Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "arm-isel"
     16 #include "ARMISelLowering.h"
     17 #include "ARM.h"
     18 #include "ARMCallingConv.h"
     19 #include "ARMConstantPoolValue.h"
     20 #include "ARMMachineFunctionInfo.h"
     21 #include "ARMPerfectShuffle.h"
     22 #include "ARMSubtarget.h"
     23 #include "ARMTargetMachine.h"
     24 #include "ARMTargetObjectFile.h"
     25 #include "MCTargetDesc/ARMAddressingModes.h"
     26 #include "llvm/CallingConv.h"
     27 #include "llvm/Constants.h"
     28 #include "llvm/Function.h"
     29 #include "llvm/GlobalValue.h"
     30 #include "llvm/Instruction.h"
     31 #include "llvm/Instructions.h"
     32 #include "llvm/Intrinsics.h"
     33 #include "llvm/Type.h"
     34 #include "llvm/CodeGen/CallingConvLower.h"
     35 #include "llvm/CodeGen/IntrinsicLowering.h"
     36 #include "llvm/CodeGen/MachineBasicBlock.h"
     37 #include "llvm/CodeGen/MachineFrameInfo.h"
     38 #include "llvm/CodeGen/MachineFunction.h"
     39 #include "llvm/CodeGen/MachineInstrBuilder.h"
     40 #include "llvm/CodeGen/MachineModuleInfo.h"
     41 #include "llvm/CodeGen/MachineRegisterInfo.h"
     42 #include "llvm/CodeGen/SelectionDAG.h"
     43 #include "llvm/MC/MCSectionMachO.h"
     44 #include "llvm/Target/TargetOptions.h"
     45 #include "llvm/ADT/StringExtras.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/ErrorHandling.h"
     49 #include "llvm/Support/MathExtras.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 using namespace llvm;
     52 
     53 STATISTIC(NumTailCalls, "Number of tail calls");
     54 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
     55 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
     56 
     57 // This option should go away when tail calls fully work.
     58 static cl::opt<bool>
     59 EnableARMTailCalls("arm-tail-calls", cl::Hidden,
     60   cl::desc("Generate tail calls (TEMPORARY OPTION)."),
     61   cl::init(false));
     62 
     63 cl::opt<bool>
     64 EnableARMLongCalls("arm-long-calls", cl::Hidden,
     65   cl::desc("Generate calls via indirect call instructions"),
     66   cl::init(false));
     67 
     68 static cl::opt<bool>
     69 ARMInterworking("arm-interworking", cl::Hidden,
     70   cl::desc("Enable / disable ARM interworking (for debugging only)"),
     71   cl::init(true));
     72 
     73 namespace {
     74   class ARMCCState : public CCState {
     75   public:
     76     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
     77                const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
     78                LLVMContext &C, ParmContext PC)
     79         : CCState(CC, isVarArg, MF, TM, locs, C) {
     80       assert(((PC == Call) || (PC == Prologue)) &&
     81              "ARMCCState users must specify whether their context is call"
     82              "or prologue generation.");
     83       CallOrPrologue = PC;
     84     }
     85   };
     86 }
     87 
     88 // The APCS parameter registers.
     89 static const uint16_t GPRArgRegs[] = {
     90   ARM::R0, ARM::R1, ARM::R2, ARM::R3
     91 };
     92 
     93 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
     94                                        MVT PromotedBitwiseVT) {
     95   if (VT != PromotedLdStVT) {
     96     setOperationAction(ISD::LOAD, VT, Promote);
     97     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
     98 
     99     setOperationAction(ISD::STORE, VT, Promote);
    100     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
    101   }
    102 
    103   MVT ElemTy = VT.getVectorElementType();
    104   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
    105     setOperationAction(ISD::SETCC, VT, Custom);
    106   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    107   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    108   if (ElemTy == MVT::i32) {
    109     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
    110     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
    111     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    112     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
    113   } else {
    114     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    115     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    116     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    117     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    118   }
    119   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
    120   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
    121   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
    122   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
    123   setOperationAction(ISD::SELECT,            VT, Expand);
    124   setOperationAction(ISD::SELECT_CC,         VT, Expand);
    125   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    126   if (VT.isInteger()) {
    127     setOperationAction(ISD::SHL, VT, Custom);
    128     setOperationAction(ISD::SRA, VT, Custom);
    129     setOperationAction(ISD::SRL, VT, Custom);
    130   }
    131 
    132   // Promote all bit-wise operations.
    133   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    134     setOperationAction(ISD::AND, VT, Promote);
    135     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
    136     setOperationAction(ISD::OR,  VT, Promote);
    137     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
    138     setOperationAction(ISD::XOR, VT, Promote);
    139     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
    140   }
    141 
    142   // Neon does not support vector divide/remainder operations.
    143   setOperationAction(ISD::SDIV, VT, Expand);
    144   setOperationAction(ISD::UDIV, VT, Expand);
    145   setOperationAction(ISD::FDIV, VT, Expand);
    146   setOperationAction(ISD::SREM, VT, Expand);
    147   setOperationAction(ISD::UREM, VT, Expand);
    148   setOperationAction(ISD::FREM, VT, Expand);
    149 }
    150 
    151 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
    152   addRegisterClass(VT, &ARM::DPRRegClass);
    153   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    154 }
    155 
    156 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
    157   addRegisterClass(VT, &ARM::QPRRegClass);
    158   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    159 }
    160 
    161 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
    162   if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
    163     return new TargetLoweringObjectFileMachO();
    164 
    165   return new ARMElfTargetObjectFile();
    166 }
    167 
    168 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
    169     : TargetLowering(TM, createTLOF(TM)) {
    170   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    171   RegInfo = TM.getRegisterInfo();
    172   Itins = TM.getInstrItineraryData();
    173 
    174   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    175 
    176   if (Subtarget->isTargetDarwin()) {
    177     // Uses VFP for Thumb libfuncs if available.
    178     if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
    179       // Single-precision floating-point arithmetic.
    180       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
    181       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
    182       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
    183       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
    184 
    185       // Double-precision floating-point arithmetic.
    186       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
    187       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
    188       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
    189       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
    190 
    191       // Single-precision comparisons.
    192       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
    193       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
    194       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
    195       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
    196       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
    197       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
    198       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
    199       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
    200 
    201       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    202       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
    203       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    204       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    205       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    206       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    207       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    208       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    209 
    210       // Double-precision comparisons.
    211       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
    212       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
    213       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
    214       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
    215       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
    216       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
    217       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
    218       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
    219 
    220       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    221       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
    222       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    223       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    224       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    225       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    226       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    227       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    228 
    229       // Floating-point to integer conversions.
    230       // i64 conversions are done via library routines even when generating VFP
    231       // instructions, so use the same ones.
    232       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
    233       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
    234       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
    235       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
    236 
    237       // Conversions between floating types.
    238       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
    239       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
    240 
    241       // Integer to floating-point conversions.
    242       // i64 conversions are done via library routines even when generating VFP
    243       // instructions, so use the same ones.
    244       // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    245       // e.g., __floatunsidf vs. __floatunssidfvfp.
    246       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
    247       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
    248       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
    249       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
    250     }
    251   }
    252 
    253   // These libcalls are not available in 32-bit.
