   6696 
   6697     // If the results were not equal, then set the FPSCR XX bit.
   6698     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6699     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   6700     F->insert(It, midMBB);
   6701     F->insert(It, exitMBB);
   6702     exitMBB->splice(exitMBB->begin(), BB,
   6703                     llvm::next(MachineBasicBlock::iterator(MI)),
   6704                     BB->end());
   6705     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6706 
   6707     BuildMI(*BB, MI, dl, TII->get(PPC::BCC))
   6708       .addImm(PPC::PRED_EQ).addReg(CRReg).addMBB(exitMBB);
   6709 
   6710     BB->addSuccessor(midMBB);
   6711     BB->addSuccessor(exitMBB);
   6712 
   6713     BB = midMBB;
   6714 
   6715     // Set the FPSCR XX bit (FE_INEXACT). Note that we cannot just set
   6716     // the FI bit here because that will not automatically set XX also,
   6717     // and XX is what libm interprets as the FE_INEXACT flag.
   6718     BuildMI(BB, dl, TII->get(PPC::MTFSB1)).addImm(/* 38 - 32 = */ 6);
   6719     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   6720 
   6721     BB->addSuccessor(exitMBB);
   6722 
   6723     BB = exitMBB;
   6724   } else {
   6725     llvm_unreachable("Unexpected instr type to insert");
   6726   }
   6727 
   6728   MI->eraseFromParent();   // The pseudo instruction is gone now.
   6729   return BB;
   6730 }
   6731 
   6732 //===----------------------------------------------------------------------===//
   6733 // Target Optimization Hooks
   6734 //===----------------------------------------------------------------------===//
   6735 
   6736 SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
   6737                                                DAGCombinerInfo &DCI) const {
   6738   if (DCI.isAfterLegalizeVectorOps())
   6739     return SDValue();
   6740 
   6741   EVT VT = Op.getValueType();
   6742 
   6743   if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
   6744       (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
   6745       (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
   6746 
   6747     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
   6748     // For the reciprocal, we need to find the zero of the function:
   6749     //   F(X) = A X - 1 [which has a zero at X = 1/A]
   6750     //     =>
   6751     //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
   6752     //     does not require additional intermediate precision]
   6753 
   6754     // Convergence is quadratic, so we essentially double the number of digits
   6755     // correct after every iteration. The minimum architected relative
   6756     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
   6757     // 23 digits and double has 52 digits.
   6758     int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
   6759     if (VT.getScalarType() == MVT::f64)
   6760       ++Iterations;
   6761 
   6762     SelectionDAG &DAG = DCI.DAG;
   6763     SDLoc dl(Op);
   6764 
   6765     SDValue FPOne =
   6766       DAG.getConstantFP(1.0, VT.getScalarType());
   6767     if (VT.isVector()) {
   6768       assert(VT.getVectorNumElements() == 4 &&
   6769              "Unknown vector type");
   6770       FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
   6771                           FPOne, FPOne, FPOne, FPOne);
   6772     }
   6773 
   6774     SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
   6775     DCI.AddToWorklist(Est.getNode());
   6776 
   6777     // Newton iterations: Est = Est + Est (1 - Arg * Est)
   6778     for (int i = 0; i < Iterations; ++i) {
   6779       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
   6780       DCI.AddToWorklist(NewEst.getNode());
   6781 
   6782       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
   6783       DCI.AddToWorklist(NewEst.getNode());
   6784 
   6785       NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
   6786       DCI.AddToWorklist(NewEst.getNode());
   6787 
   6788       Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
   6789       DCI.AddToWorklist(Est.getNode());
   6790     }
   6791 
   6792     return Est;
   6793   }
   6794 
   6795   return SDValue();
   6796 }
   6797 
   6798 SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
   6799                                              DAGCombinerInfo &DCI) const {
   6800   if (DCI.isAfterLegalizeVectorOps())
   6801     return SDValue();
   6802 
   6803   EVT VT = Op.getValueType();
   6804 
   6805   if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
   6806       (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
   6807       (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
   6808 
   6809     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
   6810     // For the reciprocal sqrt, we need to find the zero of the function:
   6811     //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
   6812     //     =>
   6813     //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
   6814     // As a result, we precompute A/2 prior to the iteration loop.
   6815 
   6816     // Convergence is quadratic, so we essentially double the number of digits
   6817     // correct after every iteration. The minimum architected relative
   6818     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
   6819     // 23 digits and double has 52 digits.
   6820     int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
   6821     if (VT.getScalarType() == MVT::f64)
   6822       ++Iterations;
   6823 
   6824     SelectionDAG &DAG = DCI.DAG;
   6825     SDLoc dl(Op);
   6826 
   6827     SDValue FPThreeHalves =
   6828       DAG.getConstantFP(1.5, VT.getScalarType());
   6829     if (VT.isVector()) {
   6830       assert(VT.getVectorNumElements() == 4 &&
   6831              "Unknown vector type");
   6832       FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
   6833                                   FPThreeHalves, FPThreeHalves,
   6834                                   FPThreeHalves, FPThreeHalves);
   6835     }
   6836 
   6837     SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
   6838     DCI.AddToWorklist(Est.getNode());
   6839 
   6840     // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
   6841     // this entire sequence requires only one FP constant.
