Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86ISelLowering.h"
     17 #include "Utils/X86ShuffleDecode.h"
     18 #include "X86.h"
     19 #include "X86InstrBuilder.h"
     20 #include "X86TargetMachine.h"
     21 #include "X86TargetObjectFile.h"
     22 #include "llvm/ADT/SmallSet.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/ADT/StringExtras.h"
     25 #include "llvm/ADT/VariadicFunction.h"
     26 #include "llvm/CodeGen/IntrinsicLowering.h"
     27 #include "llvm/CodeGen/MachineFrameInfo.h"
     28 #include "llvm/CodeGen/MachineFunction.h"
     29 #include "llvm/CodeGen/MachineInstrBuilder.h"
     30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     31 #include "llvm/CodeGen/MachineModuleInfo.h"
     32 #include "llvm/CodeGen/MachineRegisterInfo.h"
     33 #include "llvm/IR/CallingConv.h"
     34 #include "llvm/IR/Constants.h"
     35 #include "llvm/IR/DerivedTypes.h"
     36 #include "llvm/IR/Function.h"
     37 #include "llvm/IR/GlobalAlias.h"
     38 #include "llvm/IR/GlobalVariable.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/Intrinsics.h"
     41 #include "llvm/IR/LLVMContext.h"
     42 #include "llvm/MC/MCAsmInfo.h"
     43 #include "llvm/MC/MCContext.h"
     44 #include "llvm/MC/MCExpr.h"
     45 #include "llvm/MC/MCSymbol.h"
     46 #include "llvm/Support/CallSite.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/ErrorHandling.h"
     49 #include "llvm/Support/MathExtras.h"
     50 #include "llvm/Target/TargetOptions.h"
     51 #include <bitset>
     52 #include <cctype>
     53 using namespace llvm;
     54 
     55 STATISTIC(NumTailCalls, "Number of tail calls");
     56 
     57 // Forward declarations.
     58 static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
     59                        SDValue V2);
     60 
     61 static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
     62                                 SelectionDAG &DAG, SDLoc dl,
     63                                 unsigned vectorWidth) {
     64   assert((vectorWidth == 128 || vectorWidth == 256) &&
     65          "Unsupported vector width");
     66   EVT VT = Vec.getValueType();
     67   EVT ElVT = VT.getVectorElementType();
     68   unsigned Factor = VT.getSizeInBits()/vectorWidth;
     69   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
     70                                   VT.getVectorNumElements()/Factor);
     71 
     72   // Extract from UNDEF is UNDEF.
     73   if (Vec.getOpcode() == ISD::UNDEF)
     74     return DAG.getUNDEF(ResultVT);
     75 
     76   // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
     77   unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
     78 
     79   // This is the index of the first element of the vectorWidth-bit chunk
     80   // we want.
     81   unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
     82                                * ElemsPerChunk);
     83 
     84   // If the input is a buildvector just emit a smaller one.
     85   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
     86     return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
     87                        Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
     88 
     89   SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
     90   SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
     91                                VecIdx);
     92 
     93   return Result;
     94 
     95 }
     96 /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
     97 /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
     98 /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
     99 /// instructions or a simple subregister reference. Idx is an index in the
    100 /// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
    101 /// lowering EXTRACT_VECTOR_ELT operations easier.
    102 static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
    103                                    SelectionDAG &DAG, SDLoc dl) {
    104   assert((Vec.getValueType().is256BitVector() ||
    105           Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
    106   return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
    107 }
    108 
    109 /// Generate a DAG to grab 256-bits from a 512-bit vector.
    110 static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
    111                                    SelectionDAG &DAG, SDLoc dl) {
    112   assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
    113   return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
    114 }
    115 
    116 static SDValue InsertSubVector(SDValue Result, SDValue Vec,
    117                                unsigned IdxVal, SelectionDAG &DAG,
    118                                SDLoc dl, unsigned vectorWidth) {
    119   assert((vectorWidth == 128 || vectorWidth == 256) &&
    120          "Unsupported vector width");
    121   // Inserting UNDEF is Result
    122   if (Vec.getOpcode() == ISD::UNDEF)
    123     return Result;
    124   EVT VT = Vec.getValueType();
    125   EVT ElVT = VT.getVectorElementType();
    126   EVT ResultVT = Result.getValueType();
    127 
    128   // Insert the relevant vectorWidth bits.
    129   unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
    130 
    131   // This is the index of the first element of the vectorWidth-bit chunk
    132   // we want.
    133   unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
    134                                * ElemsPerChunk);
    135 
    136   SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
    137   return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
    138                      VecIdx);
    139 }
    140 /// Generate a DAG to put 128-bits into a vector > 128 bits.  This
    141 /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
    142 /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
    143 /// simple superregister reference.  Idx is an index in the 128 bits
    144 /// we want.  It need not be aligned to a 128-bit bounday.  That makes
    145 /// lowering INSERT_VECTOR_ELT operations easier.
    146 static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
    147                                   unsigned IdxVal, SelectionDAG &DAG,
    148                                   SDLoc dl) {
    149   assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
    150   return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
    151 }
    152 
    153 static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
    154                                   unsigned IdxVal, SelectionDAG &DAG,
    155                                   SDLoc dl) {
    156   assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
    157   return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
    158 }
    159 
    160 /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
    161 /// instructions. This is used because creating CONCAT_VECTOR nodes of
    162 /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
    163 /// large BUILD_VECTORS.
    164 static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
    165                                    unsigned NumElems, SelectionDAG &DAG,
    166                                    SDLoc dl) {
    167   SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
    168   return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
    169 }
    170 
    171 static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
    172                                    unsigned NumElems, SelectionDAG &DAG,
    173                                    SDLoc dl) {
    174   SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
    175   return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
    176 }
    177 
    178 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
    179   const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
    180   bool is64Bit = Subtarget->is64Bit();
    181 
    182   if (Subtarget->isTargetEnvMacho()) {
    183     if (is64Bit)
    184       return new X86_64MachoTargetObjectFile();
    185     return new TargetLoweringObjectFileMachO();
    186   }
    187 
    188   if (Subtarget->isTargetLinux())
    189     return new X86LinuxTargetObjectFile();
    190   if (Subtarget->isTargetELF())
    191     return new TargetLoweringObjectFileELF();
    192   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    193     return new TargetLoweringObjectFileCOFF();
    194   llvm_unreachable("unknown subtarget type");
    195 }
    196 
    197 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
    198   : TargetLowering(TM, createTLOF(TM)) {
    199   Subtarget = &TM.getSubtarget<X86Subtarget>();
    200   X86ScalarSSEf64 = Subtarget->hasSSE2();
    201   X86ScalarSSEf32 = Subtarget->hasSSE1();
    202   TD = getDataLayout();
    203 
    204   resetOperationActions();
    205 }
    206 
    207 void X86TargetLowering::resetOperationActions() {
    208   const TargetMachine &TM = getTargetMachine();
    209   static bool FirstTimeThrough = true;
    210 
    211   // If none of the target options have changed, then we don't need to reset the
    212   // operation actions.
    213   if (!FirstTimeThrough && TO == TM.Options) return;
    214 
    215   if (!FirstTimeThrough) {
    216     // Reinitialize the actions.
    217     initActions();
    218     FirstTimeThrough = false;
    219   }
    220 
    221   TO = TM.Options;
    222 
    223   // Set up the TargetLowering object.
    224   static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
    225 
    226   // X86 is weird, it always uses i8 for shift amounts and setcc results.
    227   setBooleanContents(ZeroOrOneBooleanContent);
    228   // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
    229   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    230 
    231   // For 64-bit since we have so many registers use the ILP scheduler, for
    232   // 32-bit code use the register pressure specific scheduling.
    233   // For Atom, always use ILP scheduling.
    234   if (Subtarget->isAtom())
    235     setSchedulingPreference(Sched::ILP);
    236   else if (Subtarget->is64Bit())
    237     setSchedulingPreference(Sched::ILP);
    238   else
    239     setSchedulingPreference(Sched::RegPressure);
    240   const X86RegisterInfo *RegInfo =
    241     static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
    242   setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
    243 
    244   // Bypass expensive divides on Atom when compiling with O2
    245   if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
    246     addBypassSlowDiv(32, 8);
    247     if (Subtarget->is64Bit())
    248       addBypassSlowDiv(64, 16);
    249   }
    250 
    251   if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
    252     // Setup Windows compiler runtime calls.
    253     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
    254     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
    255     setLibcallName(RTLIB::SREM_I64, "_allrem");
    256     setLibcallName(RTLIB::UREM_I64, "_aullrem");
    257     setLibcallName(RTLIB::MUL_I64, "_allmul");
    258     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
    259     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
    260     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
    261     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
    262     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
    263 
    264     // The _ftol2 runtime function has an unusual calling conv, which
    265     // is modeled by a special pseudo-instruction.
    266     setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
    267     setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
    268     setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
    269     setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
    270   }
    271 
    272   if (Subtarget->isTargetDarwin()) {
    273     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
    274     setUseUnderscoreSetJmp(false);
    275     setUseUnderscoreLongJmp(false);
    276   } else if (Subtarget->isTargetMingw()) {
    277     // MS runtime is weird: it exports _setjmp, but longjmp!
    278     setUseUnderscoreSetJmp(true);
    279     setUseUnderscoreLongJmp(false);
    280   } else {
    281     setUseUnderscoreSetJmp(true);
    282     setUseUnderscoreLongJmp(true);
    283   }
    284 
    285   // Set up the register classes.
    286   addRegisterClass(MVT::i8, &X86::GR8RegClass);
    287   addRegisterClass(MVT::i16, &X86::GR16RegClass);
    288   addRegisterClass(MVT::i32, &X86::GR32RegClass);
    289   if (Subtarget->is64Bit())
    290     addRegisterClass(MVT::i64, &X86::GR64RegClass);
    291 
    292   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    293 
    294   // We don't accept any truncstore of integer registers.
    295   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
    296   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    297   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
    298   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
    299   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
    300   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
    301 
    302   // SETOEQ and SETUNE require checking two conditions.
    303   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
    304   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
    305   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
    306   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
    307   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
    308   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
    309 
    310   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
    311   // operation.
    312   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
    313   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
    314   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
    315 
    316   if (Subtarget->is64Bit()) {
    317     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
    318     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
    319   } else if (!TM.Options.UseSoftFloat) {
    320     // We have an algorithm for SSE2->double, and we turn this into a
    321     // 64-bit FILD followed by conditional FADD for other targets.
    322     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
    323     // We have an algorithm for SSE2, and we turn this into a 64-bit
    324     // FILD for other targets.
    325     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
    326   }
    327 
    328   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
    329   // this operation.
    330   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
    331   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
    332 
    333   if (!TM.Options.UseSoftFloat) {
    334     // SSE has no i16 to fp conversion, only i32
    335     if (X86ScalarSSEf32) {
    336       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    337       // f32 and f64 cases are Legal, f80 case is not
    338       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    339     } else {
    340       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
    341       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    342     }
    343   } else {
    344     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    345     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
    346   }
    347 
    348   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
    349   // are Legal, f80 is custom lowered.
    350   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
    351   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
    352 
    353   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
    354   // this operation.
    355   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
    356   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
    357 
    358   if (X86ScalarSSEf32) {
    359     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
    360     // f32 and f64 cases are Legal, f80 case is not
    361     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    362   } else {
    363     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
    364     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    365   }
    366 
    367   // Handle FP_TO_UINT by promoting the destination to a larger signed
    368   // conversion.
    369   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
    370   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
    371   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
    372 
    373   if (Subtarget->is64Bit()) {
    374     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
    375     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
    376   } else if (!TM.Options.UseSoftFloat) {
    377     // Since AVX is a superset of SSE3, only check for SSE here.
    378     if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
    379       // Expand FP_TO_UINT into a select.
    380       // FIXME: We would like to use a Custom expander here eventually to do
    381       // the optimal thing for SSE vs. the default expansion in the legalizer.
    382       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
    383     else
    384       // With SSE3 we can use fisttpll to convert to a signed i64; without
    385       // SSE, we're stuck with a fistpll.
    386       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
    387   }
    388 
    389   if (isTargetFTOL()) {
    390     // Use the _ftol2 runtime function, which has a pseudo-instruction
    391     // to handle its weird calling convention.
    392     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
    393   }
    394 
    395   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
    396   if (!X86ScalarSSEf64) {
    397     setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
    398     setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
    399     if (Subtarget->is64Bit()) {
    400       setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
    401       // Without SSE, i64->f64 goes through memory.
    402       setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
    403     }
    404   }
    405 
    406   // Scalar integer divide and remainder are lowered to use operations that
    407   // produce two results, to match the available instructions. This exposes
    408   // the two-result form to trivial CSE, which is able to combine x/y and x%y
    409   // into a single instruction.
    410   //
    411   // Scalar integer multiply-high is also lowered to use two-result
    412   // operations, to match the available instructions. However, plain multiply
    413   // (low) operations are left as Legal, as there are single-result
    414   // instructions for this in x86. Using the two-result multiply instructions
    415   // when both high and low results are needed must be arranged by dagcombine.
    416   for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
    417     MVT VT = IntVTs[i];
    418     setOperationAction(ISD::MULHS, VT, Expand);
    419     setOperationAction(ISD::MULHU, VT, Expand);
    420     setOperationAction(ISD::SDIV, VT, Expand);
    421     setOperationAction(ISD::UDIV, VT, Expand);
    422     setOperationAction(ISD::SREM, VT, Expand);
    423     setOperationAction(ISD::UREM, VT, Expand);
    424 
    425     // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
    426     setOperationAction(ISD::ADDC, VT, Custom);
    427     setOperationAction(ISD::ADDE, VT, Custom);
    428     setOperationAction(ISD::SUBC, VT, Custom);
    429     setOperationAction(ISD::SUBE, VT, Custom);
    430   }
    431 
    432   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
    433   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
    434   setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
    435   setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
    436   setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
    437   setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
    438   setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
    439   setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
    440   setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
    441   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
    442   if (Subtarget->is64Bit())
    443     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
    444   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
    445   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
    446   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
    447   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
    448   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
    449   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
    450   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
    451   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
    452 
    453   // Promote the i8 variants and force them on up to i32 which has a shorter
    454   // encoding.
    455   setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
    456   AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
    457   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
    458   AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
    459   if (Subtarget->hasBMI()) {
    460     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
    461     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
    462     if (Subtarget->is64Bit())
    463       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    464   } else {
    465     setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
    466     setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
    467     if (Subtarget->is64Bit())
    468       setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
    469   }
    470 
    471   if (Subtarget->hasLZCNT()) {
    472     // When promoting the i8 variants, force them to i32 for a shorter
    473     // encoding.
    474     setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
    475     AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
    476     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
    477     AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
    478     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
    479     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
    480     if (Subtarget->is64Bit())
    481       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    482   } else {
    483     setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
    484     setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
    485     setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
    486     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
    487     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
    488     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
    489     if (Subtarget->is64Bit()) {
    490       setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
    491       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
    492     }
    493   }
    494 
    495   if (Subtarget->hasPOPCNT()) {
    496     setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
    497   } else {
    498     setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
    499     setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
    500     setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
    501     if (Subtarget->is64Bit())
    502       setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
    503   }
    504 
    505   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
    506   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
    507 
    508   // These should be promoted to a larger select which is supported.
    509   setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
    510   // X86 wants to expand cmov itself.
    511   setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
    512   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
    513   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
    514   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
    515   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
    516   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
    517   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
    518   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
    519   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
    520   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
    521   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
    522   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
    523   if (Subtarget->is64Bit()) {
    524     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
    525     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
    526   }
    527   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
    528   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    529   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    530   // support continuation, user-level threading, and etc.. As a result, no
    531   // other SjLj exception interfaces are implemented and please don't build
    532   // your own exception handling based on them.
    533   // LLVM/Clang supports zero-cost DWARF exception handling.
    534   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    535   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    536 
    537   // Darwin ABI issue.
    538   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
    539   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
    540   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
    541   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
    542   if (Subtarget->is64Bit())
    543     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    544   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
    545   setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
    546   if (Subtarget->is64Bit()) {
    547     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
    548     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
    549     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
    550     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
    551     setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
    552   }
    553   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
    554   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
    555   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
    556   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
    557   if (Subtarget->is64Bit()) {
    558     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
    559     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
    560     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
    561   }
    562 
    563   if (Subtarget->hasSSE1())
    564     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
    565 
    566   setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
    567 
    568   // Expand certain atomics
    569   for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
    570     MVT VT = IntVTs[i];
    571     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
    572     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    573     setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    574   }
    575 
    576   if (!Subtarget->is64Bit()) {
    577     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
    578     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
    579     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
    580     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
    581     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
    582     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
    583     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
    584     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
    585     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
    586     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
    587     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
    588     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
    589   }
    590 
    591   if (Subtarget->hasCmpxchg16b()) {
    592     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
    593   }
    594 
    595   // FIXME - use subtarget debug flags
    596   if (!Subtarget->isTargetDarwin() &&
    597       !Subtarget->isTargetELF() &&
    598       !Subtarget->isTargetCygMing()) {
    599     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
    600   }
    601 
    602   if (Subtarget->is64Bit()) {
    603     setExceptionPointerRegister(X86::RAX);
    604     setExceptionSelectorRegister(X86::RDX);
    605   } else {
    606     setExceptionPointerRegister(X86::EAX);
    607     setExceptionSelectorRegister(X86::EDX);
    608   }
    609   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    610   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
    611 
    612   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    613   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    614 
    615   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    616   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
    617 
    618   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    619   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    620   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    621   if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
    622     // TargetInfo::X86_64ABIBuiltinVaList
    623     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
    624     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
    625   } else {
    626     // TargetInfo::CharPtrBuiltinVaList
    627     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
    628     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
    629   }
    630 
    631   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    632   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    633 
    634   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    635     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    636                        MVT::i64 : MVT::i32, Custom);
    637   else if (TM.Options.EnableSegmentedStacks)
    638     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    639                        MVT::i64 : MVT::i32, Custom);
    640   else
    641     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    642                        MVT::i64 : MVT::i32, Expand);
    643 
    644   if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
    645     // f32 and f64 use SSE.
    646     // Set up the FP register classes.
    647     addRegisterClass(MVT::f32, &X86::FR32RegClass);
    648     addRegisterClass(MVT::f64, &X86::FR64RegClass);
    649 
    650     // Use ANDPD to simulate FABS.
    651     setOperationAction(ISD::FABS , MVT::f64, Custom);
    652     setOperationAction(ISD::FABS , MVT::f32, Custom);
    653 
    654     // Use XORP to simulate FNEG.
    655     setOperationAction(ISD::FNEG , MVT::f64, Custom);
    656     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    657 
    658     // Use ANDPD and ORPD to simulate FCOPYSIGN.
    659     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    660     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    661 
    662     // Lower this to FGETSIGNx86 plus an AND.
    663     setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
    664     setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
    665 
    666     // We don't support sin/cos/fmod
    667     setOperationAction(ISD::FSIN   , MVT::f64, Expand);
    668     setOperationAction(ISD::FCOS   , MVT::f64, Expand);
    669     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    670     setOperationAction(ISD::FSIN   , MVT::f32, Expand);
    671     setOperationAction(ISD::FCOS   , MVT::f32, Expand);
    672     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    673 
    674     // Expand FP immediates into loads from the stack, except for the special
    675     // cases we handle.
    676     addLegalFPImmediate(APFloat(+0.0)); // xorpd
    677     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    678   } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
    679     // Use SSE for f32, x87 for f64.
    680     // Set up the FP register classes.
    681     addRegisterClass(MVT::f32, &X86::FR32RegClass);
    682     addRegisterClass(MVT::f64, &X86::RFP64RegClass);
    683 
    684     // Use ANDPS to simulate FABS.
    685     setOperationAction(ISD::FABS , MVT::f32, Custom);
    686 
    687     // Use XORP to simulate FNEG.
    688     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    689 
    690     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    691 
    692     // Use ANDPS and ORPS to simulate FCOPYSIGN.
    693     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    694     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    695 
    696     // We don't support sin/cos/fmod
    697     setOperationAction(ISD::FSIN   , MVT::f32, Expand);
    698     setOperationAction(ISD::FCOS   , MVT::f32, Expand);
    699     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    700 
    701     // Special cases we handle for FP constants.
    702     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    703     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    704     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    705     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    706     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    707 
    708     if (!TM.Options.UnsafeFPMath) {
    709       setOperationAction(ISD::FSIN   , MVT::f64, Expand);
    710       setOperationAction(ISD::FCOS   , MVT::f64, Expand);
    711       setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    712     }
    713   } else if (!TM.Options.UseSoftFloat) {
    714     // f32 and f64 in x87.
    715     // Set up the FP register classes.
    716     addRegisterClass(MVT::f64, &X86::RFP64RegClass);
    717     addRegisterClass(MVT::f32, &X86::RFP32RegClass);
    718 
    719     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    720     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
    721     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    722     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    723 
    724     if (!TM.Options.UnsafeFPMath) {
    725       setOperationAction(ISD::FSIN   , MVT::f64, Expand);
    726       setOperationAction(ISD::FSIN   , MVT::f32, Expand);
    727       setOperationAction(ISD::FCOS   , MVT::f64, Expand);
    728       setOperationAction(ISD::FCOS   , MVT::f32, Expand);
    729       setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    730       setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    731     }
    732     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    733     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    734     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    735     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    736     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
    737     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
    738     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
    739     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
    740   }
    741 
    742   // We don't support FMA.
    743   setOperationAction(ISD::FMA, MVT::f64, Expand);
    744   setOperationAction(ISD::FMA, MVT::f32, Expand);
    745 
    746   // Long double always uses X87.
    747   if (!TM.Options.UseSoftFloat) {
    748     addRegisterClass(MVT::f80, &X86::RFP80RegClass);
    749     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
    750     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
    751     {
    752       APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
    753       addLegalFPImmediate(TmpFlt);  // FLD0
    754       TmpFlt.changeSign();
    755       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
    756 
    757       bool ignored;
    758       APFloat TmpFlt2(+1.0);
    759       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
    760                       &ignored);
    761       addLegalFPImmediate(TmpFlt2);  // FLD1
    762       TmpFlt2.changeSign();
    763       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
    764     }
    765 
    766     if (!TM.Options.UnsafeFPMath) {
    767       setOperationAction(ISD::FSIN   , MVT::f80, Expand);
    768       setOperationAction(ISD::FCOS   , MVT::f80, Expand);
    769       setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
    770     }
    771 
    772     setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
    773     setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
    774     setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
    775     setOperationAction(ISD::FRINT,  MVT::f80, Expand);
    776     setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
    777     setOperationAction(ISD::FMA, MVT::f80, Expand);
    778   }
    779 
    780   // Always use a library call for pow.
    781   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
    782   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
    783   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
    784 
    785   setOperationAction(ISD::FLOG, MVT::f80, Expand);
    786   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
    787   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
    788   setOperationAction(ISD::FEXP, MVT::f80, Expand);
    789   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
    790 
    791   // First set operation action for all vector types to either promote
    792   // (for widening) or expand (for scalarization). Then we will selectively
    793   // turn on ones that can be effectively codegen'd.
    794   for (int i = MVT::FIRST_VECTOR_VALUETYPE;
    795            i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
    796     MVT VT = (MVT::SimpleValueType)i;
    797     setOperationAction(ISD::ADD , VT, Expand);
    798     setOperationAction(ISD::SUB , VT, Expand);
    799     setOperationAction(ISD::FADD, VT, Expand);
    800     setOperationAction(ISD::FNEG, VT, Expand);
    801     setOperationAction(ISD::FSUB, VT, Expand);
    802     setOperationAction(ISD::MUL , VT, Expand);
    803     setOperationAction(ISD::FMUL, VT, Expand);
    804     setOperationAction(ISD::SDIV, VT, Expand);
    805     setOperationAction(ISD::UDIV, VT, Expand);
    806     setOperationAction(ISD::FDIV, VT, Expand);
    807     setOperationAction(ISD::SREM, VT, Expand);
    808     setOperationAction(ISD::UREM, VT, Expand);
    809     setOperationAction(ISD::LOAD, VT, Expand);
    810     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
    811     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
    812     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    813     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
    814     setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
    815     setOperationAction(ISD::FABS, VT, Expand);
    816     setOperationAction(ISD::FSIN, VT, Expand);
    817     setOperationAction(ISD::FSINCOS, VT, Expand);
    818     setOperationAction(ISD::FCOS, VT, Expand);
    819     setOperationAction(ISD::FSINCOS, VT, Expand);
    820     setOperationAction(ISD::FREM, VT, Expand);
    821     setOperationAction(ISD::FMA,  VT, Expand);
    822     setOperationAction(ISD::FPOWI, VT, Expand);
    823     setOperationAction(ISD::FSQRT, VT, Expand);
    824     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
    825     setOperationAction(ISD::FFLOOR, VT, Expand);
    826     setOperationAction(ISD::FCEIL, VT, Expand);
    827     setOperationAction(ISD::FTRUNC, VT, Expand);
    828     setOperationAction(ISD::FRINT, VT, Expand);
    829     setOperationAction(ISD::FNEARBYINT, VT, Expand);
    830     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    831     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    832     setOperationAction(ISD::SDIVREM, VT, Expand);
    833     setOperationAction(ISD::UDIVREM, VT, Expand);
    834     setOperationAction(ISD::FPOW, VT, Expand);
    835     setOperationAction(ISD::CTPOP, VT, Expand);
    836     setOperationAction(ISD::CTTZ, VT, Expand);
    837     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    838     setOperationAction(ISD::CTLZ, VT, Expand);
    839     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    840     setOperationAction(ISD::SHL, VT, Expand);
    841     setOperationAction(ISD::SRA, VT, Expand);
    842     setOperationAction(ISD::SRL, VT, Expand);
    843     setOperationAction(ISD::ROTL, VT, Expand);
    844     setOperationAction(ISD::ROTR, VT, Expand);
    845     setOperationAction(ISD::BSWAP, VT, Expand);
    846     setOperationAction(ISD::SETCC, VT, Expand);
    847     setOperationAction(ISD::FLOG, VT, Expand);
    848     setOperationAction(ISD::FLOG2, VT, Expand);
    849     setOperationAction(ISD::FLOG10, VT, Expand);
    850     setOperationAction(ISD::FEXP, VT, Expand);
    851     setOperationAction(ISD::FEXP2, VT, Expand);
    852     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    853     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    854     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    855     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    856     setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
    857     setOperationAction(ISD::TRUNCATE, VT, Expand);
    858     setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
    859     setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
    860     setOperationAction(ISD::ANY_EXTEND, VT, Expand);
    861     setOperationAction(ISD::VSELECT, VT, Expand);
    862     for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
    863              InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    864       setTruncStoreAction(VT,
    865                           (MVT::SimpleValueType)InnerVT, Expand);
    866     setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
    867     setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
    868     setLoadExtAction(ISD::EXTLOAD, VT, Expand);
    869   }
    870 
    871   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
    872   // with -msoft-float, disable use of MMX as well.
    873   if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
    874     addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
    875     // No operations on x86mmx supported, everything uses intrinsics.
    876   }
    877 
    878   // MMX-sized vectors (other than x86mmx) are expected to be expanded
    879   // into smaller operations.
    880   setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
    881   setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
    882   setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
    883   setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
    884   setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
    885   setOperationAction(ISD::AND,                MVT::v4i16, Expand);
    886   setOperationAction(ISD::AND,                MVT::v2i32, Expand);
    887   setOperationAction(ISD::AND,                MVT::v1i64, Expand);
    888   setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
    889   setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
    890   setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
    891   setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
    892   setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
    893   setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
    894   setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
    895   setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
    896   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
    897   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
    898   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
    899   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
    900   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
    901   setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
    902   setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
    903   setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
    904   setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
    905   setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
    906   setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
    907   setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
    908   setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
    909 
    910   if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
    911     addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
    912 
    913     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
    914     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
    915     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
    916     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
    917     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
    918     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
    919     setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
    920     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
    921     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
    922     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
    923     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    924     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
    925   }
    926 
    927   if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
    928     addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
    929 
    930     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
    931     // registers cannot be used even for integer operations.
    932     addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
    933     addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
    934     addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
    935     addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
    936 
    937     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
    938     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
    939     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
    940     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
    941     setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
    942     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
    943     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
    944     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
    945     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
    946     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
    947     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
    948     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
    949     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
    950     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
    951     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
    952     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
    953     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
    954     setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
    955 
    956     setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
    957     setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
    958     setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
    959     setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
    960 
    961     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
    962     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
    963     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    964     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    965     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    966 
    967     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
    968     for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
    969       MVT VT = (MVT::SimpleValueType)i;
    970       // Do not attempt to custom lower non-power-of-2 vectors
    971       if (!isPowerOf2_32(VT.getVectorNumElements()))
    972         continue;
    973       // Do not attempt to custom lower non-128-bit vectors
    974       if (!VT.is128BitVector())
    975         continue;
    976       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
    977       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
    978       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    979     }
    980 
    981     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
    982     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
    983     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
    984     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
    985     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
    986     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    987 
    988     if (Subtarget->is64Bit()) {
    989       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
    990       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
    991     }
    992 
    993     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
    994     for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
    995       MVT VT = (MVT::SimpleValueType)i;
    996 
    997       // Do not attempt to promote non-128-bit vectors
    998       if (!VT.is128BitVector())
    999         continue;
   1000 
   1001       setOperationAction(ISD::AND,    VT, Promote);
   1002       AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
   1003       setOperationAction(ISD::OR,     VT, Promote);
   1004       AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
   1005       setOperationAction(ISD::XOR,    VT, Promote);
   1006       AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
   1007       setOperationAction(ISD::LOAD,   VT, Promote);
   1008       AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
   1009       setOperationAction(ISD::SELECT, VT, Promote);
   1010       AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
   1011     }
   1012 
   1013     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
   1014 
   1015     // Custom lower v2i64 and v2f64 selects.
   1016     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
   1017     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
   1018     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
   1019     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
   1020 
   1021     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
   1022     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
   1023 
   1024     setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
   1025     setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
   1026     // As there is no 64-bit GPR available, we need build a special custom
   1027     // sequence to convert from v2i32 to v2f32.
   1028     if (!Subtarget->is64Bit())
   1029       setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
   1030 
   1031     setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
   1032     setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
   1033 
   1034     setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
   1035   }
   1036 
   1037   if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
   1038     setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
   1039     setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
   1040     setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
   1041     setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
   1042     setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
   1043     setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
   1044     setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
   1045     setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
   1046     setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
   1047     setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
   1048 
   1049     setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
   1050     setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
   1051     setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
   1052     setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
   1053     setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
   1054     setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
   1055     setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
   1056     setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
   1057     setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
   1058     setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
   1059 
   1060     // FIXME: Do we need to handle scalar-to-vector here?
   1061     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
   1062 
   1063     setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
   1064     setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
   1065     setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
   1066     setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
   1067     setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
   1068 
   1069     // i8 and i16 vectors are custom , because the source register and source
   1070     // source memory operand types are not the same width.  f32 vectors are
   1071     // custom since the immediate controlling the insert encodes additional
   1072     // information.
   1073     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
   1074     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
   1075     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
   1076     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
   1077 
   1078     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
   1079     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
   1080     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
   1081     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
   1082 
   1083     // FIXME: these should be Legal but thats only for the case where
   1084     // the index is constant.  For now custom expand to deal with that.
   1085     if (Subtarget->is64Bit()) {
   1086       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
   1087       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
   1088     }
   1089   }
   1090 
   1091   if (Subtarget->hasSSE2()) {
   1092     setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
   1093     setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
   1094 
   1095     setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
   1096     setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
   1097 
   1098     setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
   1099     setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
   1100 
   1101     // In the customized shift lowering, the legal cases in AVX2 will be
   1102     // recognized.
   1103     setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
   1104     setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
   1105 
   1106     setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
   1107     setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
   1108 
   1109     setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
   1110 
   1111     setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
   1112     setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
   1113   }
   1114 
   1115   if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
   1116     addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
   1117     addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
   1118     addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
   1119     addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
   1120     addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
   1121     addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
   1122 
   1123     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
   1124     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
   1125     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
   1126 
   1127     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
   1128     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
   1129     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
   1130     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
   1131     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
   1132     setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
   1133     setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
   1134     setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
   1135     setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
   1136     setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
   1137     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
   1138     setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
   1139 
   1140     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
   1141     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
   1142     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
   1143     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
   1144     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
   1145     setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
   1146     setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
   1147     setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
   1148     setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
   1149     setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
   1150     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
   1151     setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
   1152 
   1153     setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
   1154     setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
   1155 
   1156     setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
   1157 
   1158     setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
   1159     setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
   1160     setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
   1161     setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
   1162 
   1163     setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
   1164     setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
   1165     setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
   1166 
   1167     setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
   1168 
   1169     setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
   1170     setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
   1171 
   1172     setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
   1173     setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
   1174 
   1175     setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
   1176     setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
   1177 
   1178     setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
   1179 
   1180     setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
   1181     setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
   1182     setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
   1183     setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
   1184 
   1185     setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
   1186     setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
   1187     setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
   1188 
   1189     setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
   1190     setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
   1191     setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
   1192     setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
   1193 
   1194     setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
   1195     setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
   1196     setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
   1197     setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
   1198     setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
   1199     setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
   1200 
   1201     if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
   1202       setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
   1203       setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
   1204       setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
   1205       setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
   1206       setOperationAction(ISD::FMA,             MVT::f32, Legal);
   1207       setOperationAction(ISD::FMA,             MVT::f64, Legal);
   1208     }
   1209 
   1210     if (Subtarget->hasInt256()) {
   1211       setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
   1212       setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
   1213       setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
   1214       setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
   1215 
   1216       setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
   1217       setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
   1218       setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
   1219       setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
   1220 
   1221       setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
   1222       setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
   1223       setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
   1224       // Don't lower v32i8 because there is no 128-bit byte mul
   1225 
   1226       setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
   1227 
   1228       setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
   1229     } else {
   1230       setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
   1231       setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
   1232       setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
   1233       setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
   1234 
   1235       setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
   1236       setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
   1237       setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
   1238       setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
   1239 
   1240       setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
   1241       setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
   1242       setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
   1243       // Don't lower v32i8 because there is no 128-bit byte mul
   1244     }
   1245 
   1246     // In the customized shift lowering, the legal cases in AVX2 will be
   1247     // recognized.
   1248     setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
   1249     setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
   1250 
   1251     setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
   1252     setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
   1253 
   1254     setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
   1255 
   1256     // Custom lower several nodes for 256-bit types.
   1257     for (int i = MVT::FIRST_VECTOR_VALUETYPE;
   1258              i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1259       MVT VT = (MVT::SimpleValueType)i;
   1260 
   1261       // Extract subvector is special because the value type
   1262       // (result) is 128-bit but the source is 256-bit wide.
   1263       if (VT.is128BitVector())
   1264         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
   1265 
   1266       // Do not attempt to custom lower other non-256-bit vectors
   1267       if (!VT.is256BitVector())
   1268         continue;
   1269 
   1270       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
   1271       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
   1272       setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
   1273       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
   1274       setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
   1275       setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
   1276       setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
   1277     }
   1278 
   1279     // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
   1280     for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
   1281       MVT VT = (MVT::SimpleValueType)i;
   1282 
   1283       // Do not attempt to promote non-256-bit vectors
   1284       if (!VT.is256BitVector())
   1285         continue;
   1286 
   1287       setOperationAction(ISD::AND,    VT, Promote);
   1288       AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
   1289       setOperationAction(ISD::OR,     VT, Promote);
   1290       AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
   1291       setOperationAction(ISD::XOR,    VT, Promote);
   1292       AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
   1293       setOperationAction(ISD::LOAD,   VT, Promote);
   1294       AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
   1295       setOperationAction(ISD::SELECT, VT, Promote);
   1296       AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
   1297     }
   1298   }
   1299 
   1300   if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
   1301     addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
   1302     addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
   1303     addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
   1304     addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
   1305 
   1306     addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
   1307     addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
   1308 
   1309     setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
   1310     setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
   1311     setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
   1312     setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
   1313     setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
   1314     setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
   1315 
   1316     setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
   1317     setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
   1318     setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
   1319     setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
   1320     setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
   1321     setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
   1322 
   1323     setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
   1324     setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
   1325     setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
   1326     setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
   1327     setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
   1328     setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
   1329     setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
   1330     setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
   1331     setOperationAction(ISD::SDIV,               MVT::v16i32, Custom);
   1332 
   1333 
   1334     setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
   1335     setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
   1336     setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
   1337     setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
   1338     setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
   1339     setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
   1340     setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
   1341     setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
   1342 
   1343     setOperationAction(ISD::TRUNCATE,           MVT::i1, Legal);
   1344     setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
   1345     setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
   1346     setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
   1347     setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
   1348     setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
   1349     setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
   1350     setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
   1351     setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
   1352     setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
   1353     setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
   1354     setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
   1355 
   1356     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
   1357     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
   1358     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
   1359     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
   1360     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
   1361 
   1362     setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
   1363     setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
   1364 
   1365     setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
   1366 
   1367     setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
   1368     setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
   1369     setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
   1370     setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
   1371     setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
   1372 
   1373     setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
   1374     setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
   1375 
   1376     setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
   1377     setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
   1378 
   1379     setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
   1380 
   1381     setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
   1382     setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
   1383 
   1384     setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
   1385     setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
   1386 
   1387     setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
   1388     setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
   1389 
   1390     setOperationAction(ISD::AND,                MVT::v8i64, Legal);
   1391     setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
   1392     setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
   1393 
   1394     // Custom lower several nodes.
   1395     for (int i = MVT::FIRST_VECTOR_VALUETYPE;
   1396              i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1397       MVT VT = (MVT::SimpleValueType)i;
   1398 
   1399       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   1400       // Extract subvector is special because the value type
   1401       // (result) is 256/128-bit but the source is 512-bit wide.
   1402       if (VT.is128BitVector() || VT.is256BitVector())
   1403         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
   1404 
   1405       if (VT.getVectorElementType() == MVT::i1)
   1406         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
   1407 
   1408       // Do not attempt to custom lower other non-512-bit vectors
   1409       if (!VT.is512BitVector())
   1410         continue;
   1411 
   1412       if (VT != MVT::v8i64) {
   1413         setOperationAction(ISD::XOR,   VT, Promote);
   1414         AddPromotedToType (ISD::XOR,   VT, MVT::v8i64);
   1415         setOperationAction(ISD::OR,    VT, Promote);
   1416         AddPromotedToType (ISD::OR,    VT, MVT::v8i64);
   1417         setOperationAction(ISD::AND,   VT, Promote);
   1418         AddPromotedToType (ISD::AND,   VT, MVT::v8i64);
   1419       }
   1420       if ( EltSize >= 32) {
   1421         setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
   1422         setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
   1423         setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
   1424         setOperationAction(ISD::VSELECT,             VT, Legal);
   1425         setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
   1426         setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
   1427         setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
   1428       }
   1429     }
   1430     for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
   1431       MVT VT = (MVT::SimpleValueType)i;
   1432 
   1433       // Do not attempt to promote non-256-bit vectors
   1434       if (!VT.is512BitVector())
   1435         continue;
   1436 
   1437       setOperationAction(ISD::LOAD,   VT, Promote);
   1438       AddPromotedToType (ISD::LOAD,   VT, MVT::v8i64);
   1439       setOperationAction(ISD::SELECT, VT, Promote);
   1440       AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
   1441     }
   1442   }// has  AVX-512
   1443 
   1444   // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
   1445   // of this type with custom code.
   1446   for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
   1447            VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
   1448     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
   1449                        Custom);
   1450   }
   1451 
   1452   // We want to custom lower some of our intrinsics.
   1453   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
   1454   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
   1455 
   1456   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
   1457   // handle type legalization for these operations here.
   1458   //
   1459   // FIXME: We really should do custom legalization for addition and
   1460   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
   1461   // than generic legalization for 64-bit multiplication-with-overflow, though.
   1462   for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
   1463     // Add/Sub/Mul with overflow operations are custom lowered.
   1464     MVT VT = IntVTs[i];
   1465     setOperationAction(ISD::SADDO, VT, Custom);
   1466     setOperationAction(ISD::UADDO, VT, Custom);
   1467     setOperationAction(ISD::SSUBO, VT, Custom);
   1468     setOperationAction(ISD::USUBO, VT, Custom);
   1469     setOperationAction(ISD::SMULO, VT, Custom);
   1470     setOperationAction(ISD::UMULO, VT, Custom);
   1471   }
   1472 
   1473   // There are no 8-bit 3-address imul/mul instructions
   1474   setOperationAction(ISD::SMULO, MVT::i8, Expand);
   1475   setOperationAction(ISD::UMULO, MVT::i8, Expand);
   1476 
   1477   if (!Subtarget->is64Bit()) {
   1478     // These libcalls are not available in 32-bit.
   1479     setLibcallName(RTLIB::SHL_I128, 0);
   1480     setLibcallName(RTLIB::SRL_I128, 0);
   1481     setLibcallName(RTLIB::SRA_I128, 0);
   1482   }
   1483 
   1484   // Combine sin / cos into one node or libcall if possible.
   1485   if (Subtarget->hasSinCos()) {
   1486     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
   1487     setLibcallName(RTLIB::SINCOS_F64, "sincos");
   1488     if (Subtarget->isTargetDarwin()) {
   1489       // For MacOSX, we don't want to the normal expansion of a libcall to
   1490       // sincos. We want to issue a libcall to __sincos_stret to avoid memory
   1491       // traffic.
   1492       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
   1493       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
   1494     }
   1495   }
   1496 
   1497   // We have target-specific dag combine patterns for the following nodes:
   1498   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
   1499   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
   1500   setTargetDAGCombine(ISD::VSELECT);
   1501   setTargetDAGCombine(ISD::SELECT);
   1502   setTargetDAGCombine(ISD::SHL);
   1503   setTargetDAGCombine(ISD::SRA);
   1504   setTargetDAGCombine(ISD::SRL);
   1505   setTargetDAGCombine(ISD::OR);
   1506   setTargetDAGCombine(ISD::AND);
   1507   setTargetDAGCombine(ISD::ADD);
   1508   setTargetDAGCombine(ISD::FADD);
   1509   setTargetDAGCombine(ISD::FSUB);
   1510   setTargetDAGCombine(ISD::FMA);
   1511   setTargetDAGCombine(ISD::SUB);
   1512   setTargetDAGCombine(ISD::LOAD);
   1513   setTargetDAGCombine(ISD::STORE);
   1514   setTargetDAGCombine(ISD::ZERO_EXTEND);
   1515   setTargetDAGCombine(ISD::ANY_EXTEND);
   1516   setTargetDAGCombine(ISD::SIGN_EXTEND);
   1517   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
   1518   setTargetDAGCombine(ISD::TRUNCATE);
   1519   setTargetDAGCombine(ISD::SINT_TO_FP);
   1520   setTargetDAGCombine(ISD::SETCC);
   1521   if (Subtarget->is64Bit())
   1522     setTargetDAGCombine(ISD::MUL);
   1523   setTargetDAGCombine(ISD::XOR);
   1524 
   1525   computeRegisterProperties();
   1526 
   1527   // On Darwin, -Os means optimize for size without hurting performance,
   1528   // do not reduce the limit.
   1529   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
   1530   MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
   1531   MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
   1532   MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1533   MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
   1534   MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1535   setPrefLoopAlignment(4); // 2^4 bytes.
   1536 
   1537   // Predictable cmov don't hurt on atom because it's in-order.
   1538   PredictableSelectIsExpensive = !Subtarget->isAtom();
   1539 
   1540   setPrefFunctionAlignment(4); // 2^4 bytes.
   1541 }
   1542 
   1543 EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
   1544   if (!VT.isVector()) return MVT::i8;
   1545   return VT.changeVectorElementTypeToInteger();
   1546 }
   1547 
   1548 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
   1549 /// the desired ByVal argument alignment.
   1550 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
   1551   if (MaxAlign == 16)
   1552     return;
   1553   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
   1554     if (VTy->getBitWidth() == 128)
   1555       MaxAlign = 16;
   1556   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1557     unsigned EltAlign = 0;
   1558     getMaxByValAlign(ATy->getElementType(), EltAlign);
   1559     if (EltAlign > MaxAlign)
   1560       MaxAlign = EltAlign;
   1561   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1562     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1563       unsigned EltAlign = 0;
   1564       getMaxByValAlign(STy->getElementType(i), EltAlign);
   1565       if (EltAlign > MaxAlign)
   1566         MaxAlign = EltAlign;
   1567       if (MaxAlign == 16)
   1568         break;
   1569     }
   1570   }
   1571 }
   1572 
   1573 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1574 /// function arguments in the caller parameter area. For X86, aggregates
   1575 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
   1576 /// are at 4-byte boundaries.
   1577 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1578   if (Subtarget->is64Bit()) {
   1579     // Max of 8 and alignment of type.
   1580     unsigned TyAlign = TD->getABITypeAlignment(Ty);
   1581     if (TyAlign > 8)
   1582       return TyAlign;
   1583     return 8;
   1584   }
   1585 
   1586   unsigned Align = 4;
   1587   if (Subtarget->hasSSE1())
   1588     getMaxByValAlign(Ty, Align);
   1589   return Align;
   1590 }
   1591 
   1592 /// getOptimalMemOpType - Returns the target specific optimal type for load
   1593 /// and store operations as a result of memset, memcpy, and memmove
   1594 /// lowering. If DstAlign is zero that means it's safe to destination
   1595 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   1596 /// means there isn't a need to check it against alignment requirement,
   1597 /// probably because the source does not need to be loaded. If 'IsMemset' is
   1598 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   1599 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   1600 /// source is constant so it does not need to be loaded.
   1601 /// It returns EVT::Other if the type should be determined using generic
   1602 /// target-independent logic.
   1603 EVT
   1604 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
   1605                                        unsigned DstAlign, unsigned SrcAlign,
   1606                                        bool IsMemset, bool ZeroMemset,
   1607                                        bool MemcpyStrSrc,
   1608                                        MachineFunction &MF) const {
   1609   const Function *F = MF.getFunction();
   1610   if ((!IsMemset || ZeroMemset) &&
   1611       !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1612                                        Attribute::NoImplicitFloat)) {
   1613     if (Size >= 16 &&
   1614         (Subtarget->isUnalignedMemAccessFast() ||
   1615          ((DstAlign == 0 || DstAlign >= 16) &&
   1616           (SrcAlign == 0 || SrcAlign >= 16)))) {
   1617       if (Size >= 32) {
   1618         if (Subtarget->hasInt256())
   1619           return MVT::v8i32;
   1620         if (Subtarget->hasFp256())
   1621           return MVT::v8f32;
   1622       }
   1623       if (Subtarget->hasSSE2())
   1624         return MVT::v4i32;
   1625       if (Subtarget->hasSSE1())
   1626         return MVT::v4f32;
   1627     } else if (!MemcpyStrSrc && Size >= 8 &&
   1628                !Subtarget->is64Bit() &&
   1629                Subtarget->hasSSE2()) {
   1630       // Do not use f64 to lower memcpy if source is string constant. It's
   1631       // better to use i32 to avoid the loads.
   1632       return MVT::f64;
   1633     }
   1634   }
   1635   if (Subtarget->is64Bit() && Size >= 8)
   1636     return MVT::i64;
   1637   return MVT::i32;
   1638 }
   1639 
   1640 bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
   1641   if (VT == MVT::f32)
   1642     return X86ScalarSSEf32;
   1643   else if (VT == MVT::f64)
   1644     return X86ScalarSSEf64;
   1645   return true;
   1646 }
   1647 
   1648 bool
   1649 X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
   1650   if (Fast)
   1651     *Fast = Subtarget->isUnalignedMemAccessFast();
   1652   return true;
   1653 }
   1654 
   1655 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1656 /// current function.  The returned value is a member of the
   1657 /// MachineJumpTableInfo::JTEntryKind enum.
   1658 unsigned X86TargetLowering::getJumpTableEncoding() const {
   1659   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
   1660   // symbol.
   1661   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1662       Subtarget->isPICStyleGOT())
   1663     return MachineJumpTableInfo::EK_Custom32;
   1664 
   1665   // Otherwise, use the normal jump table encoding heuristics.
   1666   return TargetLowering::getJumpTableEncoding();
   1667 }
   1668 
   1669 const MCExpr *
   1670 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1671                                              const MachineBasicBlock *MBB,
   1672                                              unsigned uid,MCContext &Ctx) const{
   1673   assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1674          Subtarget->isPICStyleGOT());
   1675   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
   1676   // entries.
   1677   return MCSymbolRefExpr::Create(MBB->getSymbol(),
   1678                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
   1679 }
   1680 
   1681 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
   1682 /// jumptable.
   1683 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1684                                                     SelectionDAG &DAG) const {
   1685   if (!Subtarget->is64Bit())
   1686     // This doesn't have SDLoc associated with it, but is not really the
   1687     // same as a Register.
   1688     return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
   1689   return Table;
   1690 }
   1691 
   1692 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1693 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1694 /// MCExpr.
   1695 const MCExpr *X86TargetLowering::
   1696 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
   1697                              MCContext &Ctx) const {
   1698   // X86-64 uses RIP relative addressing based on the jump table label.
   1699   if (Subtarget->isPICStyleRIPRel())
   1700     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
   1701 
   1702   // Otherwise, the reference is relative to the PIC base.
   1703   return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
   1704 }
   1705 
   1706 // FIXME: Why this routine is here? Move to RegInfo!
   1707 std::pair<const TargetRegisterClass*, uint8_t>
   1708 X86TargetLowering::findRepresentativeClass(MVT VT) const{
   1709   const TargetRegisterClass *RRC = 0;
   1710   uint8_t Cost = 1;
   1711   switch (VT.SimpleTy) {
   1712   default:
   1713     return TargetLowering::findRepresentativeClass(VT);
   1714   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
   1715     RRC = Subtarget->is64Bit() ?
   1716       (const TargetRegisterClass*)&X86::GR64RegClass :
   1717       (const TargetRegisterClass*)&X86::GR32RegClass;
   1718     break;
   1719   case MVT::x86mmx:
   1720     RRC = &X86::VR64RegClass;
   1721     break;
   1722   case MVT::f32: case MVT::f64:
   1723   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1724   case MVT::v4f32: case MVT::v2f64:
   1725   case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
   1726   case MVT::v4f64:
   1727     RRC = &X86::VR128RegClass;
   1728     break;
   1729   }
   1730   return std::make_pair(RRC, Cost);
   1731 }
   1732 
   1733 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
   1734                                                unsigned &Offset) const {
   1735   if (!Subtarget->isTargetLinux())
   1736     return false;
   1737 
   1738   if (Subtarget->is64Bit()) {
   1739     // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
   1740     Offset = 0x28;
   1741     if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
   1742       AddressSpace = 256;
   1743     else
   1744       AddressSpace = 257;
   1745   } else {
   1746     // %gs:0x14 on i386
   1747     Offset = 0x14;
   1748     AddressSpace = 256;
   1749   }
   1750   return true;
   1751 }
   1752 
   1753 //===----------------------------------------------------------------------===//
   1754 //               Return Value Calling Convention Implementation
   1755 //===----------------------------------------------------------------------===//
   1756 
   1757 #include "X86GenCallingConv.inc"
   1758 
   1759 bool
   1760 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   1761                                   MachineFunction &MF, bool isVarArg,
   1762                         const SmallVectorImpl<ISD::OutputArg> &Outs,
   1763                         LLVMContext &Context) const {
   1764   SmallVector<CCValAssign, 16> RVLocs;
   1765   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1766                  RVLocs, Context);
   1767   return CCInfo.CheckReturn(Outs, RetCC_X86);
   1768 }
   1769 
   1770 SDValue
   1771 X86TargetLowering::LowerReturn(SDValue Chain,
   1772                                CallingConv::ID CallConv, bool isVarArg,
   1773                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1774                                const SmallVectorImpl<SDValue> &OutVals,
   1775                                SDLoc dl, SelectionDAG &DAG) const {
   1776   MachineFunction &MF = DAG.getMachineFunction();
   1777   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1778 
   1779   SmallVector<CCValAssign, 16> RVLocs;
   1780   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1781                  RVLocs, *DAG.getContext());
   1782   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
   1783 
   1784   SDValue Flag;
   1785   SmallVector<SDValue, 6> RetOps;
   1786   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   1787   // Operand #1 = Bytes To Pop
   1788   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
   1789                    MVT::i16));
   1790 
   1791   // Copy the result values into the output registers.
   1792   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1793     CCValAssign &VA = RVLocs[i];
   1794     assert(VA.isRegLoc() && "Can only return in registers!");
   1795     SDValue ValToCopy = OutVals[i];
   1796     EVT ValVT = ValToCopy.getValueType();
   1797 
   1798     // Promote values to the appropriate types
   1799     if (VA.getLocInfo() == CCValAssign::SExt)
   1800       ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
   1801     else if (VA.getLocInfo() == CCValAssign::ZExt)
   1802       ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
   1803     else if (VA.getLocInfo() == CCValAssign::AExt)
   1804       ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
   1805     else if (VA.getLocInfo() == CCValAssign::BCvt)
   1806       ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
   1807 
   1808     // If this is x86-64, and we disabled SSE, we can't return FP values,
   1809     // or SSE or MMX vectors.
   1810     if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
   1811          VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
   1812           (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
   1813       report_fatal_error("SSE register return with SSE disabled");
   1814     }
   1815     // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
   1816     // llvm-gcc has never done it right and no one has noticed, so this
   1817     // should be OK for now.
   1818     if (ValVT == MVT::f64 &&
   1819         (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
   1820       report_fatal_error("SSE2 register return with SSE2 disabled");
   1821 
   1822     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
   1823     // the RET instruction and handled by the FP Stackifier.
   1824     if (VA.getLocReg() == X86::ST0 ||
   1825         VA.getLocReg() == X86::ST1) {
   1826       // If this is a copy from an xmm register to ST(0), use an FPExtend to
   1827       // change the value to the FP stack register class.
   1828       if (isScalarFPTypeInSSEReg(VA.getValVT()))
   1829         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
   1830       RetOps.push_back(ValToCopy);
   1831       // Don't emit a copytoreg.
   1832       continue;
   1833     }
   1834 
   1835     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
   1836     // which is returned in RAX / RDX.
   1837     if (Subtarget->is64Bit()) {
   1838       if (ValVT == MVT::x86mmx) {
   1839         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
   1840           ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
   1841           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
   1842                                   ValToCopy);
   1843           // If we don't have SSE2 available, convert to v4f32 so the generated
   1844           // register is legal.
   1845           if (!Subtarget->hasSSE2())
   1846             ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
   1847         }
   1848       }
   1849     }
   1850 
   1851     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
   1852     Flag = Chain.getValue(1);
   1853     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   1854   }
   1855 
   1856   // The x86-64 ABIs require that for returning structs by value we copy
   1857   // the sret argument into %rax/%eax (depending on ABI) for the return.
   1858   // Win32 requires us to put the sret argument to %eax as well.
   1859   // We saved the argument into a virtual register in the entry block,
   1860   // so now we copy the value out and into %rax/%eax.
   1861   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
   1862       (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
   1863     MachineFunction &MF = DAG.getMachineFunction();
   1864     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1865     unsigned Reg = FuncInfo->getSRetReturnReg();
   1866     assert(Reg &&
   1867            "SRetReturnReg should have been set in LowerFormalArguments().");
   1868     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
   1869 
   1870     unsigned RetValReg
   1871         = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
   1872           X86::RAX : X86::EAX;
   1873     Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
   1874     Flag = Chain.getValue(1);
   1875 
   1876     // RAX/EAX now acts like a return value.
   1877     RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
   1878   }
   1879 
   1880   RetOps[0] = Chain;  // Update chain.
   1881 
   1882   // Add the flag if we have it.
   1883   if (Flag.getNode())
   1884     RetOps.push_back(Flag);
   1885 
   1886   return DAG.getNode(X86ISD::RET_FLAG, dl,
   1887                      MVT::Other, &RetOps[0], RetOps.size());
   1888 }
   1889 
   1890 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   1891   if (N->getNumValues() != 1)
   1892     return false;
   1893   if (!N->hasNUsesOfValue(1, 0))
   1894     return false;
   1895 
   1896   SDValue TCChain = Chain;
   1897   SDNode *Copy = *N->use_begin();
   1898   if (Copy->getOpcode() == ISD::CopyToReg) {
   1899     // If the copy has a glue operand, we conservatively assume it isn't safe to
   1900     // perform a tail call.
   1901     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   1902       return false;
   1903     TCChain = Copy->getOperand(0);
   1904   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
   1905     return false;
   1906 
   1907   bool HasRet = false;
   1908   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   1909        UI != UE; ++UI) {
   1910     if (UI->getOpcode() != X86ISD::RET_FLAG)
   1911       return false;
   1912     HasRet = true;
   1913   }
   1914 
   1915   if (!HasRet)
   1916     return false;
   1917 
   1918   Chain = TCChain;
   1919   return true;
   1920 }
   1921 
   1922 MVT
   1923 X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
   1924                                             ISD::NodeType ExtendKind) const {
   1925   MVT ReturnMVT;
   1926   // TODO: Is this also valid on 32-bit?
   1927   if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
   1928     ReturnMVT = MVT::i8;
   1929   else
   1930     ReturnMVT = MVT::i32;
   1931 
   1932   MVT MinVT = getRegisterType(ReturnMVT);
   1933   return VT.bitsLT(MinVT) ? MinVT : VT;
   1934 }
   1935 
   1936 /// LowerCallResult - Lower the result values of a call into the
   1937 /// appropriate copies out of appropriate physical registers.
   1938 ///
   1939 SDValue
   1940 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1941                                    CallingConv::ID CallConv, bool isVarArg,
   1942                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1943                                    SDLoc dl, SelectionDAG &DAG,
   1944                                    SmallVectorImpl<SDValue> &InVals) const {
   1945 
   1946   // Assign locations to each value returned by this call.
   1947   SmallVector<CCValAssign, 16> RVLocs;
   1948   bool Is64Bit = Subtarget->is64Bit();
   1949   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1950                  getTargetMachine(), RVLocs, *DAG.getContext());
   1951   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   1952 
   1953   // Copy all of the result registers out of their specified physreg.
   1954   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1955     CCValAssign &VA = RVLocs[i];
   1956     EVT CopyVT = VA.getValVT();
   1957 
   1958     // If this is x86-64, and we disabled SSE, we can't return FP values
   1959     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
   1960         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
   1961       report_fatal_error("SSE register return with SSE disabled");
   1962     }
   1963 
   1964     SDValue Val;
   1965 
   1966     // If this is a call to a function that returns an fp value on the floating
   1967     // point stack, we must guarantee the value is popped from the stack, so
   1968     // a CopyFromReg is not good enough - the copy instruction may be eliminated
   1969     // if the return value is not used. We use the FpPOP_RETVAL instruction
   1970     // instead.
   1971     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
   1972       // If we prefer to use the value in xmm registers, copy it out as f80 and
   1973       // use a truncate to move it from fp stack reg to xmm reg.
   1974       if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
   1975       SDValue Ops[] = { Chain, InFlag };
   1976       Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
   1977                                          MVT::Other, MVT::Glue, Ops), 1);
   1978       Val = Chain.getValue(0);
   1979 
   1980       // Round the f80 to the right size, which also moves it to the appropriate
   1981       // xmm register.
   1982       if (CopyVT != VA.getValVT())
   1983         Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
   1984                           // This truncation won't change the value.
   1985                           DAG.getIntPtrConstant(1));
   1986     } else {
   1987       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
   1988                                  CopyVT, InFlag).getValue(1);
   1989       Val = Chain.getValue(0);
   1990     }
   1991     InFlag = Chain.getValue(2);
   1992     InVals.push_back(Val);
   1993   }
   1994 
   1995   return Chain;
   1996 }
   1997 
   1998 //===----------------------------------------------------------------------===//
   1999 //                C & StdCall & Fast Calling Convention implementation
   2000 //===----------------------------------------------------------------------===//
   2001 //  StdCall calling convention seems to be standard for many Windows' API
   2002 //  routines and around. It differs from C calling convention just a little:
   2003 //  callee should clean up the stack, not caller. Symbols should be also
   2004 //  decorated in some fancy way :) It doesn't support any vector arguments.
   2005 //  For info on fast calling convention see Fast Calling Convention (tail call)
   2006 //  implementation LowerX86_32FastCCCallTo.
   2007 
   2008 /// CallIsStructReturn - Determines whether a call uses struct return
   2009 /// semantics.
   2010 enum StructReturnType {
   2011   NotStructReturn,
   2012   RegStructReturn,
   2013   StackStructReturn
   2014 };
   2015 static StructReturnType
   2016 callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
   2017   if (Outs.empty())
   2018     return NotStructReturn;
   2019 
   2020   const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
   2021   if (!Flags.isSRet())
   2022     return NotStructReturn;
   2023   if (Flags.isInReg())
   2024     return RegStructReturn;
   2025   return StackStructReturn;
   2026 }
   2027 
   2028 /// ArgsAreStructReturn - Determines whether a function uses struct
   2029 /// return semantics.
   2030 static StructReturnType
   2031 argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
   2032   if (Ins.empty())
   2033     return NotStructReturn;
   2034 
   2035   const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
   2036   if (!Flags.isSRet())
   2037     return NotStructReturn;
   2038   if (Flags.isInReg())
   2039     return RegStructReturn;
   2040   return StackStructReturn;
   2041 }
   2042 
   2043 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   2044 /// by "Src" to address "Dst" with size and alignment information specified by
   2045 /// the specific parameter attribute. The copy will be passed as a byval
   2046 /// function parameter.
   2047 static SDValue
   2048 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   2049                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   2050                           SDLoc dl) {
   2051   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   2052 
   2053   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   2054                        /*isVolatile*/false, /*AlwaysInline=*/true,
   2055                        MachinePointerInfo(), MachinePointerInfo());
   2056 }
   2057 
   2058 /// IsTailCallConvention - Return true if the calling convention is one that
   2059 /// supports tail call optimization.
   2060 static bool IsTailCallConvention(CallingConv::ID CC) {
   2061   return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
   2062           CC == CallingConv::HiPE);
   2063 }
   2064 
   2065 /// \brief Return true if the calling convention is a C calling convention.
   2066 static bool IsCCallConvention(CallingConv::ID CC) {
   2067   return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
   2068           CC == CallingConv::X86_64_SysV);
   2069 }
   2070 
   2071 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   2072   if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
   2073     return false;
   2074 
   2075   CallSite CS(CI);
   2076   CallingConv::ID CalleeCC = CS.getCallingConv();
   2077   if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
   2078     return false;
   2079 
   2080   return true;
   2081 }
   2082 
   2083 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
   2084 /// a tailcall target by changing its ABI.
   2085 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
   2086                                    bool GuaranteedTailCallOpt) {
   2087   return GuaranteedTailCallOpt && IsTailCallConvention(CC);
   2088 }
   2089 
   2090 SDValue
   2091 X86TargetLowering::LowerMemArgument(SDValue Chain,
   2092                                     CallingConv::ID CallConv,
   2093                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2094                                     SDLoc dl, SelectionDAG &DAG,
   2095                                     const CCValAssign &VA,
   2096                                     MachineFrameInfo *MFI,
   2097                                     unsigned i) const {
   2098   // Create the nodes corresponding to a load from this parameter slot.
   2099   ISD::ArgFlagsTy Flags = Ins[i].Flags;
   2100   bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
   2101                               getTargetMachine().Options.GuaranteedTailCallOpt);
   2102   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
   2103   EVT ValVT;
   2104 
   2105   // If value is passed by pointer we have address passed instead of the value
   2106   // itself.
   2107   if (VA.getLocInfo() == CCValAssign::Indirect)
   2108     ValVT = VA.getLocVT();
   2109   else
   2110     ValVT = VA.getValVT();
   2111 
   2112   // FIXME: For now, all byval parameter objects are marked mutable. This can be
   2113   // changed with more analysis.
   2114   // In case of tail call optimization mark all arguments mutable. Since they
   2115   // could be overwritten by lowering of arguments in case of a tail call.
   2116   if (Flags.isByVal()) {
   2117     unsigned Bytes = Flags.getByValSize();
   2118     if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   2119     int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
   2120     return DAG.getFrameIndex(FI, getPointerTy());
   2121   } else {
   2122     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
   2123                                     VA.getLocMemOffset(), isImmutable);
   2124     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2125     return DAG.getLoad(ValVT, dl, Chain, FIN,
   2126                        MachinePointerInfo::getFixedStack(FI),
   2127                        false, false, false, 0);
   2128   }
   2129 }
   2130 
   2131 SDValue
   2132 X86TargetLowering::LowerFormalArguments(SDValue Chain,
   2133                                         CallingConv::ID CallConv,
   2134                                         bool isVarArg,
   2135                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   2136                                         SDLoc dl,
   2137                                         SelectionDAG &DAG,
   2138                                         SmallVectorImpl<SDValue> &InVals)
   2139                                           const {
   2140   MachineFunction &MF = DAG.getMachineFunction();
   2141   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   2142 
   2143   const Function* Fn = MF.getFunction();
   2144   if (Fn->hasExternalLinkage() &&
   2145       Subtarget->isTargetCygMing() &&
   2146       Fn->getName() == "main")
   2147     FuncInfo->setForceFramePointer(true);
   2148 
   2149   MachineFrameInfo *MFI = MF.getFrameInfo();
   2150   bool Is64Bit = Subtarget->is64Bit();
   2151   bool IsWindows = Subtarget->isTargetWindows();
   2152   bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
   2153 
   2154   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   2155          "Var args not supported with calling convention fastcc, ghc or hipe");
   2156 
   2157   // Assign locations to all of the incoming arguments.
   2158   SmallVector<CCValAssign, 16> ArgLocs;
   2159   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   2160                  ArgLocs, *DAG.getContext());
   2161 
   2162   // Allocate shadow area for Win64
   2163   if (IsWin64)
   2164     CCInfo.AllocateStack(32, 8);
   2165 
   2166   CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
   2167 
   2168   unsigned LastVal = ~0U;
   2169   SDValue ArgValue;
   2170   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2171     CCValAssign &VA = ArgLocs[i];
   2172     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
   2173     // places.
   2174     assert(VA.getValNo() != LastVal &&
   2175            "Don't support value assigned to multiple locs yet");
   2176     (void)LastVal;
   2177     LastVal = VA.getValNo();
   2178 
   2179     if (VA.isRegLoc()) {
   2180       EVT RegVT = VA.getLocVT();
   2181       const TargetRegisterClass *RC;
   2182       if (RegVT == MVT::i32)
   2183         RC = &X86::GR32RegClass;
   2184       else if (Is64Bit && RegVT == MVT::i64)
   2185         RC = &X86::GR64RegClass;
   2186       else if (RegVT == MVT::f32)
   2187         RC = &X86::FR32RegClass;
   2188       else if (RegVT == MVT::f64)
   2189         RC = &X86::FR64RegClass;
   2190       else if (RegVT.is512BitVector())
   2191         RC = &X86::VR512RegClass;
   2192       else if (RegVT.is256BitVector())
   2193         RC = &X86::VR256RegClass;
   2194       else if (RegVT.is128BitVector())
   2195         RC = &X86::VR128RegClass;
   2196       else if (RegVT == MVT::x86mmx)
   2197         RC = &X86::VR64RegClass;
   2198       else if (RegVT == MVT::v8i1)
   2199         RC = &X86::VK8RegClass;
   2200       else if (RegVT == MVT::v16i1)
   2201         RC = &X86::VK16RegClass;
   2202       else
   2203         llvm_unreachable("Unknown argument type!");
   2204 
   2205       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2206       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   2207 
   2208       // If this is an 8 or 16-bit value, it is really passed promoted to 32
   2209       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
   2210       // right size.
   2211       if (VA.getLocInfo() == CCValAssign::SExt)
   2212         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   2213                                DAG.getValueType(VA.getValVT()));
   2214       else if (VA.getLocInfo() == CCValAssign::ZExt)
   2215         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   2216                                DAG.getValueType(VA.getValVT()));
   2217       else if (VA.getLocInfo() == CCValAssign::BCvt)
   2218         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   2219 
   2220       if (VA.isExtInLoc()) {
   2221         // Handle MMX values passed in XMM regs.
   2222         if (RegVT.isVector())
   2223           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
   2224         else
   2225           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   2226       }
   2227     } else {
   2228       assert(VA.isMemLoc());
   2229       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
   2230     }
   2231 
   2232     // If value is passed via pointer - do a load.
   2233     if (VA.getLocInfo() == CCValAssign::Indirect)
   2234       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
   2235                              MachinePointerInfo(), false, false, false, 0);
   2236 
   2237     InVals.push_back(ArgValue);
   2238   }
   2239 
   2240   // The x86-64 ABIs require that for returning structs by value we copy
   2241   // the sret argument into %rax/%eax (depending on ABI) for the return.
   2242   // Win32 requires us to put the sret argument to %eax as well.
   2243   // Save the argument into a virtual register so that we can access it
   2244   // from the return points.
   2245   if (MF.getFunction()->hasStructRetAttr() &&
   2246       (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
   2247     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   2248     unsigned Reg = FuncInfo->getSRetReturnReg();
   2249     if (!Reg) {
   2250       MVT PtrTy = getPointerTy();
   2251       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
   2252       FuncInfo->setSRetReturnReg(Reg);
   2253     }
   2254     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
   2255     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
   2256   }
   2257 
   2258   unsigned StackSize = CCInfo.getNextStackOffset();
   2259   // Align stack specially for tail calls.
   2260   if (FuncIsMadeTailCallSafe(CallConv,
   2261                              MF.getTarget().Options.GuaranteedTailCallOpt))
   2262     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
   2263 
   2264   // If the function takes variable number of arguments, make a frame index for
   2265   // the start of the first vararg value... for expansion of llvm.va_start.
   2266   if (isVarArg) {
   2267     if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
   2268                     CallConv != CallingConv::X86_ThisCall)) {
   2269       FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
   2270     }
   2271     if (Is64Bit) {
   2272       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
   2273 
   2274       // FIXME: We should really autogenerate these arrays
   2275       static const uint16_t GPR64ArgRegsWin64[] = {
   2276         X86::RCX, X86::RDX, X86::R8,  X86::R9
   2277       };
   2278       static const uint16_t GPR64ArgRegs64Bit[] = {
   2279         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
   2280       };
   2281       static const uint16_t XMMArgRegs64Bit[] = {
   2282         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2283         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2284       };
   2285       const uint16_t *GPR64ArgRegs;
   2286       unsigned NumXMMRegs = 0;
   2287 
   2288       if (IsWin64) {
   2289         // The XMM registers which might contain var arg parameters are shadowed
   2290         // in their paired GPR.  So we only need to save the GPR to their home
   2291         // slots.
   2292         TotalNumIntRegs = 4;
   2293         GPR64ArgRegs = GPR64ArgRegsWin64;
   2294       } else {
   2295         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
   2296         GPR64ArgRegs = GPR64ArgRegs64Bit;
   2297 
   2298         NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
   2299                                                 TotalNumXMMRegs);
   2300       }
   2301       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
   2302                                                        TotalNumIntRegs);
   2303 
   2304       bool NoImplicitFloatOps = Fn->getAttributes().
   2305         hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
   2306       assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
   2307              "SSE register cannot be used when SSE is disabled!");
   2308       assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
   2309                NoImplicitFloatOps) &&
   2310              "SSE register cannot be used when SSE is disabled!");
   2311       if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
   2312           !Subtarget->hasSSE1())
   2313         // Kernel mode asks for SSE to be disabled, so don't push them
   2314         // on the stack.
   2315         TotalNumXMMRegs = 0;
   2316 
   2317       if (IsWin64) {
   2318         const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
   2319         // Get to the caller-allocated home save location.  Add 8 to account
   2320         // for the return address.
   2321         int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
   2322         FuncInfo->setRegSaveFrameIndex(
   2323           MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
   2324         // Fixup to set vararg frame on shadow area (4 x i64).
   2325         if (NumIntRegs < 4)
   2326           FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
   2327       } else {
   2328         // For X86-64, if there are vararg parameters that are passed via
   2329         // registers, then we must store them to their spots on the stack so
   2330         // they may be loaded by deferencing the result of va_next.
   2331         FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
   2332         FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
   2333         FuncInfo->setRegSaveFrameIndex(
   2334           MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
   2335                                false));
   2336       }
   2337 
   2338       // Store the integer parameter registers.
   2339       SmallVector<SDValue, 8> MemOps;
   2340       SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   2341                                         getPointerTy());
   2342       unsigned Offset = FuncInfo->getVarArgsGPOffset();
   2343       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
   2344         SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
   2345                                   DAG.getIntPtrConstant(Offset));
   2346         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
   2347                                      &X86::GR64RegClass);
   2348         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2349         SDValue Store =
   2350           DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2351                        MachinePointerInfo::getFixedStack(
   2352                          FuncInfo->getRegSaveFrameIndex(), Offset),
   2353                        false, false, 0);
   2354         MemOps.push_back(Store);
   2355         Offset += 8;
   2356       }
   2357 
   2358       if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
   2359         // Now store the XMM (fp + vector) parameter registers.
   2360         SmallVector<SDValue, 11> SaveXMMOps;
   2361         SaveXMMOps.push_back(Chain);
   2362 
   2363         unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
   2364         SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
   2365         SaveXMMOps.push_back(ALVal);
   2366 
   2367         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   2368                                FuncInfo->getRegSaveFrameIndex()));
   2369         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   2370                                FuncInfo->getVarArgsFPOffset()));
   2371 
   2372         for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
   2373           unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
   2374                                        &X86::VR128RegClass);
   2375           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
   2376           SaveXMMOps.push_back(Val);
   2377         }
   2378         MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
   2379                                      MVT::Other,
   2380                                      &SaveXMMOps[0], SaveXMMOps.size()));
   2381       }
   2382 
   2383       if (!MemOps.empty())
   2384         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2385                             &MemOps[0], MemOps.size());
   2386     }
   2387   }
   2388 
   2389   // Some CCs need callee pop.
   2390   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
   2391                        MF.getTarget().Options.GuaranteedTailCallOpt)) {
   2392     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
   2393   } else {
   2394     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
   2395     // If this is an sret function, the return should pop the hidden pointer.
   2396     if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
   2397         argsAreStructReturn(Ins) == StackStructReturn)
   2398       FuncInfo->setBytesToPopOnReturn(4);
   2399   }
   2400 
   2401   if (!Is64Bit) {
   2402     // RegSaveFrameIndex is X86-64 only.
   2403     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
   2404     if (CallConv == CallingConv::X86_FastCall ||
   2405         CallConv == CallingConv::X86_ThisCall)
   2406       // fastcc functions can't have varargs.
   2407       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
   2408   }
   2409 
   2410   FuncInfo->setArgumentStackSize(StackSize);
   2411 
   2412   return Chain;
   2413 }
   2414 
   2415 SDValue
   2416 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
   2417                                     SDValue StackPtr, SDValue Arg,
   2418                                     SDLoc dl, SelectionDAG &DAG,
   2419                                     const CCValAssign &VA,
   2420                                     ISD::ArgFlagsTy Flags) const {
   2421   unsigned LocMemOffset = VA.getLocMemOffset();
   2422   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   2423   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   2424   if (Flags.isByVal())
   2425     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
   2426 
   2427   return DAG.getStore(Chain, dl, Arg, PtrOff,
   2428                       MachinePointerInfo::getStack(LocMemOffset),
   2429                       false, false, 0);
   2430 }
   2431 
   2432 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
   2433 /// optimization is performed and it is required.
   2434 SDValue
   2435 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
   2436                                            SDValue &OutRetAddr, SDValue Chain,
   2437                                            bool IsTailCall, bool Is64Bit,
   2438                                            int FPDiff, SDLoc dl) const {
   2439   // Adjust the Return address stack slot.
   2440   EVT VT = getPointerTy();
   2441   OutRetAddr = getReturnAddressFrameIndex(DAG);
   2442 
   2443   // Load the "old" Return address.
   2444   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
   2445                            false, false, false, 0);
   2446   return SDValue(OutRetAddr.getNode(), 1);
   2447 }
   2448 
   2449 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
   2450 /// optimization is performed and it is required (FPDiff!=0).
   2451 static SDValue
   2452 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
   2453                          SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
   2454                          unsigned SlotSize, int FPDiff, SDLoc dl) {
   2455   // Store the return address to the appropriate stack slot.
   2456   if (!FPDiff) return Chain;
   2457   // Calculate the new stack slot for the return address.
   2458   int NewReturnAddrFI =
   2459     MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
   2460                                          false);
   2461   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
   2462   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
   2463                        MachinePointerInfo::getFixedStack(NewReturnAddrFI),
   2464                        false, false, 0);
   2465   return Chain;
   2466 }
   2467 
   2468 SDValue
   2469 X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   2470                              SmallVectorImpl<SDValue> &InVals) const {
   2471   SelectionDAG &DAG                     = CLI.DAG;
   2472   SDLoc &dl                             = CLI.DL;
   2473   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   2474   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   2475   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   2476   SDValue Chain                         = CLI.Chain;
   2477   SDValue Callee                        = CLI.Callee;
   2478   CallingConv::ID CallConv              = CLI.CallConv;
   2479   bool &isTailCall                      = CLI.IsTailCall;
   2480   bool isVarArg                         = CLI.IsVarArg;
   2481 
   2482   MachineFunction &MF = DAG.getMachineFunction();
   2483   bool Is64Bit        = Subtarget->is64Bit();
   2484   bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
   2485   bool IsWindows      = Subtarget->isTargetWindows();
   2486   StructReturnType SR = callIsStructReturn(Outs);
   2487   bool IsSibcall      = false;
   2488 
   2489   if (MF.getTarget().Options.DisableTailCalls)
   2490     isTailCall = false;
   2491 
   2492   if (isTailCall) {
   2493     // Check if it's really possible to do a tail call.
   2494     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   2495                     isVarArg, SR != NotStructReturn,
   2496                     MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
   2497                     Outs, OutVals, Ins, DAG);
   2498 
   2499     // Sibcalls are automatically detected tailcalls which do not require
   2500     // ABI changes.
   2501     if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
   2502       IsSibcall = true;
   2503 
   2504     if (isTailCall)
   2505       ++NumTailCalls;
   2506   }
   2507 
   2508   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   2509          "Var args not supported with calling convention fastcc, ghc or hipe");
   2510 
   2511   // Analyze operands of the call, assigning locations to each operand.
   2512   SmallVector<CCValAssign, 16> ArgLocs;
   2513   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   2514                  ArgLocs, *DAG.getContext());
   2515 
   2516   // Allocate shadow area for Win64
   2517   if (IsWin64)
   2518     CCInfo.AllocateStack(32, 8);
   2519 
   2520   CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2521 
   2522   // Get a count of how many bytes are to be pushed on the stack.
   2523   unsigned NumBytes = CCInfo.getNextStackOffset();
   2524   if (IsSibcall)
   2525     // This is a sibcall. The memory operands are available in caller's
   2526     // own caller's stack.
   2527     NumBytes = 0;
   2528   else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   2529            IsTailCallConvention(CallConv))
   2530     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
   2531 
   2532   int FPDiff = 0;
   2533   if (isTailCall && !IsSibcall) {
   2534     // Lower arguments at fp - stackoffset + fpdiff.
   2535     X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
   2536     unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
   2537 
   2538     FPDiff = NumBytesCallerPushed - NumBytes;
   2539 
   2540     // Set the delta of movement of the returnaddr stackslot.
   2541     // But only set if delta is greater than previous delta.
   2542     if (FPDiff < X86Info->getTCReturnAddrDelta())
   2543       X86Info->setTCReturnAddrDelta(FPDiff);
   2544   }
   2545 
   2546   if (!IsSibcall)
   2547     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2548                                  dl);
   2549 
   2550   SDValue RetAddrFrIdx;
   2551   // Load return address for tail calls.
   2552   if (isTailCall && FPDiff)
   2553     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
   2554                                     Is64Bit, FPDiff, dl);
   2555 
   2556   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2557   SmallVector<SDValue, 8> MemOpChains;
   2558   SDValue StackPtr;
   2559 
   2560   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   2561   // of tail call optimization arguments are handle later.
   2562   const X86RegisterInfo *RegInfo =
   2563     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   2564   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2565     CCValAssign &VA = ArgLocs[i];
   2566     EVT RegVT = VA.getLocVT();
   2567     SDValue Arg = OutVals[i];
   2568     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2569     bool isByVal = Flags.isByVal();
   2570 
   2571     // Promote the value if needed.
   2572     switch (VA.getLocInfo()) {
   2573     default: llvm_unreachable("Unknown loc info!");
   2574     case CCValAssign::Full: break;
   2575     case CCValAssign::SExt:
   2576       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
   2577       break;
   2578     case CCValAssign::ZExt:
   2579       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
   2580       break;
   2581     case CCValAssign::AExt:
   2582       if (RegVT.is128BitVector()) {
   2583         // Special case: passing MMX values in XMM registers.
   2584         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   2585         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
   2586         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
   2587       } else
   2588         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
   2589       break;
   2590     case CCValAssign::BCvt:
   2591       Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
   2592       break;
   2593     case CCValAssign::Indirect: {
   2594       // Store the argument.
   2595       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
   2596       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   2597       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
   2598                            MachinePointerInfo::getFixedStack(FI),
   2599                            false, false, 0);
   2600       Arg = SpillSlot;
   2601       break;
   2602     }
   2603     }
   2604 
   2605     if (VA.isRegLoc()) {
   2606       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2607       if (isVarArg && IsWin64) {
   2608         // Win64 ABI requires argument XMM reg to be copied to the corresponding
   2609         // shadow reg if callee is a varargs function.
   2610         unsigned ShadowReg = 0;
   2611         switch (VA.getLocReg()) {
   2612         case X86::XMM0: ShadowReg = X86::RCX; break;
   2613         case X86::XMM1: ShadowReg = X86::RDX; break;
   2614         case X86::XMM2: ShadowReg = X86::R8; break;
   2615         case X86::XMM3: ShadowReg = X86::R9; break;
   2616         }
   2617         if (ShadowReg)
   2618           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
   2619       }
   2620     } else if (!IsSibcall && (!isTailCall || isByVal)) {
   2621       assert(VA.isMemLoc());
   2622       if (StackPtr.getNode() == 0)
   2623         StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
   2624                                       getPointerTy());
   2625       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   2626                                              dl, DAG, VA, Flags));
   2627     }
   2628   }
   2629 
   2630   if (!MemOpChains.empty())
   2631     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2632                         &MemOpChains[0], MemOpChains.size());
   2633 
   2634   if (Subtarget->isPICStyleGOT()) {
   2635     // ELF / PIC requires GOT in the EBX register before function calls via PLT
   2636     // GOT pointer.
   2637     if (!isTailCall) {
   2638       RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
   2639                DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
   2640     } else {
   2641       // If we are tail calling and generating PIC/GOT style code load the
   2642       // address of the callee into ECX. The value in ecx is used as target of
   2643       // the tail jump. This is done to circumvent the ebx/callee-saved problem
   2644       // for tail calls on PIC/GOT architectures. Normally we would just put the
   2645       // address of GOT into ebx and then call target@PLT. But for tail calls
   2646       // ebx would be restored (since ebx is callee saved) before jumping to the
   2647       // target@PLT.
   2648 
   2649       // Note: The actual moving to ECX is done further down.