    254   setLibcallName(RTLIB::SHL_I128, 0);
    255   setLibcallName(RTLIB::SRL_I128, 0);
    256   setLibcallName(RTLIB::SRA_I128, 0);
    257 
    258   if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
    259     // Double-precision floating-point arithmetic helper functions
    260     // RTABI chapter 4.1.2, Table 2
    261     setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
    262     setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
    263     setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
    264     setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
    265     setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
    266     setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
    267     setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
    268     setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
    269 
    270     // Double-precision floating-point comparison helper functions
    271     // RTABI chapter 4.1.2, Table 3
    272     setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
    273     setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    274     setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
    275     setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
    276     setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
    277     setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    278     setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
    279     setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    280     setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
    281     setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    282     setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
    283     setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    284     setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
    285     setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    286     setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
    287     setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    288     setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
    289     setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
    290     setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
    291     setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
    292     setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
    293     setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
    294     setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
    295     setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
    296 
    297     // Single-precision floating-point arithmetic helper functions
    298     // RTABI chapter 4.1.2, Table 4
    299     setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
    300     setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
    301     setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
    302     setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
    303     setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
    304     setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
    305     setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
    306     setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
    307 
    308     // Single-precision floating-point comparison helper functions
    309     // RTABI chapter 4.1.2, Table 5
    310     setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
    311     setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    312     setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
    313     setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
    314     setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
    315     setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    316     setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
    317     setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    318     setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
    319     setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    320     setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
    321     setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    322     setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
    323     setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    324     setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
    325     setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    326     setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
    327     setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
    328     setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
    329     setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
    330     setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
    331     setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
    332     setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
    333     setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
    334 
    335     // Floating-point to integer conversions.
    336     // RTABI chapter 4.1.2, Table 6
    337     setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
    338     setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
    339     setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
    340     setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
    341     setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
    342     setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
    343     setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
    344     setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
    345     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
    346     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
    347     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
    348     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
    349     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
    350     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
    351     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
    352     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
    353 
    354     // Conversions between floating types.
    355     // RTABI chapter 4.1.2, Table 7
    356     setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
    357     setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
    358     setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
    359     setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
    360 
    361     // Integer to floating-point conversions.
    362     // RTABI chapter 4.1.2, Table 8
    363     setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
    364     setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
    365     setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
    366     setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
    367     setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
    368     setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
    369     setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
    370     setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
    371     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
    372     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
    373     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
    374     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
    375     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
    376     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
    377     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
    378     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
    379 
    380     // Long long helper functions
    381     // RTABI chapter 4.2, Table 9
    382     setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
    383     setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
    384     setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
    385     setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
    386     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
    387     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
    388     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
    389     setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
    390     setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
    391     setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
    392 
    393     // Integer division functions
    394     // RTABI chapter 4.3.1
    395     setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
    396     setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
    397     setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
    398     setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
    399     setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
    400     setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
    401     setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
    402     setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
    403     setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
    404     setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
    405     setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
    406     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
    407     setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
    408     setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
    409     setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
    410     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
    411 
    412     // Memory operations
    413     // RTABI chapter 4.3.4
    414     setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
    415     setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
    416     setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
    417     setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
    418     setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
    419     setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
    420   }
    421 
    422   // Use divmod compiler-rt calls for iOS 5.0 and later.
    423   if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
    424       !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
    425     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    426     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    427   }
    428 
    429   if (Subtarget->isThumb1Only())
    430     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
    431   else
    432     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
    433   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    434       !Subtarget->isThumb1Only()) {
    435     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
    436     if (!Subtarget->isFPOnlySP())
    437       addRegisterClass(MVT::f64, &ARM::DPRRegClass);
    438 
    439     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    440   }
    441 
    442   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    443        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    444     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    445          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    446       setTruncStoreAction((MVT::SimpleValueType)VT,
    447                           (MVT::SimpleValueType)InnerVT, Expand);
    448     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    449     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    450     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
    451   }
    452 
    453   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
    454 
    455   if (Subtarget->hasNEON()) {
    456     addDRTypeForNEON(MVT::v2f32);
    457     addDRTypeForNEON(MVT::v8i8);
    458     addDRTypeForNEON(MVT::v4i16);
    459     addDRTypeForNEON(MVT::v2i32);
    460     addDRTypeForNEON(MVT::v1i64);
    461 
    462     addQRTypeForNEON(MVT::v4f32);
    463     addQRTypeForNEON(MVT::v2f64);
    464     addQRTypeForNEON(MVT::v16i8);
    465     addQRTypeForNEON(MVT::v8i16);
    466     addQRTypeForNEON(MVT::v4i32);
    467     addQRTypeForNEON(MVT::v2i64);
    468 
    469     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    470     // neither Neon nor VFP support any arithmetic operations on it.
    471     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    472     // supported for v4f32.
    473     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    474     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    475     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    476     // FIXME: Code duplication: FDIV and FREM are expanded always, see
    477     // ARMTargetLowering::addTypeForNEON method for details.
    478     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    479     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    480     // FIXME: Create unittest.
    481     // In another words, find a way when "copysign" appears in DAG with vector
    482     // operands.
    483     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    484     // FIXME: Code duplication: SETCC has custom operation action, see
    485     // ARMTargetLowering::addTypeForNEON method for details.
    486     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    487     // FIXME: Create unittest for FNEG and for FABS.
    488     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    489     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    490     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    491     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    492     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    493     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
    494     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    495     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    496     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    497     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    498     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    499     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    500     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    501     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    502     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    503     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    504     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    505     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    506 
    507     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    508     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    509     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    510     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
    511     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    512     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    513     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    514     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    515     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    516     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    517     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
    518 
    519     // Neon does not support some operations on v1i64 and v2i64 types.
    520     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    521     // Custom handling for some quad-vector types to detect VMULL.
    522     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    523     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    524     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    525     // Custom handling for some vector types to avoid expensive expansions
    526     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    527     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    528     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    529     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    530     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
    531     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
    532     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    533     // a destination type that is wider than the source, and nor does
    534     // it have a FP_TO_[SU]INT instruction with a narrower destination than
    535     // source.
    536     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    537     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    538     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    539     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    540 
    541     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    542     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    543     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    544     setTargetDAGCombine(ISD::SHL);
    545     setTargetDAGCombine(ISD::SRL);
    546     setTargetDAGCombine(ISD::SRA);
    547     setTargetDAGCombine(ISD::SIGN_EXTEND);
    548     setTargetDAGCombine(ISD::ZERO_EXTEND);
    549     setTargetDAGCombine(ISD::ANY_EXTEND);
    550     setTargetDAGCombine(ISD::SELECT_CC);
    551     setTargetDAGCombine(ISD::BUILD_VECTOR);
    552     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    553     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    554     setTargetDAGCombine(ISD::STORE);
    555     setTargetDAGCombine(ISD::FP_TO_SINT);
    556     setTargetDAGCombine(ISD::FP_TO_UINT);
    557     setTargetDAGCombine(ISD::FDIV);
    558 
    559     // It is legal to extload from v4i8 to v4i16 or v4i32.
    560     MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
    561                   MVT::v4i16, MVT::v2i16,
    562                   MVT::v2i32};
    563     for (unsigned i = 0; i < 6; ++i) {
    564       setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
    565       setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
    566       setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
    567     }
    568   }
    569 
    570   // ARM and Thumb2 support UMLAL/SMLAL.
    571   if (!Subtarget->isThumb1Only())
    572     setTargetDAGCombine(ISD::ADDC);
    573 
    574 
    575   computeRegisterProperties();
    576 
    577   // ARM does not have f32 extending load.
    578   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
    579 
    580   // ARM does not have i1 sign extending load.
    581   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    582 
    583   // ARM supports all 4 flavors of integer indexed load / store.
    584   if (!Subtarget->isThumb1Only()) {
    585     for (unsigned im = (unsigned)ISD::PRE_INC;
    586          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    587       setIndexedLoadAction(im,  MVT::i1,  Legal);
    588       setIndexedLoadAction(im,  MVT::i8,  Legal);
    589       setIndexedLoadAction(im,  MVT::i16, Legal);
    590       setIndexedLoadAction(im,  MVT::i32, Legal);
    591       setIndexedStoreAction(im, MVT::i1,  Legal);
    592       setIndexedStoreAction(im, MVT::i8,  Legal);
    593       setIndexedStoreAction(im, MVT::i16, Legal);
    594       setIndexedStoreAction(im, MVT::i32, Legal);
    595     }
    596   }
    597 
    598   // i64 operation support.