   6842     SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
   6843     DCI.AddToWorklist(HalfArg.getNode());
   6844 
   6845     HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
   6846     DCI.AddToWorklist(HalfArg.getNode());
   6847 
   6848     // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
   6849     for (int i = 0; i < Iterations; ++i) {
   6850       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
   6851       DCI.AddToWorklist(NewEst.getNode());
   6852 
   6853       NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
   6854       DCI.AddToWorklist(NewEst.getNode());
   6855 
   6856       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
   6857       DCI.AddToWorklist(NewEst.getNode());
   6858 
   6859       Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
   6860       DCI.AddToWorklist(Est.getNode());
   6861     }
   6862 
   6863     return Est;
   6864   }
   6865 
   6866   return SDValue();
   6867 }
   6868 
   6869 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
   6870 // not enforce equality of the chain operands.
   6871 static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
   6872                             unsigned Bytes, int Dist,
   6873                             SelectionDAG &DAG) {
   6874   EVT VT = LS->getMemoryVT();
   6875   if (VT.getSizeInBits() / 8 != Bytes)
   6876     return false;
   6877 
   6878   SDValue Loc = LS->getBasePtr();
   6879   SDValue BaseLoc = Base->getBasePtr();
   6880   if (Loc.getOpcode() == ISD::FrameIndex) {
   6881     if (BaseLoc.getOpcode() != ISD::FrameIndex)
   6882       return false;
   6883     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   6884     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
   6885     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
   6886     int FS  = MFI->getObjectSize(FI);
   6887     int BFS = MFI->getObjectSize(BFI);
   6888     if (FS != BFS || FS != (int)Bytes) return false;
   6889     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
   6890   }
   6891 
   6892   // Handle X+C
   6893   if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
   6894       cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
   6895     return true;
   6896 
   6897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6898   const GlobalValue *GV1 = NULL;
   6899   const GlobalValue *GV2 = NULL;
   6900   int64_t Offset1 = 0;
   6901   int64_t Offset2 = 0;
   6902   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
   6903   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
   6904   if (isGA1 && isGA2 && GV1 == GV2)
   6905     return Offset1 == (Offset2 + Dist*Bytes);
   6906   return false;
   6907 }
   6908 
   6909 // Return true is there is a nearyby consecutive load to the one provided
   6910 // (regardless of alignment). We search up and down the chain, looking though
   6911 // token factors and other loads (but nothing else). As a result, a true
   6912 // results indicates that it is safe to create a new consecutive load adjacent
   6913 // to the load provided.
   6914 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
   6915   SDValue Chain = LD->getChain();
   6916   EVT VT = LD->getMemoryVT();
   6917 
   6918   SmallSet<SDNode *, 16> LoadRoots;
   6919   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
   6920   SmallSet<SDNode *, 16> Visited;
   6921 
   6922   // First, search up the chain, branching to follow all token-factor operands.
   6923   // If we find a consecutive load, then we're done, otherwise, record all
   6924   // nodes just above the top-level loads and token factors.
   6925   while (!Queue.empty()) {
   6926     SDNode *ChainNext = Queue.pop_back_val();
   6927     if (!Visited.insert(ChainNext))
   6928       continue;
   6929 
   6930     if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
   6931       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   6932         return true;
   6933 
   6934       if (!Visited.count(ChainLD->getChain().getNode()))
   6935         Queue.push_back(ChainLD->getChain().getNode());
   6936     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
   6937       for (SDNode::op_iterator O = ChainNext->op_begin(),
   6938            OE = ChainNext->op_end(); O != OE; ++O)
   6939         if (!Visited.count(O->getNode()))
   6940           Queue.push_back(O->getNode());
   6941     } else
   6942       LoadRoots.insert(ChainNext);
   6943   }
   6944 
   6945   // Second, search down the chain, starting from the top-level nodes recorded
   6946   // in the first phase. These top-level nodes are the nodes just above all
   6947   // loads and token factors. Starting with their uses, recursively look though
   6948   // all loads (just the chain uses) and token factors to find a consecutive
   6949   // load.
   6950   Visited.clear();
   6951   Queue.clear();
   6952 
   6953   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
   6954        IE = LoadRoots.end(); I != IE; ++I) {
   6955     Queue.push_back(*I);
   6956 
   6957     while (!Queue.empty()) {
   6958       SDNode *LoadRoot = Queue.pop_back_val();
   6959       if (!Visited.insert(LoadRoot))
   6960         continue;
   6961 
   6962       if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
   6963         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   6964           return true;
   6965 
   6966       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
   6967            UE = LoadRoot->use_end(); UI != UE; ++UI)
   6968         if (((isa<LoadSDNode>(*UI) &&
   6969             cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
   6970             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
   6971           Queue.push_back(*UI);
   6972     }
   6973   }
   6974 
   6975   return false;
   6976 }
   6977 
   6978 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   6979                                              DAGCombinerInfo &DCI) const {
   6980   const TargetMachine &TM = getTargetMachine();
   6981   SelectionDAG &DAG = DCI.DAG;
   6982   SDLoc dl(N);
   6983   switch (N->getOpcode()) {
   6984   default: break;
   6985   case PPCISD::SHL:
   6986     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   6987       if (C->isNullValue())   // 0 << V -> 0.
   6988         return N->getOperand(0);
   6989     }
   6990     break;
   6991   case PPCISD::SRL:
   6992     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   6993       if (C->isNullValue())   // 0 >>u V -> 0.
   6994         return N->getOperand(0);
   6995     }
   6996     break;
   6997   case PPCISD::SRA:
   6998     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   6999       if (C->isNullValue() ||   //  0 >>s V -> 0.