   2650       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
   2651       if (G && !G->getGlobal()->hasHiddenVisibility() &&
   2652           !G->getGlobal()->hasProtectedVisibility())
   2653         Callee = LowerGlobalAddress(Callee, DAG);
   2654       else if (isa<ExternalSymbolSDNode>(Callee))
   2655         Callee = LowerExternalSymbol(Callee, DAG);
   2656     }
   2657   }
   2658 
   2659   if (Is64Bit && isVarArg && !IsWin64) {
   2660     // From AMD64 ABI document:
   2661     // For calls that may call functions that use varargs or stdargs
   2662     // (prototype-less calls or calls to functions containing ellipsis (...) in
   2663     // the declaration) %al is used as hidden argument to specify the number
   2664     // of SSE registers used. The contents of %al do not need to match exactly
   2665     // the number of registers, but must be an ubound on the number of SSE
   2666     // registers used and is in the range 0 - 8 inclusive.
   2667 
   2668     // Count the number of XMM registers allocated.
   2669     static const uint16_t XMMArgRegs[] = {
   2670       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2671       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2672     };
   2673     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   2674     assert((Subtarget->hasSSE1() || !NumXMMRegs)
   2675            && "SSE registers cannot be used when SSE is disabled");
   2676 
   2677     RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
   2678                                         DAG.getConstant(NumXMMRegs, MVT::i8)));
   2679   }
   2680 
   2681   // For tail calls lower the arguments to the 'real' stack slot.
   2682   if (isTailCall) {
   2683     // Force all the incoming stack arguments to be loaded from the stack
   2684     // before any new outgoing arguments are stored to the stack, because the
   2685     // outgoing stack slots may alias the incoming argument stack slots, and
   2686     // the alias isn't otherwise explicit. This is slightly more conservative
   2687     // than necessary, because it means that each store effectively depends
   2688     // on every argument instead of just those arguments it would clobber.
   2689     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
   2690 
   2691     SmallVector<SDValue, 8> MemOpChains2;
   2692     SDValue FIN;
   2693     int FI = 0;
   2694     if (getTargetMachine().Options.GuaranteedTailCallOpt) {
   2695       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2696         CCValAssign &VA = ArgLocs[i];
   2697         if (VA.isRegLoc())
   2698           continue;
   2699         assert(VA.isMemLoc());
   2700         SDValue Arg = OutVals[i];
   2701         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2702         // Create frame index.
   2703         int32_t Offset = VA.getLocMemOffset()+FPDiff;
   2704         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
   2705         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2706         FIN = DAG.getFrameIndex(FI, getPointerTy());
   2707 
   2708         if (Flags.isByVal()) {
   2709           // Copy relative to framepointer.
   2710           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
   2711           if (StackPtr.getNode() == 0)
   2712             StackPtr = DAG.getCopyFromReg(Chain, dl,
   2713                                           RegInfo->getStackRegister(),
   2714                                           getPointerTy());
   2715           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
   2716 
   2717           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
   2718                                                            ArgChain,
   2719                                                            Flags, DAG, dl));
   2720         } else {
   2721           // Store relative to framepointer.
   2722           MemOpChains2.push_back(
   2723             DAG.getStore(ArgChain, dl, Arg, FIN,
   2724                          MachinePointerInfo::getFixedStack(FI),
   2725                          false, false, 0));
   2726         }
   2727       }
   2728     }
   2729 
   2730     if (!MemOpChains2.empty())
   2731       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2732                           &MemOpChains2[0], MemOpChains2.size());
   2733 
   2734     // Store the return address to the appropriate stack slot.
   2735     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
   2736                                      getPointerTy(), RegInfo->getSlotSize(),
   2737                                      FPDiff, dl);
   2738   }
   2739 
   2740   // Build a sequence of copy-to-reg nodes chained together with token chain
   2741   // and flag operands which copy the outgoing args into registers.
   2742   SDValue InFlag;
   2743   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2744     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2745                              RegsToPass[i].second, InFlag);
   2746     InFlag = Chain.getValue(1);
   2747   }
   2748 
   2749   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
   2750     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
   2751     // In the 64-bit large code model, we have to make all calls
   2752     // through a register, since the call instruction's 32-bit
   2753     // pc-relative offset may not be large enough to hold the whole
   2754     // address.
   2755   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2756     // If the callee is a GlobalAddress node (quite common, every direct call
   2757     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
   2758     // it.
   2759 
   2760     // We should use extra load for direct calls to dllimported functions in
   2761     // non-JIT mode.
   2762     const GlobalValue *GV = G->getGlobal();
   2763     if (!GV->hasDLLImportLinkage()) {
   2764       unsigned char OpFlags = 0;
   2765       bool ExtraLoad = false;
   2766       unsigned WrapperKind = ISD::DELETED_NODE;
   2767 
   2768       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   2769       // external symbols most go through the PLT in PIC mode.  If the symbol
   2770       // has hidden or protected visibility, or if it is static or local, then
   2771       // we don't need to use the PLT - we can directly call it.
   2772       if (Subtarget->isTargetELF() &&
   2773           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   2774           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   2775         OpFlags = X86II::MO_PLT;
   2776       } else if (Subtarget->isPICStyleStubAny() &&
   2777                  (GV->isDeclaration() || GV->isWeakForLinker()) &&
   2778                  (!Subtarget->getTargetTriple().isMacOSX() ||
   2779                   Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2780         // PC-relative references to external symbols should go through $stub,
   2781         // unless we're building with the leopard linker or later, which
   2782         // automatically synthesizes these stubs.
   2783         OpFlags = X86II::MO_DARWIN_STUB;
   2784       } else if (Subtarget->isPICStyleRIPRel() &&
   2785                  isa<Function>(GV) &&
   2786                  cast<Function>(GV)->getAttributes().
   2787                    hasAttribute(AttributeSet::FunctionIndex,
   2788                                 Attribute::NonLazyBind)) {
   2789         // If the function is marked as non-lazy, generate an indirect call
   2790         // which loads from the GOT directly. This avoids runtime overhead
   2791         // at the cost of eager binding (and one extra byte of encoding).
   2792         OpFlags = X86II::MO_GOTPCREL;
   2793         WrapperKind = X86ISD::WrapperRIP;
   2794         ExtraLoad = true;
   2795       }
   2796 
   2797       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
   2798                                           G->getOffset(), OpFlags);
   2799 
   2800       // Add a wrapper if needed.
   2801       if (WrapperKind != ISD::DELETED_NODE)
   2802         Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
   2803       // Add extra indirection if needed.
   2804       if (ExtraLoad)
   2805         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
   2806                              MachinePointerInfo::getGOT(),
   2807                              false, false, false, 0);
   2808     }
   2809   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2810     unsigned char OpFlags = 0;
   2811 
   2812     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
   2813     // external symbols should go through the PLT.
   2814     if (Subtarget->isTargetELF() &&
   2815         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2816       OpFlags = X86II::MO_PLT;
   2817     } else if (Subtarget->isPICStyleStubAny() &&
   2818                (!Subtarget->getTargetTriple().isMacOSX() ||
   2819                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2820       // PC-relative references to external symbols should go through $stub,
   2821       // unless we're building with the leopard linker or later, which
   2822       // automatically synthesizes these stubs.
   2823       OpFlags = X86II::MO_DARWIN_STUB;
   2824     }
   2825 
   2826     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
   2827                                          OpFlags);
   2828   }
   2829 
   2830   // Returns a chain & a flag for retval copy to use.
   2831   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2832   SmallVector<SDValue, 8> Ops;
   2833 
   2834   if (!IsSibcall && isTailCall) {
   2835     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2836                            DAG.getIntPtrConstant(0, true), InFlag, dl);
   2837     InFlag = Chain.getValue(1);
   2838   }
   2839 
   2840   Ops.push_back(Chain);
   2841   Ops.push_back(Callee);
   2842 
   2843   if (isTailCall)
   2844     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
   2845 
   2846   // Add argument registers to the end of the list so that they are known live
   2847   // into the call.
   2848   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2849     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2850                                   RegsToPass[i].second.getValueType()));
   2851 
   2852   // Add a register mask operand representing the call-preserved registers.
   2853   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   2854   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   2855   assert(Mask && "Missing call preserved mask for calling convention");
   2856   Ops.push_back(DAG.getRegisterMask(Mask));
   2857 
   2858   if (InFlag.getNode())
   2859     Ops.push_back(InFlag);
   2860 
   2861   if (isTailCall) {
   2862     // We used to do:
   2863     //// If this is the first return lowered for this function, add the regs
   2864     //// to the liveout set for the function.
   2865     // This isn't right, although it's probably harmless on x86; liveouts
   2866     // should be computed from returns not tail calls.  Consider a void
   2867     // function making a tail call to a function returning int.
   2868     return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
   2869   }
   2870 
   2871   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
   2872   InFlag = Chain.getValue(1);
   2873 
   2874   // Create the CALLSEQ_END node.
   2875   unsigned NumBytesForCalleeToPush;
   2876   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
   2877                        getTargetMachine().Options.GuaranteedTailCallOpt))
   2878     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
   2879   else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
   2880            SR == StackStructReturn)
   2881     // If this is a call to a struct-return function, the callee
   2882     // pops the hidden struct pointer, so we have to push it back.
   2883     // This is common for Darwin/X86, Linux & Mingw32 targets.
   2884     // For MSVC Win32 targets, the caller pops the hidden struct pointer.
   2885     NumBytesForCalleeToPush = 4;
   2886   else
   2887     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
   2888 
   2889   // Returns a flag for retval copy to use.
   2890   if (!IsSibcall) {
   2891     Chain = DAG.getCALLSEQ_END(Chain,
   2892                                DAG.getIntPtrConstant(NumBytes, true),
   2893                                DAG.getIntPtrConstant(NumBytesForCalleeToPush,
   2894                                                      true),
   2895                                InFlag, dl);
   2896     InFlag = Chain.getValue(1);
   2897   }
   2898 
   2899   // Handle result values, copying them out of physregs into vregs that we
   2900   // return.
   2901   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   2902                          Ins, dl, DAG, InVals);
   2903 }
   2904 
   2905 //===----------------------------------------------------------------------===//
   2906 //                Fast Calling Convention (tail call) implementation
   2907 //===----------------------------------------------------------------------===//
   2908 
   2909 //  Like std call, callee cleans arguments, convention except that ECX is
   2910 //  reserved for storing the tail called function address. Only 2 registers are
   2911 //  free for argument passing (inreg). Tail call optimization is performed
   2912 //  provided:
   2913 //                * tailcallopt is enabled
   2914 //                * caller/callee are fastcc
   2915 //  On X86_64 architecture with GOT-style position independent code only local
   2916 //  (within module) calls are supported at the moment.
   2917 //  To keep the stack aligned according to platform abi the function
   2918 //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
   2919 //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
   2920 //  If a tail called function callee has more arguments than the caller the
   2921 //  caller needs to make sure that there is room to move the RETADDR to. This is
   2922 //  achieved by reserving an area the size of the argument delta right after the
   2923 //  original REtADDR, but before the saved framepointer or the spilled registers
   2924 //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
   2925 //  stack layout:
   2926 //    arg1
   2927 //    arg2
   2928 //    RETADDR
   2929 //    [ new RETADDR
   2930 //      move area ]
   2931 //    (possible EBP)
   2932 //    ESI
   2933 //    EDI
   2934 //    local1 ..
   2935 
   2936 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
   2937 /// for a 16 byte align requirement.
   2938 unsigned
   2939 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
   2940                                                SelectionDAG& DAG) const {
   2941   MachineFunction &MF = DAG.getMachineFunction();
   2942   const TargetMachine &TM = MF.getTarget();
   2943   const X86RegisterInfo *RegInfo =
   2944     static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
   2945   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   2946   unsigned StackAlignment = TFI.getStackAlignment();
   2947   uint64_t AlignMask = StackAlignment - 1;
   2948   int64_t Offset = StackSize;
   2949   unsigned SlotSize = RegInfo->getSlotSize();
   2950   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
   2951     // Number smaller than 12 so just add the difference.
   2952     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
   2953   } else {
   2954     // Mask out lower bits, add stackalignment once plus the 12 bytes.
   2955     Offset = ((~AlignMask) & Offset) + StackAlignment +
   2956       (StackAlignment-SlotSize);
   2957   }
   2958   return Offset;
   2959 }
   2960 
   2961 /// MatchingStackOffset - Return true if the given stack call argument is
   2962 /// already available in the same position (relatively) of the caller's
   2963 /// incoming argument stack.
   2964 static
   2965 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2966                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   2967                          const X86InstrInfo *TII) {
   2968   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   2969   int FI = INT_MAX;
   2970   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2971     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2972     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2973       return false;
   2974     MachineInstr *Def = MRI->getVRegDef(VR);
   2975     if (!Def)
   2976       return false;
   2977     if (!Flags.isByVal()) {
   2978       if (!TII->isLoadFromStackSlot(Def, FI))
   2979         return false;
   2980     } else {
   2981       unsigned Opcode = Def->getOpcode();
   2982       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
   2983           Def->getOperand(1).isFI()) {
   2984         FI = Def->getOperand(1).getIndex();
   2985         Bytes = Flags.getByValSize();
   2986       } else
   2987         return false;
   2988     }
   2989   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2990     if (Flags.isByVal())
   2991       // ByVal argument is passed in as a pointer but it's now being
   2992       // dereferenced. e.g.
   2993       // define @foo(%struct.X* %A) {
   2994       //   tail call @bar(%struct.X* byval %A)
   2995       // }
   2996       return false;
   2997     SDValue Ptr = Ld->getBasePtr();
   2998     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2999     if (!FINode)
   3000       return false;
   3001     FI = FINode->getIndex();
   3002   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
   3003     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
   3004     FI = FINode->getIndex();
   3005     Bytes = Flags.getByValSize();
   3006   } else
   3007     return false;
   3008 
   3009   assert(FI != INT_MAX);
   3010   if (!MFI->isFixedObjectIndex(FI))
   3011     return false;
   3012   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   3013 }
   3014 
   3015 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   3016 /// for tail call optimization. Targets which want to do tail call
   3017 /// optimization should implement this function.
   3018 bool
   3019 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   3020                                                      CallingConv::ID CalleeCC,
   3021                                                      bool isVarArg,
   3022                                                      bool isCalleeStructRet,
   3023                                                      bool isCallerStructRet,
   3024                                                      Type *RetTy,
   3025                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3026                                     const SmallVectorImpl<SDValue> &OutVals,
   3027                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3028                                                      SelectionDAG &DAG) const {
   3029   if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
   3030     return false;
   3031 
   3032   // If -tailcallopt is specified, make fastcc functions tail-callable.
   3033   const MachineFunction &MF = DAG.getMachineFunction();
   3034   const Function *CallerF = MF.getFunction();
   3035 
   3036   // If the function return type is x86_fp80 and the callee return type is not,
   3037   // then the FP_EXTEND of the call result is not a nop. It's not safe to
   3038   // perform a tailcall optimization here.
   3039   if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
   3040     return false;
   3041 
   3042   CallingConv::ID CallerCC = CallerF->getCallingConv();
   3043   bool CCMatch = CallerCC == CalleeCC;
   3044   bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
   3045   bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
   3046 
   3047   if (getTargetMachine().Options.GuaranteedTailCallOpt) {
   3048     if (IsTailCallConvention(CalleeCC) && CCMatch)
   3049       return true;
   3050     return false;
   3051   }
   3052 
   3053   // Look for obvious safe cases to perform tail call optimization that do not
   3054   // require ABI changes. This is what gcc calls sibcall.
   3055 
   3056   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
   3057   // emit a special epilogue.
   3058   const X86RegisterInfo *RegInfo =
   3059     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   3060   if (RegInfo->needsStackRealignment(MF))
   3061     return false;
   3062 
   3063   // Also avoid sibcall optimization if either caller or callee uses struct
   3064   // return semantics.
   3065   if (isCalleeStructRet || isCallerStructRet)
   3066     return false;
   3067 
   3068   // An stdcall caller is expected to clean up its arguments; the callee
   3069   // isn't going to do that.
   3070   if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
   3071     return false;
   3072 
   3073   // Do not sibcall optimize vararg calls unless all arguments are passed via
   3074   // registers.
   3075   if (isVarArg && !Outs.empty()) {
   3076 
   3077     // Optimizing for varargs on Win64 is unlikely to be safe without
   3078     // additional testing.
   3079     if (IsCalleeWin64 || IsCallerWin64)
   3080       return false;
   3081 
   3082     SmallVector<CCValAssign, 16> ArgLocs;
   3083     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   3084                    getTargetMachine(), ArgLocs, *DAG.getContext());
   3085 
   3086     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   3087     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
   3088       if (!ArgLocs[i].isRegLoc())
   3089         return false;
   3090   }
   3091 
   3092   // If the call result is in ST0 / ST1, it needs to be popped off the x87
   3093   // stack.  Therefore, if it's not used by the call it is not safe to optimize
   3094   // this into a sibcall.
   3095   bool Unused = false;
   3096   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   3097     if (!Ins[i].Used) {
   3098       Unused = true;
   3099       break;
   3100     }
   3101   }
   3102   if (Unused) {
   3103     SmallVector<CCValAssign, 16> RVLocs;
   3104     CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
   3105                    getTargetMachine(), RVLocs, *DAG.getContext());
   3106     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   3107     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   3108       CCValAssign &VA = RVLocs[i];
   3109       if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
   3110         return false;
   3111     }
   3112   }
   3113 
   3114   // If the calling conventions do not match, then we'd better make sure the
   3115   // results are returned in the same way as what the caller expects.
   3116   if (!CCMatch) {
   3117     SmallVector<CCValAssign, 16> RVLocs1;
   3118     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   3119                     getTargetMachine(), RVLocs1, *DAG.getContext());
   3120     CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
   3121 
   3122     SmallVector<CCValAssign, 16> RVLocs2;
   3123     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   3124                     getTargetMachine(), RVLocs2, *DAG.getContext());
   3125     CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
   3126 
   3127     if (RVLocs1.size() != RVLocs2.size())
   3128       return false;
   3129     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   3130       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   3131         return false;
   3132       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   3133         return false;
   3134       if (RVLocs1[i].isRegLoc()) {
   3135         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   3136           return false;
   3137       } else {
   3138         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   3139           return false;
   3140       }
   3141     }
   3142   }
   3143 
   3144   // If the callee takes no arguments then go on to check the results of the
   3145   // call.
   3146   if (!Outs.empty()) {
   3147     // Check if stack adjustment is needed. For now, do not do this if any
   3148     // argument is passed on the stack.
   3149     SmallVector<CCValAssign, 16> ArgLocs;
   3150     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   3151                    getTargetMachine(), ArgLocs, *DAG.getContext());
   3152 
   3153     // Allocate shadow area for Win64
   3154     if (IsCalleeWin64)
   3155       CCInfo.AllocateStack(32, 8);
   3156 
   3157     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   3158     if (CCInfo.getNextStackOffset()) {
   3159       MachineFunction &MF = DAG.getMachineFunction();
   3160       if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
   3161         return false;
   3162 
   3163       // Check if the arguments are already laid out in the right way as
   3164       // the caller's fixed stack objects.
   3165       MachineFrameInfo *MFI = MF.getFrameInfo();
   3166       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   3167       const X86InstrInfo *TII =
   3168         ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
   3169       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3170         CCValAssign &VA = ArgLocs[i];
   3171         SDValue Arg = OutVals[i];
   3172         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3173         if (VA.getLocInfo() == CCValAssign::Indirect)
   3174           return false;
   3175         if (!VA.isRegLoc()) {
   3176           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   3177                                    MFI, MRI, TII))
   3178             return false;
   3179         }
   3180       }
   3181     }
   3182 
   3183     // If the tailcall address may be in a register, then make sure it's
   3184     // possible to register allocate for it. In 32-bit, the call address can
   3185     // only target EAX, EDX, or ECX since the tail call must be scheduled after
   3186     // callee-saved registers are restored. These happen to be the same
   3187     // registers used to pass 'inreg' arguments so watch out for those.
   3188     if (!Subtarget->is64Bit() &&
   3189         ((!isa<GlobalAddressSDNode>(Callee) &&
   3190           !isa<ExternalSymbolSDNode>(Callee)) ||
   3191          getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
   3192       unsigned NumInRegs = 0;
   3193       // In PIC we need an extra register to formulate the address computation
   3194       // for the callee.
   3195       unsigned MaxInRegs =
   3196           (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
   3197 
   3198       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3199         CCValAssign &VA = ArgLocs[i];
   3200         if (!VA.isRegLoc())
   3201           continue;
   3202         unsigned Reg = VA.getLocReg();
   3203         switch (Reg) {
   3204         default: break;
   3205         case X86::EAX: case X86::EDX: case X86::ECX:
   3206           if (++NumInRegs == MaxInRegs)
   3207             return false;
   3208           break;
   3209         }
   3210       }
   3211     }
   3212   }
   3213 
   3214   return true;
   3215 }
   3216 
   3217 FastISel *
   3218 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   3219                                   const TargetLibraryInfo *libInfo) const {
   3220   return X86::createFastISel(funcInfo, libInfo);
   3221 }
   3222 
   3223 //===----------------------------------------------------------------------===//
   3224 //                           Other Lowering Hooks
   3225 //===----------------------------------------------------------------------===//
   3226 
   3227 static bool MayFoldLoad(SDValue Op) {
   3228   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
   3229 }
   3230 
   3231 static bool MayFoldIntoStore(SDValue Op) {
   3232   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
   3233 }
   3234 
   3235 static bool isTargetShuffle(unsigned Opcode) {
   3236   switch(Opcode) {
   3237   default: return false;
   3238   case X86ISD::PSHUFD:
   3239   case X86ISD::PSHUFHW:
   3240   case X86ISD::PSHUFLW:
   3241   case X86ISD::SHUFP:
   3242   case X86ISD::PALIGNR:
   3243   case X86ISD::MOVLHPS:
   3244   case X86ISD::MOVLHPD:
   3245   case X86ISD::MOVHLPS:
   3246   case X86ISD::MOVLPS:
   3247   case X86ISD::MOVLPD:
   3248   case X86ISD::MOVSHDUP:
   3249   case X86ISD::MOVSLDUP:
   3250   case X86ISD::MOVDDUP:
   3251   case X86ISD::MOVSS:
   3252   case X86ISD::MOVSD:
   3253   case X86ISD::UNPCKL:
   3254   case X86ISD::UNPCKH:
   3255   case X86ISD::VPERMILP:
   3256   case X86ISD::VPERM2X128:
   3257   case X86ISD::VPERMI:
   3258     return true;
   3259   }
   3260 }
   3261 
   3262 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
   3263                                     SDValue V1, SelectionDAG &DAG) {
   3264   switch(Opc) {
   3265   default: llvm_unreachable("Unknown x86 shuffle node");
   3266   case X86ISD::MOVSHDUP:
   3267   case X86ISD::MOVSLDUP:
   3268   case X86ISD::MOVDDUP:
   3269     return DAG.getNode(Opc, dl, VT, V1);
   3270   }
   3271 }
   3272 
   3273 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
   3274                                     SDValue V1, unsigned TargetMask,
   3275                                     SelectionDAG &DAG) {
   3276   switch(Opc) {
   3277   default: llvm_unreachable("Unknown x86 shuffle node");
   3278   case X86ISD::PSHUFD:
   3279   case X86ISD::PSHUFHW:
   3280   case X86ISD::PSHUFLW:
   3281   case X86ISD::VPERMILP:
   3282   case X86ISD::VPERMI:
   3283     return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
   3284   }
   3285 }
   3286 
   3287 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
   3288                                     SDValue V1, SDValue V2, unsigned TargetMask,
   3289                                     SelectionDAG &DAG) {
   3290   switch(Opc) {
   3291   default: llvm_unreachable("Unknown x86 shuffle node");
   3292   case X86ISD::PALIGNR:
   3293   case X86ISD::SHUFP:
   3294   case X86ISD::VPERM2X128:
   3295     return DAG.getNode(Opc, dl, VT, V1, V2,
   3296                        DAG.getConstant(TargetMask, MVT::i8));
   3297   }
   3298 }
   3299 
   3300 static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
   3301                                     SDValue V1, SDValue V2, SelectionDAG &DAG) {
   3302   switch(Opc) {
   3303   default: llvm_unreachable("Unknown x86 shuffle node");
   3304   case X86ISD::MOVLHPS:
   3305   case X86ISD::MOVLHPD:
   3306   case X86ISD::MOVHLPS:
   3307   case X86ISD::MOVLPS:
   3308   case X86ISD::MOVLPD:
   3309   case X86ISD::MOVSS:
   3310   case X86ISD::MOVSD:
   3311   case X86ISD::UNPCKL:
   3312   case X86ISD::UNPCKH:
   3313     return DAG.getNode(Opc, dl, VT, V1, V2);
   3314   }
   3315 }
   3316 
   3317 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   3318   MachineFunction &MF = DAG.getMachineFunction();
   3319   const X86RegisterInfo *RegInfo =
   3320     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   3321   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   3322   int ReturnAddrIndex = FuncInfo->getRAIndex();
   3323 
   3324   if (ReturnAddrIndex == 0) {
   3325     // Set up a frame object for the return address.
   3326     unsigned SlotSize = RegInfo->getSlotSize();
   3327     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   3328                                                            -(int64_t)SlotSize,
   3329                                                            false);
   3330     FuncInfo->setRAIndex(ReturnAddrIndex);
   3331   }
   3332 
   3333   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
   3334 }
   3335 
   3336 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
   3337                                        bool hasSymbolicDisplacement) {
   3338   // Offset should fit into 32 bit immediate field.
   3339   if (!isInt<32>(Offset))
   3340     return false;
   3341 
   3342   // If we don't have a symbolic displacement - we don't have any extra
   3343   // restrictions.
   3344   if (!hasSymbolicDisplacement)
   3345     return true;
   3346 
   3347   // FIXME: Some tweaks might be needed for medium code model.
   3348   if (M != CodeModel::Small && M != CodeModel::Kernel)
   3349     return false;
   3350 
   3351   // For small code model we assume that latest object is 16MB before end of 31
   3352   // bits boundary. We may also accept pretty large negative constants knowing
   3353   // that all objects are in the positive half of address space.
   3354   if (M == CodeModel::Small && Offset < 16*1024*1024)
   3355     return true;
   3356 
   3357   // For kernel code model we know that all object resist in the negative half
   3358   // of 32bits address space. We may not accept negative offsets, since they may
   3359   // be just off and we may accept pretty large positive ones.
   3360   if (M == CodeModel::Kernel && Offset > 0)
   3361     return true;
   3362 
   3363   return false;
   3364 }
   3365 
   3366 /// isCalleePop - Determines whether the callee is required to pop its
   3367 /// own arguments. Callee pop is necessary to support tail calls.
   3368 bool X86::isCalleePop(CallingConv::ID CallingConv,
   3369                       bool is64Bit, bool IsVarArg, bool TailCallOpt) {
   3370   if (IsVarArg)
   3371     return false;
   3372 
   3373   switch (CallingConv) {
   3374   default:
   3375     return false;
   3376   case CallingConv::X86_StdCall:
   3377     return !is64Bit;
   3378   case CallingConv::X86_FastCall:
   3379     return !is64Bit;
   3380   case CallingConv::X86_ThisCall:
   3381     return !is64Bit;
   3382   case CallingConv::Fast:
   3383     return TailCallOpt;
   3384   case CallingConv::GHC:
   3385     return TailCallOpt;
   3386   case CallingConv::HiPE:
   3387     return TailCallOpt;
   3388   }
   3389 }
   3390 
   3391 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
   3392 /// specific condition code, returning the condition code and the LHS/RHS of the
   3393 /// comparison to make.
   3394 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
   3395                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
   3396   if (!isFP) {
   3397     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   3398       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
   3399         // X > -1   -> X == 0, jump !sign.
   3400         RHS = DAG.getConstant(0, RHS.getValueType());
   3401         return X86::COND_NS;
   3402       }
   3403       if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
   3404         // X < 0   -> X == 0, jump on sign.
   3405         return X86::COND_S;
   3406       }
   3407       if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
   3408         // X < 1   -> X <= 0
   3409         RHS = DAG.getConstant(0, RHS.getValueType());
   3410         return X86::COND_LE;
   3411       }
   3412     }
   3413 
   3414     switch (SetCCOpcode) {
   3415     default: llvm_unreachable("Invalid integer condition!");
   3416     case ISD::SETEQ:  return X86::COND_E;
   3417     case ISD::SETGT:  return X86::COND_G;
   3418     case ISD::SETGE:  return X86::COND_GE;
   3419     case ISD::SETLT:  return X86::COND_L;
   3420     case ISD::SETLE:  return X86::COND_LE;
   3421     case ISD::SETNE:  return X86::COND_NE;
   3422     case ISD::SETULT: return X86::COND_B;
   3423     case ISD::SETUGT: return X86::COND_A;
   3424     case ISD::SETULE: return X86::COND_BE;
   3425     case ISD::SETUGE: return X86::COND_AE;
   3426     }
   3427   }
   3428 
   3429   // First determine if it is required or is profitable to flip the operands.
   3430 
   3431   // If LHS is a foldable load, but RHS is not, flip the condition.
   3432   if (ISD::isNON_EXTLoad(LHS.getNode()) &&
   3433       !ISD::isNON_EXTLoad(RHS.getNode())) {
   3434     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
   3435     std::swap(LHS, RHS);
   3436   }
   3437 
   3438   switch (SetCCOpcode) {
   3439   default: break;
   3440   case ISD::SETOLT:
   3441   case ISD::SETOLE:
   3442   case ISD::SETUGT:
   3443   case ISD::SETUGE:
   3444     std::swap(LHS, RHS);
   3445     break;
   3446   }
   3447 
   3448   // On a floating point condition, the flags are set as follows:
   3449   // ZF  PF  CF   op
   3450   //  0 | 0 | 0 | X > Y
   3451   //  0 | 0 | 1 | X < Y
   3452   //  1 | 0 | 0 | X == Y
   3453   //  1 | 1 | 1 | unordered
   3454   switch (SetCCOpcode) {
   3455   default: llvm_unreachable("Condcode should be pre-legalized away");
   3456   case ISD::SETUEQ:
   3457   case ISD::SETEQ:   return X86::COND_E;
   3458   case ISD::SETOLT:              // flipped
   3459   case ISD::SETOGT:
   3460   case ISD::SETGT:   return X86::COND_A;
   3461   case ISD::SETOLE:              // flipped
   3462   case ISD::SETOGE:
   3463   case ISD::SETGE:   return X86::COND_AE;
   3464   case ISD::SETUGT:              // flipped
   3465   case ISD::SETULT:
   3466   case ISD::SETLT:   return X86::COND_B;
   3467   case ISD::SETUGE:              // flipped
   3468   case ISD::SETULE:
   3469   case ISD::SETLE:   return X86::COND_BE;
   3470   case ISD::SETONE:
   3471   case ISD::SETNE:   return X86::COND_NE;
   3472   case ISD::SETUO:   return X86::COND_P;
   3473   case ISD::SETO:    return X86::COND_NP;
   3474   case ISD::SETOEQ:
   3475   case ISD::SETUNE:  return X86::COND_INVALID;
   3476   }
   3477 }
   3478 
   3479 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
   3480 /// code. Current x86 isa includes the following FP cmov instructions:
   3481 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
   3482 static bool hasFPCMov(unsigned X86CC) {
   3483   switch (X86CC) {
   3484   default:
   3485     return false;
   3486   case X86::COND_B:
   3487   case X86::COND_BE:
   3488   case X86::COND_E:
   3489   case X86::COND_P:
   3490   case X86::COND_A:
   3491   case X86::COND_AE:
   3492   case X86::COND_NE:
   3493   case X86::COND_NP:
   3494     return true;
   3495   }
   3496 }
   3497 
   3498 /// isFPImmLegal - Returns true if the target can instruction select the
   3499 /// specified FP immediate natively. If false, the legalizer will
   3500 /// materialize the FP immediate as a load from a constant pool.
   3501 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3502   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
   3503     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
   3504       return true;
   3505   }
   3506   return false;
   3507 }
   3508 
   3509 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
   3510 /// the specified range (L, H].
   3511 static bool isUndefOrInRange(int Val, int Low, int Hi) {
   3512   return (Val < 0) || (Val >= Low && Val < Hi);
   3513 }
   3514 
   3515 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
   3516 /// specified value.
   3517 static bool isUndefOrEqual(int Val, int CmpVal) {
   3518   return (Val < 0 || Val == CmpVal);
   3519 }
   3520 
   3521 /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
   3522 /// from position Pos and ending in Pos+Size, falls within the specified
   3523 /// sequential range (L, L+Pos]. or is undef.
   3524 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
   3525                                        unsigned Pos, unsigned Size, int Low) {
   3526   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
   3527     if (!isUndefOrEqual(Mask[i], Low))
   3528       return false;
   3529   return true;
   3530 }
   3531 
   3532 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
   3533 /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
   3534 /// the second operand.
   3535 static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
   3536   if (VT == MVT::v4f32 || VT == MVT::v4i32 )
   3537     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
   3538   if (VT == MVT::v2f64 || VT == MVT::v2i64)
   3539     return (Mask[0] < 2 && Mask[1] < 2);
   3540   return false;
   3541 }
   3542 
   3543 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
   3544 /// is suitable for input to PSHUFHW.
   3545 static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
   3546   if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
   3547     return false;
   3548 
   3549   // Lower quadword copied in order or undef.
   3550   if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
   3551     return false;
   3552 
   3553   // Upper quadword shuffled.
   3554   for (unsigned i = 4; i != 8; ++i)
   3555     if (!isUndefOrInRange(Mask[i], 4, 8))
   3556       return false;
   3557 
   3558   if (VT == MVT::v16i16) {
   3559     // Lower quadword copied in order or undef.
   3560     if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
   3561       return false;
   3562 
   3563     // Upper quadword shuffled.
   3564     for (unsigned i = 12; i != 16; ++i)
   3565       if (!isUndefOrInRange(Mask[i], 12, 16))
   3566         return false;
   3567   }
   3568 
   3569   return true;
   3570 }
   3571 
   3572 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
   3573 /// is suitable for input to PSHUFLW.
   3574 static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
   3575   if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
   3576     return false;
   3577 
   3578   // Upper quadword copied in order.
   3579   if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
   3580     return false;
   3581 
   3582   // Lower quadword shuffled.
   3583   for (unsigned i = 0; i != 4; ++i)
   3584     if (!isUndefOrInRange(Mask[i], 0, 4))
   3585       return false;
   3586 
   3587   if (VT == MVT::v16i16) {
   3588     // Upper quadword copied in order.
   3589     if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
   3590       return false;
   3591 
   3592     // Lower quadword shuffled.
   3593     for (unsigned i = 8; i != 12; ++i)
   3594       if (!isUndefOrInRange(Mask[i], 8, 12))
   3595         return false;
   3596   }
   3597 
   3598   return true;
   3599 }
   3600 
   3601 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
   3602 /// is suitable for input to PALIGNR.
   3603 static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
   3604                           const X86Subtarget *Subtarget) {
   3605   if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
   3606       (VT.is256BitVector() && !Subtarget->hasInt256()))
   3607     return false;
   3608 
   3609   unsigned NumElts = VT.getVectorNumElements();
   3610   unsigned NumLanes = VT.getSizeInBits()/128;
   3611   unsigned NumLaneElts = NumElts/NumLanes;
   3612 
   3613   // Do not handle 64-bit element shuffles with palignr.
   3614   if (NumLaneElts == 2)
   3615     return false;
   3616 
   3617   for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
   3618     unsigned i;
   3619     for (i = 0; i != NumLaneElts; ++i) {
   3620       if (Mask[i+l] >= 0)
   3621         break;
   3622     }
   3623 
   3624     // Lane is all undef, go to next lane
   3625     if (i == NumLaneElts)
   3626       continue;
   3627 
   3628     int Start = Mask[i+l];
   3629 
   3630     // Make sure its in this lane in one of the sources
   3631     if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
   3632         !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
   3633       return false;
   3634 
   3635     // If not lane 0, then we must match lane 0
   3636     if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
   3637       return false;
   3638 
   3639     // Correct second source to be contiguous with first source
   3640     if (Start >= (int)NumElts)
   3641       Start -= NumElts - NumLaneElts;
   3642 
   3643     // Make sure we're shifting in the right direction.
   3644     if (Start <= (int)(i+l))
   3645       return false;
   3646 
   3647     Start -= i;
   3648 
   3649     // Check the rest of the elements to see if they are consecutive.
   3650     for (++i; i != NumLaneElts; ++i) {
   3651       int Idx = Mask[i+l];
   3652 
   3653       // Make sure its in this lane
   3654       if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
   3655           !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
   3656         return false;
   3657 
   3658       // If not lane 0, then we must match lane 0
   3659       if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
   3660         return false;
   3661 
   3662       if (Idx >= (int)NumElts)
   3663         Idx -= NumElts - NumLaneElts;
   3664 
   3665       if (!isUndefOrEqual(Idx, Start+i))
   3666         return false;
   3667 
   3668     }
   3669   }
   3670 
   3671   return true;
   3672 }
   3673 
   3674 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
   3675 /// the two vector operands have swapped position.
   3676 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
   3677                                      unsigned NumElems) {
   3678   for (unsigned i = 0; i != NumElems; ++i) {
   3679     int idx = Mask[i];
   3680     if (idx < 0)
   3681       continue;
   3682     else if (idx < (int)NumElems)
   3683       Mask[i] = idx + NumElems;
   3684     else
   3685       Mask[i] = idx - NumElems;
   3686   }
   3687 }
   3688 
   3689 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
   3690 /// specifies a shuffle of elements that is suitable for input to 128/256-bit
   3691 /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
   3692 /// reverse of what x86 shuffles want.
   3693 static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
   3694                         bool Commuted = false) {
   3695   if (!HasFp256 && VT.is256BitVector())
   3696     return false;
   3697 
   3698   unsigned NumElems = VT.getVectorNumElements();
   3699   unsigned NumLanes = VT.getSizeInBits()/128;
   3700   unsigned NumLaneElems = NumElems/NumLanes;
   3701 
   3702   if (NumLaneElems != 2 && NumLaneElems != 4)
   3703     return false;
   3704 
   3705   // VSHUFPSY divides the resulting vector into 4 chunks.
   3706   // The sources are also splitted into 4 chunks, and each destination
   3707   // chunk must come from a different source chunk.
   3708   //
   3709   //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
   3710   //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
   3711   //
   3712   //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
   3713   //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
   3714   //
   3715   // VSHUFPDY divides the resulting vector into 4 chunks.
   3716   // The sources are also splitted into 4 chunks, and each destination
   3717   // chunk must come from a different source chunk.
   3718   //
   3719   //  SRC1 =>      X3       X2       X1       X0
   3720   //  SRC2 =>      Y3       Y2       Y1       Y0
   3721   //
   3722   //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
   3723   //
   3724   unsigned HalfLaneElems = NumLaneElems/2;
   3725   for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
   3726     for (unsigned i = 0; i != NumLaneElems; ++i) {
   3727       int Idx = Mask[i+l];
   3728       unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
   3729       if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
   3730         return false;
   3731       // For VSHUFPSY, the mask of the second half must be the same as the
   3732       // first but with the appropriate offsets. This works in the same way as
   3733       // VPERMILPS works with masks.
   3734       if (NumElems != 8 || l == 0 || Mask[i] < 0)
   3735         continue;
   3736       if (!isUndefOrEqual(Idx, Mask[i]+l))
   3737         return false;
   3738     }
   3739   }
   3740 
   3741   return true;
   3742 }
   3743 
   3744 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3745 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
   3746 static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
   3747   if (!VT.is128BitVector())
   3748     return false;
   3749 
   3750   unsigned NumElems = VT.getVectorNumElements();
   3751 
   3752   if (NumElems != 4)
   3753     return false;
   3754 
   3755   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
   3756   return isUndefOrEqual(Mask[0], 6) &&
   3757          isUndefOrEqual(Mask[1], 7) &&
   3758          isUndefOrEqual(Mask[2], 2) &&
   3759          isUndefOrEqual(Mask[3], 3);
   3760 }
   3761 
   3762 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
   3763 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
   3764 /// <2, 3, 2, 3>
   3765 static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
   3766   if (!VT.is128BitVector())
   3767     return false;
   3768 
   3769   unsigned NumElems = VT.getVectorNumElements();
   3770 
   3771   if (NumElems != 4)
   3772     return false;
   3773 
   3774   return isUndefOrEqual(Mask[0], 2) &&
   3775          isUndefOrEqual(Mask[1], 3) &&
   3776          isUndefOrEqual(Mask[2], 2) &&
   3777          isUndefOrEqual(Mask[3], 3);
   3778 }
   3779 
   3780 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
   3781 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
   3782 static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
   3783   if (!VT.is128BitVector())
   3784     return false;
   3785 
   3786   unsigned NumElems = VT.getVectorNumElements();
   3787 
   3788   if (NumElems != 2 && NumElems != 4)
   3789     return false;
   3790 
   3791   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   3792     if (!isUndefOrEqual(Mask[i], i + NumElems))
   3793       return false;
   3794 
   3795   for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
   3796     if (!isUndefOrEqual(Mask[i], i))
   3797       return false;
   3798 
   3799   return true;
   3800 }
   3801 
   3802 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3803 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
   3804 static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
   3805   if (!VT.is128BitVector())
   3806     return false;
   3807 
   3808   unsigned NumElems = VT.getVectorNumElements();
   3809 
   3810   if (NumElems != 2 && NumElems != 4)
   3811     return false;
   3812 
   3813   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   3814     if (!isUndefOrEqual(Mask[i], i))
   3815       return false;
   3816 
   3817   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   3818     if (!isUndefOrEqual(Mask[i + e], i + NumElems))
   3819       return false;
   3820 
   3821   return true;
   3822 }
   3823 
   3824 //
   3825 // Some special combinations that can be optimized.
   3826 //
   3827 static
   3828 SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
   3829                                SelectionDAG &DAG) {
   3830   MVT VT = SVOp->getValueType(0).getSimpleVT();
   3831   SDLoc dl(SVOp);
   3832 
   3833   if (VT != MVT::v8i32 && VT != MVT::v8f32)
   3834     return SDValue();
   3835 
   3836   ArrayRef<int> Mask = SVOp->getMask();
   3837 
   3838   // These are the special masks that may be optimized.
   3839   static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
   3840   static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
   3841   bool MatchEvenMask = true;
   3842   bool MatchOddMask  = true;
   3843   for (int i=0; i<8; ++i) {
   3844     if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
   3845       MatchEvenMask = false;
   3846     if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
   3847       MatchOddMask = false;
   3848   }
   3849 
   3850   if (!MatchEvenMask && !MatchOddMask)
   3851     return SDValue();
   3852 
   3853   SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
   3854 
   3855   SDValue Op0 = SVOp->getOperand(0);
   3856   SDValue Op1 = SVOp->getOperand(1);
   3857 
   3858   if (MatchEvenMask) {
   3859     // Shift the second operand right to 32 bits.
   3860     static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
   3861     Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
   3862   } else {
   3863     // Shift the first operand left to 32 bits.
   3864     static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
   3865     Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
   3866   }
   3867   static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
   3868   return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
   3869 }
   3870 
   3871 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
   3872 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
   3873 static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
   3874                          bool HasInt256, bool V2IsSplat = false) {
   3875   unsigned NumElts = VT.getVectorNumElements();
   3876 
   3877   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3878          "Unsupported vector type for unpckh");
   3879 
   3880   if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
   3881       (!HasInt256 || (NumElts != 16 && NumElts != 32)))
   3882     return false;
   3883 
   3884   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3885   // independently on 128-bit lanes.
   3886   unsigned NumLanes = VT.getSizeInBits()/128;
   3887   unsigned NumLaneElts = NumElts/NumLanes;
   3888 
   3889   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
   3890     for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
   3891       int BitI  = Mask[l+i];
   3892       int BitI1 = Mask[l+i+1];
   3893       if (!isUndefOrEqual(BitI, j))
   3894         return false;
   3895       if (V2IsSplat) {
   3896         if (!isUndefOrEqual(BitI1, NumElts))
   3897           return false;
   3898       } else {
   3899         if (!isUndefOrEqual(BitI1, j + NumElts))
   3900           return false;
   3901       }
   3902     }
   3903   }
   3904 
   3905   return true;
   3906 }
   3907 
   3908 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
   3909 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
   3910 static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
   3911                          bool HasInt256, bool V2IsSplat = false) {
   3912   unsigned NumElts = VT.getVectorNumElements();
   3913 
   3914   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3915          "Unsupported vector type for unpckh");
   3916 
   3917   if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
   3918       (!HasInt256 || (NumElts != 16 && NumElts != 32)))
   3919     return false;
   3920 
   3921   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3922   // independently on 128-bit lanes.
   3923   unsigned NumLanes = VT.getSizeInBits()/128;
   3924   unsigned NumLaneElts = NumElts/NumLanes;
   3925 
   3926   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
   3927     for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
   3928       int BitI  = Mask[l+i];
   3929       int BitI1 = Mask[l+i+1];
   3930       if (!isUndefOrEqual(BitI, j))
   3931         return false;
   3932       if (V2IsSplat) {
   3933         if (isUndefOrEqual(BitI1, NumElts))
   3934           return false;
   3935       } else {
   3936         if (!isUndefOrEqual(BitI1, j+NumElts))
   3937           return false;
   3938       }
   3939     }
   3940   }
   3941   return true;
   3942 }
   3943 
   3944 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
   3945 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
   3946 /// <0, 0, 1, 1>
   3947 static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
   3948   unsigned NumElts = VT.getVectorNumElements();
   3949   bool Is256BitVec = VT.is256BitVector();
   3950 
   3951   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3952          "Unsupported vector type for unpckh");
   3953 
   3954   if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
   3955       (!HasInt256 || (NumElts != 16 && NumElts != 32)))
   3956     return false;
   3957 
   3958   // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
   3959   // FIXME: Need a better way to get rid of this, there's no latency difference
   3960   // between UNPCKLPD and MOVDDUP, the later should always be checked first and
   3961   // the former later. We should also remove the "_undef" special mask.
   3962   if (NumElts == 4 && Is256BitVec)
   3963     return false;
   3964 
   3965   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3966   // independently on 128-bit lanes.
   3967   unsigned NumLanes = VT.getSizeInBits()/128;
   3968   unsigned NumLaneElts = NumElts/NumLanes;
   3969 
   3970   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
   3971     for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
   3972       int BitI  = Mask[l+i];
   3973       int BitI1 = Mask[l+i+1];
   3974 
   3975       if (!isUndefOrEqual(BitI, j))
   3976         return false;
   3977       if (!isUndefOrEqual(BitI1, j))
   3978         return false;
   3979     }
   3980   }
   3981 
   3982   return true;
   3983 }
   3984 
   3985 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
   3986 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
   3987 /// <2, 2, 3, 3>
   3988 static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
   3989   unsigned NumElts = VT.getVectorNumElements();
   3990 
   3991   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3992          "Unsupported vector type for unpckh");
   3993 
   3994   if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
   3995       (!HasInt256 || (NumElts != 16 && NumElts != 32)))
   3996     return false;
   3997 
   3998   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3999   // independently on 128-bit lanes.
   4000   unsigned NumLanes = VT.getSizeInBits()/128;
   4001   unsigned NumLaneElts = NumElts/NumLanes;
   4002 
   4003   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
   4004     for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
   4005       int BitI  = Mask[l+i];
   4006       int BitI1 = Mask[l+i+1];
   4007       if (!isUndefOrEqual(BitI, j))
   4008         return false;
   4009       if (!isUndefOrEqual(BitI1, j))
   4010         return false;
   4011     }
   4012   }
   4013   return true;
   4014 }
   4015 
   4016 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
   4017 /// specifies a shuffle of elements that is suitable for input to MOVSS,
   4018 /// MOVSD, and MOVD, i.e. setting the lowest element.
   4019 static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
   4020   if (VT.getVectorElementType().getSizeInBits() < 32)
   4021     return false;
   4022   if (!VT.is128BitVector())
   4023     return false;
   4024 
   4025   unsigned NumElts = VT.getVectorNumElements();
   4026 
   4027   if (!isUndefOrEqual(Mask[0], NumElts))
   4028     return false;
   4029 
   4030   for (unsigned i = 1; i != NumElts; ++i)
   4031     if (!isUndefOrEqual(Mask[i], i))
   4032       return false;
   4033 
   4034   return true;
   4035 }
   4036 
   4037 /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
   4038 /// as permutations between 128-bit chunks or halves. As an example: this
   4039 /// shuffle bellow:
   4040 ///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
   4041 /// The first half comes from the second half of V1 and the second half from the
   4042 /// the second half of V2.
   4043 static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
   4044   if (!HasFp256 || !VT.is256BitVector())
   4045     return false;
   4046 
   4047   // The shuffle result is divided into half A and half B. In total the two
   4048   // sources have 4 halves, namely: C, D, E, F. The final values of A and
   4049   // B must come from C, D, E or F.
   4050   unsigned HalfSize = VT.getVectorNumElements()/2;
   4051   bool MatchA = false, MatchB = false;
   4052 
   4053   // Check if A comes from one of C, D, E, F.
   4054   for (unsigned Half = 0; Half != 4; ++Half) {
   4055     if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
   4056       MatchA = true;
   4057       break;
   4058     }
   4059   }
   4060 
   4061   // Check if B comes from one of C, D, E, F.
   4062   for (unsigned Half = 0; Half != 4; ++Half) {
   4063     if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
   4064       MatchB = true;
   4065       break;
   4066     }
   4067   }
   4068 
   4069   return MatchA && MatchB;
   4070 }
   4071 
   4072 /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
   4073 /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
   4074 static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
   4075   MVT VT = SVOp->getValueType(0).getSimpleVT();
   4076 
   4077   unsigned HalfSize = VT.getVectorNumElements()/2;
   4078 
   4079   unsigned FstHalf = 0, SndHalf = 0;
   4080   for (unsigned i = 0; i < HalfSize; ++i) {
   4081     if (SVOp->getMaskElt(i) > 0) {
   4082       FstHalf = SVOp->getMaskElt(i)/HalfSize;
   4083       break;
   4084     }
   4085   }
   4086   for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
   4087     if (SVOp->getMaskElt(i) > 0) {
   4088       SndHalf = SVOp->getMaskElt(i)/HalfSize;
   4089       break;
   4090     }
   4091   }
   4092 
   4093   return (FstHalf | (SndHalf << 4));
   4094 }
   4095 
   4096 /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
   4097 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
   4098 /// Note that VPERMIL mask matching is different depending whether theunderlying
   4099 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
   4100 /// to the same elements of the low, but to the higher half of the source.
   4101 /// In VPERMILPD the two lanes could be shuffled independently of each other
   4102 /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
   4103 static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
   4104   if (!HasFp256)
   4105     return false;
   4106 
   4107   unsigned NumElts = VT.getVectorNumElements();
   4108   // Only match 256-bit with 32/64-bit types
   4109   if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
   4110     return false;
   4111 
   4112   unsigned NumLanes = VT.getSizeInBits()/128;
   4113   unsigned LaneSize = NumElts/NumLanes;
   4114   for (unsigned l = 0; l != NumElts; l += LaneSize) {
   4115     for (unsigned i = 0; i != LaneSize; ++i) {
   4116       if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
   4117         return false;
   4118       if (NumElts != 8 || l == 0)
   4119         continue;
   4120       // VPERMILPS handling
   4121       if (Mask[i] < 0)
   4122         continue;
   4123       if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
   4124         return false;
   4125     }
   4126   }
   4127 
   4128   return true;
   4129 }
   4130 
   4131 /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
   4132 /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
   4133 /// element of vector 2 and the other elements to come from vector 1 in order.
   4134 static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
   4135                                bool V2IsSplat = false, bool V2IsUndef = false) {
   4136   if (!VT.is128BitVector())
   4137     return false;
   4138 
   4139   unsigned NumOps = VT.getVectorNumElements();
   4140   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
   4141     return false;
   4142 
   4143   if (!isUndefOrEqual(Mask[0], 0))
   4144     return false;
   4145 
   4146   for (unsigned i = 1; i != NumOps; ++i)
   4147     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
   4148           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
   4149           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
   4150       return false;
   4151 
   4152   return true;
   4153 }
   4154 
   4155 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   4156 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
   4157 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
   4158 static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
   4159                            const X86Subtarget *Subtarget) {
   4160   if (!Subtarget->hasSSE3())
   4161     return false;
   4162 
   4163   unsigned NumElems = VT.getVectorNumElements();
   4164 
   4165   if ((VT.is128BitVector() && NumElems != 4) ||
   4166       (VT.is256BitVector() && NumElems != 8))
   4167     return false;
   4168 
   4169   // "i+1" is the value the indexed mask element must have
   4170   for (unsigned i = 0; i != NumElems; i += 2)
   4171     if (!isUndefOrEqual(Mask[i], i+1) ||
   4172         !isUndefOrEqual(Mask[i+1], i+1))
   4173       return false;
   4174 
   4175   return true;
   4176 }
   4177 
   4178 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   4179 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
   4180 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
   4181 static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
   4182                            const X86Subtarget *Subtarget) {
   4183   if (!Subtarget->hasSSE3())
   4184     return false;
   4185 
   4186   unsigned NumElems = VT.getVectorNumElements();
   4187 
   4188   if ((VT.is128BitVector() && NumElems != 4) ||
   4189       (VT.is256BitVector() && NumElems != 8))
   4190     return false;
   4191 
   4192   // "i" is the value the indexed mask element must have
   4193   for (unsigned i = 0; i != NumElems; i += 2)
   4194     if (!isUndefOrEqual(Mask[i], i) ||
   4195         !isUndefOrEqual(Mask[i+1], i))
   4196       return false;
   4197 
   4198   return true;
   4199 }
   4200 
   4201 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
   4202 /// specifies a shuffle of elements that is suitable for input to 256-bit
   4203 /// version of MOVDDUP.
   4204 static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
   4205   if (!HasFp256 || !VT.is256BitVector())
   4206     return false;
   4207 
   4208   unsigned NumElts = VT.getVectorNumElements();
   4209   if (NumElts != 4)
   4210     return false;
   4211 
   4212   for (unsigned i = 0; i != NumElts/2; ++i)
   4213     if (!isUndefOrEqual(Mask[i], 0))
   4214       return false;
   4215   for (unsigned i = NumElts/2; i != NumElts; ++i)
   4216     if (!isUndefOrEqual(Mask[i], NumElts/2))
   4217       return false;
   4218   return true;
   4219 }
   4220 
   4221 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   4222 /// specifies a shuffle of elements that is suitable for input to 128-bit
   4223 /// version of MOVDDUP.
   4224 static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
   4225   if (!VT.is128BitVector())
   4226     return false;
   4227 
   4228   unsigned e = VT.getVectorNumElements() / 2;
   4229   for (unsigned i = 0; i != e; ++i)
   4230     if (!isUndefOrEqual(Mask[i], i))
   4231       return false;
   4232   for (unsigned i = 0; i != e; ++i)
   4233     if (!isUndefOrEqual(Mask[e+i], i))
   4234       return false;
   4235   return true;
   4236 }
   4237 
   4238 /// isVEXTRACTIndex - Return true if the specified
   4239 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
   4240 /// suitable for instruction that extract 128 or 256 bit vectors
   4241 static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
   4242   assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
   4243   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   4244     return false;
   4245 
   4246   // The index should be aligned on a vecWidth-bit boundary.
   4247   uint64_t Index =
   4248     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   4249 
   4250   MVT VT = N->getValueType(0).getSimpleVT();
   4251   unsigned ElSize = VT.getVectorElementType().getSizeInBits();
   4252   bool Result = (Index * ElSize) % vecWidth == 0;
   4253 
   4254   return Result;
   4255 }
   4256 
   4257 /// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
   4258 /// operand specifies a subvector insert that is suitable for input to
   4259 /// insertion of 128 or 256-bit subvectors
   4260 static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
   4261   assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
   4262   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   4263     return false;
   4264   // The index should be aligned on a vecWidth-bit boundary.
   4265   uint64_t Index =
   4266     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   4267 
   4268   MVT VT = N->getValueType(0).getSimpleVT();
   4269   unsigned ElSize = VT.getVectorElementType().getSizeInBits();
   4270   bool Result = (Index * ElSize) % vecWidth == 0;
   4271 
   4272   return Result;
   4273 }
   4274 
   4275 bool X86::isVINSERT128Index(SDNode *N) {
   4276   return isVINSERTIndex(N, 128);
   4277 }
   4278 
   4279 bool X86::isVINSERT256Index(SDNode *N) {
   4280   return isVINSERTIndex(N, 256);
   4281 }
   4282 
   4283 bool X86::isVEXTRACT128Index(SDNode *N) {
   4284   return isVEXTRACTIndex(N, 128);
   4285 }
   4286 
   4287 bool X86::isVEXTRACT256Index(SDNode *N) {
   4288   return isVEXTRACTIndex(N, 256);
   4289 }
   4290 
   4291 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
   4292 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
   4293 /// Handles 128-bit and 256-bit.
   4294 static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
   4295   MVT VT = N->getValueType(0).getSimpleVT();
   4296 
   4297   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   4298          "Unsupported vector type for PSHUF/SHUFP");
   4299 
   4300   // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
   4301   // independently on 128-bit lanes.
   4302   unsigned NumElts = VT.getVectorNumElements();
   4303   unsigned NumLanes = VT.getSizeInBits()/128;
   4304   unsigned NumLaneElts = NumElts/NumLanes;
   4305 
   4306   assert((NumLaneElts == 2 || NumLaneElts == 4) &&
   4307          "Only supports 2 or 4 elements per lane");
   4308 
   4309   unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
   4310   unsigned Mask = 0;
   4311   for (unsigned i = 0; i != NumElts; ++i) {
   4312     int Elt = N->getMaskElt(i);
   4313     if (Elt < 0) continue;
   4314     Elt &= NumLaneElts - 1;
   4315     unsigned ShAmt = (i << Shift) % 8;
   4316     Mask |= Elt << ShAmt;
   4317   }
   4318 
   4319   return Mask;
   4320 }
   4321 
   4322 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
   4323 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
   4324 static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
   4325   MVT VT = N->getValueType(0).getSimpleVT();
   4326 
   4327   assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
   4328          "Unsupported vector type for PSHUFHW");
   4329 
   4330   unsigned NumElts = VT.getVectorNumElements();
   4331 
   4332   unsigned Mask = 0;
   4333   for (unsigned l = 0; l != NumElts; l += 8) {
   4334     // 8 nodes per lane, but we only care about the last 4.
   4335     for (unsigned i = 0; i < 4; ++i) {
   4336       int Elt = N->getMaskElt(l+i+4);
   4337       if (Elt < 0) continue;
   4338       Elt &= 0x3; // only 2-bits.
   4339       Mask |= Elt << (i * 2);
   4340     }
   4341   }
   4342 
   4343   return Mask;
   4344 }
   4345 
   4346 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
   4347 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
   4348 static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
   4349   MVT VT = N->getValueType(0).getSimpleVT();
   4350 
   4351   assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
   4352          "Unsupported vector type for PSHUFHW");
   4353 
   4354   unsigned NumElts = VT.getVectorNumElements();
   4355 
   4356   unsigned Mask = 0;
   4357   for (unsigned l = 0; l != NumElts; l += 8) {
   4358     // 8 nodes per lane, but we only care about the first 4.
   4359     for (unsigned i = 0; i < 4; ++i) {
   4360       int Elt = N->getMaskElt(l+i);
   4361       if (Elt < 0) continue;
   4362       Elt &= 0x3; // only 2-bits
   4363       Mask |= Elt << (i * 2);
   4364     }
   4365   }
   4366 
   4367   return Mask;
   4368 }
   4369 
   4370 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
   4371 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
   4372 static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
   4373   MVT VT = SVOp->getValueType(0).getSimpleVT();
   4374   unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
   4375 
   4376   unsigned NumElts = VT.getVectorNumElements();
   4377   unsigned NumLanes = VT.getSizeInBits()/128;
   4378   unsigned NumLaneElts = NumElts/NumLanes;
   4379 
   4380   int Val = 0;
   4381   unsigned i;
   4382   for (i = 0; i != NumElts; ++i) {
   4383     Val = SVOp->getMaskElt(i);
   4384     if (Val >= 0)
   4385       break;
   4386   }
   4387   if (Val >= (int)NumElts)
   4388     Val -= NumElts - NumLaneElts;
   4389 
   4390   assert(Val - i > 0 && "PALIGNR imm should be positive");
   4391   return (Val - i) * EltSize;
   4392 }
   4393 
   4394 static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
   4395   assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
   4396   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   4397     llvm_unreachable("Illegal extract subvector for VEXTRACT");
   4398 
   4399   uint64_t Index =
   4400     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   4401 
   4402   MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
   4403   MVT ElVT = VecVT.getVectorElementType();
   4404 
   4405   unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
   4406   return Index / NumElemsPerChunk;
   4407 }
   4408 
   4409 static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
   4410   assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
   4411   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   4412     llvm_unreachable("Illegal insert subvector for VINSERT");
   4413 
   4414   uint64_t Index =
   4415     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   4416 
   4417   MVT VecVT = N->getValueType(0).getSimpleVT();
   4418   MVT ElVT = VecVT.getVectorElementType();
   4419 
   4420   unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
   4421   return Index / NumElemsPerChunk;
   4422 }
   4423 
   4424 /// getExtractVEXTRACT128Immediate - Return the appropriate immediate
   4425 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
   4426 /// and VINSERTI128 instructions.
   4427 unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
   4428   return getExtractVEXTRACTImmediate(N, 128);
   4429 }
   4430 
   4431 /// getExtractVEXTRACT256Immediate - Return the appropriate immediate
   4432 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
   4433 /// and VINSERTI64x4 instructions.
   4434 unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
   4435   return getExtractVEXTRACTImmediate(N, 256);
   4436 }
   4437 
   4438 /// getInsertVINSERT128Immediate - Return the appropriate immediate
   4439 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
   4440 /// and VINSERTI128 instructions.
   4441 unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
   4442   return getInsertVINSERTImmediate(N, 128);
   4443 }
   4444 
   4445 /// getInsertVINSERT256Immediate - Return the appropriate immediate
   4446 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
   4447 /// and VINSERTI64x4 instructions.
   4448 unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
   4449   return getInsertVINSERTImmediate(N, 256);
   4450 }
   4451 
   4452 /// getShuffleCLImmediate - Return the appropriate immediate to shuffle
   4453 /// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
   4454 /// Handles 256-bit.
   4455 static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
   4456   MVT VT = N->getValueType(0).getSimpleVT();
   4457 
   4458   unsigned NumElts = VT.getVectorNumElements();
   4459 
   4460   assert((VT.is256BitVector() && NumElts == 4) &&
   4461          "Unsupported vector type for VPERMQ/VPERMPD");
   4462 
   4463   unsigned Mask = 0;
   4464   for (unsigned i = 0; i != NumElts; ++i) {
   4465     int Elt = N->getMaskElt(i);
   4466     if (Elt < 0)
   4467       continue;
   4468     Mask |= Elt << (i*2);
   4469   }
   4470 
   4471   return Mask;
   4472 }
   4473 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
   4474 /// constant +0.0.
   4475 bool X86::isZeroNode(SDValue Elt) {
   4476   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
   4477     return CN->isNullValue();
   4478   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
   4479     return CFP->getValueAPF().isPosZero();
   4480   return false;
   4481 }
   4482 
   4483 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
   4484 /// their permute mask.
   4485 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
   4486                                     SelectionDAG &DAG) {
   4487   MVT VT = SVOp->getValueType(0).getSimpleVT();
   4488   unsigned NumElems = VT.getVectorNumElements();
   4489   SmallVector<int, 8> MaskVec;
   4490 
   4491   for (unsigned i = 0; i != NumElems; ++i) {
   4492     int Idx = SVOp->getMaskElt(i);
   4493     if (Idx >= 0) {
   4494       if (Idx < (int)NumElems)
   4495         Idx += NumElems;
   4496       else
   4497         Idx -= NumElems;
   4498     }
   4499     MaskVec.push_back(Idx);
   4500   }
   4501   return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
   4502                               SVOp->getOperand(0), &MaskVec[0]);
   4503 }
   4504 
   4505 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
   4506 /// match movhlps. The lower half elements should come from upper half of
   4507 /// V1 (and in order), and the upper half elements should come from the upper
   4508 /// half of V2 (and in order).
   4509 static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
   4510   if (!VT.is128BitVector())
   4511     return false;
   4512   if (VT.getVectorNumElements() != 4)
   4513     return false;
   4514   for (unsigned i = 0, e = 2; i != e; ++i)
   4515     if (!isUndefOrEqual(Mask[i], i+2))
   4516       return false;
   4517   for (unsigned i = 2; i != 4; ++i)
   4518     if (!isUndefOrEqual(Mask[i], i+4))
   4519       return false;
   4520   return true;
   4521 }
   4522 
   4523 /// isScalarLoadToVector - Returns true if the node is a scalar load that
   4524 /// is promoted to a vector. It also returns the LoadSDNode by reference if
   4525 /// required.
   4526 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
   4527   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
   4528     return false;
   4529   N = N->getOperand(0).getNode();
   4530   if (!ISD::isNON_EXTLoad(N))
   4531     return false;
   4532   if (LD)
   4533     *LD = cast<LoadSDNode>(N);
   4534   return true;
   4535 }
   4536 
   4537 // Test whether the given value is a vector value which will be legalized
   4538 // into a load.
   4539 static bool WillBeConstantPoolLoad(SDNode *N) {
   4540   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4541     return false;
   4542 
   4543   // Check for any non-constant elements.
   4544   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   4545     switch (N->getOperand(i).getNode()->getOpcode()) {
   4546     case ISD::UNDEF:
   4547     case ISD::ConstantFP:
   4548     case ISD::Constant:
   4549       break;
   4550     default:
   4551       return false;
   4552     }
   4553 
   4554   // Vectors of all-zeros and all-ones are materialized with special
   4555   // instructions rather than being loaded.
   4556   return !ISD::isBuildVectorAllZeros(N) &&
   4557          !ISD::isBuildVectorAllOnes(N);
   4558 }
   4559 
   4560 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
   4561 /// match movlp{s|d}. The lower half elements should come from lower half of
   4562 /// V1 (and in order), and the upper half elements should come from the upper
   4563 /// half of V2 (and in order). And since V1 will become the source of the
   4564 /// MOVLP, it must be either a vector load or a scalar load to vector.
   4565 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
   4566                                ArrayRef<int> Mask, EVT VT) {
   4567   if (!VT.is128BitVector())
   4568     return false;
   4569 
   4570   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
   4571     return false;
   4572   // Is V2 is a vector load, don't do this transformation. We will try to use
   4573   // load folding shufps op.
   4574   if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
   4575     return false;
   4576 
   4577   unsigned NumElems = VT.getVectorNumElements();
   4578 
   4579   if (NumElems != 2 && NumElems != 4)
   4580     return false;
   4581   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   4582     if (!isUndefOrEqual(Mask[i], i))
   4583       return false;
   4584   for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
   4585     if (!isUndefOrEqual(Mask[i], i+NumElems))
   4586       return false;
   4587   return true;
   4588 }
   4589 
   4590 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
   4591 /// all the same.
   4592 static bool isSplatVector(SDNode *N) {
   4593   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4594     return false;
   4595 
   4596   SDValue SplatValue = N->getOperand(0);
   4597   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
   4598     if (N->getOperand(i) != SplatValue)
   4599       return false;
   4600   return true;
   4601 }
   4602 
   4603 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
   4604 /// to an zero vector.
   4605 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
   4606 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
   4607   SDValue V1 = N->getOperand(0);
   4608   SDValue V2 = N->getOperand(1);
   4609   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   4610   for (unsigned i = 0; i != NumElems; ++i) {
   4611     int Idx = N->getMaskElt(i);
   4612     if (Idx >= (int)NumElems) {
   4613       unsigned Opc = V2.getOpcode();
   4614       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
   4615         continue;
   4616       if (Opc != ISD::BUILD_VECTOR ||
   4617           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
   4618         return false;
   4619     } else if (Idx >= 0) {
   4620       unsigned Opc = V1.getOpcode();
   4621       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
   4622         continue;
   4623       if (Opc != ISD::BUILD_VECTOR ||
   4624           !X86::isZeroNode(V1.getOperand(Idx)))
   4625         return false;
   4626     }
   4627   }
   4628   return true;
   4629 }
   4630 
   4631 /// getZeroVector - Returns a vector of specified type with all zero elements.
   4632 ///
   4633 static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
   4634                              SelectionDAG &DAG, SDLoc dl) {
   4635   assert(VT.isVector() && "Expected a vector type");
   4636 
   4637   // Always build SSE zero vectors as <4 x i32> bitcasted
   4638   // to their dest type. This ensures they get CSE'd.
   4639   SDValue Vec;
   4640   if (VT.is128BitVector()) {  // SSE
   4641     if (Subtarget->hasSSE2()) {  // SSE2
   4642       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
   4643       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4644     } else { // SSE1
   4645       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4646       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
   4647     }
   4648   } else if (VT.is256BitVector()) { // AVX
   4649     if (Subtarget->hasInt256()) { // AVX2
   4650       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
   4651       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4652       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
   4653                         array_lengthof(Ops));
   4654     } else {
   4655       // 256-bit logic and arithmetic instructions in AVX are all
   4656       // floating-point, no support for integer ops. Emit fp zeroed vectors.
   4657       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4658       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4659       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
   4660                         array_lengthof(Ops));
   4661     }
   4662   } else
   4663     llvm_unreachable("Unexpected vector type");
   4664 
   4665   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4666 }
   4667 
   4668 /// getOnesVector - Returns a vector of specified type with all bits set.
   4669 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
   4670 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
   4671 /// Then bitcast to their original type, ensuring they get CSE'd.
   4672 static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
   4673                              SDLoc dl) {
   4674   assert(VT.isVector() && "Expected a vector type");
   4675 
   4676   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
   4677   SDValue Vec;
   4678   if (VT.is256BitVector()) {
   4679     if (HasInt256) { // AVX2
   4680       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4681       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
   4682                         array_lengthof(Ops));
   4683     } else { // AVX
   4684       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4685       Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
   4686     }
   4687   } else if (VT.is128BitVector()) {
   4688     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4689   } else
   4690     llvm_unreachable("Unexpected vector type");
   4691 
   4692   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4693 }
   4694 
   4695 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
   4696 /// that point to V2 points to its first element.
   4697 static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
   4698   for (unsigned i = 0; i != NumElems; ++i) {
   4699     if (Mask[i] > (int)NumElems) {
   4700       Mask[i] = NumElems;
   4701     }
   4702   }
   4703 }
   4704 
   4705 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
   4706 /// operation of specified width.
   4707 static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
   4708                        SDValue V2) {
   4709   unsigned NumElems = VT.getVectorNumElements();
   4710   SmallVector<int, 8> Mask;
   4711   Mask.push_back(NumElems);
   4712   for (unsigned i = 1; i != NumElems; ++i)
   4713     Mask.push_back(i);
   4714   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4715 }
   4716 
   4717 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
   4718 static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
   4719                           SDValue V2) {
   4720   unsigned NumElems = VT.getVectorNumElements();
   4721   SmallVector<int, 8> Mask;
   4722   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
   4723     Mask.push_back(i);
   4724     Mask.push_back(i + NumElems);
   4725   }
   4726   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4727 }
   4728 
   4729 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
   4730 static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
   4731                           SDValue V2) {
   4732   unsigned NumElems = VT.getVectorNumElements();
   4733   SmallVector<int, 8> Mask;
   4734   for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
   4735     Mask.push_back(i + Half);
   4736     Mask.push_back(i + NumElems + Half);
   4737   }
   4738   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4739 }
   4740 
   4741 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
   4742 // a generic shuffle instruction because the target has no such instructions.
   4743 // Generate shuffles which repeat i16 and i8 several times until they can be
   4744 // represented by v4f32 and then be manipulated by target suported shuffles.
   4745 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
   4746   EVT VT = V.getValueType();
   4747   int NumElems = VT.getVectorNumElements();
   4748   SDLoc dl(V);
   4749 
   4750   while (NumElems > 4) {
   4751     if (EltNo < NumElems/2) {
   4752       V = getUnpackl(DAG, dl, VT, V, V);
   4753     } else {
   4754       V = getUnpackh(DAG, dl, VT, V, V);
   4755       EltNo -= NumElems/2;
   4756     }
   4757     NumElems >>= 1;
   4758   }
   4759   return V;
   4760 }
   4761 
   4762 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
   4763 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
   4764   EVT VT = V.getValueType();
   4765   SDLoc dl(V);
   4766 
   4767   if (VT.is128BitVector()) {
   4768     V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
   4769     int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
   4770     V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
   4771                              &SplatMask[0]);
   4772   } else if (VT.is256BitVector()) {
   4773     // To use VPERMILPS to splat scalars, the second half of indicies must
   4774     // refer to the higher part, which is a duplication of the lower one,
   4775     // because VPERMILPS can only handle in-lane permutations.
   4776     int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
   4777                          EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
   4778 
   4779     V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
   4780     V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
   4781                              &SplatMask[0]);
   4782   } else
   4783     llvm_unreachable("Vector size not supported");
   4784 
   4785   return DAG.getNode(ISD::BITCAST, dl, VT, V);
   4786 }
   4787 
   4788 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
   4789 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
   4790   EVT SrcVT = SV->getValueType(0);
   4791   SDValue V1 = SV->getOperand(0);
   4792   SDLoc dl(SV);
   4793 
   4794   int EltNo = SV->getSplatIndex();
   4795   int NumElems = SrcVT.getVectorNumElements();
   4796   bool Is256BitVec = SrcVT.is256BitVector();
   4797 
   4798   assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
   4799          "Unknown how to promote splat for type");
   4800 
   4801   // Extract the 128-bit part containing the splat element and update
   4802   // the splat element index when it refers to the higher register.
   4803   if (Is256BitVec) {
   4804     V1 = Extract128BitVector(V1, EltNo, DAG, dl);
   4805     if (EltNo >= NumElems/2)
   4806       EltNo -= NumElems/2;
   4807   }
   4808 
   4809   // All i16 and i8 vector types can't be used directly by a generic shuffle
   4810   // instruction because the target has no such instruction. Generate shuffles
   4811   // which repeat i16 and i8 several times until they fit in i32, and then can
   4812   // be manipulated by target suported shuffles.
   4813   EVT EltVT = SrcVT.getVectorElementType();
   4814   if (EltVT == MVT::i8 || EltVT == MVT::i16)
   4815     V1 = PromoteSplati8i16(V1, DAG, EltNo);
   4816 
   4817   // Recreate the 256-bit vector and place the same 128-bit vector
   4818   // into the low and high part. This is necessary because we want
   4819   // to use VPERM* to shuffle the vectors
   4820   if (Is256BitVec) {
   4821     V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
   4822   }
   4823 
   4824   return getLegalSplat(DAG, V1, EltNo);
   4825 }
   4826 
   4827 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
   4828 /// vector of zero or undef vector.  This produces a shuffle where the low
   4829 /// element of V2 is swizzled into the zero/undef vector, landing at element
   4830 /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
   4831 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
   4832                                            bool IsZero,
   4833                                            const X86Subtarget *Subtarget,
   4834                                            SelectionDAG &DAG) {
   4835   EVT VT = V2.getValueType();
   4836   SDValue V1 = IsZero
   4837     ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
   4838   unsigned NumElems = VT.getVectorNumElements();
   4839   SmallVector<int, 16> MaskVec;
   4840   for (unsigned i = 0; i != NumElems; ++i)
   4841     // If this is the insertion idx, put the low elt of V2 here.
   4842     MaskVec.push_back(i == Idx ? NumElems : i);
   4843   return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
   4844 }
   4845 
   4846 /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
   4847 /// target specific opcode. Returns true if the Mask could be calculated.
   4848 /// Sets IsUnary to true if only uses one source.
   4849 static bool getTargetShuffleMask(SDNode *N, MVT VT,
   4850                                  SmallVectorImpl<int> &Mask, bool &IsUnary) {
   4851   unsigned NumElems = VT.getVectorNumElements();
   4852   SDValue ImmN;
   4853 
   4854   IsUnary = false;
   4855   switch(N->getOpcode()) {
   4856   case X86ISD::SHUFP:
   4857     ImmN = N->getOperand(N->getNumOperands()-1);
   4858     DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4859     break;
   4860   case X86ISD::UNPCKH:
   4861     DecodeUNPCKHMask(VT, Mask);
   4862     break;
   4863   case X86ISD::UNPCKL:
   4864     DecodeUNPCKLMask(VT, Mask);
   4865     break;
   4866   case X86ISD::MOVHLPS:
   4867     DecodeMOVHLPSMask(NumElems, Mask);
   4868     break;
   4869   case X86ISD::MOVLHPS:
   4870     DecodeMOVLHPSMask(NumElems, Mask);
   4871     break;
   4872   case X86ISD::PALIGNR:
   4873     ImmN = N->getOperand(N->getNumOperands()-1);
   4874     DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4875     break;
   4876   case X86ISD::PSHUFD:
   4877   case X86ISD::VPERMILP:
   4878     ImmN = N->getOperand(N->getNumOperands()-1);
   4879     DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4880     IsUnary = true;
   4881     break;
   4882   case X86ISD::PSHUFHW:
   4883     ImmN = N->getOperand(N->getNumOperands()-1);
   4884     DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4885     IsUnary = true;
   4886     break;
   4887   case X86ISD::PSHUFLW:
   4888     ImmN = N->getOperand(N->getNumOperands()-1);
   4889     DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4890     IsUnary = true;
   4891     break;
   4892   case X86ISD::VPERMI:
   4893     ImmN = N->getOperand(N->getNumOperands()-1);
   4894     DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4895     IsUnary = true;
   4896     break;
   4897   case X86ISD::MOVSS:
   4898   case X86ISD::MOVSD: {
   4899     // The index 0 always comes from the first element of the second source,
   4900     // this is why MOVSS and MOVSD are used in the first place. The other
   4901     // elements come from the other positions of the first source vector
   4902     Mask.push_back(NumElems);
   4903     for (unsigned i = 1; i != NumElems; ++i) {
   4904       Mask.push_back(i);
   4905     }
   4906     break;
   4907   }
   4908   case X86ISD::VPERM2X128:
   4909     ImmN = N->getOperand(N->getNumOperands()-1);
   4910     DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4911     if (Mask.empty()) return false;
   4912     break;
   4913   case X86ISD::MOVDDUP:
   4914   case X86ISD::MOVLHPD:
   4915   case X86ISD::MOVLPD:
   4916   case X86ISD::MOVLPS:
   4917   case X86ISD::MOVSHDUP:
   4918   case X86ISD::MOVSLDUP:
   4919     // Not yet implemented
   4920     return false;
   4921   default: llvm_unreachable("unknown target shuffle node");
   4922   }
   4923 
   4924   return true;
   4925 }
   4926 
   4927 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
   4928 /// element of the result of the vector shuffle.
   4929 static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
   4930                                    unsigned Depth) {
   4931   if (Depth == 6)
   4932     return SDValue();  // Limit search depth.
   4933 
   4934   SDValue V = SDValue(N, 0);
   4935   EVT VT = V.getValueType();
   4936   unsigned Opcode = V.getOpcode();
   4937 
   4938   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
   4939   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
   4940     int Elt = SV->getMaskElt(Index);
   4941 
   4942     if (Elt < 0)
   4943       return DAG.getUNDEF(VT.getVectorElementType());
   4944 
   4945     unsigned NumElems = VT.getVectorNumElements();
   4946     SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
   4947                                          : SV->getOperand(1);
   4948     return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
   4949   }
   4950 
   4951   // Recurse into target specific vector shuffles to find scalars.
   4952   if (isTargetShuffle(Opcode)) {
   4953     MVT ShufVT = V.getValueType().getSimpleVT();
   4954     unsigned NumElems = ShufVT.getVectorNumElements();
   4955     SmallVector<int, 16> ShuffleMask;
   4956     bool IsUnary;
   4957 
   4958     if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
   4959       return SDValue();
   4960 
   4961     int Elt = ShuffleMask[Index];
   4962     if (Elt < 0)
   4963       return DAG.getUNDEF(ShufVT.getVectorElementType());
   4964 
   4965     SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
   4966                                          : N->getOperand(1);
   4967     return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
   4968                                Depth+1);
   4969   }
   4970 
   4971   // Actual nodes that may contain scalar elements
   4972   if (Opcode == ISD::BITCAST) {
   4973     V = V.getOperand(0);
   4974     EVT SrcVT = V.getValueType();
   4975     unsigned NumElems = VT.getVectorNumElements();
   4976 
   4977     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
   4978       return SDValue();
   4979   }
   4980 
   4981   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   4982     return (Index == 0) ? V.getOperand(0)
   4983                         : DAG.getUNDEF(VT.getVectorElementType());
   4984 
   4985   if (V.getOpcode() == ISD::BUILD_VECTOR)
   4986     return V.getOperand(Index);
   4987 
   4988   return SDValue();
   4989 }
   4990 
   4991 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
   4992 /// shuffle operation which come from a consecutively from a zero. The
   4993 /// search can start in two different directions, from left or right.
   4994 /// We count undefs as zeros until PreferredNum is reached.
   4995 static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
   4996                                          unsigned NumElems, bool ZerosFromLeft,
   4997                                          SelectionDAG &DAG,
   4998                                          unsigned PreferredNum = -1U) {
   4999   unsigned NumZeros = 0;
   5000   for (unsigned i = 0; i != NumElems; ++i) {
   5001     unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
   5002     SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
   5003     if (!Elt.getNode())
   5004       break;
   5005 
   5006     if (X86::isZeroNode(Elt))
   5007       ++NumZeros;
   5008     else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
   5009       NumZeros = std::min(NumZeros + 1, PreferredNum);
   5010     else
   5011       break;
   5012   }
   5013 
   5014   return NumZeros;
   5015 }
   5016 
   5017 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
   5018 /// correspond consecutively to elements from one of the vector operands,
   5019 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
   5020 static
   5021 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
   5022                               unsigned MaskI, unsigned MaskE, unsigned OpIdx,
   5023                               unsigned NumElems, unsigned &OpNum) {
   5024   bool SeenV1 = false;
   5025   bool SeenV2 = false;
   5026 
   5027   for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
   5028     int Idx = SVOp->getMaskElt(i);
   5029     // Ignore undef indicies
   5030     if (Idx < 0)
   5031       continue;
   5032 
   5033     if (Idx < (int)NumElems)
   5034       SeenV1 = true;
   5035     else
   5036       SeenV2 = true;
   5037 
   5038     // Only accept consecutive elements from the same vector
   5039     if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
   5040       return false;
   5041   }
   5042 
   5043   OpNum = SeenV1 ? 0 : 1;
   5044   return true;
   5045 }
   5046 
   5047 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
   5048 /// logical left shift of a vector.
   5049 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   5050                                bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   5051   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   5052   unsigned NumZeros = getNumOfConsecutiveZeros(
   5053       SVOp, NumElems, false /* check zeros from right */, DAG,
   5054       SVOp->getMaskElt(0));
   5055   unsigned OpSrc;
   5056 
   5057   if (!NumZeros)
   5058     return false;
   5059 
   5060   // Considering the elements in the mask that are not consecutive zeros,
   5061   // check if they consecutively come from only one of the source vectors.
   5062   //
   5063   //               V1 = {X, A, B, C}     0
   5064   //                         \  \  \    /
   5065   //   vector_shuffle V1, V2 <1, 2, 3, X>
   5066   //
   5067   if (!isShuffleMaskConsecutive(SVOp,
   5068             0,                   // Mask Start Index
   5069             NumElems-NumZeros,   // Mask End Index(exclusive)
   5070             NumZeros,            // Where to start looking in the src vector
   5071             NumElems,            // Number of elements in vector
   5072             OpSrc))              // Which source operand ?
   5073     return false;
   5074 
   5075   isLeft = false;
   5076   ShAmt = NumZeros;
   5077   ShVal = SVOp->getOperand(OpSrc);
   5078   return true;
   5079 }
   5080 
   5081 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
   5082 /// logical left shift of a vector.