    599   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    600   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    601   if (Subtarget->isThumb1Only()) {
    602     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    603     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    604   }
    605   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    606       || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
    607     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    608 
    609   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    610   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    611   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    612   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    613   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    614 
    615   if (!Subtarget->isThumb1Only()) {
    616     // FIXME: We should do this for Thumb1 as well.
    617     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
    618     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
    619     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
    620     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
    621   }
    622 
    623   // ARM does not have ROTL.
    624   setOperationAction(ISD::ROTL,  MVT::i32, Expand);
    625   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    626   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    627   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    628     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    629 
    630   // These just redirect to CTTZ and CTLZ on ARM.
    631   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
    632   setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
    633 
    634   // Only ARMv6 has BSWAP.
    635   if (!Subtarget->hasV6Ops())
    636     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    637 
    638   // These are expanded into libcalls.
    639   if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
    640     // v7M has a hardware divider
    641     setOperationAction(ISD::SDIV,  MVT::i32, Expand);
    642     setOperationAction(ISD::UDIV,  MVT::i32, Expand);
    643   }
    644   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    645   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    646   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    647   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    648 
    649   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    650   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    651   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
    652   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    653   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    654 
    655   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    656 
    657   // Use the default implementation.
    658   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    659   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    660   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    661   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    662   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    663   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    664 
    665   if (!Subtarget->isTargetDarwin()) {
    666     // Non-Darwin platforms may return values in these registers via the
    667     // personality function.
    668     setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
    669     setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
    670     setExceptionPointerRegister(ARM::R0);
    671     setExceptionSelectorRegister(ARM::R1);
    672   }
    673 
    674   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    675   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    676   // the default expansion.
    677   // FIXME: This should be checking for v6k, not just v6.
    678   if (Subtarget->hasDataBarrier() ||
    679       (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
    680     // membarrier needs custom lowering; the rest are legal and handled
    681     // normally.
    682     setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
    683     setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    684     // Custom lowering for 64-bit ops
    685     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
    686     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
    687     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
    688     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
    689     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
    690     setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
    691     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
    692     // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
    693     setInsertFencesForAtomic(true);
    694   } else {
    695     // Set them all for expansion, which will force libcalls.
    696     setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
    697     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
    698     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    699     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    700     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    701     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    702     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    703     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    704     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    705     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    706     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    707     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    708     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    709     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    710     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    711     // Unordered/Monotonic case.
    712     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    713     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    714     // Since the libcalls include locking, fold in the fences
    715     setShouldFoldAtomicFences(true);
    716   }
    717 
    718   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
    719 
    720   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
    721   if (!Subtarget->hasV6Ops()) {
    722     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    723     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    724   }
    725   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    726 
    727   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    728       !Subtarget->isThumb1Only()) {
    729     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    730     // iff target supports vfp2.
    731     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    732     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    733   }
    734 
    735   // We want to custom lower some of our intrinsics.
    736   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    737   if (Subtarget->isTargetDarwin()) {
    738     setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    739     setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    740     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
    741   }
    742 
    743   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
    744   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
    745   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
    746   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
    747   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
    748   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
    749   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    750   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    751   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    752 
    753   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
    754   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
    755   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
    756   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
    757   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
    758 
    759   // We don't support sin/cos/fmod/copysign/pow
    760   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
    761   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
    762   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
    763   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
    764   setOperationAction(ISD::FREM,      MVT::f64, Expand);
    765   setOperationAction(ISD::FREM,      MVT::f32, Expand);
    766   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    767       !Subtarget->isThumb1Only()) {
    768     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    769     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    770   }
    771   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
    772   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
    773 
    774   if (!Subtarget->hasVFP4()) {
    775     setOperationAction(ISD::FMA, MVT::f64, Expand);
    776     setOperationAction(ISD::FMA, MVT::f32, Expand);
    777   }
    778 
    779   // Various VFP goodness
    780   if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
    781     // int <-> fp are custom expanded into bit_convert + ARMISD ops.
    782     if (Subtarget->hasVFP2()) {
    783       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    784       setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    785       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    786       setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    787     }
    788     // Special handling for half-precision FP.
    789     if (!Subtarget->hasFP16()) {
    790       setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
    791       setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
    792     }
    793   }
    794 
    795   // We have target-specific dag combine patterns for the following nodes:
    796   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
    797   setTargetDAGCombine(ISD::ADD);
    798   setTargetDAGCombine(ISD::SUB);
    799   setTargetDAGCombine(ISD::MUL);
    800   setTargetDAGCombine(ISD::AND);
    801   setTargetDAGCombine(ISD::OR);
    802   setTargetDAGCombine(ISD::XOR);
    803 
    804   if (Subtarget->hasV6Ops())
    805     setTargetDAGCombine(ISD::SRL);
    806 
    807   setStackPointerRegisterToSaveRestore(ARM::SP);
    808 
    809   if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
    810       !Subtarget->hasVFP2())
    811     setSchedulingPreference(Sched::RegPressure);
    812   else
    813     setSchedulingPreference(Sched::Hybrid);
    814 
    815   //// temporary - rewrite interface to use type
    816   maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
    817   maxStoresPerMemset = 16;
    818   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
    819 
    820   // On ARM arguments smaller than 4 bytes are extended, so all arguments
    821   // are at least 4 bytes aligned.
    822   setMinStackArgumentAlignment(4);
    823 
    824   benefitFromCodePlacementOpt = true;
    825 
    826   // Prefer likely predicted branches to selects on out-of-order cores.
    827   predictableSelectIsExpensive = Subtarget->isCortexA9();
    828 
    829   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
    830 }
    831 
    832 // FIXME: It might make sense to define the representative register class as the
    833 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
    834 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
    835 // SPR's representative would be DPR_VFP2. This should work well if register
    836 // pressure tracking were modified such that a register use would increment the
    837 // pressure of the register class's representative and all of it's super
    838 // classes' representatives transitively. We have not implemented this because
    839 // of the difficulty prior to coalescing of modeling operand register classes
    840 // due to the common occurrence of cross class copies and subregister insertions
    841 // and extractions.
    842 std::pair<const TargetRegisterClass*, uint8_t>
    843 ARMTargetLowering::findRepresentativeClass(EVT VT) const{
    844   const TargetRegisterClass *RRC = 0;
    845   uint8_t Cost = 1;
    846   switch (VT.getSimpleVT().SimpleTy) {
    847   default:
    848     return TargetLowering::findRepresentativeClass(VT);
    849   // Use DPR as representative register class for all floating point
    850   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
    851   // the cost is 1 for both f32 and f64.
    852   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
    853   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
    854     RRC = &ARM::DPRRegClass;
    855     // When NEON is used for SP, only half of the register file is available
    856     // because operations that define both SP and DP results will be constrained
    857     // to the VFP2 class (D0-D15). We currently model this constraint prior to
    858     // coalescing by double-counting the SP regs. See the FIXME above.