   7000           C->isAllOnesValue())    // -1 >>s V -> -1.
   7001         return N->getOperand(0);
   7002     }
   7003     break;
   7004   case ISD::FDIV: {
   7005     assert(TM.Options.UnsafeFPMath &&
   7006            "Reciprocal estimates require UnsafeFPMath");
   7007 
   7008     if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
   7009       SDValue RV =
   7010         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
   7011       if (RV.getNode() != 0) {
   7012         DCI.AddToWorklist(RV.getNode());
   7013         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7014                            N->getOperand(0), RV);
   7015       }
   7016     } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
   7017                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
   7018       SDValue RV =
   7019         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
   7020                                  DCI);
   7021       if (RV.getNode() != 0) {
   7022         DCI.AddToWorklist(RV.getNode());
   7023         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
   7024                          N->getValueType(0), RV);
   7025         DCI.AddToWorklist(RV.getNode());
   7026         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7027                            N->getOperand(0), RV);
   7028       }
   7029     } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
   7030                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
   7031       SDValue RV =
   7032         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
   7033                                  DCI);
   7034       if (RV.getNode() != 0) {
   7035         DCI.AddToWorklist(RV.getNode());
   7036         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
   7037                          N->getValueType(0), RV,
   7038                          N->getOperand(1).getOperand(1));
   7039         DCI.AddToWorklist(RV.getNode());
   7040         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7041                            N->getOperand(0), RV);
   7042       }
   7043     }
   7044 
   7045     SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
   7046     if (RV.getNode() != 0) {
   7047       DCI.AddToWorklist(RV.getNode());
   7048       return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
   7049                          N->getOperand(0), RV);
   7050     }
   7051 
   7052     }
   7053     break;
   7054   case ISD::FSQRT: {
   7055     assert(TM.Options.UnsafeFPMath &&
   7056            "Reciprocal estimates require UnsafeFPMath");
   7057 
   7058     // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
   7059     // reciprocal sqrt.
   7060     SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
   7061     if (RV.getNode() != 0) {
   7062       DCI.AddToWorklist(RV.getNode());
   7063       RV = DAGCombineFastRecip(RV, DCI);
   7064       if (RV.getNode() != 0)
   7065         return RV;
   7066     }
   7067 
   7068     }
   7069     break;
   7070   case ISD::SINT_TO_FP:
   7071     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
   7072       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
   7073         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
   7074         // We allow the src/dst to be either f32/f64, but the intermediate
   7075         // type must be i64.
   7076         if (N->getOperand(0).getValueType() == MVT::i64 &&
   7077             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
   7078           SDValue Val = N->getOperand(0).getOperand(0);
   7079           if (Val.getValueType() == MVT::f32) {
   7080             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   7081             DCI.AddToWorklist(Val.getNode());
   7082           }
   7083 
   7084           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
   7085           DCI.AddToWorklist(Val.getNode());
   7086           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
   7087           DCI.AddToWorklist(Val.getNode());
   7088           if (N->getValueType(0) == MVT::f32) {
   7089             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
   7090                               DAG.getIntPtrConstant(0));
   7091             DCI.AddToWorklist(Val.getNode());
   7092           }
   7093           return Val;
   7094         } else if (N->getOperand(0).getValueType() == MVT::i32) {
   7095           // If the intermediate type is i32, we can avoid the load/store here
   7096           // too.
   7097         }
   7098       }
   7099     }
   7100     break;
   7101   case ISD::STORE:
   7102     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   7103     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
   7104         !cast<StoreSDNode>(N)->isTruncatingStore() &&
   7105         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   7106         N->getOperand(1).getValueType() == MVT::i32 &&
   7107         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   7108       SDValue Val = N->getOperand(1).getOperand(0);
   7109       if (Val.getValueType() == MVT::f32) {
   7110         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   7111         DCI.AddToWorklist(Val.getNode());
   7112       }
   7113       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   7114       DCI.AddToWorklist(Val.getNode());
   7115 
   7116       SDValue Ops[] = {
   7117         N->getOperand(0), Val, N->getOperand(2),
   7118         DAG.getValueType(N->getOperand(1).getValueType())
   7119       };
   7120 
   7121       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   7122               DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
   7123               cast<StoreSDNode>(N)->getMemoryVT(),
   7124               cast<StoreSDNode>(N)->getMemOperand());
   7125       DCI.AddToWorklist(Val.getNode());
   7126       return Val;
   7127     }
   7128 
   7129     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   7130     if (cast<StoreSDNode>(N)->isUnindexed() &&
   7131         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   7132         N->getOperand(1).getNode()->hasOneUse() &&
   7133         (N->getOperand(1).getValueType() == MVT::i32 ||
   7134          N->getOperand(1).getValueType() == MVT::i16 ||
   7135          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
   7136           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
   7137           N->getOperand(1).getValueType() == MVT::i64))) {
   7138       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   7139       // Do an any-extend to 32-bits if this is a half-word input.
   7140       if (BSwapOp.getValueType() == MVT::i16)
   7141         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   7142 
   7143       SDValue Ops[] = {
   7144         N->getOperand(0), BSwapOp, N->getOperand(2),
   7145         DAG.getValueType(N->getOperand(1).getValueType())
   7146       };
   7147       return
   7148         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   7149                                 Ops, array_lengthof(Ops),
   7150                                 cast<StoreSDNode>(N)->getMemoryVT(),
   7151                                 cast<StoreSDNode>(N)->getMemOperand());
   7152     }
   7153     break;
   7154   case ISD::LOAD: {
   7155     LoadSDNode *LD = cast<LoadSDNode>(N);
   7156     EVT VT = LD->getValueType(0);
   7157     Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
   7158     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
   7159     if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
   7160         TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
   7161         DCI.getDAGCombineLevel() == AfterLegalizeTypes &&
   7162         LD->getAlignment() < ABIAlignment) {
   7163       // This is a type-legal unaligned Altivec load.