   5083 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   5084                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   5085   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   5086   unsigned NumZeros = getNumOfConsecutiveZeros(
   5087       SVOp, NumElems, true /* check zeros from left */, DAG,
   5088       NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
   5089   unsigned OpSrc;
   5090 
   5091   if (!NumZeros)
   5092     return false;
   5093 
   5094   // Considering the elements in the mask that are not consecutive zeros,
   5095   // check if they consecutively come from only one of the source vectors.
   5096   //
   5097   //                           0    { A, B, X, X } = V2
   5098   //                          / \    /  /
   5099   //   vector_shuffle V1, V2 <X, X, 4, 5>
   5100   //
   5101   if (!isShuffleMaskConsecutive(SVOp,
   5102             NumZeros,     // Mask Start Index
   5103             NumElems,     // Mask End Index(exclusive)
   5104             0,            // Where to start looking in the src vector
   5105             NumElems,     // Number of elements in vector
   5106             OpSrc))       // Which source operand ?
   5107     return false;
   5108 
   5109   isLeft = true;
   5110   ShAmt = NumZeros;
   5111   ShVal = SVOp->getOperand(OpSrc);
   5112   return true;
   5113 }
   5114 
   5115 /// isVectorShift - Returns true if the shuffle can be implemented as a
   5116 /// logical left or right shift of a vector.
   5117 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   5118                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   5119   // Although the logic below support any bitwidth size, there are no
   5120   // shift instructions which handle more than 128-bit vectors.
   5121   if (!SVOp->getValueType(0).is128BitVector())
   5122     return false;
   5123 
   5124   if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
   5125       isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
   5126     return true;
   5127 
   5128   return false;
   5129 }
   5130 
   5131 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
   5132 ///
   5133 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
   5134                                        unsigned NumNonZero, unsigned NumZero,
   5135                                        SelectionDAG &DAG,
   5136                                        const X86Subtarget* Subtarget,
   5137                                        const TargetLowering &TLI) {
   5138   if (NumNonZero > 8)
   5139     return SDValue();
   5140 
   5141   SDLoc dl(Op);
   5142   SDValue V(0, 0);
   5143   bool First = true;
   5144   for (unsigned i = 0; i < 16; ++i) {
   5145     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
   5146     if (ThisIsNonZero && First) {
   5147       if (NumZero)
   5148         V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
   5149       else
   5150         V = DAG.getUNDEF(MVT::v8i16);
   5151       First = false;
   5152     }
   5153 
   5154     if ((i & 1) != 0) {
   5155       SDValue ThisElt(0, 0), LastElt(0, 0);
   5156       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
   5157       if (LastIsNonZero) {
   5158         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
   5159                               MVT::i16, Op.getOperand(i-1));
   5160       }
   5161       if (ThisIsNonZero) {
   5162         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
   5163         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
   5164                               ThisElt, DAG.getConstant(8, MVT::i8));
   5165         if (LastIsNonZero)
   5166           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
   5167       } else
   5168         ThisElt = LastElt;
   5169 
   5170       if (ThisElt.getNode())
   5171         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
   5172                         DAG.getIntPtrConstant(i/2));
   5173     }
   5174   }
   5175 
   5176   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
   5177 }
   5178 
   5179 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
   5180 ///
   5181 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
   5182                                      unsigned NumNonZero, unsigned NumZero,
   5183                                      SelectionDAG &DAG,
   5184                                      const X86Subtarget* Subtarget,
   5185                                      const TargetLowering &TLI) {
   5186   if (NumNonZero > 4)
   5187     return SDValue();
   5188 
   5189   SDLoc dl(Op);
   5190   SDValue V(0, 0);
   5191   bool First = true;
   5192   for (unsigned i = 0; i < 8; ++i) {
   5193     bool isNonZero = (NonZeros & (1 << i)) != 0;
   5194     if (isNonZero) {
   5195       if (First) {
   5196         if (NumZero)
   5197           V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
   5198         else
   5199           V = DAG.getUNDEF(MVT::v8i16);
   5200         First = false;
   5201       }
   5202       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
   5203                       MVT::v8i16, V, Op.getOperand(i),
   5204                       DAG.getIntPtrConstant(i));
   5205     }
   5206   }
   5207 
   5208   return V;
   5209 }
   5210 
   5211 /// getVShift - Return a vector logical shift node.
   5212 ///
   5213 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
   5214                          unsigned NumBits, SelectionDAG &DAG,
   5215                          const TargetLowering &TLI, SDLoc dl) {
   5216   assert(VT.is128BitVector() && "Unknown type for VShift");
   5217   EVT ShVT = MVT::v2i64;
   5218   unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
   5219   SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
   5220   return DAG.getNode(ISD::BITCAST, dl, VT,
   5221                      DAG.getNode(Opc, dl, ShVT, SrcOp,
   5222                              DAG.getConstant(NumBits,
   5223                                   TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
   5224 }
   5225 
   5226 SDValue
   5227 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, SDLoc dl,
   5228                                           SelectionDAG &DAG) const {
   5229 
   5230   // Check if the scalar load can be widened into a vector load. And if
   5231   // the address is "base + cst" see if the cst can be "absorbed" into
   5232   // the shuffle mask.
   5233   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
   5234     SDValue Ptr = LD->getBasePtr();
   5235     if (!ISD::isNormalLoad(LD) || LD->isVolatile())
   5236       return SDValue();
   5237     EVT PVT = LD->getValueType(0);
   5238     if (PVT != MVT::i32 && PVT != MVT::f32)
   5239       return SDValue();
   5240 
   5241     int FI = -1;
   5242     int64_t Offset = 0;
   5243     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
   5244       FI = FINode->getIndex();
   5245       Offset = 0;
   5246     } else if (DAG.isBaseWithConstantOffset(Ptr) &&
   5247                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
   5248       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   5249       Offset = Ptr.getConstantOperandVal(1);
   5250       Ptr = Ptr.getOperand(0);
   5251     } else {
   5252       return SDValue();
   5253     }
   5254 
   5255     // FIXME: 256-bit vector instructions don't require a strict alignment,
   5256     // improve this code to support it better.
   5257     unsigned RequiredAlign = VT.getSizeInBits()/8;
   5258     SDValue Chain = LD->getChain();
   5259     // Make sure the stack object alignment is at least 16 or 32.
   5260     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   5261     if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
   5262       if (MFI->isFixedObjectIndex(FI)) {
   5263         // Can't change the alignment. FIXME: It's possible to compute
   5264         // the exact stack offset and reference FI + adjust offset instead.
   5265         // If someone *really* cares about this. That's the way to implement it.
   5266         return SDValue();
   5267       } else {
   5268         MFI->setObjectAlignment(FI, RequiredAlign);
   5269       }
   5270     }
   5271 
   5272     // (Offset % 16 or 32) must be multiple of 4. Then address is then
   5273     // Ptr + (Offset & ~15).
   5274     if (Offset < 0)
   5275       return SDValue();
   5276     if ((Offset % RequiredAlign) & 3)
   5277       return SDValue();
   5278     int64_t StartOffset = Offset & ~(RequiredAlign-1);
   5279     if (StartOffset)
   5280       Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
   5281                         Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
   5282 
   5283     int EltNo = (Offset - StartOffset) >> 2;
   5284     unsigned NumElems = VT.getVectorNumElements();
   5285 
   5286     EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
   5287     SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
   5288                              LD->getPointerInfo().getWithOffset(StartOffset),
   5289                              false, false, false, 0);
   5290 
   5291     SmallVector<int, 8> Mask(NumElems, EltNo);
   5292     return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
   5293   }
   5294 
   5295   return SDValue();
   5296 }
   5297 
   5298 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
   5299 /// vector of type 'VT', see if the elements can be replaced by a single large
   5300 /// load which has the same value as a build_vector whose operands are 'elts'.
   5301 ///
   5302 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
   5303 ///
   5304 /// FIXME: we'd also like to handle the case where the last elements are zero
   5305 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
   5306 /// There's even a handy isZeroNode for that purpose.
   5307 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
   5308                                         SDLoc &DL, SelectionDAG &DAG) {
   5309   EVT EltVT = VT.getVectorElementType();
   5310   unsigned NumElems = Elts.size();
   5311 
   5312   LoadSDNode *LDBase = NULL;
   5313   unsigned LastLoadedElt = -1U;
   5314 
   5315   // For each element in the initializer, see if we've found a load or an undef.
   5316   // If we don't find an initial load element, or later load elements are
   5317   // non-consecutive, bail out.
   5318   for (unsigned i = 0; i < NumElems; ++i) {
   5319     SDValue Elt = Elts[i];
   5320 
   5321     if (!Elt.getNode() ||
   5322         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
   5323       return SDValue();
   5324     if (!LDBase) {
   5325       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
   5326         return SDValue();
   5327       LDBase = cast<LoadSDNode>(Elt.getNode());
   5328       LastLoadedElt = i;
   5329       continue;
   5330     }
   5331     if (Elt.getOpcode() == ISD::UNDEF)
   5332       continue;
   5333 
   5334     LoadSDNode *LD = cast<LoadSDNode>(Elt);
   5335     if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
   5336       return SDValue();
   5337     LastLoadedElt = i;
   5338   }
   5339 
   5340   // If we have found an entire vector of loads and undefs, then return a large
   5341   // load of the entire vector width starting at the base pointer.  If we found
   5342   // consecutive loads for the low half, generate a vzext_load node.
   5343   if (LastLoadedElt == NumElems - 1) {
   5344     SDValue NewLd = SDValue();
   5345     if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
   5346       NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   5347                           LDBase->getPointerInfo(),
   5348                           LDBase->isVolatile(), LDBase->isNonTemporal(),
   5349                           LDBase->isInvariant(), 0);
   5350     NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   5351                         LDBase->getPointerInfo(),
   5352                         LDBase->isVolatile(), LDBase->isNonTemporal(),
   5353                         LDBase->isInvariant(), LDBase->getAlignment());
   5354 
   5355     if (LDBase->hasAnyUseOfValue(1)) {
   5356       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   5357                                      SDValue(LDBase, 1),
   5358                                      SDValue(NewLd.getNode(), 1));
   5359       DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
   5360       DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
   5361                              SDValue(NewLd.getNode(), 1));
   5362     }
   5363 
   5364     return NewLd;
   5365   }
   5366   if (NumElems == 4 && LastLoadedElt == 1 &&
   5367       DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
   5368     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
   5369     SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
   5370     SDValue ResNode =
   5371         DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
   5372                                 array_lengthof(Ops), MVT::i64,
   5373                                 LDBase->getPointerInfo(),
   5374                                 LDBase->getAlignment(),
   5375                                 false/*isVolatile*/, true/*ReadMem*/,
   5376                                 false/*WriteMem*/);
   5377 
   5378     // Make sure the newly-created LOAD is in the same position as LDBase in
   5379     // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
   5380     // update uses of LDBase's output chain to use the TokenFactor.
   5381     if (LDBase->hasAnyUseOfValue(1)) {
   5382       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   5383                              SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
   5384       DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
   5385       DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
   5386                              SDValue(ResNode.getNode(), 1));
   5387     }
   5388 
   5389     return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
   5390   }
   5391   return SDValue();
   5392 }
   5393 
   5394 /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
   5395 /// to generate a splat value for the following cases:
   5396 /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
   5397 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
   5398 /// a scalar load, or a constant.
   5399 /// The VBROADCAST node is returned when a pattern is found,
   5400 /// or SDValue() otherwise.
   5401 SDValue
   5402 X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
   5403   if (!Subtarget->hasFp256())
   5404     return SDValue();
   5405 
   5406   MVT VT = Op.getValueType().getSimpleVT();
   5407   SDLoc dl(Op);
   5408 
   5409   assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
   5410          "Unsupported vector type for broadcast.");
   5411 
   5412   SDValue Ld;
   5413   bool ConstSplatVal;
   5414 
   5415   switch (Op.getOpcode()) {
   5416     default:
   5417       // Unknown pattern found.
   5418       return SDValue();
   5419 
   5420     case ISD::BUILD_VECTOR: {
   5421       // The BUILD_VECTOR node must be a splat.
   5422       if (!isSplatVector(Op.getNode()))
   5423         return SDValue();
   5424 
   5425       Ld = Op.getOperand(0);
   5426       ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
   5427                      Ld.getOpcode() == ISD::ConstantFP);
   5428 
   5429       // The suspected load node has several users. Make sure that all
   5430       // of its users are from the BUILD_VECTOR node.
   5431       // Constants may have multiple users.
   5432       if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
   5433         return SDValue();
   5434       break;
   5435     }
   5436 
   5437     case ISD::VECTOR_SHUFFLE: {
   5438       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5439 
   5440       // Shuffles must have a splat mask where the first element is
   5441       // broadcasted.
   5442       if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
   5443         return SDValue();
   5444 
   5445       SDValue Sc = Op.getOperand(0);
   5446       if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
   5447           Sc.getOpcode() != ISD::BUILD_VECTOR) {
   5448 
   5449         if (!Subtarget->hasInt256())
   5450           return SDValue();
   5451 
   5452         // Use the register form of the broadcast instruction available on AVX2.
   5453         if (VT.is256BitVector())
   5454           Sc = Extract128BitVector(Sc, 0, DAG, dl);
   5455         return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
   5456       }
   5457 
   5458       Ld = Sc.getOperand(0);
   5459       ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
   5460                        Ld.getOpcode() == ISD::ConstantFP);
   5461 
   5462       // The scalar_to_vector node and the suspected
   5463       // load node must have exactly one user.
   5464       // Constants may have multiple users.
   5465 
   5466       // AVX-512 has register version of the broadcast
   5467       bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
   5468         Ld.getValueType().getSizeInBits() >= 32;
   5469       if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
   5470           !hasRegVer))
   5471         return SDValue();
   5472       break;
   5473     }
   5474   }
   5475 
   5476   bool IsGE256 = (VT.getSizeInBits() >= 256);
   5477 
   5478   // Handle the broadcasting a single constant scalar from the constant pool
   5479   // into a vector. On Sandybridge it is still better to load a constant vector
   5480   // from the constant pool and not to broadcast it from a scalar.
   5481   if (ConstSplatVal && Subtarget->hasInt256()) {
   5482     EVT CVT = Ld.getValueType();
   5483     assert(!CVT.isVector() && "Must not broadcast a vector type");
   5484     unsigned ScalarSize = CVT.getSizeInBits();
   5485 
   5486     if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
   5487       const Constant *C = 0;
   5488       if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
   5489         C = CI->getConstantIntValue();
   5490       else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
   5491         C = CF->getConstantFPValue();
   5492 
   5493       assert(C && "Invalid constant type");
   5494 
   5495       SDValue CP = DAG.getConstantPool(C, getPointerTy());
   5496       unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
   5497       Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
   5498                        MachinePointerInfo::getConstantPool(),
   5499                        false, false, false, Alignment);
   5500 
   5501       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5502     }
   5503   }
   5504 
   5505   bool IsLoad = ISD::isNormalLoad(Ld.getNode());
   5506   unsigned ScalarSize = Ld.getValueType().getSizeInBits();
   5507 
   5508   // Handle AVX2 in-register broadcasts.
   5509   if (!IsLoad && Subtarget->hasInt256() &&
   5510       (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
   5511     return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5512 
   5513   // The scalar source must be a normal load.
   5514   if (!IsLoad)
   5515     return SDValue();
   5516 
   5517   if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
   5518     return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5519 
   5520   // The integer check is needed for the 64-bit into 128-bit so it doesn't match
   5521   // double since there is no vbroadcastsd xmm
   5522   if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
   5523     if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
   5524       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5525   }
   5526 
   5527   // Unsupported broadcast.
   5528   return SDValue();
   5529 }
   5530 
   5531 SDValue
   5532 X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
   5533   EVT VT = Op.getValueType();
   5534 
   5535   // Skip if insert_vec_elt is not supported.
   5536   if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
   5537     return SDValue();
   5538 
   5539   SDLoc DL(Op);
   5540   unsigned NumElems = Op.getNumOperands();
   5541 
   5542   SDValue VecIn1;
   5543   SDValue VecIn2;
   5544   SmallVector<unsigned, 4> InsertIndices;
   5545   SmallVector<int, 8> Mask(NumElems, -1);
   5546 
   5547   for (unsigned i = 0; i != NumElems; ++i) {
   5548     unsigned Opc = Op.getOperand(i).getOpcode();
   5549 
   5550     if (Opc == ISD::UNDEF)
   5551       continue;
   5552 
   5553     if (Opc != ISD::EXTRACT_VECTOR_ELT) {
   5554       // Quit if more than 1 elements need inserting.
   5555       if (InsertIndices.size() > 1)
   5556         return SDValue();
   5557 
   5558       InsertIndices.push_back(i);
   5559       continue;
   5560     }
   5561 
   5562     SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
   5563     SDValue ExtIdx = Op.getOperand(i).getOperand(1);
   5564 
   5565     // Quit if extracted from vector of different type.
   5566     if (ExtractedFromVec.getValueType() != VT)
   5567       return SDValue();
   5568 
   5569     // Quit if non-constant index.
   5570     if (!isa<ConstantSDNode>(ExtIdx))
   5571       return SDValue();
   5572 
   5573     if (VecIn1.getNode() == 0)
   5574       VecIn1 = ExtractedFromVec;
   5575     else if (VecIn1 != ExtractedFromVec) {
   5576       if (VecIn2.getNode() == 0)
   5577         VecIn2 = ExtractedFromVec;
   5578       else if (VecIn2 != ExtractedFromVec)
   5579         // Quit if more than 2 vectors to shuffle
   5580         return SDValue();
   5581     }
   5582 
   5583     unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
   5584 
   5585     if (ExtractedFromVec == VecIn1)
   5586       Mask[i] = Idx;
   5587     else if (ExtractedFromVec == VecIn2)
   5588       Mask[i] = Idx + NumElems;
   5589   }
   5590 
   5591   if (VecIn1.getNode() == 0)
   5592     return SDValue();
   5593 
   5594   VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
   5595   SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
   5596   for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
   5597     unsigned Idx = InsertIndices[i];
   5598     NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
   5599                      DAG.getIntPtrConstant(Idx));
   5600   }
   5601 
   5602   return NV;
   5603 }
   5604 
   5605 // Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
   5606 SDValue
   5607 X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
   5608 
   5609   EVT VT = Op.getValueType();
   5610   assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
   5611          "Unexpected type in LowerBUILD_VECTORvXi1!");
   5612 
   5613   SDLoc dl(Op);
   5614   if (ISD::isBuildVectorAllZeros(Op.getNode())) {
   5615     SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
   5616     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
   5617                       Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   5618     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
   5619                        Ops, VT.getVectorNumElements());
   5620   }
   5621 
   5622   if (ISD::isBuildVectorAllOnes(Op.getNode())) {
   5623     SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
   5624     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
   5625                       Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   5626     return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
   5627                        Ops, VT.getVectorNumElements());
   5628   }
   5629 
   5630   bool AllContants = true;
   5631   uint64_t Immediate = 0;
   5632   for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
   5633     SDValue In = Op.getOperand(idx);
   5634     if (In.getOpcode() == ISD::UNDEF)
   5635       continue;
   5636     if (!isa<ConstantSDNode>(In)) {
   5637       AllContants = false;
   5638       break;
   5639     }
   5640     if (cast<ConstantSDNode>(In)->getZExtValue())
   5641       Immediate |= (1ULL << idx);
   5642   }
   5643 
   5644   if (AllContants) {
   5645     SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
   5646       DAG.getConstant(Immediate, MVT::i16));
   5647     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
   5648 		       DAG.getIntPtrConstant(0));
   5649   }
   5650 
   5651   if (!isSplatVector(Op.getNode()))
   5652     llvm_unreachable("Unsupported predicate operation");
   5653 
   5654   SDValue In = Op.getOperand(0);
   5655   SDValue EFLAGS, X86CC;
   5656   if (In.getOpcode() == ISD::SETCC) {
   5657     SDValue Op0 = In.getOperand(0);
   5658     SDValue Op1 = In.getOperand(1);
   5659     ISD::CondCode CC = cast<CondCodeSDNode>(In.getOperand(2))->get();
   5660     bool isFP = Op1.getValueType().isFloatingPoint();
   5661     unsigned X86CCVal = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
   5662 
   5663     assert(X86CCVal != X86::COND_INVALID && "Unsupported predicate operation");
   5664 
   5665     X86CC = DAG.getConstant(X86CCVal, MVT::i8);
   5666     EFLAGS = EmitCmp(Op0, Op1, X86CCVal, DAG);
   5667     EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
   5668   } else if (In.getOpcode() == X86ISD::SETCC) {
   5669     X86CC = In.getOperand(0);
   5670     EFLAGS = In.getOperand(1);
   5671   } else {
   5672     // The algorithm:
   5673     //   Bit1 = In & 0x1
   5674     //   if (Bit1 != 0)
   5675     //     ZF = 0
   5676     //   else
   5677     //     ZF = 1
   5678     //   if (ZF == 0)
   5679     //     res = allOnes ### CMOVNE -1, %res
   5680     //   else
   5681     //     res = allZero
   5682     MVT InVT = In.getValueType().getSimpleVT();
   5683     SDValue Bit1 = DAG.getNode(ISD::AND, dl, InVT, In, DAG.getConstant(1, InVT));
   5684     EFLAGS = EmitTest(Bit1, X86::COND_NE, DAG);
   5685     X86CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   5686   }
   5687 
   5688   if (VT == MVT::v16i1) {
   5689     SDValue Cst1 = DAG.getConstant(-1, MVT::i16);
   5690     SDValue Cst0 = DAG.getConstant(0, MVT::i16);
   5691     SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i16,
   5692           Cst0, Cst1, X86CC, EFLAGS);
   5693     return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
   5694   }
   5695 
   5696   if (VT == MVT::v8i1) {
   5697     SDValue Cst1 = DAG.getConstant(-1, MVT::i32);
   5698     SDValue Cst0 = DAG.getConstant(0, MVT::i32);
   5699     SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i32,
   5700           Cst0, Cst1, X86CC, EFLAGS);
   5701     CmovOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CmovOp);
   5702     return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
   5703   }
   5704   llvm_unreachable("Unsupported predicate operation");
   5705 }
   5706 
   5707 SDValue
   5708 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   5709   SDLoc dl(Op);
   5710 
   5711   MVT VT = Op.getValueType().getSimpleVT();
   5712   MVT ExtVT = VT.getVectorElementType();
   5713   unsigned NumElems = Op.getNumOperands();
   5714 
   5715   // Generate vectors for predicate vectors.
   5716   if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
   5717     return LowerBUILD_VECTORvXi1(Op, DAG);
   5718 
   5719   // Vectors containing all zeros can be matched by pxor and xorps later
   5720   if (ISD::isBuildVectorAllZeros(Op.getNode())) {
   5721     // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
   5722     // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
   5723     if (VT == MVT::v4i32 || VT == MVT::v8i32)
   5724       return Op;
   5725 
   5726     return getZeroVector(VT, Subtarget, DAG, dl);
   5727   }
   5728 
   5729   // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
   5730   // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
   5731   // vpcmpeqd on 256-bit vectors.
   5732   if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
   5733     if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
   5734       return Op;
   5735 
   5736     return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
   5737   }
   5738 
   5739   SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
   5740   if (Broadcast.getNode())
   5741     return Broadcast;
   5742 
   5743   unsigned EVTBits = ExtVT.getSizeInBits();
   5744 
   5745   unsigned NumZero  = 0;
   5746   unsigned NumNonZero = 0;
   5747   unsigned NonZeros = 0;
   5748   bool IsAllConstants = true;
   5749   SmallSet<SDValue, 8> Values;
   5750   for (unsigned i = 0; i < NumElems; ++i) {
   5751     SDValue Elt = Op.getOperand(i);
   5752     if (Elt.getOpcode() == ISD::UNDEF)
   5753       continue;
   5754     Values.insert(Elt);
   5755     if (Elt.getOpcode() != ISD::Constant &&
   5756         Elt.getOpcode() != ISD::ConstantFP)
   5757       IsAllConstants = false;
   5758     if (X86::isZeroNode(Elt))
   5759       NumZero++;
   5760     else {
   5761       NonZeros |= (1 << i);
   5762       NumNonZero++;
   5763     }
   5764   }
   5765 
   5766   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
   5767   if (NumNonZero == 0)
   5768     return DAG.getUNDEF(VT);
   5769 
   5770   // Special case for single non-zero, non-undef, element.
   5771   if (NumNonZero == 1) {
   5772     unsigned Idx = countTrailingZeros(NonZeros);
   5773     SDValue Item = Op.getOperand(Idx);
   5774 
   5775     // If this is an insertion of an i64 value on x86-32, and if the top bits of
   5776     // the value are obviously zero, truncate the value to i32 and do the
   5777     // insertion that way.  Only do this if the value is non-constant or if the
   5778     // value is a constant being inserted into element 0.  It is cheaper to do
   5779     // a constant pool load than it is to do a movd + shuffle.
   5780     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
   5781         (!IsAllConstants || Idx == 0)) {
   5782       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
   5783         // Handle SSE only.
   5784         assert(VT == MVT::v2i64 && "Expected an SSE value type!");
   5785         EVT VecVT = MVT::v4i32;
   5786         unsigned VecElts = 4;
   5787 
   5788         // Truncate the value (which may itself be a constant) to i32, and
   5789         // convert it to a vector with movd (S2V+shuffle to zero extend).
   5790         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
   5791         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
   5792         Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
   5793 
   5794         // Now we have our 32-bit value zero extended in the low element of
   5795         // a vector.  If Idx != 0, swizzle it into place.
   5796         if (Idx != 0) {
   5797           SmallVector<int, 4> Mask;
   5798           Mask.push_back(Idx);
   5799           for (unsigned i = 1; i != VecElts; ++i)
   5800             Mask.push_back(i);
   5801           Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
   5802                                       &Mask[0]);
   5803         }
   5804         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
   5805       }
   5806     }
   5807 
   5808     // If we have a constant or non-constant insertion into the low element of
   5809     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
   5810     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
   5811     // depending on what the source datatype is.
   5812     if (Idx == 0) {
   5813       if (NumZero == 0)
   5814         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5815 
   5816       if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
   5817           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
   5818         if (VT.is256BitVector()) {
   5819           SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
   5820           return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
   5821                              Item, DAG.getIntPtrConstant(0));
   5822         }
   5823         assert(VT.is128BitVector() && "Expected an SSE value type!");
   5824         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5825         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
   5826         return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
   5827       }
   5828 
   5829       if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
   5830         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
   5831         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
   5832         if (VT.is256BitVector()) {
   5833           SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
   5834           Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
   5835         } else {
   5836           assert(VT.is128BitVector() && "Expected an SSE value type!");
   5837           Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
   5838         }
   5839         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
   5840       }
   5841     }
   5842 
   5843     // Is it a vector logical left shift?
   5844     if (NumElems == 2 && Idx == 1 &&
   5845         X86::isZeroNode(Op.getOperand(0)) &&
   5846         !X86::isZeroNode(Op.getOperand(1))) {
   5847       unsigned NumBits = VT.getSizeInBits();
   5848       return getVShift(true, VT,
   5849                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   5850                                    VT, Op.getOperand(1)),
   5851                        NumBits/2, DAG, *this, dl);
   5852     }
   5853 
   5854     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
   5855       return SDValue();
   5856 
   5857     // Otherwise, if this is a vector with i32 or f32 elements, and the element
   5858     // is a non-constant being inserted into an element other than the low one,
   5859     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
   5860     // movd/movss) to move this into the low element, then shuffle it into
   5861     // place.
   5862     if (EVTBits == 32) {
   5863       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5864 
   5865       // Turn it into a shuffle of zero and zero-extended scalar to vector.
   5866       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
   5867       SmallVector<int, 8> MaskVec;
   5868       for (unsigned i = 0; i != NumElems; ++i)
   5869         MaskVec.push_back(i == Idx ? 0 : 1);
   5870       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
   5871     }
   5872   }
   5873 
   5874   // Splat is obviously ok. Let legalizer expand it to a shuffle.
   5875   if (Values.size() == 1) {
   5876     if (EVTBits == 32) {
   5877       // Instead of a shuffle like this:
   5878       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
   5879       // Check if it's possible to issue this instead.
   5880       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
   5881       unsigned Idx = countTrailingZeros(NonZeros);
   5882       SDValue Item = Op.getOperand(Idx);
   5883       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
   5884         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
   5885     }
   5886     return SDValue();
   5887   }
   5888 
   5889   // A vector full of immediates; various special cases are already
   5890   // handled, so this is best done with a single constant-pool load.
   5891   if (IsAllConstants)
   5892     return SDValue();
   5893 
   5894   // For AVX-length vectors, build the individual 128-bit pieces and use
   5895   // shuffles to put them in place.
   5896   if (VT.is256BitVector()) {
   5897     SmallVector<SDValue, 32> V;
   5898     for (unsigned i = 0; i != NumElems; ++i)
   5899       V.push_back(Op.getOperand(i));
   5900 
   5901     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
   5902 
   5903     // Build both the lower and upper subvector.
   5904     SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
   5905     SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
   5906                                 NumElems/2);
   5907 
   5908     // Recreate the wider vector with the lower and upper part.
   5909     return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
   5910   }
   5911 
   5912   // Let legalizer expand 2-wide build_vectors.
   5913   if (EVTBits == 64) {
   5914     if (NumNonZero == 1) {
   5915       // One half is zero or undef.
   5916       unsigned Idx = countTrailingZeros(NonZeros);
   5917       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
   5918                                  Op.getOperand(Idx));
   5919       return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
   5920     }
   5921     return SDValue();
   5922   }
   5923 
   5924   // If element VT is < 32 bits, convert it to inserts into a zero vector.
   5925   if (EVTBits == 8 && NumElems == 16) {
   5926     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
   5927                                         Subtarget, *this);
   5928     if (V.getNode()) return V;
   5929   }
   5930 
   5931   if (EVTBits == 16 && NumElems == 8) {
   5932     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
   5933                                       Subtarget, *this);
   5934     if (V.getNode()) return V;
   5935   }
   5936 
   5937   // If element VT is == 32 bits, turn it into a number of shuffles.
   5938   SmallVector<SDValue, 8> V(NumElems);
   5939   if (NumElems == 4 && NumZero > 0) {
   5940     for (unsigned i = 0; i < 4; ++i) {
   5941       bool isZero = !(NonZeros & (1 << i));
   5942       if (isZero)
   5943         V[i] = getZeroVector(VT, Subtarget, DAG, dl);
   5944       else
   5945         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   5946     }
   5947 
   5948     for (unsigned i = 0; i < 2; ++i) {
   5949       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
   5950         default: break;
   5951         case 0:
   5952           V[i] = V[i*2];  // Must be a zero vector.
   5953           break;
   5954         case 1:
   5955           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
   5956           break;
   5957         case 2:
   5958           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
   5959           break;
   5960         case 3:
   5961           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
   5962           break;
   5963       }
   5964     }
   5965 
   5966     bool Reverse1 = (NonZeros & 0x3) == 2;
   5967     bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
   5968     int MaskVec[] = {
   5969       Reverse1 ? 1 : 0,
   5970       Reverse1 ? 0 : 1,
   5971       static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
   5972       static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
   5973     };
   5974     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
   5975   }
   5976 
   5977   if (Values.size() > 1 && VT.is128BitVector()) {
   5978     // Check for a build vector of consecutive loads.
   5979     for (unsigned i = 0; i < NumElems; ++i)
   5980       V[i] = Op.getOperand(i);
   5981 
   5982     // Check for elements which are consecutive loads.
   5983     SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
   5984     if (LD.getNode())
   5985       return LD;
   5986 
   5987     // Check for a build vector from mostly shuffle plus few inserting.
   5988     SDValue Sh = buildFromShuffleMostly(Op, DAG);
   5989     if (Sh.getNode())
   5990       return Sh;
   5991 
   5992     // For SSE 4.1, use insertps to put the high elements into the low element.
   5993     if (getSubtarget()->hasSSE41()) {
   5994       SDValue Result;
   5995       if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
   5996         Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
   5997       else
   5998         Result = DAG.getUNDEF(VT);
   5999 
   6000       for (unsigned i = 1; i < NumElems; ++i) {
   6001         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
   6002         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
   6003                              Op.getOperand(i), DAG.getIntPtrConstant(i));
   6004       }
   6005       return Result;
   6006     }
   6007 
   6008     // Otherwise, expand into a number of unpckl*, start by extending each of
   6009     // our (non-undef) elements to the full vector width with the element in the
   6010     // bottom slot of the vector (which generates no code for SSE).
   6011     for (unsigned i = 0; i < NumElems; ++i) {
   6012       if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
   6013         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   6014       else
   6015         V[i] = DAG.getUNDEF(VT);
   6016     }
   6017 
   6018     // Next, we iteratively mix elements, e.g. for v4f32:
   6019     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
   6020     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
   6021     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
   6022     unsigned EltStride = NumElems >> 1;
   6023     while (EltStride != 0) {
   6024       for (unsigned i = 0; i < EltStride; ++i) {
   6025         // If V[i+EltStride] is undef and this is the first round of mixing,
   6026         // then it is safe to just drop this shuffle: V[i] is already in the
   6027         // right place, the one element (since it's the first round) being
   6028         // inserted as undef can be dropped.  This isn't safe for successive
   6029         // rounds because they will permute elements within both vectors.
   6030         if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
   6031             EltStride == NumElems/2)
   6032           continue;
   6033 
   6034         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
   6035       }
   6036       EltStride >>= 1;
   6037     }
   6038     return V[0];
   6039   }
   6040   return SDValue();
   6041 }
   6042 
   6043 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
   6044 // to create 256-bit vectors from two other 128-bit ones.
   6045 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   6046   SDLoc dl(Op);
   6047   MVT ResVT = Op.getValueType().getSimpleVT();
   6048 
   6049   assert((ResVT.is256BitVector() ||
   6050           ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
   6051 
   6052   SDValue V1 = Op.getOperand(0);
   6053   SDValue V2 = Op.getOperand(1);
   6054   unsigned NumElems = ResVT.getVectorNumElements();
   6055   if(ResVT.is256BitVector())
   6056     return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
   6057 
   6058   return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
   6059 }
   6060 
   6061 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   6062   assert(Op.getNumOperands() == 2);
   6063 
   6064   // AVX/AVX-512 can use the vinsertf128 instruction to create 256-bit vectors
   6065   // from two other 128-bit ones.
   6066   return LowerAVXCONCAT_VECTORS(Op, DAG);
   6067 }
   6068 
   6069 // Try to lower a shuffle node into a simple blend instruction.
   6070 static SDValue
   6071 LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
   6072                            const X86Subtarget *Subtarget, SelectionDAG &DAG) {
   6073   SDValue V1 = SVOp->getOperand(0);
   6074   SDValue V2 = SVOp->getOperand(1);
   6075   SDLoc dl(SVOp);
   6076   MVT VT = SVOp->getValueType(0).getSimpleVT();
   6077   MVT EltVT = VT.getVectorElementType();
   6078   unsigned NumElems = VT.getVectorNumElements();
   6079 
   6080   if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
   6081     return SDValue();
   6082   if (!Subtarget->hasInt256() && VT == MVT::v16i16)
   6083     return SDValue();
   6084 
   6085   // Check the mask for BLEND and build the value.
   6086   unsigned MaskValue = 0;
   6087   // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
   6088   unsigned NumLanes = (NumElems-1)/8 + 1;
   6089   unsigned NumElemsInLane = NumElems / NumLanes;
   6090 
   6091   // Blend for v16i16 should be symetric for the both lanes.
   6092   for (unsigned i = 0; i < NumElemsInLane; ++i) {
   6093 
   6094     int SndLaneEltIdx = (NumLanes == 2) ?
   6095       SVOp->getMaskElt(i + NumElemsInLane) : -1;
   6096     int EltIdx = SVOp->getMaskElt(i);
   6097 
   6098     if ((EltIdx < 0 || EltIdx == (int)i) &&
   6099         (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
   6100       continue;
   6101 
   6102     if (((unsigned)EltIdx == (i + NumElems)) &&
   6103         (SndLaneEltIdx < 0 ||
   6104          (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
   6105       MaskValue |= (1<<i);
   6106     else
   6107       return SDValue();
   6108   }
   6109 
   6110   // Convert i32 vectors to floating point if it is not AVX2.
   6111   // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
   6112   MVT BlendVT = VT;
   6113   if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
   6114     BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
   6115                                NumElems);
   6116     V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
   6117     V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
   6118   }
   6119 
   6120   SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
   6121                             DAG.getConstant(MaskValue, MVT::i32));
   6122   return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
   6123 }
   6124 
   6125 // v8i16 shuffles - Prefer shuffles in the following order:
   6126 // 1. [all]   pshuflw, pshufhw, optional move
   6127 // 2. [ssse3] 1 x pshufb
   6128 // 3. [ssse3] 2 x pshufb + 1 x por
   6129 // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
   6130 static SDValue
   6131 LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
   6132                          SelectionDAG &DAG) {
   6133   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6134   SDValue V1 = SVOp->getOperand(0);
   6135   SDValue V2 = SVOp->getOperand(1);
   6136   SDLoc dl(SVOp);
   6137   SmallVector<int, 8> MaskVals;
   6138 
   6139   // Determine if more than 1 of the words in each of the low and high quadwords
   6140   // of the result come from the same quadword of one of the two inputs.  Undef
   6141   // mask values count as coming from any quadword, for better codegen.
   6142   unsigned LoQuad[] = { 0, 0, 0, 0 };
   6143   unsigned HiQuad[] = { 0, 0, 0, 0 };
   6144   std::bitset<4> InputQuads;
   6145   for (unsigned i = 0; i < 8; ++i) {
   6146     unsigned *Quad = i < 4 ? LoQuad : HiQuad;
   6147     int EltIdx = SVOp->getMaskElt(i);
   6148     MaskVals.push_back(EltIdx);
   6149     if (EltIdx < 0) {
   6150       ++Quad[0];
   6151       ++Quad[1];
   6152       ++Quad[2];
   6153       ++Quad[3];
   6154       continue;
   6155     }
   6156     ++Quad[EltIdx / 4];
   6157     InputQuads.set(EltIdx / 4);
   6158   }
   6159 
   6160   int BestLoQuad = -1;
   6161   unsigned MaxQuad = 1;
   6162   for (unsigned i = 0; i < 4; ++i) {
   6163     if (LoQuad[i] > MaxQuad) {
   6164       BestLoQuad = i;
   6165       MaxQuad = LoQuad[i];
   6166     }
   6167   }
   6168 
   6169   int BestHiQuad = -1;
   6170   MaxQuad = 1;
   6171   for (unsigned i = 0; i < 4; ++i) {
   6172     if (HiQuad[i] > MaxQuad) {
   6173       BestHiQuad = i;
   6174       MaxQuad = HiQuad[i];
   6175     }
   6176   }
   6177 
   6178   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
   6179   // of the two input vectors, shuffle them into one input vector so only a
   6180   // single pshufb instruction is necessary. If There are more than 2 input
   6181   // quads, disable the next transformation since it does not help SSSE3.
   6182   bool V1Used = InputQuads[0] || InputQuads[1];
   6183   bool V2Used = InputQuads[2] || InputQuads[3];
   6184   if (Subtarget->hasSSSE3()) {
   6185     if (InputQuads.count() == 2 && V1Used && V2Used) {
   6186       BestLoQuad = InputQuads[0] ? 0 : 1;
   6187       BestHiQuad = InputQuads[2] ? 2 : 3;
   6188     }
   6189     if (InputQuads.count() > 2) {
   6190       BestLoQuad = -1;
   6191       BestHiQuad = -1;
   6192     }
   6193   }
   6194 
   6195   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
   6196   // the shuffle mask.  If a quad is scored as -1, that means that it contains
   6197   // words from all 4 input quadwords.
   6198   SDValue NewV;
   6199   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
   6200     int MaskV[] = {
   6201       BestLoQuad < 0 ? 0 : BestLoQuad,
   6202       BestHiQuad < 0 ? 1 : BestHiQuad
   6203     };
   6204     NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
   6205                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
   6206                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
   6207     NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
   6208 
   6209     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
   6210     // source words for the shuffle, to aid later transformations.
   6211     bool AllWordsInNewV = true;
   6212     bool InOrder[2] = { true, true };
   6213     for (unsigned i = 0; i != 8; ++i) {
   6214       int idx = MaskVals[i];
   6215       if (idx != (int)i)
   6216         InOrder[i/4] = false;
   6217       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
   6218         continue;
   6219       AllWordsInNewV = false;
   6220       break;
   6221     }
   6222 
   6223     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
   6224     if (AllWordsInNewV) {
   6225       for (int i = 0; i != 8; ++i) {
   6226         int idx = MaskVals[i];
   6227         if (idx < 0)
   6228           continue;
   6229         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
   6230         if ((idx != i) && idx < 4)
   6231           pshufhw = false;
   6232         if ((idx != i) && idx > 3)
   6233           pshuflw = false;
   6234       }
   6235       V1 = NewV;
   6236       V2Used = false;
   6237       BestLoQuad = 0;
   6238       BestHiQuad = 1;
   6239     }
   6240 
   6241     // If we've eliminated the use of V2, and the new mask is a pshuflw or
   6242     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
   6243     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
   6244       unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
   6245       unsigned TargetMask = 0;
   6246       NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
   6247                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
   6248       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
   6249       TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
   6250                              getShufflePSHUFLWImmediate(SVOp);
   6251       V1 = NewV.getOperand(0);
   6252       return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
   6253     }
   6254   }
   6255 
   6256   // Promote splats to a larger type which usually leads to more efficient code.
   6257   // FIXME: Is this true if pshufb is available?
   6258   if (SVOp->isSplat())
   6259     return PromoteSplat(SVOp, DAG);
   6260 
   6261   // If we have SSSE3, and all words of the result are from 1 input vector,
   6262   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
   6263   // is present, fall back to case 4.
   6264   if (Subtarget->hasSSSE3()) {
   6265     SmallVector<SDValue,16> pshufbMask;
   6266 
   6267     // If we have elements from both input vectors, set the high bit of the
   6268     // shuffle mask element to zero out elements that come from V2 in the V1
   6269     // mask, and elements that come from V1 in the V2 mask, so that the two
   6270     // results can be OR'd together.
   6271     bool TwoInputs = V1Used && V2Used;
   6272     for (unsigned i = 0; i != 8; ++i) {
   6273       int EltIdx = MaskVals[i] * 2;
   6274       int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
   6275       int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
   6276       pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
   6277       pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
   6278     }
   6279     V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
   6280     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   6281                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   6282                                  MVT::v16i8, &pshufbMask[0], 16));
   6283     if (!TwoInputs)
   6284       return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   6285 
   6286     // Calculate the shuffle mask for the second input, shuffle it, and
   6287     // OR it with the first shuffled input.
   6288     pshufbMask.clear();
   6289     for (unsigned i = 0; i != 8; ++i) {
   6290       int EltIdx = MaskVals[i] * 2;
   6291       int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
   6292       int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
   6293       pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
   6294       pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
   6295     }
   6296     V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
   6297     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   6298                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   6299                                  MVT::v16i8, &pshufbMask[0], 16));
   6300     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   6301     return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   6302   }
   6303 
   6304   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
   6305   // and update MaskVals with new element order.
   6306   std::bitset<8> InOrder;
   6307   if (BestLoQuad >= 0) {
   6308     int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
   6309     for (int i = 0; i != 4; ++i) {
   6310       int idx = MaskVals[i];
   6311       if (idx < 0) {
   6312         InOrder.set(i);
   6313       } else if ((idx / 4) == BestLoQuad) {
   6314         MaskV[i] = idx & 3;
   6315         InOrder.set(i);
   6316       }
   6317     }
   6318     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   6319                                 &MaskV[0]);
   6320 
   6321     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
   6322       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
   6323       NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
   6324                                   NewV.getOperand(0),
   6325                                   getShufflePSHUFLWImmediate(SVOp), DAG);
   6326     }
   6327   }
   6328 
   6329   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
   6330   // and update MaskVals with the new element order.
   6331   if (BestHiQuad >= 0) {
   6332     int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
   6333     for (unsigned i = 4; i != 8; ++i) {
   6334       int idx = MaskVals[i];
   6335       if (idx < 0) {
   6336         InOrder.set(i);
   6337       } else if ((idx / 4) == BestHiQuad) {
   6338         MaskV[i] = (idx & 3) + 4;
   6339         InOrder.set(i);
   6340       }
   6341     }
   6342     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   6343                                 &MaskV[0]);
   6344 
   6345     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
   6346       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
   6347       NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
   6348                                   NewV.getOperand(0),
   6349                                   getShufflePSHUFHWImmediate(SVOp), DAG);
   6350     }
   6351   }
   6352 
   6353   // In case BestHi & BestLo were both -1, which means each quadword has a word
   6354   // from each of the four input quadwords, calculate the InOrder bitvector now
   6355   // before falling through to the insert/extract cleanup.
   6356   if (BestLoQuad == -1 && BestHiQuad == -1) {
   6357     NewV = V1;
   6358     for (int i = 0; i != 8; ++i)
   6359       if (MaskVals[i] < 0 || MaskVals[i] == i)
   6360         InOrder.set(i);
   6361   }
   6362 
   6363   // The other elements are put in the right place using pextrw and pinsrw.
   6364   for (unsigned i = 0; i != 8; ++i) {
   6365     if (InOrder[i])
   6366       continue;
   6367     int EltIdx = MaskVals[i];
   6368     if (EltIdx < 0)
   6369       continue;
   6370     SDValue ExtOp = (EltIdx < 8) ?
   6371       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
   6372                   DAG.getIntPtrConstant(EltIdx)) :
   6373       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
   6374                   DAG.getIntPtrConstant(EltIdx - 8));
   6375     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
   6376                        DAG.getIntPtrConstant(i));
   6377   }
   6378   return NewV;
   6379 }
   6380 
   6381 // v16i8 shuffles - Prefer shuffles in the following order:
   6382 // 1. [ssse3] 1 x pshufb
   6383 // 2. [ssse3] 2 x pshufb + 1 x por
   6384 // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
   6385 static
   6386 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
   6387                                  SelectionDAG &DAG,
   6388                                  const X86TargetLowering &TLI) {
   6389   SDValue V1 = SVOp->getOperand(0);
   6390   SDValue V2 = SVOp->getOperand(1);
   6391   SDLoc dl(SVOp);
   6392   ArrayRef<int> MaskVals = SVOp->getMask();
   6393 
   6394   // Promote splats to a larger type which usually leads to more efficient code.
   6395   // FIXME: Is this true if pshufb is available?
   6396   if (SVOp->isSplat())
   6397     return PromoteSplat(SVOp, DAG);
   6398 
   6399   // If we have SSSE3, case 1 is generated when all result bytes come from
   6400   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
   6401   // present, fall back to case 3.
   6402 
   6403   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
   6404   if (TLI.getSubtarget()->hasSSSE3()) {
   6405     SmallVector<SDValue,16> pshufbMask;
   6406 
   6407     // If all result elements are from one input vector, then only translate
   6408     // undef mask values to 0x80 (zero out result) in the pshufb mask.
   6409     //
   6410     // Otherwise, we have elements from both input vectors, and must zero out
   6411     // elements that come from V2 in the first mask, and V1 in the second mask
   6412     // so that we can OR them together.
   6413     for (unsigned i = 0; i != 16; ++i) {
   6414       int EltIdx = MaskVals[i];
   6415       if (EltIdx < 0 || EltIdx >= 16)
   6416         EltIdx = 0x80;
   6417       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   6418     }
   6419     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   6420                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   6421                                  MVT::v16i8, &pshufbMask[0], 16));
   6422 
   6423     // As PSHUFB will zero elements with negative indices, it's safe to ignore
   6424     // the 2nd operand if it's undefined or zero.
   6425     if (V2.getOpcode() == ISD::UNDEF ||
   6426         ISD::isBuildVectorAllZeros(V2.getNode()))
   6427       return V1;
   6428 
   6429     // Calculate the shuffle mask for the second input, shuffle it, and
   6430     // OR it with the first shuffled input.
   6431     pshufbMask.clear();
   6432     for (unsigned i = 0; i != 16; ++i) {
   6433       int EltIdx = MaskVals[i];
   6434       EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
   6435       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   6436     }
   6437     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   6438                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   6439                                  MVT::v16i8, &pshufbMask[0], 16));
   6440     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   6441   }
   6442 
   6443   // No SSSE3 - Calculate in place words and then fix all out of place words
   6444   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
   6445   // the 16 different words that comprise the two doublequadword input vectors.
   6446   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   6447   V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
   6448   SDValue NewV = V1;
   6449   for (int i = 0; i != 8; ++i) {
   6450     int Elt0 = MaskVals[i*2];
   6451     int Elt1 = MaskVals[i*2+1];
   6452 
   6453     // This word of the result is all undef, skip it.
   6454     if (Elt0 < 0 && Elt1 < 0)
   6455       continue;
   6456 
   6457     // This word of the result is already in the correct place, skip it.
   6458     if ((Elt0 == i*2) && (Elt1 == i*2+1))
   6459       continue;
   6460 
   6461     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
   6462     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
   6463     SDValue InsElt;
   6464 
   6465     // If Elt0 and Elt1 are defined, are consecutive, and can be load
   6466     // using a single extract together, load it and store it.
   6467     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
   6468       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   6469                            DAG.getIntPtrConstant(Elt1 / 2));
   6470       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   6471                         DAG.getIntPtrConstant(i));
   6472       continue;
   6473     }
   6474 
   6475     // If Elt1 is defined, extract it from the appropriate source.  If the
   6476     // source byte is not also odd, shift the extracted word left 8 bits
   6477     // otherwise clear the bottom 8 bits if we need to do an or.
   6478     if (Elt1 >= 0) {
   6479       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   6480                            DAG.getIntPtrConstant(Elt1 / 2));
   6481       if ((Elt1 & 1) == 0)
   6482         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
   6483                              DAG.getConstant(8,
   6484                                   TLI.getShiftAmountTy(InsElt.getValueType())));
   6485       else if (Elt0 >= 0)
   6486         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
   6487                              DAG.getConstant(0xFF00, MVT::i16));
   6488     }
   6489     // If Elt0 is defined, extract it from the appropriate source.  If the
   6490     // source byte is not also even, shift the extracted word right 8 bits. If
   6491     // Elt1 was also defined, OR the extracted values together before
   6492     // inserting them in the result.
   6493     if (Elt0 >= 0) {
   6494       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
   6495                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
   6496       if ((Elt0 & 1) != 0)
   6497         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
   6498                               DAG.getConstant(8,
   6499                                  TLI.getShiftAmountTy(InsElt0.getValueType())));
   6500       else if (Elt1 >= 0)
   6501         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
   6502                              DAG.getConstant(0x00FF, MVT::i16));
   6503       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
   6504                          : InsElt0;
   6505     }
   6506     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   6507                        DAG.getIntPtrConstant(i));
   6508   }
   6509   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
   6510 }
   6511 
   6512 // v32i8 shuffles - Translate to VPSHUFB if possible.
   6513 static
   6514 SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
   6515                                  const X86Subtarget *Subtarget,
   6516                                  SelectionDAG &DAG) {
   6517   MVT VT = SVOp->getValueType(0).getSimpleVT();
   6518   SDValue V1 = SVOp->getOperand(0);
   6519   SDValue V2 = SVOp->getOperand(1);
   6520   SDLoc dl(SVOp);
   6521   SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
   6522 
   6523   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
   6524   bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
   6525   bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
   6526 
   6527   // VPSHUFB may be generated if
   6528   // (1) one of input vector is undefined or zeroinitializer.
   6529   // The mask value 0x80 puts 0 in the corresponding slot of the vector.
   6530   // And (2) the mask indexes don't cross the 128-bit lane.
   6531   if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
   6532       (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
   6533     return SDValue();
   6534 
   6535   if (V1IsAllZero && !V2IsAllZero) {
   6536     CommuteVectorShuffleMask(MaskVals, 32);
   6537     V1 = V2;
   6538   }
   6539   SmallVector<SDValue, 32> pshufbMask;
   6540   for (unsigned i = 0; i != 32; i++) {
   6541     int EltIdx = MaskVals[i];
   6542     if (EltIdx < 0 || EltIdx >= 32)
   6543       EltIdx = 0x80;
   6544     else {
   6545       if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
   6546         // Cross lane is not allowed.
   6547         return SDValue();
   6548       EltIdx &= 0xf;
   6549     }
   6550     pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   6551   }
   6552   return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
   6553                       DAG.getNode(ISD::BUILD_VECTOR, dl,
   6554                                   MVT::v32i8, &pshufbMask[0], 32));
   6555 }
   6556 
   6557 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
   6558 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
   6559 /// done when every pair / quad of shuffle mask elements point to elements in
   6560 /// the right sequence. e.g.
   6561 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
   6562 static
   6563 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
   6564                                  SelectionDAG &DAG) {
   6565   MVT VT = SVOp->getValueType(0).getSimpleVT();
   6566   SDLoc dl(SVOp);
   6567   unsigned NumElems = VT.getVectorNumElements();
   6568   MVT NewVT;
   6569   unsigned Scale;
   6570   switch (VT.SimpleTy) {
   6571   default: llvm_unreachable("Unexpected!");
   6572   case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
   6573   case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
   6574   case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
   6575   case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
   6576   case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
   6577   case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
   6578   }
   6579 
   6580   SmallVector<int, 8> MaskVec;
   6581   for (unsigned i = 0; i != NumElems; i += Scale) {
   6582     int StartIdx = -1;
   6583     for (unsigned j = 0; j != Scale; ++j) {
   6584       int EltIdx = SVOp->getMaskElt(i+j);
   6585       if (EltIdx < 0)
   6586         continue;
   6587       if (StartIdx < 0)
   6588         StartIdx = (EltIdx / Scale);
   6589       if (EltIdx != (int)(StartIdx*Scale + j))
   6590         return SDValue();
   6591     }
   6592     MaskVec.push_back(StartIdx);
   6593   }
   6594 
   6595   SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
   6596   SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
   6597   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
   6598 }
   6599 
   6600 /// getVZextMovL - Return a zero-extending vector move low node.
   6601 ///
   6602 static SDValue getVZextMovL(MVT VT, EVT OpVT,
   6603                             SDValue SrcOp, SelectionDAG &DAG,
   6604                             const X86Subtarget *Subtarget, SDLoc dl) {
   6605   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
   6606     LoadSDNode *LD = NULL;
   6607     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
   6608       LD = dyn_cast<LoadSDNode>(SrcOp);
   6609     if (!LD) {
   6610       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
   6611       // instead.
   6612       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
   6613       if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
   6614           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   6615           SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
   6616           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
   6617         // PR2108
   6618         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
   6619         return DAG.getNode(ISD::BITCAST, dl, VT,
   6620                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   6621                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   6622                                                    OpVT,
   6623                                                    SrcOp.getOperand(0)
   6624                                                           .getOperand(0))));
   6625       }
   6626     }
   6627   }
   6628 
   6629   return DAG.getNode(ISD::BITCAST, dl, VT,
   6630                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   6631                                  DAG.getNode(ISD::BITCAST, dl,
   6632                                              OpVT, SrcOp)));
   6633 }
   6634 
   6635 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
   6636 /// which could not be matched by any known target speficic shuffle
   6637 static SDValue
   6638 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   6639 
   6640   SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
   6641   if (NewOp.getNode())
   6642     return NewOp;
   6643 
   6644   MVT VT = SVOp->getValueType(0).getSimpleVT();
   6645 
   6646   unsigned NumElems = VT.getVectorNumElements();
   6647   unsigned NumLaneElems = NumElems / 2;
   6648 
   6649   SDLoc dl(SVOp);
   6650   MVT EltVT = VT.getVectorElementType();
   6651   MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
   6652   SDValue Output[2];
   6653 
   6654   SmallVector<int, 16> Mask;
   6655   for (unsigned l = 0; l < 2; ++l) {
   6656     // Build a shuffle mask for the output, discovering on the fly which
   6657     // input vectors to use as shuffle operands (recorded in InputUsed).
   6658     // If building a suitable shuffle vector proves too hard, then bail
   6659     // out with UseBuildVector set.
   6660     bool UseBuildVector = false;
   6661     int InputUsed[2] = { -1, -1 }; // Not yet discovered.
   6662     unsigned LaneStart = l * NumLaneElems;
   6663     for (unsigned i = 0; i != NumLaneElems; ++i) {
   6664       // The mask element.  This indexes into the input.
   6665       int Idx = SVOp->getMaskElt(i+LaneStart);
   6666       if (Idx < 0) {
   6667         // the mask element does not index into any input vector.
   6668         Mask.push_back(-1);
   6669         continue;
   6670       }
   6671 
   6672       // The input vector this mask element indexes into.
   6673       int Input = Idx / NumLaneElems;
   6674 
   6675       // Turn the index into an offset from the start of the input vector.
   6676       Idx -= Input * NumLaneElems;
   6677 
   6678       // Find or create a shuffle vector operand to hold this input.
   6679       unsigned OpNo;
   6680       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
   6681         if (InputUsed[OpNo] == Input)
   6682           // This input vector is already an operand.
   6683           break;
   6684         if (InputUsed[OpNo] < 0) {
   6685           // Create a new operand for this input vector.
   6686           InputUsed[OpNo] = Input;
   6687           break;
   6688         }
   6689       }
   6690 
   6691       if (OpNo >= array_lengthof(InputUsed)) {
   6692         // More than two input vectors used!  Give up on trying to create a
   6693         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
   6694         UseBuildVector = true;
   6695         break;
   6696       }
   6697 
   6698       // Add the mask index for the new shuffle vector.
   6699       Mask.push_back(Idx + OpNo * NumLaneElems);
   6700     }
   6701 
   6702     if (UseBuildVector) {
   6703       SmallVector<SDValue, 16> SVOps;
   6704       for (unsigned i = 0; i != NumLaneElems; ++i) {
   6705         // The mask element.  This indexes into the input.
   6706         int Idx = SVOp->getMaskElt(i+LaneStart);
   6707         if (Idx < 0) {
   6708           SVOps.push_back(DAG.getUNDEF(EltVT));
   6709           continue;
   6710         }
   6711 
   6712         // The input vector this mask element indexes into.
   6713         int Input = Idx / NumElems;
   6714 
   6715         // Turn the index into an offset from the start of the input vector.
   6716         Idx -= Input * NumElems;
   6717 
   6718         // Extract the vector element by hand.
   6719         SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   6720                                     SVOp->getOperand(Input),
   6721                                     DAG.getIntPtrConstant(Idx)));
   6722       }
   6723 
   6724       // Construct the output using a BUILD_VECTOR.
   6725       Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
   6726                               SVOps.size());
   6727     } else if (InputUsed[0] < 0) {
   6728       // No input vectors were used! The result is undefined.
   6729       Output[l] = DAG.getUNDEF(NVT);
   6730     } else {
   6731       SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
   6732                                         (InputUsed[0] % 2) * NumLaneElems,
   6733                                         DAG, dl);
   6734       // If only one input was used, use an undefined vector for the other.
   6735       SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
   6736         Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
   6737                             (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
   6738       // At least one input vector was used. Create a new shuffle vector.
   6739       Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
   6740     }
   6741 
   6742     Mask.clear();
   6743   }
   6744 
   6745   // Concatenate the result back
   6746   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
   6747 }
   6748 
   6749 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
   6750 /// 4 elements, and match them with several different shuffle types.
   6751 static SDValue
   6752 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   6753   SDValue V1 = SVOp->getOperand(0);
   6754   SDValue V2 = SVOp->getOperand(1);
   6755   SDLoc dl(SVOp);
   6756   MVT VT = SVOp->getValueType(0).getSimpleVT();
   6757 
   6758   assert(VT.is128BitVector() && "Unsupported vector size");
   6759 
   6760   std::pair<int, int> Locs[4];
   6761   int Mask1[] = { -1, -1, -1, -1 };
   6762   SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
   6763 
   6764   unsigned NumHi = 0;
   6765   unsigned NumLo = 0;
   6766   for (unsigned i = 0; i != 4; ++i) {
   6767     int Idx = PermMask[i];
   6768     if (Idx < 0) {
   6769       Locs[i] = std::make_pair(-1, -1);
   6770     } else {
   6771       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
   6772       if (Idx < 4) {
   6773         Locs[i] = std::make_pair(0, NumLo);
   6774         Mask1[NumLo] = Idx;
   6775         NumLo++;
   6776       } else {
   6777         Locs[i] = std::make_pair(1, NumHi);
   6778         if (2+NumHi < 4)
   6779           Mask1[2+NumHi] = Idx;
   6780         NumHi++;
   6781       }
   6782     }
   6783   }
   6784 
   6785   if (NumLo <= 2 && NumHi <= 2) {
   6786     // If no more than two elements come from either vector. This can be
   6787     // implemented with two shuffles. First shuffle gather the elements.
   6788     // The second shuffle, which takes the first shuffle as both of its
   6789     // vector operands, put the elements into the right order.
   6790     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6791 
   6792     int Mask2[] = { -1, -1, -1, -1 };
   6793 
   6794     for (unsigned i = 0; i != 4; ++i)
   6795       if (Locs[i].first != -1) {
   6796         unsigned Idx = (i < 2) ? 0 : 4;
   6797         Idx += Locs[i].first * 2 + Locs[i].second;
   6798         Mask2[i] = Idx;
   6799       }
   6800 
   6801     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
   6802   }
   6803 
   6804   if (NumLo == 3 || NumHi == 3) {
   6805     // Otherwise, we must have three elements from one vector, call it X, and
   6806     // one element from the other, call it Y.  First, use a shufps to build an
   6807     // intermediate vector with the one element from Y and the element from X
   6808     // that will be in the same half in the final destination (the indexes don't
   6809     // matter). Then, use a shufps to build the final vector, taking the half
   6810     // containing the element from Y from the intermediate, and the other half
   6811     // from X.
   6812     if (NumHi == 3) {
   6813       // Normalize it so the 3 elements come from V1.
   6814       CommuteVectorShuffleMask(PermMask, 4);
   6815       std::swap(V1, V2);
   6816     }
   6817 
   6818     // Find the element from V2.
   6819     unsigned HiIndex;
   6820     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
   6821       int Val = PermMask[HiIndex];
   6822       if (Val < 0)
   6823         continue;
   6824       if (Val >= 4)
   6825         break;
   6826     }
   6827 
   6828     Mask1[0] = PermMask[HiIndex];
   6829     Mask1[1] = -1;
   6830     Mask1[2] = PermMask[HiIndex^1];
   6831     Mask1[3] = -1;
   6832     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6833 
   6834     if (HiIndex >= 2) {
   6835       Mask1[0] = PermMask[0];
   6836       Mask1[1] = PermMask[1];
   6837       Mask1[2] = HiIndex & 1 ? 6 : 4;
   6838       Mask1[3] = HiIndex & 1 ? 4 : 6;
   6839       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6840     }
   6841 
   6842     Mask1[0] = HiIndex & 1 ? 2 : 0;
   6843     Mask1[1] = HiIndex & 1 ? 0 : 2;
   6844     Mask1[2] = PermMask[2];
   6845     Mask1[3] = PermMask[3];
   6846     if (Mask1[2] >= 0)
   6847       Mask1[2] += 4;
   6848     if (Mask1[3] >= 0)
   6849       Mask1[3] += 4;
   6850     return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
   6851   }
   6852 
   6853   // Break it into (shuffle shuffle_hi, shuffle_lo).
   6854   int LoMask[] = { -1, -1, -1, -1 };
   6855   int HiMask[] = { -1, -1, -1, -1 };
   6856 
   6857   int *MaskPtr = LoMask;
   6858   unsigned MaskIdx = 0;
   6859   unsigned LoIdx = 0;
   6860   unsigned HiIdx = 2;
   6861   for (unsigned i = 0; i != 4; ++i) {
   6862     if (i == 2) {
   6863       MaskPtr = HiMask;
   6864       MaskIdx = 1;
   6865       LoIdx = 0;
   6866       HiIdx = 2;
   6867     }
   6868     int Idx = PermMask[i];
   6869     if (Idx < 0) {
   6870       Locs[i] = std::make_pair(-1, -1);
   6871     } else if (Idx < 4) {
   6872       Locs[i] = std::make_pair(MaskIdx, LoIdx);
   6873       MaskPtr[LoIdx] = Idx;
   6874       LoIdx++;
   6875     } else {
   6876       Locs[i] = std::make_pair(MaskIdx, HiIdx);
   6877       MaskPtr[HiIdx] = Idx;
   6878       HiIdx++;
   6879     }
   6880   }
   6881 
   6882   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
   6883   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
   6884   int MaskOps[] = { -1, -1, -1, -1 };
   6885   for (unsigned i = 0; i != 4; ++i)
   6886     if (Locs[i].first != -1)
   6887       MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
   6888   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
   6889 }
   6890 
   6891 static bool MayFoldVectorLoad(SDValue V) {
   6892   while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6893     V = V.getOperand(0);
   6894 
   6895   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6896     V = V.getOperand(0);
   6897   if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
   6898       V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
   6899     // BUILD_VECTOR (load), undef
   6900     V = V.getOperand(0);
   6901 
   6902   return MayFoldLoad(V);
   6903 }
   6904 
   6905 static
   6906 SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
   6907   EVT VT = Op.getValueType();
   6908 
   6909   // Canonizalize to v2f64.
   6910   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
   6911   return DAG.getNode(ISD::BITCAST, dl, VT,
   6912                      getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
   6913                                           V1, DAG));
   6914 }
   6915 
   6916 static
   6917 SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
   6918                         bool HasSSE2) {
   6919   SDValue V1 = Op.getOperand(0);
   6920   SDValue V2 = Op.getOperand(1);
   6921   EVT VT = Op.getValueType();
   6922 
   6923   assert(VT != MVT::v2i64 && "unsupported shuffle type");
   6924 
   6925   if (HasSSE2 && VT == MVT::v2f64)
   6926     return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
   6927 
   6928   // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
   6929   return DAG.getNode(ISD::BITCAST, dl, VT,
   6930                      getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
   6931                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
   6932                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
   6933 }
   6934 
   6935 static
   6936 SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
   6937   SDValue V1 = Op.getOperand(0);
   6938   SDValue V2 = Op.getOperand(1);
   6939   EVT VT = Op.getValueType();
   6940 
   6941   assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
   6942          "unsupported shuffle type");
   6943 
   6944   if (V2.getOpcode() == ISD::UNDEF)
   6945     V2 = V1;
   6946 
   6947   // v4i32 or v4f32
   6948   return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
   6949 }
   6950 
   6951 static
   6952 SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
   6953   SDValue V1 = Op.getOperand(0);
   6954   SDValue V2 = Op.getOperand(1);
   6955   EVT VT = Op.getValueType();
   6956   unsigned NumElems = VT.getVectorNumElements();
   6957 
   6958   // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
   6959   // operand of these instructions is only memory, so check if there's a
   6960   // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
   6961   // same masks.
   6962   bool CanFoldLoad = false;
   6963 
   6964   // Trivial case, when V2 comes from a load.
   6965   if (MayFoldVectorLoad(V2))
   6966     CanFoldLoad = true;
   6967 
   6968   // When V1 is a load, it can be folded later into a store in isel, example:
   6969   //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
   6970   //    turns into:
   6971   //  (MOVLPSmr addr:$src1, VR128:$src2)
   6972   // So, recognize this potential and also use MOVLPS or MOVLPD
   6973   else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
   6974     CanFoldLoad = true;
   6975 
   6976   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6977   if (CanFoldLoad) {
   6978     if (HasSSE2 && NumElems == 2)
   6979       return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
   6980 
   6981     if (NumElems == 4)
   6982       // If we don't care about the second element, proceed to use movss.
   6983       if (SVOp->getMaskElt(1) != -1)
   6984         return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
   6985   }
   6986 
   6987   // movl and movlp will both match v2i64, but v2i64 is never matched by
   6988   // movl earlier because we make it strict to avoid messing with the movlp load
   6989   // folding logic (see the code above getMOVLP call). Match it here then,
   6990   // this is horrible, but will stay like this until we move all shuffle
   6991   // matching to x86 specific nodes. Note that for the 1st condition all
   6992   // types are matched with movsd.
   6993   if (HasSSE2) {
   6994     // FIXME: isMOVLMask should be checked and matched before getMOVLP,
   6995     // as to remove this logic from here, as much as possible
   6996     if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
   6997       return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   6998     return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   6999   }
   7000 
   7001   assert(VT != MVT::v4i32 && "unsupported shuffle type");
   7002 
   7003   // Invert the operand order and use SHUFPS to match it.
   7004   return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
   7005                               getShuffleSHUFImmediate(SVOp), DAG);
   7006 }
   7007 
   7008 // Reduce a vector shuffle to zext.
   7009 SDValue
   7010 X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
   7011   // PMOVZX is only available from SSE41.
   7012   if (!Subtarget->hasSSE41())
   7013     return SDValue();
   7014 
   7015   EVT VT = Op.getValueType();
   7016 
   7017   // Only AVX2 support 256-bit vector integer extending.
   7018   if (!Subtarget->hasInt256() && VT.is256BitVector())
   7019     return SDValue();
   7020 
   7021   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   7022   SDLoc DL(Op);
   7023   SDValue V1 = Op.getOperand(0);
   7024   SDValue V2 = Op.getOperand(1);
   7025   unsigned NumElems = VT.getVectorNumElements();
   7026 
   7027   // Extending is an unary operation and the element type of the source vector
   7028   // won't be equal to or larger than i64.
   7029   if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
   7030       VT.getVectorElementType() == MVT::i64)
   7031     return SDValue();
   7032 
   7033   // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
   7034   unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
   7035   while ((1U << Shift) < NumElems) {
   7036     if (SVOp->getMaskElt(1U << Shift) == 1)
   7037       break;
   7038     Shift += 1;
   7039     // The maximal ratio is 8, i.e. from i8 to i64.
   7040     if (Shift > 3)
   7041       return SDValue();
   7042   }
   7043 
   7044   // Check the shuffle mask.
   7045   unsigned Mask = (1U << Shift) - 1;
   7046   for (unsigned i = 0; i != NumElems; ++i) {
   7047     int EltIdx = SVOp->getMaskElt(i);
   7048     if ((i & Mask) != 0 && EltIdx != -1)
   7049       return SDValue();
   7050     if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
   7051       return SDValue();
   7052   }
   7053 
   7054   LLVMContext *Context = DAG.getContext();
   7055   unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
   7056   EVT NeVT = EVT::getIntegerVT(*Context, NBits);
   7057   EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
   7058 
   7059   if (!isTypeLegal(NVT))
   7060     return SDValue();
   7061 
   7062   // Simplify the operand as it's prepared to be fed into shuffle.
   7063   unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
   7064   if (V1.getOpcode() == ISD::BITCAST &&
   7065       V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
   7066       V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   7067       V1.getOperand(0)
   7068         .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
   7069     // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
   7070     SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
   7071     ConstantSDNode *CIdx =
   7072       dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
   7073     // If it's foldable, i.e. normal load with single use, we will let code
   7074     // selection to fold it. Otherwise, we will short the conversion sequence.
   7075     if (CIdx && CIdx->getZExtValue() == 0 &&
   7076         (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
   7077       if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
   7078         // The "ext_vec_elt" node is wider than the result node.
   7079         // In this case we should extract subvector from V.
   7080         // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
   7081         unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
   7082         EVT FullVT = V.getValueType();
   7083         EVT SubVecVT = EVT::getVectorVT(*Context,
   7084                                         FullVT.getVectorElementType(),
   7085                                         FullVT.getVectorNumElements()/Ratio);
   7086         V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
   7087                         DAG.getIntPtrConstant(0));
   7088       }
   7089       V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
   7090     }
   7091   }
   7092 
   7093   return DAG.getNode(ISD::BITCAST, DL, VT,
   7094                      DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
   7095 }
   7096 
   7097 SDValue
   7098 X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
   7099   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   7100   MVT VT = Op.getValueType().getSimpleVT();
   7101   SDLoc dl(Op);
   7102   SDValue V1 = Op.getOperand(0);
   7103   SDValue V2 = Op.getOperand(1);
   7104 
   7105   if (isZeroShuffle(SVOp))
   7106     return getZeroVector(VT, Subtarget, DAG, dl);
   7107 
   7108   // Handle splat operations
   7109   if (SVOp->isSplat()) {
   7110     // Use vbroadcast whenever the splat comes from a foldable load
   7111     SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
   7112     if (Broadcast.getNode())
   7113       return Broadcast;
   7114   }
   7115 
   7116   // Check integer expanding shuffles.
   7117   SDValue NewOp = LowerVectorIntExtend(Op, DAG);
   7118   if (NewOp.getNode())
   7119     return NewOp;
   7120 
   7121   // If the shuffle can be profitably rewritten as a narrower shuffle, then
   7122   // do it!
   7123   if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
   7124       VT == MVT::v16i16 || VT == MVT::v32i8) {
   7125     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
   7126     if (NewOp.getNode())
   7127       return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
   7128   } else if ((VT == MVT::v4i32 ||
   7129              (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
   7130     // FIXME: Figure out a cleaner way to do this.
   7131     // Try to make use of movq to zero out the top part.
   7132     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
   7133       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
   7134       if (NewOp.getNode()) {
   7135         MVT NewVT = NewOp.getValueType().getSimpleVT();
   7136         if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
   7137                                NewVT, true, false))
   7138           return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
   7139                               DAG, Subtarget, dl);
   7140       }
   7141     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
   7142       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
   7143       if (NewOp.getNode()) {
   7144         MVT NewVT = NewOp.getValueType().getSimpleVT();
   7145         if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
   7146           return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
   7147                               DAG, Subtarget, dl);
   7148       }
   7149     }
   7150   }
   7151   return SDValue();
   7152 }
   7153 
   7154 SDValue
   7155 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
   7156   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   7157   SDValue V1 = Op.getOperand(0);
   7158   SDValue V2 = Op.getOperand(1);
   7159   MVT VT = Op.getValueType().getSimpleVT();
   7160   SDLoc dl(Op);
   7161   unsigned NumElems = VT.getVectorNumElements();
   7162   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
   7163   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
   7164   bool V1IsSplat = false;
   7165   bool V2IsSplat = false;
   7166   bool HasSSE2 = Subtarget->hasSSE2();
   7167   bool HasFp256    = Subtarget->hasFp256();
   7168   bool HasInt256   = Subtarget->hasInt256();
   7169   MachineFunction &MF = DAG.getMachineFunction();
   7170   bool OptForSize = MF.getFunction()->getAttributes().
   7171     hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
   7172 
   7173   assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
   7174 
   7175   if (V1IsUndef && V2IsUndef)
   7176     return DAG.getUNDEF(VT);
   7177 
   7178   assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
   7179 
   7180   // Vector shuffle lowering takes 3 steps:
   7181   //
   7182   // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
   7183   //    narrowing and commutation of operands should be handled.
   7184   // 2) Matching of shuffles with known shuffle masks to x86 target specific
   7185   //    shuffle nodes.
   7186   // 3) Rewriting of unmatched masks into new generic shuffle operations,
   7187   //    so the shuffle can be broken into other shuffles and the legalizer can
   7188   //    try the lowering again.
   7189   //
   7190   // The general idea is that no vector_shuffle operation should be left to
   7191   // be matched during isel, all of them must be converted to a target specific
   7192   // node here.
   7193 
   7194   // Normalize the input vectors. Here splats, zeroed vectors, profitable
   7195   // narrowing and commutation of operands should be handled. The actual code
   7196   // doesn't include all of those, work in progress...
   7197   SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
   7198   if (NewOp.getNode())
   7199     return NewOp;
   7200 
   7201   SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
   7202 
   7203   // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
   7204   // unpckh_undef). Only use pshufd if speed is more important than size.
   7205   if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
   7206     return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
   7207   if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
   7208     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
   7209 
   7210   if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
   7211       V2IsUndef && MayFoldVectorLoad(V1))
   7212     return getMOVDDup(Op, dl, V1, DAG);
   7213 
   7214   if (isMOVHLPS_v_undef_Mask(M, VT))
   7215     return getMOVHighToLow(Op, dl, DAG);
   7216 
   7217   // Use to match splats
   7218   if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
   7219       (VT == MVT::v2f64 || VT == MVT::v2i64))
   7220     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
   7221 
   7222   if (isPSHUFDMask(M, VT)) {
   7223     // The actual implementation will match the mask in the if above and then
   7224     // during isel it can match several different instructions, not only pshufd
   7225     // as its name says, sad but true, emulate the behavior for now...
   7226     if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
   7227       return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
   7228 
   7229     unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
   7230 
   7231     if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
   7232       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
   7233 
   7234     if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
   7235       return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
   7236                                   DAG);
   7237 
   7238     return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
   7239                                 TargetMask, DAG);
   7240   }
   7241 
   7242   if (isPALIGNRMask(M, VT, Subtarget))
   7243     return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
   7244                                 getShufflePALIGNRImmediate(SVOp),
   7245                                 DAG);
   7246 
   7247   // Check if this can be converted into a logical shift.
   7248   bool isLeft = false;
   7249   unsigned ShAmt = 0;
   7250   SDValue ShVal;
   7251   bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
   7252   if (isShift && ShVal.hasOneUse()) {
   7253     // If the shifted value has multiple uses, it may be cheaper to use
   7254     // v_set0 + movlhps or movhlps, etc.
   7255     MVT EltVT = VT.getVectorElementType();
   7256     ShAmt *= EltVT.getSizeInBits();
   7257     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   7258   }
   7259 
   7260   if (isMOVLMask(M, VT)) {
   7261     if (ISD::isBuildVectorAllZeros(V1.getNode()))
   7262       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
   7263     if (!isMOVLPMask(M, VT)) {
   7264       if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
   7265         return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   7266 
   7267       if (VT == MVT::v4i32 || VT == MVT::v4f32)
   7268         return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   7269     }
   7270   }
   7271 
   7272   // FIXME: fold these into legal mask.
   7273   if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
   7274     return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
   7275 
   7276   if (isMOVHLPSMask(M, VT))
   7277     return getMOVHighToLow(Op, dl, DAG);
   7278 
   7279   if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
   7280     return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
   7281 
   7282   if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
   7283     return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
   7284 
   7285   if (isMOVLPMask(M, VT))
   7286     return getMOVLP(Op, dl, DAG, HasSSE2);
   7287 
   7288   if (ShouldXformToMOVHLPS(M, VT) ||
   7289       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
   7290     return CommuteVectorShuffle(SVOp, DAG);
   7291 
   7292   if (isShift) {
   7293     // No better options. Use a vshldq / vsrldq.
   7294     MVT EltVT = VT.getVectorElementType();
   7295     ShAmt *= EltVT.getSizeInBits();
   7296     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   7297   }
   7298 
   7299   bool Commuted = false;
   7300   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
   7301   // 1,1,1,1 -> v8i16 though.
   7302   V1IsSplat = isSplatVector(V1.getNode());
   7303   V2IsSplat = isSplatVector(V2.getNode());
   7304 
   7305   // Canonicalize the splat or undef, if present, to be on the RHS.
   7306   if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
   7307     CommuteVectorShuffleMask(M, NumElems);
   7308     std::swap(V1, V2);
   7309     std::swap(V1IsSplat, V2IsSplat);
   7310     Commuted = true;
   7311   }
   7312 
   7313   if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
   7314     // Shuffling low element of v1 into undef, just return v1.
   7315     if (V2IsUndef)
   7316       return V1;
   7317     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
   7318     // the instruction selector will not match, so get a canonical MOVL with
   7319     // swapped operands to undo the commute.
   7320     return getMOVL(DAG, dl, VT, V2, V1);
   7321   }
   7322 
   7323   if (isUNPCKLMask(M, VT, HasInt256))
   7324     return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
   7325 
   7326   if (isUNPCKHMask(M, VT, HasInt256))
   7327     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
   7328 
   7329   if (V2IsSplat) {
   7330     // Normalize mask so all entries that point to V2 points to its first
   7331     // element then try to match unpck{h|l} again. If match, return a
   7332     // new vector_shuffle with the corrected mask.p
   7333     SmallVector<int, 8> NewMask(M.begin(), M.end());
   7334     NormalizeMask(NewMask, NumElems);
   7335     if (isUNPCKLMask(NewMask, VT, HasInt256, true))
   7336       return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
   7337     if (isUNPCKHMask(NewMask, VT, HasInt256, true))
   7338       return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
   7339   }
   7340 
   7341   if (Commuted) {
   7342     // Commute is back and try unpck* again.
   7343     // FIXME: this seems wrong.
   7344     CommuteVectorShuffleMask(M, NumElems);
   7345     std::swap(V1, V2);
   7346     std::swap(V1IsSplat, V2IsSplat);
   7347     Commuted = false;
   7348 
   7349     if (isUNPCKLMask(M, VT, HasInt256))
   7350       return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
   7351 
   7352     if (isUNPCKHMask(M, VT, HasInt256))
   7353       return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
   7354   }
   7355 
   7356   // Normalize the node to match x86 shuffle ops if needed
   7357   if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
   7358     return CommuteVectorShuffle(SVOp, DAG);
   7359 
   7360   // The checks below are all present in isShuffleMaskLegal, but they are
   7361   // inlined here right now to enable us to directly emit target specific
   7362   // nodes, and remove one by one until they don't return Op anymore.
   7363 
   7364   if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
   7365       SVOp->getSplatIndex() == 0 && V2IsUndef) {
   7366     if (VT == MVT::v2f64 || VT == MVT::v2i64)
   7367       return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
   7368   }
   7369 
   7370   if (isPSHUFHWMask(M, VT, HasInt256))
   7371     return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
   7372                                 getShufflePSHUFHWImmediate(SVOp),
   7373                                 DAG);
   7374 
   7375   if (isPSHUFLWMask(M, VT, HasInt256))
   7376     return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
   7377                                 getShufflePSHUFLWImmediate(SVOp),
   7378                                 DAG);
   7379 
   7380   if (isSHUFPMask(M, VT, HasFp256))
   7381     return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
   7382                                 getShuffleSHUFImmediate(SVOp), DAG);
   7383 
   7384   if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
   7385     return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
   7386   if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
   7387     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
   7388 
   7389   //===--------------------------------------------------------------------===//
   7390   // Generate target specific nodes for 128 or 256-bit shuffles only
   7391   // supported in the AVX instruction set.
   7392   //
   7393 
   7394   // Handle VMOVDDUPY permutations
   7395   if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
   7396     return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
   7397 
   7398   // Handle VPERMILPS/D* permutations
   7399   if (isVPERMILPMask(M, VT, HasFp256)) {
   7400     if (HasInt256 && VT == MVT::v8i32)
   7401       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
   7402                                   getShuffleSHUFImmediate(SVOp), DAG);
   7403     return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
   7404                                 getShuffleSHUFImmediate(SVOp), DAG);
   7405   }
   7406 
   7407   // Handle VPERM2F128/VPERM2I128 permutations
   7408   if (isVPERM2X128Mask(M, VT, HasFp256))
   7409     return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
   7410                                 V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
   7411 
   7412   SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
   7413   if (BlendOp.getNode())
   7414     return BlendOp;
   7415 
   7416   if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
   7417     SmallVector<SDValue, 8> permclMask;
   7418     for (unsigned i = 0; i != 8; ++i) {
   7419       permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
   7420     }
   7421     SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
   7422                                &permclMask[0], 8);
   7423     // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
   7424     return DAG.getNode(X86ISD::VPERMV, dl, VT,
   7425                        DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
   7426   }
   7427 
   7428   if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
   7429     return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
   7430                                 getShuffleCLImmediate(SVOp), DAG);
   7431 
   7432   //===--------------------------------------------------------------------===//
   7433   // Since no target specific shuffle was selected for this generic one,
   7434   // lower it into other known shuffles. FIXME: this isn't true yet, but
   7435   // this is the plan.