    859     if (Subtarget->useNEONForSinglePrecisionFP())
    860       Cost = 2;
    861     break;
    862   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
    863   case MVT::v4f32: case MVT::v2f64:
    864     RRC = &ARM::DPRRegClass;
    865     Cost = 2;
    866     break;
    867   case MVT::v4i64:
    868     RRC = &ARM::DPRRegClass;
    869     Cost = 4;
    870     break;
    871   case MVT::v8i64:
    872     RRC = &ARM::DPRRegClass;
    873     Cost = 8;
    874     break;
    875   }
    876   return std::make_pair(RRC, Cost);
    877 }
    878 
    879 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
    880   switch (Opcode) {
    881   default: return 0;
    882   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
    883   case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
    884   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
    885   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
    886   case ARMISD::CALL:          return "ARMISD::CALL";
    887   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
    888   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
    889   case ARMISD::tCALL:         return "ARMISD::tCALL";
    890   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
    891   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
    892   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
    893   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
    894   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
    895   case ARMISD::CMP:           return "ARMISD::CMP";
    896   case ARMISD::CMN:           return "ARMISD::CMN";
    897   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
    898   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
    899   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
    900   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
    901   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
    902 
    903   case ARMISD::CMOV:          return "ARMISD::CMOV";
    904 
    905   case ARMISD::RBIT:          return "ARMISD::RBIT";
    906 
    907   case ARMISD::FTOSI:         return "ARMISD::FTOSI";
    908   case ARMISD::FTOUI:         return "ARMISD::FTOUI";
    909   case ARMISD::SITOF:         return "ARMISD::SITOF";
    910   case ARMISD::UITOF:         return "ARMISD::UITOF";
    911 
    912   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
    913   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
    914   case ARMISD::RRX:           return "ARMISD::RRX";
    915 
    916   case ARMISD::ADDC:          return "ARMISD::ADDC";
    917   case ARMISD::ADDE:          return "ARMISD::ADDE";
    918   case ARMISD::SUBC:          return "ARMISD::SUBC";
    919   case ARMISD::SUBE:          return "ARMISD::SUBE";
    920 
    921   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
    922   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
    923 
    924   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
    925   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
    926 
    927   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
    928 
    929   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
    930 
    931   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
    932 
    933   case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
    934   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
    935 
    936   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
    937 
    938   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
    939   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
    940   case ARMISD::VCGE:          return "ARMISD::VCGE";
    941   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
    942   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
    943   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
    944   case ARMISD::VCGT:          return "ARMISD::VCGT";
    945   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
    946   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
    947   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
    948   case ARMISD::VTST:          return "ARMISD::VTST";
    949 
    950   case ARMISD::VSHL:          return "ARMISD::VSHL";
    951   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
    952   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
    953   case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
    954   case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
    955   case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
    956   case ARMISD::VSHRN:         return "ARMISD::VSHRN";
    957   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
    958   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
    959   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
    960   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
    961   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
    962   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
    963   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
    964   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
    965   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
    966   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
    967   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
    968   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
    969   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
    970   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
    971   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
    972   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
    973   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
    974   case ARMISD::VDUP:          return "ARMISD::VDUP";
    975   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
    976   case ARMISD::VEXT:          return "ARMISD::VEXT";
    977   case ARMISD::VREV64:        return "ARMISD::VREV64";
    978   case ARMISD::VREV32:        return "ARMISD::VREV32";
    979   case ARMISD::VREV16:        return "ARMISD::VREV16";
    980   case ARMISD::VZIP:          return "ARMISD::VZIP";
    981   case ARMISD::VUZP:          return "ARMISD::VUZP";
    982   case ARMISD::VTRN:          return "ARMISD::VTRN";
    983   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
    984   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
    985   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
    986   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
    987   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
    988   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
    989   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
    990   case ARMISD::FMAX:          return "ARMISD::FMAX";
    991   case ARMISD::FMIN:          return "ARMISD::FMIN";
    992   case ARMISD::BFI:           return "ARMISD::BFI";
    993   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
    994   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
    995   case ARMISD::VBSL:          return "ARMISD::VBSL";
    996   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
    997   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
    998   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
    999   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
   1000   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
   1001   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
   1002   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
   1003   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
   1004   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
   1005   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
   1006   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
   1007   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
   1008   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
   1009   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
   1010   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
   1011   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
   1012   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
   1013   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
   1014   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
   1015   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
   1016   }
   1017 }
   1018 
   1019 EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
   1020   if (!VT.isVector()) return getPointerTy();
   1021   return VT.changeVectorElementTypeToInteger();
   1022 }
   1023 
   1024 /// getRegClassFor - Return the register class that should be used for the
   1025 /// specified value type.
   1026 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
   1027   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
   1028   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
   1029   // load / store 4 to 8 consecutive D registers.
   1030   if (Subtarget->hasNEON()) {
   1031     if (VT == MVT::v4i64)
   1032       return &ARM::QQPRRegClass;
   1033     if (VT == MVT::v8i64)
   1034       return &ARM::QQQQPRRegClass;
   1035   }
   1036   return TargetLowering::getRegClassFor(VT);
   1037 }
   1038 
   1039 // Create a fast isel object.
   1040 FastISel *
   1041 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   1042                                   const TargetLibraryInfo *libInfo) const {
   1043   return ARM::createFastISel(funcInfo, libInfo);
   1044 }
   1045 
   1046 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
   1047 /// be used for loads / stores from the global.
   1048 unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
   1049   return (Subtarget->isThumb1Only() ? 127 : 4095);
   1050 }
   1051 
   1052 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
   1053   unsigned NumVals = N->getNumValues();
   1054   if (!NumVals)
   1055     return Sched::RegPressure;
   1056 
   1057   for (unsigned i = 0; i != NumVals; ++i) {
   1058     EVT VT = N->getValueType(i);
   1059     if (VT == MVT::Glue || VT == MVT::Other)
   1060       continue;
   1061     if (VT.isFloatingPoint() || VT.isVector())
   1062       return Sched::ILP;
   1063   }
   1064 
   1065   if (!N->isMachineOpcode())
   1066     return Sched::RegPressure;
   1067 
   1068   // Load are scheduled for latency even if there instruction itinerary
   1069   // is not available.
   1070   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1071   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1072 
   1073   if (MCID.getNumDefs() == 0)
   1074     return Sched::RegPressure;
   1075   if (!Itins->isEmpty() &&
   1076       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1077     return Sched::ILP;
   1078 
   1079   return Sched::RegPressure;
   1080 }
   1081 
   1082 //===----------------------------------------------------------------------===//
   1083 // Lowering Code
   1084 //===----------------------------------------------------------------------===//
   1085 
   1086 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1087 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1088   switch (CC) {
   1089   default: llvm_unreachable("Unknown condition code!");
   1090   case ISD::SETNE:  return ARMCC::NE;
   1091   case ISD::SETEQ:  return ARMCC::EQ;
   1092   case ISD::SETGT:  return ARMCC::GT;
   1093   case ISD::SETGE:  return ARMCC::GE;
   1094   case ISD::SETLT:  return ARMCC::LT;
   1095   case ISD::SETLE:  return ARMCC::LE;
   1096   case ISD::SETUGT: return ARMCC::HI;
   1097   case ISD::SETUGE: return ARMCC::HS;
   1098   case ISD::SETULT: return ARMCC::LO;
   1099   case ISD::SETULE: return ARMCC::LS;
   1100   }
   1101 }
   1102 
   1103 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1104 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1105                         ARMCC::CondCodes &CondCode2) {
   1106   CondCode2 = ARMCC::AL;
   1107   switch (CC) {
   1108   default: llvm_unreachable("Unknown FP condition!");
   1109   case ISD::SETEQ:
   1110   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
   1111   case ISD::SETGT:
   1112   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1113   case ISD::SETGE:
   1114   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1115   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1116   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1117   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
   1118   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1119   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1120   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
   1121   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1122   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1123   case ISD::SETLT:
   1124   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1125   case ISD::SETLE:
   1126   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1127   case ISD::SETNE:
   1128   case ISD::SETUNE: CondCode = ARMCC::NE; break;
   1129   }
   1130 }
   1131 
   1132 //===----------------------------------------------------------------------===//
   1133 //                      Calling Convention Implementation
   1134 //===----------------------------------------------------------------------===//
   1135 
   1136 #include "ARMGenCallingConv.inc"
   1137 
   1138 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
   1139 /// given CallingConvention value.