   7164       SDValue Chain = LD->getChain();
   7165       SDValue Ptr = LD->getBasePtr();
   7166 
   7167       // This implements the loading of unaligned vectors as described in
   7168       // the venerable Apple Velocity Engine overview. Specifically:
   7169       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
   7170       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
   7171       //
   7172       // The general idea is to expand a sequence of one or more unaligned
   7173       // loads into a alignment-based permutation-control instruction (lvsl),
   7174       // a series of regular vector loads (which always truncate their
   7175       // input address to an aligned address), and a series of permutations.
   7176       // The results of these permutations are the requested loaded values.
   7177       // The trick is that the last "extra" load is not taken from the address
   7178       // you might suspect (sizeof(vector) bytes after the last requested
   7179       // load), but rather sizeof(vector) - 1 bytes after the last
   7180       // requested vector. The point of this is to avoid a page fault if the
   7181       // base address happend to be aligned. This works because if the base
   7182       // address is aligned, then adding less than a full vector length will
   7183       // cause the last vector in the sequence to be (re)loaded. Otherwise,
   7184       // the next vector will be fetched as you might suspect was necessary.
   7185 
   7186       // We might be able to reuse the permutation generation from
   7187       // a different base address offset from this one by an aligned amount.
   7188       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
   7189       // optimization later.
   7190       SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
   7191                                           DAG, dl, MVT::v16i8);
   7192 
   7193       // Refine the alignment of the original load (a "new" load created here
   7194       // which was identical to the first except for the alignment would be
   7195       // merged with the existing node regardless).
   7196       MachineFunction &MF = DAG.getMachineFunction();
   7197       MachineMemOperand *MMO =
   7198         MF.getMachineMemOperand(LD->getPointerInfo(),
   7199                                 LD->getMemOperand()->getFlags(),
   7200                                 LD->getMemoryVT().getStoreSize(),
   7201                                 ABIAlignment);
   7202       LD->refineAlignment(MMO);
   7203       SDValue BaseLoad = SDValue(LD, 0);
   7204 
   7205       // Note that the value of IncOffset (which is provided to the next
   7206       // load's pointer info offset value, and thus used to calculate the
   7207       // alignment), and the value of IncValue (which is actually used to
   7208       // increment the pointer value) are different! This is because we
   7209       // require the next load to appear to be aligned, even though it
   7210       // is actually offset from the base pointer by a lesser amount.
   7211       int IncOffset = VT.getSizeInBits() / 8;
   7212       int IncValue = IncOffset;
   7213 
   7214       // Walk (both up and down) the chain looking for another load at the real
   7215       // (aligned) offset (the alignment of the other load does not matter in
   7216       // this case). If found, then do not use the offset reduction trick, as
   7217       // that will prevent the loads from being later combined (as they would
   7218       // otherwise be duplicates).
   7219       if (!findConsecutiveLoad(LD, DAG))
   7220         --IncValue;
   7221 
   7222       SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
   7223       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   7224 
   7225       SDValue ExtraLoad =
   7226         DAG.getLoad(VT, dl, Chain, Ptr,
   7227                     LD->getPointerInfo().getWithOffset(IncOffset),
   7228                     LD->isVolatile(), LD->isNonTemporal(),
   7229                     LD->isInvariant(), ABIAlignment);
   7230 
   7231       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   7232         BaseLoad.getValue(1), ExtraLoad.getValue(1));
   7233 
   7234       if (BaseLoad.getValueType() != MVT::v4i32)
   7235         BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
   7236 
   7237       if (ExtraLoad.getValueType() != MVT::v4i32)
   7238         ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
   7239 
   7240       SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
   7241                                       BaseLoad, ExtraLoad, PermCntl, DAG, dl);
   7242 
   7243       if (VT != MVT::v4i32)
   7244         Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
   7245 
   7246       // Now we need to be really careful about how we update the users of the
   7247       // original load. We cannot just call DCI.CombineTo (or
   7248       // DAG.ReplaceAllUsesWith for that matter), because the load still has
   7249       // uses created here (the permutation for example) that need to stay.
   7250       SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   7251       while (UI != UE) {
   7252         SDUse &Use = UI.getUse();
   7253         SDNode *User = *UI;
   7254         // Note: BaseLoad is checked here because it might not be N, but a
   7255         // bitcast of N.