   7436   //
   7437 
   7438   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
   7439   if (VT == MVT::v8i16) {
   7440     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
   7441     if (NewOp.getNode())
   7442       return NewOp;
   7443   }
   7444 
   7445   if (VT == MVT::v16i8) {
   7446     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
   7447     if (NewOp.getNode())
   7448       return NewOp;
   7449   }
   7450 
   7451   if (VT == MVT::v32i8) {
   7452     SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
   7453     if (NewOp.getNode())
   7454       return NewOp;
   7455   }
   7456 
   7457   // Handle all 128-bit wide vectors with 4 elements, and match them with
   7458   // several different shuffle types.
   7459   if (NumElems == 4 && VT.is128BitVector())
   7460     return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
   7461 
   7462   // Handle general 256-bit shuffles
   7463   if (VT.is256BitVector())
   7464     return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
   7465 
   7466   return SDValue();
   7467 }
   7468 
   7469 static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
   7470   MVT VT = Op.getValueType().getSimpleVT();
   7471   SDLoc dl(Op);
   7472 
   7473   if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
   7474     return SDValue();
   7475 
   7476   if (VT.getSizeInBits() == 8) {
   7477     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
   7478                                   Op.getOperand(0), Op.getOperand(1));
   7479     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   7480                                   DAG.getValueType(VT));
   7481     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   7482   }
   7483 
   7484   if (VT.getSizeInBits() == 16) {
   7485     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   7486     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
   7487     if (Idx == 0)
   7488       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   7489                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   7490                                      DAG.getNode(ISD::BITCAST, dl,
   7491                                                  MVT::v4i32,
   7492                                                  Op.getOperand(0)),
   7493                                      Op.getOperand(1)));
   7494     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
   7495                                   Op.getOperand(0), Op.getOperand(1));
   7496     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   7497                                   DAG.getValueType(VT));
   7498     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   7499   }
   7500 
   7501   if (VT == MVT::f32) {
   7502     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
   7503     // the result back to FR32 register. It's only worth matching if the
   7504     // result has a single use which is a store or a bitcast to i32.  And in
   7505     // the case of a store, it's not worth it if the index is a constant 0,
   7506     // because a MOVSSmr can be used instead, which is smaller and faster.
   7507     if (!Op.hasOneUse())
   7508       return SDValue();
   7509     SDNode *User = *Op.getNode()->use_begin();
   7510     if ((User->getOpcode() != ISD::STORE ||
   7511          (isa<ConstantSDNode>(Op.getOperand(1)) &&
   7512           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
   7513         (User->getOpcode() != ISD::BITCAST ||
   7514          User->getValueType(0) != MVT::i32))
   7515       return SDValue();
   7516     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   7517                                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
   7518                                               Op.getOperand(0)),
   7519                                               Op.getOperand(1));
   7520     return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
   7521   }
   7522 
   7523   if (VT == MVT::i32 || VT == MVT::i64) {
   7524     // ExtractPS/pextrq works with constant index.
   7525     if (isa<ConstantSDNode>(Op.getOperand(1)))
   7526       return Op;
   7527   }
   7528   return SDValue();
   7529 }
   7530 
   7531 SDValue
   7532 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   7533                                            SelectionDAG &DAG) const {
   7534   SDLoc dl(Op);
   7535   if (!isa<ConstantSDNode>(Op.getOperand(1)))
   7536     return SDValue();
   7537 
   7538   SDValue Vec = Op.getOperand(0);
   7539   MVT VecVT = Vec.getValueType().getSimpleVT();
   7540 
   7541   // If this is a 256-bit vector result, first extract the 128-bit vector and
   7542   // then extract the element from the 128-bit vector.
   7543   if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
   7544     SDValue Idx = Op.getOperand(1);
   7545     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   7546 
   7547     // Get the 128-bit vector.
   7548     Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
   7549     EVT EltVT = VecVT.getVectorElementType();
   7550 
   7551     unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
   7552 
   7553     //if (IdxVal >= NumElems/2)
   7554     //  IdxVal -= NumElems/2;
   7555     IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
   7556     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
   7557                        DAG.getConstant(IdxVal, MVT::i32));
   7558   }
   7559 
   7560   assert(VecVT.is128BitVector() && "Unexpected vector length");
   7561 
   7562   if (Subtarget->hasSSE41()) {
   7563     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
   7564     if (Res.getNode())
   7565       return Res;
   7566   }
   7567 
   7568   MVT VT = Op.getValueType().getSimpleVT();
   7569   // TODO: handle v16i8.
   7570   if (VT.getSizeInBits() == 16) {
   7571     SDValue Vec = Op.getOperand(0);
   7572     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   7573     if (Idx == 0)
   7574       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   7575                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   7576                                      DAG.getNode(ISD::BITCAST, dl,
   7577                                                  MVT::v4i32, Vec),
   7578                                      Op.getOperand(1)));
   7579     // Transform it so it match pextrw which produces a 32-bit result.
   7580     MVT EltVT = MVT::i32;
   7581     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
   7582                                   Op.getOperand(0), Op.getOperand(1));
   7583     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
   7584                                   DAG.getValueType(VT));
   7585     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   7586   }
   7587 
   7588   if (VT.getSizeInBits() == 32) {
   7589     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   7590     if (Idx == 0)
   7591       return Op;
   7592 
   7593     // SHUFPS the element to the lowest double word, then movss.
   7594     int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
   7595     MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
   7596     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   7597                                        DAG.getUNDEF(VVT), Mask);
   7598     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   7599                        DAG.getIntPtrConstant(0));
   7600   }
   7601 
   7602   if (VT.getSizeInBits() == 64) {
   7603     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
   7604     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
   7605     //        to match extract_elt for f64.
   7606     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   7607     if (Idx == 0)
   7608       return Op;
   7609 
   7610     // UNPCKHPD the element to the lowest double word, then movsd.
   7611     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
   7612     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
   7613     int Mask[2] = { 1, -1 };
   7614     MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
   7615     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   7616                                        DAG.getUNDEF(VVT), Mask);
   7617     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   7618                        DAG.getIntPtrConstant(0));
   7619   }
   7620 
   7621   return SDValue();
   7622 }
   7623 
   7624 static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
   7625   MVT VT = Op.getValueType().getSimpleVT();
   7626   MVT EltVT = VT.getVectorElementType();
   7627   SDLoc dl(Op);
   7628 
   7629   SDValue N0 = Op.getOperand(0);
   7630   SDValue N1 = Op.getOperand(1);
   7631   SDValue N2 = Op.getOperand(2);
   7632 
   7633   if (!VT.is128BitVector())
   7634     return SDValue();
   7635 
   7636   if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
   7637       isa<ConstantSDNode>(N2)) {
   7638     unsigned Opc;
   7639     if (VT == MVT::v8i16)
   7640       Opc = X86ISD::PINSRW;
   7641     else if (VT == MVT::v16i8)
   7642       Opc = X86ISD::PINSRB;
   7643     else
   7644       Opc = X86ISD::PINSRB;
   7645 
   7646     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
   7647     // argument.
   7648     if (N1.getValueType() != MVT::i32)
   7649       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7650     if (N2.getValueType() != MVT::i32)
   7651       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7652     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
   7653   }
   7654 
   7655   if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
   7656     // Bits [7:6] of the constant are the source select.  This will always be
   7657     //  zero here.  The DAG Combiner may combine an extract_elt index into these
   7658     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
   7659     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
   7660     // Bits [5:4] of the constant are the destination select.  This is the
   7661     //  value of the incoming immediate.
   7662     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
   7663     //   combine either bitwise AND or insert of float 0.0 to set these bits.
   7664     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
   7665     // Create this as a scalar to vector..
   7666     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
   7667     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
   7668   }
   7669 
   7670   if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
   7671     // PINSR* works with constant index.
   7672     return Op;
   7673   }
   7674   return SDValue();
   7675 }
   7676 
   7677 SDValue
   7678 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   7679   MVT VT = Op.getValueType().getSimpleVT();
   7680   MVT EltVT = VT.getVectorElementType();
   7681 
   7682   SDLoc dl(Op);
   7683   SDValue N0 = Op.getOperand(0);
   7684   SDValue N1 = Op.getOperand(1);
   7685   SDValue N2 = Op.getOperand(2);
   7686 
   7687   // If this is a 256-bit vector result, first extract the 128-bit vector,
   7688   // insert the element into the extracted half and then place it back.
   7689   if (VT.is256BitVector() || VT.is512BitVector()) {
   7690     if (!isa<ConstantSDNode>(N2))
   7691       return SDValue();
   7692 
   7693     // Get the desired 128-bit vector half.
   7694     unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
   7695     SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
   7696 
   7697     // Insert the element into the desired half.
   7698     unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
   7699     unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
   7700 
   7701     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
   7702                     DAG.getConstant(IdxIn128, MVT::i32));
   7703 
   7704     // Insert the changed part back to the 256-bit vector
   7705     return Insert128BitVector(N0, V, IdxVal, DAG, dl);
   7706   }
   7707 
   7708   if (Subtarget->hasSSE41())
   7709     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
   7710 
   7711   if (EltVT == MVT::i8)
   7712     return SDValue();
   7713 
   7714   if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
   7715     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
   7716     // as its second argument.
   7717     if (N1.getValueType() != MVT::i32)
   7718       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7719     if (N2.getValueType() != MVT::i32)
   7720       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7721     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
   7722   }
   7723   return SDValue();
   7724 }
   7725 
   7726 static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
   7727   LLVMContext *Context = DAG.getContext();
   7728   SDLoc dl(Op);
   7729   MVT OpVT = Op.getValueType().getSimpleVT();
   7730 
   7731   // If this is a 256-bit vector result, first insert into a 128-bit
   7732   // vector and then insert into the 256-bit vector.
   7733   if (!OpVT.is128BitVector()) {
   7734     // Insert into a 128-bit vector.
   7735     unsigned SizeFactor = OpVT.getSizeInBits()/128;
   7736     EVT VT128 = EVT::getVectorVT(*Context,
   7737                                  OpVT.getVectorElementType(),
   7738                                  OpVT.getVectorNumElements() / SizeFactor);
   7739 
   7740     Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
   7741 
   7742     // Insert the 128-bit vector.
   7743     return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
   7744   }
   7745 
   7746   if (OpVT == MVT::v1i64 &&
   7747       Op.getOperand(0).getValueType() == MVT::i64)
   7748     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
   7749 
   7750   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
   7751   assert(OpVT.is128BitVector() && "Expected an SSE type!");
   7752   return DAG.getNode(ISD::BITCAST, dl, OpVT,
   7753                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
   7754 }
   7755 
   7756 // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
   7757 // a simple subregister reference or explicit instructions to grab
   7758 // upper bits of a vector.
   7759 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
   7760                                       SelectionDAG &DAG) {
   7761   SDLoc dl(Op);
   7762   SDValue In =  Op.getOperand(0);
   7763   SDValue Idx = Op.getOperand(1);
   7764   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   7765   EVT ResVT   = Op.getValueType();
   7766   EVT InVT    = In.getValueType();
   7767 
   7768   if (Subtarget->hasFp256()) {
   7769     if (ResVT.is128BitVector() &&
   7770         (InVT.is256BitVector() || InVT.is512BitVector()) &&
   7771         isa<ConstantSDNode>(Idx)) {
   7772       return Extract128BitVector(In, IdxVal, DAG, dl);
   7773     }
   7774     if (ResVT.is256BitVector() && InVT.is512BitVector() &&
   7775         isa<ConstantSDNode>(Idx)) {
   7776       return Extract256BitVector(In, IdxVal, DAG, dl);
   7777     }
   7778   }
   7779   return SDValue();
   7780 }
   7781 
   7782 // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
   7783 // simple superregister reference or explicit instructions to insert
   7784 // the upper bits of a vector.
   7785 static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
   7786                                      SelectionDAG &DAG) {
   7787   if (Subtarget->hasFp256()) {
   7788     SDLoc dl(Op.getNode());
   7789     SDValue Vec = Op.getNode()->getOperand(0);
   7790     SDValue SubVec = Op.getNode()->getOperand(1);
   7791     SDValue Idx = Op.getNode()->getOperand(2);
   7792 
   7793     if ((Op.getNode()->getValueType(0).is256BitVector() ||
   7794          Op.getNode()->getValueType(0).is512BitVector()) &&
   7795         SubVec.getNode()->getValueType(0).is128BitVector() &&
   7796         isa<ConstantSDNode>(Idx)) {
   7797       unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   7798       return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
   7799     }
   7800 
   7801     if (Op.getNode()->getValueType(0).is512BitVector() &&
   7802         SubVec.getNode()->getValueType(0).is256BitVector() &&
   7803         isa<ConstantSDNode>(Idx)) {
   7804       unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   7805       return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
   7806     }
   7807   }
   7808   return SDValue();
   7809 }
   7810 
   7811 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   7812 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
   7813 // one of the above mentioned nodes. It has to be wrapped because otherwise
   7814 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   7815 // be used to form addressing mode. These wrapped nodes will be selected
   7816 // into MOV32ri.
   7817 SDValue
   7818 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
   7819   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   7820 
   7821   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7822   // global base reg.
   7823   unsigned char OpFlag = 0;
   7824   unsigned WrapperKind = X86ISD::Wrapper;
   7825   CodeModel::Model M = getTargetMachine().getCodeModel();
   7826 
   7827   if (Subtarget->isPICStyleRIPRel() &&
   7828       (M == CodeModel::Small || M == CodeModel::Kernel))
   7829     WrapperKind = X86ISD::WrapperRIP;
   7830   else if (Subtarget->isPICStyleGOT())
   7831     OpFlag = X86II::MO_GOTOFF;
   7832   else if (Subtarget->isPICStyleStubPIC())
   7833     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7834 
   7835   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
   7836                                              CP->getAlignment(),
   7837                                              CP->getOffset(), OpFlag);
   7838   SDLoc DL(CP);
   7839   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7840   // With PIC, the address is actually $g + Offset.
   7841   if (OpFlag) {
   7842     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7843                          DAG.getNode(X86ISD::GlobalBaseReg,
   7844                                      SDLoc(), getPointerTy()),
   7845                          Result);
   7846   }
   7847 
   7848   return Result;
   7849 }
   7850 
   7851 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   7852   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   7853 
   7854   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7855   // global base reg.
   7856   unsigned char OpFlag = 0;
   7857   unsigned WrapperKind = X86ISD::Wrapper;
   7858   CodeModel::Model M = getTargetMachine().getCodeModel();
   7859 
   7860   if (Subtarget->isPICStyleRIPRel() &&
   7861       (M == CodeModel::Small || M == CodeModel::Kernel))
   7862     WrapperKind = X86ISD::WrapperRIP;
   7863   else if (Subtarget->isPICStyleGOT())
   7864     OpFlag = X86II::MO_GOTOFF;
   7865   else if (Subtarget->isPICStyleStubPIC())
   7866     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7867 
   7868   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
   7869                                           OpFlag);
   7870   SDLoc DL(JT);
   7871   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7872 
   7873   // With PIC, the address is actually $g + Offset.
   7874   if (OpFlag)
   7875     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7876                          DAG.getNode(X86ISD::GlobalBaseReg,
   7877                                      SDLoc(), getPointerTy()),
   7878                          Result);
   7879 
   7880   return Result;
   7881 }
   7882 
   7883 SDValue
   7884 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
   7885   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
   7886 
   7887   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7888   // global base reg.
   7889   unsigned char OpFlag = 0;
   7890   unsigned WrapperKind = X86ISD::Wrapper;
   7891   CodeModel::Model M = getTargetMachine().getCodeModel();
   7892 
   7893   if (Subtarget->isPICStyleRIPRel() &&
   7894       (M == CodeModel::Small || M == CodeModel::Kernel)) {
   7895     if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
   7896       OpFlag = X86II::MO_GOTPCREL;
   7897     WrapperKind = X86ISD::WrapperRIP;
   7898   } else if (Subtarget->isPICStyleGOT()) {
   7899     OpFlag = X86II::MO_GOT;
   7900   } else if (Subtarget->isPICStyleStubPIC()) {
   7901     OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
   7902   } else if (Subtarget->isPICStyleStubNoDynamic()) {
   7903     OpFlag = X86II::MO_DARWIN_NONLAZY;
   7904   }
   7905 
   7906   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
   7907 
   7908   SDLoc DL(Op);
   7909   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7910 
   7911   // With PIC, the address is actually $g + Offset.
   7912   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   7913       !Subtarget->is64Bit()) {
   7914     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7915                          DAG.getNode(X86ISD::GlobalBaseReg,
   7916                                      SDLoc(), getPointerTy()),
   7917                          Result);
   7918   }
   7919 
   7920   // For symbols that require a load from a stub to get the address, emit the
   7921   // load.
   7922   if (isGlobalStubReference(OpFlag))
   7923     Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
   7924                          MachinePointerInfo::getGOT(), false, false, false, 0);
   7925 
   7926   return Result;
   7927 }
   7928 
   7929 SDValue
   7930 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
   7931   // Create the TargetBlockAddressAddress node.
   7932   unsigned char OpFlags =
   7933     Subtarget->ClassifyBlockAddressReference();
   7934   CodeModel::Model M = getTargetMachine().getCodeModel();
   7935   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   7936   int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
   7937   SDLoc dl(Op);
   7938   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
   7939                                              OpFlags);
   7940 
   7941   if (Subtarget->isPICStyleRIPRel() &&
   7942       (M == CodeModel::Small || M == CodeModel::Kernel))
   7943     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7944   else
   7945     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7946 
   7947   // With PIC, the address is actually $g + Offset.
   7948   if (isGlobalRelativeToPICBase(OpFlags)) {
   7949     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7950                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7951                          Result);
   7952   }
   7953 
   7954   return Result;
   7955 }
   7956 
   7957 SDValue
   7958 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
   7959                                       int64_t Offset, SelectionDAG &DAG) const {
   7960   // Create the TargetGlobalAddress node, folding in the constant
   7961   // offset if it is legal.
   7962   unsigned char OpFlags =
   7963     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
   7964   CodeModel::Model M = getTargetMachine().getCodeModel();
   7965   SDValue Result;
   7966   if (OpFlags == X86II::MO_NO_FLAG &&
   7967       X86::isOffsetSuitableForCodeModel(Offset, M)) {
   7968     // A direct static reference to a global.
   7969     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
   7970     Offset = 0;
   7971   } else {
   7972     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   7973   }
   7974 
   7975   if (Subtarget->isPICStyleRIPRel() &&
   7976       (M == CodeModel::Small || M == CodeModel::Kernel))
   7977     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7978   else
   7979     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7980 
   7981   // With PIC, the address is actually $g + Offset.
   7982   if (isGlobalRelativeToPICBase(OpFlags)) {
   7983     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7984                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7985                          Result);
   7986   }
   7987 
   7988   // For globals that require a load from a stub to get the address, emit the
   7989   // load.
   7990   if (isGlobalStubReference(OpFlags))
   7991     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
   7992                          MachinePointerInfo::getGOT(), false, false, false, 0);
   7993 
   7994   // If there was a non-zero offset that we didn't fold, create an explicit
   7995   // addition for it.
   7996   if (Offset != 0)
   7997     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
   7998                          DAG.getConstant(Offset, getPointerTy()));
   7999 
   8000   return Result;
   8001 }
   8002 
   8003 SDValue
   8004 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
   8005   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   8006   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
   8007   return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
   8008 }
   8009 
   8010 static SDValue
   8011 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
   8012            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
   8013            unsigned char OperandFlags, bool LocalDynamic = false) {
   8014   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   8015   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   8016   SDLoc dl(GA);
   8017   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   8018                                            GA->getValueType(0),
   8019                                            GA->getOffset(),
   8020                                            OperandFlags);
   8021 
   8022   X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
   8023                                            : X86ISD::TLSADDR;
   8024 
   8025   if (InFlag) {
   8026     SDValue Ops[] = { Chain,  TGA, *InFlag };
   8027     Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
   8028   } else {
   8029     SDValue Ops[]  = { Chain, TGA };
   8030     Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
   8031   }
   8032 
   8033   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   8034   MFI->setAdjustsStack(true);
   8035 
   8036   SDValue Flag = Chain.getValue(1);
   8037   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
   8038 }
   8039 
   8040 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
   8041 static SDValue
   8042 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   8043                                 const EVT PtrVT) {
   8044   SDValue InFlag;
   8045   SDLoc dl(GA);  // ? function entry point might be better
   8046   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
   8047                                    DAG.getNode(X86ISD::GlobalBaseReg,
   8048                                                SDLoc(), PtrVT), InFlag);
   8049   InFlag = Chain.getValue(1);
   8050 
   8051   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
   8052 }
   8053 
   8054 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
   8055 static SDValue
   8056 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   8057                                 const EVT PtrVT) {
   8058   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
   8059                     X86::RAX, X86II::MO_TLSGD);
   8060 }
   8061 
   8062 static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
   8063                                            SelectionDAG &DAG,
   8064                                            const EVT PtrVT,
   8065                                            bool is64Bit) {
   8066   SDLoc dl(GA);
   8067 
   8068   // Get the start address of the TLS block for this module.
   8069   X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
   8070       .getInfo<X86MachineFunctionInfo>();
   8071   MFI->incNumLocalDynamicTLSAccesses();
   8072 
   8073   SDValue Base;
   8074   if (is64Bit) {
   8075     Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
   8076                       X86II::MO_TLSLD, /*LocalDynamic=*/true);
   8077   } else {
   8078     SDValue InFlag;
   8079     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
   8080         DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
   8081     InFlag = Chain.getValue(1);
   8082     Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
   8083                       X86II::MO_TLSLDM, /*LocalDynamic=*/true);
   8084   }
   8085 
   8086   // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
   8087   // of Base.
   8088 
   8089   // Build x@dtpoff.
   8090   unsigned char OperandFlags = X86II::MO_DTPOFF;
   8091   unsigned WrapperKind = X86ISD::Wrapper;
   8092   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   8093                                            GA->getValueType(0),
   8094                                            GA->getOffset(), OperandFlags);
   8095   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
   8096 
   8097   // Add x@dtpoff with the base.
   8098   return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
   8099 }
   8100 
   8101 // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
   8102 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   8103                                    const EVT PtrVT, TLSModel::Model model,
   8104                                    bool is64Bit, bool isPIC) {
   8105   SDLoc dl(GA);
   8106 
   8107   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
   8108   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
   8109                                                          is64Bit ? 257 : 256));
   8110 
   8111   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   8112                                       DAG.getIntPtrConstant(0),
   8113                                       MachinePointerInfo(Ptr),
   8114                                       false, false, false, 0);
   8115 
   8116   unsigned char OperandFlags = 0;
   8117   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
   8118   // initialexec.
   8119   unsigned WrapperKind = X86ISD::Wrapper;
   8120   if (model == TLSModel::LocalExec) {
   8121     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
   8122   } else if (model == TLSModel::InitialExec) {
   8123     if (is64Bit) {
   8124       OperandFlags = X86II::MO_GOTTPOFF;
   8125       WrapperKind = X86ISD::WrapperRIP;
   8126     } else {
   8127       OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
   8128     }
   8129   } else {
   8130     llvm_unreachable("Unexpected model");
   8131   }
   8132 
   8133   // emit "addl x@ntpoff,%eax" (local exec)
   8134   // or "addl x@indntpoff,%eax" (initial exec)
   8135   // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
   8136   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   8137                                            GA->getValueType(0),
   8138                                            GA->getOffset(), OperandFlags);
   8139   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
   8140 
   8141   if (model == TLSModel::InitialExec) {
   8142     if (isPIC && !is64Bit) {
   8143       Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
   8144                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
   8145                            Offset);
   8146     }
   8147 
   8148     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
   8149                          MachinePointerInfo::getGOT(), false, false, false,
   8150                          0);
   8151   }
   8152 
   8153   // The address of the thread local variable is the add of the thread
   8154   // pointer with the offset of the variable.
   8155   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   8156 }
   8157 
   8158 SDValue
   8159 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   8160 
   8161   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   8162   const GlobalValue *GV = GA->getGlobal();
   8163 
   8164   if (Subtarget->isTargetELF()) {
   8165     TLSModel::Model model = getTargetMachine().getTLSModel(GV);
   8166 
   8167     switch (model) {
   8168       case TLSModel::GeneralDynamic:
   8169         if (Subtarget->is64Bit())
   8170           return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
   8171         return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
   8172       case TLSModel::LocalDynamic:
   8173         return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
   8174                                            Subtarget->is64Bit());
   8175       case TLSModel::InitialExec:
   8176       case TLSModel::LocalExec:
   8177         return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
   8178                                    Subtarget->is64Bit(),
   8179                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
   8180     }
   8181     llvm_unreachable("Unknown TLS model.");
   8182   }
   8183 
   8184   if (Subtarget->isTargetDarwin()) {
   8185     // Darwin only has one model of TLS.  Lower to that.
   8186     unsigned char OpFlag = 0;
   8187     unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
   8188                            X86ISD::WrapperRIP : X86ISD::Wrapper;
   8189 
   8190     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   8191     // global base reg.
   8192     bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
   8193                   !Subtarget->is64Bit();
   8194     if (PIC32)
   8195       OpFlag = X86II::MO_TLVP_PIC_BASE;
   8196     else
   8197       OpFlag = X86II::MO_TLVP;
   8198     SDLoc DL(Op);
   8199     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
   8200                                                 GA->getValueType(0),
   8201                                                 GA->getOffset(), OpFlag);
   8202     SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   8203 
   8204     // With PIC32, the address is actually $g + Offset.
   8205     if (PIC32)
   8206       Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   8207                            DAG.getNode(X86ISD::GlobalBaseReg,
   8208                                        SDLoc(), getPointerTy()),
   8209                            Offset);
   8210 
   8211     // Lowering the machine isd will make sure everything is in the right
   8212     // location.
   8213     SDValue Chain = DAG.getEntryNode();
   8214     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   8215     SDValue Args[] = { Chain, Offset };
   8216     Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
   8217 
   8218     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
   8219     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   8220     MFI->setAdjustsStack(true);
   8221 
   8222     // And our return value (tls address) is in the standard call return value
   8223     // location.
   8224     unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   8225     return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
   8226                               Chain.getValue(1));
   8227   }
   8228 
   8229   if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
   8230     // Just use the implicit TLS architecture
   8231     // Need to generate someting similar to:
   8232     //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
   8233     //                                  ; from TEB
   8234     //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
   8235     //   mov     rcx, qword [rdx+rcx*8]
   8236     //   mov     eax, .tls$:tlsvar
   8237     //   [rax+rcx] contains the address
   8238     // Windows 64bit: gs:0x58
   8239     // Windows 32bit: fs:__tls_array
   8240 
   8241     // If GV is an alias then use the aliasee for determining
   8242     // thread-localness.
   8243     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
   8244       GV = GA->resolveAliasedGlobal(false);
   8245     SDLoc dl(GA);
   8246     SDValue Chain = DAG.getEntryNode();
   8247 
   8248     // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
   8249     // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
   8250     // use its literal value of 0x2C.
   8251     Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
   8252                                         ? Type::getInt8PtrTy(*DAG.getContext(),
   8253                                                              256)
   8254                                         : Type::getInt32PtrTy(*DAG.getContext(),
   8255                                                               257));
   8256 
   8257     SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
   8258       (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
   8259         DAG.getExternalSymbol("_tls_array", getPointerTy()));
   8260 
   8261     SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
   8262                                         MachinePointerInfo(Ptr),
   8263                                         false, false, false, 0);
   8264 
   8265     // Load the _tls_index variable
   8266     SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
   8267     if (Subtarget->is64Bit())
   8268       IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
   8269                            IDX, MachinePointerInfo(), MVT::i32,
   8270                            false, false, 0);
   8271     else
   8272       IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
   8273                         false, false, false, 0);
   8274 
   8275     SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
   8276                                     getPointerTy());
   8277     IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
   8278 
   8279     SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
   8280     res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
   8281                       false, false, false, 0);
   8282 
   8283     // Get the offset of start of .tls section
   8284     SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   8285                                              GA->getValueType(0),
   8286                                              GA->getOffset(), X86II::MO_SECREL);
   8287     SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
   8288 
   8289     // The address of the thread local variable is the add of the thread
   8290     // pointer with the offset of the variable.
   8291     return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
   8292   }
   8293 
   8294   llvm_unreachable("TLS not implemented for this target.");
   8295 }
   8296 
   8297 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
   8298 /// and take a 2 x i32 value to shift plus a shift amount.
   8299 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
   8300   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   8301   EVT VT = Op.getValueType();
   8302   unsigned VTBits = VT.getSizeInBits();
   8303   SDLoc dl(Op);
   8304   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
   8305   SDValue ShOpLo = Op.getOperand(0);
   8306   SDValue ShOpHi = Op.getOperand(1);
   8307   SDValue ShAmt  = Op.getOperand(2);
   8308   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
   8309                                      DAG.getConstant(VTBits - 1, MVT::i8))
   8310                        : DAG.getConstant(0, VT);
   8311 
   8312   SDValue Tmp2, Tmp3;
   8313   if (Op.getOpcode() == ISD::SHL_PARTS) {
   8314     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
   8315     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   8316   } else {
   8317     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
   8318     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
   8319   }
   8320 
   8321   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
   8322                                 DAG.getConstant(VTBits, MVT::i8));
   8323   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   8324                              AndNode, DAG.getConstant(0, MVT::i8));
   8325 
   8326   SDValue Hi, Lo;
   8327   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   8328   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
   8329   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
   8330 
   8331   if (Op.getOpcode() == ISD::SHL_PARTS) {
   8332     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   8333     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   8334   } else {
   8335     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   8336     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   8337   }
   8338 
   8339   SDValue Ops[2] = { Lo, Hi };
   8340   return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
   8341 }
   8342 
   8343 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
   8344                                            SelectionDAG &DAG) const {
   8345   EVT SrcVT = Op.getOperand(0).getValueType();
   8346 
   8347   if (SrcVT.isVector())
   8348     return SDValue();
   8349 
   8350   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
   8351          "Unknown SINT_TO_FP to lower!");
   8352 
   8353   // These are really Legal; return the operand so the caller accepts it as
   8354   // Legal.
   8355   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
   8356     return Op;
   8357   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
   8358       Subtarget->is64Bit()) {
   8359     return Op;
   8360   }
   8361 
   8362   SDLoc dl(Op);
   8363   unsigned Size = SrcVT.getSizeInBits()/8;
   8364   MachineFunction &MF = DAG.getMachineFunction();
   8365   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
   8366   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   8367   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   8368                                StackSlot,
   8369                                MachinePointerInfo::getFixedStack(SSFI),
   8370                                false, false, 0);
   8371   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
   8372 }
   8373 
   8374 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
   8375                                      SDValue StackSlot,
   8376                                      SelectionDAG &DAG) const {
   8377   // Build the FILD
   8378   SDLoc DL(Op);
   8379   SDVTList Tys;
   8380   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
   8381   if (useSSE)
   8382     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
   8383   else
   8384     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
   8385 
   8386   unsigned ByteSize = SrcVT.getSizeInBits()/8;
   8387 
   8388   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
   8389   MachineMemOperand *MMO;
   8390   if (FI) {
   8391     int SSFI = FI->getIndex();
   8392     MMO =
   8393       DAG.getMachineFunction()
   8394       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8395                             MachineMemOperand::MOLoad, ByteSize, ByteSize);
   8396   } else {
   8397     MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
   8398     StackSlot = StackSlot.getOperand(1);
   8399   }
   8400   SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
   8401   SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
   8402                                            X86ISD::FILD, DL,
   8403                                            Tys, Ops, array_lengthof(Ops),
   8404                                            SrcVT, MMO);
   8405 
   8406   if (useSSE) {
   8407     Chain = Result.getValue(1);
   8408     SDValue InFlag = Result.getValue(2);
   8409 
   8410     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
   8411     // shouldn't be necessary except that RFP cannot be live across
   8412     // multiple blocks. When stackifier is fixed, they can be uncoupled.
   8413     MachineFunction &MF = DAG.getMachineFunction();
   8414     unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
   8415     int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
   8416     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   8417     Tys = DAG.getVTList(MVT::Other);
   8418     SDValue Ops[] = {
   8419       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
   8420     };
   8421     MachineMemOperand *MMO =
   8422       DAG.getMachineFunction()
   8423       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8424                             MachineMemOperand::MOStore, SSFISize, SSFISize);
   8425 
   8426     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
   8427                                     Ops, array_lengthof(Ops),
   8428                                     Op.getValueType(), MMO);
   8429     Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
   8430                          MachinePointerInfo::getFixedStack(SSFI),
   8431                          false, false, false, 0);
   8432   }
   8433 
   8434   return Result;
   8435 }
   8436 
   8437 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
   8438 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
   8439                                                SelectionDAG &DAG) const {
   8440   // This algorithm is not obvious. Here it is what we're trying to output:
   8441   /*
   8442      movq       %rax,  %xmm0
   8443      punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
   8444      subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
   8445      #ifdef __SSE3__
   8446        haddpd   %xmm0, %xmm0
   8447      #else
   8448        pshufd   $0x4e, %xmm0, %xmm1
   8449        addpd    %xmm1, %xmm0
   8450      #endif
   8451   */
   8452 
   8453   SDLoc dl(Op);
   8454   LLVMContext *Context = DAG.getContext();
   8455 
   8456   // Build some magic constants.
   8457   static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
   8458   Constant *C0 = ConstantDataVector::get(*Context, CV0);
   8459   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
   8460 
   8461   SmallVector<Constant*,2> CV1;
   8462   CV1.push_back(
   8463     ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
   8464                                       APInt(64, 0x4330000000000000ULL))));
   8465   CV1.push_back(
   8466     ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
   8467                                       APInt(64, 0x4530000000000000ULL))));
   8468   Constant *C1 = ConstantVector::get(CV1);
   8469   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
   8470 
   8471   // Load the 64-bit value into an XMM register.
   8472   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
   8473                             Op.getOperand(0));
   8474   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
   8475                               MachinePointerInfo::getConstantPool(),
   8476                               false, false, false, 16);
   8477   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
   8478                               DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
   8479                               CLod0);
   8480 
   8481   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
   8482                               MachinePointerInfo::getConstantPool(),
   8483                               false, false, false, 16);
   8484   SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
   8485   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
   8486   SDValue Result;
   8487 
   8488   if (Subtarget->hasSSE3()) {
   8489     // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
   8490     Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
   8491   } else {
   8492     SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
   8493     SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
   8494                                            S2F, 0x4E, DAG);
   8495     Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
   8496                          DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
   8497                          Sub);
   8498   }
   8499 
   8500   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
   8501                      DAG.getIntPtrConstant(0));
   8502 }
   8503 
   8504 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
   8505 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
   8506                                                SelectionDAG &DAG) const {
   8507   SDLoc dl(Op);
   8508   // FP constant to bias correct the final result.
   8509   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
   8510                                    MVT::f64);
   8511 
   8512   // Load the 32-bit value into an XMM register.
   8513   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   8514                              Op.getOperand(0));
   8515 
   8516   // Zero out the upper parts of the register.
   8517   Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
   8518 
   8519   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   8520                      DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
   8521                      DAG.getIntPtrConstant(0));
   8522 
   8523   // Or the load with the bias.
   8524   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
   8525                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   8526                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   8527                                                    MVT::v2f64, Load)),
   8528                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   8529                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   8530                                                    MVT::v2f64, Bias)));
   8531   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   8532                    DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
   8533                    DAG.getIntPtrConstant(0));
   8534 
   8535   // Subtract the bias.
   8536   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
   8537 
   8538   // Handle final rounding.
   8539   EVT DestVT = Op.getValueType();
   8540 
   8541   if (DestVT.bitsLT(MVT::f64))
   8542     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
   8543                        DAG.getIntPtrConstant(0));
   8544   if (DestVT.bitsGT(MVT::f64))
   8545     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
   8546 
   8547   // Handle final rounding.
   8548   return Sub;
   8549 }
   8550 
   8551 SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
   8552                                                SelectionDAG &DAG) const {
   8553   SDValue N0 = Op.getOperand(0);
   8554   EVT SVT = N0.getValueType();
   8555   SDLoc dl(Op);
   8556 
   8557   assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
   8558           SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
   8559          "Custom UINT_TO_FP is not supported!");
   8560 
   8561   EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
   8562                              SVT.getVectorNumElements());
   8563   return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
   8564                      DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
   8565 }
   8566 
   8567 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   8568                                            SelectionDAG &DAG) const {
   8569   SDValue N0 = Op.getOperand(0);
   8570   SDLoc dl(Op);
   8571 
   8572   if (Op.getValueType().isVector())
   8573     return lowerUINT_TO_FP_vec(Op, DAG);
   8574 
   8575   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
   8576   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
   8577   // the optimization here.
   8578   if (DAG.SignBitIsZero(N0))
   8579     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
   8580 
   8581   EVT SrcVT = N0.getValueType();
   8582   EVT DstVT = Op.getValueType();
   8583   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
   8584     return LowerUINT_TO_FP_i64(Op, DAG);
   8585   if (SrcVT == MVT::i32 && X86ScalarSSEf64)
   8586     return LowerUINT_TO_FP_i32(Op, DAG);
   8587   if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
   8588     return SDValue();
   8589 
   8590   // Make a 64-bit buffer, and use it to build an FILD.
   8591   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
   8592   if (SrcVT == MVT::i32) {
   8593     SDValue WordOff = DAG.getConstant(4, getPointerTy());
   8594     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
   8595                                      getPointerTy(), StackSlot, WordOff);
   8596     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   8597                                   StackSlot, MachinePointerInfo(),
   8598                                   false, false, 0);
   8599     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
   8600                                   OffsetSlot, MachinePointerInfo(),
   8601                                   false, false, 0);
   8602     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
   8603     return Fild;
   8604   }
   8605 
   8606   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
   8607   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   8608                                StackSlot, MachinePointerInfo(),
   8609                                false, false, 0);
   8610   // For i64 source, we need to add the appropriate power of 2 if the input
   8611   // was negative.  This is the same as the optimization in
   8612   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
   8613   // we must be careful to do the computation in x87 extended precision, not
   8614   // in SSE. (The generic code can't know it's OK to do this, or how to.)
   8615   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
   8616   MachineMemOperand *MMO =
   8617     DAG.getMachineFunction()
   8618     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8619                           MachineMemOperand::MOLoad, 8, 8);
   8620 
   8621   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
   8622   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
   8623   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
   8624                                          array_lengthof(Ops), MVT::i64, MMO);
   8625 
   8626   APInt FF(32, 0x5F800000ULL);
   8627 
   8628   // Check whether the sign bit is set.
   8629   SDValue SignSet = DAG.getSetCC(dl,
   8630                                  getSetCCResultType(*DAG.getContext(), MVT::i64),
   8631                                  Op.getOperand(0), DAG.getConstant(0, MVT::i64),
   8632                                  ISD::SETLT);
   8633 
   8634   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
   8635   SDValue FudgePtr = DAG.getConstantPool(
   8636                              ConstantInt::get(*DAG.getContext(), FF.zext(64)),
   8637                                          getPointerTy());
   8638 
   8639   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
   8640   SDValue Zero = DAG.getIntPtrConstant(0);
   8641   SDValue Four = DAG.getIntPtrConstant(4);
   8642   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
   8643                                Zero, Four);
   8644   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
   8645 
   8646   // Load the value out, extending it from f32 to f80.
   8647   // FIXME: Avoid the extend by constructing the right constant pool?
   8648   SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
   8649                                  FudgePtr, MachinePointerInfo::getConstantPool(),
   8650                                  MVT::f32, false, false, 4);
   8651   // Extend everything to 80 bits to force it to be done on x87.
   8652   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
   8653   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
   8654 }
   8655 
   8656 std::pair<SDValue,SDValue>
   8657 X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
   8658                                     bool IsSigned, bool IsReplace) const {
   8659   SDLoc DL(Op);
   8660 
   8661   EVT DstTy = Op.getValueType();
   8662 
   8663   if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
   8664     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
   8665     DstTy = MVT::i64;
   8666   }
   8667 
   8668   assert(DstTy.getSimpleVT() <= MVT::i64 &&
   8669          DstTy.getSimpleVT() >= MVT::i16 &&
   8670          "Unknown FP_TO_INT to lower!");
   8671 
   8672   // These are really Legal.
   8673   if (DstTy == MVT::i32 &&
   8674       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   8675     return std::make_pair(SDValue(), SDValue());
   8676   if (Subtarget->is64Bit() &&
   8677       DstTy == MVT::i64 &&
   8678       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   8679     return std::make_pair(SDValue(), SDValue());
   8680 
   8681   // We lower FP->int64 either into FISTP64 followed by a load from a temporary
   8682   // stack slot, or into the FTOL runtime function.
   8683   MachineFunction &MF = DAG.getMachineFunction();
   8684   unsigned MemSize = DstTy.getSizeInBits()/8;
   8685   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   8686   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   8687 
   8688   unsigned Opc;
   8689   if (!IsSigned && isIntegerTypeFTOL(DstTy))
   8690     Opc = X86ISD::WIN_FTOL;
   8691   else
   8692     switch (DstTy.getSimpleVT().SimpleTy) {
   8693     default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
   8694     case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
   8695     case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
   8696     case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
   8697     }
   8698 
   8699   SDValue Chain = DAG.getEntryNode();
   8700   SDValue Value = Op.getOperand(0);
   8701   EVT TheVT = Op.getOperand(0).getValueType();
   8702   // FIXME This causes a redundant load/store if the SSE-class value is already
   8703   // in memory, such as if it is on the callstack.
   8704   if (isScalarFPTypeInSSEReg(TheVT)) {
   8705     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
   8706     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
   8707                          MachinePointerInfo::getFixedStack(SSFI),
   8708                          false, false, 0);
   8709     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
   8710     SDValue Ops[] = {
   8711       Chain, StackSlot, DAG.getValueType(TheVT)
   8712     };
   8713 
   8714     MachineMemOperand *MMO =
   8715       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8716                               MachineMemOperand::MOLoad, MemSize, MemSize);
   8717     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
   8718                                     array_lengthof(Ops), DstTy, MMO);
   8719     Chain = Value.getValue(1);
   8720     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   8721     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   8722   }
   8723 
   8724   MachineMemOperand *MMO =
   8725     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8726                             MachineMemOperand::MOStore, MemSize, MemSize);
   8727 
   8728   if (Opc != X86ISD::WIN_FTOL) {
   8729     // Build the FP_TO_INT*_IN_MEM
   8730     SDValue Ops[] = { Chain, Value, StackSlot };
   8731     SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
   8732                                            Ops, array_lengthof(Ops), DstTy,
   8733                                            MMO);
   8734     return std::make_pair(FIST, StackSlot);
   8735   } else {
   8736     SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
   8737       DAG.getVTList(MVT::Other, MVT::Glue),
   8738       Chain, Value);
   8739     SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
   8740       MVT::i32, ftol.getValue(1));
   8741     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
   8742       MVT::i32, eax.getValue(2));
   8743     SDValue Ops[] = { eax, edx };
   8744     SDValue pair = IsReplace
   8745       ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
   8746       : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
   8747     return std::make_pair(pair, SDValue());
   8748   }
   8749 }
   8750 
   8751 static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
   8752                               const X86Subtarget *Subtarget) {
   8753   MVT VT = Op->getValueType(0).getSimpleVT();
   8754   SDValue In = Op->getOperand(0);
   8755   MVT InVT = In.getValueType().getSimpleVT();
   8756   SDLoc dl(Op);
   8757 
   8758   // Optimize vectors in AVX mode:
   8759   //
   8760   //   v8i16 -> v8i32
   8761   //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
   8762   //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
   8763   //   Concat upper and lower parts.
   8764   //
   8765   //   v4i32 -> v4i64
   8766   //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
   8767   //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
   8768   //   Concat upper and lower parts.
   8769   //
   8770 
   8771   if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
   8772       ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
   8773     return SDValue();
   8774 
   8775   if (Subtarget->hasInt256())
   8776     return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
   8777 
   8778   SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
   8779   SDValue Undef = DAG.getUNDEF(InVT);
   8780   bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
   8781   SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
   8782   SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
   8783 
   8784   MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
   8785                              VT.getVectorNumElements()/2);
   8786 
   8787   OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
   8788   OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
   8789 
   8790   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
   8791 }
   8792 
   8793 SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
   8794                                            SelectionDAG &DAG) const {
   8795   if (Subtarget->hasFp256()) {
   8796     SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
   8797     if (Res.getNode())
   8798       return Res;
   8799   }
   8800 
   8801   return SDValue();
   8802 }
   8803 SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
   8804                                             SelectionDAG &DAG) const {
   8805   SDLoc DL(Op);
   8806   MVT VT = Op.getValueType().getSimpleVT();
   8807   SDValue In = Op.getOperand(0);
   8808   MVT SVT = In.getValueType().getSimpleVT();
   8809 
   8810   if (Subtarget->hasFp256()) {
   8811     SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
   8812     if (Res.getNode())
   8813       return Res;
   8814   }
   8815 
   8816   if (!VT.is256BitVector() || !SVT.is128BitVector() ||
   8817       VT.getVectorNumElements() != SVT.getVectorNumElements())
   8818     return SDValue();
   8819 
   8820   assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
   8821 
   8822   // AVX2 has better support of integer extending.
   8823   if (Subtarget->hasInt256())
   8824     return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
   8825 
   8826   SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
   8827   static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
   8828   SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
   8829                            DAG.getVectorShuffle(MVT::v8i16, DL, In,
   8830                                                 DAG.getUNDEF(MVT::v8i16),
   8831                                                 &Mask[0]));
   8832 
   8833   return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
   8834 }
   8835 
   8836 SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   8837   SDLoc DL(Op);
   8838   MVT VT = Op.getValueType().getSimpleVT();
   8839   SDValue In = Op.getOperand(0);
   8840   MVT SVT = In.getValueType().getSimpleVT();
   8841 
   8842   if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
   8843     // On AVX2, v4i64 -> v4i32 becomes VPERMD.
   8844     if (Subtarget->hasInt256()) {
   8845       static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
   8846       In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
   8847       In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
   8848                                 ShufMask);
   8849       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
   8850                          DAG.getIntPtrConstant(0));
   8851     }
   8852 
   8853     // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
   8854     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
   8855                                DAG.getIntPtrConstant(0));
   8856     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
   8857                                DAG.getIntPtrConstant(2));
   8858 
   8859     OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
   8860     OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
   8861 
   8862     // The PSHUFD mask:
   8863     static const int ShufMask1[] = {0, 2, 0, 0};
   8864     SDValue Undef = DAG.getUNDEF(VT);
   8865     OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
   8866     OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
   8867 
   8868     // The MOVLHPS mask:
   8869     static const int ShufMask2[] = {0, 1, 4, 5};
   8870     return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
   8871   }
   8872 
   8873   if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
   8874     // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
   8875     if (Subtarget->hasInt256()) {
   8876       In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
   8877 
   8878       SmallVector<SDValue,32> pshufbMask;
   8879       for (unsigned i = 0; i < 2; ++i) {
   8880         pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
   8881         pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
   8882         pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
   8883         pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
   8884         pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
   8885         pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
   8886         pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
   8887         pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
   8888         for (unsigned j = 0; j < 8; ++j)
   8889           pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   8890       }
   8891       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
   8892                                &pshufbMask[0], 32);
   8893       In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
   8894       In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
   8895 
   8896       static const int ShufMask[] = {0,  2,  -1,  -1};
   8897       In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
   8898                                 &ShufMask[0]);
   8899       In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
   8900                        DAG.getIntPtrConstant(0));
   8901       return DAG.getNode(ISD::BITCAST, DL, VT, In);
   8902     }
   8903 
   8904     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
   8905                                DAG.getIntPtrConstant(0));
   8906 
   8907     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
   8908                                DAG.getIntPtrConstant(4));
   8909 
   8910     OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
   8911     OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
   8912 
   8913     // The PSHUFB mask:
   8914     static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
   8915                                    -1, -1, -1, -1, -1, -1, -1, -1};
   8916 
   8917     SDValue Undef = DAG.getUNDEF(MVT::v16i8);
   8918     OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
   8919     OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
   8920 
   8921     OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
   8922     OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
   8923 
   8924     // The MOVLHPS Mask:
   8925     static const int ShufMask2[] = {0, 1, 4, 5};
   8926     SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
   8927     return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
   8928   }
   8929 
   8930   // Handle truncation of V256 to V128 using shuffles.
   8931   if (!VT.is128BitVector() || !SVT.is256BitVector())
   8932     return SDValue();
   8933 
   8934   assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
   8935          "Invalid op");
   8936   assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
   8937 
   8938   unsigned NumElems = VT.getVectorNumElements();
   8939   EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
   8940                              NumElems * 2);
   8941 
   8942   SmallVector<int, 16> MaskVec(NumElems * 2, -1);
   8943   // Prepare truncation shuffle mask
   8944   for (unsigned i = 0; i != NumElems; ++i)
   8945     MaskVec[i] = i * 2;
   8946   SDValue V = DAG.getVectorShuffle(NVT, DL,
   8947                                    DAG.getNode(ISD::BITCAST, DL, NVT, In),
   8948                                    DAG.getUNDEF(NVT), &MaskVec[0]);
   8949   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
   8950                      DAG.getIntPtrConstant(0));
   8951 }
   8952 
   8953 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
   8954                                            SelectionDAG &DAG) const {
   8955   MVT VT = Op.getValueType().getSimpleVT();
   8956   if (VT.isVector()) {
   8957     if (VT == MVT::v8i16)
   8958       return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
   8959                          DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
   8960                                      MVT::v8i32, Op.getOperand(0)));
   8961     return SDValue();
   8962   }
   8963 
   8964   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
   8965     /*IsSigned=*/ true, /*IsReplace=*/ false);
   8966   SDValue FIST = Vals.first, StackSlot = Vals.second;
   8967   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
   8968   if (FIST.getNode() == 0) return Op;
   8969 
   8970   if (StackSlot.getNode())
   8971     // Load the result.
   8972     return DAG.getLoad(Op.getValueType(), SDLoc(Op),
   8973                        FIST, StackSlot, MachinePointerInfo(),
   8974                        false, false, false, 0);
   8975 
   8976   // The node is the result.
   8977   return FIST;
   8978 }
   8979 
   8980 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
   8981                                            SelectionDAG &DAG) const {
   8982   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
   8983     /*IsSigned=*/ false, /*IsReplace=*/ false);
   8984   SDValue FIST = Vals.first, StackSlot = Vals.second;
   8985   assert(FIST.getNode() && "Unexpected failure");
   8986 
   8987   if (StackSlot.getNode())
   8988     // Load the result.
   8989     return DAG.getLoad(Op.getValueType(), SDLoc(Op),
   8990                        FIST, StackSlot, MachinePointerInfo(),
   8991                        false, false, false, 0);
   8992 
   8993   // The node is the result.
   8994   return FIST;
   8995 }
   8996 
   8997 static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
   8998   SDLoc DL(Op);
   8999   MVT VT = Op.getValueType().getSimpleVT();
   9000   SDValue In = Op.getOperand(0);
   9001   MVT SVT = In.getValueType().getSimpleVT();
   9002 
   9003   assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
   9004 
   9005   return DAG.getNode(X86ISD::VFPEXT, DL, VT,
   9006                      DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
   9007                                  In, DAG.getUNDEF(SVT)));
   9008 }
   9009 
   9010 SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
   9011   LLVMContext *Context = DAG.getContext();
   9012   SDLoc dl(Op);
   9013   MVT VT = Op.getValueType().getSimpleVT();
   9014   MVT EltVT = VT;
   9015   unsigned NumElts = VT == MVT::f64 ? 2 : 4;
   9016   if (VT.isVector()) {
   9017     EltVT = VT.getVectorElementType();
   9018     NumElts = VT.getVectorNumElements();
   9019   }
   9020   Constant *C;
   9021   if (EltVT == MVT::f64)
   9022     C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
   9023                                           APInt(64, ~(1ULL << 63))));
   9024   else
   9025     C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
   9026                                           APInt(32, ~(1U << 31))));
   9027   C = ConstantVector::getSplat(NumElts, C);
   9028   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
   9029   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   9030   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   9031                              MachinePointerInfo::getConstantPool(),
   9032                              false, false, false, Alignment);
   9033   if (VT.isVector()) {
   9034     MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
   9035     return DAG.getNode(ISD::BITCAST, dl, VT,
   9036                        DAG.getNode(ISD::AND, dl, ANDVT,
   9037                                    DAG.getNode(ISD::BITCAST, dl, ANDVT,
   9038                                                Op.getOperand(0)),
   9039                                    DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
   9040   }
   9041   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
   9042 }
   9043 
   9044 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
   9045   LLVMContext *Context = DAG.getContext();
   9046   SDLoc dl(Op);
   9047   MVT VT = Op.getValueType().getSimpleVT();
   9048   MVT EltVT = VT;
   9049   unsigned NumElts = VT == MVT::f64 ? 2 : 4;
   9050   if (VT.isVector()) {
   9051     EltVT = VT.getVectorElementType();
   9052     NumElts = VT.getVectorNumElements();
   9053   }
   9054   Constant *C;
   9055   if (EltVT == MVT::f64)
   9056     C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
   9057                                           APInt(64, 1ULL << 63)));
   9058   else
   9059     C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
   9060                                           APInt(32, 1U << 31)));
   9061   C = ConstantVector::getSplat(NumElts, C);
   9062   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
   9063   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   9064   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   9065                              MachinePointerInfo::getConstantPool(),
   9066                              false, false, false, Alignment);
   9067   if (VT.isVector()) {
   9068     MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
   9069     return DAG.getNode(ISD::BITCAST, dl, VT,
   9070                        DAG.getNode(ISD::XOR, dl, XORVT,
   9071                                    DAG.getNode(ISD::BITCAST, dl, XORVT,
   9072                                                Op.getOperand(0)),
   9073                                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
   9074   }
   9075 
   9076   return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
   9077 }
   9078 
   9079 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   9080   LLVMContext *Context = DAG.getContext();
   9081   SDValue Op0 = Op.getOperand(0);
   9082   SDValue Op1 = Op.getOperand(1);
   9083   SDLoc dl(Op);
   9084   MVT VT = Op.getValueType().getSimpleVT();
   9085   MVT SrcVT = Op1.getValueType().getSimpleVT();
   9086 
   9087   // If second operand is smaller, extend it first.
   9088   if (SrcVT.bitsLT(VT)) {
   9089     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
   9090     SrcVT = VT;
   9091   }
   9092   // And if it is bigger, shrink it first.
   9093   if (SrcVT.bitsGT(VT)) {
   9094     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
   9095     SrcVT = VT;
   9096   }
   9097 
   9098   // At this point the operands and the result should have the same
   9099   // type, and that won't be f80 since that is not custom lowered.
   9100 
   9101   // First get the sign bit of second operand.
   9102   SmallVector<Constant*,4> CV;
   9103   if (SrcVT == MVT::f64) {
   9104     const fltSemantics &Sem = APFloat::IEEEdouble;
   9105     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
   9106     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
   9107   } else {
   9108     const fltSemantics &Sem = APFloat::IEEEsingle;
   9109     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
   9110     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
   9111     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
   9112     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
   9113   }
   9114   Constant *C = ConstantVector::get(CV);
   9115   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   9116   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
   9117                               MachinePointerInfo::getConstantPool(),
   9118                               false, false, false, 16);
   9119   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
   9120 
   9121   // Shift sign bit right or left if the two operands have different types.
   9122   if (SrcVT.bitsGT(VT)) {
   9123     // Op0 is MVT::f32, Op1 is MVT::f64.
   9124     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
   9125     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
   9126                           DAG.getConstant(32, MVT::i32));
   9127     SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
   9128     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
   9129                           DAG.getIntPtrConstant(0));
   9130   }
   9131 
   9132   // Clear first operand sign bit.
   9133   CV.clear();
   9134   if (VT == MVT::f64) {
   9135     const fltSemantics &Sem = APFloat::IEEEdouble;
   9136     CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
   9137                                                    APInt(64, ~(1ULL << 63)))));
   9138     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
   9139   } else {
   9140     const fltSemantics &Sem = APFloat::IEEEsingle;
   9141     CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
   9142                                                    APInt(32, ~(1U << 31)))));
   9143     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
   9144     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
   9145     CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
   9146   }
   9147   C = ConstantVector::get(CV);
   9148   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   9149   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   9150                               MachinePointerInfo::getConstantPool(),
   9151                               false, false, false, 16);
   9152   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
   9153 
   9154   // Or the value with the sign bit.
   9155   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
   9156 }
   9157 
   9158 static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
   9159   SDValue N0 = Op.getOperand(0);
   9160   SDLoc dl(Op);
   9161   MVT VT = Op.getValueType().getSimpleVT();
   9162 
   9163   // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
   9164   SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
   9165                                   DAG.getConstant(1, VT));
   9166   return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
   9167 }
   9168 
   9169 // LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
   9170 //
   9171 SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
   9172                                                   SelectionDAG &DAG) const {
   9173   assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
   9174 
   9175   if (!Subtarget->hasSSE41())
   9176     return SDValue();
   9177 
   9178   if (!Op->hasOneUse())
   9179     return SDValue();
   9180 
   9181   SDNode *N = Op.getNode();
   9182   SDLoc DL(N);
   9183 
   9184   SmallVector<SDValue, 8> Opnds;
   9185   DenseMap<SDValue, unsigned> VecInMap;
   9186   EVT VT = MVT::Other;
   9187 
   9188   // Recognize a special case where a vector is casted into wide integer to
   9189   // test all 0s.
   9190   Opnds.push_back(N->getOperand(0));
   9191   Opnds.push_back(N->getOperand(1));
   9192 
   9193   for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
   9194     SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
   9195     // BFS traverse all OR'd operands.
   9196     if (I->getOpcode() == ISD::OR) {
   9197       Opnds.push_back(I->getOperand(0));
   9198       Opnds.push_back(I->getOperand(1));
   9199       // Re-evaluate the number of nodes to be traversed.
   9200       e += 2; // 2 more nodes (LHS and RHS) are pushed.
   9201       continue;
   9202     }
   9203 
   9204     // Quit if a non-EXTRACT_VECTOR_ELT
   9205     if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   9206       return SDValue();
   9207 
   9208     // Quit if without a constant index.
   9209     SDValue Idx = I->getOperand(1);
   9210     if (!isa<ConstantSDNode>(Idx))
   9211       return SDValue();
   9212 
   9213     SDValue ExtractedFromVec = I->getOperand(0);
   9214     DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
   9215     if (M == VecInMap.end()) {
   9216       VT = ExtractedFromVec.getValueType();
   9217       // Quit if not 128/256-bit vector.
   9218       if (!VT.is128BitVector() && !VT.is256BitVector())
   9219         return SDValue();
   9220       // Quit if not the same type.
   9221       if (VecInMap.begin() != VecInMap.end() &&
   9222           VT != VecInMap.begin()->first.getValueType())
   9223         return SDValue();
   9224       M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
   9225     }
   9226     M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
   9227   }
   9228 
   9229   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   9230          "Not extracted from 128-/256-bit vector.");
   9231 
   9232   unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
   9233   SmallVector<SDValue, 8> VecIns;
   9234 
   9235   for (DenseMap<SDValue, unsigned>::const_iterator
   9236         I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
   9237     // Quit if not all elements are used.
   9238     if (I->second != FullMask)
   9239       return SDValue();
   9240     VecIns.push_back(I->first);
   9241   }
   9242 
   9243   EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
   9244 
   9245   // Cast all vectors into TestVT for PTEST.
   9246   for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
   9247     VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
   9248 
   9249   // If more than one full vectors are evaluated, OR them first before PTEST.
   9250   for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
   9251     // Each iteration will OR 2 nodes and append the result until there is only
   9252     // 1 node left, i.e. the final OR'd value of all vectors.
   9253     SDValue LHS = VecIns[Slot];
   9254     SDValue RHS = VecIns[Slot + 1];
   9255     VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
   9256   }
   9257 
   9258   return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
   9259                      VecIns.back(), VecIns.back());
   9260 }
   9261 
   9262 /// Emit nodes that will be selected as "test Op0,Op0", or something
   9263 /// equivalent.
   9264 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
   9265                                     SelectionDAG &DAG) const {
   9266   SDLoc dl(Op);
   9267 
   9268   // CF and OF aren't always set the way we want. Determine which
   9269   // of these we need.
   9270   bool NeedCF = false;
   9271   bool NeedOF = false;
   9272   switch (X86CC) {
   9273   default: break;
   9274   case X86::COND_A: case X86::COND_AE:
   9275   case X86::COND_B: case X86::COND_BE:
   9276     NeedCF = true;
   9277     break;
   9278   case X86::COND_G: case X86::COND_GE:
   9279   case X86::COND_L: case X86::COND_LE:
   9280   case X86::COND_O: case X86::COND_NO:
   9281     NeedOF = true;
   9282     break;
   9283   }
   9284 
   9285   // See if we can use the EFLAGS value from the operand instead of
   9286   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
   9287   // we prove that the arithmetic won't overflow, we can't use OF or CF.
   9288   if (Op.getResNo() != 0 || NeedOF || NeedCF)
   9289     // Emit a CMP with 0, which is the TEST pattern.
   9290     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   9291                        DAG.getConstant(0, Op.getValueType()));
   9292 
   9293   unsigned Opcode = 0;
   9294   unsigned NumOperands = 0;
   9295 
   9296   // Truncate operations may prevent the merge of the SETCC instruction
   9297   // and the arithmetic intruction before it. Attempt to truncate the operands
   9298   // of the arithmetic instruction and use a reduced bit-width instruction.
   9299   bool NeedTruncation = false;
   9300   SDValue ArithOp = Op;
   9301   if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
   9302     SDValue Arith = Op->getOperand(0);
   9303     // Both the trunc and the arithmetic op need to have one user each.
   9304     if (Arith->hasOneUse())
   9305       switch (Arith.getOpcode()) {
   9306         default: break;
   9307         case ISD::ADD:
   9308         case ISD::SUB:
   9309         case ISD::AND:
   9310         case ISD::OR:
   9311         case ISD::XOR: {
   9312           NeedTruncation = true;
   9313           ArithOp = Arith;
   9314         }
   9315       }
   9316   }
   9317 
   9318   // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
   9319   // which may be the result of a CAST.  We use the variable 'Op', which is the
   9320   // non-casted variable when we check for possible users.
   9321   switch (ArithOp.getOpcode()) {
   9322   case ISD::ADD:
   9323     // Due to an isel shortcoming, be conservative if this add is likely to be
   9324     // selected as part of a load-modify-store instruction. When the root node
   9325     // in a match is a store, isel doesn't know how to remap non-chain non-flag
   9326     // uses of other nodes in the match, such as the ADD in this case. This
   9327     // leads to the ADD being left around and reselected, with the result being
   9328     // two adds in the output.  Alas, even if none our users are stores, that
   9329     // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
   9330     // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
   9331     // climbing the DAG back to the root, and it doesn't seem to be worth the
   9332     // effort.
   9333     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   9334          UE = Op.getNode()->use_end(); UI != UE; ++UI)
   9335       if (UI->getOpcode() != ISD::CopyToReg &&
   9336           UI->getOpcode() != ISD::SETCC &&
   9337           UI->getOpcode() != ISD::STORE)
   9338         goto default_case;
   9339 
   9340     if (ConstantSDNode *C =
   9341         dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
   9342       // An add of one will be selected as an INC.
   9343       if (C->getAPIntValue() == 1) {
   9344         Opcode = X86ISD::INC;
   9345         NumOperands = 1;
   9346         break;
   9347       }
   9348 
   9349       // An add of negative one (subtract of one) will be selected as a DEC.
   9350       if (C->getAPIntValue().isAllOnesValue()) {
   9351         Opcode = X86ISD::DEC;
   9352         NumOperands = 1;
   9353         break;
   9354       }
   9355     }
   9356 
   9357     // Otherwise use a regular EFLAGS-setting add.
   9358     Opcode = X86ISD::ADD;
   9359     NumOperands = 2;
   9360     break;
   9361   case ISD::AND: {
   9362     // If the primary and result isn't used, don't bother using X86ISD::AND,
   9363     // because a TEST instruction will be better.
   9364     bool NonFlagUse = false;
   9365     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   9366            UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   9367       SDNode *User = *UI;
   9368       unsigned UOpNo = UI.getOperandNo();
   9369       if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
   9370         // Look pass truncate.
   9371         UOpNo = User->use_begin().getOperandNo();
   9372         User = *User->use_begin();
   9373       }
   9374 
   9375       if (User->getOpcode() != ISD::BRCOND &&
   9376           User->getOpcode() != ISD::SETCC &&
   9377           !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
   9378         NonFlagUse = true;
   9379         break;
   9380       }
   9381     }
   9382 
   9383     if (!NonFlagUse)
   9384       break;
   9385   }
   9386     // FALL THROUGH
   9387   case ISD::SUB:
   9388   case ISD::OR:
   9389   case ISD::XOR:
   9390     // Due to the ISEL shortcoming noted above, be conservative if this op is
   9391     // likely to be selected as part of a load-modify-store instruction.
   9392     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   9393            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   9394       if (UI->getOpcode() == ISD::STORE)
   9395         goto default_case;
   9396 
   9397     // Otherwise use a regular EFLAGS-setting instruction.
   9398     switch (ArithOp.getOpcode()) {
   9399     default: llvm_unreachable("unexpected operator!");
   9400     case ISD::SUB: Opcode = X86ISD::SUB; break;
   9401     case ISD::XOR: Opcode = X86ISD::XOR; break;
   9402     case ISD::AND: Opcode = X86ISD::AND; break;
   9403     case ISD::OR: {
   9404       if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
   9405         SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
   9406         if (EFLAGS.getNode())
   9407           return EFLAGS;
   9408       }
   9409       Opcode = X86ISD::OR;
   9410       break;
   9411     }
   9412     }
   9413 
   9414     NumOperands = 2;
   9415     break;
   9416   case X86ISD::ADD:
   9417   case X86ISD::SUB:
   9418   case X86ISD::INC:
   9419   case X86ISD::DEC:
   9420   case X86ISD::OR:
   9421   case X86ISD::XOR:
   9422   case X86ISD::AND:
   9423     return SDValue(Op.getNode(), 1);
   9424   default:
   9425   default_case:
   9426     break;
   9427   }
   9428 
   9429   // If we found that truncation is beneficial, perform the truncation and
   9430   // update 'Op'.
   9431   if (NeedTruncation) {
   9432     EVT VT = Op.getValueType();
   9433     SDValue WideVal = Op->getOperand(0);
   9434     EVT WideVT = WideVal.getValueType();
   9435     unsigned ConvertedOp = 0;
   9436     // Use a target machine opcode to prevent further DAGCombine
   9437     // optimizations that may separate the arithmetic operations
   9438     // from the setcc node.
   9439     switch (WideVal.getOpcode()) {
   9440       default: break;
   9441       case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
   9442       case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
   9443       case ISD::AND: ConvertedOp = X86ISD::AND; break;
   9444       case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
   9445       case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
   9446     }
   9447 
   9448     if (ConvertedOp) {
   9449       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9450       if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
   9451         SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
   9452         SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
   9453         Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
   9454       }
   9455     }
   9456   }
   9457 
   9458   if (Opcode == 0)
   9459     // Emit a CMP with 0, which is the TEST pattern.
   9460     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   9461                        DAG.getConstant(0, Op.getValueType()));
   9462 
   9463   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   9464   SmallVector<SDValue, 4> Ops;
   9465   for (unsigned i = 0; i != NumOperands; ++i)
   9466     Ops.push_back(Op.getOperand(i));
   9467 
   9468   SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
   9469   DAG.ReplaceAllUsesWith(Op, New);
   9470   return SDValue(New.getNode(), 1);
   9471 }
   9472 
   9473 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
   9474 /// equivalent.
   9475 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
   9476                                    SelectionDAG &DAG) const {
   9477   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
   9478     if (C->getAPIntValue() == 0)
   9479       return EmitTest(Op0, X86CC, DAG);
   9480 
   9481   SDLoc dl(Op0);
   9482   if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
   9483        Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
   9484     // Use SUB instead of CMP to enable CSE between SUB and CMP.
   9485     SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
   9486     SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
   9487                               Op0, Op1);
   9488     return SDValue(Sub.getNode(), 1);
   9489   }
   9490   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
   9491 }
   9492 
   9493 /// Convert a comparison if required by the subtarget.
   9494 SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
   9495                                                  SelectionDAG &DAG) const {
   9496   // If the subtarget does not support the FUCOMI instruction, floating-point
   9497   // comparisons have to be converted.
   9498   if (Subtarget->hasCMov() ||
   9499       Cmp.getOpcode() != X86ISD::CMP ||
   9500       !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
   9501       !Cmp.getOperand(1).getValueType().isFloatingPoint())
   9502     return Cmp;
   9503 
   9504   // The instruction selector will select an FUCOM instruction instead of
   9505   // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
   9506   // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
   9507   // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
   9508   SDLoc dl(Cmp);
   9509   SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
   9510   SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
   9511   SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
   9512                             DAG.getConstant(8, MVT::i8));
   9513   SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
   9514   return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
   9515 }
   9516 
   9517 static bool isAllOnes(SDValue V) {
   9518   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   9519   return C && C->isAllOnesValue();
   9520 }
   9521 
   9522 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
   9523 /// if it's possible.
   9524 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
   9525                                      SDLoc dl, SelectionDAG &DAG) const {
   9526   SDValue Op0 = And.getOperand(0);
   9527   SDValue Op1 = And.getOperand(1);
   9528   if (Op0.getOpcode() == ISD::TRUNCATE)
   9529     Op0 = Op0.getOperand(0);
   9530   if (Op1.getOpcode() == ISD::TRUNCATE)
   9531     Op1 = Op1.getOperand(0);
   9532 
   9533   SDValue LHS, RHS;
   9534   if (Op1.getOpcode() == ISD::SHL)
   9535     std::swap(Op0, Op1);
   9536   if (Op0.getOpcode() == ISD::SHL) {
   9537     if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
   9538       if (And00C->getZExtValue() == 1) {
   9539         // If we looked past a truncate, check that it's only truncating away
   9540         // known zeros.
   9541         unsigned BitWidth = Op0.getValueSizeInBits();
   9542         unsigned AndBitWidth = And.getValueSizeInBits();
   9543         if (BitWidth > AndBitWidth) {
   9544           APInt Zeros, Ones;
   9545           DAG.ComputeMaskedBits(Op0, Zeros, Ones);
   9546           if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
   9547             return SDValue();
   9548         }
   9549         LHS = Op1;
   9550         RHS = Op0.getOperand(1);
   9551       }
   9552   } else if (Op1.getOpcode() == ISD::Constant) {
   9553     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
   9554     uint64_t AndRHSVal = AndRHS->getZExtValue();
   9555     SDValue AndLHS = Op0;
   9556 
   9557     if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
   9558       LHS = AndLHS.getOperand(0);
   9559       RHS = AndLHS.getOperand(1);
   9560     }
   9561 
   9562     // Use BT if the immediate can't be encoded in a TEST instruction.
   9563     if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
   9564       LHS = AndLHS;
   9565       RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
   9566     }
   9567   }
   9568 
   9569   if (LHS.getNode()) {
   9570     // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
   9571     // instruction.  Since the shift amount is in-range-or-undefined, we know
   9572     // that doing a bittest on the i32 value is ok.  We extend to i32 because
   9573     // the encoding for the i16 version is larger than the i32 version.
   9574     // Also promote i16 to i32 for performance / code size reason.
   9575     if (LHS.getValueType() == MVT::i8 ||
   9576         LHS.getValueType() == MVT::i16)
   9577       LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
   9578 
   9579     // If the operand types disagree, extend the shift amount to match.  Since
   9580     // BT ignores high bits (like shifts) we can use anyextend.
   9581     if (LHS.getValueType() != RHS.getValueType())
   9582       RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
   9583 
   9584     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
   9585     X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
   9586     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   9587                        DAG.getConstant(Cond, MVT::i8), BT);
   9588   }
   9589 
   9590   return SDValue();
   9591 }
   9592 
   9593 /// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
   9594 /// mask CMPs.
   9595 static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
   9596                               SDValue &Op1) {
   9597   unsigned SSECC;
   9598   bool Swap = false;
   9599 
   9600   // SSE Condition code mapping:
   9601   //  0 - EQ
   9602   //  1 - LT
   9603   //  2 - LE
   9604   //  3 - UNORD
   9605   //  4 - NEQ
   9606   //  5 - NLT
   9607   //  6 - NLE
   9608   //  7 - ORD
   9609   switch (SetCCOpcode) {
   9610   default: llvm_unreachable("Unexpected SETCC condition");
   9611   case ISD::SETOEQ:
   9612   case ISD::SETEQ:  SSECC = 0; break;
   9613   case ISD::SETOGT:
   9614   case ISD::SETGT:  Swap = true; // Fallthrough
   9615   case ISD::SETLT:
   9616   case ISD::SETOLT: SSECC = 1; break;
   9617   case ISD::SETOGE:
   9618   case ISD::SETGE:  Swap = true; // Fallthrough
   9619   case ISD::SETLE:
   9620   case ISD::SETOLE: SSECC = 2; break;
   9621   case ISD::SETUO:  SSECC = 3; break;
   9622   case ISD::SETUNE:
   9623   case ISD::SETNE:  SSECC = 4; break;
   9624   case ISD::SETULE: Swap = true; // Fallthrough
   9625   case ISD::SETUGE: SSECC = 5; break;
   9626   case ISD::SETULT: Swap = true; // Fallthrough
   9627   case ISD::SETUGT: SSECC = 6; break;
   9628   case ISD::SETO:   SSECC = 7; break;
   9629   case ISD::SETUEQ:
   9630   case ISD::SETONE: SSECC = 8; break;
   9631   }
   9632   if (Swap)
   9633     std::swap(Op0, Op1);
   9634 
   9635   return SSECC;
   9636 }
   9637 
   9638 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
   9639 // ones, and then concatenate the result back.
   9640 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
   9641   MVT VT = Op.getValueType().getSimpleVT();
   9642 
   9643   assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
   9644          "Unsupported value type for operation");
   9645 
   9646   unsigned NumElems = VT.getVectorNumElements();
   9647   SDLoc dl(Op);
   9648   SDValue CC = Op.getOperand(2);
   9649 
   9650   // Extract the LHS vectors
   9651   SDValue LHS = Op.getOperand(0);
   9652   SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
   9653   SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
   9654 
   9655   // Extract the RHS vectors
   9656   SDValue RHS = Op.getOperand(1);
   9657   SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
   9658   SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
   9659 
   9660   // Issue the operation on the smaller types and concatenate the result back
   9661   MVT EltVT = VT.getVectorElementType();
   9662   MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   9663   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   9664                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
   9665                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
   9666 }
   9667 
   9668 static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
   9669                            SelectionDAG &DAG) {
   9670   SDValue Cond;
   9671   SDValue Op0 = Op.getOperand(0);
   9672   SDValue Op1 = Op.getOperand(1);
   9673   SDValue CC = Op.getOperand(2);
   9674   MVT VT = Op.getValueType().getSimpleVT();
   9675   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   9676   bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
   9677   SDLoc dl(Op);
   9678 
   9679   if (isFP) {
   9680 #ifndef NDEBUG
   9681     MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
   9682     assert(EltVT == MVT::f32 || EltVT == MVT::f64);
   9683 #endif
   9684 
   9685     unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
   9686 
   9687     // In the two special cases we can't handle, emit two comparisons.
   9688     if (SSECC == 8) {
   9689       unsigned CC0, CC1;
   9690       unsigned CombineOpc;
   9691       if (SetCCOpcode == ISD::SETUEQ) {
   9692         CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
   9693       } else {
   9694         assert(SetCCOpcode == ISD::SETONE);
   9695         CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
   9696       }
   9697 
   9698       SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
   9699                                  DAG.getConstant(CC0, MVT::i8));
   9700       SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
   9701                                  DAG.getConstant(CC1, MVT::i8));
   9702       return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
   9703     }
   9704     // Handle all other FP comparisons here.
   9705     return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
   9706                        DAG.getConstant(SSECC, MVT::i8));
   9707   }
   9708 
   9709   // Break 256-bit integer vector compare into smaller ones.
   9710   if (VT.is256BitVector() && !Subtarget->hasInt256())
   9711     return Lower256IntVSETCC(Op, DAG);
   9712 
   9713   // We are handling one of the integer comparisons here.  Since SSE only has
   9714   // GT and EQ comparisons for integer, swapping operands and multiple
   9715   // operations may be required for some comparisons.
   9716   unsigned Opc;
   9717   bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
   9718 
   9719   switch (SetCCOpcode) {
   9720   default: llvm_unreachable("Unexpected SETCC condition");
   9721   case ISD::SETNE:  Invert = true;
   9722   case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
   9723   case ISD::SETLT:  Swap = true;
   9724   case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
   9725   case ISD::SETGE:  Swap = true;
   9726   case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
   9727   case ISD::SETULT: Swap = true;
   9728   case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
   9729   case ISD::SETUGE: Swap = true;
   9730   case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
   9731   }
   9732 
   9733   // Special case: Use min/max operations for SETULE/SETUGE
   9734   MVT VET = VT.getVectorElementType();
   9735   bool hasMinMax =
   9736        (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
   9737     || (Subtarget->hasSSE2()  && (VET == MVT::i8));
   9738 
   9739   if (hasMinMax) {
   9740     switch (SetCCOpcode) {
   9741     default: break;
   9742     case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
   9743     case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
   9744     }
   9745 
   9746     if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
   9747   }
   9748 
   9749   if (Swap)
   9750     std::swap(Op0, Op1);
   9751 
   9752   // Check that the operation in question is available (most are plain SSE2,
   9753   // but PCMPGTQ and PCMPEQQ have different requirements).
   9754   if (VT == MVT::v2i64) {
   9755     if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
   9756       assert(Subtarget->hasSSE2() && "Don't know how to lower!");
   9757 
   9758       // First cast everything to the right type.
   9759       Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
   9760       Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
   9761 
   9762       // Since SSE has no unsigned integer comparisons, we need to flip the sign
   9763       // bits of the inputs before performing those operations. The lower
   9764       // compare is always unsigned.
   9765       SDValue SB;
   9766       if (FlipSigns) {
   9767         SB = DAG.getConstant(0x80000000U, MVT::v4i32);
   9768       } else {
   9769         SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
   9770         SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
   9771         SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
   9772                          Sign, Zero, Sign, Zero);
   9773       }
   9774       Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
   9775       Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
   9776 
   9777       // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
   9778       SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
   9779       SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
   9780 
   9781       // Create masks for only the low parts/high parts of the 64 bit integers.
   9782       static const int MaskHi[] = { 1, 1, 3, 3 };
   9783       static const int MaskLo[] = { 0, 0, 2, 2 };
   9784       SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
   9785       SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
   9786       SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
   9787 
   9788       SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
   9789       Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
   9790 
   9791       if (Invert)
   9792         Result = DAG.getNOT(dl, Result, MVT::v4i32);
   9793 
   9794       return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   9795     }
   9796 
   9797     if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
   9798       // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
   9799       // pcmpeqd + pshufd + pand.
   9800       assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
   9801 
   9802       // First cast everything to the right type.
   9803       Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
   9804       Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
   9805 
   9806       // Do the compare.
   9807       SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
   9808 
   9809       // Make sure the lower and upper halves are both all-ones.
   9810       static const int Mask[] = { 1, 0, 3, 2 };
   9811       SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
   9812       Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
   9813 
   9814       if (Invert)
   9815         Result = DAG.getNOT(dl, Result, MVT::v4i32);
   9816 
   9817       return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   9818     }
   9819   }
   9820 
   9821   // Since SSE has no unsigned integer comparisons, we need to flip the sign
   9822   // bits of the inputs before performing those operations.
   9823   if (FlipSigns) {
   9824     EVT EltVT = VT.getVectorElementType();
   9825     SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
   9826     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
   9827     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
   9828   }
   9829 
   9830   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   9831 
   9832   // If the logical-not of the result is required, perform that now.
   9833   if (Invert)
   9834     Result = DAG.getNOT(dl, Result, VT);
   9835 
   9836   if (MinMax)
   9837     Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
   9838 
   9839   return Result;
   9840 }
   9841 
   9842 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   9843 
   9844   MVT VT = Op.getValueType().getSimpleVT();
   9845 
   9846   if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
   9847 
   9848   assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
   9849   SDValue Op0 = Op.getOperand(0);
   9850   SDValue Op1 = Op.getOperand(1);
   9851   SDLoc dl(Op);
   9852   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   9853 
   9854   // Optimize to BT if possible.
   9855   // Lower (X & (1 << N)) == 0 to BT(X, N).
   9856   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
   9857   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
   9858   if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
   9859       Op1.getOpcode() == ISD::Constant &&
   9860       cast<ConstantSDNode>(Op1)->isNullValue() &&
   9861       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   9862     SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
   9863     if (NewSetCC.getNode())
   9864       return NewSetCC;
   9865   }
   9866 
   9867   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
   9868   // these.
   9869   if (Op1.getOpcode() == ISD::Constant &&
   9870       (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
   9871        cast<ConstantSDNode>(Op1)->isNullValue()) &&
   9872       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   9873 
   9874     // If the input is a setcc, then reuse the input setcc or use a new one with
   9875     // the inverted condition.
   9876     if (Op0.getOpcode() == X86ISD::SETCC) {
   9877       X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
   9878       bool Invert = (CC == ISD::SETNE) ^
   9879         cast<ConstantSDNode>(Op1)->isNullValue();
   9880       if (!Invert) return Op0;
   9881 
   9882       CCode = X86::GetOppositeBranchCondition(CCode);
   9883       return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   9884                          DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
   9885     }
   9886   }
   9887 
   9888   bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
   9889   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
   9890   if (X86CC == X86::COND_INVALID)
   9891     return SDValue();
   9892 
   9893   SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
   9894   EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
   9895   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   9896                      DAG.getConstant(X86CC, MVT::i8), EFLAGS);
   9897 }
   9898 
   9899 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
   9900 static bool isX86LogicalCmp(SDValue Op) {
   9901   unsigned Opc = Op.getNode()->getOpcode();
   9902   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
   9903       Opc == X86ISD::SAHF)
   9904     return true;
   9905   if (Op.getResNo() == 1 &&
   9906       (Opc == X86ISD::ADD ||
   9907        Opc == X86ISD::SUB ||
   9908        Opc == X86ISD::ADC ||
   9909        Opc == X86ISD::SBB ||
   9910        Opc == X86ISD::SMUL ||
   9911        Opc == X86ISD::UMUL ||
   9912        Opc == X86ISD::INC ||
   9913        Opc == X86ISD::DEC ||
   9914        Opc == X86ISD::OR ||
   9915        Opc == X86ISD::XOR ||
   9916        Opc == X86ISD::AND))
   9917     return true;
   9918 
   9919   if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
   9920     return true;
   9921 
   9922   return false;
   9923 }
   9924 
   9925 static bool isZero(SDValue V) {
   9926   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   9927   return C && C->isNullValue();
   9928 }
   9929 
   9930 static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
   9931   if (V.getOpcode() != ISD::TRUNCATE)
   9932     return false;
   9933 
   9934   SDValue VOp0 = V.getOperand(0);
   9935   unsigned InBits = VOp0.getValueSizeInBits();
   9936   unsigned Bits = V.getValueSizeInBits();
   9937   return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
   9938 }
   9939 
   9940 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   9941   bool addTest = true;
   9942   SDValue Cond  = Op.getOperand(0);
   9943   SDValue Op1 = Op.getOperand(1);
   9944   SDValue Op2 = Op.getOperand(2);
   9945   SDLoc DL(Op);
   9946   EVT VT = Op1.getValueType();
   9947   SDValue CC;
   9948 
   9949   // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
   9950   // are available. Otherwise fp cmovs get lowered into a less efficient branch
   9951   // sequence later on.