   1140 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1141                                                  bool Return,
   1142                                                  bool isVarArg) const {
   1143   switch (CC) {
   1144   default:
   1145     llvm_unreachable("Unsupported calling convention");
   1146   case CallingConv::Fast:
   1147     if (Subtarget->hasVFP2() && !isVarArg) {
   1148       if (!Subtarget->isAAPCS_ABI())
   1149         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1150       // For AAPCS ABI targets, just use VFP variant of the calling convention.
   1151       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1152     }
   1153     // Fallthrough
   1154   case CallingConv::C: {
   1155     // Use target triple & subtarget features to do actual dispatch.
   1156     if (!Subtarget->isAAPCS_ABI())
   1157       return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1158     else if (Subtarget->hasVFP2() &&
   1159              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
   1160              !isVarArg)
   1161       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1162     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1163   }
   1164   case CallingConv::ARM_AAPCS_VFP:
   1165     if (!isVarArg)
   1166       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1167     // Fallthrough
   1168   case CallingConv::ARM_AAPCS:
   1169     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1170   case CallingConv::ARM_APCS:
   1171     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1172   case CallingConv::GHC:
   1173     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
   1174   }
   1175 }
   1176 
   1177 /// LowerCallResult - Lower the result values of a call into the
   1178 /// appropriate copies out of appropriate physical registers.
   1179 SDValue
   1180 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1181                                    CallingConv::ID CallConv, bool isVarArg,
   1182                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1183                                    DebugLoc dl, SelectionDAG &DAG,
   1184                                    SmallVectorImpl<SDValue> &InVals) const {
   1185 
   1186   // Assign locations to each value returned by this call.
   1187   SmallVector<CCValAssign, 16> RVLocs;
   1188   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1189                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   1190   CCInfo.AnalyzeCallResult(Ins,
   1191                            CCAssignFnForNode(CallConv, /* Return*/ true,
   1192                                              isVarArg));
   1193 
   1194   // Copy all of the result registers out of their specified physreg.
   1195   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1196     CCValAssign VA = RVLocs[i];
   1197 
   1198     SDValue Val;
   1199     if (VA.needsCustom()) {
   1200       // Handle f64 or half of a v2f64.
   1201       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1202                                       InFlag);
   1203       Chain = Lo.getValue(1);
   1204       InFlag = Lo.getValue(2);
   1205       VA = RVLocs[++i]; // skip ahead to next loc
   1206       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1207                                       InFlag);
   1208       Chain = Hi.getValue(1);
   1209       InFlag = Hi.getValue(2);
   1210       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1211 
   1212       if (VA.getLocVT() == MVT::v2f64) {
   1213         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1214         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1215                           DAG.getConstant(0, MVT::i32));
   1216 
   1217         VA = RVLocs[++i]; // skip ahead to next loc
   1218         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1219         Chain = Lo.getValue(1);
   1220         InFlag = Lo.getValue(2);
   1221         VA = RVLocs[++i]; // skip ahead to next loc
   1222         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1223         Chain = Hi.getValue(1);
   1224         InFlag = Hi.getValue(2);
   1225         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1226         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1227                           DAG.getConstant(1, MVT::i32));
   1228       }
   1229     } else {
   1230       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1231                                InFlag);
   1232       Chain = Val.getValue(1);
   1233       InFlag = Val.getValue(2);
   1234     }
   1235 
   1236     switch (VA.getLocInfo()) {
   1237     default: llvm_unreachable("Unknown loc info!");
   1238     case CCValAssign::Full: break;
   1239     case CCValAssign::BCvt:
   1240       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1241       break;
   1242     }
   1243 
   1244     InVals.push_back(Val);
   1245   }
   1246 
   1247   return Chain;
   1248 }
   1249 
   1250 /// LowerMemOpCallTo - Store the argument to the stack.
   1251 SDValue
   1252 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
   1253                                     SDValue StackPtr, SDValue Arg,
   1254                                     DebugLoc dl, SelectionDAG &DAG,
   1255                                     const CCValAssign &VA,
   1256                                     ISD::ArgFlagsTy Flags) const {
   1257   unsigned LocMemOffset = VA.getLocMemOffset();
   1258   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1259   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1260   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1261                       MachinePointerInfo::getStack(LocMemOffset),
   1262                       false, false, 0);
   1263 }
   1264 
   1265 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
   1266                                          SDValue Chain, SDValue &Arg,
   1267                                          RegsToPassVector &RegsToPass,
   1268                                          CCValAssign &VA, CCValAssign &NextVA,
   1269                                          SDValue &StackPtr,
   1270                                          SmallVector<SDValue, 8> &MemOpChains,
   1271                                          ISD::ArgFlagsTy Flags) const {
   1272 
   1273   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1274                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1275   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
   1276 
   1277   if (NextVA.isRegLoc())
   1278     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
   1279   else {
   1280     assert(NextVA.isMemLoc());
   1281     if (StackPtr.getNode() == 0)
   1282       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1283 
   1284     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
   1285                                            dl, DAG, NextVA,
   1286                                            Flags));
   1287   }
   1288 }
   1289 
   1290 /// LowerCall - Lowering a call into a callseq_start <-
   1291 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1292 /// nodes.
   1293 SDValue
   1294 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1295                              SmallVectorImpl<SDValue> &InVals) const {
   1296   SelectionDAG &DAG                     = CLI.DAG;
   1297   DebugLoc &dl                          = CLI.DL;
   1298   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
   1299   SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
   1300   SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
   1301   SDValue Chain                         = CLI.Chain;
   1302   SDValue Callee                        = CLI.Callee;
   1303   bool &isTailCall                      = CLI.IsTailCall;
   1304   CallingConv::ID CallConv              = CLI.CallConv;
   1305   bool doesNotRet                       = CLI.DoesNotReturn;
   1306   bool isVarArg                         = CLI.IsVarArg;
   1307 
   1308   MachineFunction &MF = DAG.getMachineFunction();
   1309   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1310   bool IsSibCall = false;
   1311   // Disable tail calls if they're not supported.
   1312   if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
   1313     isTailCall = false;
   1314   if (isTailCall) {
   1315     // Check if it's really possible to do a tail call.
   1316     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1317                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
   1318                                                    Outs, OutVals, Ins, DAG);
   1319     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1320     // detected sibcalls.
   1321     if (isTailCall) {
   1322       ++NumTailCalls;
   1323       IsSibCall = true;
   1324     }
   1325   }
   1326 
   1327   // Analyze operands of the call, assigning locations to each operand.
   1328   SmallVector<CCValAssign, 16> ArgLocs;
   1329   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1330                  getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1331   CCInfo.AnalyzeCallOperands(Outs,
   1332                              CCAssignFnForNode(CallConv, /* Return*/ false,
   1333                                                isVarArg));
   1334 
   1335   // Get a count of how many bytes are to be pushed on the stack.
   1336   unsigned NumBytes = CCInfo.getNextStackOffset();
   1337 
   1338   // For tail calls, memory operands are available in our caller's stack.
   1339   if (IsSibCall)
   1340     NumBytes = 0;
   1341 
   1342   // Adjust the stack pointer for the new arguments...
   1343   // These operations are automatically eliminated by the prolog/epilog pass
   1344   if (!IsSibCall)
   1345     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   1346 
   1347   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1348 
   1349   RegsToPassVector RegsToPass;
   1350   SmallVector<SDValue, 8> MemOpChains;
   1351 
   1352   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1353   // of tail call optimization, arguments are handled later.