   7256         if (User == Perm.getNode() || User == BaseLoad.getNode() ||
   7257             User == TF.getNode() || Use.getResNo() > 1) {
   7258           ++UI;
   7259           continue;
   7260         }
   7261 
   7262         SDValue To = Use.getResNo() ? TF : Perm;
   7263         ++UI;
   7264 
   7265         SmallVector<SDValue, 8> Ops;
   7266         for (SDNode::op_iterator O = User->op_begin(),
   7267              OE = User->op_end(); O != OE; ++O) {
   7268           if (*O == Use)
   7269             Ops.push_back(To);
   7270           else
   7271             Ops.push_back(*O);
   7272         }
   7273 
   7274         DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
   7275       }
   7276 
   7277       return SDValue(N, 0);
   7278     }
   7279     }
   7280     break;
   7281   case ISD::INTRINSIC_WO_CHAIN:
   7282     if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
   7283           Intrinsic::ppc_altivec_lvsl &&
   7284         N->getOperand(1)->getOpcode() == ISD::ADD) {
   7285       SDValue Add = N->getOperand(1);
   7286 
   7287       if (DAG.MaskedValueIsZero(Add->getOperand(1),
   7288             APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
   7289               Add.getValueType().getScalarType().getSizeInBits()))) {
   7290         SDNode *BasePtr = Add->getOperand(0).getNode();
   7291         for (SDNode::use_iterator UI = BasePtr->use_begin(),
   7292              UE = BasePtr->use_end(); UI != UE; ++UI) {
   7293           if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   7294               cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
   7295                 Intrinsic::ppc_altivec_lvsl) {
   7296             // We've found another LVSL, and this address if an aligned
   7297             // multiple of that one. The results will be the same, so use the
   7298             // one we've just found instead.
   7299 
   7300             return SDValue(*UI, 0);
   7301           }
   7302         }
   7303       }
   7304     }
   7305   case ISD::BSWAP:
   7306     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   7307     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   7308         N->getOperand(0).hasOneUse() &&
   7309         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
   7310          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
   7311           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
   7312           N->getValueType(0) == MVT::i64))) {
   7313       SDValue Load = N->getOperand(0);
   7314       LoadSDNode *LD = cast<LoadSDNode>(Load);
   7315       // Create the byte-swapping load.
   7316       SDValue Ops[] = {
   7317         LD->getChain(),    // Chain
   7318         LD->getBasePtr(),  // Ptr
   7319         DAG.getValueType(N->getValueType(0)) // VT
   7320       };
   7321       SDValue BSLoad =
   7322         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   7323                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
   7324                                               MVT::i64 : MVT::i32, MVT::Other),
   7325                                 Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
   7326 
   7327       // If this is an i16 load, insert the truncate.
   7328       SDValue ResVal = BSLoad;
   7329       if (N->getValueType(0) == MVT::i16)
   7330         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   7331 
   7332       // First, combine the bswap away.  This makes the value produced by the
   7333       // load dead.
   7334       DCI.CombineTo(N, ResVal);
   7335 
   7336       // Next, combine the load away, we give it a bogus result value but a real
   7337       // chain result.  The result value is dead because the bswap is dead.
   7338       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   7339 
   7340       // Return N so it doesn't get rechecked!
   7341       return SDValue(N, 0);
   7342     }
   7343 
   7344     break;
   7345   case PPCISD::VCMP: {
   7346     // If a VCMPo node already exists with exactly the same operands as this
   7347     // node, use its result instead of this node (VCMPo computes both a CR6 and
   7348     // a normal output).
   7349     //
   7350     if (!N->getOperand(0).hasOneUse() &&
   7351         !N->getOperand(1).hasOneUse() &&
   7352         !N->getOperand(2).hasOneUse()) {
   7353 
   7354       // Scan all of the users of the LHS, looking for VCMPo's that match.
   7355       SDNode *VCMPoNode = 0;
   7356 
   7357       SDNode *LHSN = N->getOperand(0).getNode();
   7358       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   7359            UI != E; ++UI)
   7360         if (UI->getOpcode() == PPCISD::VCMPo &&
   7361             UI->getOperand(1) == N->getOperand(1) &&
   7362             UI->getOperand(2) == N->getOperand(2) &&
   7363             UI->getOperand(0) == N->getOperand(0)) {
   7364           VCMPoNode = *UI;
   7365           break;
   7366         }
   7367 
   7368       // If there is no VCMPo node, or if the flag value has a single use, don't
   7369       // transform this.
   7370       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   7371         break;
   7372 
   7373       // Look at the (necessarily single) use of the flag value.  If it has a
   7374       // chain, this transformation is more complex.  Note that multiple things
   7375       // could use the value result, which we should ignore.
   7376       SDNode *FlagUser = 0;
   7377       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   7378            FlagUser == 0; ++UI) {
   7379         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   7380         SDNode *User = *UI;
   7381         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   7382           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   7383             FlagUser = User;
   7384             break;
   7385           }
   7386         }
   7387       }
   7388 
   7389       // If the user is a MFOCRF instruction, we know this is safe.
   7390       // Otherwise we give up for right now.
   7391       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
   7392         return SDValue(VCMPoNode, 0);
   7393     }
   7394     break;
   7395   }
   7396   case ISD::BR_CC: {
   7397     // If this is a branch on an altivec predicate comparison, lower this so
   7398     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
   7399     // lowering is done pre-legalize, because the legalizer lowers the predicate
   7400     // compare down to code that is difficult to reassemble.
   7401     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   7402     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   7403 
   7404     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
   7405     // value. If so, pass-through the AND to get to the intrinsic.
   7406     if (LHS.getOpcode() == ISD::AND &&
   7407         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   7408         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
   7409           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   7410         isa<ConstantSDNode>(LHS.getOperand(1)) &&
   7411         !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
   7412           isZero())
   7413       LHS = LHS.getOperand(0);
   7414 
   7415     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   7416         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
   7417           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   7418         isa<ConstantSDNode>(RHS)) {
   7419       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
   7420              "Counter decrement comparison is not EQ or NE");
   7421 
   7422       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   7423       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
   7424                     (CC == ISD::SETNE && !Val);
   7425 
   7426       // We now need to make the intrinsic dead (it cannot be instruction
   7427       // selected).