   9952   if (Cond.getOpcode() == ISD::SETCC &&
   9953       ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
   9954        (Subtarget->hasSSE1() && VT == MVT::f32)) &&
   9955       VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
   9956     SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
   9957     int SSECC = translateX86FSETCC(
   9958         cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
   9959 
   9960     if (SSECC != 8) {
   9961       unsigned Opcode = VT == MVT::f32 ? X86ISD::FSETCCss : X86ISD::FSETCCsd;
   9962       SDValue Cmp = DAG.getNode(Opcode, DL, VT, CondOp0, CondOp1,
   9963                                 DAG.getConstant(SSECC, MVT::i8));
   9964       SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
   9965       SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
   9966       return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
   9967     }
   9968   }
   9969 
   9970   if (Cond.getOpcode() == ISD::SETCC) {
   9971     SDValue NewCond = LowerSETCC(Cond, DAG);
   9972     if (NewCond.getNode())
   9973       Cond = NewCond;
   9974   }
   9975 
   9976   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
   9977   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
   9978   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
   9979   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
   9980   if (Cond.getOpcode() == X86ISD::SETCC &&
   9981       Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
   9982       isZero(Cond.getOperand(1).getOperand(1))) {
   9983     SDValue Cmp = Cond.getOperand(1);
   9984 
   9985     unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
   9986 
   9987     if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
   9988         (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
   9989       SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
   9990 
   9991       SDValue CmpOp0 = Cmp.getOperand(0);
   9992       // Apply further optimizations for special cases
   9993       // (select (x != 0), -1, 0) -> neg & sbb
   9994       // (select (x == 0), 0, -1) -> neg & sbb
   9995       if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
   9996         if (YC->isNullValue() &&
   9997             (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
   9998           SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
   9999           SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
   10000                                     DAG.getConstant(0, CmpOp0.getValueType()),
   10001                                     CmpOp0);
   10002           SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   10003                                     DAG.getConstant(X86::COND_B, MVT::i8),
   10004                                     SDValue(Neg.getNode(), 1));
   10005           return Res;
   10006         }
   10007 
   10008       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
   10009                         CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
   10010       Cmp = ConvertCmpIfNecessary(Cmp, DAG);
   10011 
   10012       SDValue Res =   // Res = 0 or -1.
   10013         DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   10014                     DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
   10015 
   10016       if (isAllOnes(Op1) != (CondCode == X86::COND_E))
   10017         Res = DAG.getNOT(DL, Res, Res.getValueType());
   10018 
   10019       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
   10020       if (N2C == 0 || !N2C->isNullValue())
   10021         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
   10022       return Res;
   10023     }
   10024   }
   10025 
   10026   // Look past (and (setcc_carry (cmp ...)), 1).
   10027   if (Cond.getOpcode() == ISD::AND &&
   10028       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   10029     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   10030     if (C && C->getAPIntValue() == 1)
   10031       Cond = Cond.getOperand(0);
   10032   }
   10033 
   10034   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   10035   // setting operand in place of the X86ISD::SETCC.
   10036   unsigned CondOpcode = Cond.getOpcode();
   10037   if (CondOpcode == X86ISD::SETCC ||
   10038       CondOpcode == X86ISD::SETCC_CARRY) {
   10039     CC = Cond.getOperand(0);
   10040 
   10041     SDValue Cmp = Cond.getOperand(1);
   10042     unsigned Opc = Cmp.getOpcode();
   10043     MVT VT = Op.getValueType().getSimpleVT();
   10044 
   10045     bool IllegalFPCMov = false;
   10046     if (VT.isFloatingPoint() && !VT.isVector() &&
   10047         !isScalarFPTypeInSSEReg(VT))  // FPStack?
   10048       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
   10049 
   10050     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
   10051         Opc == X86ISD::BT) { // FIXME
   10052       Cond = Cmp;
   10053       addTest = false;
   10054     }
   10055   } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
   10056              CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
   10057              ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
   10058               Cond.getOperand(0).getValueType() != MVT::i8)) {
   10059     SDValue LHS = Cond.getOperand(0);
   10060     SDValue RHS = Cond.getOperand(1);
   10061     unsigned X86Opcode;
   10062     unsigned X86Cond;
   10063     SDVTList VTs;
   10064     switch (CondOpcode) {
   10065     case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
   10066     case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
   10067     case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
   10068     case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
   10069     case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
   10070     case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
   10071     default: llvm_unreachable("unexpected overflowing operator");
   10072     }
   10073     if (CondOpcode == ISD::UMULO)
   10074       VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
   10075                           MVT::i32);
   10076     else
   10077       VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
   10078 
   10079     SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
   10080 
   10081     if (CondOpcode == ISD::UMULO)
   10082       Cond = X86Op.getValue(2);
   10083     else
   10084       Cond = X86Op.getValue(1);
   10085 
   10086     CC = DAG.getConstant(X86Cond, MVT::i8);
   10087     addTest = false;
   10088   }
   10089 
   10090   if (addTest) {
   10091     // Look pass the truncate if the high bits are known zero.
   10092     if (isTruncWithZeroHighBitsInput(Cond, DAG))
   10093         Cond = Cond.getOperand(0);
   10094 
   10095     // We know the result of AND is compared against zero. Try to match
   10096     // it to BT.
   10097     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   10098       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
   10099       if (NewSetCC.getNode()) {
   10100         CC = NewSetCC.getOperand(0);
   10101         Cond = NewSetCC.getOperand(1);
   10102         addTest = false;
   10103       }
   10104     }
   10105   }
   10106 
   10107   if (addTest) {
   10108     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   10109     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   10110   }
   10111 
   10112   // a <  b ? -1 :  0 -> RES = ~setcc_carry
   10113   // a <  b ?  0 : -1 -> RES = setcc_carry
   10114   // a >= b ? -1 :  0 -> RES = setcc_carry
   10115   // a >= b ?  0 : -1 -> RES = ~setcc_carry
   10116   if (Cond.getOpcode() == X86ISD::SUB) {
   10117     Cond = ConvertCmpIfNecessary(Cond, DAG);
   10118     unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
   10119 
   10120     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
   10121         (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
   10122       SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   10123                                 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
   10124       if (isAllOnes(Op1) != (CondCode == X86::COND_B))
   10125         return DAG.getNOT(DL, Res, Res.getValueType());
   10126       return Res;
   10127     }
   10128   }
   10129 
   10130   // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
   10131   // widen the cmov and push the truncate through. This avoids introducing a new
   10132   // branch during isel and doesn't add any extensions.
   10133   if (Op.getValueType() == MVT::i8 &&
   10134       Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
   10135     SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
   10136     if (T1.getValueType() == T2.getValueType() &&
   10137         // Blacklist CopyFromReg to avoid partial register stalls.
   10138         T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
   10139       SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
   10140       SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
   10141       return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
   10142     }
   10143   }
   10144 
   10145   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
   10146   // condition is true.
   10147   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   10148   SDValue Ops[] = { Op2, Op1, CC, Cond };
   10149   return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
   10150 }
   10151 
   10152 SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
   10153                                             SelectionDAG &DAG) const {
   10154   MVT VT = Op->getValueType(0).getSimpleVT();
   10155   SDValue In = Op->getOperand(0);
   10156   MVT InVT = In.getValueType().getSimpleVT();
   10157   SDLoc dl(Op);
   10158 
   10159   if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
   10160       (VT != MVT::v8i32 || InVT != MVT::v8i16))
   10161     return SDValue();
   10162 
   10163   if (Subtarget->hasInt256())
   10164     return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
   10165 
   10166   // Optimize vectors in AVX mode
   10167   // Sign extend  v8i16 to v8i32 and
   10168   //              v4i32 to v4i64
   10169   //
   10170   // Divide input vector into two parts
   10171   // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
   10172   // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
   10173   // concat the vectors to original VT
   10174 
   10175   unsigned NumElems = InVT.getVectorNumElements();
   10176   SDValue Undef = DAG.getUNDEF(InVT);
   10177 
   10178   SmallVector<int,8> ShufMask1(NumElems, -1);
   10179   for (unsigned i = 0; i != NumElems/2; ++i)
   10180     ShufMask1[i] = i;
   10181 
   10182   SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
   10183 
   10184   SmallVector<int,8> ShufMask2(NumElems, -1);
   10185   for (unsigned i = 0; i != NumElems/2; ++i)
   10186     ShufMask2[i] = i + NumElems/2;
   10187 
   10188   SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
   10189 
   10190   MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
   10191                                 VT.getVectorNumElements()/2);
   10192 
   10193   OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
   10194   OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
   10195 
   10196   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
   10197 }
   10198 
   10199 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
   10200 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
   10201 // from the AND / OR.
   10202 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
   10203   Opc = Op.getOpcode();
   10204   if (Opc != ISD::OR && Opc != ISD::AND)
   10205     return false;
   10206   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   10207           Op.getOperand(0).hasOneUse() &&
   10208           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
   10209           Op.getOperand(1).hasOneUse());
   10210 }
   10211 
   10212 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
   10213 // 1 and that the SETCC node has a single use.
   10214 static bool isXor1OfSetCC(SDValue Op) {
   10215   if (Op.getOpcode() != ISD::XOR)
   10216     return false;
   10217   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   10218   if (N1C && N1C->getAPIntValue() == 1) {
   10219     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   10220       Op.getOperand(0).hasOneUse();
   10221   }
   10222   return false;
   10223 }
   10224 
   10225 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   10226   bool addTest = true;
   10227   SDValue Chain = Op.getOperand(0);
   10228   SDValue Cond  = Op.getOperand(1);
   10229   SDValue Dest  = Op.getOperand(2);
   10230   SDLoc dl(Op);
   10231   SDValue CC;
   10232   bool Inverted = false;
   10233 
   10234   if (Cond.getOpcode() == ISD::SETCC) {
   10235     // Check for setcc([su]{add,sub,mul}o == 0).
   10236     if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
   10237         isa<ConstantSDNode>(Cond.getOperand(1)) &&
   10238         cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
   10239         Cond.getOperand(0).getResNo() == 1 &&
   10240         (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
   10241          Cond.getOperand(0).getOpcode() == ISD::UADDO ||
   10242          Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
   10243          Cond.getOperand(0).getOpcode() == ISD::USUBO ||
   10244          Cond.getOperand(0).getOpcode() == ISD::SMULO ||
   10245          Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
   10246       Inverted = true;
   10247       Cond = Cond.getOperand(0);
   10248     } else {
   10249       SDValue NewCond = LowerSETCC(Cond, DAG);
   10250       if (NewCond.getNode())
   10251         Cond = NewCond;
   10252     }
   10253   }
   10254 #if 0
   10255   // FIXME: LowerXALUO doesn't handle these!!
   10256   else if (Cond.getOpcode() == X86ISD::ADD  ||
   10257            Cond.getOpcode() == X86ISD::SUB  ||
   10258            Cond.getOpcode() == X86ISD::SMUL ||
   10259            Cond.getOpcode() == X86ISD::UMUL)
   10260     Cond = LowerXALUO(Cond, DAG);
   10261 #endif
   10262 
   10263   // Look pass (and (setcc_carry (cmp ...)), 1).
   10264   if (Cond.getOpcode() == ISD::AND &&
   10265       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   10266     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   10267     if (C && C->getAPIntValue() == 1)
   10268       Cond = Cond.getOperand(0);
   10269   }
   10270 
   10271   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   10272   // setting operand in place of the X86ISD::SETCC.
   10273   unsigned CondOpcode = Cond.getOpcode();
   10274   if (CondOpcode == X86ISD::SETCC ||
   10275       CondOpcode == X86ISD::SETCC_CARRY) {
   10276     CC = Cond.getOperand(0);
   10277 
   10278     SDValue Cmp = Cond.getOperand(1);
   10279     unsigned Opc = Cmp.getOpcode();
   10280     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
   10281     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
   10282       Cond = Cmp;
   10283       addTest = false;
   10284     } else {
   10285       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
   10286       default: break;
   10287       case X86::COND_O:
   10288       case X86::COND_B:
   10289         // These can only come from an arithmetic instruction with overflow,
   10290         // e.g. SADDO, UADDO.
   10291         Cond = Cond.getNode()->getOperand(1);
   10292         addTest = false;
   10293         break;
   10294       }
   10295     }
   10296   }
   10297   CondOpcode = Cond.getOpcode();
   10298   if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
   10299       CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
   10300       ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
   10301        Cond.getOperand(0).getValueType() != MVT::i8)) {
   10302     SDValue LHS = Cond.getOperand(0);
   10303     SDValue RHS = Cond.getOperand(1);
   10304     unsigned X86Opcode;
   10305     unsigned X86Cond;
   10306     SDVTList VTs;
   10307     switch (CondOpcode) {
   10308     case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
   10309     case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
   10310     case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
   10311     case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
   10312     case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
   10313     case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
   10314     default: llvm_unreachable("unexpected overflowing operator");
   10315     }
   10316     if (Inverted)
   10317       X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
   10318     if (CondOpcode == ISD::UMULO)
   10319       VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
   10320                           MVT::i32);
   10321     else
   10322       VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
   10323 
   10324     SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
   10325 
   10326     if (CondOpcode == ISD::UMULO)
   10327       Cond = X86Op.getValue(2);
   10328     else
   10329       Cond = X86Op.getValue(1);
   10330 
   10331     CC = DAG.getConstant(X86Cond, MVT::i8);
   10332     addTest = false;
   10333   } else {
   10334     unsigned CondOpc;
   10335     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
   10336       SDValue Cmp = Cond.getOperand(0).getOperand(1);
   10337       if (CondOpc == ISD::OR) {
   10338         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
   10339         // two branches instead of an explicit OR instruction with a
   10340         // separate test.
   10341         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   10342             isX86LogicalCmp(Cmp)) {
   10343           CC = Cond.getOperand(0).getOperand(0);
   10344           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   10345                               Chain, Dest, CC, Cmp);
   10346           CC = Cond.getOperand(1).getOperand(0);
   10347           Cond = Cmp;
   10348           addTest = false;
   10349         }
   10350       } else { // ISD::AND
   10351         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
   10352         // two branches instead of an explicit AND instruction with a
   10353         // separate test. However, we only do this if this block doesn't
   10354         // have a fall-through edge, because this requires an explicit
   10355         // jmp when the condition is false.
   10356         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   10357             isX86LogicalCmp(Cmp) &&
   10358             Op.getNode()->hasOneUse()) {
   10359           X86::CondCode CCode =
   10360             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   10361           CCode = X86::GetOppositeBranchCondition(CCode);
   10362           CC = DAG.getConstant(CCode, MVT::i8);
   10363           SDNode *User = *Op.getNode()->use_begin();
   10364           // Look for an unconditional branch following this conditional branch.
   10365           // We need this because we need to reverse the successors in order
   10366           // to implement FCMP_OEQ.
   10367           if (User->getOpcode() == ISD::BR) {
   10368             SDValue FalseBB = User->getOperand(1);
   10369             SDNode *NewBR =
   10370               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   10371             assert(NewBR == User);
   10372             (void)NewBR;
   10373             Dest = FalseBB;
   10374 
   10375             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   10376                                 Chain, Dest, CC, Cmp);
   10377             X86::CondCode CCode =
   10378               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
   10379             CCode = X86::GetOppositeBranchCondition(CCode);
   10380             CC = DAG.getConstant(CCode, MVT::i8);
   10381             Cond = Cmp;
   10382             addTest = false;
   10383           }
   10384         }
   10385       }
   10386     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
   10387       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
   10388       // It should be transformed during dag combiner except when the condition
   10389       // is set by a arithmetics with overflow node.
   10390       X86::CondCode CCode =
   10391         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   10392       CCode = X86::GetOppositeBranchCondition(CCode);
   10393       CC = DAG.getConstant(CCode, MVT::i8);
   10394       Cond = Cond.getOperand(0).getOperand(1);
   10395       addTest = false;
   10396     } else if (Cond.getOpcode() == ISD::SETCC &&
   10397                cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
   10398       // For FCMP_OEQ, we can emit
   10399       // two branches instead of an explicit AND instruction with a
   10400       // separate test. However, we only do this if this block doesn't
   10401       // have a fall-through edge, because this requires an explicit
   10402       // jmp when the condition is false.
   10403       if (Op.getNode()->hasOneUse()) {
   10404         SDNode *User = *Op.getNode()->use_begin();
   10405         // Look for an unconditional branch following this conditional branch.
   10406         // We need this because we need to reverse the successors in order
   10407         // to implement FCMP_OEQ.
   10408         if (User->getOpcode() == ISD::BR) {
   10409           SDValue FalseBB = User->getOperand(1);
   10410           SDNode *NewBR =
   10411             DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   10412           assert(NewBR == User);
   10413           (void)NewBR;
   10414           Dest = FalseBB;
   10415 
   10416           SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   10417                                     Cond.getOperand(0), Cond.getOperand(1));
   10418           Cmp = ConvertCmpIfNecessary(Cmp, DAG);
   10419           CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   10420           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   10421                               Chain, Dest, CC, Cmp);
   10422           CC = DAG.getConstant(X86::COND_P, MVT::i8);
   10423           Cond = Cmp;
   10424           addTest = false;
   10425         }
   10426       }
   10427     } else if (Cond.getOpcode() == ISD::SETCC &&
   10428                cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
   10429       // For FCMP_UNE, we can emit
   10430       // two branches instead of an explicit AND instruction with a
   10431       // separate test. However, we only do this if this block doesn't
   10432       // have a fall-through edge, because this requires an explicit
   10433       // jmp when the condition is false.
   10434       if (Op.getNode()->hasOneUse()) {
   10435         SDNode *User = *Op.getNode()->use_begin();
   10436         // Look for an unconditional branch following this conditional branch.
   10437         // We need this because we need to reverse the successors in order
   10438         // to implement FCMP_UNE.
   10439         if (User->getOpcode() == ISD::BR) {
   10440           SDValue FalseBB = User->getOperand(1);
   10441           SDNode *NewBR =
   10442             DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   10443           assert(NewBR == User);
   10444           (void)NewBR;
   10445 
   10446           SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   10447                                     Cond.getOperand(0), Cond.getOperand(1));
   10448           Cmp = ConvertCmpIfNecessary(Cmp, DAG);
   10449           CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   10450           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   10451                               Chain, Dest, CC, Cmp);
   10452           CC = DAG.getConstant(X86::COND_NP, MVT::i8);
   10453           Cond = Cmp;
   10454           addTest = false;
   10455           Dest = FalseBB;
   10456         }
   10457       }
   10458     }
   10459   }
   10460 
   10461   if (addTest) {
   10462     // Look pass the truncate if the high bits are known zero.
   10463     if (isTruncWithZeroHighBitsInput(Cond, DAG))
   10464         Cond = Cond.getOperand(0);
   10465 
   10466     // We know the result of AND is compared against zero. Try to match
   10467     // it to BT.
   10468     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   10469       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
   10470       if (NewSetCC.getNode()) {
   10471         CC = NewSetCC.getOperand(0);
   10472         Cond = NewSetCC.getOperand(1);
   10473         addTest = false;
   10474       }
   10475     }
   10476   }
   10477 
   10478   if (addTest) {
   10479     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   10480     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   10481   }
   10482   Cond = ConvertCmpIfNecessary(Cond, DAG);
   10483   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   10484                      Chain, Dest, CC, Cond);
   10485 }
   10486 
   10487 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
   10488 // Calls to _alloca is needed to probe the stack when allocating more than 4k
   10489 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
   10490 // that the guard pages used by the OS virtual memory manager are allocated in
   10491 // correct sequence.
   10492 SDValue
   10493 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   10494                                            SelectionDAG &DAG) const {
   10495   assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
   10496           getTargetMachine().Options.EnableSegmentedStacks) &&
   10497          "This should be used only on Windows targets or when segmented stacks "
   10498          "are being used");
   10499   assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
   10500   SDLoc dl(Op);
   10501 
   10502   // Get the inputs.
   10503   SDValue Chain = Op.getOperand(0);
   10504   SDValue Size  = Op.getOperand(1);
   10505   // FIXME: Ensure alignment here
   10506 
   10507   bool Is64Bit = Subtarget->is64Bit();
   10508   EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
   10509 
   10510   if (getTargetMachine().Options.EnableSegmentedStacks) {
   10511     MachineFunction &MF = DAG.getMachineFunction();
   10512     MachineRegisterInfo &MRI = MF.getRegInfo();
   10513 
   10514     if (Is64Bit) {
   10515       // The 64 bit implementation of segmented stacks needs to clobber both r10
   10516       // r11. This makes it impossible to use it along with nested parameters.
   10517       const Function *F = MF.getFunction();
   10518 
   10519       for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   10520            I != E; ++I)
   10521         if (I->hasNestAttr())
   10522           report_fatal_error("Cannot use segmented stacks with functions that "
   10523                              "have nested arguments.");
   10524     }
   10525 
   10526     const TargetRegisterClass *AddrRegClass =
   10527       getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
   10528     unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
   10529     Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
   10530     SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
   10531                                 DAG.getRegister(Vreg, SPTy));
   10532     SDValue Ops1[2] = { Value, Chain };
   10533     return DAG.getMergeValues(Ops1, 2, dl);
   10534   } else {
   10535     SDValue Flag;
   10536     unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
   10537 
   10538     Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
   10539     Flag = Chain.getValue(1);
   10540     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   10541 
   10542     Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
   10543     Flag = Chain.getValue(1);
   10544 
   10545     const X86RegisterInfo *RegInfo =
   10546       static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   10547     Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
   10548                                SPTy).getValue(1);
   10549 
   10550     SDValue Ops1[2] = { Chain.getValue(0), Chain };
   10551     return DAG.getMergeValues(Ops1, 2, dl);
   10552   }
   10553 }
   10554 
   10555 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   10556   MachineFunction &MF = DAG.getMachineFunction();
   10557   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   10558 
   10559   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   10560   SDLoc DL(Op);
   10561 
   10562   if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
   10563     // vastart just stores the address of the VarArgsFrameIndex slot into the
   10564     // memory location argument.
   10565     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   10566                                    getPointerTy());
   10567     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
   10568                         MachinePointerInfo(SV), false, false, 0);
   10569   }
   10570 
   10571   // __va_list_tag:
   10572   //   gp_offset         (0 - 6 * 8)
   10573   //   fp_offset         (48 - 48 + 8 * 16)
   10574   //   overflow_arg_area (point to parameters coming in memory).
   10575   //   reg_save_area
   10576   SmallVector<SDValue, 8> MemOps;
   10577   SDValue FIN = Op.getOperand(1);
   10578   // Store gp_offset
   10579   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
   10580                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
   10581                                                MVT::i32),
   10582                                FIN, MachinePointerInfo(SV), false, false, 0);
   10583   MemOps.push_back(Store);
   10584 
   10585   // Store fp_offset
   10586   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   10587                     FIN, DAG.getIntPtrConstant(4));
   10588   Store = DAG.getStore(Op.getOperand(0), DL,
   10589                        DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
   10590                                        MVT::i32),
   10591                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
   10592   MemOps.push_back(Store);
   10593 
   10594   // Store ptr to overflow_arg_area
   10595   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   10596                     FIN, DAG.getIntPtrConstant(4));
   10597   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   10598                                     getPointerTy());
   10599   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
   10600                        MachinePointerInfo(SV, 8),
   10601                        false, false, 0);
   10602   MemOps.push_back(Store);
   10603 
   10604   // Store ptr to reg_save_area.
   10605   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   10606                     FIN, DAG.getIntPtrConstant(8));
   10607   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   10608                                     getPointerTy());
   10609   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
   10610                        MachinePointerInfo(SV, 16), false, false, 0);
   10611   MemOps.push_back(Store);
   10612   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   10613                      &MemOps[0], MemOps.size());
   10614 }
   10615 
   10616 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   10617   assert(Subtarget->is64Bit() &&
   10618          "LowerVAARG only handles 64-bit va_arg!");
   10619   assert((Subtarget->isTargetLinux() ||
   10620           Subtarget->isTargetDarwin()) &&
   10621           "Unhandled target in LowerVAARG");
   10622   assert(Op.getNode()->getNumOperands() == 4);
   10623   SDValue Chain = Op.getOperand(0);
   10624   SDValue SrcPtr = Op.getOperand(1);
   10625   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   10626   unsigned Align = Op.getConstantOperandVal(3);
   10627   SDLoc dl(Op);
   10628 
   10629   EVT ArgVT = Op.getNode()->getValueType(0);
   10630   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   10631   uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
   10632   uint8_t ArgMode;
   10633 
   10634   // Decide which area this value should be read from.
   10635   // TODO: Implement the AMD64 ABI in its entirety. This simple
   10636   // selection mechanism works only for the basic types.
   10637   if (ArgVT == MVT::f80) {
   10638     llvm_unreachable("va_arg for f80 not yet implemented");
   10639   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
   10640     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
   10641   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
   10642     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
   10643   } else {
   10644     llvm_unreachable("Unhandled argument type in LowerVAARG");
   10645   }
   10646 
   10647   if (ArgMode == 2) {
   10648     // Sanity Check: Make sure using fp_offset makes sense.
   10649     assert(!getTargetMachine().Options.UseSoftFloat &&
   10650            !(DAG.getMachineFunction()
   10651                 .getFunction()->getAttributes()
   10652                 .hasAttribute(AttributeSet::FunctionIndex,
   10653                               Attribute::NoImplicitFloat)) &&
   10654            Subtarget->hasSSE1());
   10655   }
   10656 
   10657   // Insert VAARG_64 node into the DAG
   10658   // VAARG_64 returns two values: Variable Argument Address, Chain
   10659   SmallVector<SDValue, 11> InstOps;
   10660   InstOps.push_back(Chain);
   10661   InstOps.push_back(SrcPtr);
   10662   InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
   10663   InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
   10664   InstOps.push_back(DAG.getConstant(Align, MVT::i32));
   10665   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
   10666   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
   10667                                           VTs, &InstOps[0], InstOps.size(),
   10668                                           MVT::i64,
   10669                                           MachinePointerInfo(SV),
   10670                                           /*Align=*/0,
   10671                                           /*Volatile=*/false,
   10672                                           /*ReadMem=*/true,
   10673                                           /*WriteMem=*/true);
   10674   Chain = VAARG.getValue(1);
   10675 
   10676   // Load the next argument and return it
   10677   return DAG.getLoad(ArgVT, dl,
   10678                      Chain,
   10679                      VAARG,
   10680                      MachinePointerInfo(),
   10681                      false, false, false, 0);
   10682 }
   10683 
   10684 static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
   10685                            SelectionDAG &DAG) {
   10686   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
   10687   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
   10688   SDValue Chain = Op.getOperand(0);
   10689   SDValue DstPtr = Op.getOperand(1);
   10690   SDValue SrcPtr = Op.getOperand(2);
   10691   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   10692   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   10693   SDLoc DL(Op);
   10694 
   10695   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
   10696                        DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
   10697                        false,
   10698                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   10699 }
   10700 
   10701 // getTargetVShiftNode - Handle vector element shifts where the shift amount
   10702 // may or may not be a constant. Takes immediate version of shift as input.
   10703 static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
   10704                                    SDValue SrcOp, SDValue ShAmt,
   10705                                    SelectionDAG &DAG) {
   10706   assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
   10707 
   10708   if (isa<ConstantSDNode>(ShAmt)) {
   10709     // Constant may be a TargetConstant. Use a regular constant.
   10710     uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   10711     switch (Opc) {
   10712       default: llvm_unreachable("Unknown target vector shift node");
   10713       case X86ISD::VSHLI:
   10714       case X86ISD::VSRLI:
   10715       case X86ISD::VSRAI:
   10716         return DAG.getNode(Opc, dl, VT, SrcOp,
   10717                            DAG.getConstant(ShiftAmt, MVT::i32));
   10718     }
   10719   }
   10720 
   10721   // Change opcode to non-immediate version
   10722   switch (Opc) {
   10723     default: llvm_unreachable("Unknown target vector shift node");
   10724     case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
   10725     case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
   10726     case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
   10727   }
   10728 
   10729   // Need to build a vector containing shift amount
   10730   // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
   10731   SDValue ShOps[4];
   10732   ShOps[0] = ShAmt;
   10733   ShOps[1] = DAG.getConstant(0, MVT::i32);
   10734   ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
   10735   ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
   10736 
   10737   // The return type has to be a 128-bit type with the same element
   10738   // type as the input type.
   10739   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   10740   EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
   10741 
   10742   ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
   10743   return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
   10744 }
   10745 
   10746 static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
   10747   SDLoc dl(Op);
   10748   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   10749   switch (IntNo) {
   10750   default: return SDValue();    // Don't custom lower most intrinsics.
   10751   // Comparison intrinsics.
   10752   case Intrinsic::x86_sse_comieq_ss:
   10753   case Intrinsic::x86_sse_comilt_ss:
   10754   case Intrinsic::x86_sse_comile_ss:
   10755   case Intrinsic::x86_sse_comigt_ss:
   10756   case Intrinsic::x86_sse_comige_ss:
   10757   case Intrinsic::x86_sse_comineq_ss:
   10758   case Intrinsic::x86_sse_ucomieq_ss:
   10759   case Intrinsic::x86_sse_ucomilt_ss:
   10760   case Intrinsic::x86_sse_ucomile_ss:
   10761   case Intrinsic::x86_sse_ucomigt_ss:
   10762   case Intrinsic::x86_sse_ucomige_ss:
   10763   case Intrinsic::x86_sse_ucomineq_ss:
   10764   case Intrinsic::x86_sse2_comieq_sd:
   10765   case Intrinsic::x86_sse2_comilt_sd:
   10766   case Intrinsic::x86_sse2_comile_sd:
   10767   case Intrinsic::x86_sse2_comigt_sd:
   10768   case Intrinsic::x86_sse2_comige_sd:
   10769   case Intrinsic::x86_sse2_comineq_sd:
   10770   case Intrinsic::x86_sse2_ucomieq_sd:
   10771   case Intrinsic::x86_sse2_ucomilt_sd:
   10772   case Intrinsic::x86_sse2_ucomile_sd:
   10773   case Intrinsic::x86_sse2_ucomigt_sd:
   10774   case Intrinsic::x86_sse2_ucomige_sd:
   10775   case Intrinsic::x86_sse2_ucomineq_sd: {
   10776     unsigned Opc;
   10777     ISD::CondCode CC;
   10778     switch (IntNo) {
   10779     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   10780     case Intrinsic::x86_sse_comieq_ss:
   10781     case Intrinsic::x86_sse2_comieq_sd:
   10782       Opc = X86ISD::COMI;
   10783       CC = ISD::SETEQ;
   10784       break;
   10785     case Intrinsic::x86_sse_comilt_ss:
   10786     case Intrinsic::x86_sse2_comilt_sd:
   10787       Opc = X86ISD::COMI;
   10788       CC = ISD::SETLT;
   10789       break;
   10790     case Intrinsic::x86_sse_comile_ss:
   10791     case Intrinsic::x86_sse2_comile_sd:
   10792       Opc = X86ISD::COMI;
   10793       CC = ISD::SETLE;
   10794       break;
   10795     case Intrinsic::x86_sse_comigt_ss:
   10796     case Intrinsic::x86_sse2_comigt_sd:
   10797       Opc = X86ISD::COMI;
   10798       CC = ISD::SETGT;
   10799       break;
   10800     case Intrinsic::x86_sse_comige_ss:
   10801     case Intrinsic::x86_sse2_comige_sd:
   10802       Opc = X86ISD::COMI;
   10803       CC = ISD::SETGE;
   10804       break;
   10805     case Intrinsic::x86_sse_comineq_ss:
   10806     case Intrinsic::x86_sse2_comineq_sd:
   10807       Opc = X86ISD::COMI;
   10808       CC = ISD::SETNE;
   10809       break;
   10810     case Intrinsic::x86_sse_ucomieq_ss:
   10811     case Intrinsic::x86_sse2_ucomieq_sd:
   10812       Opc = X86ISD::UCOMI;
   10813       CC = ISD::SETEQ;
   10814       break;
   10815     case Intrinsic::x86_sse_ucomilt_ss:
   10816     case Intrinsic::x86_sse2_ucomilt_sd:
   10817       Opc = X86ISD::UCOMI;
   10818       CC = ISD::SETLT;
   10819       break;
   10820     case Intrinsic::x86_sse_ucomile_ss:
   10821     case Intrinsic::x86_sse2_ucomile_sd:
   10822       Opc = X86ISD::UCOMI;
   10823       CC = ISD::SETLE;
   10824       break;
   10825     case Intrinsic::x86_sse_ucomigt_ss:
   10826     case Intrinsic::x86_sse2_ucomigt_sd:
   10827       Opc = X86ISD::UCOMI;
   10828       CC = ISD::SETGT;
   10829       break;
   10830     case Intrinsic::x86_sse_ucomige_ss:
   10831     case Intrinsic::x86_sse2_ucomige_sd:
   10832       Opc = X86ISD::UCOMI;
   10833       CC = ISD::SETGE;
   10834       break;
   10835     case Intrinsic::x86_sse_ucomineq_ss:
   10836     case Intrinsic::x86_sse2_ucomineq_sd:
   10837       Opc = X86ISD::UCOMI;
   10838       CC = ISD::SETNE;
   10839       break;
   10840     }
   10841 
   10842     SDValue LHS = Op.getOperand(1);
   10843     SDValue RHS = Op.getOperand(2);
   10844     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
   10845     assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
   10846     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
   10847     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   10848                                 DAG.getConstant(X86CC, MVT::i8), Cond);
   10849     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   10850   }
   10851 
   10852   // Arithmetic intrinsics.
   10853   case Intrinsic::x86_sse2_pmulu_dq:
   10854   case Intrinsic::x86_avx2_pmulu_dq:
   10855     return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
   10856                        Op.getOperand(1), Op.getOperand(2));
   10857 
   10858   // SSE2/AVX2 sub with unsigned saturation intrinsics
   10859   case Intrinsic::x86_sse2_psubus_b:
   10860   case Intrinsic::x86_sse2_psubus_w:
   10861   case Intrinsic::x86_avx2_psubus_b:
   10862   case Intrinsic::x86_avx2_psubus_w:
   10863     return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
   10864                        Op.getOperand(1), Op.getOperand(2));
   10865 
   10866   // SSE3/AVX horizontal add/sub intrinsics
   10867   case Intrinsic::x86_sse3_hadd_ps:
   10868   case Intrinsic::x86_sse3_hadd_pd:
   10869   case Intrinsic::x86_avx_hadd_ps_256:
   10870   case Intrinsic::x86_avx_hadd_pd_256:
   10871   case Intrinsic::x86_sse3_hsub_ps:
   10872   case Intrinsic::x86_sse3_hsub_pd:
   10873   case Intrinsic::x86_avx_hsub_ps_256:
   10874   case Intrinsic::x86_avx_hsub_pd_256:
   10875   case Intrinsic::x86_ssse3_phadd_w_128:
   10876   case Intrinsic::x86_ssse3_phadd_d_128:
   10877   case Intrinsic::x86_avx2_phadd_w:
   10878   case Intrinsic::x86_avx2_phadd_d:
   10879   case Intrinsic::x86_ssse3_phsub_w_128:
   10880   case Intrinsic::x86_ssse3_phsub_d_128:
   10881   case Intrinsic::x86_avx2_phsub_w:
   10882   case Intrinsic::x86_avx2_phsub_d: {
   10883     unsigned Opcode;
   10884     switch (IntNo) {
   10885     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   10886     case Intrinsic::x86_sse3_hadd_ps:
   10887     case Intrinsic::x86_sse3_hadd_pd:
   10888     case Intrinsic::x86_avx_hadd_ps_256:
   10889     case Intrinsic::x86_avx_hadd_pd_256:
   10890       Opcode = X86ISD::FHADD;
   10891       break;
   10892     case Intrinsic::x86_sse3_hsub_ps:
   10893     case Intrinsic::x86_sse3_hsub_pd:
   10894     case Intrinsic::x86_avx_hsub_ps_256:
   10895     case Intrinsic::x86_avx_hsub_pd_256:
   10896       Opcode = X86ISD::FHSUB;
   10897       break;
   10898     case Intrinsic::x86_ssse3_phadd_w_128:
   10899     case Intrinsic::x86_ssse3_phadd_d_128:
   10900     case Intrinsic::x86_avx2_phadd_w:
   10901     case Intrinsic::x86_avx2_phadd_d:
   10902       Opcode = X86ISD::HADD;
   10903       break;
   10904     case Intrinsic::x86_ssse3_phsub_w_128:
   10905     case Intrinsic::x86_ssse3_phsub_d_128:
   10906     case Intrinsic::x86_avx2_phsub_w:
   10907     case Intrinsic::x86_avx2_phsub_d:
   10908       Opcode = X86ISD::HSUB;
   10909       break;
   10910     }
   10911     return DAG.getNode(Opcode, dl, Op.getValueType(),
   10912                        Op.getOperand(1), Op.getOperand(2));
   10913   }
   10914 
   10915   // SSE2/SSE41/AVX2 integer max/min intrinsics.
   10916   case Intrinsic::x86_sse2_pmaxu_b:
   10917   case Intrinsic::x86_sse41_pmaxuw:
   10918   case Intrinsic::x86_sse41_pmaxud:
   10919   case Intrinsic::x86_avx2_pmaxu_b:
   10920   case Intrinsic::x86_avx2_pmaxu_w:
   10921   case Intrinsic::x86_avx2_pmaxu_d:
   10922   case Intrinsic::x86_sse2_pminu_b:
   10923   case Intrinsic::x86_sse41_pminuw:
   10924   case Intrinsic::x86_sse41_pminud:
   10925   case Intrinsic::x86_avx2_pminu_b:
   10926   case Intrinsic::x86_avx2_pminu_w:
   10927   case Intrinsic::x86_avx2_pminu_d:
   10928   case Intrinsic::x86_sse41_pmaxsb:
   10929   case Intrinsic::x86_sse2_pmaxs_w:
   10930   case Intrinsic::x86_sse41_pmaxsd:
   10931   case Intrinsic::x86_avx2_pmaxs_b:
   10932   case Intrinsic::x86_avx2_pmaxs_w:
   10933   case Intrinsic::x86_avx2_pmaxs_d:
   10934   case Intrinsic::x86_sse41_pminsb:
   10935   case Intrinsic::x86_sse2_pmins_w:
   10936   case Intrinsic::x86_sse41_pminsd:
   10937   case Intrinsic::x86_avx2_pmins_b:
   10938   case Intrinsic::x86_avx2_pmins_w:
   10939   case Intrinsic::x86_avx2_pmins_d: {
   10940     unsigned Opcode;
   10941     switch (IntNo) {
   10942     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   10943     case Intrinsic::x86_sse2_pmaxu_b:
   10944     case Intrinsic::x86_sse41_pmaxuw:
   10945     case Intrinsic::x86_sse41_pmaxud:
   10946     case Intrinsic::x86_avx2_pmaxu_b:
   10947     case Intrinsic::x86_avx2_pmaxu_w:
   10948     case Intrinsic::x86_avx2_pmaxu_d:
   10949       Opcode = X86ISD::UMAX;
   10950       break;
   10951     case Intrinsic::x86_sse2_pminu_b:
   10952     case Intrinsic::x86_sse41_pminuw:
   10953     case Intrinsic::x86_sse41_pminud:
   10954     case Intrinsic::x86_avx2_pminu_b:
   10955     case Intrinsic::x86_avx2_pminu_w:
   10956     case Intrinsic::x86_avx2_pminu_d:
   10957       Opcode = X86ISD::UMIN;
   10958       break;
   10959     case Intrinsic::x86_sse41_pmaxsb:
   10960     case Intrinsic::x86_sse2_pmaxs_w:
   10961     case Intrinsic::x86_sse41_pmaxsd:
   10962     case Intrinsic::x86_avx2_pmaxs_b:
   10963     case Intrinsic::x86_avx2_pmaxs_w:
   10964     case Intrinsic::x86_avx2_pmaxs_d:
   10965       Opcode = X86ISD::SMAX;
   10966       break;
   10967     case Intrinsic::x86_sse41_pminsb:
   10968     case Intrinsic::x86_sse2_pmins_w:
   10969     case Intrinsic::x86_sse41_pminsd:
   10970     case Intrinsic::x86_avx2_pmins_b:
   10971     case Intrinsic::x86_avx2_pmins_w:
   10972     case Intrinsic::x86_avx2_pmins_d:
   10973       Opcode = X86ISD::SMIN;
   10974       break;
   10975     }
   10976     return DAG.getNode(Opcode, dl, Op.getValueType(),
   10977                        Op.getOperand(1), Op.getOperand(2));
   10978   }
   10979 
   10980   // SSE/SSE2/AVX floating point max/min intrinsics.
   10981   case Intrinsic::x86_sse_max_ps:
   10982   case Intrinsic::x86_sse2_max_pd:
   10983   case Intrinsic::x86_avx_max_ps_256:
   10984   case Intrinsic::x86_avx_max_pd_256:
   10985   case Intrinsic::x86_sse_min_ps:
   10986   case Intrinsic::x86_sse2_min_pd:
   10987   case Intrinsic::x86_avx_min_ps_256:
   10988   case Intrinsic::x86_avx_min_pd_256: {
   10989     unsigned Opcode;
   10990     switch (IntNo) {
   10991     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   10992     case Intrinsic::x86_sse_max_ps:
   10993     case Intrinsic::x86_sse2_max_pd:
   10994     case Intrinsic::x86_avx_max_ps_256:
   10995     case Intrinsic::x86_avx_max_pd_256:
   10996       Opcode = X86ISD::FMAX;
   10997       break;
   10998     case Intrinsic::x86_sse_min_ps:
   10999     case Intrinsic::x86_sse2_min_pd:
   11000     case Intrinsic::x86_avx_min_ps_256:
   11001     case Intrinsic::x86_avx_min_pd_256:
   11002       Opcode = X86ISD::FMIN;
   11003       break;
   11004     }
   11005     return DAG.getNode(Opcode, dl, Op.getValueType(),
   11006                        Op.getOperand(1), Op.getOperand(2));
   11007   }
   11008 
   11009   // AVX2 variable shift intrinsics
   11010   case Intrinsic::x86_avx2_psllv_d:
   11011   case Intrinsic::x86_avx2_psllv_q:
   11012   case Intrinsic::x86_avx2_psllv_d_256:
   11013   case Intrinsic::x86_avx2_psllv_q_256:
   11014   case Intrinsic::x86_avx2_psrlv_d:
   11015   case Intrinsic::x86_avx2_psrlv_q:
   11016   case Intrinsic::x86_avx2_psrlv_d_256:
   11017   case Intrinsic::x86_avx2_psrlv_q_256:
   11018   case Intrinsic::x86_avx2_psrav_d:
   11019   case Intrinsic::x86_avx2_psrav_d_256: {
   11020     unsigned Opcode;
   11021     switch (IntNo) {
   11022     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   11023     case Intrinsic::x86_avx2_psllv_d:
   11024     case Intrinsic::x86_avx2_psllv_q:
   11025     case Intrinsic::x86_avx2_psllv_d_256:
   11026     case Intrinsic::x86_avx2_psllv_q_256:
   11027       Opcode = ISD::SHL;
   11028       break;
   11029     case Intrinsic::x86_avx2_psrlv_d:
   11030     case Intrinsic::x86_avx2_psrlv_q:
   11031     case Intrinsic::x86_avx2_psrlv_d_256:
   11032     case Intrinsic::x86_avx2_psrlv_q_256:
   11033       Opcode = ISD::SRL;
   11034       break;
   11035     case Intrinsic::x86_avx2_psrav_d:
   11036     case Intrinsic::x86_avx2_psrav_d_256:
   11037       Opcode = ISD::SRA;
   11038       break;
   11039     }
   11040     return DAG.getNode(Opcode, dl, Op.getValueType(),
   11041                        Op.getOperand(1), Op.getOperand(2));
   11042   }
   11043 
   11044   case Intrinsic::x86_ssse3_pshuf_b_128:
   11045   case Intrinsic::x86_avx2_pshuf_b:
   11046     return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
   11047                        Op.getOperand(1), Op.getOperand(2));
   11048 
   11049   case Intrinsic::x86_ssse3_psign_b_128:
   11050   case Intrinsic::x86_ssse3_psign_w_128:
   11051   case Intrinsic::x86_ssse3_psign_d_128:
   11052   case Intrinsic::x86_avx2_psign_b:
   11053   case Intrinsic::x86_avx2_psign_w:
   11054   case Intrinsic::x86_avx2_psign_d:
   11055     return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
   11056                        Op.getOperand(1), Op.getOperand(2));
   11057 
   11058   case Intrinsic::x86_sse41_insertps:
   11059     return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
   11060                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   11061 
   11062   case Intrinsic::x86_avx_vperm2f128_ps_256:
   11063   case Intrinsic::x86_avx_vperm2f128_pd_256:
   11064   case Intrinsic::x86_avx_vperm2f128_si_256:
   11065   case Intrinsic::x86_avx2_vperm2i128:
   11066     return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
   11067                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   11068 
   11069   case Intrinsic::x86_avx2_permd:
   11070   case Intrinsic::x86_avx2_permps:
   11071     // Operands intentionally swapped. Mask is last operand to intrinsic,
   11072     // but second operand for node/intruction.
   11073     return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
   11074                        Op.getOperand(2), Op.getOperand(1));
   11075 
   11076   case Intrinsic::x86_sse_sqrt_ps:
   11077   case Intrinsic::x86_sse2_sqrt_pd:
   11078   case Intrinsic::x86_avx_sqrt_ps_256:
   11079   case Intrinsic::x86_avx_sqrt_pd_256:
   11080     return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
   11081 
   11082   // ptest and testp intrinsics. The intrinsic these come from are designed to
   11083   // return an integer value, not just an instruction so lower it to the ptest
   11084   // or testp pattern and a setcc for the result.
   11085   case Intrinsic::x86_sse41_ptestz:
   11086   case Intrinsic::x86_sse41_ptestc:
   11087   case Intrinsic::x86_sse41_ptestnzc:
   11088   case Intrinsic::x86_avx_ptestz_256:
   11089   case Intrinsic::x86_avx_ptestc_256:
   11090   case Intrinsic::x86_avx_ptestnzc_256:
   11091   case Intrinsic::x86_avx_vtestz_ps:
   11092   case Intrinsic::x86_avx_vtestc_ps:
   11093   case Intrinsic::x86_avx_vtestnzc_ps:
   11094   case Intrinsic::x86_avx_vtestz_pd:
   11095   case Intrinsic::x86_avx_vtestc_pd:
   11096   case Intrinsic::x86_avx_vtestnzc_pd:
   11097   case Intrinsic::x86_avx_vtestz_ps_256:
   11098   case Intrinsic::x86_avx_vtestc_ps_256:
   11099   case Intrinsic::x86_avx_vtestnzc_ps_256:
   11100   case Intrinsic::x86_avx_vtestz_pd_256:
   11101   case Intrinsic::x86_avx_vtestc_pd_256:
   11102   case Intrinsic::x86_avx_vtestnzc_pd_256: {
   11103     bool IsTestPacked = false;
   11104     unsigned X86CC;
   11105     switch (IntNo) {
   11106     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
   11107     case Intrinsic::x86_avx_vtestz_ps:
   11108     case Intrinsic::x86_avx_vtestz_pd:
   11109     case Intrinsic::x86_avx_vtestz_ps_256:
   11110     case Intrinsic::x86_avx_vtestz_pd_256:
   11111       IsTestPacked = true; // Fallthrough
   11112     case Intrinsic::x86_sse41_ptestz:
   11113     case Intrinsic::x86_avx_ptestz_256:
   11114       // ZF = 1
   11115       X86CC = X86::COND_E;
   11116       break;
   11117     case Intrinsic::x86_avx_vtestc_ps:
   11118     case Intrinsic::x86_avx_vtestc_pd:
   11119     case Intrinsic::x86_avx_vtestc_ps_256:
   11120     case Intrinsic::x86_avx_vtestc_pd_256:
   11121       IsTestPacked = true; // Fallthrough
   11122     case Intrinsic::x86_sse41_ptestc:
   11123     case Intrinsic::x86_avx_ptestc_256:
   11124       // CF = 1
   11125       X86CC = X86::COND_B;
   11126       break;
   11127     case Intrinsic::x86_avx_vtestnzc_ps:
   11128     case Intrinsic::x86_avx_vtestnzc_pd:
   11129     case Intrinsic::x86_avx_vtestnzc_ps_256:
   11130     case Intrinsic::x86_avx_vtestnzc_pd_256:
   11131       IsTestPacked = true; // Fallthrough
   11132     case Intrinsic::x86_sse41_ptestnzc:
   11133     case Intrinsic::x86_avx_ptestnzc_256:
   11134       // ZF and CF = 0
   11135       X86CC = X86::COND_A;
   11136       break;
   11137     }
   11138 
   11139     SDValue LHS = Op.getOperand(1);
   11140     SDValue RHS = Op.getOperand(2);
   11141     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
   11142     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
   11143     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
   11144     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
   11145     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   11146   }
   11147 
   11148   // SSE/AVX shift intrinsics
   11149   case Intrinsic::x86_sse2_psll_w:
   11150   case Intrinsic::x86_sse2_psll_d:
   11151   case Intrinsic::x86_sse2_psll_q:
   11152   case Intrinsic::x86_avx2_psll_w:
   11153   case Intrinsic::x86_avx2_psll_d:
   11154   case Intrinsic::x86_avx2_psll_q:
   11155   case Intrinsic::x86_sse2_psrl_w:
   11156   case Intrinsic::x86_sse2_psrl_d:
   11157   case Intrinsic::x86_sse2_psrl_q:
   11158   case Intrinsic::x86_avx2_psrl_w:
   11159   case Intrinsic::x86_avx2_psrl_d:
   11160   case Intrinsic::x86_avx2_psrl_q:
   11161   case Intrinsic::x86_sse2_psra_w:
   11162   case Intrinsic::x86_sse2_psra_d:
   11163   case Intrinsic::x86_avx2_psra_w:
   11164   case Intrinsic::x86_avx2_psra_d: {
   11165     unsigned Opcode;
   11166     switch (IntNo) {
   11167     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   11168     case Intrinsic::x86_sse2_psll_w:
   11169     case Intrinsic::x86_sse2_psll_d:
   11170     case Intrinsic::x86_sse2_psll_q:
   11171     case Intrinsic::x86_avx2_psll_w:
   11172     case Intrinsic::x86_avx2_psll_d:
   11173     case Intrinsic::x86_avx2_psll_q:
   11174       Opcode = X86ISD::VSHL;
   11175       break;
   11176     case Intrinsic::x86_sse2_psrl_w:
   11177     case Intrinsic::x86_sse2_psrl_d:
   11178     case Intrinsic::x86_sse2_psrl_q:
   11179     case Intrinsic::x86_avx2_psrl_w:
   11180     case Intrinsic::x86_avx2_psrl_d:
   11181     case Intrinsic::x86_avx2_psrl_q:
   11182       Opcode = X86ISD::VSRL;
   11183       break;
   11184     case Intrinsic::x86_sse2_psra_w:
   11185     case Intrinsic::x86_sse2_psra_d:
   11186     case Intrinsic::x86_avx2_psra_w:
   11187     case Intrinsic::x86_avx2_psra_d:
   11188       Opcode = X86ISD::VSRA;
   11189       break;
   11190     }
   11191     return DAG.getNode(Opcode, dl, Op.getValueType(),
   11192                        Op.getOperand(1), Op.getOperand(2));
   11193   }
   11194 
   11195   // SSE/AVX immediate shift intrinsics
   11196   case Intrinsic::x86_sse2_pslli_w:
   11197   case Intrinsic::x86_sse2_pslli_d:
   11198   case Intrinsic::x86_sse2_pslli_q:
   11199   case Intrinsic::x86_avx2_pslli_w:
   11200   case Intrinsic::x86_avx2_pslli_d:
   11201   case Intrinsic::x86_avx2_pslli_q:
   11202   case Intrinsic::x86_sse2_psrli_w:
   11203   case Intrinsic::x86_sse2_psrli_d:
   11204   case Intrinsic::x86_sse2_psrli_q:
   11205   case Intrinsic::x86_avx2_psrli_w:
   11206   case Intrinsic::x86_avx2_psrli_d:
   11207   case Intrinsic::x86_avx2_psrli_q:
   11208   case Intrinsic::x86_sse2_psrai_w:
   11209   case Intrinsic::x86_sse2_psrai_d:
   11210   case Intrinsic::x86_avx2_psrai_w:
   11211   case Intrinsic::x86_avx2_psrai_d: {
   11212     unsigned Opcode;
   11213     switch (IntNo) {
   11214     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   11215     case Intrinsic::x86_sse2_pslli_w:
   11216     case Intrinsic::x86_sse2_pslli_d:
   11217     case Intrinsic::x86_sse2_pslli_q:
   11218     case Intrinsic::x86_avx2_pslli_w:
   11219     case Intrinsic::x86_avx2_pslli_d:
   11220     case Intrinsic::x86_avx2_pslli_q:
   11221       Opcode = X86ISD::VSHLI;
   11222       break;
   11223     case Intrinsic::x86_sse2_psrli_w:
   11224     case Intrinsic::x86_sse2_psrli_d:
   11225     case Intrinsic::x86_sse2_psrli_q:
   11226     case Intrinsic::x86_avx2_psrli_w:
   11227     case Intrinsic::x86_avx2_psrli_d:
   11228     case Intrinsic::x86_avx2_psrli_q:
   11229       Opcode = X86ISD::VSRLI;
   11230       break;
   11231     case Intrinsic::x86_sse2_psrai_w:
   11232     case Intrinsic::x86_sse2_psrai_d:
   11233     case Intrinsic::x86_avx2_psrai_w:
   11234     case Intrinsic::x86_avx2_psrai_d:
   11235       Opcode = X86ISD::VSRAI;
   11236       break;
   11237     }
   11238     return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
   11239                                Op.getOperand(1), Op.getOperand(2), DAG);
   11240   }
   11241 
   11242   case Intrinsic::x86_sse42_pcmpistria128:
   11243   case Intrinsic::x86_sse42_pcmpestria128:
   11244   case Intrinsic::x86_sse42_pcmpistric128:
   11245   case Intrinsic::x86_sse42_pcmpestric128:
   11246   case Intrinsic::x86_sse42_pcmpistrio128:
   11247   case Intrinsic::x86_sse42_pcmpestrio128:
   11248   case Intrinsic::x86_sse42_pcmpistris128:
   11249   case Intrinsic::x86_sse42_pcmpestris128:
   11250   case Intrinsic::x86_sse42_pcmpistriz128:
   11251   case Intrinsic::x86_sse42_pcmpestriz128: {
   11252     unsigned Opcode;
   11253     unsigned X86CC;
   11254     switch (IntNo) {
   11255     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   11256     case Intrinsic::x86_sse42_pcmpistria128:
   11257       Opcode = X86ISD::PCMPISTRI;
   11258       X86CC = X86::COND_A;
   11259       break;
   11260     case Intrinsic::x86_sse42_pcmpestria128:
   11261       Opcode = X86ISD::PCMPESTRI;
   11262       X86CC = X86::COND_A;
   11263       break;
   11264     case Intrinsic::x86_sse42_pcmpistric128:
   11265       Opcode = X86ISD::PCMPISTRI;
   11266       X86CC = X86::COND_B;
   11267       break;
   11268     case Intrinsic::x86_sse42_pcmpestric128:
   11269       Opcode = X86ISD::PCMPESTRI;
   11270       X86CC = X86::COND_B;
   11271       break;
   11272     case Intrinsic::x86_sse42_pcmpistrio128:
   11273       Opcode = X86ISD::PCMPISTRI;
   11274       X86CC = X86::COND_O;
   11275       break;
   11276     case Intrinsic::x86_sse42_pcmpestrio128:
   11277       Opcode = X86ISD::PCMPESTRI;
   11278       X86CC = X86::COND_O;
   11279       break;
   11280     case Intrinsic::x86_sse42_pcmpistris128:
   11281       Opcode = X86ISD::PCMPISTRI;
   11282       X86CC = X86::COND_S;
   11283       break;
   11284     case Intrinsic::x86_sse42_pcmpestris128:
   11285       Opcode = X86ISD::PCMPESTRI;
   11286       X86CC = X86::COND_S;
   11287       break;
   11288     case Intrinsic::x86_sse42_pcmpistriz128:
   11289       Opcode = X86ISD::PCMPISTRI;
   11290       X86CC = X86::COND_E;
   11291       break;
   11292     case Intrinsic::x86_sse42_pcmpestriz128:
   11293       Opcode = X86ISD::PCMPESTRI;
   11294       X86CC = X86::COND_E;
   11295       break;
   11296     }
   11297     SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
   11298     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   11299     SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
   11300     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   11301                                 DAG.getConstant(X86CC, MVT::i8),
   11302                                 SDValue(PCMP.getNode(), 1));
   11303     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   11304   }
   11305 
   11306   case Intrinsic::x86_sse42_pcmpistri128:
   11307   case Intrinsic::x86_sse42_pcmpestri128: {
   11308     unsigned Opcode;
   11309     if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
   11310       Opcode = X86ISD::PCMPISTRI;
   11311     else
   11312       Opcode = X86ISD::PCMPESTRI;
   11313 
   11314     SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
   11315     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   11316     return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
   11317   }
   11318   case Intrinsic::x86_fma_vfmadd_ps:
   11319   case Intrinsic::x86_fma_vfmadd_pd:
   11320   case Intrinsic::x86_fma_vfmsub_ps:
   11321   case Intrinsic::x86_fma_vfmsub_pd:
   11322   case Intrinsic::x86_fma_vfnmadd_ps:
   11323   case Intrinsic::x86_fma_vfnmadd_pd:
   11324   case Intrinsic::x86_fma_vfnmsub_ps:
   11325   case Intrinsic::x86_fma_vfnmsub_pd:
   11326   case Intrinsic::x86_fma_vfmaddsub_ps:
   11327   case Intrinsic::x86_fma_vfmaddsub_pd:
   11328   case Intrinsic::x86_fma_vfmsubadd_ps:
   11329   case Intrinsic::x86_fma_vfmsubadd_pd:
   11330   case Intrinsic::x86_fma_vfmadd_ps_256:
   11331   case Intrinsic::x86_fma_vfmadd_pd_256:
   11332   case Intrinsic::x86_fma_vfmsub_ps_256:
   11333   case Intrinsic::x86_fma_vfmsub_pd_256:
   11334   case Intrinsic::x86_fma_vfnmadd_ps_256:
   11335   case Intrinsic::x86_fma_vfnmadd_pd_256:
   11336   case Intrinsic::x86_fma_vfnmsub_ps_256:
   11337   case Intrinsic::x86_fma_vfnmsub_pd_256:
   11338   case Intrinsic::x86_fma_vfmaddsub_ps_256:
   11339   case Intrinsic::x86_fma_vfmaddsub_pd_256:
   11340   case Intrinsic::x86_fma_vfmsubadd_ps_256:
   11341   case Intrinsic::x86_fma_vfmsubadd_pd_256: {
   11342     unsigned Opc;
   11343     switch (IntNo) {
   11344     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   11345     case Intrinsic::x86_fma_vfmadd_ps:
   11346     case Intrinsic::x86_fma_vfmadd_pd:
   11347     case Intrinsic::x86_fma_vfmadd_ps_256:
   11348     case Intrinsic::x86_fma_vfmadd_pd_256:
   11349       Opc = X86ISD::FMADD;
   11350       break;
   11351     case Intrinsic::x86_fma_vfmsub_ps:
   11352     case Intrinsic::x86_fma_vfmsub_pd:
   11353     case Intrinsic::x86_fma_vfmsub_ps_256:
   11354     case Intrinsic::x86_fma_vfmsub_pd_256:
   11355       Opc = X86ISD::FMSUB;
   11356       break;
   11357     case Intrinsic::x86_fma_vfnmadd_ps:
   11358     case Intrinsic::x86_fma_vfnmadd_pd:
   11359     case Intrinsic::x86_fma_vfnmadd_ps_256:
   11360     case Intrinsic::x86_fma_vfnmadd_pd_256:
   11361       Opc = X86ISD::FNMADD;
   11362       break;
   11363     case Intrinsic::x86_fma_vfnmsub_ps:
   11364     case Intrinsic::x86_fma_vfnmsub_pd:
   11365     case Intrinsic::x86_fma_vfnmsub_ps_256:
   11366     case Intrinsic::x86_fma_vfnmsub_pd_256:
   11367       Opc = X86ISD::FNMSUB;
   11368       break;
   11369     case Intrinsic::x86_fma_vfmaddsub_ps:
   11370     case Intrinsic::x86_fma_vfmaddsub_pd:
   11371     case Intrinsic::x86_fma_vfmaddsub_ps_256:
   11372     case Intrinsic::x86_fma_vfmaddsub_pd_256:
   11373       Opc = X86ISD::FMADDSUB;
   11374       break;
   11375     case Intrinsic::x86_fma_vfmsubadd_ps:
   11376     case Intrinsic::x86_fma_vfmsubadd_pd:
   11377     case Intrinsic::x86_fma_vfmsubadd_ps_256:
   11378     case Intrinsic::x86_fma_vfmsubadd_pd_256:
   11379       Opc = X86ISD::FMSUBADD;
   11380       break;
   11381     }
   11382 
   11383     return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
   11384                        Op.getOperand(2), Op.getOperand(3));
   11385   }
   11386   }
   11387 }
   11388 
   11389 static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
   11390   SDLoc dl(Op);
   11391   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   11392   switch (IntNo) {
   11393   default: return SDValue();    // Don't custom lower most intrinsics.
   11394 
   11395   // RDRAND/RDSEED intrinsics.
   11396   case Intrinsic::x86_rdrand_16:
   11397   case Intrinsic::x86_rdrand_32:
   11398   case Intrinsic::x86_rdrand_64:
   11399   case Intrinsic::x86_rdseed_16:
   11400   case Intrinsic::x86_rdseed_32:
   11401   case Intrinsic::x86_rdseed_64: {
   11402     unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
   11403                        IntNo == Intrinsic::x86_rdseed_32 ||
   11404                        IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
   11405                                                             X86ISD::RDRAND;
   11406     // Emit the node with the right value type.
   11407     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
   11408     SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
   11409 
   11410     // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
   11411     // Otherwise return the value from Rand, which is always 0, casted to i32.
   11412     SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
   11413                       DAG.getConstant(1, Op->getValueType(1)),
   11414                       DAG.getConstant(X86::COND_B, MVT::i32),
   11415                       SDValue(Result.getNode(), 1) };
   11416     SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
   11417                                   DAG.getVTList(Op->getValueType(1), MVT::Glue),
   11418                                   Ops, array_lengthof(Ops));
   11419 
   11420     // Return { result, isValid, chain }.
   11421     return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
   11422                        SDValue(Result.getNode(), 2));
   11423   }
   11424 
   11425   // XTEST intrinsics.
   11426   case Intrinsic::x86_xtest: {
   11427     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
   11428     SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
   11429     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   11430                                 DAG.getConstant(X86::COND_NE, MVT::i8),
   11431                                 InTrans);
   11432     SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
   11433     return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
   11434                        Ret, SDValue(InTrans.getNode(), 1));
   11435   }
   11436   }
   11437 }
   11438 
   11439 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
   11440                                            SelectionDAG &DAG) const {
   11441   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   11442   MFI->setReturnAddressIsTaken(true);
   11443 
   11444   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   11445   SDLoc dl(Op);
   11446   EVT PtrVT = getPointerTy();
   11447 
   11448   if (Depth > 0) {
   11449     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   11450     const X86RegisterInfo *RegInfo =
   11451       static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   11452     SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
   11453     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   11454                        DAG.getNode(ISD::ADD, dl, PtrVT,
   11455                                    FrameAddr, Offset),
   11456                        MachinePointerInfo(), false, false, false, 0);
   11457   }
   11458 
   11459   // Just load the return address.
   11460   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   11461   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   11462                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   11463 }
   11464 
   11465 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   11466   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   11467   MFI->setFrameAddressIsTaken(true);
   11468 
   11469   EVT VT = Op.getValueType();
   11470   SDLoc dl(Op);  // FIXME probably not meaningful
   11471   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   11472   const X86RegisterInfo *RegInfo =
   11473     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   11474   unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
   11475   assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
   11476           (FrameReg == X86::EBP && VT == MVT::i32)) &&
   11477          "Invalid Frame Register!");
   11478   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   11479   while (Depth--)
   11480     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   11481                             MachinePointerInfo(),
   11482                             false, false, false, 0);
   11483   return FrameAddr;
   11484 }
   11485 
   11486 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
   11487                                                      SelectionDAG &DAG) const {
   11488   const X86RegisterInfo *RegInfo =
   11489     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   11490   return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
   11491 }
   11492 
   11493 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
   11494   SDValue Chain     = Op.getOperand(0);
   11495   SDValue Offset    = Op.getOperand(1);
   11496   SDValue Handler   = Op.getOperand(2);
   11497   SDLoc dl      (Op);
   11498 
   11499   EVT PtrVT = getPointerTy();
   11500   const X86RegisterInfo *RegInfo =
   11501     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   11502   unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
   11503   assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
   11504           (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
   11505          "Invalid Frame Register!");
   11506   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
   11507   unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
   11508 
   11509   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
   11510                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
   11511   StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
   11512   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
   11513                        false, false, 0);
   11514   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
   11515 
   11516   return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
   11517                      DAG.getRegister(StoreAddrReg, PtrVT));
   11518 }
   11519 
   11520 SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   11521                                                SelectionDAG &DAG) const {
   11522   SDLoc DL(Op);
   11523   return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
   11524                      DAG.getVTList(MVT::i32, MVT::Other),
   11525                      Op.getOperand(0), Op.getOperand(1));
   11526 }
   11527 
   11528 SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   11529                                                 SelectionDAG &DAG) const {
   11530   SDLoc DL(Op);
   11531   return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   11532                      Op.getOperand(0), Op.getOperand(1));
   11533 }
   11534 
   11535 static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
   11536   return Op.getOperand(0);
   11537 }
   11538 
   11539 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   11540                                                 SelectionDAG &DAG) const {
   11541   SDValue Root = Op.getOperand(0);
   11542   SDValue Trmp = Op.getOperand(1); // trampoline
   11543   SDValue FPtr = Op.getOperand(2); // nested function
   11544   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   11545   SDLoc dl (Op);
   11546 
   11547   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   11548   const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
   11549 
   11550   if (Subtarget->is64Bit()) {
   11551     SDValue OutChains[6];
   11552 
   11553     // Large code-model.
   11554     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
   11555     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
   11556 
   11557     const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
   11558     const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
   11559 
   11560     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
   11561 
   11562     // Load the pointer to the nested function into R11.
   11563     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
   11564     SDValue Addr = Trmp;
   11565     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   11566                                 Addr, MachinePointerInfo(TrmpAddr),
   11567                                 false, false, 0);
   11568 
   11569     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   11570                        DAG.getConstant(2, MVT::i64));
   11571     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
   11572                                 MachinePointerInfo(TrmpAddr, 2),
   11573                                 false, false, 2);
   11574 
   11575     // Load the 'nest' parameter value into R10.
   11576     // R10 is specified in X86CallingConv.td
   11577     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
   11578     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   11579                        DAG.getConstant(10, MVT::i64));
   11580     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   11581                                 Addr, MachinePointerInfo(TrmpAddr, 10),
   11582                                 false, false, 0);
   11583 
   11584     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   11585                        DAG.getConstant(12, MVT::i64));
   11586     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
   11587                                 MachinePointerInfo(TrmpAddr, 12),
   11588                                 false, false, 2);
   11589 
   11590     // Jump to the nested function.
   11591     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
   11592     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   11593                        DAG.getConstant(20, MVT::i64));
   11594     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   11595                                 Addr, MachinePointerInfo(TrmpAddr, 20),
   11596                                 false, false, 0);
   11597 
   11598     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
   11599     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   11600                        DAG.getConstant(22, MVT::i64));
   11601     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
   11602                                 MachinePointerInfo(TrmpAddr, 22),
   11603                                 false, false, 0);
   11604 
   11605     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
   11606   } else {
   11607     const Function *Func =
   11608       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
   11609     CallingConv::ID CC = Func->getCallingConv();
   11610     unsigned NestReg;
   11611 
   11612     switch (CC) {
   11613     default:
   11614       llvm_unreachable("Unsupported calling convention");
   11615     case CallingConv::C:
   11616     case CallingConv::X86_StdCall: {
   11617       // Pass 'nest' parameter in ECX.
   11618       // Must be kept in sync with X86CallingConv.td
   11619       NestReg = X86::ECX;
   11620 
   11621       // Check that ECX wasn't needed by an 'inreg' parameter.
   11622       FunctionType *FTy = Func->getFunctionType();
   11623       const AttributeSet &Attrs = Func->getAttributes();
   11624 
   11625       if (!Attrs.isEmpty() && !Func->isVarArg()) {
   11626         unsigned InRegCount = 0;
   11627         unsigned Idx = 1;
   11628 
   11629         for (FunctionType::param_iterator I = FTy->param_begin(),
   11630              E = FTy->param_end(); I != E; ++I, ++Idx)
   11631           if (Attrs.hasAttribute(Idx, Attribute::InReg))
   11632             // FIXME: should only count parameters that are lowered to integers.
   11633             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
   11634 
   11635         if (InRegCount > 2) {
   11636           report_fatal_error("Nest register in use - reduce number of inreg"
   11637                              " parameters!");
   11638         }
   11639       }
   11640       break;
   11641     }
   11642     case CallingConv::X86_FastCall:
   11643     case CallingConv::X86_ThisCall:
   11644     case CallingConv::Fast:
   11645       // Pass 'nest' parameter in EAX.
   11646       // Must be kept in sync with X86CallingConv.td
   11647       NestReg = X86::EAX;
   11648       break;
   11649     }
   11650 
   11651     SDValue OutChains[4];
   11652     SDValue Addr, Disp;
   11653 
   11654     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   11655                        DAG.getConstant(10, MVT::i32));
   11656     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
   11657 
   11658     // This is storing the opcode for MOV32ri.
   11659     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
   11660     const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
   11661     OutChains[0] = DAG.getStore(Root, dl,
   11662                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
   11663                                 Trmp, MachinePointerInfo(TrmpAddr),
   11664                                 false, false, 0);
   11665 
   11666     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   11667                        DAG.getConstant(1, MVT::i32));
   11668     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
   11669                                 MachinePointerInfo(TrmpAddr, 1),
   11670                                 false, false, 1);
   11671 
   11672     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
   11673     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   11674                        DAG.getConstant(5, MVT::i32));
   11675     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
   11676                                 MachinePointerInfo(TrmpAddr, 5),
   11677                                 false, false, 1);
   11678 
   11679     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   11680                        DAG.getConstant(6, MVT::i32));
   11681     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
   11682                                 MachinePointerInfo(TrmpAddr, 6),
   11683                                 false, false, 1);
   11684 
   11685     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
   11686   }
   11687 }
   11688 
   11689 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   11690                                             SelectionDAG &DAG) const {
   11691   /*
   11692    The rounding mode is in bits 11:10 of FPSR, and has the following
   11693    settings:
   11694      00 Round to nearest
   11695      01 Round to -inf
   11696      10 Round to +inf
   11697      11 Round to 0
   11698 
   11699   FLT_ROUNDS, on the other hand, expects the following:
   11700     -1 Undefined
   11701      0 Round to 0
   11702      1 Round to nearest
   11703      2 Round to +inf
   11704      3 Round to -inf
   11705 
   11706   To perform the conversion, we do:
   11707     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
   11708   */
   11709 
   11710   MachineFunction &MF = DAG.getMachineFunction();
   11711   const TargetMachine &TM = MF.getTarget();
   11712   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   11713   unsigned StackAlignment = TFI.getStackAlignment();
   11714   EVT VT = Op.getValueType();
   11715   SDLoc DL(Op);
   11716 
   11717   // Save FP Control Word to stack slot
   11718   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
   11719   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   11720 
   11721   MachineMemOperand *MMO =
   11722    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   11723                            MachineMemOperand::MOStore, 2, 2);
   11724 
   11725   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
   11726   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
   11727                                           DAG.getVTList(MVT::Other),
   11728                                           Ops, array_lengthof(Ops), MVT::i16,
   11729                                           MMO);
   11730 
   11731   // Load FP Control Word from stack slot
   11732   SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
   11733                             MachinePointerInfo(), false, false, false, 0);
   11734 
   11735   // Transform as necessary
   11736   SDValue CWD1 =
   11737     DAG.getNode(ISD::SRL, DL, MVT::i16,
   11738                 DAG.getNode(ISD::AND, DL, MVT::i16,
   11739                             CWD, DAG.getConstant(0x800, MVT::i16)),
   11740                 DAG.getConstant(11, MVT::i8));
   11741   SDValue CWD2 =
   11742     DAG.getNode(ISD::SRL, DL, MVT::i16,
   11743                 DAG.getNode(ISD::AND, DL, MVT::i16,
   11744                             CWD, DAG.getConstant(0x400, MVT::i16)),
   11745                 DAG.getConstant(9, MVT::i8));
   11746 
   11747   SDValue RetVal =
   11748     DAG.getNode(ISD::AND, DL, MVT::i16,
   11749                 DAG.getNode(ISD::ADD, DL, MVT::i16,
   11750                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
   11751                             DAG.getConstant(1, MVT::i16)),
   11752                 DAG.getConstant(3, MVT::i16));
   11753 
   11754   return DAG.getNode((VT.getSizeInBits() < 16 ?
   11755                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
   11756 }
   11757 
   11758 static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
   11759   EVT VT = Op.getValueType();
   11760   EVT OpVT = VT;
   11761   unsigned NumBits = VT.getSizeInBits();
   11762   SDLoc dl(Op);
   11763 
   11764   Op = Op.getOperand(0);
   11765   if (VT == MVT::i8) {
   11766     // Zero extend to i32 since there is not an i8 bsr.
   11767     OpVT = MVT::i32;
   11768     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   11769   }
   11770 
   11771   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
   11772   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   11773   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
   11774 
   11775   // If src is zero (i.e. bsr sets ZF), returns NumBits.
   11776   SDValue Ops[] = {
   11777     Op,
   11778     DAG.getConstant(NumBits+NumBits-1, OpVT),
   11779     DAG.getConstant(X86::COND_E, MVT::i8),
   11780     Op.getValue(1)
   11781   };
   11782   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   11783 
   11784   // Finally xor with NumBits-1.
   11785   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
   11786 
   11787   if (VT == MVT::i8)
   11788     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   11789   return Op;
   11790 }
   11791 
   11792 static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
   11793   EVT VT = Op.getValueType();
   11794   EVT OpVT = VT;
   11795   unsigned NumBits = VT.getSizeInBits();
   11796   SDLoc dl(Op);
   11797 
   11798   Op = Op.getOperand(0);
   11799   if (VT == MVT::i8) {
   11800     // Zero extend to i32 since there is not an i8 bsr.
   11801     OpVT = MVT::i32;
   11802     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   11803   }
   11804 
   11805   // Issue a bsr (scan bits in reverse).
   11806   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   11807   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
   11808 
   11809   // And xor with NumBits-1.
   11810   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
   11811 
   11812   if (VT == MVT::i8)
   11813     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   11814   return Op;
   11815 }
   11816 
   11817 static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
   11818   EVT VT = Op.getValueType();
   11819   unsigned NumBits = VT.getSizeInBits();
   11820   SDLoc dl(Op);
   11821   Op = Op.getOperand(0);
   11822 
   11823   // Issue a bsf (scan bits forward) which also sets EFLAGS.
   11824   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   11825   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
   11826 
   11827   // If src is zero (i.e. bsf sets ZF), returns NumBits.
   11828   SDValue Ops[] = {
   11829     Op,
   11830     DAG.getConstant(NumBits, VT),
   11831     DAG.getConstant(X86::COND_E, MVT::i8),
   11832     Op.getValue(1)
   11833   };
   11834   return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
   11835 }
   11836 
   11837 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
   11838 // ones, and then concatenate the result back.
   11839 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
   11840   EVT VT = Op.getValueType();
   11841 
   11842   assert(VT.is256BitVector() && VT.isInteger() &&
   11843          "Unsupported value type for operation");
   11844 
   11845   unsigned NumElems = VT.getVectorNumElements();
   11846   SDLoc dl(Op);
   11847 
   11848   // Extract the LHS vectors
   11849   SDValue LHS = Op.getOperand(0);
   11850   SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
   11851   SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
   11852 
   11853   // Extract the RHS vectors
   11854   SDValue RHS = Op.getOperand(1);
   11855   SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
   11856   SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
   11857 
   11858   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   11859   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   11860 
   11861   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   11862                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
   11863                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
   11864 }
   11865 
   11866 static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
   11867   assert(Op.getValueType().is256BitVector() &&
   11868          Op.getValueType().isInteger() &&
   11869          "Only handle AVX 256-bit vector integer operation");
   11870   return Lower256IntArith(Op, DAG);
   11871 }
   11872 
   11873 static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
   11874   assert(Op.getValueType().is256BitVector() &&
   11875          Op.getValueType().isInteger() &&
   11876          "Only handle AVX 256-bit vector integer operation");
   11877   return Lower256IntArith(Op, DAG);
   11878 }
   11879 
   11880 static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
   11881                         SelectionDAG &DAG) {
   11882   SDLoc dl(Op);
   11883   EVT VT = Op.getValueType();
   11884 
   11885   // Decompose 256-bit ops into smaller 128-bit ops.
   11886   if (VT.is256BitVector() && !Subtarget->hasInt256())
   11887     return Lower256IntArith(Op, DAG);
   11888 
   11889   SDValue A = Op.getOperand(0);
   11890   SDValue B = Op.getOperand(1);
   11891 
   11892   // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
   11893   if (VT == MVT::v4i32) {
   11894     assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
   11895            "Should not custom lower when pmuldq is available!");
   11896 
   11897     // Extract the odd parts.
   11898     static const int UnpackMask[] = { 1, -1, 3, -1 };
   11899     SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
   11900     SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
   11901 
   11902     // Multiply the even parts.
   11903     SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
   11904     // Now multiply odd parts.
   11905     SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
   11906 
   11907     Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
   11908     Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
   11909 
   11910     // Merge the two vectors back together with a shuffle. This expands into 2
   11911     // shuffles.
   11912     static const int ShufMask[] = { 0, 4, 2, 6 };
   11913     return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
   11914   }
   11915 
   11916   assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
   11917          "Only know how to lower V2I64/V4I64 multiply");
   11918 
   11919   //  Ahi = psrlqi(a, 32);
   11920   //  Bhi = psrlqi(b, 32);
   11921   //
   11922   //  AloBlo = pmuludq(a, b);
   11923   //  AloBhi = pmuludq(a, Bhi);
   11924   //  AhiBlo = pmuludq(Ahi, b);
   11925 
   11926   //  AloBhi = psllqi(AloBhi, 32);
   11927   //  AhiBlo = psllqi(AhiBlo, 32);
   11928   //  return AloBlo + AloBhi + AhiBlo;
   11929 
   11930   SDValue ShAmt = DAG.getConstant(32, MVT::i32);
   11931 
   11932   SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
   11933   SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
   11934 
   11935   // Bit cast to 32-bit vectors for MULUDQ
   11936   EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
   11937   A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
   11938   B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
   11939   Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
   11940   Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
   11941 
   11942   SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
   11943   SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
   11944   SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
   11945 
   11946   AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
   11947   AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
   11948 
   11949   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
   11950   return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
   11951 }
   11952 
   11953 SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
   11954   EVT VT = Op.getValueType();
   11955   EVT EltTy = VT.getVectorElementType();
   11956   unsigned NumElts = VT.getVectorNumElements();
   11957   SDValue N0 = Op.getOperand(0);
   11958   SDLoc dl(Op);
   11959 
   11960   // Lower sdiv X, pow2-const.
   11961   BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
   11962   if (!C)
   11963     return SDValue();
   11964 
   11965   APInt SplatValue, SplatUndef;
   11966   unsigned SplatBitSize;
   11967   bool HasAnyUndefs;
   11968   if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
   11969                           HasAnyUndefs) ||
   11970       EltTy.getSizeInBits() < SplatBitSize)
   11971     return SDValue();
   11972 
   11973   if ((SplatValue != 0) &&
   11974       (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
   11975     unsigned lg2 = SplatValue.countTrailingZeros();
   11976     // Splat the sign bit.
   11977     SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
   11978     SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
   11979     // Add (N0 < 0) ? abs2 - 1 : 0;
   11980     SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
   11981     SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
   11982     SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
   11983     SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
   11984     SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
   11985 
   11986     // If we're dividing by a positive value, we're done.  Otherwise, we must
   11987     // negate the result.
   11988     if (SplatValue.isNonNegative())
   11989       return SRA;
   11990 
   11991     SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
   11992     SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
   11993     return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
   11994   }
   11995   return SDValue();
   11996 }
   11997 
   11998 static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
   11999                                          const X86Subtarget *Subtarget) {
   12000   EVT VT = Op.getValueType();
   12001   SDLoc dl(Op);
   12002   SDValue R = Op.getOperand(0);
   12003   SDValue Amt = Op.getOperand(1);
   12004 
   12005   // Optimize shl/srl/sra with constant shift amount.
   12006   if (isSplatVector(Amt.getNode())) {
   12007     SDValue SclrAmt = Amt->getOperand(0);
   12008     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
   12009       uint64_t ShiftAmt = C->getZExtValue();
   12010 
   12011       if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
   12012           (Subtarget->hasInt256() &&
   12013            (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
   12014         if (Op.getOpcode() == ISD::SHL)
   12015           return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
   12016                              DAG.getConstant(ShiftAmt, MVT::i32));
   12017         if (Op.getOpcode() == ISD::SRL)
   12018           return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
   12019                              DAG.getConstant(ShiftAmt, MVT::i32));
   12020         if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
   12021           return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
   12022                              DAG.getConstant(ShiftAmt, MVT::i32));
   12023       }
   12024 
   12025       if (VT == MVT::v16i8) {
   12026         if (Op.getOpcode() == ISD::SHL) {
   12027           // Make a large shift.
   12028           SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
   12029                                     DAG.getConstant(ShiftAmt, MVT::i32));
   12030           SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
   12031           // Zero out the rightmost bits.
   12032           SmallVector<SDValue, 16> V(16,
   12033                                      DAG.getConstant(uint8_t(-1U << ShiftAmt),
   12034                                                      MVT::i8));
   12035           return DAG.getNode(ISD::AND, dl, VT, SHL,
   12036                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
   12037         }
   12038         if (Op.getOpcode() == ISD::SRL) {
   12039           // Make a large shift.
   12040           SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
   12041                                     DAG.getConstant(ShiftAmt, MVT::i32));
   12042           SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
   12043           // Zero out the leftmost bits.