   1354   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1355        i != e;
   1356        ++i, ++realArgIdx) {
   1357     CCValAssign &VA = ArgLocs[i];
   1358     SDValue Arg = OutVals[realArgIdx];
   1359     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1360     bool isByVal = Flags.isByVal();
   1361 
   1362     // Promote the value if needed.
   1363     switch (VA.getLocInfo()) {
   1364     default: llvm_unreachable("Unknown loc info!");
   1365     case CCValAssign::Full: break;
   1366     case CCValAssign::SExt:
   1367       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1368       break;
   1369     case CCValAssign::ZExt:
   1370       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1371       break;
   1372     case CCValAssign::AExt:
   1373       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1374       break;
   1375     case CCValAssign::BCvt:
   1376       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1377       break;
   1378     }
   1379 
   1380     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1381     if (VA.needsCustom()) {
   1382       if (VA.getLocVT() == MVT::v2f64) {
   1383         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1384                                   DAG.getConstant(0, MVT::i32));
   1385         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1386                                   DAG.getConstant(1, MVT::i32));
   1387 
   1388         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1389                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1390 
   1391         VA = ArgLocs[++i]; // skip ahead to next loc
   1392         if (VA.isRegLoc()) {
   1393           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1394                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1395         } else {
   1396           assert(VA.isMemLoc());
   1397 
   1398           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1399                                                  dl, DAG, VA, Flags));
   1400         }
   1401       } else {
   1402         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1403                          StackPtr, MemOpChains, Flags);
   1404       }
   1405     } else if (VA.isRegLoc()) {
   1406       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1407     } else if (isByVal) {
   1408       assert(VA.isMemLoc());
   1409       unsigned offset = 0;
   1410 
   1411       // True if this byval aggregate will be split between registers
   1412       // and memory.
   1413       if (CCInfo.isFirstByValRegValid()) {
   1414         EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1415         unsigned int i, j;
   1416         for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
   1417           SDValue Const = DAG.getConstant(4*i, MVT::i32);
   1418           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1419           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1420                                      MachinePointerInfo(),
   1421                                      false, false, false, 0);
   1422           MemOpChains.push_back(Load.getValue(1));
   1423           RegsToPass.push_back(std::make_pair(j, Load));
   1424         }
   1425         offset = ARM::R4 - CCInfo.getFirstByValReg();
   1426         CCInfo.clearFirstByValReg();
   1427       }
   1428 
   1429       if (Flags.getByValSize() - 4*offset > 0) {
   1430         unsigned LocMemOffset = VA.getLocMemOffset();
   1431         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1432         SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
   1433                                   StkPtrOff);
   1434         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
   1435         SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
   1436         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
   1437                                            MVT::i32);
   1438         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
   1439 
   1440         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1441         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
   1442         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
   1443                                           Ops, array_lengthof(Ops)));
   1444       }
   1445     } else if (!IsSibCall) {
   1446       assert(VA.isMemLoc());
   1447 
   1448       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1449                                              dl, DAG, VA, Flags));
   1450     }
   1451   }
   1452 
   1453   if (!MemOpChains.empty())
   1454     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1455                         &MemOpChains[0], MemOpChains.size());
   1456 
   1457   // Build a sequence of copy-to-reg nodes chained together with token chain
   1458   // and flag operands which copy the outgoing args into the appropriate regs.
   1459   SDValue InFlag;
   1460   // Tail call byval lowering might overwrite argument registers so in case of
   1461   // tail call optimization the copies to registers are lowered later.
   1462   if (!isTailCall)
   1463     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1464       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1465                                RegsToPass[i].second, InFlag);
   1466       InFlag = Chain.getValue(1);
   1467     }
   1468 
   1469   // For tail calls lower the arguments to the 'real' stack slot.
   1470   if (isTailCall) {
   1471     // Force all the incoming stack arguments to be loaded from the stack
   1472     // before any new outgoing arguments are stored to the stack, because the
   1473     // outgoing stack slots may alias the incoming argument stack slots, and
   1474     // the alias isn't otherwise explicit. This is slightly more conservative
   1475     // than necessary, because it means that each store effectively depends
   1476     // on every argument instead of just those arguments it would clobber.
   1477 
   1478     // Do not flag preceding copytoreg stuff together with the following stuff.
   1479     InFlag = SDValue();
   1480     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1481       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1482                                RegsToPass[i].second, InFlag);
   1483       InFlag = Chain.getValue(1);
   1484     }
   1485     InFlag =SDValue();
   1486   }
   1487 
   1488   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1489   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1490   // node so that legalize doesn't hack it.
   1491   bool isDirect = false;
   1492   bool isARMFunc = false;
   1493   bool isLocalARMFunc = false;
   1494   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1495 
   1496   if (EnableARMLongCalls) {
   1497     assert (getTargetMachine().getRelocationModel() == Reloc::Static
   1498             && "long-calls with non-static relocation model!");
   1499     // Handle a global address or an external symbol. If it's not one of
   1500     // those, the target's already in a register, so we don't need to do
   1501     // anything extra.
   1502     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1503       const GlobalValue *GV = G->getGlobal();
   1504       // Create a constant pool entry for the callee address
   1505       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1506       ARMConstantPoolValue *CPV =
   1507         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   1508 
   1509       // Get the address of the callee into a register
   1510       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1511       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1512       Callee = DAG.getLoad(getPointerTy(), dl,
   1513                            DAG.getEntryNode(), CPAddr,
   1514                            MachinePointerInfo::getConstantPool(),
   1515                            false, false, false, 0);
   1516     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1517       const char *Sym = S->getSymbol();
   1518 
   1519       // Create a constant pool entry for the callee address
   1520       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1521       ARMConstantPoolValue *CPV =
   1522         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1523                                       ARMPCLabelIndex, 0);
   1524       // Get the address of the callee into a register
   1525       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1526       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1527       Callee = DAG.getLoad(getPointerTy(), dl,
   1528                            DAG.getEntryNode(), CPAddr,
   1529                            MachinePointerInfo::getConstantPool(),
   1530                            false, false, false, 0);
   1531     }
   1532   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1533     const GlobalValue *GV = G->getGlobal();
   1534     isDirect = true;
   1535     bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
   1536     bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
   1537                    getTargetMachine().getRelocationModel() != Reloc::Static;
   1538     isARMFunc = !Subtarget->isThumb() || isStub;
   1539     // ARM call to a local ARM function is predicable.
   1540     isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
   1541     // tBX takes a register source operand.
   1542     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1543       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1544       ARMConstantPoolValue *CPV =
   1545         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
   1546       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1547       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1548       Callee = DAG.getLoad(getPointerTy(), dl,
   1549                            DAG.getEntryNode(), CPAddr,
   1550                            MachinePointerInfo::getConstantPool(),
   1551                            false, false, false, 0);
   1552       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1553       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1554                            getPointerTy(), Callee, PICLabel);
   1555     } else {
   1556       // On ELF targets for PIC code, direct calls should go through the PLT
   1557       unsigned OpFlags = 0;
   1558       if (Subtarget->isTargetELF() &&
   1559                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1560         OpFlags = ARMII::MO_PLT;
   1561       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   1562     }
   1563   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1564     isDirect = true;
   1565     bool isStub = Subtarget->isTargetDarwin() &&
   1566                   getTargetMachine().getRelocationModel() != Reloc::Static;
   1567     isARMFunc = !Subtarget->isThumb() || isStub;
   1568     // tBX takes a register source operand.