   7428       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
   7429       assert(LHS.getNode()->hasOneUse() &&
   7430              "Counter decrement has more than one use");
   7431 
   7432       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
   7433                          N->getOperand(0), N->getOperand(4));
   7434     }
   7435 
   7436     int CompareOpc;
   7437     bool isDot;
   7438 
   7439     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   7440         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   7441         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
   7442       assert(isDot && "Can't compare against a vector result!");
   7443 
   7444       // If this is a comparison against something other than 0/1, then we know
   7445       // that the condition is never/always true.
   7446       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   7447       if (Val != 0 && Val != 1) {
   7448         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   7449           return N->getOperand(0);
   7450         // Always !=, turn it into an unconditional branch.
   7451         return DAG.getNode(ISD::BR, dl, MVT::Other,
   7452                            N->getOperand(0), N->getOperand(4));
   7453       }
   7454 
   7455       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   7456 
   7457       // Create the PPCISD altivec 'dot' comparison node.
   7458       SDValue Ops[] = {
   7459         LHS.getOperand(2),  // LHS of compare
   7460         LHS.getOperand(3),  // RHS of compare
   7461         DAG.getConstant(CompareOpc, MVT::i32)
   7462       };
   7463       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
   7464       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   7465 
   7466       // Unpack the result based on how the target uses it.
   7467       PPC::Predicate CompOpc;
   7468       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   7469       default:  // Can't happen, don't crash on invalid number though.
   7470       case 0:   // Branch on the value of the EQ bit of CR6.
   7471         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   7472         break;
   7473       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   7474         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   7475         break;
   7476       case 2:   // Branch on the value of the LT bit of CR6.
   7477         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   7478         break;
   7479       case 3:   // Branch on the inverted value of the LT bit of CR6.
   7480         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   7481         break;
   7482       }
   7483 
   7484       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   7485                          DAG.getConstant(CompOpc, MVT::i32),
   7486                          DAG.getRegister(PPC::CR6, MVT::i32),
   7487                          N->getOperand(4), CompNode.getValue(1));
   7488     }
   7489     break;
   7490   }
   7491   }
   7492 
   7493   return SDValue();
   7494 }
   7495 
   7496 //===----------------------------------------------------------------------===//
   7497 // Inline Assembly Support
   7498 //===----------------------------------------------------------------------===//
   7499 
   7500 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   7501                                                        APInt &KnownZero,
   7502                                                        APInt &KnownOne,
   7503                                                        const SelectionDAG &DAG,
   7504                                                        unsigned Depth) const {
   7505   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   7506   switch (Op.getOpcode()) {
   7507   default: break;
   7508   case PPCISD::LBRX: {
   7509     // lhbrx is known to have the top bits cleared out.
   7510     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   7511       KnownZero = 0xFFFF0000;
   7512     break;
   7513   }
   7514   case ISD::INTRINSIC_WO_CHAIN: {
   7515     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   7516     default: break;
   7517     case Intrinsic::ppc_altivec_vcmpbfp_p:
   7518     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   7519     case Intrinsic::ppc_altivec_vcmpequb_p:
   7520     case Intrinsic::ppc_altivec_vcmpequh_p:
   7521     case Intrinsic::ppc_altivec_vcmpequw_p:
   7522     case Intrinsic::ppc_altivec_vcmpgefp_p:
   7523     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   7524     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   7525     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   7526     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   7527     case Intrinsic::ppc_altivec_vcmpgtub_p:
   7528     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   7529     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   7530       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   7531       break;
   7532     }
   7533   }
   7534   }
   7535 }
   7536 
   7537 
   7538 /// getConstraintType - Given a constraint, return the type of
   7539 /// constraint it is for this target.
   7540 PPCTargetLowering::ConstraintType
   7541 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
   7542   if (Constraint.size() == 1) {
   7543     switch (Constraint[0]) {
   7544     default: break;
   7545     case 'b':
   7546     case 'r':
   7547     case 'f':
   7548     case 'v':
   7549     case 'y':
   7550       return C_RegisterClass;
   7551     case 'Z':
   7552       // FIXME: While Z does indicate a memory constraint, it specifically
   7553       // indicates an r+r address (used in conjunction with the 'y' modifier
   7554       // in the replacement string). Currently, we're forcing the base
   7555       // register to be r0 in the asm printer (which is interpreted as zero)
   7556       // and forming the complete address in the second register. This is
   7557       // suboptimal.
   7558       return C_Memory;
   7559     }
   7560   }
   7561   return TargetLowering::getConstraintType(Constraint);
   7562 }
   7563 
   7564 /// Examine constraint type and operand type and determine a weight value.
   7565 /// This object must already have been set up with the operand type
   7566 /// and the current alternative constraint selected.
   7567 TargetLowering::ConstraintWeight
   7568 PPCTargetLowering::getSingleConstraintMatchWeight(
   7569     AsmOperandInfo &info, const char *constraint) const {
   7570   ConstraintWeight weight = CW_Invalid;
   7571   Value *CallOperandVal = info.CallOperandVal;
   7572     // If we don't have a value, we can't do a match,
   7573     // but allow it at the lowest weight.
   7574   if (CallOperandVal == NULL)
   7575     return CW_Default;
   7576   Type *type = CallOperandVal->getType();
   7577   // Look at the constraint type.