   12044           SmallVector<SDValue, 16> V(16,
   12045                                      DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
   12046                                                      MVT::i8));
   12047           return DAG.getNode(ISD::AND, dl, VT, SRL,
   12048                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
   12049         }
   12050         if (Op.getOpcode() == ISD::SRA) {
   12051           if (ShiftAmt == 7) {
   12052             // R s>> 7  ===  R s< 0
   12053             SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
   12054             return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
   12055           }
   12056 
   12057           // R s>> a === ((R u>> a) ^ m) - m
   12058           SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
   12059           SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
   12060                                                          MVT::i8));
   12061           SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
   12062           Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
   12063           Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
   12064           return Res;
   12065         }
   12066         llvm_unreachable("Unknown shift opcode.");
   12067       }
   12068 
   12069       if (Subtarget->hasInt256() && VT == MVT::v32i8) {
   12070         if (Op.getOpcode() == ISD::SHL) {
   12071           // Make a large shift.
   12072           SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
   12073                                     DAG.getConstant(ShiftAmt, MVT::i32));
   12074           SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
   12075           // Zero out the rightmost bits.
   12076           SmallVector<SDValue, 32> V(32,
   12077                                      DAG.getConstant(uint8_t(-1U << ShiftAmt),
   12078                                                      MVT::i8));
   12079           return DAG.getNode(ISD::AND, dl, VT, SHL,
   12080                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
   12081         }
   12082         if (Op.getOpcode() == ISD::SRL) {
   12083           // Make a large shift.
   12084           SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
   12085                                     DAG.getConstant(ShiftAmt, MVT::i32));
   12086           SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
   12087           // Zero out the leftmost bits.
   12088           SmallVector<SDValue, 32> V(32,
   12089                                      DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
   12090                                                      MVT::i8));
   12091           return DAG.getNode(ISD::AND, dl, VT, SRL,
   12092                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
   12093         }
   12094         if (Op.getOpcode() == ISD::SRA) {
   12095           if (ShiftAmt == 7) {
   12096             // R s>> 7  ===  R s< 0
   12097             SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
   12098             return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
   12099           }
   12100 
   12101           // R s>> a === ((R u>> a) ^ m) - m
   12102           SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
   12103           SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
   12104                                                          MVT::i8));
   12105           SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
   12106           Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
   12107           Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
   12108           return Res;
   12109         }
   12110         llvm_unreachable("Unknown shift opcode.");
   12111       }
   12112     }
   12113   }
   12114 
   12115   // Special case in 32-bit mode, where i64 is expanded into high and low parts.
   12116   if (!Subtarget->is64Bit() &&
   12117       (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
   12118       Amt.getOpcode() == ISD::BITCAST &&
   12119       Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
   12120     Amt = Amt.getOperand(0);
   12121     unsigned Ratio = Amt.getValueType().getVectorNumElements() /
   12122                      VT.getVectorNumElements();
   12123     unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
   12124     uint64_t ShiftAmt = 0;
   12125     for (unsigned i = 0; i != Ratio; ++i) {
   12126       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
   12127       if (C == 0)
   12128         return SDValue();
   12129       // 6 == Log2(64)
   12130       ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
   12131     }
   12132     // Check remaining shift amounts.
   12133     for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
   12134       uint64_t ShAmt = 0;
   12135       for (unsigned j = 0; j != Ratio; ++j) {
   12136         ConstantSDNode *C =
   12137           dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
   12138         if (C == 0)
   12139           return SDValue();
   12140         // 6 == Log2(64)
   12141         ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
   12142       }
   12143       if (ShAmt != ShiftAmt)
   12144         return SDValue();
   12145     }
   12146     switch (Op.getOpcode()) {
   12147     default:
   12148       llvm_unreachable("Unknown shift opcode!");
   12149     case ISD::SHL:
   12150       return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
   12151                          DAG.getConstant(ShiftAmt, MVT::i32));
   12152     case ISD::SRL:
   12153       return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
   12154                          DAG.getConstant(ShiftAmt, MVT::i32));
   12155     case ISD::SRA:
   12156       return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
   12157                          DAG.getConstant(ShiftAmt, MVT::i32));
   12158     }
   12159   }
   12160 
   12161   return SDValue();
   12162 }
   12163 
   12164 static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
   12165                                         const X86Subtarget* Subtarget) {
   12166   EVT VT = Op.getValueType();
   12167   SDLoc dl(Op);
   12168   SDValue R = Op.getOperand(0);
   12169   SDValue Amt = Op.getOperand(1);
   12170 
   12171   if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
   12172       VT == MVT::v4i32 || VT == MVT::v8i16 ||
   12173       (Subtarget->hasInt256() &&
   12174        ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
   12175         VT == MVT::v8i32 || VT == MVT::v16i16))) {
   12176     SDValue BaseShAmt;
   12177     EVT EltVT = VT.getVectorElementType();
   12178 
   12179     if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
   12180       unsigned NumElts = VT.getVectorNumElements();
   12181       unsigned i, j;
   12182       for (i = 0; i != NumElts; ++i) {
   12183         if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
   12184           continue;
   12185         break;
   12186       }
   12187       for (j = i; j != NumElts; ++j) {
   12188         SDValue Arg = Amt.getOperand(j);
   12189         if (Arg.getOpcode() == ISD::UNDEF) continue;
   12190         if (Arg != Amt.getOperand(i))
   12191           break;
   12192       }
   12193       if (i != NumElts && j == NumElts)
   12194         BaseShAmt = Amt.getOperand(i);
   12195     } else {
   12196       if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
   12197         Amt = Amt.getOperand(0);
   12198       if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
   12199                cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
   12200         SDValue InVec = Amt.getOperand(0);
   12201         if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
   12202           unsigned NumElts = InVec.getValueType().getVectorNumElements();
   12203           unsigned i = 0;
   12204           for (; i != NumElts; ++i) {
   12205             SDValue Arg = InVec.getOperand(i);
   12206             if (Arg.getOpcode() == ISD::UNDEF) continue;
   12207             BaseShAmt = Arg;
   12208             break;
   12209           }
   12210         } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
   12211            if (ConstantSDNode *C =
   12212                dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
   12213              unsigned SplatIdx =
   12214                cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
   12215              if (C->getZExtValue() == SplatIdx)
   12216                BaseShAmt = InVec.getOperand(1);
   12217            }
   12218         }
   12219         if (BaseShAmt.getNode() == 0)
   12220           BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
   12221                                   DAG.getIntPtrConstant(0));
   12222       }
   12223     }
   12224 
   12225     if (BaseShAmt.getNode()) {
   12226       if (EltVT.bitsGT(MVT::i32))
   12227         BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
   12228       else if (EltVT.bitsLT(MVT::i32))
   12229         BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
   12230 
   12231       switch (Op.getOpcode()) {
   12232       default:
   12233         llvm_unreachable("Unknown shift opcode!");
   12234       case ISD::SHL:
   12235         switch (VT.getSimpleVT().SimpleTy) {
   12236         default: return SDValue();
   12237         case MVT::v2i64:
   12238         case MVT::v4i32:
   12239         case MVT::v8i16:
   12240         case MVT::v4i64:
   12241         case MVT::v8i32:
   12242         case MVT::v16i16:
   12243           return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
   12244         }
   12245       case ISD::SRA:
   12246         switch (VT.getSimpleVT().SimpleTy) {
   12247         default: return SDValue();
   12248         case MVT::v4i32:
   12249         case MVT::v8i16:
   12250         case MVT::v8i32:
   12251         case MVT::v16i16:
   12252           return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
   12253         }
   12254       case ISD::SRL:
   12255         switch (VT.getSimpleVT().SimpleTy) {
   12256         default: return SDValue();
   12257         case MVT::v2i64:
   12258         case MVT::v4i32:
   12259         case MVT::v8i16:
   12260         case MVT::v4i64:
   12261         case MVT::v8i32:
   12262         case MVT::v16i16:
   12263           return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
   12264         }
   12265       }
   12266     }
   12267   }
   12268 
   12269   // Special case in 32-bit mode, where i64 is expanded into high and low parts.
   12270   if (!Subtarget->is64Bit() &&
   12271       (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
   12272       Amt.getOpcode() == ISD::BITCAST &&
   12273       Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
   12274     Amt = Amt.getOperand(0);
   12275     unsigned Ratio = Amt.getValueType().getVectorNumElements() /
   12276                      VT.getVectorNumElements();
   12277     std::vector<SDValue> Vals(Ratio);
   12278     for (unsigned i = 0; i != Ratio; ++i)
   12279       Vals[i] = Amt.getOperand(i);
   12280     for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
   12281       for (unsigned j = 0; j != Ratio; ++j)
   12282         if (Vals[j] != Amt.getOperand(i + j))
   12283           return SDValue();
   12284     }
   12285     switch (Op.getOpcode()) {
   12286     default:
   12287       llvm_unreachable("Unknown shift opcode!");
   12288     case ISD::SHL:
   12289       return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
   12290     case ISD::SRL:
   12291       return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
   12292     case ISD::SRA:
   12293       return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
   12294     }
   12295   }
   12296 
   12297   return SDValue();
   12298 }
   12299 
   12300 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
   12301 
   12302   EVT VT = Op.getValueType();
   12303   SDLoc dl(Op);
   12304   SDValue R = Op.getOperand(0);
   12305   SDValue Amt = Op.getOperand(1);
   12306   SDValue V;
   12307 
   12308   if (!Subtarget->hasSSE2())
   12309     return SDValue();
   12310 
   12311   V = LowerScalarImmediateShift(Op, DAG, Subtarget);
   12312   if (V.getNode())
   12313     return V;
   12314 
   12315   V = LowerScalarVariableShift(Op, DAG, Subtarget);
   12316   if (V.getNode())
   12317       return V;
   12318 
   12319   // AVX2 has VPSLLV/VPSRAV/VPSRLV.
   12320   if (Subtarget->hasInt256()) {
   12321     if (Op.getOpcode() == ISD::SRL &&
   12322         (VT == MVT::v2i64 || VT == MVT::v4i32 ||
   12323          VT == MVT::v4i64 || VT == MVT::v8i32))
   12324       return Op;
   12325     if (Op.getOpcode() == ISD::SHL &&
   12326         (VT == MVT::v2i64 || VT == MVT::v4i32 ||
   12327          VT == MVT::v4i64 || VT == MVT::v8i32))
   12328       return Op;
   12329     if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
   12330       return Op;
   12331   }
   12332 
   12333   // Lower SHL with variable shift amount.
   12334   if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
   12335     Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
   12336 
   12337     Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
   12338     Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
   12339     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
   12340     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
   12341   }
   12342   if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
   12343     assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
   12344 
   12345     // a = a << 5;
   12346     Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
   12347     Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
   12348 
   12349     // Turn 'a' into a mask suitable for VSELECT
   12350     SDValue VSelM = DAG.getConstant(0x80, VT);
   12351     SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
   12352     OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
   12353 
   12354     SDValue CM1 = DAG.getConstant(0x0f, VT);
   12355     SDValue CM2 = DAG.getConstant(0x3f, VT);
   12356 
   12357     // r = VSELECT(r, psllw(r & (char16)15, 4), a);
   12358     SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
   12359     M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
   12360                             DAG.getConstant(4, MVT::i32), DAG);
   12361     M = DAG.getNode(ISD::BITCAST, dl, VT, M);
   12362     R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
   12363 
   12364     // a += a
   12365     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   12366     OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
   12367     OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
   12368 
   12369     // r = VSELECT(r, psllw(r & (char16)63, 2), a);
   12370     M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
   12371     M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
   12372                             DAG.getConstant(2, MVT::i32), DAG);
   12373     M = DAG.getNode(ISD::BITCAST, dl, VT, M);
   12374     R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
   12375 
   12376     // a += a
   12377     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   12378     OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
   12379     OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
   12380 
   12381     // return VSELECT(r, r+r, a);
   12382     R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
   12383                     DAG.getNode(ISD::ADD, dl, VT, R, R), R);
   12384     return R;
   12385   }
   12386 
   12387   // Decompose 256-bit shifts into smaller 128-bit shifts.
   12388   if (VT.is256BitVector()) {
   12389     unsigned NumElems = VT.getVectorNumElements();
   12390     MVT EltVT = VT.getVectorElementType().getSimpleVT();
   12391     EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   12392 
   12393     // Extract the two vectors
   12394     SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
   12395     SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
   12396 
   12397     // Recreate the shift amount vectors
   12398     SDValue Amt1, Amt2;
   12399     if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
   12400       // Constant shift amount
   12401       SmallVector<SDValue, 4> Amt1Csts;
   12402       SmallVector<SDValue, 4> Amt2Csts;
   12403       for (unsigned i = 0; i != NumElems/2; ++i)
   12404         Amt1Csts.push_back(Amt->getOperand(i));
   12405       for (unsigned i = NumElems/2; i != NumElems; ++i)
   12406         Amt2Csts.push_back(Amt->getOperand(i));
   12407 
   12408       Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   12409                                  &Amt1Csts[0], NumElems/2);
   12410       Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   12411                                  &Amt2Csts[0], NumElems/2);
   12412     } else {
   12413       // Variable shift amount
   12414       Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
   12415       Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
   12416     }
   12417 
   12418     // Issue new vector shifts for the smaller types
   12419     V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
   12420     V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
   12421 
   12422     // Concatenate the result back
   12423     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
   12424   }
   12425 
   12426   return SDValue();
   12427 }
   12428 
   12429 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
   12430   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
   12431   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
   12432   // looks for this combo and may remove the "setcc" instruction if the "setcc"
   12433   // has only one use.
   12434   SDNode *N = Op.getNode();
   12435   SDValue LHS = N->getOperand(0);
   12436   SDValue RHS = N->getOperand(1);
   12437   unsigned BaseOp = 0;
   12438   unsigned Cond = 0;
   12439   SDLoc DL(Op);
   12440   switch (Op.getOpcode()) {
   12441   default: llvm_unreachable("Unknown ovf instruction!");
   12442   case ISD::SADDO:
   12443     // A subtract of one will be selected as a INC. Note that INC doesn't
   12444     // set CF, so we can't do this for UADDO.
   12445     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   12446       if (C->isOne()) {
   12447         BaseOp = X86ISD::INC;
   12448         Cond = X86::COND_O;
   12449         break;
   12450       }
   12451     BaseOp = X86ISD::ADD;
   12452     Cond = X86::COND_O;
   12453     break;
   12454   case ISD::UADDO:
   12455     BaseOp = X86ISD::ADD;
   12456     Cond = X86::COND_B;
   12457     break;
   12458   case ISD::SSUBO:
   12459     // A subtract of one will be selected as a DEC. Note that DEC doesn't
   12460     // set CF, so we can't do this for USUBO.
   12461     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   12462       if (C->isOne()) {
   12463         BaseOp = X86ISD::DEC;
   12464         Cond = X86::COND_O;
   12465         break;
   12466       }
   12467     BaseOp = X86ISD::SUB;
   12468     Cond = X86::COND_O;
   12469     break;
   12470   case ISD::USUBO:
   12471     BaseOp = X86ISD::SUB;
   12472     Cond = X86::COND_B;
   12473     break;
   12474   case ISD::SMULO:
   12475     BaseOp = X86ISD::SMUL;
   12476     Cond = X86::COND_O;
   12477     break;
   12478   case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
   12479     SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
   12480                                  MVT::i32);
   12481     SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
   12482 
   12483     SDValue SetCC =
   12484       DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   12485                   DAG.getConstant(X86::COND_O, MVT::i32),
   12486                   SDValue(Sum.getNode(), 2));
   12487 
   12488     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   12489   }
   12490   }
   12491 
   12492   // Also sets EFLAGS.
   12493   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
   12494   SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
   12495 
   12496   SDValue SetCC =
   12497     DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
   12498                 DAG.getConstant(Cond, MVT::i32),
   12499                 SDValue(Sum.getNode(), 1));
   12500 
   12501   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   12502 }
   12503 
   12504 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   12505                                                   SelectionDAG &DAG) const {
   12506   SDLoc dl(Op);
   12507   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   12508   EVT VT = Op.getValueType();
   12509 
   12510   if (!Subtarget->hasSSE2() || !VT.isVector())
   12511     return SDValue();
   12512 
   12513   unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
   12514                       ExtraVT.getScalarType().getSizeInBits();
   12515   SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
   12516 
   12517   switch (VT.getSimpleVT().SimpleTy) {
   12518     default: return SDValue();
   12519     case MVT::v8i32:
   12520     case MVT::v16i16:
   12521       if (!Subtarget->hasFp256())
   12522         return SDValue();
   12523       if (!Subtarget->hasInt256()) {
   12524         // needs to be split
   12525         unsigned NumElems = VT.getVectorNumElements();
   12526 
   12527         // Extract the LHS vectors
   12528         SDValue LHS = Op.getOperand(0);
   12529         SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
   12530         SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
   12531 
   12532         MVT EltVT = VT.getVectorElementType().getSimpleVT();
   12533         EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   12534 
   12535         EVT ExtraEltVT = ExtraVT.getVectorElementType();
   12536         unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
   12537         ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
   12538                                    ExtraNumElems/2);
   12539         SDValue Extra = DAG.getValueType(ExtraVT);
   12540 
   12541         LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
   12542         LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
   12543 
   12544         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
   12545       }
   12546       // fall through
   12547     case MVT::v4i32:
   12548     case MVT::v8i16: {
   12549       // (sext (vzext x)) -> (vsext x)
   12550       SDValue Op0 = Op.getOperand(0);
   12551       SDValue Op00 = Op0.getOperand(0);
   12552       SDValue Tmp1;
   12553       // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
   12554       if (Op0.getOpcode() == ISD::BITCAST &&
   12555           Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
   12556         Tmp1 = LowerVectorIntExtend(Op00, DAG);
   12557       if (Tmp1.getNode()) {
   12558         SDValue Tmp1Op0 = Tmp1.getOperand(0);
   12559         assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
   12560                "This optimization is invalid without a VZEXT.");
   12561         return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
   12562       }
   12563 
   12564       // If the above didn't work, then just use Shift-Left + Shift-Right.
   12565       Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
   12566       return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
   12567     }
   12568   }
   12569 }
   12570 
   12571 static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
   12572                                  SelectionDAG &DAG) {
   12573   SDLoc dl(Op);
   12574   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
   12575     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
   12576   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
   12577     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
   12578 
   12579   // The only fence that needs an instruction is a sequentially-consistent
   12580   // cross-thread fence.
   12581   if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
   12582     // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
   12583     // no-sse2). There isn't any reason to disable it if the target processor
   12584     // supports it.
   12585     if (Subtarget->hasSSE2() || Subtarget->is64Bit())
   12586       return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   12587 
   12588     SDValue Chain = Op.getOperand(0);
   12589     SDValue Zero = DAG.getConstant(0, MVT::i32);
   12590     SDValue Ops[] = {
   12591       DAG.getRegister(X86::ESP, MVT::i32), // Base
   12592       DAG.getTargetConstant(1, MVT::i8),   // Scale
   12593       DAG.getRegister(0, MVT::i32),        // Index
   12594       DAG.getTargetConstant(0, MVT::i32),  // Disp
   12595       DAG.getRegister(0, MVT::i32),        // Segment.
   12596       Zero,
   12597       Chain
   12598     };
   12599     SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
   12600     return SDValue(Res, 0);
   12601   }
   12602 
   12603   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
   12604   return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   12605 }
   12606 
   12607 static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
   12608                              SelectionDAG &DAG) {
   12609   EVT T = Op.getValueType();
   12610   SDLoc DL(Op);
   12611   unsigned Reg = 0;
   12612   unsigned size = 0;
   12613   switch(T.getSimpleVT().SimpleTy) {
   12614   default: llvm_unreachable("Invalid value type!");
   12615   case MVT::i8:  Reg = X86::AL;  size = 1; break;
   12616   case MVT::i16: Reg = X86::AX;  size = 2; break;
   12617   case MVT::i32: Reg = X86::EAX; size = 4; break;
   12618   case MVT::i64:
   12619     assert(Subtarget->is64Bit() && "Node not type legal!");
   12620     Reg = X86::RAX; size = 8;
   12621     break;
   12622   }
   12623   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
   12624                                     Op.getOperand(2), SDValue());
   12625   SDValue Ops[] = { cpIn.getValue(0),
   12626                     Op.getOperand(1),
   12627                     Op.getOperand(3),
   12628                     DAG.getTargetConstant(size, MVT::i8),
   12629                     cpIn.getValue(1) };
   12630   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   12631   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
   12632   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
   12633                                            Ops, array_lengthof(Ops), T, MMO);
   12634   SDValue cpOut =
   12635     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
   12636   return cpOut;
   12637 }
   12638 
   12639 static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
   12640                                      SelectionDAG &DAG) {
   12641   assert(Subtarget->is64Bit() && "Result not type legalized?");
   12642   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   12643   SDValue TheChain = Op.getOperand(0);
   12644   SDLoc dl(Op);
   12645   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   12646   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
   12647   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
   12648                                    rax.getValue(2));
   12649   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
   12650                             DAG.getConstant(32, MVT::i8));
   12651   SDValue Ops[] = {
   12652     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
   12653     rdx.getValue(1)
   12654   };
   12655   return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
   12656 }
   12657 
   12658 SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
   12659   EVT SrcVT = Op.getOperand(0).getValueType();
   12660   EVT DstVT = Op.getValueType();
   12661   assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
   12662          Subtarget->hasMMX() && "Unexpected custom BITCAST");
   12663   assert((DstVT == MVT::i64 ||
   12664           (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
   12665          "Unexpected custom BITCAST");
   12666   // i64 <=> MMX conversions are Legal.
   12667   if (SrcVT==MVT::i64 && DstVT.isVector())
   12668     return Op;
   12669   if (DstVT==MVT::i64 && SrcVT.isVector())
   12670     return Op;
   12671   // MMX <=> MMX conversions are Legal.
   12672   if (SrcVT.isVector() && DstVT.isVector())
   12673     return Op;
   12674   // All other conversions need to be expanded.
   12675   return SDValue();
   12676 }
   12677 
   12678 static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
   12679   SDNode *Node = Op.getNode();
   12680   SDLoc dl(Node);
   12681   EVT T = Node->getValueType(0);
   12682   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
   12683                               DAG.getConstant(0, T), Node->getOperand(2));
   12684   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
   12685                        cast<AtomicSDNode>(Node)->getMemoryVT(),
   12686                        Node->getOperand(0),
   12687                        Node->getOperand(1), negOp,
   12688                        cast<AtomicSDNode>(Node)->getSrcValue(),
   12689                        cast<AtomicSDNode>(Node)->getAlignment(),
   12690                        cast<AtomicSDNode>(Node)->getOrdering(),
   12691                        cast<AtomicSDNode>(Node)->getSynchScope());
   12692 }
   12693 
   12694 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
   12695   SDNode *Node = Op.getNode();
   12696   SDLoc dl(Node);
   12697   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   12698 
   12699   // Convert seq_cst store -> xchg
   12700   // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
   12701   // FIXME: On 32-bit, store -> fist or movq would be more efficient
   12702   //        (The only way to get a 16-byte store is cmpxchg16b)
   12703   // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
   12704   if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
   12705       !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   12706     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
   12707                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   12708                                  Node->getOperand(0),
   12709                                  Node->getOperand(1), Node->getOperand(2),
   12710                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   12711                                  cast<AtomicSDNode>(Node)->getOrdering(),
   12712                                  cast<AtomicSDNode>(Node)->getSynchScope());
   12713     return Swap.getValue(1);
   12714   }
   12715   // Other atomic stores have a simple pattern.
   12716   return Op;
   12717 }
   12718 
   12719 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   12720   EVT VT = Op.getNode()->getValueType(0);
   12721 
   12722   // Let legalize expand this if it isn't a legal type yet.
   12723   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   12724     return SDValue();
   12725 
   12726   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   12727 
   12728   unsigned Opc;
   12729   bool ExtraOp = false;
   12730   switch (Op.getOpcode()) {
   12731   default: llvm_unreachable("Invalid code");
   12732   case ISD::ADDC: Opc = X86ISD::ADD; break;
   12733   case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
   12734   case ISD::SUBC: Opc = X86ISD::SUB; break;
   12735   case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
   12736   }
   12737 
   12738   if (!ExtraOp)
   12739     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   12740                        Op.getOperand(1));
   12741   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   12742                      Op.getOperand(1), Op.getOperand(2));
   12743 }
   12744 
   12745 SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
   12746   assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
   12747 
   12748   // For MacOSX, we want to call an alternative entry point: __sincos_stret,
   12749   // which returns the values as { float, float } (in XMM0) or
   12750   // { double, double } (which is returned in XMM0, XMM1).
   12751   SDLoc dl(Op);
   12752   SDValue Arg = Op.getOperand(0);
   12753   EVT ArgVT = Arg.getValueType();
   12754   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   12755 
   12756   ArgListTy Args;
   12757   ArgListEntry Entry;
   12758 
   12759   Entry.Node = Arg;
   12760   Entry.Ty = ArgTy;
   12761   Entry.isSExt = false;
   12762   Entry.isZExt = false;
   12763   Args.push_back(Entry);
   12764 
   12765   bool isF64 = ArgVT == MVT::f64;
   12766   // Only optimize x86_64 for now. i386 is a bit messy. For f32,
   12767   // the small struct {f32, f32} is returned in (eax, edx). For f64,
   12768   // the results are returned via SRet in memory.
   12769   const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
   12770   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
   12771 
   12772   Type *RetTy = isF64
   12773     ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
   12774     : (Type*)VectorType::get(ArgTy, 4);
   12775   TargetLowering::
   12776     CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
   12777                          false, false, false, false, 0,
   12778                          CallingConv::C, /*isTaillCall=*/false,
   12779                          /*doesNotRet=*/false, /*isReturnValueUsed*/true,
   12780                          Callee, Args, DAG, dl);
   12781   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   12782 
   12783   if (isF64)
   12784     // Returned in xmm0 and xmm1.
   12785     return CallResult.first;
   12786 
   12787   // Returned in bits 0:31 and 32:64 xmm0.
   12788   SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
   12789                                CallResult.first, DAG.getIntPtrConstant(0));
   12790   SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
   12791                                CallResult.first, DAG.getIntPtrConstant(1));
   12792   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
   12793   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
   12794 }
   12795 
   12796 /// LowerOperation - Provide custom lowering hooks for some operations.
   12797 ///
   12798 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   12799   switch (Op.getOpcode()) {
   12800   default: llvm_unreachable("Should not custom lower this!");
   12801   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
   12802   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
   12803   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
   12804   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
   12805   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
   12806   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   12807   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
   12808   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   12809   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   12810   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
   12811   case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
   12812   case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
   12813   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   12814   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   12815   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   12816   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   12817   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
   12818   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   12819   case ISD::SHL_PARTS:
   12820   case ISD::SRA_PARTS:
   12821   case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
   12822   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   12823   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
   12824   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
   12825   case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
   12826   case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
   12827   case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
   12828   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
   12829   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
   12830   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
   12831   case ISD::FABS:               return LowerFABS(Op, DAG);
   12832   case ISD::FNEG:               return LowerFNEG(Op, DAG);
   12833   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
   12834   case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
   12835   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   12836   case ISD::SELECT:             return LowerSELECT(Op, DAG);
   12837   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
   12838   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   12839   case ISD::VASTART:            return LowerVASTART(Op, DAG);
   12840   case ISD::VAARG:              return LowerVAARG(Op, DAG);
   12841   case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
   12842   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   12843   case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
   12844   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   12845   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   12846   case ISD::FRAME_TO_ARGS_OFFSET:
   12847                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
   12848   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   12849   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
   12850   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   12851   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   12852   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   12853   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   12854   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   12855   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
   12856   case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
   12857   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
   12858   case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
   12859   case ISD::SRA:
   12860   case ISD::SRL:
   12861   case ISD::SHL:                return LowerShift(Op, DAG);
   12862   case ISD::SADDO:
   12863   case ISD::UADDO:
   12864   case ISD::SSUBO:
   12865   case ISD::USUBO:
   12866   case ISD::SMULO:
   12867   case ISD::UMULO:              return LowerXALUO(Op, DAG);
   12868   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
   12869   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
   12870   case ISD::ADDC:
   12871   case ISD::ADDE:
   12872   case ISD::SUBC:
   12873   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   12874   case ISD::ADD:                return LowerADD(Op, DAG);
   12875   case ISD::SUB:                return LowerSUB(Op, DAG);
   12876   case ISD::SDIV:               return LowerSDIV(Op, DAG);
   12877   case ISD::FSINCOS:            return LowerFSINCOS(Op, DAG);
   12878   }
   12879 }
   12880 
   12881 static void ReplaceATOMIC_LOAD(SDNode *Node,
   12882                                   SmallVectorImpl<SDValue> &Results,
   12883                                   SelectionDAG &DAG) {
   12884   SDLoc dl(Node);
   12885   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   12886 
   12887   // Convert wide load -> cmpxchg8b/cmpxchg16b
   12888   // FIXME: On 32-bit, load -> fild or movq would be more efficient
   12889   //        (The only way to get a 16-byte load is cmpxchg16b)
   12890   // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
   12891   SDValue Zero = DAG.getConstant(0, VT);
   12892   SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
   12893                                Node->getOperand(0),
   12894                                Node->getOperand(1), Zero, Zero,
   12895                                cast<AtomicSDNode>(Node)->getMemOperand(),
   12896                                cast<AtomicSDNode>(Node)->getOrdering(),
   12897                                cast<AtomicSDNode>(Node)->getSynchScope());
   12898   Results.push_back(Swap.getValue(0));
   12899   Results.push_back(Swap.getValue(1));
   12900 }
   12901 
   12902 static void
   12903 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
   12904                         SelectionDAG &DAG, unsigned NewOp) {
   12905   SDLoc dl(Node);
   12906   assert (Node->getValueType(0) == MVT::i64 &&
   12907           "Only know how to expand i64 atomics");
   12908 
   12909   SDValue Chain = Node->getOperand(0);
   12910   SDValue In1 = Node->getOperand(1);
   12911   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   12912                              Node->getOperand(2), DAG.getIntPtrConstant(0));
   12913   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   12914                              Node->getOperand(2), DAG.getIntPtrConstant(1));
   12915   SDValue Ops[] = { Chain, In1, In2L, In2H };
   12916   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   12917   SDValue Result =
   12918     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
   12919                             cast<MemSDNode>(Node)->getMemOperand());
   12920   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
   12921   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   12922   Results.push_back(Result.getValue(2));
   12923 }
   12924 
   12925 /// ReplaceNodeResults - Replace a node with an illegal result type
   12926 /// with a new node built out of custom code.
   12927 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
   12928                                            SmallVectorImpl<SDValue>&Results,
   12929                                            SelectionDAG &DAG) const {
   12930   SDLoc dl(N);
   12931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   12932   switch (N->getOpcode()) {
   12933   default:
   12934     llvm_unreachable("Do not know how to custom type legalize this operation!");
   12935   case ISD::SIGN_EXTEND_INREG:
   12936   case ISD::ADDC:
   12937   case ISD::ADDE:
   12938   case ISD::SUBC:
   12939   case ISD::SUBE:
   12940     // We don't want to expand or promote these.
   12941     return;
   12942   case ISD::FP_TO_SINT:
   12943   case ISD::FP_TO_UINT: {
   12944     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
   12945 
   12946     if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
   12947       return;
   12948 
   12949     std::pair<SDValue,SDValue> Vals =
   12950         FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
   12951     SDValue FIST = Vals.first, StackSlot = Vals.second;
   12952     if (FIST.getNode() != 0) {
   12953       EVT VT = N->getValueType(0);
   12954       // Return a load from the stack slot.
   12955       if (StackSlot.getNode() != 0)
   12956         Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
   12957                                       MachinePointerInfo(),
   12958                                       false, false, false, 0));
   12959       else
   12960         Results.push_back(FIST);
   12961     }
   12962     return;
   12963   }
   12964   case ISD::UINT_TO_FP: {
   12965     assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
   12966     if (N->getOperand(0).getValueType() != MVT::v2i32 ||
   12967         N->getValueType(0) != MVT::v2f32)
   12968       return;
   12969     SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
   12970                                  N->getOperand(0));
   12971     SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
   12972                                      MVT::f64);
   12973     SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
   12974     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
   12975                              DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
   12976     Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
   12977     SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
   12978     Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
   12979     return;
   12980   }
   12981   case ISD::FP_ROUND: {
   12982     if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
   12983         return;
   12984     SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
   12985     Results.push_back(V);
   12986     return;
   12987   }
   12988   case ISD::READCYCLECOUNTER: {
   12989     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   12990     SDValue TheChain = N->getOperand(0);
   12991     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   12992     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
   12993                                      rd.getValue(1));
   12994     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
   12995                                      eax.getValue(2));
   12996     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
   12997     SDValue Ops[] = { eax, edx };
   12998     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
   12999                                   array_lengthof(Ops)));
   13000     Results.push_back(edx.getValue(1));
   13001     return;
   13002   }
   13003   case ISD::ATOMIC_CMP_SWAP: {
   13004     EVT T = N->getValueType(0);
   13005     assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
   13006     bool Regs64bit = T == MVT::i128;
   13007     EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
   13008     SDValue cpInL, cpInH;
   13009     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   13010                         DAG.getConstant(0, HalfT));
   13011     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   13012                         DAG.getConstant(1, HalfT));
   13013     cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
   13014                              Regs64bit ? X86::RAX : X86::EAX,
   13015                              cpInL, SDValue());
   13016     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
   13017                              Regs64bit ? X86::RDX : X86::EDX,
   13018                              cpInH, cpInL.getValue(1));
   13019     SDValue swapInL, swapInH;
   13020     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   13021                           DAG.getConstant(0, HalfT));
   13022     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   13023                           DAG.getConstant(1, HalfT));
   13024     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
   13025                                Regs64bit ? X86::RBX : X86::EBX,
   13026                                swapInL, cpInH.getValue(1));
   13027     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
   13028                                Regs64bit ? X86::RCX : X86::ECX,
   13029                                swapInH, swapInL.getValue(1));
   13030     SDValue Ops[] = { swapInH.getValue(0),
   13031                       N->getOperand(1),
   13032                       swapInH.getValue(1) };
   13033     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   13034     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
   13035     unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
   13036                                   X86ISD::LCMPXCHG8_DAG;
   13037     SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
   13038                                              Ops, array_lengthof(Ops), T, MMO);
   13039     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
   13040                                         Regs64bit ? X86::RAX : X86::EAX,
   13041                                         HalfT, Result.getValue(1));
   13042     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
   13043                                         Regs64bit ? X86::RDX : X86::EDX,
   13044                                         HalfT, cpOutL.getValue(2));
   13045     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
   13046     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
   13047     Results.push_back(cpOutH.getValue(1));
   13048     return;
   13049   }
   13050   case ISD::ATOMIC_LOAD_ADD:
   13051   case ISD::ATOMIC_LOAD_AND:
   13052   case ISD::ATOMIC_LOAD_NAND:
   13053   case ISD::ATOMIC_LOAD_OR:
   13054   case ISD::ATOMIC_LOAD_SUB:
   13055   case ISD::ATOMIC_LOAD_XOR:
   13056   case ISD::ATOMIC_LOAD_MAX:
   13057   case ISD::ATOMIC_LOAD_MIN:
   13058   case ISD::ATOMIC_LOAD_UMAX:
   13059   case ISD::ATOMIC_LOAD_UMIN:
   13060   case ISD::ATOMIC_SWAP: {
   13061     unsigned Opc;
   13062     switch (N->getOpcode()) {
   13063     default: llvm_unreachable("Unexpected opcode");
   13064     case ISD::ATOMIC_LOAD_ADD:
   13065       Opc = X86ISD::ATOMADD64_DAG;
   13066       break;
   13067     case ISD::ATOMIC_LOAD_AND:
   13068       Opc = X86ISD::ATOMAND64_DAG;
   13069       break;
   13070     case ISD::ATOMIC_LOAD_NAND:
   13071       Opc = X86ISD::ATOMNAND64_DAG;
   13072       break;
   13073     case ISD::ATOMIC_LOAD_OR:
   13074       Opc = X86ISD::ATOMOR64_DAG;
   13075       break;
   13076     case ISD::ATOMIC_LOAD_SUB:
   13077       Opc = X86ISD::ATOMSUB64_DAG;
   13078       break;
   13079     case ISD::ATOMIC_LOAD_XOR:
   13080       Opc = X86ISD::ATOMXOR64_DAG;
   13081       break;
   13082     case ISD::ATOMIC_LOAD_MAX:
   13083       Opc = X86ISD::ATOMMAX64_DAG;
   13084       break;
   13085     case ISD::ATOMIC_LOAD_MIN:
   13086       Opc = X86ISD::ATOMMIN64_DAG;
   13087       break;
   13088     case ISD::ATOMIC_LOAD_UMAX:
   13089       Opc = X86ISD::ATOMUMAX64_DAG;
   13090       break;
   13091     case ISD::ATOMIC_LOAD_UMIN:
   13092       Opc = X86ISD::ATOMUMIN64_DAG;
   13093       break;
   13094     case ISD::ATOMIC_SWAP:
   13095       Opc = X86ISD::ATOMSWAP64_DAG;
   13096       break;
   13097     }
   13098     ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
   13099     return;
   13100   }
   13101   case ISD::ATOMIC_LOAD:
   13102     ReplaceATOMIC_LOAD(N, Results, DAG);
   13103   }
   13104 }
   13105 
   13106 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   13107   switch (Opcode) {
   13108   default: return NULL;
   13109   case X86ISD::BSF:                return "X86ISD::BSF";
   13110   case X86ISD::BSR:                return "X86ISD::BSR";
   13111   case X86ISD::SHLD:               return "X86ISD::SHLD";
   13112   case X86ISD::SHRD:               return "X86ISD::SHRD";
   13113   case X86ISD::FAND:               return "X86ISD::FAND";
   13114   case X86ISD::FANDN:              return "X86ISD::FANDN";
   13115   case X86ISD::FOR:                return "X86ISD::FOR";
   13116   case X86ISD::FXOR:               return "X86ISD::FXOR";
   13117   case X86ISD::FSRL:               return "X86ISD::FSRL";
   13118   case X86ISD::FILD:               return "X86ISD::FILD";
   13119   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
   13120   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
   13121   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
   13122   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
   13123   case X86ISD::FLD:                return "X86ISD::FLD";
   13124   case X86ISD::FST:                return "X86ISD::FST";
   13125   case X86ISD::CALL:               return "X86ISD::CALL";
   13126   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
   13127   case X86ISD::BT:                 return "X86ISD::BT";
   13128   case X86ISD::CMP:                return "X86ISD::CMP";
   13129   case X86ISD::COMI:               return "X86ISD::COMI";
   13130   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
   13131   case X86ISD::SETCC:              return "X86ISD::SETCC";
   13132   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
   13133   case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
   13134   case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
   13135   case X86ISD::CMOV:               return "X86ISD::CMOV";
   13136   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
   13137   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
   13138   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
   13139   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
   13140   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
   13141   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
   13142   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
   13143   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
   13144   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
   13145   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
   13146   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
   13147   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
   13148   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
   13149   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
   13150   case X86ISD::PSIGN:              return "X86ISD::PSIGN";
   13151   case X86ISD::BLENDV:             return "X86ISD::BLENDV";
   13152   case X86ISD::BLENDI:             return "X86ISD::BLENDI";
   13153   case X86ISD::SUBUS:              return "X86ISD::SUBUS";
   13154   case X86ISD::HADD:               return "X86ISD::HADD";
   13155   case X86ISD::HSUB:               return "X86ISD::HSUB";
   13156   case X86ISD::FHADD:              return "X86ISD::FHADD";
   13157   case X86ISD::FHSUB:              return "X86ISD::FHSUB";
   13158   case X86ISD::UMAX:               return "X86ISD::UMAX";
   13159   case X86ISD::UMIN:               return "X86ISD::UMIN";
   13160   case X86ISD::SMAX:               return "X86ISD::SMAX";
   13161   case X86ISD::SMIN:               return "X86ISD::SMIN";
   13162   case X86ISD::FMAX:               return "X86ISD::FMAX";
   13163   case X86ISD::FMIN:               return "X86ISD::FMIN";
   13164   case X86ISD::FMAXC:              return "X86ISD::FMAXC";
   13165   case X86ISD::FMINC:              return "X86ISD::FMINC";
   13166   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
   13167   case X86ISD::FRCP:               return "X86ISD::FRCP";
   13168   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
   13169   case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
   13170   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
   13171   case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
   13172   case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
   13173   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
   13174   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
   13175   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
   13176   case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
   13177   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
   13178   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
   13179   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
   13180   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
   13181   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
   13182   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
   13183   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
   13184   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
   13185   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
   13186   case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
   13187   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
   13188   case X86ISD::VZEXT:              return "X86ISD::VZEXT";
   13189   case X86ISD::VSEXT:              return "X86ISD::VSEXT";
   13190   case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
   13191   case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
   13192   case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
   13193   case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
   13194   case X86ISD::VSHL:               return "X86ISD::VSHL";
   13195   case X86ISD::VSRL:               return "X86ISD::VSRL";
   13196   case X86ISD::VSRA:               return "X86ISD::VSRA";
   13197   case X86ISD::VSHLI:              return "X86ISD::VSHLI";
   13198   case X86ISD::VSRLI:              return "X86ISD::VSRLI";
   13199   case X86ISD::VSRAI:              return "X86ISD::VSRAI";
   13200   case X86ISD::CMPP:               return "X86ISD::CMPP";
   13201   case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
   13202   case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
   13203   case X86ISD::ADD:                return "X86ISD::ADD";
   13204   case X86ISD::SUB:                return "X86ISD::SUB";
   13205   case X86ISD::ADC:                return "X86ISD::ADC";
   13206   case X86ISD::SBB:                return "X86ISD::SBB";
   13207   case X86ISD::SMUL:               return "X86ISD::SMUL";
   13208   case X86ISD::UMUL:               return "X86ISD::UMUL";
   13209   case X86ISD::INC:                return "X86ISD::INC";
   13210   case X86ISD::DEC:                return "X86ISD::DEC";
   13211   case X86ISD::OR:                 return "X86ISD::OR";
   13212   case X86ISD::XOR:                return "X86ISD::XOR";
   13213   case X86ISD::AND:                return "X86ISD::AND";
   13214   case X86ISD::BLSI:               return "X86ISD::BLSI";
   13215   case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
   13216   case X86ISD::BLSR:               return "X86ISD::BLSR";
   13217   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
   13218   case X86ISD::PTEST:              return "X86ISD::PTEST";
   13219   case X86ISD::TESTP:              return "X86ISD::TESTP";
   13220   case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
   13221   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
   13222   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
   13223   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
   13224   case X86ISD::SHUFP:              return "X86ISD::SHUFP";
   13225   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
   13226   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
   13227   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
   13228   case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
   13229   case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
   13230   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
   13231   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
   13232   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
   13233   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
   13234   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
   13235   case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
   13236   case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
   13237   case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
   13238   case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
   13239   case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
   13240   case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
   13241   case X86ISD::VPERMV:             return "X86ISD::VPERMV";
   13242   case X86ISD::VPERMI:             return "X86ISD::VPERMI";
   13243   case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
   13244   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
   13245   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
   13246   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
   13247   case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
   13248   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
   13249   case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
   13250   case X86ISD::SAHF:               return "X86ISD::SAHF";
   13251   case X86ISD::RDRAND:             return "X86ISD::RDRAND";
   13252   case X86ISD::RDSEED:             return "X86ISD::RDSEED";
   13253   case X86ISD::FMADD:              return "X86ISD::FMADD";
   13254   case X86ISD::FMSUB:              return "X86ISD::FMSUB";
   13255   case X86ISD::FNMADD:             return "X86ISD::FNMADD";
   13256   case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
   13257   case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
   13258   case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
   13259   case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
   13260   case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
   13261   case X86ISD::XTEST:              return "X86ISD::XTEST";
   13262   }
   13263 }
   13264 
   13265 // isLegalAddressingMode - Return true if the addressing mode represented
   13266 // by AM is legal for this target, for a load/store of the specified type.
   13267 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   13268                                               Type *Ty) const {
   13269   // X86 supports extremely general addressing modes.
   13270   CodeModel::Model M = getTargetMachine().getCodeModel();
   13271   Reloc::Model R = getTargetMachine().getRelocationModel();
   13272 
   13273   // X86 allows a sign-extended 32-bit immediate field as a displacement.
   13274   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
   13275     return false;
   13276 
   13277   if (AM.BaseGV) {
   13278     unsigned GVFlags =
   13279       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
   13280 
   13281     // If a reference to this global requires an extra load, we can't fold it.
   13282     if (isGlobalStubReference(GVFlags))
   13283       return false;
   13284 
   13285     // If BaseGV requires a register for the PIC base, we cannot also have a
   13286     // BaseReg specified.
   13287     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
   13288       return false;
   13289 
   13290     // If lower 4G is not available, then we must use rip-relative addressing.
   13291     if ((M != CodeModel::Small || R != Reloc::Static) &&
   13292         Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
   13293       return false;
   13294   }
   13295 
   13296   switch (AM.Scale) {
   13297   case 0:
   13298   case 1:
   13299   case 2:
   13300   case 4:
   13301   case 8:
   13302     // These scales always work.
   13303     break;
   13304   case 3:
   13305   case 5:
   13306   case 9:
   13307     // These scales are formed with basereg+scalereg.  Only accept if there is
   13308     // no basereg yet.
   13309     if (AM.HasBaseReg)
   13310       return false;
   13311     break;
   13312   default:  // Other stuff never works.
   13313     return false;
   13314   }
   13315 
   13316   return true;
   13317 }
   13318 
   13319 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   13320   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   13321     return false;
   13322   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   13323   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   13324   return NumBits1 > NumBits2;
   13325 }
   13326 
   13327 bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
   13328   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   13329     return false;
   13330 
   13331   if (!isTypeLegal(EVT::getEVT(Ty1)))
   13332     return false;
   13333 
   13334   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
   13335 
   13336   // Assuming the caller doesn't have a zeroext or signext return parameter,
   13337   // truncation all the way down to i1 is valid.
   13338   return true;
   13339 }
   13340 
   13341 bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   13342   return isInt<32>(Imm);
   13343 }
   13344 
   13345 bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
   13346   // Can also use sub to handle negated immediates.
   13347   return isInt<32>(Imm);
   13348 }
   13349 
   13350 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   13351   if (!VT1.isInteger() || !VT2.isInteger())
   13352     return false;
   13353   unsigned NumBits1 = VT1.getSizeInBits();
   13354   unsigned NumBits2 = VT2.getSizeInBits();
   13355   return NumBits1 > NumBits2;
   13356 }
   13357 
   13358 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   13359   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   13360   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
   13361 }
   13362 
   13363 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   13364   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   13365   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
   13366 }
   13367 
   13368 bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   13369   EVT VT1 = Val.getValueType();
   13370   if (isZExtFree(VT1, VT2))
   13371     return true;
   13372 
   13373   if (Val.getOpcode() != ISD::LOAD)
   13374     return false;
   13375 
   13376   if (!VT1.isSimple() || !VT1.isInteger() ||
   13377       !VT2.isSimple() || !VT2.isInteger())
   13378     return false;
   13379 
   13380   switch (VT1.getSimpleVT().SimpleTy) {
   13381   default: break;
   13382   case MVT::i8:
   13383   case MVT::i16:
   13384   case MVT::i32:
   13385     // X86 has 8, 16, and 32-bit zero-extending loads.
   13386     return true;
   13387   }
   13388 
   13389   return false;
   13390 }
   13391 
   13392 bool
   13393 X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   13394   if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
   13395     return false;
   13396 
   13397   VT = VT.getScalarType();
   13398 
   13399   if (!VT.isSimple())
   13400     return false;
   13401 
   13402   switch (VT.getSimpleVT().SimpleTy) {
   13403   case MVT::f32:
   13404   case MVT::f64:
   13405     return true;
   13406   default:
   13407     break;
   13408   }
   13409 
   13410   return false;
   13411 }
   13412 
   13413 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
   13414   // i16 instructions are longer (0x66 prefix) and potentially slower.
   13415   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
   13416 }
   13417 
   13418 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   13419 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   13420 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   13421 /// are assumed to be legal.
   13422 bool
   13423 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   13424                                       EVT VT) const {
   13425   // Very little shuffling can be done for 64-bit vectors right now.
   13426   if (VT.getSizeInBits() == 64)
   13427     return false;
   13428 
   13429   // FIXME: pshufb, blends, shifts.
   13430   return (VT.getVectorNumElements() == 2 ||
   13431           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   13432           isMOVLMask(M, VT) ||
   13433           isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
   13434           isPSHUFDMask(M, VT) ||
   13435           isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
   13436           isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
   13437           isPALIGNRMask(M, VT, Subtarget) ||
   13438           isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
   13439           isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
   13440           isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
   13441           isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
   13442 }
   13443 
   13444 bool
   13445 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
   13446                                           EVT VT) const {
   13447   unsigned NumElts = VT.getVectorNumElements();
   13448   // FIXME: This collection of masks seems suspect.
   13449   if (NumElts == 2)
   13450     return true;
   13451   if (NumElts == 4 && VT.is128BitVector()) {
   13452     return (isMOVLMask(Mask, VT)  ||
   13453             isCommutedMOVLMask(Mask, VT, true) ||
   13454             isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
   13455             isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
   13456   }
   13457   return false;
   13458 }
   13459 
   13460 //===----------------------------------------------------------------------===//
   13461 //                           X86 Scheduler Hooks
   13462 //===----------------------------------------------------------------------===//
   13463 
   13464 /// Utility function to emit xbegin specifying the start of an RTM region.
   13465 static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
   13466                                      const TargetInstrInfo *TII) {
   13467   DebugLoc DL = MI->getDebugLoc();
   13468 
   13469   const BasicBlock *BB = MBB->getBasicBlock();
   13470   MachineFunction::iterator I = MBB;
   13471   ++I;
   13472 
   13473   // For the v = xbegin(), we generate
   13474   //
   13475   // thisMBB:
   13476   //  xbegin sinkMBB
   13477   //
   13478   // mainMBB:
   13479   //  eax = -1
   13480   //
   13481   // sinkMBB:
   13482   //  v = eax
   13483 
   13484   MachineBasicBlock *thisMBB = MBB;
   13485   MachineFunction *MF = MBB->getParent();
   13486   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   13487   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   13488   MF->insert(I, mainMBB);
   13489   MF->insert(I, sinkMBB);
   13490 
   13491   // Transfer the remainder of BB and its successor edges to sinkMBB.
   13492   sinkMBB->splice(sinkMBB->begin(), MBB,
   13493                   llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
   13494   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   13495 
   13496   // thisMBB:
   13497   //  xbegin sinkMBB
   13498   //  # fallthrough to mainMBB
   13499   //  # abortion to sinkMBB
   13500   BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
   13501   thisMBB->addSuccessor(mainMBB);
   13502   thisMBB->addSuccessor(sinkMBB);
   13503 
   13504   // mainMBB:
   13505   //  EAX = -1
   13506   BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
   13507   mainMBB->addSuccessor(sinkMBB);
   13508 
   13509   // sinkMBB:
   13510   // EAX is live into the sinkMBB
   13511   sinkMBB->addLiveIn(X86::EAX);
   13512   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   13513           TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
   13514     .addReg(X86::EAX);
   13515 
   13516   MI->eraseFromParent();
   13517   return sinkMBB;
   13518 }
   13519 
   13520 // Get CMPXCHG opcode for the specified data type.
   13521 static unsigned getCmpXChgOpcode(EVT VT) {
   13522   switch (VT.getSimpleVT().SimpleTy) {
   13523   case MVT::i8:  return X86::LCMPXCHG8;
   13524   case MVT::i16: return X86::LCMPXCHG16;
   13525   case MVT::i32: return X86::LCMPXCHG32;
   13526   case MVT::i64: return X86::LCMPXCHG64;
   13527   default:
   13528     break;
   13529   }
   13530   llvm_unreachable("Invalid operand size!");
   13531 }
   13532 
   13533 // Get LOAD opcode for the specified data type.
   13534 static unsigned getLoadOpcode(EVT VT) {
   13535   switch (VT.getSimpleVT().SimpleTy) {
   13536   case MVT::i8:  return X86::MOV8rm;
   13537   case MVT::i16: return X86::MOV16rm;
   13538   case MVT::i32: return X86::MOV32rm;
   13539   case MVT::i64: return X86::MOV64rm;
   13540   default:
   13541     break;
   13542   }
   13543   llvm_unreachable("Invalid operand size!");
   13544 }
   13545 
   13546 // Get opcode of the non-atomic one from the specified atomic instruction.
   13547 static unsigned getNonAtomicOpcode(unsigned Opc) {
   13548   switch (Opc) {
   13549   case X86::ATOMAND8:  return X86::AND8rr;
   13550   case X86::ATOMAND16: return X86::AND16rr;
   13551   case X86::ATOMAND32: return X86::AND32rr;
   13552   case X86::ATOMAND64: return X86::AND64rr;
   13553   case X86::ATOMOR8:   return X86::OR8rr;
   13554   case X86::ATOMOR16:  return X86::OR16rr;
   13555   case X86::ATOMOR32:  return X86::OR32rr;
   13556   case X86::ATOMOR64:  return X86::OR64rr;
   13557   case X86::ATOMXOR8:  return X86::XOR8rr;
   13558   case X86::ATOMXOR16: return X86::XOR16rr;
   13559   case X86::ATOMXOR32: return X86::XOR32rr;
   13560   case X86::ATOMXOR64: return X86::XOR64rr;
   13561   }
   13562   llvm_unreachable("Unhandled atomic-load-op opcode!");
   13563 }
   13564 
   13565 // Get opcode of the non-atomic one from the specified atomic instruction with
   13566 // extra opcode.
   13567 static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
   13568                                                unsigned &ExtraOpc) {
   13569   switch (Opc) {
   13570   case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
   13571   case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
   13572   case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
   13573   case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
   13574   case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
   13575   case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
   13576   case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
   13577   case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
   13578   case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
   13579   case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
   13580   case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
   13581   case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
   13582   case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
   13583   case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
   13584   case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
   13585   case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
   13586   case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
   13587   case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
   13588   case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
   13589   case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
   13590   }
   13591   llvm_unreachable("Unhandled atomic-load-op opcode!");
   13592 }
   13593 
   13594 // Get opcode of the non-atomic one from the specified atomic instruction for
   13595 // 64-bit data type on 32-bit target.
   13596 static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
   13597   switch (Opc) {
   13598   case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
   13599   case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
   13600   case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
   13601   case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
   13602   case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
   13603   case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
   13604   case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
   13605   case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
   13606   case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
   13607   case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
   13608   }
   13609   llvm_unreachable("Unhandled atomic-load-op opcode!");
   13610 }
   13611 
   13612 // Get opcode of the non-atomic one from the specified atomic instruction for
   13613 // 64-bit data type on 32-bit target with extra opcode.
   13614 static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
   13615                                                    unsigned &HiOpc,
   13616                                                    unsigned &ExtraOpc) {
   13617   switch (Opc) {
   13618   case X86::ATOMNAND6432:
   13619     ExtraOpc = X86::NOT32r;
   13620     HiOpc = X86::AND32rr;
   13621     return X86::AND32rr;
   13622   }
   13623   llvm_unreachable("Unhandled atomic-load-op opcode!");
   13624 }
   13625 
   13626 // Get pseudo CMOV opcode from the specified data type.
   13627 static unsigned getPseudoCMOVOpc(EVT VT) {
   13628   switch (VT.getSimpleVT().SimpleTy) {
   13629   case MVT::i8:  return X86::CMOV_GR8;
   13630   case MVT::i16: return X86::CMOV_GR16;
   13631   case MVT::i32: return X86::CMOV_GR32;
   13632   default:
   13633     break;
   13634   }
   13635   llvm_unreachable("Unknown CMOV opcode!");
   13636 }
   13637 
   13638 // EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
   13639 // They will be translated into a spin-loop or compare-exchange loop from
   13640 //
   13641 //    ...
   13642 //    dst = atomic-fetch-op MI.addr, MI.val
   13643 //    ...
   13644 //
   13645 // to
   13646 //
   13647 //    ...
   13648 //    t1 = LOAD MI.addr
   13649 // loop:
   13650 //    t4 = phi(t1, t3 / loop)
   13651 //    t2 = OP MI.val, t4
   13652 //    EAX = t4
   13653 //    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
   13654 //    t3 = EAX
   13655 //    JNE loop
   13656 // sink:
   13657 //    dst = t3
   13658 //    ...
   13659 MachineBasicBlock *
   13660 X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
   13661                                        MachineBasicBlock *MBB) const {
   13662   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   13663   DebugLoc DL = MI->getDebugLoc();
   13664 
   13665   MachineFunction *MF = MBB->getParent();
   13666   MachineRegisterInfo &MRI = MF->getRegInfo();
   13667 
   13668   const BasicBlock *BB = MBB->getBasicBlock();
   13669   MachineFunction::iterator I = MBB;
   13670   ++I;
   13671 
   13672   assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
   13673          "Unexpected number of operands");
   13674 
   13675   assert(MI->hasOneMemOperand() &&
   13676          "Expected atomic-load-op to have one memoperand");
   13677 
   13678   // Memory Reference
   13679   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   13680   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   13681 
   13682   unsigned DstReg, SrcReg;
   13683   unsigned MemOpndSlot;
   13684 
   13685   unsigned CurOp = 0;
   13686 
   13687   DstReg = MI->getOperand(CurOp++).getReg();
   13688   MemOpndSlot = CurOp;
   13689   CurOp += X86::AddrNumOperands;
   13690   SrcReg = MI->getOperand(CurOp++).getReg();
   13691 
   13692   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   13693   MVT::SimpleValueType VT = *RC->vt_begin();
   13694   unsigned t1 = MRI.createVirtualRegister(RC);
   13695   unsigned t2 = MRI.createVirtualRegister(RC);
   13696   unsigned t3 = MRI.createVirtualRegister(RC);
   13697   unsigned t4 = MRI.createVirtualRegister(RC);
   13698   unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
   13699 
   13700   unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
   13701   unsigned LOADOpc = getLoadOpcode(VT);
   13702 
   13703   // For the atomic load-arith operator, we generate
   13704   //
   13705   //  thisMBB:
   13706   //    t1 = LOAD [MI.addr]
   13707   //  mainMBB:
   13708   //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
   13709   //    t1 = OP MI.val, EAX
   13710   //    EAX = t4
   13711   //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
   13712   //    t3 = EAX
   13713   //    JNE mainMBB
   13714   //  sinkMBB:
   13715   //    dst = t3
   13716 
   13717   MachineBasicBlock *thisMBB = MBB;
   13718   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   13719   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   13720   MF->insert(I, mainMBB);
   13721   MF->insert(I, sinkMBB);
   13722 
   13723   MachineInstrBuilder MIB;
   13724 
   13725   // Transfer the remainder of BB and its successor edges to sinkMBB.
   13726   sinkMBB->splice(sinkMBB->begin(), MBB,
   13727                   llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
   13728   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   13729 
   13730   // thisMBB:
   13731   MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
   13732   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   13733     MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
   13734     if (NewMO.isReg())
   13735       NewMO.setIsKill(false);
   13736     MIB.addOperand(NewMO);
   13737   }
   13738   for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
   13739     unsigned flags = (*MMOI)->getFlags();
   13740     flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
   13741     MachineMemOperand *MMO =
   13742       MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
   13743                                (*MMOI)->getSize(),
   13744                                (*MMOI)->getBaseAlignment(),
   13745                                (*MMOI)->getTBAAInfo(),
   13746                                (*MMOI)->getRanges());
   13747     MIB.addMemOperand(MMO);
   13748   }
   13749 
   13750   thisMBB->addSuccessor(mainMBB);
   13751 
   13752   // mainMBB:
   13753   MachineBasicBlock *origMainMBB = mainMBB;
   13754 
   13755   // Add a PHI.
   13756   MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
   13757                         .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
   13758 
   13759   unsigned Opc = MI->getOpcode();
   13760   switch (Opc) {
   13761   default:
   13762     llvm_unreachable("Unhandled atomic-load-op opcode!");
   13763   case X86::ATOMAND8:
   13764   case X86::ATOMAND16:
   13765   case X86::ATOMAND32:
   13766   case X86::ATOMAND64:
   13767   case X86::ATOMOR8:
   13768   case X86::ATOMOR16:
   13769   case X86::ATOMOR32:
   13770   case X86::ATOMOR64:
   13771   case X86::ATOMXOR8:
   13772   case X86::ATOMXOR16:
   13773   case X86::ATOMXOR32:
   13774   case X86::ATOMXOR64: {
   13775     unsigned ARITHOpc = getNonAtomicOpcode(Opc);
   13776     BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
   13777       .addReg(t4);
   13778     break;
   13779   }
   13780   case X86::ATOMNAND8:
   13781   case X86::ATOMNAND16:
   13782   case X86::ATOMNAND32:
   13783   case X86::ATOMNAND64: {
   13784     unsigned Tmp = MRI.createVirtualRegister(RC);
   13785     unsigned NOTOpc;
   13786     unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
   13787     BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
   13788       .addReg(t4);
   13789     BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
   13790     break;
   13791   }
   13792   case X86::ATOMMAX8:
   13793   case X86::ATOMMAX16:
   13794   case X86::ATOMMAX32:
   13795   case X86::ATOMMAX64:
   13796   case X86::ATOMMIN8:
   13797   case X86::ATOMMIN16:
   13798   case X86::ATOMMIN32:
   13799   case X86::ATOMMIN64:
   13800   case X86::ATOMUMAX8:
   13801   case X86::ATOMUMAX16:
   13802   case X86::ATOMUMAX32:
   13803   case X86::ATOMUMAX64:
   13804   case X86::ATOMUMIN8:
   13805   case X86::ATOMUMIN16:
   13806   case X86::ATOMUMIN32:
   13807   case X86::ATOMUMIN64: {
   13808     unsigned CMPOpc;
   13809     unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
   13810 
   13811     BuildMI(mainMBB, DL, TII->get(CMPOpc))
   13812       .addReg(SrcReg)
   13813       .addReg(t4);
   13814 
   13815     if (Subtarget->hasCMov()) {
   13816       if (VT != MVT::i8) {
   13817         // Native support
   13818         BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
   13819           .addReg(SrcReg)
   13820           .addReg(t4);
   13821       } else {
   13822         // Promote i8 to i32 to use CMOV32
   13823         const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
   13824         const TargetRegisterClass *RC32 =
   13825           TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
   13826         unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
   13827         unsigned AccReg32 = MRI.createVirtualRegister(RC32);
   13828         unsigned Tmp = MRI.createVirtualRegister(RC32);
   13829 
   13830         unsigned Undef = MRI.createVirtualRegister(RC32);
   13831         BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
   13832 
   13833         BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
   13834           .addReg(Undef)
   13835           .addReg(SrcReg)
   13836           .addImm(X86::sub_8bit);
   13837         BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
   13838           .addReg(Undef)
   13839           .addReg(t4)
   13840           .addImm(X86::sub_8bit);
   13841 
   13842         BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
   13843           .addReg(SrcReg32)
   13844           .addReg(AccReg32);
   13845 
   13846         BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
   13847           .addReg(Tmp, 0, X86::sub_8bit);
   13848       }
   13849     } else {
   13850       // Use pseudo select and lower them.
   13851       assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
   13852              "Invalid atomic-load-op transformation!");
   13853       unsigned SelOpc = getPseudoCMOVOpc(VT);
   13854       X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
   13855       assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
   13856       MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
   13857               .addReg(SrcReg).addReg(t4)
   13858               .addImm(CC);
   13859       mainMBB = EmitLoweredSelect(MIB, mainMBB);
   13860       // Replace the original PHI node as mainMBB is changed after CMOV
   13861       // lowering.
   13862       BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
   13863         .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
   13864       Phi->eraseFromParent();
   13865     }
   13866     break;
   13867   }
   13868   }
   13869 
   13870   // Copy PhyReg back from virtual register.
   13871   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
   13872     .addReg(t4);
   13873 
   13874   MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
   13875   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   13876     MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
   13877     if (NewMO.isReg())
   13878       NewMO.setIsKill(false);
   13879     MIB.addOperand(NewMO);
   13880   }
   13881   MIB.addReg(t2);
   13882   MIB.setMemRefs(MMOBegin, MMOEnd);
   13883 
   13884   // Copy PhyReg back to virtual register.
   13885   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
   13886     .addReg(PhyReg);
   13887 
   13888   BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
   13889 
   13890   mainMBB->addSuccessor(origMainMBB);
   13891   mainMBB->addSuccessor(sinkMBB);
   13892 
   13893   // sinkMBB:
   13894   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   13895           TII->get(TargetOpcode::COPY), DstReg)
   13896     .addReg(t3);
   13897 
   13898   MI->eraseFromParent();
   13899   return sinkMBB;
   13900 }
   13901 
   13902 // EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
   13903 // instructions. They will be translated into a spin-loop or compare-exchange
   13904 // loop from
   13905 //
   13906 //    ...
   13907 //    dst = atomic-fetch-op MI.addr, MI.val
   13908 //    ...
   13909 //
   13910 // to
   13911 //
   13912 //    ...
   13913 //    t1L = LOAD [MI.addr + 0]
   13914 //    t1H = LOAD [MI.addr + 4]
   13915 // loop:
   13916 //    t4L = phi(t1L, t3L / loop)
   13917 //    t4H = phi(t1H, t3H / loop)
   13918 //    t2L = OP MI.val.lo, t4L
   13919 //    t2H = OP MI.val.hi, t4H
   13920 //    EAX = t4L
   13921 //    EDX = t4H
   13922 //    EBX = t2L
   13923 //    ECX = t2H
   13924 //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
   13925 //    t3L = EAX
   13926 //    t3H = EDX
   13927 //    JNE loop
   13928 // sink:
   13929 //    dstL = t3L
   13930 //    dstH = t3H
   13931 //    ...
   13932 MachineBasicBlock *
   13933 X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
   13934                                            MachineBasicBlock *MBB) const {
   13935   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   13936   DebugLoc DL = MI->getDebugLoc();
   13937 
   13938   MachineFunction *MF = MBB->getParent();
   13939   MachineRegisterInfo &MRI = MF->getRegInfo();
   13940 
   13941   const BasicBlock *BB = MBB->getBasicBlock();
   13942   MachineFunction::iterator I = MBB;
   13943   ++I;
   13944 
   13945   assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
   13946          "Unexpected number of operands");
   13947 
   13948   assert(MI->hasOneMemOperand() &&
   13949          "Expected atomic-load-op32 to have one memoperand");
   13950 
   13951   // Memory Reference
   13952   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   13953   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   13954 
   13955   unsigned DstLoReg, DstHiReg;
   13956   unsigned SrcLoReg, SrcHiReg;
   13957   unsigned MemOpndSlot;
   13958 
   13959   unsigned CurOp = 0;
   13960 
   13961   DstLoReg = MI->getOperand(CurOp++).getReg();
   13962   DstHiReg = MI->getOperand(CurOp++).getReg();
   13963   MemOpndSlot = CurOp;
   13964   CurOp += X86::AddrNumOperands;
   13965   SrcLoReg = MI->getOperand(CurOp++).getReg();
   13966   SrcHiReg = MI->getOperand(CurOp++).getReg();
   13967 
   13968   const TargetRegisterClass *RC = &X86::GR32RegClass;
   13969   const TargetRegisterClass *RC8 = &X86::GR8RegClass;
   13970 
   13971   unsigned t1L = MRI.createVirtualRegister(RC);
   13972   unsigned t1H = MRI.createVirtualRegister(RC);
   13973   unsigned t2L = MRI.createVirtualRegister(RC);
   13974   unsigned t2H = MRI.createVirtualRegister(RC);
   13975   unsigned t3L = MRI.createVirtualRegister(RC);
   13976   unsigned t3H = MRI.createVirtualRegister(RC);
   13977   unsigned t4L = MRI.createVirtualRegister(RC);
   13978   unsigned t4H = MRI.createVirtualRegister(RC);
   13979 
   13980   unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
   13981   unsigned LOADOpc = X86::MOV32rm;
   13982 
   13983   // For the atomic load-arith operator, we generate
   13984   //
   13985   //  thisMBB:
   13986   //    t1L = LOAD [MI.addr + 0]
   13987   //    t1H = LOAD [MI.addr + 4]
   13988   //  mainMBB:
   13989   //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
   13990   //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
   13991   //    t2L = OP MI.val.lo, t4L
   13992   //    t2H = OP MI.val.hi, t4H
   13993   //    EBX = t2L
   13994   //    ECX = t2H
   13995   //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
   13996   //    t3L = EAX
   13997   //    t3H = EDX
   13998   //    JNE loop
   13999   //  sinkMBB:
   14000   //    dstL = t3L
   14001   //    dstH = t3H
   14002 
   14003   MachineBasicBlock *thisMBB = MBB;
   14004   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   14005   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   14006   MF->insert(I, mainMBB);
   14007   MF->insert(I, sinkMBB);
   14008 
   14009   MachineInstrBuilder MIB;
   14010 
   14011   // Transfer the remainder of BB and its successor edges to sinkMBB.
   14012   sinkMBB->splice(sinkMBB->begin(), MBB,
   14013                   llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
   14014   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   14015 
   14016   // thisMBB:
   14017   // Lo
   14018   MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
   14019   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   14020     MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
   14021     if (NewMO.isReg())
   14022       NewMO.setIsKill(false);
   14023     MIB.addOperand(NewMO);
   14024   }
   14025   for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
   14026     unsigned flags = (*MMOI)->getFlags();
   14027     flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
   14028     MachineMemOperand *MMO =
   14029       MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
   14030                                (*MMOI)->getSize(),
   14031                                (*MMOI)->getBaseAlignment(),
   14032                                (*MMOI)->getTBAAInfo(),
   14033                                (*MMOI)->getRanges());
   14034     MIB.addMemOperand(MMO);
   14035   };
   14036   MachineInstr *LowMI = MIB;
   14037 
   14038   // Hi
   14039   MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
   14040   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   14041     if (i == X86::AddrDisp) {
   14042       MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
   14043     } else {
   14044       MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
   14045       if (NewMO.isReg())
   14046         NewMO.setIsKill(false);
   14047       MIB.addOperand(NewMO);
   14048     }
   14049   }
   14050   MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
   14051 
   14052   thisMBB->addSuccessor(mainMBB);
   14053 
   14054   // mainMBB:
   14055   MachineBasicBlock *origMainMBB = mainMBB;
   14056 
   14057   // Add PHIs.
   14058   MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
   14059                         .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
   14060   MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
   14061                         .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
   14062 
   14063   unsigned Opc = MI->getOpcode();
   14064   switch (Opc) {
   14065   default:
   14066     llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
   14067   case X86::ATOMAND6432:
   14068   case X86::ATOMOR6432:
   14069   case X86::ATOMXOR6432:
   14070   case X86::ATOMADD6432:
   14071   case X86::ATOMSUB6432: {
   14072     unsigned HiOpc;
   14073     unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
   14074     BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
   14075       .addReg(SrcLoReg);
   14076     BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
   14077       .addReg(SrcHiReg);
   14078     break;
   14079   }
   14080   case X86::ATOMNAND6432: {
   14081     unsigned HiOpc, NOTOpc;
   14082     unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
   14083     unsigned TmpL = MRI.createVirtualRegister(RC);
   14084     unsigned TmpH = MRI.createVirtualRegister(RC);
   14085     BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
   14086       .addReg(t4L);
   14087     BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
   14088       .addReg(t4H);
   14089     BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
   14090     BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
   14091     break;
   14092   }
   14093   case X86::ATOMMAX6432:
   14094   case X86::ATOMMIN6432:
   14095   case X86::ATOMUMAX6432:
   14096   case X86::ATOMUMIN6432: {
   14097     unsigned HiOpc;
   14098     unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
   14099     unsigned cL = MRI.createVirtualRegister(RC8);
   14100     unsigned cH = MRI.createVirtualRegister(RC8);
   14101     unsigned cL32 = MRI.createVirtualRegister(RC);
   14102     unsigned cH32 = MRI.createVirtualRegister(RC);
   14103     unsigned cc = MRI.createVirtualRegister(RC);
   14104     // cl := cmp src_lo, lo
   14105     BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
   14106       .addReg(SrcLoReg).addReg(t4L);
   14107     BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
   14108     BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
   14109     // ch := cmp src_hi, hi
   14110     BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
   14111       .addReg(SrcHiReg).addReg(t4H);
   14112     BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
   14113     BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
   14114     // cc := if (src_hi == hi) ? cl : ch;
   14115     if (Subtarget->hasCMov()) {
   14116       BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
   14117         .addReg(cH32).addReg(cL32);
   14118     } else {
   14119       MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
   14120               .addReg(cH32).addReg(cL32)
   14121               .addImm(X86::COND_E);
   14122       mainMBB = EmitLoweredSelect(MIB, mainMBB);
   14123     }
   14124     BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
   14125     if (Subtarget->hasCMov()) {
   14126       BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
   14127         .addReg(SrcLoReg).addReg(t4L);
   14128       BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
   14129         .addReg(SrcHiReg).addReg(t4H);
   14130     } else {
   14131       MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
   14132               .addReg(SrcLoReg).addReg(t4L)
   14133               .addImm(X86::COND_NE);
   14134       mainMBB = EmitLoweredSelect(MIB, mainMBB);
   14135       // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
   14136       // 2nd CMOV lowering.
   14137       mainMBB->addLiveIn(X86::EFLAGS);
   14138       MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
   14139               .addReg(SrcHiReg).addReg(t4H)
   14140               .addImm(X86::COND_NE);
   14141       mainMBB = EmitLoweredSelect(MIB, mainMBB);
   14142       // Replace the original PHI node as mainMBB is changed after CMOV
   14143       // lowering.
   14144       BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
   14145         .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
   14146       BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
   14147         .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
   14148       PhiL->eraseFromParent();
   14149       PhiH->eraseFromParent();
   14150     }
   14151     break;
   14152   }
   14153   case X86::ATOMSWAP6432: {
   14154     unsigned HiOpc;
   14155     unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
   14156     BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
   14157     BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
   14158     break;
   14159   }
   14160   }
   14161 
   14162   // Copy EDX:EAX back from HiReg:LoReg
   14163   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
   14164   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
   14165   // Copy ECX:EBX from t1H:t1L
   14166   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
   14167   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
   14168 
   14169   MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
   14170   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   14171     MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
   14172     if (NewMO.isReg())
   14173       NewMO.setIsKill(false);
   14174     MIB.addOperand(NewMO);
   14175   }
   14176   MIB.setMemRefs(MMOBegin, MMOEnd);
   14177 
   14178   // Copy EDX:EAX back to t3H:t3L
   14179   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
   14180   BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
   14181 
   14182   BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
   14183 
   14184   mainMBB->addSuccessor(origMainMBB);
   14185   mainMBB->addSuccessor(sinkMBB);
   14186 
   14187   // sinkMBB:
   14188   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   14189           TII->get(TargetOpcode::COPY), DstLoReg)
   14190     .addReg(t3L);
   14191   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   14192           TII->get(TargetOpcode::COPY), DstHiReg)
   14193     .addReg(t3H);
   14194 
   14195   MI->eraseFromParent();
   14196   return sinkMBB;
   14197 }
   14198 
   14199 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
   14200 // or XMM0_V32I8 in AVX all of this code can be replaced with that
   14201 // in the .td file.
   14202 static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
   14203                                        const TargetInstrInfo *TII) {
   14204   unsigned Opc;
   14205   switch (MI->getOpcode()) {
   14206   default: llvm_unreachable("illegal opcode!");
   14207   case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
   14208   case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
   14209   case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
   14210   case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
   14211   case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
   14212   case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
   14213   case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
   14214   case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
   14215   }
   14216 
   14217   DebugLoc dl = MI->getDebugLoc();
   14218   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
   14219 
   14220   unsigned NumArgs = MI->getNumOperands();
   14221   for (unsigned i = 1; i < NumArgs; ++i) {
   14222     MachineOperand &Op = MI->getOperand(i);
   14223     if (!(Op.isReg() && Op.isImplicit()))
   14224       MIB.addOperand(Op);
   14225   }
   14226   if (MI->hasOneMemOperand())
   14227     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   14228 
   14229   BuildMI(*BB, MI, dl,
   14230     TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
   14231     .addReg(X86::XMM0);
   14232 
   14233   MI->eraseFromParent();
   14234   return BB;
   14235 }
   14236 
   14237 // FIXME: Custom handling because TableGen doesn't support multiple implicit
   14238 // defs in an instruction pattern
   14239 static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
   14240                                        const TargetInstrInfo *TII) {
   14241   unsigned Opc;
   14242   switch (MI->getOpcode()) {
   14243   default: llvm_unreachable("illegal opcode!");
   14244   case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
   14245   case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
   14246   case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
   14247   case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
   14248   case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
   14249   case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
   14250   case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
   14251   case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
   14252   }
   14253 
   14254   DebugLoc dl = MI->getDebugLoc();
   14255   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
   14256 
   14257   unsigned NumArgs = MI->getNumOperands(); // remove the results
   14258   for (unsigned i = 1; i < NumArgs; ++i) {
   14259     MachineOperand &Op = MI->getOperand(i);
   14260     if (!(Op.isReg() && Op.isImplicit()))
   14261       MIB.addOperand(Op);
   14262   }
   14263   if (MI->hasOneMemOperand())
   14264     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   14265 
   14266   BuildMI(*BB, MI, dl,
   14267     TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
   14268     .addReg(X86::ECX);
   14269 
   14270   MI->eraseFromParent();
   14271   return BB;
   14272 }
   14273 
   14274 static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
   14275                                        const TargetInstrInfo *TII,
   14276                                        const X86Subtarget* Subtarget) {
   14277   DebugLoc dl = MI->getDebugLoc();
   14278 
   14279   // Address into RAX/EAX, other two args into ECX, EDX.
   14280   unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   14281   unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   14282   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
   14283   for (int i = 0; i < X86::AddrNumOperands; ++i)
   14284     MIB.addOperand(MI->getOperand(i));
   14285 
   14286   unsigned ValOps = X86::AddrNumOperands;
   14287   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   14288     .addReg(MI->getOperand(ValOps).getReg());
   14289   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
   14290     .addReg(MI->getOperand(ValOps+1).getReg());
   14291 
   14292   // The instruction doesn't actually take any operands though.
   14293   BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
   14294 
   14295   MI->eraseFromParent(); // The pseudo is gone now.
   14296   return BB;
   14297 }
   14298 
   14299 MachineBasicBlock *
   14300 X86TargetLowering::EmitVAARG64WithCustomInserter(
   14301                    MachineInstr *MI,
   14302                    MachineBasicBlock *MBB) const {
   14303   // Emit va_arg instruction on X86-64.
   14304 
   14305   // Operands to this pseudo-instruction:
   14306   // 0  ) Output        : destination address (reg)
   14307   // 1-5) Input         : va_list address (addr, i64mem)
   14308   // 6  ) ArgSize       : Size (in bytes) of vararg type
   14309   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
   14310   // 8  ) Align         : Alignment of type
   14311   // 9  ) EFLAGS (implicit-def)
   14312 
   14313   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
   14314   assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
   14315 
   14316   unsigned DestReg = MI->getOperand(0).getReg();
   14317   MachineOperand &Base = MI->getOperand(1);
   14318   MachineOperand &Scale = MI->getOperand(2);
   14319   MachineOperand &Index = MI->getOperand(3);
   14320   MachineOperand &Disp = MI->getOperand(4);
   14321   MachineOperand &Segment = MI->getOperand(5);
   14322   unsigned ArgSize = MI->getOperand(6).getImm();
   14323   unsigned ArgMode = MI->getOperand(7).getImm();
   14324   unsigned Align = MI->getOperand(8).getImm();
   14325 
   14326   // Memory Reference
   14327   assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
   14328   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   14329   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   14330 
   14331   // Machine Information
   14332   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   14333   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   14334   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
   14335   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
   14336   DebugLoc DL = MI->getDebugLoc();
   14337 
   14338   // struct va_list {
   14339   //   i32   gp_offset
   14340   //   i32   fp_offset
   14341   //   i64   overflow_area (address)
   14342   //   i64   reg_save_area (address)
   14343   // }
   14344   // sizeof(va_list) = 24
   14345   // alignment(va_list) = 8
   14346 
   14347   unsigned TotalNumIntRegs = 6;
   14348   unsigned TotalNumXMMRegs = 8;
   14349   bool UseGPOffset = (ArgMode == 1);
   14350   bool UseFPOffset = (ArgMode == 2);
   14351   unsigned MaxOffset = TotalNumIntRegs * 8 +
   14352                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
   14353 
   14354   /* Align ArgSize to a multiple of 8 */
   14355   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
   14356   bool NeedsAlign = (Align > 8);
   14357 
   14358   MachineBasicBlock *thisMBB = MBB;
   14359   MachineBasicBlock *overflowMBB;
   14360   MachineBasicBlock *offsetMBB;
   14361   MachineBasicBlock *endMBB;
   14362 
   14363   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
   14364   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
   14365   unsigned OffsetReg = 0;
   14366 
   14367   if (!UseGPOffset && !UseFPOffset) {
   14368     // If we only pull from the overflow region, we don't create a branch.
   14369     // We don't need to alter control flow.
   14370     OffsetDestReg = 0; // unused
   14371     OverflowDestReg = DestReg;
   14372 
   14373     offsetMBB = NULL;
   14374     overflowMBB = thisMBB;
   14375     endMBB = thisMBB;
   14376   } else {
   14377     // First emit code to check if gp_offset (or fp_offset) is below the bound.
   14378     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
   14379     // If not, pull from overflow_area. (branch to overflowMBB)
   14380     //
   14381     //       thisMBB
   14382     //         |     .
   14383     //         |        .
   14384     //     offsetMBB   overflowMBB
   14385     //         |        .
   14386     //         |     .
   14387     //        endMBB
   14388 
   14389     // Registers for the PHI in endMBB
   14390     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
   14391     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
   14392 
   14393     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   14394     MachineFunction *MF = MBB->getParent();
   14395     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   14396     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   14397     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   14398 
   14399     MachineFunction::iterator MBBIter = MBB;
   14400     ++MBBIter;
   14401 
   14402     // Insert the new basic blocks
   14403     MF->insert(MBBIter, offsetMBB);
   14404     MF->insert(MBBIter, overflowMBB);
   14405     MF->insert(MBBIter, endMBB);
   14406 
   14407     // Transfer the remainder of MBB and its successor edges to endMBB.
   14408     endMBB->splice(endMBB->begin(), thisMBB,
   14409                     llvm::next(MachineBasicBlock::iterator(MI)),
   14410                     thisMBB->end());
   14411     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   14412 
   14413     // Make offsetMBB and overflowMBB successors of thisMBB
   14414     thisMBB->addSuccessor(offsetMBB);
   14415     thisMBB->addSuccessor(overflowMBB);
   14416 
   14417     // endMBB is a successor of both offsetMBB and overflowMBB
   14418     offsetMBB->addSuccessor(endMBB);
   14419     overflowMBB->addSuccessor(endMBB);
   14420 
   14421     // Load the offset value into a register
   14422     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   14423     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
   14424       .addOperand(Base)
   14425       .addOperand(Scale)
   14426       .addOperand(Index)
   14427       .addDisp(Disp, UseFPOffset ? 4 : 0)
   14428       .addOperand(Segment)
   14429       .setMemRefs(MMOBegin, MMOEnd);
   14430 
   14431     // Check if there is enough room left to pull this argument.
   14432     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
   14433       .addReg(OffsetReg)
   14434       .addImm(MaxOffset + 8 - ArgSizeA8);
   14435 
   14436     // Branch to "overflowMBB" if offset >= max
   14437     // Fall through to "offsetMBB" otherwise
   14438     BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
   14439       .addMBB(overflowMBB);
   14440   }
   14441 
   14442   // In offsetMBB, emit code to use the reg_save_area.
   14443   if (offsetMBB) {
   14444     assert(OffsetReg != 0);
   14445 
   14446     // Read the reg_save_area address.