   1569     const char *Sym = S->getSymbol();
   1570     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1571       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1572       ARMConstantPoolValue *CPV =
   1573         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1574                                       ARMPCLabelIndex, 4);
   1575       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1576       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1577       Callee = DAG.getLoad(getPointerTy(), dl,
   1578                            DAG.getEntryNode(), CPAddr,
   1579                            MachinePointerInfo::getConstantPool(),
   1580                            false, false, false, 0);
   1581       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1582       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1583                            getPointerTy(), Callee, PICLabel);
   1584     } else {
   1585       unsigned OpFlags = 0;
   1586       // On ELF targets for PIC code, direct calls should go through the PLT
   1587       if (Subtarget->isTargetELF() &&
   1588                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1589         OpFlags = ARMII::MO_PLT;
   1590       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
   1591     }
   1592   }
   1593 
   1594   // FIXME: handle tail calls differently.
   1595   unsigned CallOpc;
   1596   if (Subtarget->isThumb()) {
   1597     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   1598       CallOpc = ARMISD::CALL_NOLINK;
   1599     else if (doesNotRet && isDirect && !isARMFunc &&
   1600              Subtarget->hasRAS() && !Subtarget->isThumb1Only())
   1601       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1602       CallOpc = ARMISD::CALL_NOLINK;
   1603     else
   1604       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
   1605   } else {
   1606     if (!isDirect && !Subtarget->hasV5TOps()) {
   1607       CallOpc = ARMISD::CALL_NOLINK;
   1608     } else if (doesNotRet && isDirect && Subtarget->hasRAS())
   1609       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1610       CallOpc = ARMISD::CALL_NOLINK;
   1611     else
   1612       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
   1613   }
   1614 
   1615   std::vector<SDValue> Ops;
   1616   Ops.push_back(Chain);
   1617   Ops.push_back(Callee);
   1618 
   1619   // Add argument registers to the end of the list so that they are known live
   1620   // into the call.
   1621   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1622     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1623                                   RegsToPass[i].second.getValueType()));
   1624 
   1625   // Add a register mask operand representing the call-preserved registers.
   1626   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   1627   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   1628   assert(Mask && "Missing call preserved mask for calling convention");
   1629   Ops.push_back(DAG.getRegisterMask(Mask));
   1630 
   1631   if (InFlag.getNode())
   1632     Ops.push_back(InFlag);
   1633 
   1634   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1635   if (isTailCall)
   1636     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
   1637 
   1638   // Returns a chain and a flag for retval copy to use.
   1639   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
   1640   InFlag = Chain.getValue(1);
   1641 
   1642   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   1643                              DAG.getIntPtrConstant(0, true), InFlag);
   1644   if (!Ins.empty())
   1645     InFlag = Chain.getValue(1);
   1646 
   1647   // Handle result values, copying them out of physregs into vregs that we
   1648   // return.
   1649   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
   1650                          dl, DAG, InVals);
   1651 }
   1652 
   1653 /// HandleByVal - Every parameter *after* a byval parameter is passed
   1654 /// on the stack.  Remember the next parameter register to allocate,
   1655 /// and then confiscate the rest of the parameter registers to insure
   1656 /// this.
   1657 void
   1658 ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
   1659   unsigned reg = State->AllocateReg(GPRArgRegs, 4);
   1660   assert((State->getCallOrPrologue() == Prologue ||
   1661           State->getCallOrPrologue() == Call) &&
   1662          "unhandled ParmContext");
   1663   if ((!State->isFirstByValRegValid()) &&
   1664       (ARM::R0 <= reg) && (reg <= ARM::R3)) {
   1665     State->setFirstByValReg(reg);
   1666     // At a call site, a byval parameter that is split between
   1667     // registers and memory needs its size truncated here.  In a
   1668     // function prologue, such byval parameters are reassembled in
   1669     // memory, and are not truncated.
   1670     if (State->getCallOrPrologue() == Call) {
   1671       unsigned excess = 4 * (ARM::R4 - reg);
   1672       assert(size >= excess && "expected larger existing stack allocation");
   1673       size -= excess;
   1674     }
   1675   }
   1676   // Confiscate any remaining parameter registers to preclude their
   1677   // assignment to subsequent parameters.
   1678   while (State->AllocateReg(GPRArgRegs, 4))
   1679     ;
   1680 }
   1681 
   1682 /// MatchingStackOffset - Return true if the given stack call argument is
   1683 /// already available in the same position (relatively) of the caller's
   1684 /// incoming argument stack.
   1685 static
   1686 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   1687                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   1688                          const TargetInstrInfo *TII) {
   1689   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   1690   int FI = INT_MAX;
   1691   if (Arg.getOpcode() == ISD::CopyFromReg) {
   1692     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   1693     if (!TargetRegisterInfo::isVirtualRegister(VR))
   1694       return false;
   1695     MachineInstr *Def = MRI->getVRegDef(VR);
   1696     if (!Def)
   1697       return false;
   1698     if (!Flags.isByVal()) {
   1699       if (!TII->isLoadFromStackSlot(Def, FI))
   1700         return false;
   1701     } else {
   1702       return false;
   1703     }
   1704   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   1705     if (Flags.isByVal())
   1706       // ByVal argument is passed in as a pointer but it's now being
   1707       // dereferenced. e.g.
   1708       // define @foo(%struct.X* %A) {
   1709       //   tail call @bar(%struct.X* byval %A)
   1710       // }
   1711       return false;
   1712     SDValue Ptr = Ld->getBasePtr();
   1713     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   1714     if (!FINode)
   1715       return false;
   1716     FI = FINode->getIndex();
   1717   } else
   1718     return false;
   1719 
   1720   assert(FI != INT_MAX);
   1721   if (!MFI->isFixedObjectIndex(FI))
   1722     return false;
   1723   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   1724 }
   1725 
   1726 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   1727 /// for tail call optimization. Targets which want to do tail call
   1728 /// optimization should implement this function.
   1729 bool
   1730 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   1731                                                      CallingConv::ID CalleeCC,
   1732                                                      bool isVarArg,
   1733                                                      bool isCalleeStructRet,
   1734                                                      bool isCallerStructRet,
   1735                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   1736                                     const SmallVectorImpl<SDValue> &OutVals,
   1737                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1738                                                      SelectionDAG& DAG) const {
   1739   const Function *CallerF = DAG.getMachineFunction().getFunction();
   1740   CallingConv::ID CallerCC = CallerF->getCallingConv();
   1741   bool CCMatch = CallerCC == CalleeCC;
   1742 
   1743   // Look for obvious safe cases to perform tail call optimization that do not
   1744   // require ABI changes. This is what gcc calls sibcall.
   1745 
   1746   // Do not sibcall optimize vararg calls unless the call site is not passing
   1747   // any arguments.
   1748   if (isVarArg && !Outs.empty())
   1749     return false;
   1750 
   1751   // Also avoid sibcall optimization if either caller or callee uses struct
   1752   // return semantics.
   1753   if (isCalleeStructRet || isCallerStructRet)
   1754     return false;
   1755 
   1756   // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
   1757   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
   1758   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
   1759   // support in the assembler and linker to be used. This would need to be
   1760   // fixed to fully support tail calls in Thumb1.
   1761   //
   1762   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
   1763   // LR.  This means if we need to reload LR, it takes an extra instructions,
   1764   // which outweighs the value of the tail call; but here we don't know yet
   1765   // whether LR is going to be used.  Probably the right approach is to
   1766   // generate the tail call here and turn it back into CALL/RET in
   1767   // emitEpilogue if LR is used.
   1768 
   1769   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
   1770   // but we need to make sure there are enough registers; the only valid
   1771   // registers are the 4 used for parameters.  We don't currently do this
   1772   // case.