   7578   switch (*constraint) {
   7579   default:
   7580     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   7581     break;
   7582   case 'b':
   7583     if (type->isIntegerTy())
   7584       weight = CW_Register;
   7585     break;
   7586   case 'f':
   7587     if (type->isFloatTy())
   7588       weight = CW_Register;
   7589     break;
   7590   case 'd':
   7591     if (type->isDoubleTy())
   7592       weight = CW_Register;
   7593     break;
   7594   case 'v':
   7595     if (type->isVectorTy())
   7596       weight = CW_Register;
   7597     break;
   7598   case 'y':
   7599     weight = CW_Register;
   7600     break;
   7601   case 'Z':
   7602     weight = CW_Memory;
   7603     break;
   7604   }
   7605   return weight;
   7606 }
   7607 
   7608 std::pair<unsigned, const TargetRegisterClass*>
   7609 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   7610                                                 MVT VT) const {
   7611   if (Constraint.size() == 1) {
   7612     // GCC RS6000 Constraint Letters
   7613     switch (Constraint[0]) {
   7614     case 'b':   // R1-R31
   7615       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
   7616         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
   7617       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
   7618     case 'r':   // R0-R31
   7619       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
   7620         return std::make_pair(0U, &PPC::G8RCRegClass);
   7621       return std::make_pair(0U, &PPC::GPRCRegClass);
   7622     case 'f':
   7623       if (VT == MVT::f32 || VT == MVT::i32)
   7624         return std::make_pair(0U, &PPC::F4RCRegClass);
   7625       if (VT == MVT::f64 || VT == MVT::i64)
   7626         return std::make_pair(0U, &PPC::F8RCRegClass);
   7627       break;
   7628     case 'v':
   7629       return std::make_pair(0U, &PPC::VRRCRegClass);
   7630     case 'y':   // crrc
   7631       return std::make_pair(0U, &PPC::CRRCRegClass);
   7632     }
   7633   }
   7634 
   7635   std::pair<unsigned, const TargetRegisterClass*> R =
   7636     TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   7637 
   7638   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
   7639   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
   7640   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
   7641   // register.
   7642   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
   7643   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
   7644   if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() &&
   7645       PPC::GPRCRegClass.contains(R.first)) {
   7646     const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   7647     return std::make_pair(TRI->getMatchingSuperReg(R.first,
   7648                             PPC::sub_32, &PPC::GPRCRegClass),
   7649                           &PPC::G8RCRegClass);
   7650   }
   7651 
   7652   return R;
   7653 }
   7654 
   7655 
   7656 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   7657 /// vector.  If it is invalid, don't add anything to Ops.
   7658 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   7659                                                      std::string &Constraint,
   7660                                                      std::vector<SDValue>&Ops,
   7661                                                      SelectionDAG &DAG) const {
   7662   SDValue Result(0,0);
   7663 
   7664   // Only support length 1 constraints.
   7665   if (Constraint.length() > 1) return;
   7666 
   7667   char Letter = Constraint[0];
   7668   switch (Letter) {
   7669   default: break;
   7670   case 'I':
   7671   case 'J':
   7672   case 'K':
   7673   case 'L':
   7674   case 'M':
   7675   case 'N':
   7676   case 'O':
   7677   case 'P': {
   7678     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   7679     if (!CST) return; // Must be an immediate to match.
   7680     unsigned Value = CST->getZExtValue();
   7681     switch (Letter) {
   7682     default: llvm_unreachable("Unknown constraint letter!");
   7683     case 'I':  // "I" is a signed 16-bit constant.
   7684       if ((short)Value == (int)Value)
   7685         Result = DAG.getTargetConstant(Value, Op.getValueType());
   7686       break;
   7687     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   7688     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   7689       if ((short)Value == 0)
   7690         Result = DAG.getTargetConstant(Value, Op.getValueType());
   7691       break;
   7692     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   7693       if ((Value >> 16) == 0)
   7694         Result = DAG.getTargetConstant(Value, Op.getValueType());
   7695       break;
   7696     case 'M':  // "M" is a constant that is greater than 31.
   7697       if (Value > 31)
   7698         Result = DAG.getTargetConstant(Value, Op.getValueType());
   7699       break;
   7700     case 'N':  // "N" is a positive constant that is an exact power of two.
   7701       if ((int)Value > 0 && isPowerOf2_32(Value))
   7702         Result = DAG.getTargetConstant(Value, Op.getValueType());
   7703       break;
   7704     case 'O':  // "O" is the constant zero.
   7705       if (Value == 0)
   7706         Result = DAG.getTargetConstant(Value, Op.getValueType());
   7707       break;
   7708     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   7709       if ((short)-Value == (int)-Value)
   7710         Result = DAG.getTargetConstant(Value, Op.getValueType());
   7711       break;
   7712     }
   7713     break;
   7714   }
   7715   }
   7716 
   7717   if (Result.getNode()) {
   7718     Ops.push_back(Result);
   7719     return;
   7720   }
   7721 
   7722   // Handle standard constraint letters.
   7723   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   7724 }
   7725 
   7726 // isLegalAddressingMode - Return true if the addressing mode represented
   7727 // by AM is legal for this target, for a load/store of the specified type.
   7728 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   7729                                               Type *Ty) const {
   7730   // FIXME: PPC does not allow r+i addressing modes for vectors!
   7731 
   7732   // PPC allows a sign-extended 16-bit immediate field.
   7733   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   7734     return false;
   7735 
   7736   // No global is ever allowed as a base.