   14447     unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
   14448     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
   14449       .addOperand(Base)
   14450       .addOperand(Scale)
   14451       .addOperand(Index)
   14452       .addDisp(Disp, 16)
   14453       .addOperand(Segment)
   14454       .setMemRefs(MMOBegin, MMOEnd);
   14455 
   14456     // Zero-extend the offset
   14457     unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
   14458       BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
   14459         .addImm(0)
   14460         .addReg(OffsetReg)
   14461         .addImm(X86::sub_32bit);
   14462 
   14463     // Add the offset to the reg_save_area to get the final address.
   14464     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
   14465       .addReg(OffsetReg64)
   14466       .addReg(RegSaveReg);
   14467 
   14468     // Compute the offset for the next argument
   14469     unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   14470     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
   14471       .addReg(OffsetReg)
   14472       .addImm(UseFPOffset ? 16 : 8);
   14473 
   14474     // Store it back into the va_list.
   14475     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
   14476       .addOperand(Base)
   14477       .addOperand(Scale)
   14478       .addOperand(Index)
   14479       .addDisp(Disp, UseFPOffset ? 4 : 0)
   14480       .addOperand(Segment)
   14481       .addReg(NextOffsetReg)
   14482       .setMemRefs(MMOBegin, MMOEnd);
   14483 
   14484     // Jump to endMBB
   14485     BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
   14486       .addMBB(endMBB);
   14487   }
   14488 
   14489   //
   14490   // Emit code to use overflow area
   14491   //
   14492 
   14493   // Load the overflow_area address into a register.
   14494   unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
   14495   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
   14496     .addOperand(Base)
   14497     .addOperand(Scale)
   14498     .addOperand(Index)
   14499     .addDisp(Disp, 8)
   14500     .addOperand(Segment)
   14501     .setMemRefs(MMOBegin, MMOEnd);
   14502 
   14503   // If we need to align it, do so. Otherwise, just copy the address
   14504   // to OverflowDestReg.
   14505   if (NeedsAlign) {
   14506     // Align the overflow address
   14507     assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
   14508     unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
   14509 
   14510     // aligned_addr = (addr + (align-1)) & ~(align-1)
   14511     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
   14512       .addReg(OverflowAddrReg)
   14513       .addImm(Align-1);
   14514 
   14515     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
   14516       .addReg(TmpReg)
   14517       .addImm(~(uint64_t)(Align-1));
   14518   } else {
   14519     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
   14520       .addReg(OverflowAddrReg);
   14521   }
   14522 
   14523   // Compute the next overflow address after this argument.
   14524   // (the overflow address should be kept 8-byte aligned)
   14525   unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
   14526   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
   14527     .addReg(OverflowDestReg)
   14528     .addImm(ArgSizeA8);
   14529 
   14530   // Store the new overflow address.
   14531   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
   14532     .addOperand(Base)
   14533     .addOperand(Scale)
   14534     .addOperand(Index)
   14535     .addDisp(Disp, 8)
   14536     .addOperand(Segment)
   14537     .addReg(NextAddrReg)
   14538     .setMemRefs(MMOBegin, MMOEnd);
   14539 
   14540   // If we branched, emit the PHI to the front of endMBB.
   14541   if (offsetMBB) {
   14542     BuildMI(*endMBB, endMBB->begin(), DL,
   14543             TII->get(X86::PHI), DestReg)
   14544       .addReg(OffsetDestReg).addMBB(offsetMBB)
   14545       .addReg(OverflowDestReg).addMBB(overflowMBB);
   14546   }
   14547 
   14548   // Erase the pseudo instruction
   14549   MI->eraseFromParent();
   14550 
   14551   return endMBB;
   14552 }
   14553 
   14554 MachineBasicBlock *
   14555 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
   14556                                                  MachineInstr *MI,
   14557                                                  MachineBasicBlock *MBB) const {
   14558   // Emit code to save XMM registers to the stack. The ABI says that the
   14559   // number of registers to save is given in %al, so it's theoretically
   14560   // possible to do an indirect jump trick to avoid saving all of them,
   14561   // however this code takes a simpler approach and just executes all
   14562   // of the stores if %al is non-zero. It's less code, and it's probably
   14563   // easier on the hardware branch predictor, and stores aren't all that
   14564   // expensive anyway.
   14565 
   14566   // Create the new basic blocks. One block contains all the XMM stores,
   14567   // and one block is the final destination regardless of whether any
   14568   // stores were performed.
   14569   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   14570   MachineFunction *F = MBB->getParent();
   14571   MachineFunction::iterator MBBIter = MBB;
   14572   ++MBBIter;
   14573   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
   14574   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
   14575   F->insert(MBBIter, XMMSaveMBB);
   14576   F->insert(MBBIter, EndMBB);
   14577 
   14578   // Transfer the remainder of MBB and its successor edges to EndMBB.
   14579   EndMBB->splice(EndMBB->begin(), MBB,
   14580                  llvm::next(MachineBasicBlock::iterator(MI)),
   14581                  MBB->end());
   14582   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
   14583 
   14584   // The original block will now fall through to the XMM save block.
   14585   MBB->addSuccessor(XMMSaveMBB);
   14586   // The XMMSaveMBB will fall through to the end block.
   14587   XMMSaveMBB->addSuccessor(EndMBB);
   14588 
   14589   // Now add the instructions.
   14590   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   14591   DebugLoc DL = MI->getDebugLoc();
   14592 
   14593   unsigned CountReg = MI->getOperand(0).getReg();
   14594   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
   14595   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
   14596 
   14597   if (!Subtarget->isTargetWin64()) {
   14598     // If %al is 0, branch around the XMM save block.
   14599     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
   14600     BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
   14601     MBB->addSuccessor(EndMBB);
   14602   }
   14603 
   14604   unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
   14605   // In the XMM save block, save all the XMM argument registers.
   14606   for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
   14607     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
   14608     MachineMemOperand *MMO =
   14609       F->getMachineMemOperand(
   14610           MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
   14611         MachineMemOperand::MOStore,
   14612         /*Size=*/16, /*Align=*/16);
   14613     BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
   14614       .addFrameIndex(RegSaveFrameIndex)
   14615       .addImm(/*Scale=*/1)
   14616       .addReg(/*IndexReg=*/0)
   14617       .addImm(/*Disp=*/Offset)
   14618       .addReg(/*Segment=*/0)
   14619       .addReg(MI->getOperand(i).getReg())
   14620       .addMemOperand(MMO);
   14621   }
   14622 
   14623   MI->eraseFromParent();   // The pseudo instruction is gone now.
   14624 
   14625   return EndMBB;
   14626 }
   14627 
   14628 // The EFLAGS operand of SelectItr might be missing a kill marker
   14629 // because there were multiple uses of EFLAGS, and ISel didn't know
   14630 // which to mark. Figure out whether SelectItr should have had a
   14631 // kill marker, and set it if it should. Returns the correct kill
   14632 // marker value.
   14633 static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
   14634                                      MachineBasicBlock* BB,
   14635                                      const TargetRegisterInfo* TRI) {
   14636   // Scan forward through BB for a use/def of EFLAGS.
   14637   MachineBasicBlock::iterator miI(llvm::next(SelectItr));
   14638   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
   14639     const MachineInstr& mi = *miI;
   14640     if (mi.readsRegister(X86::EFLAGS))
   14641       return false;
   14642     if (mi.definesRegister(X86::EFLAGS))
   14643       break; // Should have kill-flag - update below.
   14644   }
   14645 
   14646   // If we hit the end of the block, check whether EFLAGS is live into a
   14647   // successor.
   14648   if (miI == BB->end()) {
   14649     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
   14650                                           sEnd = BB->succ_end();
   14651          sItr != sEnd; ++sItr) {
   14652       MachineBasicBlock* succ = *sItr;
   14653       if (succ->isLiveIn(X86::EFLAGS))
   14654         return false;
   14655     }
   14656   }
   14657 
   14658   // We found a def, or hit the end of the basic block and EFLAGS wasn't live
   14659   // out. SelectMI should have a kill flag on EFLAGS.
   14660   SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
   14661   return true;
   14662 }
   14663 
   14664 MachineBasicBlock *
   14665 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   14666                                      MachineBasicBlock *BB) const {
   14667   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   14668   DebugLoc DL = MI->getDebugLoc();
   14669 
   14670   // To "insert" a SELECT_CC instruction, we actually have to insert the
   14671   // diamond control-flow pattern.  The incoming instruction knows the
   14672   // destination vreg to set, the condition code register to branch on, the
   14673   // true/false values to select between, and a branch opcode to use.
   14674   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   14675   MachineFunction::iterator It = BB;
   14676   ++It;
   14677 
   14678   //  thisMBB:
   14679   //  ...
   14680   //   TrueVal = ...
   14681   //   cmpTY ccX, r1, r2
   14682   //   bCC copy1MBB
   14683   //   fallthrough --> copy0MBB
   14684   MachineBasicBlock *thisMBB = BB;
   14685   MachineFunction *F = BB->getParent();
   14686   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   14687   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   14688   F->insert(It, copy0MBB);
   14689   F->insert(It, sinkMBB);
   14690 
   14691   // If the EFLAGS register isn't dead in the terminator, then claim that it's
   14692   // live into the sink and copy blocks.
   14693   const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
   14694   if (!MI->killsRegister(X86::EFLAGS) &&
   14695       !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
   14696     copy0MBB->addLiveIn(X86::EFLAGS);
   14697     sinkMBB->addLiveIn(X86::EFLAGS);
   14698   }
   14699 
   14700   // Transfer the remainder of BB and its successor edges to sinkMBB.
   14701   sinkMBB->splice(sinkMBB->begin(), BB,
   14702                   llvm::next(MachineBasicBlock::iterator(MI)),
   14703                   BB->end());
   14704   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   14705 
   14706   // Add the true and fallthrough blocks as its successors.
   14707   BB->addSuccessor(copy0MBB);
   14708   BB->addSuccessor(sinkMBB);
   14709 
   14710   // Create the conditional branch instruction.
   14711   unsigned Opc =
   14712     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
   14713   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
   14714 
   14715   //  copy0MBB:
   14716   //   %FalseValue = ...
   14717   //   # fallthrough to sinkMBB
   14718   copy0MBB->addSuccessor(sinkMBB);
   14719 
   14720   //  sinkMBB:
   14721   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   14722   //  ...
   14723   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   14724           TII->get(X86::PHI), MI->getOperand(0).getReg())
   14725     .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   14726     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   14727 
   14728   MI->eraseFromParent();   // The pseudo instruction is gone now.
   14729   return sinkMBB;
   14730 }
   14731 
   14732 MachineBasicBlock *
   14733 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
   14734                                         bool Is64Bit) const {
   14735   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   14736   DebugLoc DL = MI->getDebugLoc();
   14737   MachineFunction *MF = BB->getParent();
   14738   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   14739 
   14740   assert(getTargetMachine().Options.EnableSegmentedStacks);
   14741 
   14742   unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
   14743   unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
   14744 
   14745   // BB:
   14746   //  ... [Till the alloca]
   14747   // If stacklet is not large enough, jump to mallocMBB
   14748   //
   14749   // bumpMBB:
   14750   //  Allocate by subtracting from RSP
   14751   //  Jump to continueMBB
   14752   //
   14753   // mallocMBB:
   14754   //  Allocate by call to runtime
   14755   //
   14756   // continueMBB:
   14757   //  ...
   14758   //  [rest of original BB]
   14759   //
   14760 
   14761   MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   14762   MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   14763   MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   14764 
   14765   MachineRegisterInfo &MRI = MF->getRegInfo();
   14766   const TargetRegisterClass *AddrRegClass =
   14767     getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
   14768 
   14769   unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   14770     bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   14771     tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
   14772     SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
   14773     sizeVReg = MI->getOperand(1).getReg(),
   14774     physSPReg = Is64Bit ? X86::RSP : X86::ESP;
   14775 
   14776   MachineFunction::iterator MBBIter = BB;
   14777   ++MBBIter;
   14778 
   14779   MF->insert(MBBIter, bumpMBB);
   14780   MF->insert(MBBIter, mallocMBB);
   14781   MF->insert(MBBIter, continueMBB);
   14782 
   14783   continueMBB->splice(continueMBB->begin(), BB, llvm::next
   14784                       (MachineBasicBlock::iterator(MI)), BB->end());
   14785   continueMBB->transferSuccessorsAndUpdatePHIs(BB);
   14786 
   14787   // Add code to the main basic block to check if the stack limit has been hit,
   14788   // and if so, jump to mallocMBB otherwise to bumpMBB.
   14789   BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
   14790   BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
   14791     .addReg(tmpSPVReg).addReg(sizeVReg);
   14792   BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
   14793     .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
   14794     .addReg(SPLimitVReg);
   14795   BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
   14796 
   14797   // bumpMBB simply decreases the stack pointer, since we know the current
   14798   // stacklet has enough space.
   14799   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
   14800     .addReg(SPLimitVReg);
   14801   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
   14802     .addReg(SPLimitVReg);
   14803   BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   14804 
   14805   // Calls into a routine in libgcc to allocate more space from the heap.
   14806   const uint32_t *RegMask =
   14807     getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
   14808   if (Is64Bit) {
   14809     BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
   14810       .addReg(sizeVReg);
   14811     BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
   14812       .addExternalSymbol("__morestack_allocate_stack_space")
   14813       .addRegMask(RegMask)
   14814       .addReg(X86::RDI, RegState::Implicit)
   14815       .addReg(X86::RAX, RegState::ImplicitDefine);
   14816   } else {
   14817     BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
   14818       .addImm(12);
   14819     BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
   14820     BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
   14821       .addExternalSymbol("__morestack_allocate_stack_space")
   14822       .addRegMask(RegMask)
   14823       .addReg(X86::EAX, RegState::ImplicitDefine);
   14824   }
   14825 
   14826   if (!Is64Bit)
   14827     BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
   14828       .addImm(16);
   14829 
   14830   BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
   14831     .addReg(Is64Bit ? X86::RAX : X86::EAX);
   14832   BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   14833 
   14834   // Set up the CFG correctly.
   14835   BB->addSuccessor(bumpMBB);
   14836   BB->addSuccessor(mallocMBB);
   14837   mallocMBB->addSuccessor(continueMBB);
   14838   bumpMBB->addSuccessor(continueMBB);
   14839 
   14840   // Take care of the PHI nodes.
   14841   BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
   14842           MI->getOperand(0).getReg())
   14843     .addReg(mallocPtrVReg).addMBB(mallocMBB)
   14844     .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
   14845 
   14846   // Delete the original pseudo instruction.
   14847   MI->eraseFromParent();
   14848 
   14849   // And we're done.
   14850   return continueMBB;
   14851 }
   14852 
   14853 MachineBasicBlock *
   14854 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
   14855                                           MachineBasicBlock *BB) const {
   14856   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   14857   DebugLoc DL = MI->getDebugLoc();
   14858 
   14859   assert(!Subtarget->isTargetEnvMacho());
   14860 
   14861   // The lowering is pretty easy: we're just emitting the call to _alloca.  The
   14862   // non-trivial part is impdef of ESP.
   14863 
   14864   if (Subtarget->isTargetWin64()) {
   14865     if (Subtarget->isTargetCygMing()) {
   14866       // ___chkstk(Mingw64):
   14867       // Clobbers R10, R11, RAX and EFLAGS.
   14868       // Updates RSP.
   14869       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   14870         .addExternalSymbol("___chkstk")
   14871         .addReg(X86::RAX, RegState::Implicit)
   14872         .addReg(X86::RSP, RegState::Implicit)
   14873         .addReg(X86::RAX, RegState::Define | RegState::Implicit)
   14874         .addReg(X86::RSP, RegState::Define | RegState::Implicit)
   14875         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   14876     } else {
   14877       // __chkstk(MSVCRT): does not update stack pointer.
   14878       // Clobbers R10, R11 and EFLAGS.
   14879       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   14880         .addExternalSymbol("__chkstk")
   14881         .addReg(X86::RAX, RegState::Implicit)
   14882         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   14883       // RAX has the offset to be subtracted from RSP.
   14884       BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
   14885         .addReg(X86::RSP)
   14886         .addReg(X86::RAX);
   14887     }
   14888   } else {
   14889     const char *StackProbeSymbol =
   14890       Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
   14891 
   14892     BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
   14893       .addExternalSymbol(StackProbeSymbol)
   14894       .addReg(X86::EAX, RegState::Implicit)
   14895       .addReg(X86::ESP, RegState::Implicit)
   14896       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   14897       .addReg(X86::ESP, RegState::Define | RegState::Implicit)
   14898       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   14899   }
   14900 
   14901   MI->eraseFromParent();   // The pseudo instruction is gone now.
   14902   return BB;
   14903 }
   14904 
   14905 MachineBasicBlock *
   14906 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
   14907                                       MachineBasicBlock *BB) const {
   14908   // This is pretty easy.  We're taking the value that we received from
   14909   // our load from the relocation, sticking it in either RDI (x86-64)
   14910   // or EAX and doing an indirect call.  The return value will then
   14911   // be in the normal return register.
   14912   const X86InstrInfo *TII
   14913     = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
   14914   DebugLoc DL = MI->getDebugLoc();
   14915   MachineFunction *F = BB->getParent();
   14916 
   14917   assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
   14918   assert(MI->getOperand(3).isGlobal() && "This should be a global");
   14919 
   14920   // Get a register mask for the lowered call.
   14921   // FIXME: The 32-bit calls have non-standard calling conventions. Use a
   14922   // proper register mask.
   14923   const uint32_t *RegMask =
   14924     getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
   14925   if (Subtarget->is64Bit()) {
   14926     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   14927                                       TII->get(X86::MOV64rm), X86::RDI)
   14928     .addReg(X86::RIP)
   14929     .addImm(0).addReg(0)
   14930     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   14931                       MI->getOperand(3).getTargetFlags())
   14932     .addReg(0);
   14933     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
   14934     addDirectMem(MIB, X86::RDI);
   14935     MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
   14936   } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
   14937     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   14938                                       TII->get(X86::MOV32rm), X86::EAX)
   14939     .addReg(0)
   14940     .addImm(0).addReg(0)
   14941     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   14942                       MI->getOperand(3).getTargetFlags())
   14943     .addReg(0);
   14944     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   14945     addDirectMem(MIB, X86::EAX);
   14946     MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
   14947   } else {
   14948     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   14949                                       TII->get(X86::MOV32rm), X86::EAX)
   14950     .addReg(TII->getGlobalBaseReg(F))
   14951     .addImm(0).addReg(0)
   14952     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   14953                       MI->getOperand(3).getTargetFlags())
   14954     .addReg(0);
   14955     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   14956     addDirectMem(MIB, X86::EAX);
   14957     MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
   14958   }
   14959 
   14960   MI->eraseFromParent(); // The pseudo instruction is gone now.
   14961   return BB;
   14962 }
   14963 
   14964 MachineBasicBlock *
   14965 X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
   14966                                     MachineBasicBlock *MBB) const {
   14967   DebugLoc DL = MI->getDebugLoc();
   14968   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   14969 
   14970   MachineFunction *MF = MBB->getParent();
   14971   MachineRegisterInfo &MRI = MF->getRegInfo();
   14972 
   14973   const BasicBlock *BB = MBB->getBasicBlock();
   14974   MachineFunction::iterator I = MBB;
   14975   ++I;
   14976 
   14977   // Memory Reference
   14978   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   14979   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   14980 
   14981   unsigned DstReg;
   14982   unsigned MemOpndSlot = 0;
   14983 
   14984   unsigned CurOp = 0;
   14985 
   14986   DstReg = MI->getOperand(CurOp++).getReg();
   14987   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   14988   assert(RC->hasType(MVT::i32) && "Invalid destination!");
   14989   unsigned mainDstReg = MRI.createVirtualRegister(RC);
   14990   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
   14991 
   14992   MemOpndSlot = CurOp;
   14993 
   14994   MVT PVT = getPointerTy();
   14995   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   14996          "Invalid Pointer Size!");
   14997 
   14998   // For v = setjmp(buf), we generate
   14999   //
   15000   // thisMBB:
   15001   //  buf[LabelOffset] = restoreMBB
   15002   //  SjLjSetup restoreMBB
   15003   //
   15004   // mainMBB:
   15005   //  v_main = 0
   15006   //
   15007   // sinkMBB:
   15008   //  v = phi(main, restore)
   15009   //
   15010   // restoreMBB:
   15011   //  v_restore = 1
   15012 
   15013   MachineBasicBlock *thisMBB = MBB;
   15014   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   15015   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   15016   MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
   15017   MF->insert(I, mainMBB);
   15018   MF->insert(I, sinkMBB);
   15019   MF->push_back(restoreMBB);
   15020 
   15021   MachineInstrBuilder MIB;
   15022 
   15023   // Transfer the remainder of BB and its successor edges to sinkMBB.
   15024   sinkMBB->splice(sinkMBB->begin(), MBB,
   15025                   llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
   15026   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   15027 
   15028   // thisMBB:
   15029   unsigned PtrStoreOpc = 0;
   15030   unsigned LabelReg = 0;
   15031   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   15032   Reloc::Model RM = getTargetMachine().getRelocationModel();
   15033   bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
   15034                      (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
   15035 
   15036   // Prepare IP either in reg or imm.
   15037   if (!UseImmLabel) {
   15038     PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
   15039     const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
   15040     LabelReg = MRI.createVirtualRegister(PtrRC);
   15041     if (Subtarget->is64Bit()) {
   15042       MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
   15043               .addReg(X86::RIP)
   15044               .addImm(0)
   15045               .addReg(0)
   15046               .addMBB(restoreMBB)
   15047               .addReg(0);
   15048     } else {
   15049       const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
   15050       MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
   15051               .addReg(XII->getGlobalBaseReg(MF))
   15052               .addImm(0)
   15053               .addReg(0)
   15054               .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
   15055               .addReg(0);
   15056     }
   15057   } else
   15058     PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
   15059   // Store IP
   15060   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
   15061   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   15062     if (i == X86::AddrDisp)
   15063       MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
   15064     else
   15065       MIB.addOperand(MI->getOperand(MemOpndSlot + i));
   15066   }
   15067   if (!UseImmLabel)
   15068     MIB.addReg(LabelReg);
   15069   else
   15070     MIB.addMBB(restoreMBB);
   15071   MIB.setMemRefs(MMOBegin, MMOEnd);
   15072   // Setup
   15073   MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
   15074           .addMBB(restoreMBB);
   15075 
   15076   const X86RegisterInfo *RegInfo =
   15077     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   15078   MIB.addRegMask(RegInfo->getNoPreservedMask());
   15079   thisMBB->addSuccessor(mainMBB);
   15080   thisMBB->addSuccessor(restoreMBB);
   15081 
   15082   // mainMBB:
   15083   //  EAX = 0
   15084   BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
   15085   mainMBB->addSuccessor(sinkMBB);
   15086 
   15087   // sinkMBB:
   15088   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   15089           TII->get(X86::PHI), DstReg)
   15090     .addReg(mainDstReg).addMBB(mainMBB)
   15091     .addReg(restoreDstReg).addMBB(restoreMBB);
   15092 
   15093   // restoreMBB:
   15094   BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
   15095   BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
   15096   restoreMBB->addSuccessor(sinkMBB);
   15097 
   15098   MI->eraseFromParent();
   15099   return sinkMBB;
   15100 }
   15101 
   15102 MachineBasicBlock *
   15103 X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
   15104                                      MachineBasicBlock *MBB) const {
   15105   DebugLoc DL = MI->getDebugLoc();
   15106   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   15107 
   15108   MachineFunction *MF = MBB->getParent();
   15109   MachineRegisterInfo &MRI = MF->getRegInfo();
   15110 
   15111   // Memory Reference
   15112   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   15113   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   15114 
   15115   MVT PVT = getPointerTy();
   15116   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   15117          "Invalid Pointer Size!");
   15118 
   15119   const TargetRegisterClass *RC =
   15120     (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
   15121   unsigned Tmp = MRI.createVirtualRegister(RC);
   15122   // Since FP is only updated here but NOT referenced, it's treated as GPR.
   15123   const X86RegisterInfo *RegInfo =
   15124     static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
   15125   unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
   15126   unsigned SP = RegInfo->getStackRegister();
   15127 
   15128   MachineInstrBuilder MIB;
   15129 
   15130   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   15131   const int64_t SPOffset = 2 * PVT.getStoreSize();
   15132 
   15133   unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
   15134   unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
   15135 
   15136   // Reload FP
   15137   MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
   15138   for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
   15139     MIB.addOperand(MI->getOperand(i));
   15140   MIB.setMemRefs(MMOBegin, MMOEnd);
   15141   // Reload IP
   15142   MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
   15143   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   15144     if (i == X86::AddrDisp)
   15145       MIB.addDisp(MI->getOperand(i), LabelOffset);
   15146     else
   15147       MIB.addOperand(MI->getOperand(i));
   15148   }
   15149   MIB.setMemRefs(MMOBegin, MMOEnd);
   15150   // Reload SP
   15151   MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
   15152   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
   15153     if (i == X86::AddrDisp)
   15154       MIB.addDisp(MI->getOperand(i), SPOffset);
   15155     else
   15156       MIB.addOperand(MI->getOperand(i));
   15157   }
   15158   MIB.setMemRefs(MMOBegin, MMOEnd);
   15159   // Jump
   15160   BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
   15161 
   15162   MI->eraseFromParent();
   15163   return MBB;
   15164 }
   15165 
   15166 MachineBasicBlock *
   15167 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   15168                                                MachineBasicBlock *BB) const {
   15169   switch (MI->getOpcode()) {
   15170   default: llvm_unreachable("Unexpected instr type to insert");
   15171   case X86::TAILJMPd64:
   15172   case X86::TAILJMPr64:
   15173   case X86::TAILJMPm64:
   15174     llvm_unreachable("TAILJMP64 would not be touched here.");
   15175   case X86::TCRETURNdi64:
   15176   case X86::TCRETURNri64:
   15177   case X86::TCRETURNmi64:
   15178     return BB;
   15179   case X86::WIN_ALLOCA:
   15180     return EmitLoweredWinAlloca(MI, BB);
   15181   case X86::SEG_ALLOCA_32:
   15182     return EmitLoweredSegAlloca(MI, BB, false);
   15183   case X86::SEG_ALLOCA_64:
   15184     return EmitLoweredSegAlloca(MI, BB, true);
   15185   case X86::TLSCall_32:
   15186   case X86::TLSCall_64:
   15187     return EmitLoweredTLSCall(MI, BB);
   15188   case X86::CMOV_GR8:
   15189   case X86::CMOV_FR32:
   15190   case X86::CMOV_FR64:
   15191   case X86::CMOV_V4F32:
   15192   case X86::CMOV_V2F64:
   15193   case X86::CMOV_V2I64:
   15194   case X86::CMOV_V8F32:
   15195   case X86::CMOV_V4F64:
   15196   case X86::CMOV_V4I64:
   15197   case X86::CMOV_GR16:
   15198   case X86::CMOV_GR32:
   15199   case X86::CMOV_RFP32:
   15200   case X86::CMOV_RFP64:
   15201   case X86::CMOV_RFP80:
   15202     return EmitLoweredSelect(MI, BB);
   15203 
   15204   case X86::FP32_TO_INT16_IN_MEM:
   15205   case X86::FP32_TO_INT32_IN_MEM:
   15206   case X86::FP32_TO_INT64_IN_MEM:
   15207   case X86::FP64_TO_INT16_IN_MEM:
   15208   case X86::FP64_TO_INT32_IN_MEM:
   15209   case X86::FP64_TO_INT64_IN_MEM:
   15210   case X86::FP80_TO_INT16_IN_MEM:
   15211   case X86::FP80_TO_INT32_IN_MEM:
   15212   case X86::FP80_TO_INT64_IN_MEM: {
   15213     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   15214     DebugLoc DL = MI->getDebugLoc();
   15215 
   15216     // Change the floating point control register to use "round towards zero"
   15217     // mode when truncating to an integer value.
   15218     MachineFunction *F = BB->getParent();
   15219     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
   15220     addFrameReference(BuildMI(*BB, MI, DL,
   15221                               TII->get(X86::FNSTCW16m)), CWFrameIdx);
   15222 
   15223     // Load the old value of the high byte of the control word...
   15224     unsigned OldCW =
   15225       F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
   15226     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
   15227                       CWFrameIdx);
   15228 
   15229     // Set the high part to be round to zero...
   15230     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
   15231       .addImm(0xC7F);
   15232 
   15233     // Reload the modified control word now...
   15234     addFrameReference(BuildMI(*BB, MI, DL,
   15235                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   15236 
   15237     // Restore the memory image of control word to original value
   15238     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
   15239       .addReg(OldCW);
   15240 
   15241     // Get the X86 opcode to use.
   15242     unsigned Opc;
   15243     switch (MI->getOpcode()) {
   15244     default: llvm_unreachable("illegal opcode!");
   15245     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
   15246     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
   15247     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
   15248     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
   15249     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
   15250     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
   15251     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
   15252     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
   15253     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
   15254     }
   15255 
   15256     X86AddressMode AM;
   15257     MachineOperand &Op = MI->getOperand(0);
   15258     if (Op.isReg()) {
   15259       AM.BaseType = X86AddressMode::RegBase;
   15260       AM.Base.Reg = Op.getReg();
   15261     } else {
   15262       AM.BaseType = X86AddressMode::FrameIndexBase;
   15263       AM.Base.FrameIndex = Op.getIndex();
   15264     }
   15265     Op = MI->getOperand(1);
   15266     if (Op.isImm())
   15267       AM.Scale = Op.getImm();
   15268     Op = MI->getOperand(2);
   15269     if (Op.isImm())
   15270       AM.IndexReg = Op.getImm();
   15271     Op = MI->getOperand(3);
   15272     if (Op.isGlobal()) {
   15273       AM.GV = Op.getGlobal();
   15274     } else {
   15275       AM.Disp = Op.getImm();
   15276     }
   15277     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
   15278                       .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
   15279 
   15280     // Reload the original control word now.
   15281     addFrameReference(BuildMI(*BB, MI, DL,
   15282                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   15283 
   15284     MI->eraseFromParent();   // The pseudo instruction is gone now.
   15285     return BB;
   15286   }
   15287     // String/text processing lowering.
   15288   case X86::PCMPISTRM128REG:
   15289   case X86::VPCMPISTRM128REG:
   15290   case X86::PCMPISTRM128MEM:
   15291   case X86::VPCMPISTRM128MEM:
   15292   case X86::PCMPESTRM128REG:
   15293   case X86::VPCMPESTRM128REG:
   15294   case X86::PCMPESTRM128MEM:
   15295   case X86::VPCMPESTRM128MEM:
   15296     assert(Subtarget->hasSSE42() &&
   15297            "Target must have SSE4.2 or AVX features enabled");
   15298     return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
   15299 
   15300   // String/text processing lowering.
   15301   case X86::PCMPISTRIREG:
   15302   case X86::VPCMPISTRIREG:
   15303   case X86::PCMPISTRIMEM:
   15304   case X86::VPCMPISTRIMEM:
   15305   case X86::PCMPESTRIREG:
   15306   case X86::VPCMPESTRIREG:
   15307   case X86::PCMPESTRIMEM:
   15308   case X86::VPCMPESTRIMEM:
   15309     assert(Subtarget->hasSSE42() &&
   15310            "Target must have SSE4.2 or AVX features enabled");
   15311     return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
   15312 
   15313   // Thread synchronization.
   15314   case X86::MONITOR:
   15315     return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
   15316 
   15317   // xbegin
   15318   case X86::XBEGIN:
   15319     return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
   15320 
   15321   // Atomic Lowering.
   15322   case X86::ATOMAND8:
   15323   case X86::ATOMAND16:
   15324   case X86::ATOMAND32:
   15325   case X86::ATOMAND64:
   15326     // Fall through
   15327   case X86::ATOMOR8:
   15328   case X86::ATOMOR16:
   15329   case X86::ATOMOR32:
   15330   case X86::ATOMOR64:
   15331     // Fall through
   15332   case X86::ATOMXOR16:
   15333   case X86::ATOMXOR8:
   15334   case X86::ATOMXOR32:
   15335   case X86::ATOMXOR64:
   15336     // Fall through
   15337   case X86::ATOMNAND8:
   15338   case X86::ATOMNAND16:
   15339   case X86::ATOMNAND32:
   15340   case X86::ATOMNAND64:
   15341     // Fall through
   15342   case X86::ATOMMAX8:
   15343   case X86::ATOMMAX16:
   15344   case X86::ATOMMAX32:
   15345   case X86::ATOMMAX64:
   15346     // Fall through
   15347   case X86::ATOMMIN8:
   15348   case X86::ATOMMIN16:
   15349   case X86::ATOMMIN32:
   15350   case X86::ATOMMIN64:
   15351     // Fall through
   15352   case X86::ATOMUMAX8:
   15353   case X86::ATOMUMAX16:
   15354   case X86::ATOMUMAX32:
   15355   case X86::ATOMUMAX64:
   15356     // Fall through
   15357   case X86::ATOMUMIN8:
   15358   case X86::ATOMUMIN16:
   15359   case X86::ATOMUMIN32:
   15360   case X86::ATOMUMIN64:
   15361     return EmitAtomicLoadArith(MI, BB);
   15362 
   15363   // This group does 64-bit operations on a 32-bit host.
   15364   case X86::ATOMAND6432:
   15365   case X86::ATOMOR6432:
   15366   case X86::ATOMXOR6432:
   15367   case X86::ATOMNAND6432:
   15368   case X86::ATOMADD6432:
   15369   case X86::ATOMSUB6432:
   15370   case X86::ATOMMAX6432:
   15371   case X86::ATOMMIN6432:
   15372   case X86::ATOMUMAX6432:
   15373   case X86::ATOMUMIN6432:
   15374   case X86::ATOMSWAP6432:
   15375     return EmitAtomicLoadArith6432(MI, BB);
   15376 
   15377   case X86::VASTART_SAVE_XMM_REGS:
   15378     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
   15379 
   15380   case X86::VAARG_64:
   15381     return EmitVAARG64WithCustomInserter(MI, BB);
   15382 
   15383   case X86::EH_SjLj_SetJmp32:
   15384   case X86::EH_SjLj_SetJmp64:
   15385     return emitEHSjLjSetJmp(MI, BB);
   15386 
   15387   case X86::EH_SjLj_LongJmp32:
   15388   case X86::EH_SjLj_LongJmp64:
   15389     return emitEHSjLjLongJmp(MI, BB);
   15390   }
   15391 }
   15392 
   15393 //===----------------------------------------------------------------------===//
   15394 //                           X86 Optimization Hooks
   15395 //===----------------------------------------------------------------------===//
   15396 
   15397 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   15398                                                        APInt &KnownZero,
   15399                                                        APInt &KnownOne,
   15400                                                        const SelectionDAG &DAG,
   15401                                                        unsigned Depth) const {
   15402   unsigned BitWidth = KnownZero.getBitWidth();
   15403   unsigned Opc = Op.getOpcode();
   15404   assert((Opc >= ISD::BUILTIN_OP_END ||
   15405           Opc == ISD::INTRINSIC_WO_CHAIN ||
   15406           Opc == ISD::INTRINSIC_W_CHAIN ||
   15407           Opc == ISD::INTRINSIC_VOID) &&
   15408          "Should use MaskedValueIsZero if you don't know whether Op"
   15409          " is a target node!");
   15410 
   15411   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
   15412   switch (Opc) {
   15413   default: break;
   15414   case X86ISD::ADD:
   15415   case X86ISD::SUB:
   15416   case X86ISD::ADC:
   15417   case X86ISD::SBB:
   15418   case X86ISD::SMUL:
   15419   case X86ISD::UMUL:
   15420   case X86ISD::INC:
   15421   case X86ISD::DEC:
   15422   case X86ISD::OR:
   15423   case X86ISD::XOR:
   15424   case X86ISD::AND:
   15425     // These nodes' second result is a boolean.
   15426     if (Op.getResNo() == 0)
   15427       break;
   15428     // Fallthrough
   15429   case X86ISD::SETCC:
   15430     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   15431     break;
   15432   case ISD::INTRINSIC_WO_CHAIN: {
   15433     unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   15434     unsigned NumLoBits = 0;
   15435     switch (IntId) {
   15436     default: break;
   15437     case Intrinsic::x86_sse_movmsk_ps:
   15438     case Intrinsic::x86_avx_movmsk_ps_256:
   15439     case Intrinsic::x86_sse2_movmsk_pd:
   15440     case Intrinsic::x86_avx_movmsk_pd_256:
   15441     case Intrinsic::x86_mmx_pmovmskb:
   15442     case Intrinsic::x86_sse2_pmovmskb_128:
   15443     case Intrinsic::x86_avx2_pmovmskb: {
   15444       // High bits of movmskp{s|d}, pmovmskb are known zero.
   15445       switch (IntId) {
   15446         default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   15447         case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
   15448         case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
   15449         case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
   15450         case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
   15451         case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
   15452         case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
   15453         case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
   15454       }
   15455       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
   15456       break;
   15457     }
   15458     }
   15459     break;
   15460   }
   15461   }
   15462 }
   15463 
   15464 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   15465                                                          unsigned Depth) const {
   15466   // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
   15467   if (Op.getOpcode() == X86ISD::SETCC_CARRY)
   15468     return Op.getValueType().getScalarType().getSizeInBits();
   15469 
   15470   // Fallback case.
   15471   return 1;
   15472 }
   15473 
   15474 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   15475 /// node is a GlobalAddress + offset.
   15476 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
   15477                                        const GlobalValue* &GA,
   15478                                        int64_t &Offset) const {
   15479   if (N->getOpcode() == X86ISD::Wrapper) {
   15480     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
   15481       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
   15482       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
   15483       return true;
   15484     }
   15485   }
   15486   return TargetLowering::isGAPlusOffset(N, GA, Offset);
   15487 }
   15488 
   15489 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
   15490 /// same as extracting the high 128-bit part of 256-bit vector and then
   15491 /// inserting the result into the low part of a new 256-bit vector
   15492 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
   15493   EVT VT = SVOp->getValueType(0);
   15494   unsigned NumElems = VT.getVectorNumElements();
   15495 
   15496   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   15497   for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
   15498     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   15499         SVOp->getMaskElt(j) >= 0)
   15500       return false;
   15501 
   15502   return true;
   15503 }
   15504 
   15505 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
   15506 /// same as extracting the low 128-bit part of 256-bit vector and then
   15507 /// inserting the result into the high part of a new 256-bit vector
   15508 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
   15509   EVT VT = SVOp->getValueType(0);
   15510   unsigned NumElems = VT.getVectorNumElements();
   15511 
   15512   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   15513   for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
   15514     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   15515         SVOp->getMaskElt(j) >= 0)
   15516       return false;
   15517 
   15518   return true;
   15519 }
   15520 
   15521 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
   15522 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
   15523                                         TargetLowering::DAGCombinerInfo &DCI,
   15524                                         const X86Subtarget* Subtarget) {
   15525   SDLoc dl(N);
   15526   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   15527   SDValue V1 = SVOp->getOperand(0);
   15528   SDValue V2 = SVOp->getOperand(1);
   15529   EVT VT = SVOp->getValueType(0);
   15530   unsigned NumElems = VT.getVectorNumElements();
   15531 
   15532   if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
   15533       V2.getOpcode() == ISD::CONCAT_VECTORS) {
   15534     //
   15535     //                   0,0,0,...
   15536     //                      |
   15537     //    V      UNDEF    BUILD_VECTOR    UNDEF
   15538     //     \      /           \           /
   15539     //  CONCAT_VECTOR         CONCAT_VECTOR
   15540     //         \                  /
   15541     //          \                /
   15542     //          RESULT: V + zero extended
   15543     //
   15544     if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
   15545         V2.getOperand(1).getOpcode() != ISD::UNDEF ||
   15546         V1.getOperand(1).getOpcode() != ISD::UNDEF)
   15547       return SDValue();
   15548 
   15549     if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
   15550       return SDValue();
   15551 
   15552     // To match the shuffle mask, the first half of the mask should
   15553     // be exactly the first vector, and all the rest a splat with the
   15554     // first element of the second one.
   15555     for (unsigned i = 0; i != NumElems/2; ++i)
   15556       if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
   15557           !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
   15558         return SDValue();
   15559 
   15560     // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
   15561     if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
   15562       if (Ld->hasNUsesOfValue(1, 0)) {
   15563         SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
   15564         SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
   15565         SDValue ResNode =
   15566           DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
   15567                                   array_lengthof(Ops),
   15568                                   Ld->getMemoryVT(),
   15569                                   Ld->getPointerInfo(),
   15570                                   Ld->getAlignment(),
   15571                                   false/*isVolatile*/, true/*ReadMem*/,
   15572                                   false/*WriteMem*/);
   15573 
   15574         // Make sure the newly-created LOAD is in the same position as Ld in
   15575         // terms of dependency. We create a TokenFactor for Ld and ResNode,
   15576         // and update uses of Ld's output chain to use the TokenFactor.
   15577         if (Ld->hasAnyUseOfValue(1)) {
   15578           SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   15579                              SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
   15580           DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
   15581           DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
   15582                                  SDValue(ResNode.getNode(), 1));
   15583         }
   15584 
   15585         return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
   15586       }
   15587     }
   15588 
   15589     // Emit a zeroed vector and insert the desired subvector on its
   15590     // first half.
   15591     SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
   15592     SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
   15593     return DCI.CombineTo(N, InsV);
   15594   }
   15595 
   15596   //===--------------------------------------------------------------------===//
   15597   // Combine some shuffles into subvector extracts and inserts:
   15598   //
   15599 
   15600   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   15601   if (isShuffleHigh128VectorInsertLow(SVOp)) {
   15602     SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
   15603     SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
   15604     return DCI.CombineTo(N, InsV);
   15605   }
   15606 
   15607   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   15608   if (isShuffleLow128VectorInsertHigh(SVOp)) {
   15609     SDValue V = Extract128BitVector(V1, 0, DAG, dl);
   15610     SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
   15611     return DCI.CombineTo(N, InsV);
   15612   }
   15613 
   15614   return SDValue();
   15615 }
   15616 
   15617 /// PerformShuffleCombine - Performs several different shuffle combines.
   15618 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
   15619                                      TargetLowering::DAGCombinerInfo &DCI,
   15620                                      const X86Subtarget *Subtarget) {
   15621   SDLoc dl(N);
   15622   EVT VT = N->getValueType(0);
   15623 
   15624   // Don't create instructions with illegal types after legalize types has run.
   15625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   15626   if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
   15627     return SDValue();
   15628 
   15629   // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
   15630   if (Subtarget->hasFp256() && VT.is256BitVector() &&
   15631       N->getOpcode() == ISD::VECTOR_SHUFFLE)
   15632     return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
   15633 
   15634   // Only handle 128 wide vector from here on.
   15635   if (!VT.is128BitVector())
   15636     return SDValue();
   15637 
   15638   // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
   15639   // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
   15640   // consecutive, non-overlapping, and in the right order.
   15641   SmallVector<SDValue, 16> Elts;
   15642   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
   15643     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
   15644 
   15645   return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
   15646 }
   15647 
   15648 /// PerformTruncateCombine - Converts truncate operation to
   15649 /// a sequence of vector shuffle operations.
   15650 /// It is possible when we truncate 256-bit vector to 128-bit vector
   15651 static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
   15652                                       TargetLowering::DAGCombinerInfo &DCI,
   15653                                       const X86Subtarget *Subtarget)  {
   15654   return SDValue();
   15655 }
   15656 
   15657 /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
   15658 /// specific shuffle of a load can be folded into a single element load.
   15659 /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
   15660 /// shuffles have been customed lowered so we need to handle those here.
   15661 static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
   15662                                          TargetLowering::DAGCombinerInfo &DCI) {
   15663   if (DCI.isBeforeLegalizeOps())
   15664     return SDValue();
   15665 
   15666   SDValue InVec = N->getOperand(0);
   15667   SDValue EltNo = N->getOperand(1);
   15668 
   15669   if (!isa<ConstantSDNode>(EltNo))
   15670     return SDValue();
   15671 
   15672   EVT VT = InVec.getValueType();
   15673 
   15674   bool HasShuffleIntoBitcast = false;
   15675   if (InVec.getOpcode() == ISD::BITCAST) {
   15676     // Don't duplicate a load with other uses.
   15677     if (!InVec.hasOneUse())
   15678       return SDValue();
   15679     EVT BCVT = InVec.getOperand(0).getValueType();
   15680     if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
   15681       return SDValue();
   15682     InVec = InVec.getOperand(0);
   15683     HasShuffleIntoBitcast = true;
   15684   }
   15685 
   15686   if (!isTargetShuffle(InVec.getOpcode()))
   15687     return SDValue();
   15688 
   15689   // Don't duplicate a load with other uses.
   15690   if (!InVec.hasOneUse())
   15691     return SDValue();
   15692 
   15693   SmallVector<int, 16> ShuffleMask;
   15694   bool UnaryShuffle;
   15695   if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
   15696                             UnaryShuffle))
   15697     return SDValue();
   15698 
   15699   // Select the input vector, guarding against out of range extract vector.
   15700   unsigned NumElems = VT.getVectorNumElements();
   15701   int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
   15702   int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
   15703   SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
   15704                                          : InVec.getOperand(1);
   15705 
   15706   // If inputs to shuffle are the same for both ops, then allow 2 uses
   15707   unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
   15708 
   15709   if (LdNode.getOpcode() == ISD::BITCAST) {
   15710     // Don't duplicate a load with other uses.
   15711     if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
   15712       return SDValue();
   15713 
   15714     AllowedUses = 1; // only allow 1 load use if we have a bitcast
   15715     LdNode = LdNode.getOperand(0);
   15716   }
   15717 
   15718   if (!ISD::isNormalLoad(LdNode.getNode()))
   15719     return SDValue();
   15720 
   15721   LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
   15722 
   15723   if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
   15724     return SDValue();
   15725 
   15726   if (HasShuffleIntoBitcast) {
   15727     // If there's a bitcast before the shuffle, check if the load type and
   15728     // alignment is valid.
   15729     unsigned Align = LN0->getAlignment();
   15730     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   15731     unsigned NewAlign = TLI.getDataLayout()->
   15732       getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
   15733 
   15734     if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
   15735       return SDValue();
   15736   }
   15737 
   15738   // All checks match so transform back to vector_shuffle so that DAG combiner
   15739   // can finish the job
   15740   SDLoc dl(N);
   15741 
   15742   // Create shuffle node taking into account the case that its a unary shuffle
   15743   SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
   15744   Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
   15745                                  InVec.getOperand(0), Shuffle,
   15746                                  &ShuffleMask[0]);
   15747   Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
   15748   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
   15749                      EltNo);
   15750 }
   15751 
   15752 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
   15753 /// generation and convert it from being a bunch of shuffles and extracts
   15754 /// to a simple store and scalar loads to extract the elements.
   15755 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
   15756                                          TargetLowering::DAGCombinerInfo &DCI) {
   15757   SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
   15758   if (NewOp.getNode())
   15759     return NewOp;
   15760 
   15761   SDValue InputVector = N->getOperand(0);
   15762   // Detect whether we are trying to convert from mmx to i32 and the bitcast
   15763   // from mmx to v2i32 has a single usage.
   15764   if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
   15765       InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
   15766       InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
   15767     return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
   15768                        N->getValueType(0),
   15769                        InputVector.getNode()->getOperand(0));
   15770 
   15771   // Only operate on vectors of 4 elements, where the alternative shuffling
   15772   // gets to be more expensive.
   15773   if (InputVector.getValueType() != MVT::v4i32)
   15774     return SDValue();
   15775 
   15776   // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
   15777   // single use which is a sign-extend or zero-extend, and all elements are
   15778   // used.
   15779   SmallVector<SDNode *, 4> Uses;
   15780   unsigned ExtractedElements = 0;
   15781   for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
   15782        UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
   15783     if (UI.getUse().getResNo() != InputVector.getResNo())
   15784       return SDValue();
   15785 
   15786     SDNode *Extract = *UI;
   15787     if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   15788       return SDValue();
   15789 
   15790     if (Extract->getValueType(0) != MVT::i32)
   15791       return SDValue();
   15792     if (!Extract->hasOneUse())
   15793       return SDValue();
   15794     if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
   15795         Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
   15796       return SDValue();
   15797     if (!isa<ConstantSDNode>(Extract->getOperand(1)))
   15798       return SDValue();
   15799 
   15800     // Record which element was extracted.
   15801     ExtractedElements |=
   15802       1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
   15803 
   15804     Uses.push_back(Extract);
   15805   }
   15806 
   15807   // If not all the elements were used, this may not be worthwhile.
   15808   if (ExtractedElements != 15)
   15809     return SDValue();
   15810 
   15811   // Ok, we've now decided to do the transformation.
   15812   SDLoc dl(InputVector);
   15813 
   15814   // Store the value to a temporary stack slot.
   15815   SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
   15816   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
   15817                             MachinePointerInfo(), false, false, 0);
   15818 
   15819   // Replace each use (extract) with a load of the appropriate element.
   15820   for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
   15821        UE = Uses.end(); UI != UE; ++UI) {
   15822     SDNode *Extract = *UI;
   15823 
   15824     // cOMpute the element's address.
   15825     SDValue Idx = Extract->getOperand(1);
   15826     unsigned EltSize =
   15827         InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
   15828     uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
   15829     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   15830     SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
   15831 
   15832     SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   15833                                      StackPtr, OffsetVal);
   15834 
   15835     // Load the scalar.
   15836     SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
   15837                                      ScalarAddr, MachinePointerInfo(),
   15838                                      false, false, false, 0);
   15839 
   15840     // Replace the exact with the load.
   15841     DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
   15842   }
   15843 
   15844   // The replacement was made in place; don't return anything.
   15845   return SDValue();
   15846 }
   15847 
   15848 /// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
   15849 static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
   15850                                    SDValue RHS, SelectionDAG &DAG,
   15851                                    const X86Subtarget *Subtarget) {
   15852   if (!VT.isVector())
   15853     return 0;
   15854 
   15855   switch (VT.getSimpleVT().SimpleTy) {
   15856   default: return 0;
   15857   case MVT::v32i8:
   15858   case MVT::v16i16:
   15859   case MVT::v8i32:
   15860     if (!Subtarget->hasAVX2())
   15861       return 0;
   15862   case MVT::v16i8:
   15863   case MVT::v8i16:
   15864   case MVT::v4i32:
   15865     if (!Subtarget->hasSSE2())
   15866       return 0;
   15867   }
   15868 
   15869   // SSE2 has only a small subset of the operations.
   15870   bool hasUnsigned = Subtarget->hasSSE41() ||
   15871                      (Subtarget->hasSSE2() && VT == MVT::v16i8);
   15872   bool hasSigned = Subtarget->hasSSE41() ||
   15873                    (Subtarget->hasSSE2() && VT == MVT::v8i16);
   15874 
   15875   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   15876 
   15877   // Check for x CC y ? x : y.
   15878   if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   15879       DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   15880     switch (CC) {
   15881     default: break;
   15882     case ISD::SETULT:
   15883     case ISD::SETULE:
   15884       return hasUnsigned ? X86ISD::UMIN : 0;
   15885     case ISD::SETUGT:
   15886     case ISD::SETUGE:
   15887       return hasUnsigned ? X86ISD::UMAX : 0;
   15888     case ISD::SETLT:
   15889     case ISD::SETLE:
   15890       return hasSigned ? X86ISD::SMIN : 0;
   15891     case ISD::SETGT:
   15892     case ISD::SETGE:
   15893       return hasSigned ? X86ISD::SMAX : 0;
   15894     }
   15895   // Check for x CC y ? y : x -- a min/max with reversed arms.
   15896   } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
   15897              DAG.isEqualTo(RHS, Cond.getOperand(0))) {
   15898     switch (CC) {
   15899     default: break;
   15900     case ISD::SETULT:
   15901     case ISD::SETULE:
   15902       return hasUnsigned ? X86ISD::UMAX : 0;
   15903     case ISD::SETUGT:
   15904     case ISD::SETUGE:
   15905       return hasUnsigned ? X86ISD::UMIN : 0;
   15906     case ISD::SETLT:
   15907     case ISD::SETLE:
   15908       return hasSigned ? X86ISD::SMAX : 0;
   15909     case ISD::SETGT:
   15910     case ISD::SETGE:
   15911       return hasSigned ? X86ISD::SMIN : 0;
   15912     }
   15913   }
   15914 
   15915   return 0;
   15916 }
   15917 
   15918 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
   15919 /// nodes.
   15920 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
   15921                                     TargetLowering::DAGCombinerInfo &DCI,
   15922                                     const X86Subtarget *Subtarget) {
   15923   SDLoc DL(N);
   15924   SDValue Cond = N->getOperand(0);
   15925   // Get the LHS/RHS of the select.
   15926   SDValue LHS = N->getOperand(1);
   15927   SDValue RHS = N->getOperand(2);
   15928   EVT VT = LHS.getValueType();
   15929 
   15930   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
   15931   // instructions match the semantics of the common C idiom x<y?x:y but not
   15932   // x<=y?x:y, because of how they handle negative zero (which can be
   15933   // ignored in unsafe-math mode).
   15934   if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
   15935       VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
   15936       (Subtarget->hasSSE2() ||
   15937        (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
   15938     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   15939 
   15940     unsigned Opcode = 0;
   15941     // Check for x CC y ? x : y.
   15942     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   15943         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   15944       switch (CC) {
   15945       default: break;
   15946       case ISD::SETULT:
   15947         // Converting this to a min would handle NaNs incorrectly, and swapping
   15948         // the operands would cause it to handle comparisons between positive
   15949         // and negative zero incorrectly.
   15950         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   15951           if (!DAG.getTarget().Options.UnsafeFPMath &&
   15952               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   15953             break;
   15954           std::swap(LHS, RHS);
   15955         }
   15956         Opcode = X86ISD::FMIN;
   15957         break;
   15958       case ISD::SETOLE:
   15959         // Converting this to a min would handle comparisons between positive
   15960         // and negative zero incorrectly.
   15961         if (!DAG.getTarget().Options.UnsafeFPMath &&
   15962             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   15963           break;
   15964         Opcode = X86ISD::FMIN;
   15965         break;
   15966       case ISD::SETULE:
   15967         // Converting this to a min would handle both negative zeros and NaNs
   15968         // incorrectly, but we can swap the operands to fix both.
   15969         std::swap(LHS, RHS);
   15970       case ISD::SETOLT:
   15971       case ISD::SETLT:
   15972       case ISD::SETLE:
   15973         Opcode = X86ISD::FMIN;
   15974         break;
   15975 
   15976       case ISD::SETOGE:
   15977         // Converting this to a max would handle comparisons between positive
   15978         // and negative zero incorrectly.
   15979         if (!DAG.getTarget().Options.UnsafeFPMath &&
   15980             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   15981           break;
   15982         Opcode = X86ISD::FMAX;
   15983         break;
   15984       case ISD::SETUGT:
   15985         // Converting this to a max would handle NaNs incorrectly, and swapping
   15986         // the operands would cause it to handle comparisons between positive
   15987         // and negative zero incorrectly.
   15988         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   15989           if (!DAG.getTarget().Options.UnsafeFPMath &&
   15990               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   15991             break;
   15992           std::swap(LHS, RHS);
   15993         }
   15994         Opcode = X86ISD::FMAX;
   15995         break;
   15996       case ISD::SETUGE:
   15997         // Converting this to a max would handle both negative zeros and NaNs
   15998         // incorrectly, but we can swap the operands to fix both.
   15999         std::swap(LHS, RHS);
   16000       case ISD::SETOGT:
   16001       case ISD::SETGT:
   16002       case ISD::SETGE:
   16003         Opcode = X86ISD::FMAX;
   16004         break;
   16005       }
   16006     // Check for x CC y ? y : x -- a min/max with reversed arms.
   16007     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
   16008                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
   16009       switch (CC) {
   16010       default: break;
   16011       case ISD::SETOGE:
   16012         // Converting this to a min would handle comparisons between positive
   16013         // and negative zero incorrectly, and swapping the operands would
   16014         // cause it to handle NaNs incorrectly.
   16015         if (!DAG.getTarget().Options.UnsafeFPMath &&
   16016             !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
   16017           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   16018             break;
   16019           std::swap(LHS, RHS);
   16020         }
   16021         Opcode = X86ISD::FMIN;
   16022         break;
   16023       case ISD::SETUGT:
   16024         // Converting this to a min would handle NaNs incorrectly.
   16025         if (!DAG.getTarget().Options.UnsafeFPMath &&
   16026             (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
   16027           break;
   16028         Opcode = X86ISD::FMIN;
   16029         break;
   16030       case ISD::SETUGE:
   16031         // Converting this to a min would handle both negative zeros and NaNs
   16032         // incorrectly, but we can swap the operands to fix both.
   16033         std::swap(LHS, RHS);
   16034       case ISD::SETOGT:
   16035       case ISD::SETGT:
   16036       case ISD::SETGE:
   16037         Opcode = X86ISD::FMIN;
   16038         break;
   16039 
   16040       case ISD::SETULT:
   16041         // Converting this to a max would handle NaNs incorrectly.
   16042         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   16043           break;
   16044         Opcode = X86ISD::FMAX;
   16045         break;
   16046       case ISD::SETOLE:
   16047         // Converting this to a max would handle comparisons between positive
   16048         // and negative zero incorrectly, and swapping the operands would
   16049         // cause it to handle NaNs incorrectly.
   16050         if (!DAG.getTarget().Options.UnsafeFPMath &&
   16051             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
   16052           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   16053             break;
   16054           std::swap(LHS, RHS);
   16055         }
   16056         Opcode = X86ISD::FMAX;
   16057         break;
   16058       case ISD::SETULE:
   16059         // Converting this to a max would handle both negative zeros and NaNs
   16060         // incorrectly, but we can swap the operands to fix both.
   16061         std::swap(LHS, RHS);
   16062       case ISD::SETOLT:
   16063       case ISD::SETLT:
   16064       case ISD::SETLE:
   16065         Opcode = X86ISD::FMAX;
   16066         break;
   16067       }
   16068     }
   16069 
   16070     if (Opcode)
   16071       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
   16072   }
   16073 
   16074   // If this is a select between two integer constants, try to do some
   16075   // optimizations.
   16076   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
   16077     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
   16078       // Don't do this for crazy integer types.
   16079       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
   16080         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
   16081         // so that TrueC (the true value) is larger than FalseC.
   16082         bool NeedsCondInvert = false;
   16083 
   16084         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
   16085             // Efficiently invertible.
   16086             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
   16087              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
   16088               isa<ConstantSDNode>(Cond.getOperand(1))))) {
   16089           NeedsCondInvert = true;
   16090           std::swap(TrueC, FalseC);
   16091         }
   16092 
   16093         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
   16094         if (FalseC->getAPIntValue() == 0 &&
   16095             TrueC->getAPIntValue().isPowerOf2()) {
   16096           if (NeedsCondInvert) // Invert the condition if needed.
   16097             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   16098                                DAG.getConstant(1, Cond.getValueType()));
   16099 
   16100           // Zero extend the condition if needed.
   16101           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
   16102 
   16103           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   16104           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
   16105                              DAG.getConstant(ShAmt, MVT::i8));
   16106         }
   16107 
   16108         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
   16109         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   16110           if (NeedsCondInvert) // Invert the condition if needed.
   16111             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   16112                                DAG.getConstant(1, Cond.getValueType()));
   16113 
   16114           // Zero extend the condition if needed.
   16115           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   16116                              FalseC->getValueType(0), Cond);
   16117           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   16118                              SDValue(FalseC, 0));
   16119         }
   16120 
   16121         // Optimize cases that will turn into an LEA instruction.  This requires
   16122         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   16123         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   16124           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   16125           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   16126 
   16127           bool isFastMultiplier = false;
   16128           if (Diff < 10) {
   16129             switch ((unsigned char)Diff) {
   16130               default: break;
   16131               case 1:  // result = add base, cond
   16132               case 2:  // result = lea base(    , cond*2)
   16133               case 3:  // result = lea base(cond, cond*2)
   16134               case 4:  // result = lea base(    , cond*4)
   16135               case 5:  // result = lea base(cond, cond*4)
   16136               case 8:  // result = lea base(    , cond*8)
   16137               case 9:  // result = lea base(cond, cond*8)
   16138                 isFastMultiplier = true;
   16139                 break;
   16140             }
   16141           }
   16142 
   16143           if (isFastMultiplier) {
   16144             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   16145             if (NeedsCondInvert) // Invert the condition if needed.
   16146               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   16147                                  DAG.getConstant(1, Cond.getValueType()));
   16148 
   16149             // Zero extend the condition if needed.
   16150             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   16151                                Cond);
   16152             // Scale the condition by the difference.
   16153             if (Diff != 1)
   16154               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   16155                                  DAG.getConstant(Diff, Cond.getValueType()));
   16156 
   16157             // Add the base if non-zero.
   16158             if (FalseC->getAPIntValue() != 0)
   16159               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   16160                                  SDValue(FalseC, 0));
   16161             return Cond;
   16162           }
   16163         }
   16164       }
   16165   }
   16166 
   16167   // Canonicalize max and min:
   16168   // (x > y) ? x : y -> (x >= y) ? x : y
   16169   // (x < y) ? x : y -> (x <= y) ? x : y
   16170   // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
   16171   // the need for an extra compare
   16172   // against zero. e.g.
   16173   // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
   16174   // subl   %esi, %edi
   16175   // testl  %edi, %edi
   16176   // movl   $0, %eax
   16177   // cmovgl %edi, %eax
   16178   // =>
   16179   // xorl   %eax, %eax
   16180   // subl   %esi, $edi
   16181   // cmovsl %eax, %edi
   16182   if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
   16183       DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   16184       DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   16185     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   16186     switch (CC) {
   16187     default: break;
   16188     case ISD::SETLT:
   16189     case ISD::SETGT: {
   16190       ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
   16191       Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
   16192                           Cond.getOperand(0), Cond.getOperand(1), NewCC);
   16193       return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
   16194     }
   16195     }
   16196   }
   16197 
   16198   // Match VSELECTs into subs with unsigned saturation.
   16199   if (!DCI.isBeforeLegalize() &&
   16200       N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
   16201       // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
   16202       ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
   16203        (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
   16204     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   16205 
   16206     // Check if one of the arms of the VSELECT is a zero vector. If it's on the
   16207     // left side invert the predicate to simplify logic below.
   16208     SDValue Other;
   16209     if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
   16210       Other = RHS;
   16211       CC = ISD::getSetCCInverse(CC, true);
   16212     } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
   16213       Other = LHS;
   16214     }
   16215 
   16216     if (Other.getNode() && Other->getNumOperands() == 2 &&
   16217         DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
   16218       SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
   16219       SDValue CondRHS = Cond->getOperand(1);
   16220 
   16221       // Look for a general sub with unsigned saturation first.
   16222       // x >= y ? x-y : 0 --> subus x, y
   16223       // x >  y ? x-y : 0 --> subus x, y
   16224       if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
   16225           Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
   16226         return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
   16227 
   16228       // If the RHS is a constant we have to reverse the const canonicalization.
   16229       // x > C-1 ? x+-C : 0 --> subus x, C
   16230       if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
   16231           isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
   16232         APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
   16233         if (CondRHS.getConstantOperandVal(0) == -A-1)
   16234           return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
   16235                              DAG.getConstant(-A, VT));
   16236       }
   16237 
   16238       // Another special case: If C was a sign bit, the sub has been
   16239       // canonicalized into a xor.
   16240       // FIXME: Would it be better to use ComputeMaskedBits to determine whether
   16241       //        it's safe to decanonicalize the xor?
   16242       // x s< 0 ? x^C : 0 --> subus x, C
   16243       if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
   16244           ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
   16245           isSplatVector(OpRHS.getNode())) {
   16246         APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
   16247         if (A.isSignBit())
   16248           return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
   16249       }
   16250     }
   16251   }
   16252 
   16253   // Try to match a min/max vector operation.
   16254   if (!DCI.isBeforeLegalize() &&
   16255       N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
   16256     if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
   16257       return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
   16258 
   16259   // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
   16260   if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT &&
   16261       Cond.getOpcode() == ISD::SETCC) {
   16262 
   16263     assert(Cond.getValueType().isVector() &&
   16264            "vector select expects a vector selector!");
   16265 
   16266     EVT IntVT = Cond.getValueType();
   16267     bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
   16268     bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
   16269 
   16270     if (!TValIsAllOnes && !FValIsAllZeros) {
   16271       // Try invert the condition if true value is not all 1s and false value
   16272       // is not all 0s.
   16273       bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
   16274       bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
   16275 
   16276       if (TValIsAllZeros || FValIsAllOnes) {
   16277         SDValue CC = Cond.getOperand(2);
   16278         ISD::CondCode NewCC =
   16279           ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
   16280                                Cond.getOperand(0).getValueType().isInteger());
   16281         Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
   16282         std::swap(LHS, RHS);
   16283         TValIsAllOnes = FValIsAllOnes;
   16284         FValIsAllZeros = TValIsAllZeros;
   16285       }
   16286     }
   16287 
   16288     if (TValIsAllOnes || FValIsAllZeros) {
   16289       SDValue Ret;
   16290 
   16291       if (TValIsAllOnes && FValIsAllZeros)
   16292         Ret = Cond;
   16293       else if (TValIsAllOnes)
   16294         Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
   16295                           DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
   16296       else if (FValIsAllZeros)
   16297         Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
   16298                           DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
   16299 
   16300       return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
   16301     }
   16302   }
   16303 
   16304   // If we know that this node is legal then we know that it is going to be
   16305   // matched by one of the SSE/AVX BLEND instructions. These instructions only
   16306   // depend on the highest bit in each word. Try to use SimplifyDemandedBits
   16307   // to simplify previous instructions.
   16308   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   16309   if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
   16310       !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
   16311     unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
   16312 
   16313     // Don't optimize vector selects that map to mask-registers.
   16314     if (BitWidth == 1)
   16315       return SDValue();
   16316 
   16317     assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
   16318     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
   16319 
   16320     APInt KnownZero, KnownOne;
   16321     TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
   16322                                           DCI.isBeforeLegalizeOps());
   16323     if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
   16324         TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
   16325       DCI.CommitTargetLoweringOpt(TLO);
   16326   }
   16327 
   16328   return SDValue();
   16329 }
   16330 
   16331 // Check whether a boolean test is testing a boolean value generated by
   16332 // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
   16333 // code.
   16334 //
   16335 // Simplify the following patterns:
   16336 // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
   16337 // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
   16338 // to (Op EFLAGS Cond)
   16339 //
   16340 // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
   16341 // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
   16342 // to (Op EFLAGS !Cond)
   16343 //
   16344 // where Op could be BRCOND or CMOV.
   16345 //
   16346 static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
   16347   // Quit if not CMP and SUB with its value result used.
   16348   if (Cmp.getOpcode() != X86ISD::CMP &&
   16349       (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
   16350       return SDValue();
   16351 
   16352   // Quit if not used as a boolean value.
   16353   if (CC != X86::COND_E && CC != X86::COND_NE)
   16354     return SDValue();
   16355 
   16356   // Check CMP operands. One of them should be 0 or 1 and the other should be
   16357   // an SetCC or extended from it.
   16358   SDValue Op1 = Cmp.getOperand(0);
   16359   SDValue Op2 = Cmp.getOperand(1);
   16360 
   16361   SDValue SetCC;
   16362   const ConstantSDNode* C = 0;
   16363   bool needOppositeCond = (CC == X86::COND_E);
   16364   bool checkAgainstTrue = false; // Is it a comparison against 1?
   16365 
   16366   if ((C = dyn_cast<ConstantSDNode>(Op1)))
   16367     SetCC = Op2;
   16368   else if ((C = dyn_cast<ConstantSDNode>(Op2)))
   16369     SetCC = Op1;
   16370   else // Quit if all operands are not constants.
   16371     return SDValue();
   16372 
   16373   if (C->getZExtValue() == 1) {
   16374     needOppositeCond = !needOppositeCond;
   16375     checkAgainstTrue = true;
   16376   } else if (C->getZExtValue() != 0)
   16377     // Quit if the constant is neither 0 or 1.
   16378     return SDValue();
   16379 
   16380   bool truncatedToBoolWithAnd = false;
   16381   // Skip (zext $x), (trunc $x), or (and $x, 1) node.
   16382   while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
   16383          SetCC.getOpcode() == ISD::TRUNCATE ||
   16384          SetCC.getOpcode() == ISD::AND) {
   16385     if (SetCC.getOpcode() == ISD::AND) {
   16386       int OpIdx = -1;
   16387       ConstantSDNode *CS;
   16388       if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
   16389           CS->getZExtValue() == 1)
   16390         OpIdx = 1;
   16391       if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
   16392           CS->getZExtValue() == 1)
   16393         OpIdx = 0;
   16394       if (OpIdx == -1)
   16395         break;
   16396       SetCC = SetCC.getOperand(OpIdx);
   16397       truncatedToBoolWithAnd = true;
   16398     } else
   16399       SetCC = SetCC.getOperand(0);
   16400   }
   16401 
   16402   switch (SetCC.getOpcode()) {
   16403   case X86ISD::SETCC_CARRY:
   16404     // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
   16405     // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
   16406     // i.e. it's a comparison against true but the result of SETCC_CARRY is not
   16407     // truncated to i1 using 'and'.
   16408     if (checkAgainstTrue && !truncatedToBoolWithAnd)
   16409       break;
   16410     assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
   16411            "Invalid use of SETCC_CARRY!");
   16412     // FALL THROUGH
   16413   case X86ISD::SETCC:
   16414     // Set the condition code or opposite one if necessary.
   16415     CC = X86::CondCode(SetCC.getConstantOperandVal(0));
   16416     if (needOppositeCond)
   16417       CC = X86::GetOppositeBranchCondition(CC);
   16418     return SetCC.getOperand(1);
   16419   case X86ISD::CMOV: {
   16420     // Check whether false/true value has canonical one, i.e. 0 or 1.
   16421     ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
   16422     ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
   16423     // Quit if true value is not a constant.
   16424     if (!TVal)
   16425       return SDValue();
   16426     // Quit if false value is not a constant.
   16427     if (!FVal) {
   16428       SDValue Op = SetCC.getOperand(0);
   16429       // Skip 'zext' or 'trunc' node.
   16430       if (Op.getOpcode() == ISD::ZERO_EXTEND ||
   16431           Op.getOpcode() == ISD::TRUNCATE)
   16432         Op = Op.getOperand(0);
   16433       // A special case for rdrand/rdseed, where 0 is set if false cond is
   16434       // found.
   16435       if ((Op.getOpcode() != X86ISD::RDRAND &&
   16436            Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
   16437         return SDValue();
   16438     }
   16439     // Quit if false value is not the constant 0 or 1.
   16440     bool FValIsFalse = true;
   16441     if (FVal && FVal->getZExtValue() != 0) {
   16442       if (FVal->getZExtValue() != 1)
   16443         return SDValue();
   16444       // If FVal is 1, opposite cond is needed.
   16445       needOppositeCond = !needOppositeCond;
   16446       FValIsFalse = false;
   16447     }
   16448     // Quit if TVal is not the constant opposite of FVal.
   16449     if (FValIsFalse && TVal->getZExtValue() != 1)
   16450       return SDValue();
   16451     if (!FValIsFalse && TVal->getZExtValue() != 0)
   16452       return SDValue();
   16453     CC = X86::CondCode(SetCC.getConstantOperandVal(2));
   16454     if (needOppositeCond)
   16455       CC = X86::GetOppositeBranchCondition(CC);
   16456     return SetCC.getOperand(3);
   16457   }
   16458   }
   16459 
   16460   return SDValue();
   16461 }
   16462 
   16463 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
   16464 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
   16465                                   TargetLowering::DAGCombinerInfo &DCI,
   16466                                   const X86Subtarget *Subtarget) {
   16467   SDLoc DL(N);
   16468 
   16469   // If the flag operand isn't dead, don't touch this CMOV.
   16470   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
   16471     return SDValue();
   16472 
   16473   SDValue FalseOp = N->getOperand(0);
   16474   SDValue TrueOp = N->getOperand(1);
   16475   X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
   16476   SDValue Cond = N->getOperand(3);
   16477 
   16478   if (CC == X86::COND_E || CC == X86::COND_NE) {
   16479     switch (Cond.getOpcode()) {
   16480     default: break;
   16481     case X86ISD::BSR:
   16482     case X86ISD::BSF:
   16483       // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
   16484       if (DAG.isKnownNeverZero(Cond.getOperand(0)))
   16485         return (CC == X86::COND_E) ? FalseOp : TrueOp;
   16486     }
   16487   }
   16488 
   16489   SDValue Flags;
   16490 
   16491   Flags = checkBoolTestSetCCCombine(Cond, CC);
   16492   if (Flags.getNode() &&
   16493       // Extra check as FCMOV only supports a subset of X86 cond.
   16494       (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
   16495     SDValue Ops[] = { FalseOp, TrueOp,
   16496                       DAG.getConstant(CC, MVT::i8), Flags };
   16497     return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
   16498                        Ops, array_lengthof(Ops));
   16499   }
   16500 
   16501   // If this is a select between two integer constants, try to do some
   16502   // optimizations.  Note that the operands are ordered the opposite of SELECT
   16503   // operands.
   16504   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
   16505     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
   16506       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
   16507       // larger than FalseC (the false value).
   16508       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
   16509         CC = X86::GetOppositeBranchCondition(CC);
   16510         std::swap(TrueC, FalseC);
   16511         std::swap(TrueOp, FalseOp);
   16512       }
   16513 
   16514       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
   16515       // This is efficient for any integer data type (including i8/i16) and
   16516       // shift amount.
   16517       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
   16518         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   16519                            DAG.getConstant(CC, MVT::i8), Cond);
   16520 
   16521         // Zero extend the condition if needed.
   16522         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
   16523 
   16524         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   16525         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
   16526                            DAG.getConstant(ShAmt, MVT::i8));
   16527         if (N->getNumValues() == 2)  // Dead flag value?
   16528           return DCI.CombineTo(N, Cond, SDValue());
   16529         return Cond;
   16530       }
   16531 
   16532       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
   16533       // for any integer data type, including i8/i16.
   16534       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   16535         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   16536                            DAG.getConstant(CC, MVT::i8), Cond);
   16537 
   16538         // Zero extend the condition if needed.
   16539         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   16540                            FalseC->getValueType(0), Cond);
   16541         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   16542                            SDValue(FalseC, 0));
   16543 
   16544         if (N->getNumValues() == 2)  // Dead flag value?
   16545           return DCI.CombineTo(N, Cond, SDValue());
   16546         return Cond;
   16547       }
   16548 
   16549       // Optimize cases that will turn into an LEA instruction.  This requires
   16550       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   16551       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   16552         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   16553         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   16554 
   16555         bool isFastMultiplier = false;
   16556         if (Diff < 10) {
   16557           switch ((unsigned char)Diff) {
   16558           default: break;
   16559           case 1:  // result = add base, cond
   16560           case 2:  // result = lea base(    , cond*2)
   16561           case 3:  // result = lea base(cond, cond*2)
   16562           case 4:  // result = lea base(    , cond*4)
   16563           case 5:  // result = lea base(cond, cond*4)
   16564           case 8:  // result = lea base(    , cond*8)
   16565           case 9:  // result = lea base(cond, cond*8)
   16566             isFastMultiplier = true;
   16567             break;
   16568           }
   16569         }
   16570 
   16571         if (isFastMultiplier) {
   16572           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   16573           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   16574                              DAG.getConstant(CC, MVT::i8), Cond);
   16575           // Zero extend the condition if needed.
   16576           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   16577                              Cond);
   16578           // Scale the condition by the difference.
   16579           if (Diff != 1)
   16580             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   16581                                DAG.getConstant(Diff, Cond.getValueType()));
   16582 
   16583           // Add the base if non-zero.
   16584           if (FalseC->getAPIntValue() != 0)
   16585             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   16586                                SDValue(FalseC, 0));
   16587           if (N->getNumValues() == 2)  // Dead flag value?
   16588             return DCI.CombineTo(N, Cond, SDValue());
   16589           return Cond;
   16590         }
   16591       }
   16592     }
   16593   }
   16594 
   16595   // Handle these cases:
   16596   //   (select (x != c), e, c) -> select (x != c), e, x),
   16597   //   (select (x == c), c, e) -> select (x == c), x, e)
   16598   // where the c is an integer constant, and the "select" is the combination
   16599   // of CMOV and CMP.
   16600   //
   16601   // The rationale for this change is that the conditional-move from a constant
   16602   // needs two instructions, however, conditional-move from a register needs
   16603   // only one instruction.
   16604   //
   16605   // CAVEAT: By replacing a constant with a symbolic value, it may obscure
   16606   //  some instruction-combining opportunities. This opt needs to be
   16607   //  postponed as late as possible.
   16608   //
   16609   if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
   16610     // the DCI.xxxx conditions are provided to postpone the optimization as
   16611     // late as possible.
   16612 
   16613     ConstantSDNode *CmpAgainst = 0;
   16614     if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
   16615         (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
   16616         !isa<ConstantSDNode>(Cond.getOperand(0))) {
   16617 
   16618       if (CC == X86::COND_NE &&
   16619           CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
   16620         CC = X86::GetOppositeBranchCondition(CC);
   16621         std::swap(TrueOp, FalseOp);
   16622       }
   16623 
   16624       if (CC == X86::COND_E &&
   16625           CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
   16626         SDValue Ops[] = { FalseOp, Cond.getOperand(0),
   16627                           DAG.getConstant(CC, MVT::i8), Cond };
   16628         return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
   16629                            array_lengthof(Ops));
   16630       }
   16631     }
   16632   }
   16633 
   16634   return SDValue();
   16635 }
   16636 
   16637 /// PerformMulCombine - Optimize a single multiply with constant into two
   16638 /// in order to implement it with two cheaper instructions, e.g.
   16639 /// LEA + SHL, LEA + LEA.
   16640 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
   16641                                  TargetLowering::DAGCombinerInfo &DCI) {
   16642   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   16643     return SDValue();
   16644 
   16645   EVT VT = N->getValueType(0);
   16646   if (VT != MVT::i64)
   16647     return SDValue();
   16648 
   16649   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   16650   if (!C)
   16651     return SDValue();
   16652   uint64_t MulAmt = C->getZExtValue();
   16653   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
   16654     return SDValue();
   16655 
   16656   uint64_t MulAmt1 = 0;
   16657   uint64_t MulAmt2 = 0;
   16658   if ((MulAmt % 9) == 0) {
   16659     MulAmt1 = 9;
   16660     MulAmt2 = MulAmt / 9;
   16661   } else if ((MulAmt % 5) == 0) {
   16662     MulAmt1 = 5;
   16663     MulAmt2 = MulAmt / 5;
   16664   } else if ((MulAmt % 3) == 0) {
   16665     MulAmt1 = 3;
   16666     MulAmt2 = MulAmt / 3;
   16667   }
   16668   if (MulAmt2 &&
   16669       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
   16670     SDLoc DL(N);
   16671 
   16672     if (isPowerOf2_64(MulAmt2) &&
   16673         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
   16674       // If second multiplifer is pow2, issue it first. We want the multiply by
   16675       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
   16676       // is an add.
   16677       std::swap(MulAmt1, MulAmt2);
   16678 
   16679     SDValue NewMul;
   16680     if (isPowerOf2_64(MulAmt1))
   16681       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
   16682                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
   16683     else
   16684       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
   16685                            DAG.getConstant(MulAmt1, VT));
   16686 
   16687     if (isPowerOf2_64(MulAmt2))
   16688       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
   16689                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
   16690     else
   16691       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
   16692                            DAG.getConstant(MulAmt2, VT));
   16693 
   16694     // Do not add new nodes to DAG combiner worklist.
   16695     DCI.CombineTo(N, NewMul, false);
   16696   }
   16697   return SDValue();
   16698 }
   16699 
   16700 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
   16701   SDValue N0 = N->getOperand(0);
   16702   SDValue N1 = N->getOperand(1);
   16703   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   16704   EVT VT = N0.getValueType();
   16705 
   16706   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
   16707   // since the result of setcc_c is all zero's or all ones.
   16708   if (VT.isInteger() && !VT.isVector() &&
   16709       N1C && N0.getOpcode() == ISD::AND &&
   16710       N0.getOperand(1).getOpcode() == ISD::Constant) {
   16711     SDValue N00 = N0.getOperand(0);
   16712     if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
   16713         ((N00.getOpcode() == ISD::ANY_EXTEND ||
   16714           N00.getOpcode() == ISD::ZERO_EXTEND) &&
   16715          N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
   16716       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   16717       APInt ShAmt = N1C->getAPIntValue();
   16718       Mask = Mask.shl(ShAmt);
   16719       if (Mask != 0)
   16720         return DAG.getNode(ISD::AND, SDLoc(N), VT,
   16721                            N00, DAG.getConstant(Mask, VT));
   16722     }
   16723   }
   16724 
   16725   // Hardware support for vector shifts is sparse which makes us scalarize the
   16726   // vector operations in many cases. Also, on sandybridge ADD is faster than
   16727   // shl.
   16728   // (shl V, 1) -> add V,V
   16729   if (isSplatVector(N1.getNode())) {
   16730     assert(N0.getValueType().isVector() && "Invalid vector shift type");
   16731     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
   16732     // We shift all of the values by one. In many cases we do not have
   16733     // hardware support for this operation. This is better expressed as an ADD
   16734     // of two values.
   16735     if (N1C && (1 == N1C->getZExtValue())) {
   16736       return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
   16737     }
   16738   }
   16739 
   16740   return SDValue();
   16741 }
   16742 
   16743 /// \brief Returns a vector of 0s if the node in input is a vector logical
   16744 /// shift by a constant amount which is known to be bigger than or equal
   16745 /// to the vector element size in bits.
   16746 static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
   16747                                       const X86Subtarget *Subtarget) {
   16748   EVT VT = N->getValueType(0);
   16749 
   16750   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
   16751       (!Subtarget->hasInt256() ||
   16752        (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
   16753     return SDValue();
   16754 
   16755   SDValue Amt = N->getOperand(1);
   16756   SDLoc DL(N);
   16757   if (isSplatVector(Amt.getNode())) {
   16758     SDValue SclrAmt = Amt->getOperand(0);
   16759     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
   16760       APInt ShiftAmt = C->getAPIntValue();
   16761       unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
   16762 
   16763       // SSE2/AVX2 logical shifts always return a vector of 0s
   16764       // if the shift amount is bigger than or equal to
   16765       // the element size. The constant shift amount will be
   16766       // encoded as a 8-bit immediate.
   16767       if (ShiftAmt.trunc(8).uge(MaxAmount))
   16768         return getZeroVector(VT, Subtarget, DAG, DL);
   16769     }
   16770   }
   16771 
   16772   return SDValue();
   16773 }
   16774 
   16775 /// PerformShiftCombine - Combine shifts.
   16776 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
   16777                                    TargetLowering::DAGCombinerInfo &DCI,
   16778                                    const X86Subtarget *Subtarget) {
   16779   if (N->getOpcode() == ISD::SHL) {
   16780     SDValue V = PerformSHLCombine(N, DAG);
   16781     if (V.getNode()) return V;
   16782   }
   16783 
   16784   if (N->getOpcode() != ISD::SRA) {
   16785     // Try to fold this logical shift into a zero vector.
   16786     SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
   16787     if (V.getNode()) return V;
   16788   }
   16789 
   16790   return SDValue();
   16791 }
   16792 
   16793 // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
   16794 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
   16795 // and friends.  Likewise for OR -> CMPNEQSS.
   16796 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
   16797                             TargetLowering::DAGCombinerInfo &DCI,
   16798                             const X86Subtarget *Subtarget) {
   16799   unsigned opcode;
   16800 
   16801   // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
   16802   // we're requiring SSE2 for both.
   16803   if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
   16804     SDValue N0 = N->getOperand(0);
   16805     SDValue N1 = N->getOperand(1);
   16806     SDValue CMP0 = N0->getOperand(1);
   16807     SDValue CMP1 = N1->getOperand(1);
   16808     SDLoc DL(N);
   16809 
   16810     // The SETCCs should both refer to the same CMP.
   16811     if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
   16812       return SDValue();
   16813 
   16814     SDValue CMP00 = CMP0->getOperand(0);
   16815     SDValue CMP01 = CMP0->getOperand(1);
   16816     EVT     VT    = CMP00.getValueType();
   16817 
   16818     if (VT == MVT::f32 || VT == MVT::f64) {
   16819       bool ExpectingFlags = false;
   16820       // Check for any users that want flags:
   16821       for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   16822            !ExpectingFlags && UI != UE; ++UI)
   16823         switch (UI->getOpcode()) {
   16824         default:
   16825         case ISD::BR_CC:
   16826         case ISD::BRCOND:
   16827         case ISD::SELECT:
   16828           ExpectingFlags = true;
   16829           break;
   16830         case ISD::CopyToReg:
   16831         case ISD::SIGN_EXTEND:
   16832         case ISD::ZERO_EXTEND:
   16833         case ISD::ANY_EXTEND:
   16834           break;
   16835         }
   16836 
   16837       if (!ExpectingFlags) {
   16838         enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
   16839         enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
   16840 
   16841         if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
   16842           X86::CondCode tmp = cc0;
   16843           cc0 = cc1;
   16844           cc1 = tmp;
   16845         }
   16846 
   16847         if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
   16848             (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
   16849           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
   16850           X86ISD::NodeType NTOperator = is64BitFP ?
   16851             X86ISD::FSETCCsd : X86ISD::FSETCCss;
   16852           // FIXME: need symbolic constants for these magic numbers.
   16853           // See X86ATTInstPrinter.cpp:printSSECC().
   16854           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
   16855           SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
   16856                                               DAG.getConstant(x86cc, MVT::i8));
   16857           SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
   16858                                               OnesOrZeroesF);
   16859           SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
   16860                                       DAG.getConstant(1, MVT::i32));
   16861           SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
   16862           return OneBitOfTruth;
   16863         }
   16864       }
   16865     }
   16866   }
   16867   return SDValue();
   16868 }
   16869 
   16870 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
   16871 /// so it can be folded inside ANDNP.
   16872 static bool CanFoldXORWithAllOnes(const SDNode *N) {
   16873   EVT VT = N->getValueType(0);
   16874 
   16875   // Match direct AllOnes for 128 and 256-bit vectors
   16876   if (ISD::isBuildVectorAllOnes(N))
   16877     return true;
   16878 
   16879   // Look through a bit convert.
   16880   if (N->getOpcode() == ISD::BITCAST)
   16881     N = N->getOperand(0).getNode();
   16882 
   16883   // Sometimes the operand may come from a insert_subvector building a 256-bit
   16884   // allones vector
   16885   if (VT.is256BitVector() &&
   16886       N->getOpcode() == ISD::INSERT_SUBVECTOR) {
   16887     SDValue V1 = N->getOperand(0);
   16888     SDValue V2 = N->getOperand(1);
   16889 
   16890     if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
   16891         V1.getOperand(0).getOpcode() == ISD::UNDEF &&
   16892         ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
   16893         ISD::isBuildVectorAllOnes(V2.getNode()))
   16894       return true;
   16895   }
   16896 
   16897   return false;
   16898 }
   16899 
   16900 // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
   16901 // register. In most cases we actually compare or select YMM-sized registers
   16902 // and mixing the two types creates horrible code. This method optimizes
   16903 // some of the transition sequences.
   16904 static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
   16905                                  TargetLowering::DAGCombinerInfo &DCI,
   16906                                  const X86Subtarget *Subtarget) {
   16907   EVT VT = N->getValueType(0);
   16908   if (!VT.is256BitVector())
   16909     return SDValue();
   16910 
   16911   assert((N->getOpcode() == ISD::ANY_EXTEND ||
   16912           N->getOpcode() == ISD::ZERO_EXTEND ||
   16913           N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
   16914 
   16915   SDValue Narrow = N->getOperand(0);
   16916   EVT NarrowVT = Narrow->getValueType(0);
   16917   if (!NarrowVT.is128BitVector())
   16918     return SDValue();
   16919 
   16920   if (Narrow->getOpcode() != ISD::XOR &&
   16921       Narrow->getOpcode() != ISD::AND &&
   16922       Narrow->getOpcode() != ISD::OR)
   16923     return SDValue();
   16924 
   16925   SDValue N0  = Narrow->getOperand(0);
   16926   SDValue N1  = Narrow->getOperand(1);
   16927   SDLoc DL(Narrow);
   16928 
   16929   // The Left side has to be a trunc.
   16930   if (N0.getOpcode() != ISD::TRUNCATE)
   16931     return SDValue();
   16932 
   16933   // The type of the truncated inputs.
   16934   EVT WideVT = N0->getOperand(0)->getValueType(0);
   16935   if (WideVT != VT)
   16936     return SDValue();
   16937 
   16938   // The right side has to be a 'trunc' or a constant vector.
   16939   bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
   16940   bool RHSConst = (isSplatVector(N1.getNode()) &&
   16941                    isa<ConstantSDNode>(N1->getOperand(0)));
   16942   if (!RHSTrunc && !RHSConst)
   16943     return SDValue();
   16944 
   16945   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   16946 
   16947   if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
   16948     return SDValue();
   16949 
   16950   // Set N0 and N1 to hold the inputs to the new wide operation.
   16951   N0 = N0->getOperand(0);
   16952   if (RHSConst) {
   16953     N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
   16954                      N1->getOperand(0));
   16955     SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
   16956     N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
   16957   } else if (RHSTrunc) {
   16958     N1 = N1->getOperand(0);
   16959   }
   16960 
   16961   // Generate the wide operation.
   16962   SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
   16963   unsigned Opcode = N->getOpcode();
   16964   switch (Opcode) {
   16965   case ISD::ANY_EXTEND:
   16966     return Op;
   16967   case ISD::ZERO_EXTEND: {
   16968     unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
   16969     APInt Mask = APInt::getAllOnesValue(InBits);
   16970     Mask = Mask.zext(VT.getScalarType().getSizeInBits());
   16971     return DAG.getNode(ISD::AND, DL, VT,
   16972                        Op, DAG.getConstant(Mask, VT));
   16973   }
   16974   case ISD::SIGN_EXTEND:
   16975     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
   16976                        Op, DAG.getValueType(NarrowVT));
   16977   default:
   16978     llvm_unreachable("Unexpected opcode");
   16979   }
   16980 }
   16981 
   16982 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
   16983                                  TargetLowering::DAGCombinerInfo &DCI,
   16984                                  const X86Subtarget *Subtarget) {
   16985   EVT VT = N->getValueType(0);
   16986   if (DCI.isBeforeLegalizeOps())
   16987     return SDValue();
   16988 
   16989   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   16990   if (R.getNode())
   16991     return R;
   16992 
   16993   // Create BLSI, and BLSR instructions
   16994   // BLSI is X & (-X)
   16995   // BLSR is X & (X-1)
   16996   if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
   16997     SDValue N0 = N->getOperand(0);
   16998     SDValue N1 = N->getOperand(1);
   16999     SDLoc DL(N);
   17000 
   17001     // Check LHS for neg
   17002     if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
   17003         isZero(N0.getOperand(0)))
   17004       return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
   17005 
   17006     // Check RHS for neg
   17007     if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
   17008         isZero(N1.getOperand(0)))
   17009       return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
   17010 
   17011     // Check LHS for X-1
   17012     if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
   17013         isAllOnes(N0.getOperand(1)))
   17014       return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
   17015 
   17016     // Check RHS for X-1
   17017     if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
   17018         isAllOnes(N1.getOperand(1)))
   17019       return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
   17020 
   17021     return SDValue();
   17022   }
   17023 
   17024   // Want to form ANDNP nodes:
   17025   // 1) In the hopes of then easily combining them with OR and AND nodes
   17026   //    to form PBLEND/PSIGN.
   17027   // 2) To match ANDN packed intrinsics
   17028   if (VT != MVT::v2i64 && VT != MVT::v4i64)
   17029     return SDValue();
   17030 
   17031   SDValue N0 = N->getOperand(0);
   17032   SDValue N1 = N->getOperand(1);
   17033   SDLoc DL(N);
   17034 
   17035   // Check LHS for vnot
   17036   if (N0.getOpcode() == ISD::XOR &&
   17037       //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
   17038       CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
   17039     return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
   17040 
   17041   // Check RHS for vnot
   17042   if (N1.getOpcode() == ISD::XOR &&
   17043       //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
   17044       CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
   17045     return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
   17046 
   17047   return SDValue();
   17048 }
   17049 
   17050 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
   17051                                 TargetLowering::DAGCombinerInfo &DCI,
   17052                                 const X86Subtarget *Subtarget) {
   17053   EVT VT = N->getValueType(0);
   17054   if (DCI.isBeforeLegalizeOps())
   17055     return SDValue();
   17056 
   17057   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   17058   if (R.getNode())
   17059     return R;
   17060 
   17061   SDValue N0 = N->getOperand(0);
   17062   SDValue N1 = N->getOperand(1);
   17063 
   17064   // look for psign/blend
   17065   if (VT == MVT::v2i64 || VT == MVT::v4i64) {
   17066     if (!Subtarget->hasSSSE3() ||
   17067         (VT == MVT::v4i64 && !Subtarget->hasInt256()))
   17068       return SDValue();
   17069 
   17070     // Canonicalize pandn to RHS
   17071     if (N0.getOpcode() == X86ISD::ANDNP)
   17072       std::swap(N0, N1);
   17073     // or (and (m, y), (pandn m, x))
   17074     if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
   17075       SDValue Mask = N1.getOperand(0);
   17076       SDValue X    = N1.getOperand(1);
   17077       SDValue Y;
   17078       if (N0.getOperand(0) == Mask)
   17079         Y = N0.getOperand(1);
   17080       if (N0.getOperand(1) == Mask)
   17081         Y = N0.getOperand(0);
   17082 
   17083       // Check to see if the mask appeared in both the AND and ANDNP and
   17084       if (!Y.getNode())
   17085         return SDValue();
   17086 
   17087       // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
   17088       // Look through mask bitcast.
   17089       if (Mask.getOpcode() == ISD::BITCAST)
   17090         Mask = Mask.getOperand(0);
   17091       if (X.getOpcode() == ISD::BITCAST)
   17092         X = X.getOperand(0);
   17093       if (Y.getOpcode() == ISD::BITCAST)
   17094         Y = Y.getOperand(0);
   17095 
   17096       EVT MaskVT = Mask.getValueType();
   17097 
   17098       // Validate that the Mask operand is a vector sra node.
   17099       // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
   17100       // there is no psrai.b
   17101       unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
   17102       unsigned SraAmt = ~0;
   17103       if (Mask.getOpcode() == ISD::SRA) {
   17104         SDValue Amt = Mask.getOperand(1);
   17105         if (isSplatVector(Amt.getNode())) {
   17106           SDValue SclrAmt = Amt->getOperand(0);
   17107           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
   17108             SraAmt = C->getZExtValue();
   17109         }
   17110       } else if (Mask.getOpcode() == X86ISD::VSRAI) {
   17111         SDValue SraC = Mask.getOperand(1);
   17112         SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
   17113       }
   17114       if ((SraAmt + 1) != EltBits)
   17115         return SDValue();
   17116 
   17117       SDLoc DL(N);
   17118 
   17119       // Now we know we at least have a plendvb with the mask val.  See if
   17120       // we can form a psignb/w/d.
   17121       // psign = x.type == y.type == mask.type && y = sub(0, x);
   17122       if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
   17123           ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
   17124           X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
   17125         assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
   17126                "Unsupported VT for PSIGN");
   17127         Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
   17128         return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
   17129       }
   17130       // PBLENDVB only available on SSE 4.1
   17131       if (!Subtarget->hasSSE41())
   17132         return SDValue();
   17133 
   17134       EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
   17135 
   17136       X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
   17137       Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
   17138       Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
   17139       Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
   17140       return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
   17141     }
   17142   }
   17143 
   17144   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
   17145     return SDValue();
   17146 
   17147   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
   17148   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
   17149     std::swap(N0, N1);
   17150   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
   17151     return SDValue();
   17152   if (!N0.hasOneUse() || !N1.hasOneUse())
   17153     return SDValue();
   17154 
   17155   SDValue ShAmt0 = N0.getOperand(1);
   17156   if (ShAmt0.getValueType() != MVT::i8)
   17157     return SDValue();
   17158   SDValue ShAmt1 = N1.getOperand(1);
   17159   if (ShAmt1.getValueType() != MVT::i8)
   17160     return SDValue();
   17161   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
   17162     ShAmt0 = ShAmt0.getOperand(0);
   17163   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
   17164     ShAmt1 = ShAmt1.getOperand(0);
   17165 
   17166   SDLoc DL(N);
   17167   unsigned Opc = X86ISD::SHLD;
   17168   SDValue Op0 = N0.getOperand(0);
   17169   SDValue Op1 = N1.getOperand(0);
   17170   if (ShAmt0.getOpcode() == ISD::SUB) {
   17171     Opc = X86ISD::SHRD;
   17172     std::swap(Op0, Op1);
   17173     std::swap(ShAmt0, ShAmt1);
   17174   }
   17175 
   17176   unsigned Bits = VT.getSizeInBits();
   17177   if (ShAmt1.getOpcode() == ISD::SUB) {
   17178     SDValue Sum = ShAmt1.getOperand(0);
   17179     if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
   17180       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
   17181       if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
   17182         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
   17183       if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
   17184         return DAG.getNode(Opc, DL, VT,
   17185                            Op0, Op1,
   17186                            DAG.getNode(ISD::TRUNCATE, DL,
   17187                                        MVT::i8, ShAmt0));
   17188     }
   17189   } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
   17190     ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
   17191     if (ShAmt0C &&
   17192         ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
   17193       return DAG.getNode(Opc, DL, VT,
   17194                          N0.getOperand(0), N1.getOperand(0),
   17195                          DAG.getNode(ISD::TRUNCATE, DL,
   17196                                        MVT::i8, ShAmt0));
   17197   }
   17198 
   17199   return SDValue();
   17200 }
   17201 
   17202 // Generate NEG and CMOV for integer abs.
   17203 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
   17204   EVT VT = N->getValueType(0);
   17205 
   17206   // Since X86 does not have CMOV for 8-bit integer, we don't convert
   17207   // 8-bit integer abs to NEG and CMOV.
   17208   if (VT.isInteger() && VT.getSizeInBits() == 8)
   17209     return SDValue();
   17210 
   17211   SDValue N0 = N->getOperand(0);
   17212   SDValue N1 = N->getOperand(1);
   17213   SDLoc DL(N);
   17214 
   17215   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
   17216   // and change it to SUB and CMOV.
   17217   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
   17218       N0.getOpcode() == ISD::ADD &&
   17219       N0.getOperand(1) == N1 &&
   17220       N1.getOpcode() == ISD::SRA &&
   17221       N1.getOperand(0) == N0.getOperand(0))
   17222     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
   17223       if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
   17224         // Generate SUB & CMOV.
   17225         SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
   17226                                   DAG.getConstant(0, VT), N0.getOperand(0));
   17227 
   17228         SDValue Ops[] = { N0.getOperand(0), Neg,
   17229                           DAG.getConstant(X86::COND_GE, MVT::i8),
   17230                           SDValue(Neg.getNode(), 1) };
   17231         return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
   17232                            Ops, array_lengthof(Ops));
   17233       }
   17234   return SDValue();
   17235 }
   17236 
   17237 // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
   17238 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
   17239                                  TargetLowering::DAGCombinerInfo &DCI,
   17240                                  const X86Subtarget *Subtarget) {
   17241   EVT VT = N->getValueType(0);
   17242   if (DCI.isBeforeLegalizeOps())
   17243     return SDValue();
   17244 
   17245   if (Subtarget->hasCMov()) {
   17246     SDValue RV = performIntegerAbsCombine(N, DAG);
   17247     if (RV.getNode())
   17248       return RV;
   17249   }
   17250 
   17251   // Try forming BMI if it is available.
   17252   if (!Subtarget->hasBMI())
   17253     return SDValue();
   17254 
   17255   if (VT != MVT::i32 && VT != MVT::i64)
   17256     return SDValue();
   17257 
   17258   assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
   17259 
   17260   // Create BLSMSK instructions by finding X ^ (X-1)
   17261   SDValue N0 = N->getOperand(0);
   17262   SDValue N1 = N->getOperand(1);
   17263   SDLoc DL(N);
   17264 
   17265   if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
   17266       isAllOnes(N0.getOperand(1)))
   17267     return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
   17268 
   17269   if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
   17270       isAllOnes(N1.getOperand(1)))
   17271     return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
   17272 
   17273   return SDValue();
   17274 }
   17275 
   17276 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
   17277 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
   17278                                   TargetLowering::DAGCombinerInfo &DCI,
   17279                                   const X86Subtarget *Subtarget) {
   17280   LoadSDNode *Ld = cast<LoadSDNode>(N);
   17281   EVT RegVT = Ld->getValueType(0);
   17282   EVT MemVT = Ld->getMemoryVT();
   17283   SDLoc dl(Ld);
   17284   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   17285   unsigned RegSz = RegVT.getSizeInBits();
   17286 
   17287   // On Sandybridge unaligned 256bit loads are inefficient.
   17288   ISD::LoadExtType Ext = Ld->getExtensionType();
   17289   unsigned Alignment = Ld->getAlignment();
   17290   bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
   17291   if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
   17292       !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
   17293     unsigned NumElems = RegVT.getVectorNumElements();
   17294     if (NumElems < 2)
   17295       return SDValue();
   17296 
   17297     SDValue Ptr = Ld->getBasePtr();
   17298     SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
   17299 
   17300     EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
   17301                                   NumElems/2);
   17302     SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
   17303                                 Ld->getPointerInfo(), Ld->isVolatile(),
   17304                                 Ld->isNonTemporal(), Ld->isInvariant(),
   17305                                 Alignment);
   17306     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   17307     SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
   17308                                 Ld->getPointerInfo(), Ld->isVolatile(),
   17309                                 Ld->isNonTemporal(), Ld->isInvariant(),
   17310                                 std::min(16U, Alignment));
   17311     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   17312                              Load1.getValue(1),
   17313                              Load2.getValue(1));
   17314 
   17315     SDValue NewVec = DAG.getUNDEF(RegVT);
   17316     NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
   17317     NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
   17318     return DCI.CombineTo(N, NewVec, TF, true);
   17319   }
   17320 
   17321   // If this is a vector EXT Load then attempt to optimize it using a
   17322   // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
   17323   // expansion is still better than scalar code.
   17324   // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
   17325   // emit a shuffle and a arithmetic shift.
   17326   // TODO: It is possible to support ZExt by zeroing the undef values
   17327   // during the shuffle phase or after the shuffle.
   17328   if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
   17329       (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
   17330     assert(MemVT != RegVT && "Cannot extend to the same type");
   17331     assert(MemVT.isVector() && "Must load a vector from memory");
   17332 
   17333     unsigned NumElems = RegVT.getVectorNumElements();
   17334     unsigned MemSz = MemVT.getSizeInBits();
   17335     assert(RegSz > MemSz && "Register size must be greater than the mem size");
   17336 
   17337     if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
   17338       return SDValue();
   17339 
   17340     // All sizes must be a power of two.
   17341     if (!isPowerOf2_32(RegSz * MemSz * NumElems))
   17342       return SDValue();
   17343 
   17344     // Attempt to load the original value using scalar loads.
   17345     // Find the largest scalar type that divides the total loaded size.
   17346     MVT SclrLoadTy = MVT::i8;
   17347     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   17348          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   17349       MVT Tp = (MVT::SimpleValueType)tp;
   17350       if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
   17351         SclrLoadTy = Tp;
   17352       }
   17353     }
   17354 
   17355     // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
   17356     if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
   17357         (64 <= MemSz))
   17358       SclrLoadTy = MVT::f64;
   17359 
   17360     // Calculate the number of scalar loads that we need to perform
   17361     // in order to load our vector from memory.
   17362     unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
   17363     if (Ext == ISD::SEXTLOAD && NumLoads > 1)
   17364       return SDValue();
   17365 
   17366     unsigned loadRegZize = RegSz;
   17367     if (Ext == ISD::SEXTLOAD && RegSz == 256)
   17368       loadRegZize /= 2;
   17369 
   17370     // Represent our vector as a sequence of elements which are the
   17371     // largest scalar that we can load.
   17372     EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
   17373       loadRegZize/SclrLoadTy.getSizeInBits());
   17374 
   17375     // Represent the data using the same element type that is stored in
   17376     // memory. In practice, we ''widen'' MemVT.
   17377     EVT WideVecVT =
   17378           EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
   17379                        loadRegZize/MemVT.getScalarType().getSizeInBits());
   17380 
   17381     assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
   17382       "Invalid vector type");
   17383 
   17384     // We can't shuffle using an illegal type.
   17385     if (!TLI.isTypeLegal(WideVecVT))
   17386       return SDValue();
   17387 
   17388     SmallVector<SDValue, 8> Chains;
   17389     SDValue Ptr = Ld->getBasePtr();
   17390     SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
   17391                                         TLI.getPointerTy());
   17392     SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
   17393 
   17394     for (unsigned i = 0; i < NumLoads; ++i) {
   17395       // Perform a single load.
   17396       SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
   17397                                        Ptr, Ld->getPointerInfo(),
   17398                                        Ld->isVolatile(), Ld->isNonTemporal(),
   17399                                        Ld->isInvariant(), Ld->getAlignment());
   17400       Chains.push_back(ScalarLoad.getValue(1));
   17401       // Create the first element type using SCALAR_TO_VECTOR in order to avoid
   17402       // another round of DAGCombining.
   17403       if (i == 0)
   17404         Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
   17405       else
   17406         Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
   17407                           ScalarLoad, DAG.getIntPtrConstant(i));
   17408 
   17409       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   17410     }
   17411 
   17412     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
   17413                                Chains.size());
   17414 
   17415     // Bitcast the loaded value to a vector of the original element type, in
   17416     // the size of the target vector type.
   17417     SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
   17418     unsigned SizeRatio = RegSz/MemSz;
   17419 
   17420     if (Ext == ISD::SEXTLOAD) {
   17421       // If we have SSE4.1 we can directly emit a VSEXT node.
   17422       if (Subtarget->hasSSE41()) {
   17423         SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
   17424         return DCI.CombineTo(N, Sext, TF, true);
   17425       }
   17426 
   17427       // Otherwise we'll shuffle the small elements in the high bits of the
   17428       // larger type and perform an arithmetic shift. If the shift is not legal
   17429       // it's better to scalarize.
   17430       if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
   17431         return SDValue();
   17432 
   17433       // Redistribute the loaded elements into the different locations.
   17434       SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   17435       for (unsigned i = 0; i != NumElems; ++i)
   17436         ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
   17437 
   17438       SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
   17439                                            DAG.getUNDEF(WideVecVT),
   17440                                            &ShuffleVec[0]);
   17441 
   17442       Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
   17443 
   17444       // Build the arithmetic shift.
   17445       unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
   17446                      MemVT.getVectorElementType().getSizeInBits();
   17447       Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
   17448                           DAG.getConstant(Amt, RegVT));
   17449 
   17450       return DCI.CombineTo(N, Shuff, TF, true);
   17451     }
   17452 
   17453     // Redistribute the loaded elements into the different locations.
   17454     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   17455     for (unsigned i = 0; i != NumElems; ++i)
   17456       ShuffleVec[i*SizeRatio] = i;
   17457 
   17458     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
   17459                                          DAG.getUNDEF(WideVecVT),
   17460                                          &ShuffleVec[0]);
   17461 
   17462     // Bitcast to the requested type.
   17463     Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
   17464     // Replace the original load with the new sequence
   17465     // and return the new chain.
   17466     return DCI.CombineTo(N, Shuff, TF, true);
   17467   }
   17468 
   17469   return SDValue();
   17470 }
   17471 
   17472 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
   17473 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
   17474                                    const X86Subtarget *Subtarget) {
   17475   StoreSDNode *St = cast<StoreSDNode>(N);
   17476   EVT VT = St->getValue().getValueType();
   17477   EVT StVT = St->getMemoryVT();
   17478   SDLoc dl(St);
   17479   SDValue StoredVal = St->getOperand(1);
   17480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   17481 
   17482   // If we are saving a concatenation of two XMM registers, perform two stores.
   17483   // On Sandy Bridge, 256-bit memory operations are executed by two
   17484   // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
   17485   // memory  operation.
   17486   unsigned Alignment = St->getAlignment();
   17487   bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
   17488   if (VT.is256BitVector() && !Subtarget->hasInt256() &&
   17489       StVT == VT && !IsAligned) {
   17490     unsigned NumElems = VT.getVectorNumElements();
   17491     if (NumElems < 2)
   17492       return SDValue();
   17493 
   17494     SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
   17495     SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
   17496 
   17497     SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
   17498     SDValue Ptr0 = St->getBasePtr();
   17499     SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
   17500 
   17501     SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
   17502                                 St->getPointerInfo(), St->isVolatile(),
   17503                                 St->isNonTemporal(), Alignment);
   17504     SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
   17505                                 St->getPointerInfo(), St->isVolatile(),
   17506                                 St->isNonTemporal(),
   17507                                 std::min(16U, Alignment));
   17508     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
   17509   }
   17510 
   17511   // Optimize trunc store (of multiple scalars) to shuffle and store.
   17512   // First, pack all of the elements in one place. Next, store to memory
   17513   // in fewer chunks.
   17514   if (St->isTruncatingStore() && VT.isVector()) {
   17515     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   17516     unsigned NumElems = VT.getVectorNumElements();
   17517     assert(StVT != VT && "Cannot truncate to the same type");
   17518     unsigned FromSz = VT.getVectorElementType().getSizeInBits();
   17519     unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
   17520 
   17521     // From, To sizes and ElemCount must be pow of two
   17522     if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
   17523     // We are going to use the original vector elt for storing.
   17524     // Accumulated smaller vector elements must be a multiple of the store size.
   17525     if (0 != (NumElems * FromSz) % ToSz) return SDValue();
   17526 
   17527     unsigned SizeRatio  = FromSz / ToSz;
   17528 
   17529     assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
   17530 
   17531     // Create a type on which we perform the shuffle
   17532     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
   17533             StVT.getScalarType(), NumElems*SizeRatio);
   17534 
   17535     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   17536 
   17537     SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
   17538     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   17539     for (unsigned i = 0; i != NumElems; ++i)
   17540       ShuffleVec[i] = i * SizeRatio;
   17541 
   17542     // Can't shuffle using an illegal type.
   17543     if (!TLI.isTypeLegal(WideVecVT))
   17544       return SDValue();
   17545 
   17546     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
   17547                                          DAG.getUNDEF(WideVecVT),
   17548                                          &ShuffleVec[0]);
   17549     // At this point all of the data is stored at the bottom of the
   17550     // register. We now need to save it to mem.
   17551 
   17552     // Find the largest store unit
   17553     MVT StoreType = MVT::i8;
   17554     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   17555          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   17556       MVT Tp = (MVT::SimpleValueType)tp;
   17557       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
   17558         StoreType = Tp;
   17559     }
   17560 
   17561     // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
   17562     if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
   17563         (64 <= NumElems * ToSz))
   17564       StoreType = MVT::f64;
   17565 
   17566     // Bitcast the original vector into a vector of store-size units
   17567     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   17568             StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
   17569     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   17570     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
   17571     SmallVector<SDValue, 8> Chains;
   17572     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   17573                                         TLI.getPointerTy());
   17574     SDValue Ptr = St->getBasePtr();
   17575 
   17576     // Perform one or more big stores into memory.
   17577     for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
   17578       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   17579                                    StoreType, ShuffWide,
   17580                                    DAG.getIntPtrConstant(i));
   17581       SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
   17582                                 St->getPointerInfo(), St->isVolatile(),
   17583                                 St->isNonTemporal(), St->getAlignment());
   17584       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   17585       Chains.push_back(Ch);
   17586     }
   17587 
   17588     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
   17589                                Chains.size());
   17590   }
   17591 
   17592   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
   17593   // the FP state in cases where an emms may be missing.
   17594   // A preferable solution to the general problem is to figure out the right
   17595   // places to insert EMMS.  This qualifies as a quick hack.
   17596 
   17597   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
   17598   if (VT.getSizeInBits() != 64)
   17599     return SDValue();
   17600 
   17601   const Function *F = DAG.getMachineFunction().getFunction();
   17602   bool NoImplicitFloatOps = F->getAttributes().
   17603     hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
   17604   bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
   17605                      && Subtarget->hasSSE2();
   17606   if ((VT.isVector() ||
   17607        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
   17608       isa<LoadSDNode>(St->getValue()) &&
   17609       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
   17610       St->getChain().hasOneUse() && !St->isVolatile()) {
   17611     SDNode* LdVal = St->getValue().getNode();
   17612     LoadSDNode *Ld = 0;
   17613     int TokenFactorIndex = -1;
   17614     SmallVector<SDValue, 8> Ops;
   17615     SDNode* ChainVal = St->getChain().getNode();
   17616     // Must be a store of a load.  We currently handle two cases:  the load
   17617     // is a direct child, and it's under an intervening TokenFactor.  It is
   17618     // possible to dig deeper under nested TokenFactors.
   17619     if (ChainVal == LdVal)
   17620       Ld = cast<LoadSDNode>(St->getChain());
   17621     else if (St->getValue().hasOneUse() &&
   17622              ChainVal->getOpcode() == ISD::TokenFactor) {
   17623       for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
   17624         if (ChainVal->getOperand(i).getNode() == LdVal) {
   17625           TokenFactorIndex = i;
   17626           Ld = cast<LoadSDNode>(St->getValue());
   17627         } else
   17628           Ops.push_back(ChainVal->getOperand(i));
   17629       }
   17630     }
   17631 
   17632     if (!Ld || !ISD::isNormalLoad(Ld))
   17633       return SDValue();
   17634 
   17635     // If this is not the MMX case, i.e. we are just turning i64 load/store
   17636     // into f64 load/store, avoid the transformation if there are multiple
   17637     // uses of the loaded value.
   17638     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
   17639       return SDValue();
   17640 
   17641     SDLoc LdDL(Ld);
   17642     SDLoc StDL(N);
   17643     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
   17644     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
   17645     // pair instead.
   17646     if (Subtarget->is64Bit() || F64IsLegal) {
   17647       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
   17648       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
   17649                                   Ld->getPointerInfo(), Ld->isVolatile(),
   17650                                   Ld->isNonTemporal(), Ld->isInvariant(),
   17651                                   Ld->getAlignment());
   17652       SDValue NewChain = NewLd.getValue(1);
   17653       if (TokenFactorIndex != -1) {
   17654         Ops.push_back(NewChain);
   17655         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   17656                                Ops.size());
   17657       }
   17658       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
   17659                           St->getPointerInfo(),
   17660                           St->isVolatile(), St->isNonTemporal(),
   17661                           St->getAlignment());
   17662     }
   17663 
   17664     // Otherwise, lower to two pairs of 32-bit loads / stores.
   17665     SDValue LoAddr = Ld->getBasePtr();
   17666     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
   17667                                  DAG.getConstant(4, MVT::i32));
   17668 
   17669     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
   17670                                Ld->getPointerInfo(),
   17671                                Ld->isVolatile(), Ld->isNonTemporal(),
   17672                                Ld->isInvariant(), Ld->getAlignment());
   17673     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
   17674                                Ld->getPointerInfo().getWithOffset(4),
   17675                                Ld->isVolatile(), Ld->isNonTemporal(),
   17676                                Ld->isInvariant(),
   17677                                MinAlign(Ld->getAlignment(), 4));
   17678 
   17679     SDValue NewChain = LoLd.getValue(1);
   17680     if (TokenFactorIndex != -1) {
   17681       Ops.push_back(LoLd);
   17682       Ops.push_back(HiLd);
   17683       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   17684                              Ops.size());
   17685     }
   17686 
   17687     LoAddr = St->getBasePtr();
   17688     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
   17689                          DAG.getConstant(4, MVT::i32));
   17690 
   17691     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
   17692                                 St->getPointerInfo(),
   17693                                 St->isVolatile(), St->isNonTemporal(),
   17694                                 St->getAlignment());
   17695     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
   17696                                 St->getPointerInfo().getWithOffset(4),
   17697                                 St->isVolatile(),
   17698                                 St->isNonTemporal(),
   17699                                 MinAlign(St->getAlignment(), 4));
   17700     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
   17701   }
   17702   return SDValue();
   17703 }
   17704 
   17705 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
   17706 /// and return the operands for the horizontal operation in LHS and RHS.  A
   17707 /// horizontal operation performs the binary operation on successive elements
   17708 /// of its first operand, then on successive elements of its second operand,
   17709 /// returning the resulting values in a vector.  For example, if
   17710 ///   A = < float a0, float a1, float a2, float a3 >
   17711 /// and
   17712 ///   B = < float b0, float b1, float b2, float b3 >
   17713 /// then the result of doing a horizontal operation on A and B is
   17714 ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
   17715 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
   17716 /// A horizontal-op B, for some already available A and B, and if so then LHS is
   17717 /// set to A, RHS to B, and the routine returns 'true'.
   17718 /// Note that the binary operation should have the property that if one of the
   17719 /// operands is UNDEF then the result is UNDEF.
   17720 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
   17721   // Look for the following pattern: if
   17722   //   A = < float a0, float a1, float a2, float a3 >
   17723   //   B = < float b0, float b1, float b2, float b3 >
   17724   // and
   17725   //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
   17726   //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
   17727   // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
   17728   // which is A horizontal-op B.
   17729 
   17730   // At least one of the operands should be a vector shuffle.
   17731   if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
   17732       RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
   17733     return false;
   17734 
   17735   MVT VT = LHS.getValueType().getSimpleVT();
   17736 
   17737   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   17738          "Unsupported vector type for horizontal add/sub");
   17739 
   17740   // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
   17741   // operate independently on 128-bit lanes.
   17742   unsigned NumElts = VT.getVectorNumElements();
   17743   unsigned NumLanes = VT.getSizeInBits()/128;
   17744   unsigned NumLaneElts = NumElts / NumLanes;
   17745   assert((NumLaneElts % 2 == 0) &&
   17746          "Vector type should have an even number of elements in each lane");
   17747   unsigned HalfLaneElts = NumLaneElts/2;
   17748 
   17749   // View LHS in the form
   17750   //   LHS = VECTOR_SHUFFLE A, B, LMask
   17751   // If LHS is not a shuffle then pretend it is the shuffle
   17752   //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
   17753   // NOTE: in what follows a default initialized SDValue represents an UNDEF of
   17754   // type VT.
   17755   SDValue A, B;
   17756   SmallVector<int, 16> LMask(NumElts);
   17757   if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   17758     if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
   17759       A = LHS.getOperand(0);
   17760     if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
   17761       B = LHS.getOperand(1);
   17762     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
   17763     std::copy(Mask.begin(), Mask.end(), LMask.begin());
   17764   } else {
   17765     if (LHS.getOpcode() != ISD::UNDEF)
   17766       A = LHS;
   17767     for (unsigned i = 0; i != NumElts; ++i)
   17768       LMask[i] = i;
   17769   }
   17770 
   17771   // Likewise, view RHS in the form
   17772   //   RHS = VECTOR_SHUFFLE C, D, RMask
   17773   SDValue C, D;
   17774   SmallVector<int, 16> RMask(NumElts);
   17775   if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   17776     if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
   17777       C = RHS.getOperand(0);
   17778     if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
   17779       D = RHS.getOperand(1);
   17780     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
   17781     std::copy(Mask.begin(), Mask.end(), RMask.begin());
   17782   } else {
   17783     if (RHS.getOpcode() != ISD::UNDEF)
   17784       C = RHS;
   17785     for (unsigned i = 0; i != NumElts; ++i)
   17786       RMask[i] = i;
   17787   }
   17788 
   17789   // Check that the shuffles are both shuffling the same vectors.
   17790   if (!(A == C && B == D) && !(A == D && B == C))
   17791     return false;
   17792 
   17793   // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
   17794   if (!A.getNode() && !B.getNode())
   17795     return false;
   17796 
   17797   // If A and B occur in reverse order in RHS, then "swap" them (which means
   17798   // rewriting the mask).
   17799   if (A != C)
   17800     CommuteVectorShuffleMask(RMask, NumElts);
   17801 
   17802   // At this point LHS and RHS are equivalent to
   17803   //   LHS = VECTOR_SHUFFLE A, B, LMask
   17804   //   RHS = VECTOR_SHUFFLE A, B, RMask
   17805   // Check that the masks correspond to performing a horizontal operation.
   17806   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
   17807     for (unsigned i = 0; i != NumLaneElts; ++i) {
   17808       int LIdx = LMask[i+l], RIdx = RMask[i+l];
   17809 
   17810       // Ignore any UNDEF components.
   17811       if (LIdx < 0 || RIdx < 0 ||
   17812           (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
   17813           (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
   17814         continue;
   17815 
   17816       // Check that successive elements are being operated on.  If not, this is
   17817       // not a horizontal operation.
   17818       unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
   17819       int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
   17820       if (!(LIdx == Index && RIdx == Index + 1) &&
   17821           !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
   17822         return false;
   17823     }
   17824   }
   17825 
   17826   LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
   17827   RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
   17828   return true;
   17829 }
   17830 
   17831 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
   17832 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
   17833                                   const X86Subtarget *Subtarget) {
   17834   EVT VT = N->getValueType(0);
   17835   SDValue LHS = N->getOperand(0);
   17836   SDValue RHS = N->getOperand(1);
   17837 
   17838   // Try to synthesize horizontal adds from adds of shuffles.
   17839   if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
   17840        (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
   17841       isHorizontalBinOp(LHS, RHS, true))
   17842     return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
   17843   return SDValue();
   17844 }
   17845 
   17846 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
   17847 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
   17848                                   const X86Subtarget *Subtarget) {
   17849   EVT VT = N->getValueType(0);
   17850   SDValue LHS = N->getOperand(0);
   17851   SDValue RHS = N->getOperand(1);
   17852 
   17853   // Try to synthesize horizontal subs from subs of shuffles.
   17854   if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
   17855        (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
   17856       isHorizontalBinOp(LHS, RHS, false))
   17857     return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
   17858   return SDValue();
   17859 }
   17860 
   17861 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
   17862 /// X86ISD::FXOR nodes.
   17863 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
   17864   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
   17865   // F[X]OR(0.0, x) -> x
   17866   // F[X]OR(x, 0.0) -> x
   17867   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   17868     if (C->getValueAPF().isPosZero())
   17869       return N->getOperand(1);
   17870   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   17871     if (C->getValueAPF().isPosZero())
   17872       return N->getOperand(0);
   17873   return SDValue();
   17874 }
   17875 
   17876 /// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
   17877 /// X86ISD::FMAX nodes.
   17878 static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
   17879   assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
   17880 
   17881   // Only perform optimizations if UnsafeMath is used.
   17882   if (!DAG.getTarget().Options.UnsafeFPMath)
   17883     return SDValue();
   17884 
   17885   // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
   17886   // into FMINC and FMAXC, which are Commutative operations.
   17887   unsigned NewOp = 0;
   17888   switch (N->getOpcode()) {
   17889     default: llvm_unreachable("unknown opcode");
   17890     case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
   17891     case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
   17892   }
   17893 
   17894   return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
   17895                      N->getOperand(0), N->getOperand(1));
   17896 }
   17897 
   17898 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
   17899 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
   17900   // FAND(0.0, x) -> 0.0
   17901   // FAND(x, 0.0) -> 0.0
   17902   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   17903     if (C->getValueAPF().isPosZero())
   17904       return N->getOperand(0);
   17905   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   17906     if (C->getValueAPF().isPosZero())
   17907       return N->getOperand(1);
   17908   return SDValue();
   17909 }
   17910 
   17911 /// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
   17912 static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
   17913   // FANDN(x, 0.0) -> 0.0
   17914   // FANDN(0.0, x) -> x
   17915   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   17916     if (C->getValueAPF().isPosZero())
   17917       return N->getOperand(1);
   17918   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   17919     if (C->getValueAPF().isPosZero())
   17920       return N->getOperand(1);
   17921   return SDValue();
   17922 }
   17923 
   17924 static SDValue PerformBTCombine(SDNode *N,
   17925                                 SelectionDAG &DAG,
   17926                                 TargetLowering::DAGCombinerInfo &DCI) {
   17927   // BT ignores high bits in the bit index operand.
   17928   SDValue Op1 = N->getOperand(1);
   17929   if (Op1.hasOneUse()) {
   17930     unsigned BitWidth = Op1.getValueSizeInBits();
   17931     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
   17932     APInt KnownZero, KnownOne;
   17933     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   17934                                           !DCI.isBeforeLegalizeOps());
   17935     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   17936     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
   17937         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
   17938       DCI.CommitTargetLoweringOpt(TLO);
   17939   }
   17940   return SDValue();
   17941 }
   17942 
   17943 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
   17944   SDValue Op = N->getOperand(0);
   17945   if (Op.getOpcode() == ISD::BITCAST)
   17946     Op = Op.getOperand(0);
   17947   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
   17948   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
   17949       VT.getVectorElementType().getSizeInBits() ==
   17950       OpVT.getVectorElementType().getSizeInBits()) {
   17951     return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   17952   }
   17953   return SDValue();
   17954 }
   17955 
   17956 static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
   17957                                                const X86Subtarget *Subtarget) {
   17958   EVT VT = N->getValueType(0);
   17959   if (!VT.isVector())
   17960     return SDValue();
   17961 
   17962   SDValue N0 = N->getOperand(0);
   17963   SDValue N1 = N->getOperand(1);
   17964   EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
   17965   SDLoc dl(N);
   17966 
   17967   // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
   17968   // both SSE and AVX2 since there is no sign-extended shift right
   17969   // operation on a vector with 64-bit elements.
   17970   //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
   17971   // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
   17972   if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
   17973       N0.getOpcode() == ISD::SIGN_EXTEND)) {
   17974     SDValue N00 = N0.getOperand(0);
   17975 
   17976     // EXTLOAD has a better solution on AVX2,
   17977     // it may be replaced with X86ISD::VSEXT node.
   17978     if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
   17979       if (!ISD::isNormalLoad(N00.getNode()))
   17980         return SDValue();
   17981 
   17982     if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
   17983         SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
   17984                                   N00, N1);
   17985       return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
   17986     }
   17987   }
   17988   return SDValue();
   17989 }
   17990 
   17991 static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
   17992                                   TargetLowering::DAGCombinerInfo &DCI,
   17993                                   const X86Subtarget *Subtarget) {
   17994   if (!DCI.isBeforeLegalizeOps())
   17995     return SDValue();
   17996 
   17997   if (!Subtarget->hasFp256())
   17998     return SDValue();
   17999 
   18000   EVT VT = N->getValueType(0);
   18001   if (VT.isVector() && VT.getSizeInBits() == 256) {
   18002     SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
   18003     if (R.getNode())
   18004       return R;
   18005   }
   18006 
   18007   return SDValue();
   18008 }
   18009 
   18010 static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
   18011                                  const X86Subtarget* Subtarget) {
   18012   SDLoc dl(N);
   18013   EVT VT = N->getValueType(0);
   18014 
   18015   // Let legalize expand this if it isn't a legal type yet.
   18016   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   18017     return SDValue();
   18018 
   18019   EVT ScalarVT = VT.getScalarType();
   18020   if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
   18021       (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
   18022     return SDValue();
   18023 
   18024   SDValue A = N->getOperand(0);
   18025   SDValue B = N->getOperand(1);
   18026   SDValue C = N->getOperand(2);
   18027 
   18028   bool NegA = (A.getOpcode() == ISD::FNEG);
   18029   bool NegB = (B.getOpcode() == ISD::FNEG);
   18030   bool NegC = (C.getOpcode() == ISD::FNEG);
   18031 
   18032   // Negative multiplication when NegA xor NegB
   18033   bool NegMul = (NegA != NegB);
   18034   if (NegA)
   18035     A = A.getOperand(0);
   18036   if (NegB)
   18037     B = B.getOperand(0);
   18038   if (NegC)
   18039     C = C.getOperand(0);
   18040 
   18041   unsigned Opcode;
   18042   if (!NegMul)
   18043     Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
   18044   else
   18045     Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
   18046 
   18047   return DAG.getNode(Opcode, dl, VT, A, B, C);
   18048 }
   18049 
   18050 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
   18051                                   TargetLowering::DAGCombinerInfo &DCI,
   18052                                   const X86Subtarget *Subtarget) {
   18053   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
   18054   //           (and (i32 x86isd::setcc_carry), 1)
   18055   // This eliminates the zext. This transformation is necessary because
   18056   // ISD::SETCC is always legalized to i8.
   18057   SDLoc dl(N);
   18058   SDValue N0 = N->getOperand(0);
   18059   EVT VT = N->getValueType(0);
   18060 
   18061   if (N0.getOpcode() == ISD::AND &&
   18062       N0.hasOneUse() &&
   18063       N0.getOperand(0).hasOneUse()) {
   18064     SDValue N00 = N0.getOperand(0);
   18065     if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
   18066       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   18067       if (!C || C->getZExtValue() != 1)
   18068         return SDValue();
   18069       return DAG.getNode(ISD::AND, dl, VT,
   18070                          DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
   18071                                      N00.getOperand(0), N00.getOperand(1)),
   18072                          DAG.getConstant(1, VT));
   18073     }
   18074   }
   18075 
   18076   if (VT.is256BitVector()) {
   18077     SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
   18078     if (R.getNode())
   18079       return R;
   18080   }
   18081 
   18082   return SDValue();
   18083 }
   18084 
   18085 // Optimize x == -y --> x+y == 0
   18086 //          x != -y --> x+y != 0
   18087 static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
   18088   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
   18089   SDValue LHS = N->getOperand(0);
   18090   SDValue RHS = N->getOperand(1);
   18091 
   18092   if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
   18093     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
   18094       if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
   18095         SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
   18096                                    LHS.getValueType(), RHS, LHS.getOperand(1));
   18097         return DAG.getSetCC(SDLoc(N), N->getValueType(0),
   18098                             addV, DAG.getConstant(0, addV.getValueType()), CC);
   18099       }
   18100   if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
   18101     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
   18102       if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
   18103         SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
   18104                                    RHS.getValueType(), LHS, RHS.getOperand(1));
   18105         return DAG.getSetCC(SDLoc(N), N->getValueType(0),
   18106                             addV, DAG.getConstant(0, addV.getValueType()), CC);
   18107       }
   18108   return SDValue();
   18109 }
   18110 
   18111 // Helper function of PerformSETCCCombine. It is to materialize "setb reg"
   18112 // as "sbb reg,reg", since it can be extended without zext and produces
   18113 // an all-ones bit which is more useful than 0/1 in some cases.
   18114 static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
   18115   return DAG.getNode(ISD::AND, DL, MVT::i8,
   18116                      DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
   18117                                  DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
   18118                      DAG.getConstant(1, MVT::i8));
   18119 }
   18120 
   18121 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
   18122 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
   18123                                    TargetLowering::DAGCombinerInfo &DCI,
   18124                                    const X86Subtarget *Subtarget) {
   18125   SDLoc DL(N);
   18126   X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
   18127   SDValue EFLAGS = N->getOperand(1);
   18128 
   18129   if (CC == X86::COND_A) {
   18130     // Try to convert COND_A into COND_B in an attempt to facilitate
   18131     // materializing "setb reg".
   18132     //
   18133     // Do not flip "e > c", where "c" is a constant, because Cmp instruction
   18134     // cannot take an immediate as its first operand.
   18135     //
   18136     if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
   18137         EFLAGS.getValueType().isInteger() &&
   18138         !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
   18139       SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
   18140                                    EFLAGS.getNode()->getVTList(),
   18141                                    EFLAGS.getOperand(1), EFLAGS.getOperand(0));
   18142       SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
   18143       return MaterializeSETB(DL, NewEFLAGS, DAG);
   18144     }
   18145   }
   18146 
   18147   // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
   18148   // a zext and produces an all-ones bit which is more useful than 0/1 in some
   18149   // cases.
   18150   if (CC == X86::COND_B)
   18151     return MaterializeSETB(DL, EFLAGS, DAG);
   18152 
   18153   SDValue Flags;
   18154 
   18155   Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
   18156   if (Flags.getNode()) {
   18157     SDValue Cond = DAG.getConstant(CC, MVT::i8);
   18158     return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
   18159   }
   18160 
   18161   return SDValue();
   18162 }
   18163 
   18164 // Optimize branch condition evaluation.
   18165 //
   18166 static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
   18167                                     TargetLowering::DAGCombinerInfo &DCI,
   18168                                     const X86Subtarget *Subtarget) {
   18169   SDLoc DL(N);
   18170   SDValue Chain = N->getOperand(0);
   18171   SDValue Dest = N->getOperand(1);
   18172   SDValue EFLAGS = N->getOperand(3);
   18173   X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
   18174 
   18175   SDValue Flags;
   18176 
   18177   Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
   18178   if (Flags.getNode()) {
   18179     SDValue Cond = DAG.getConstant(CC, MVT::i8);
   18180     return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
   18181                        Flags);
   18182   }
   18183 
   18184   return SDValue();
   18185 }
   18186 
   18187 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
   18188                                         const X86TargetLowering *XTLI) {
   18189   SDValue Op0 = N->getOperand(0);
   18190   EVT InVT = Op0->getValueType(0);
   18191 
   18192   // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
   18193   if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
   18194     SDLoc dl(N);
   18195     MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
   18196     SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
   18197     return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
   18198   }
   18199 
   18200   // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
   18201   // a 32-bit target where SSE doesn't support i64->FP operations.
   18202   if (Op0.getOpcode() == ISD::LOAD) {
   18203     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
   18204     EVT VT = Ld->getValueType(0);
   18205     if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
   18206         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
   18207         !XTLI->getSubtarget()->is64Bit() &&
   18208         !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   18209       SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
   18210                                           Ld->getChain(), Op0, DAG);
   18211       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
   18212       return FILDChain;
   18213     }
   18214   }
   18215   return SDValue();
   18216 }
   18217 
   18218 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
   18219 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
   18220                                  X86TargetLowering::DAGCombinerInfo &DCI) {
   18221   // If the LHS and RHS of the ADC node are zero, then it can't overflow and
   18222   // the result is either zero or one (depending on the input carry bit).
   18223   // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
   18224   if (X86::isZeroNode(N->getOperand(0)) &&
   18225       X86::isZeroNode(N->getOperand(1)) &&
   18226       // We don't have a good way to replace an EFLAGS use, so only do this when
   18227       // dead right now.
   18228       SDValue(N, 1).use_empty()) {
   18229     SDLoc DL(N);
   18230     EVT VT = N->getValueType(0);
   18231     SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
   18232     SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
   18233                                DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
   18234                                            DAG.getConstant(X86::COND_B,MVT::i8),
   18235                                            N->getOperand(2)),
   18236                                DAG.getConstant(1, VT));
   18237     return DCI.CombineTo(N, Res1, CarryOut);
   18238   }
   18239 
   18240   return SDValue();
   18241 }
   18242 
   18243 // fold (add Y, (sete  X, 0)) -> adc  0, Y
   18244 //      (add Y, (setne X, 0)) -> sbb -1, Y
   18245 //      (sub (sete  X, 0), Y) -> sbb  0, Y
   18246 //      (sub (setne X, 0), Y) -> adc -1, Y
   18247 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
   18248   SDLoc DL(N);
   18249 
   18250   // Look through ZExts.
   18251   SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
   18252   if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
   18253     return SDValue();
   18254 
   18255   SDValue SetCC = Ext.getOperand(0);
   18256   if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
   18257     return SDValue();
   18258 
   18259   X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
   18260   if (CC != X86::COND_E && CC != X86::COND_NE)
   18261     return SDValue();
   18262 
   18263   SDValue Cmp = SetCC.getOperand(1);
   18264   if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
   18265       !X86::isZeroNode(Cmp.getOperand(1)) ||
   18266       !Cmp.getOperand(0).getValueType().isInteger())
   18267     return SDValue();
   18268 
   18269   SDValue CmpOp0 = Cmp.getOperand(0);
   18270   SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
   18271                                DAG.getConstant(1, CmpOp0.getValueType()));
   18272 
   18273   SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
   18274   if (CC == X86::COND_NE)
   18275     return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
   18276                        DL, OtherVal.getValueType(), OtherVal,
   18277                        DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
   18278   return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
   18279                      DL, OtherVal.getValueType(), OtherVal,
   18280                      DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
   18281 }
   18282 
   18283 /// PerformADDCombine - Do target-specific dag combines on integer adds.
   18284 static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
   18285                                  const X86Subtarget *Subtarget) {
   18286   EVT VT = N->getValueType(0);
   18287   SDValue Op0 = N->getOperand(0);
   18288   SDValue Op1 = N->getOperand(1);
   18289 
   18290   // Try to synthesize horizontal adds from adds of shuffles.
   18291   if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
   18292        (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
   18293       isHorizontalBinOp(Op0, Op1, true))
   18294     return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
   18295 
   18296   return OptimizeConditionalInDecrement(N, DAG);
   18297 }
   18298 
   18299 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
   18300                                  const X86Subtarget *Subtarget) {
   18301   SDValue Op0 = N->getOperand(0);
   18302   SDValue Op1 = N->getOperand(1);
   18303 
   18304   // X86 can't encode an immediate LHS of a sub. See if we can push the
   18305   // negation into a preceding instruction.
   18306   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
   18307     // If the RHS of the sub is a XOR with one use and a constant, invert the
   18308     // immediate. Then add one to the LHS of the sub so we can turn
   18309     // X-Y -> X+~Y+1, saving one register.
   18310     if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
   18311         isa<ConstantSDNode>(Op1.getOperand(1))) {
   18312       APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
   18313       EVT VT = Op0.getValueType();
   18314       SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
   18315                                    Op1.getOperand(0),
   18316                                    DAG.getConstant(~XorC, VT));
   18317       return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
   18318                          DAG.getConstant(C->getAPIntValue()+1, VT));
   18319     }
   18320   }
   18321 
   18322   // Try to synthesize horizontal adds from adds of shuffles.
   18323   EVT VT = N->getValueType(0);
   18324   if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
   18325        (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
   18326       isHorizontalBinOp(Op0, Op1, true))
   18327     return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
   18328 
   18329   return OptimizeConditionalInDecrement(N, DAG);
   18330 }
   18331 
   18332 /// performVZEXTCombine - Performs build vector combines
   18333 static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
   18334                                         TargetLowering::DAGCombinerInfo &DCI,
   18335                                         const X86Subtarget *Subtarget) {
   18336   // (vzext (bitcast (vzext (x)) -> (vzext x)
   18337   SDValue In = N->getOperand(0);
   18338   while (In.getOpcode() == ISD::BITCAST)
   18339     In = In.getOperand(0);
   18340 
   18341   if (In.getOpcode() != X86ISD::VZEXT)
   18342     return SDValue();
   18343 
   18344   return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
   18345                      In.getOperand(0));
   18346 }
   18347 
   18348 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
   18349                                              DAGCombinerInfo &DCI) const {
   18350   SelectionDAG &DAG = DCI.DAG;
   18351   switch (N->getOpcode()) {
   18352   default: break;
   18353   case ISD::EXTRACT_VECTOR_ELT:
   18354     return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
   18355   case ISD::VSELECT:
   18356   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
   18357   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
   18358   case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
   18359   case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
   18360   case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
   18361   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
   18362   case ISD::SHL:
   18363   case ISD::SRA:
   18364   case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
   18365   case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
   18366   case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
   18367   case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
   18368   case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
   18369   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
   18370   case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
   18371   case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
   18372   case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
   18373   case X86ISD::FXOR:
   18374   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
   18375   case X86ISD::FMIN:
   18376   case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
   18377   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
   18378   case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
   18379   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
   18380   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
   18381   case ISD::ANY_EXTEND:
   18382   case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
   18383   case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
   18384   case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
   18385   case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
   18386   case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
   18387   case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
   18388   case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
   18389   case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
   18390   case X86ISD::SHUFP:       // Handle all target specific shuffles
   18391   case X86ISD::PALIGNR:
   18392   case X86ISD::UNPCKH:
   18393   case X86ISD::UNPCKL:
   18394   case X86ISD::MOVHLPS:
   18395   case X86ISD::MOVLHPS:
   18396   case X86ISD::PSHUFD:
   18397   case X86ISD::PSHUFHW:
   18398   case X86ISD::PSHUFLW:
   18399   case X86ISD::MOVSS:
   18400   case X86ISD::MOVSD:
   18401   case X86ISD::VPERMILP:
   18402   case X86ISD::VPERM2X128:
   18403   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
   18404   case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
   18405   }
   18406 
   18407   return SDValue();
   18408 }
   18409 
   18410 /// isTypeDesirableForOp - Return true if the target has native support for
   18411 /// the specified value type and it is 'desirable' to use the type for the
   18412 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
   18413 /// instruction encodings are longer and some i16 instructions are slow.
   18414 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
   18415   if (!isTypeLegal(VT))
   18416     return false;
   18417   if (VT != MVT::i16)
   18418     return true;
   18419 
   18420   switch (Opc) {
   18421   default:
   18422     return true;
   18423   case ISD::LOAD:
   18424   case ISD::SIGN_EXTEND:
   18425   case ISD::ZERO_EXTEND:
   18426   case ISD::ANY_EXTEND:
   18427   case ISD::SHL:
   18428   case ISD::SRL:
   18429   case ISD::SUB:
   18430   case ISD::ADD:
   18431   case ISD::MUL:
   18432   case ISD::AND:
   18433   case ISD::OR:
   18434   case ISD::XOR:
   18435     return false;
   18436   }
   18437 }
   18438 
   18439 /// IsDesirableToPromoteOp - This method query the target whether it is
   18440 /// beneficial for dag combiner to promote the specified node. If true, it
   18441 /// should return the desired promotion type by reference.
   18442 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
   18443   EVT VT = Op.getValueType();
   18444   if (VT != MVT::i16)
   18445     return false;
   18446 
   18447   bool Promote = false;
   18448   bool Commute = false;
   18449   switch (Op.getOpcode()) {
   18450   default: break;
   18451   case ISD::LOAD: {
   18452     LoadSDNode *LD = cast<LoadSDNode>(Op);
   18453     // If the non-extending load has a single use and it's not live out, then it
   18454     // might be folded.
   18455     if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
   18456                                                      Op.hasOneUse()*/) {
   18457       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   18458              UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   18459         // The only case where we'd want to promote LOAD (rather then it being
   18460         // promoted as an operand is when it's only use is liveout.
   18461         if (UI->getOpcode() != ISD::CopyToReg)
   18462           return false;
   18463       }
   18464     }
   18465     Promote = true;
   18466     break;
   18467   }
   18468   case ISD::SIGN_EXTEND:
   18469   case ISD::ZERO_EXTEND:
   18470   case ISD::ANY_EXTEND:
   18471     Promote = true;
   18472     break;
   18473   case ISD::SHL:
   18474   case ISD::SRL: {
   18475     SDValue N0 = Op.getOperand(0);
   18476     // Look out for (store (shl (load), x)).
   18477     if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
   18478       return false;
   18479     Promote = true;
   18480     break;
   18481   }
   18482   case ISD::ADD:
   18483   case ISD::MUL:
   18484   case ISD::AND:
   18485   case ISD::OR:
   18486   case ISD::XOR:
   18487     Commute = true;
   18488     // fallthrough
   18489   case ISD::SUB: {
   18490     SDValue N0 = Op.getOperand(0);
   18491     SDValue N1 = Op.getOperand(1);
   18492     if (!Commute && MayFoldLoad(N1))
   18493       return false;
   18494     // Avoid disabling potential load folding opportunities.
   18495     if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
   18496       return false;
   18497     if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
   18498       return false;
   18499     Promote = true;
   18500   }
   18501   }
   18502 
   18503   PVT = MVT::i32;
   18504   return Promote;
   18505 }
   18506 
   18507 //===----------------------------------------------------------------------===//
   18508 //                           X86 Inline Assembly Support
   18509 //===----------------------------------------------------------------------===//
   18510 
   18511 namespace {
   18512   // Helper to match a string separated by whitespace.
   18513   bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
   18514     s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
   18515 
   18516     for (unsigned i = 0, e = args.size(); i != e; ++i) {
   18517       StringRef piece(*args[i]);
   18518       if (!s.startswith(piece)) // Check if the piece matches.
   18519         return false;
   18520 
   18521       s = s.substr(piece.size());
   18522       StringRef::size_type pos = s.find_first_not_of(" \t");
   18523       if (pos == 0) // We matched a prefix.
   18524         return false;
   18525 
   18526       s = s.substr(pos);
   18527     }
   18528 
   18529     return s.empty();
   18530   }
   18531   const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
   18532 }
   18533 
   18534 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
   18535   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   18536 
   18537   std::string AsmStr = IA->getAsmString();
   18538 
   18539   IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   18540   if (!Ty || Ty->getBitWidth() % 16 != 0)
   18541     return false;
   18542 
   18543   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
   18544   SmallVector<StringRef, 4> AsmPieces;
   18545   SplitString(AsmStr, AsmPieces, ";\n");
   18546 
   18547   switch (AsmPieces.size()) {
   18548   default: return false;
   18549   case 1:
   18550     // FIXME: this should verify that we are targeting a 486 or better.  If not,
   18551     // we will turn this bswap into something that will be lowered to logical
   18552     // ops instead of emitting the bswap asm.  For now, we don't support 486 or
   18553     // lower so don't worry about this.
   18554     // bswap $0
   18555     if (matchAsm(AsmPieces[0], "bswap", "$0") ||
   18556         matchAsm(AsmPieces[0], "bswapl", "$0") ||
   18557         matchAsm(AsmPieces[0], "bswapq", "$0") ||
   18558         matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
   18559         matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
   18560         matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
   18561       // No need to check constraints, nothing other than the equivalent of
   18562       // "=r,0" would be valid here.
   18563       return IntrinsicLowering::LowerToByteSwap(CI);
   18564     }
   18565 
   18566     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
   18567     if (CI->getType()->isIntegerTy(16) &&
   18568         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
   18569         (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
   18570          matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
   18571       AsmPieces.clear();
   18572       const std::string &ConstraintsStr = IA->getConstraintString();
   18573       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   18574       array_pod_sort(AsmPieces.begin(), AsmPieces.end());
   18575       if (AsmPieces.size() == 4 &&
   18576           AsmPieces[0] == "~{cc}" &&
   18577           AsmPieces[1] == "~{dirflag}" &&
   18578           AsmPieces[2] == "~{flags}" &&
   18579           AsmPieces[3] == "~{fpsr}")
   18580       return IntrinsicLowering::LowerToByteSwap(CI);
   18581     }
   18582     break;
   18583   case 3:
   18584     if (CI->getType()->isIntegerTy(32) &&
   18585         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
   18586         matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
   18587         matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
   18588         matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
   18589       AsmPieces.clear();
   18590       const std::string &ConstraintsStr = IA->getConstraintString();
   18591       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   18592       array_pod_sort(AsmPieces.begin(), AsmPieces.end());
   18593       if (AsmPieces.size() == 4 &&
   18594           AsmPieces[0] == "~{cc}" &&
   18595           AsmPieces[1] == "~{dirflag}" &&
   18596           AsmPieces[2] == "~{flags}" &&
   18597           AsmPieces[3] == "~{fpsr}")
   18598         return IntrinsicLowering::LowerToByteSwap(CI);
   18599     }
   18600 
   18601     if (CI->getType()->isIntegerTy(64)) {
   18602       InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
   18603       if (Constraints.size() >= 2 &&
   18604           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
   18605           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
   18606         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
   18607         if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
   18608             matchAsm(AsmPieces[1], "bswap", "%edx") &&
   18609             matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
   18610           return IntrinsicLowering::LowerToByteSwap(CI);
   18611       }
   18612     }
   18613     break;
   18614   }
   18615   return false;
   18616 }
   18617 
   18618 /// getConstraintType - Given a constraint letter, return the type of
   18619 /// constraint it is for this target.
   18620 X86TargetLowering::ConstraintType
   18621 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
   18622   if (Constraint.size() == 1) {
   18623     switch (Constraint[0]) {
   18624     case 'R':
   18625     case 'q':
   18626     case 'Q':
   18627     case 'f':
   18628     case 't':
   18629     case 'u':
   18630     case 'y':
   18631     case 'x':
   18632     case 'Y':
   18633     case 'l':
   18634       return C_RegisterClass;
   18635     case 'a':
   18636     case 'b':
   18637     case 'c':
   18638     case 'd':
   18639     case 'S':
   18640     case 'D':
   18641     case 'A':
   18642       return C_Register;
   18643     case 'I':
   18644     case 'J':
   18645     case 'K':
   18646     case 'L':
   18647     case 'M':
   18648     case 'N':
   18649     case 'G':
   18650     case 'C':
   18651     case 'e':
   18652     case 'Z':
   18653       return C_Other;
   18654     default:
   18655       break;
   18656     }
   18657   }
   18658   return TargetLowering::getConstraintType(Constraint);
   18659 }
   18660 
   18661 /// Examine constraint type and operand type and determine a weight value.
   18662 /// This object must already have been set up with the operand type
   18663 /// and the current alternative constraint selected.
   18664 TargetLowering::ConstraintWeight
   18665   X86TargetLowering::getSingleConstraintMatchWeight(
   18666     AsmOperandInfo &info, const char *constraint) const {
   18667   ConstraintWeight weight = CW_Invalid;
   18668   Value *CallOperandVal = info.CallOperandVal;
   18669     // If we don't have a value, we can't do a match,
   18670     // but allow it at the lowest weight.
   18671   if (CallOperandVal == NULL)
   18672     return CW_Default;
   18673   Type *type = CallOperandVal->getType();
   18674   // Look at the constraint type.
   18675   switch (*constraint) {
   18676   default:
   18677     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   18678   case 'R':
   18679   case 'q':
   18680   case 'Q':
   18681   case 'a':
   18682   case 'b':
   18683   case 'c':
   18684   case 'd':
   18685   case 'S':
   18686   case 'D':
   18687   case 'A':
   18688     if (CallOperandVal->getType()->isIntegerTy())
   18689       weight = CW_SpecificReg;
   18690     break;
   18691   case 'f':
   18692   case 't':
   18693   case 'u':
   18694     if (type->isFloatingPointTy())
   18695       weight = CW_SpecificReg;
   18696     break;
   18697   case 'y':
   18698     if (type->isX86_MMXTy() && Subtarget->hasMMX())
   18699       weight = CW_SpecificReg;
   18700     break;
   18701   case 'x':
   18702   case 'Y':
   18703     if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
   18704         ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
   18705       weight = CW_Register;
   18706     break;
   18707   case 'I':
   18708     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
   18709       if (C->getZExtValue() <= 31)
   18710         weight = CW_Constant;
   18711     }
   18712     break;
   18713   case 'J':
   18714     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   18715       if (C->getZExtValue() <= 63)
   18716         weight = CW_Constant;
   18717     }
   18718     break;
   18719   case 'K':
   18720     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   18721       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
   18722         weight = CW_Constant;
   18723     }
   18724     break;
   18725   case 'L':
   18726     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   18727       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
   18728         weight = CW_Constant;
   18729     }
   18730     break;
   18731   case 'M':
   18732     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   18733       if (C->getZExtValue() <= 3)
   18734         weight = CW_Constant;
   18735     }
   18736     break;
   18737   case 'N':
   18738     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   18739       if (C->getZExtValue() <= 0xff)
   18740         weight = CW_Constant;
   18741     }
   18742     break;
   18743   case 'G':
   18744   case 'C':
   18745     if (dyn_cast<ConstantFP>(CallOperandVal)) {
   18746       weight = CW_Constant;
   18747     }
   18748     break;
   18749   case 'e':
   18750     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   18751       if ((C->getSExtValue() >= -0x80000000LL) &&
   18752           (C->getSExtValue() <= 0x7fffffffLL))
   18753         weight = CW_Constant;
   18754     }
   18755     break;
   18756   case 'Z':
   18757     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   18758       if (C->getZExtValue() <= 0xffffffff)
   18759         weight = CW_Constant;
   18760     }
   18761     break;
   18762   }
   18763   return weight;
   18764 }
   18765 
   18766 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   18767 /// with another that has more specific requirements based on the type of the
   18768 /// corresponding operand.
   18769 const char *X86TargetLowering::
   18770 LowerXConstraint(EVT ConstraintVT) const {
   18771   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
   18772   // 'f' like normal targets.
   18773   if (ConstraintVT.isFloatingPoint()) {
   18774     if (Subtarget->hasSSE2())
   18775       return "Y";
   18776     if (Subtarget->hasSSE1())
   18777       return "x";
   18778   }
   18779 
   18780   return TargetLowering::LowerXConstraint(ConstraintVT);
   18781 }
   18782 
   18783 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   18784 /// vector.  If it is invalid, don't add anything to Ops.
   18785 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   18786                                                      std::string &Constraint,
   18787                                                      std::vector<SDValue>&Ops,
   18788                                                      SelectionDAG &DAG) const {
   18789   SDValue Result(0, 0);
   18790 
   18791   // Only support length 1 constraints for now.
   18792   if (Constraint.length() > 1) return;
   18793 
   18794   char ConstraintLetter = Constraint[0];
   18795   switch (ConstraintLetter) {
   18796   default: break;
   18797   case 'I':
   18798     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   18799       if (C->getZExtValue() <= 31) {
   18800         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   18801         break;
   18802       }
   18803     }
   18804     return;
   18805   case 'J':
   18806     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   18807       if (C->getZExtValue() <= 63) {
   18808         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   18809         break;
   18810       }
   18811     }
   18812     return;
   18813   case 'K':
   18814     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   18815       if (isInt<8>(C->getSExtValue())) {
   18816         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   18817         break;
   18818       }
   18819     }
   18820     return;
   18821   case 'N':
   18822     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   18823       if (C->getZExtValue() <= 255) {
   18824         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   18825         break;
   18826       }
   18827     }
   18828     return;
   18829   case 'e': {
   18830     // 32-bit signed value
   18831     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   18832       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   18833                                            C->getSExtValue())) {
   18834         // Widen to 64 bits here to get it sign extended.
   18835         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
   18836         break;
   18837       }
   18838     // FIXME gcc accepts some relocatable values here too, but only in certain
   18839     // memory models; it's complicated.
   18840     }
   18841     return;
   18842   }
   18843   case 'Z': {
   18844     // 32-bit unsigned value
   18845     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   18846       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   18847                                            C->getZExtValue())) {
   18848         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   18849         break;
   18850       }
   18851     }
   18852     // FIXME gcc accepts some relocatable values here too, but only in certain
   18853     // memory models; it's complicated.
   18854     return;
   18855   }
   18856   case 'i': {
   18857     // Literal immediates are always ok.
   18858     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
   18859       // Widen to 64 bits here to get it sign extended.
   18860       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
   18861       break;
   18862     }
   18863 
   18864     // In any sort of PIC mode addresses need to be computed at runtime by
   18865     // adding in a register or some sort of table lookup.  These can't
   18866     // be used as immediates.
   18867     if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
   18868       return;
   18869 
   18870     // If we are in non-pic codegen mode, we allow the address of a global (with
   18871     // an optional displacement) to be used with 'i'.
   18872     GlobalAddressSDNode *GA = 0;
   18873     int64_t Offset = 0;
   18874 
   18875     // Match either (GA), (GA+C), (GA+C1+C2), etc.
   18876     while (1) {
   18877       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
   18878         Offset += GA->getOffset();
   18879         break;
   18880       } else if (Op.getOpcode() == ISD::ADD) {
   18881         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   18882           Offset += C->getZExtValue();
   18883           Op = Op.getOperand(0);
   18884           continue;
   18885         }
   18886       } else if (Op.getOpcode() == ISD::SUB) {
   18887         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   18888           Offset += -C->getZExtValue();
   18889           Op = Op.getOperand(0);
   18890           continue;
   18891         }
   18892       }
   18893 
   18894       // Otherwise, this isn't something we can handle, reject it.
   18895       return;
   18896     }
   18897 
   18898     const GlobalValue *GV = GA->getGlobal();
   18899     // If we require an extra load to get this address, as in PIC mode, we
   18900     // can't accept it.
   18901     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
   18902                                                         getTargetMachine())))
   18903       return;
   18904 
   18905     Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
   18906                                         GA->getValueType(0), Offset);
   18907     break;
   18908   }
   18909   }
   18910 
   18911   if (Result.getNode()) {
   18912     Ops.push_back(Result);
   18913     return;
   18914   }
   18915   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   18916 }
   18917 
   18918 std::pair<unsigned, const TargetRegisterClass*>
   18919 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   18920                                                 MVT VT) const {
   18921   // First, see if this is a constraint that directly corresponds to an LLVM
   18922   // register class.
   18923   if (Constraint.size() == 1) {
   18924     // GCC Constraint Letters
   18925     switch (Constraint[0]) {
   18926     default: break;
   18927       // TODO: Slight differences here in allocation order and leaving
   18928       // RIP in the class. Do they matter any more here than they do
   18929       // in the normal allocation?
   18930     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
   18931       if (Subtarget->is64Bit()) {
   18932         if (VT == MVT::i32 || VT == MVT::f32)
   18933           return std::make_pair(0U, &X86::GR32RegClass);
   18934         if (VT == MVT::i16)
   18935           return std::make_pair(0U, &X86::GR16RegClass);
   18936         if (VT == MVT::i8 || VT == MVT::i1)
   18937           return std::make_pair(0U, &X86::GR8RegClass);
   18938         if (VT == MVT::i64 || VT == MVT::f64)
   18939           return std::make_pair(0U, &X86::GR64RegClass);
   18940         break;
   18941       }
   18942       // 32-bit fallthrough
   18943     case 'Q':   // Q_REGS
   18944       if (VT == MVT::i32 || VT == MVT::f32)
   18945         return std::make_pair(0U, &X86::GR32_ABCDRegClass);
   18946       if (VT == MVT::i16)
   18947         return std::make_pair(0U, &X86::GR16_ABCDRegClass);
   18948       if (VT == MVT::i8 || VT == MVT::i1)
   18949         return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
   18950       if (VT == MVT::i64)
   18951         return std::make_pair(0U, &X86::GR64_ABCDRegClass);
   18952       break;
   18953     case 'r':   // GENERAL_REGS
   18954     case 'l':   // INDEX_REGS
   18955       if (VT == MVT::i8 || VT == MVT::i1)
   18956         return std::make_pair(0U, &X86::GR8RegClass);
   18957       if (VT == MVT::i16)
   18958         return std::make_pair(0U, &X86::GR16RegClass);
   18959       if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
   18960         return std::make_pair(0U, &X86::GR32RegClass);
   18961       return std::make_pair(0U, &X86::GR64RegClass);
   18962     case 'R':   // LEGACY_REGS
   18963       if (VT == MVT::i8 || VT == MVT::i1)
   18964         return std::make_pair(0U, &X86::GR8_NOREXRegClass);
   18965       if (VT == MVT::i16)
   18966         return std::make_pair(0U, &X86::GR16_NOREXRegClass);
   18967       if (VT == MVT::i32 || !Subtarget->is64Bit())
   18968         return std::make_pair(0U, &X86::GR32_NOREXRegClass);
   18969       return std::make_pair(0U, &X86::GR64_NOREXRegClass);
   18970     case 'f':  // FP Stack registers.
   18971       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
   18972       // value to the correct fpstack register class.
   18973       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
   18974         return std::make_pair(0U, &X86::RFP32RegClass);
   18975       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
   18976         return std::make_pair(0U, &X86::RFP64RegClass);
   18977       return std::make_pair(0U, &X86::RFP80RegClass);
   18978     case 'y':   // MMX_REGS if MMX allowed.
   18979       if (!Subtarget->hasMMX()) break;
   18980       return std::make_pair(0U, &X86::VR64RegClass);
   18981     case 'Y':   // SSE_REGS if SSE2 allowed
   18982       if (!Subtarget->hasSSE2()) break;
   18983       // FALL THROUGH.
   18984     case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
   18985       if (!Subtarget->hasSSE1()) break;
   18986 
   18987       switch (VT.SimpleTy) {
   18988       default: break;
   18989       // Scalar SSE types.
   18990       case MVT::f32:
   18991       case MVT::i32:
   18992         return std::make_pair(0U, &X86::FR32RegClass);
   18993       case MVT::f64:
   18994       case MVT::i64:
   18995         return std::make_pair(0U, &X86::FR64RegClass);
   18996       // Vector types.
   18997       case MVT::v16i8:
   18998       case MVT::v8i16:
   18999       case MVT::v4i32:
   19000       case MVT::v2i64:
   19001       case MVT::v4f32:
   19002       case MVT::v2f64:
   19003         return std::make_pair(0U, &X86::VR128RegClass);
   19004       // AVX types.
   19005       case MVT::v32i8:
   19006       case MVT::v16i16:
   19007       case MVT::v8i32:
   19008       case MVT::v4i64:
   19009       case MVT::v8f32:
   19010       case MVT::v4f64:
   19011         return std::make_pair(0U, &X86::VR256RegClass);
   19012       case MVT::v8f64:
   19013       case MVT::v16f32:
   19014       case MVT::v16i32:
   19015       case MVT::v8i64:
   19016         return std::make_pair(0U, &X86::VR512RegClass);
   19017       }
   19018       break;
   19019     }
   19020   }
   19021 
   19022   // Use the default implementation in TargetLowering to convert the register
   19023   // constraint into a member of a register class.
   19024   std::pair<unsigned, const TargetRegisterClass*> Res;
   19025   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   19026 
   19027   // Not found as a standard register?
   19028   if (Res.second == 0) {
   19029     // Map st(0) -> st(7) -> ST0
   19030     if (Constraint.size() == 7 && Constraint[0] == '{' &&
   19031         std::tolower(Constraint[1]) == 's' &&
   19032         std::tolower(Constraint[2]) == 't' &&
   19033         Constraint[3] == '(' &&
   19034         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
   19035         Constraint[5] == ')' &&
   19036         Constraint[6] == '}') {
   19037 
   19038       Res.first = X86::ST0+Constraint[4]-'0';
   19039       Res.second = &X86::RFP80RegClass;
   19040       return Res;
   19041     }
   19042 
   19043     // GCC allows "st(0)" to be called just plain "st".
   19044     if (StringRef("{st}").equals_lower(Constraint)) {
   19045       Res.first = X86::ST0;
   19046       Res.second = &X86::RFP80RegClass;
   19047       return Res;
   19048     }
   19049 
   19050     // flags -> EFLAGS
   19051     if (StringRef("{flags}").equals_lower(Constraint)) {
   19052       Res.first = X86::EFLAGS;
   19053       Res.second = &X86::CCRRegClass;
   19054       return Res;
   19055     }
   19056 
   19057     // 'A' means EAX + EDX.
   19058     if (Constraint == "A") {
   19059       Res.first = X86::EAX;
   19060       Res.second = &X86::GR32_ADRegClass;
   19061       return Res;
   19062     }
   19063     return Res;
   19064   }
   19065 
   19066   // Otherwise, check to see if this is a register class of the wrong value
   19067   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
   19068   // turn into {ax},{dx}.
   19069   if (Res.second->hasType(VT))
   19070     return Res;   // Correct type already, nothing to do.
   19071 
   19072   // All of the single-register GCC register classes map their values onto
   19073   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
   19074   // really want an 8-bit or 32-bit register, map to the appropriate register
   19075   // class and return the appropriate register.
   19076   if (Res.second == &X86::GR16RegClass) {
   19077     if (VT == MVT::i8 || VT == MVT::i1) {
   19078       unsigned DestReg = 0;
   19079       switch (Res.first) {
   19080       default: break;
   19081       case X86::AX: DestReg = X86::AL; break;
   19082       case X86::DX: DestReg = X86::DL; break;
   19083       case X86::CX: DestReg = X86::CL; break;
   19084       case X86::BX: DestReg = X86::BL; break;
   19085       }
   19086       if (DestReg) {
   19087         Res.first = DestReg;
   19088         Res.second = &X86::GR8RegClass;
   19089       }
   19090     } else if (VT == MVT::i32 || VT == MVT::f32) {
   19091       unsigned DestReg = 0;
   19092       switch (Res.first) {
   19093       default: break;
   19094       case X86::AX: DestReg = X86::EAX; break;
   19095       case X86::DX: DestReg = X86::EDX; break;
   19096       case X86::CX: DestReg = X86::ECX; break;
   19097       case X86::BX: DestReg = X86::EBX; break;
   19098       case X86::SI: DestReg = X86::ESI; break;
   19099       case X86::DI: DestReg = X86::EDI; break;
   19100       case X86::BP: DestReg = X86::EBP; break;
   19101       case X86::SP: DestReg = X86::ESP; break;
   19102       }
   19103       if (DestReg) {
   19104         Res.first = DestReg;
   19105         Res.second = &X86::GR32RegClass;
   19106       }
   19107     } else if (VT == MVT::i64 || VT == MVT::f64) {
   19108       unsigned DestReg = 0;
   19109       switch (Res.first) {
   19110       default: break;
   19111       case X86::AX: DestReg = X86::RAX; break;
   19112       case X86::DX: DestReg = X86::RDX; break;
   19113       case X86::CX: DestReg = X86::RCX; break;
   19114       case X86::BX: DestReg = X86::RBX; break;
   19115       case X86::SI: DestReg = X86::RSI; break;
   19116       case X86::DI: DestReg = X86::RDI; break;
   19117       case X86::BP: DestReg = X86::RBP; break;
   19118       case X86::SP: DestReg = X86::RSP; break;
   19119       }
   19120       if (DestReg) {
   19121         Res.first = DestReg;
   19122         Res.second = &X86::GR64RegClass;
   19123       }
   19124     }
   19125   } else if (Res.second == &X86::FR32RegClass ||
   19126              Res.second == &X86::FR64RegClass ||
   19127              Res.second == &X86::VR128RegClass ||
   19128              Res.second == &X86::VR256RegClass ||
   19129              Res.second == &X86::FR32XRegClass ||
   19130              Res.second == &X86::FR64XRegClass ||
   19131              Res.second == &X86::VR128XRegClass ||
   19132              Res.second == &X86::VR256XRegClass ||
   19133              Res.second == &X86::VR512RegClass) {
   19134     // Handle references to XMM physical registers that got mapped into the
   19135     // wrong class.  This can happen with constraints like {xmm0} where the
   19136     // target independent register mapper will just pick the first match it can
   19137     // find, ignoring the required type.
   19138 
   19139     if (VT == MVT::f32 || VT == MVT::i32)
   19140       Res.second = &X86::FR32RegClass;
   19141     else if (VT == MVT::f64 || VT == MVT::i64)
   19142       Res.second = &X86::FR64RegClass;
   19143     else if (X86::VR128RegClass.hasType(VT))
   19144       Res.second = &X86::VR128RegClass;
   19145     else if (X86::VR256RegClass.hasType(VT))
   19146       Res.second = &X86::VR256RegClass;
   19147     else if (X86::VR512RegClass.hasType(VT))
   19148       Res.second = &X86::VR512RegClass;
   19149   }
   19150 
   19151   return Res;
   19152 }
   19153