   7737   if (AM.BaseGV)
   7738     return false;
   7739 
   7740   // PPC only support r+r,
   7741   switch (AM.Scale) {
   7742   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   7743     break;
   7744   case 1:
   7745     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   7746       return false;
   7747     // Otherwise we have r+r or r+i.
   7748     break;
   7749   case 2:
   7750     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   7751       return false;
   7752     // Allow 2*r as r+r.
   7753     break;
   7754   default:
   7755     // No other scales are supported.
   7756     return false;
   7757   }
   7758 
   7759   return true;
   7760 }
   7761 
   7762 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   7763                                            SelectionDAG &DAG) const {
   7764   MachineFunction &MF = DAG.getMachineFunction();
   7765   MachineFrameInfo *MFI = MF.getFrameInfo();
   7766   MFI->setReturnAddressIsTaken(true);
   7767 
   7768   SDLoc dl(Op);
   7769   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   7770 
   7771   // Make sure the function does not optimize away the store of the RA to
   7772   // the stack.
   7773   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   7774   FuncInfo->setLRStoreRequired();
   7775   bool isPPC64 = PPCSubTarget.isPPC64();
   7776   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   7777 
   7778   if (Depth > 0) {
   7779     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   7780     SDValue Offset =
   7781 
   7782       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
   7783                       isPPC64? MVT::i64 : MVT::i32);
   7784     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   7785                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7786                                    FrameAddr, Offset),
   7787                        MachinePointerInfo(), false, false, false, 0);
   7788   }
   7789 
   7790   // Just load the return address off the stack.
   7791   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   7792   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   7793                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   7794 }
   7795 
   7796 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   7797                                           SelectionDAG &DAG) const {
   7798   SDLoc dl(Op);
   7799   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   7800 
   7801   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   7802   bool isPPC64 = PtrVT == MVT::i64;
   7803 
   7804   MachineFunction &MF = DAG.getMachineFunction();
   7805   MachineFrameInfo *MFI = MF.getFrameInfo();
   7806   MFI->setFrameAddressIsTaken(true);
   7807 
   7808   // Naked functions never have a frame pointer, and so we use r1. For all
   7809   // other functions, this decision must be delayed until during PEI.
   7810   unsigned FrameReg;
   7811   if (MF.getFunction()->getAttributes().hasAttribute(
   7812         AttributeSet::FunctionIndex, Attribute::Naked))
   7813     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
   7814   else
   7815     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
   7816 
   7817   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   7818                                          PtrVT);
   7819   while (Depth--)
   7820     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   7821                             FrameAddr, MachinePointerInfo(), false, false,
   7822                             false, 0);
   7823   return FrameAddr;
   7824 }
   7825 
   7826 bool
   7827 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   7828   // The PowerPC target isn't yet aware of offsets.
   7829   return false;
   7830 }
   7831 
   7832 /// getOptimalMemOpType - Returns the target specific optimal type for load
   7833 /// and store operations as a result of memset, memcpy, and memmove
   7834 /// lowering. If DstAlign is zero that means it's safe to destination
   7835 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   7836 /// means there isn't a need to check it against alignment requirement,
   7837 /// probably because the source does not need to be loaded. If 'IsMemset' is
   7838 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   7839 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   7840 /// source is constant so it does not need to be loaded.
   7841 /// It returns EVT::Other if the type should be determined using generic
   7842 /// target-independent logic.
   7843 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   7844                                            unsigned DstAlign, unsigned SrcAlign,
   7845                                            bool IsMemset, bool ZeroMemset,
   7846                                            bool MemcpyStrSrc,
   7847                                            MachineFunction &MF) const {
   7848   if (this->PPCSubTarget.isPPC64()) {
   7849     return MVT::i64;
   7850   } else {
   7851     return MVT::i32;
   7852   }
   7853 }
   7854 
   7855 bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
   7856                                                       bool *Fast) const {
   7857   if (DisablePPCUnaligned)
   7858     return false;
   7859 
   7860   // PowerPC supports unaligned memory access for simple non-vector types.
   7861   // Although accessing unaligned addresses is not as efficient as accessing
   7862   // aligned addresses, it is generally more efficient than manual expansion,
   7863   // and generally only traps for software emulation when crossing page
   7864   // boundaries.
   7865 
   7866   if (!VT.isSimple())
   7867     return false;
   7868 
   7869   if (VT.getSimpleVT().isVector())
   7870     return false;
   7871 
   7872   if (VT == MVT::ppcf128)
   7873     return false;
   7874 
   7875   if (Fast)
   7876     *Fast = true;
   7877 
   7878   return true;
   7879 }
   7880 
   7881 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   7882   VT = VT.getScalarType();
   7883 
   7884   if (!VT.isSimple())
   7885     return false;
   7886 
   7887   switch (VT.getSimpleVT().SimpleTy) {
   7888   case MVT::f32:
   7889   case MVT::f64:
   7890     return true;
   7891   default:
   7892     break;
   7893   }
   7894 
   7895   return false;
   7896 }
   7897 
   7898 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   7899   if (DisableILPPref)
   7900     return TargetLowering::getSchedulingPreference(N);
   7901 
   7902   return Sched::ILP;
   7903 }
   7904 
   7905 // Create a fast isel object.
   7906 FastISel *
   7907 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
   7908                                   const TargetLibraryInfo *LibInfo) const {
   7909   return PPC::createFastISel(FuncInfo, LibInfo);
   7910 }
   7911