   1773   if (Subtarget->isThumb1Only())
   1774     return false;
   1775 
   1776   // If the calling conventions do not match, then we'd better make sure the
   1777   // results are returned in the same way as what the caller expects.
   1778   if (!CCMatch) {
   1779     SmallVector<CCValAssign, 16> RVLocs1;
   1780     ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   1781                        getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
   1782     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
   1783 
   1784     SmallVector<CCValAssign, 16> RVLocs2;
   1785     ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   1786                        getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
   1787     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
   1788 
   1789     if (RVLocs1.size() != RVLocs2.size())
   1790       return false;
   1791     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   1792       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   1793         return false;
   1794       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   1795         return false;
   1796       if (RVLocs1[i].isRegLoc()) {
   1797         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   1798           return false;
   1799       } else {
   1800         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   1801           return false;
   1802       }
   1803     }
   1804   }
   1805 
   1806   // If the callee takes no arguments then go on to check the results of the
   1807   // call.
   1808   if (!Outs.empty()) {
   1809     // Check if stack adjustment is needed. For now, do not do this if any
   1810     // argument is passed on the stack.
   1811     SmallVector<CCValAssign, 16> ArgLocs;
   1812     ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   1813                       getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1814     CCInfo.AnalyzeCallOperands(Outs,
   1815                                CCAssignFnForNode(CalleeCC, false, isVarArg));
   1816     if (CCInfo.getNextStackOffset()) {
   1817       MachineFunction &MF = DAG.getMachineFunction();
   1818 
   1819       // Check if the arguments are already laid out in the right way as
   1820       // the caller's fixed stack objects.
   1821       MachineFrameInfo *MFI = MF.getFrameInfo();
   1822       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   1823       const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1824       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1825            i != e;
   1826            ++i, ++realArgIdx) {
   1827         CCValAssign &VA = ArgLocs[i];
   1828         EVT RegVT = VA.getLocVT();
   1829         SDValue Arg = OutVals[realArgIdx];
   1830         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1831         if (VA.getLocInfo() == CCValAssign::Indirect)
   1832           return false;
   1833         if (VA.needsCustom()) {
   1834           // f64 and vector types are split into multiple registers or
   1835           // register/stack-slot combinations.  The types will not match
   1836           // the registers; give up on memory f64 refs until we figure
   1837           // out what to do about this.
   1838           if (!VA.isRegLoc())
   1839             return false;
   1840           if (!ArgLocs[++i].isRegLoc())
   1841             return false;
   1842           if (RegVT == MVT::v2f64) {
   1843             if (!ArgLocs[++i].isRegLoc())
   1844               return false;
   1845             if (!ArgLocs[++i].isRegLoc())
   1846               return false;
   1847           }
   1848         } else if (!VA.isRegLoc()) {
   1849           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   1850                                    MFI, MRI, TII))
   1851             return false;
   1852         }
   1853       }
   1854     }
   1855   }
   1856 
   1857   return true;
   1858 }
   1859 
   1860 SDValue
   1861 ARMTargetLowering::LowerReturn(SDValue Chain,
   1862                                CallingConv::ID CallConv, bool isVarArg,
   1863                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1864                                const SmallVectorImpl<SDValue> &OutVals,
   1865                                DebugLoc dl, SelectionDAG &DAG) const {
   1866 
   1867   // CCValAssign - represent the assignment of the return value to a location.
   1868   SmallVector<CCValAssign, 16> RVLocs;
   1869 
   1870   // CCState - Info about the registers and stack slots.
   1871   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1872                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   1873 
   1874   // Analyze outgoing return values.
   1875   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
   1876                                                isVarArg));
   1877 
   1878   // If this is the first return lowered for this function, add
   1879   // the regs to the liveout set for the function.
   1880   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
   1881     for (unsigned i = 0; i != RVLocs.size(); ++i)
   1882       if (RVLocs[i].isRegLoc())
   1883         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
   1884   }
   1885 
   1886   SDValue Flag;
   1887 
   1888   // Copy the result values into the output registers.
   1889   for (unsigned i = 0, realRVLocIdx = 0;
   1890        i != RVLocs.size();
   1891        ++i, ++realRVLocIdx) {
   1892     CCValAssign &VA = RVLocs[i];
   1893     assert(VA.isRegLoc() && "Can only return in registers!");
   1894 
   1895     SDValue Arg = OutVals[realRVLocIdx];
   1896 
   1897     switch (VA.getLocInfo()) {
   1898     default: llvm_unreachable("Unknown loc info!");
   1899     case CCValAssign::Full: break;
   1900     case CCValAssign::BCvt:
   1901       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1902       break;
   1903     }
   1904 
   1905     if (VA.needsCustom()) {
   1906       if (VA.getLocVT() == MVT::v2f64) {
   1907         // Extract the first half and return it in two registers.
   1908         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1909                                    DAG.getConstant(0, MVT::i32));
   1910         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   1911                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   1912 
   1913         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
   1914         Flag = Chain.getValue(1);
   1915         VA = RVLocs[++i]; // skip ahead to next loc
   1916         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   1917                                  HalfGPRs.getValue(1), Flag);
   1918         Flag = Chain.getValue(1);
   1919         VA = RVLocs[++i]; // skip ahead to next loc
   1920 
   1921         // Extract the 2nd half and fall through to handle it as an f64 value.
   1922         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1923                           DAG.getConstant(1, MVT::i32));
   1924       }
   1925       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   1926       // available.
   1927       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1928                                   DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
   1929       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
   1930       Flag = Chain.getValue(1);
   1931       VA = RVLocs[++i]; // skip ahead to next loc
   1932       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
   1933                                Flag);
   1934     } else
   1935       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   1936 
   1937     // Guarantee that all emitted copies are
   1938     // stuck together, avoiding something bad.
   1939     Flag = Chain.getValue(1);
   1940   }
   1941 
   1942   SDValue result;
   1943   if (Flag.getNode())
   1944     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
   1945   else // Return Void
   1946     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
   1947 
   1948   return result;
   1949 }
   1950 
   1951 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   1952   if (N->getNumValues() != 1)
   1953     return false;
   1954   if (!N->hasNUsesOfValue(1, 0))
   1955     return false;
   1956 
   1957   SDValue TCChain = Chain;
   1958   SDNode *Copy = *N->use_begin();
   1959   if (Copy->getOpcode() == ISD::CopyToReg) {
   1960     // If the copy has a glue operand, we conservatively assume it isn't safe to
   1961     // perform a tail call.
   1962     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   1963       return false;
   1964     TCChain = Copy->getOperand(0);
   1965   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
   1966     SDNode *VMov = Copy;
   1967     // f64 returned in a pair of GPRs.
   1968     SmallPtrSet<SDNode*, 2> Copies;
   1969     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   1970          UI != UE; ++UI) {
   1971       if (UI->getOpcode() != ISD::CopyToReg)
   1972         return false;
   1973       Copies.insert(*UI);
   1974     }
   1975     if (Copies.size() > 2)
   1976       return false;
   1977 
   1978     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   1979          UI != UE; ++UI) {
   1980       SDValue UseChain = UI->getOperand(0);
   1981       if (Copies.count(UseChain.getNode()))
   1982         // Second CopyToReg
   1983         Copy = *UI;
   1984       else
   1985         // First CopyToReg
   1986         TCChain = UseChain;
   1987     }
   1988   } else if (Copy->getOpcode() == ISD::BITCAST) {
   1989     // f32 returned in a single GPR.
   1990     if (!Copy->hasOneUse())
   1991       return false;
   1992     Copy = *Copy->use_begin();
   1993     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
   1994       return false;
   1995     Chain = Copy->getOperand(0);
   1996   } else {
   1997     return false;
   1998   }
   1999 
   2000   bool HasRet = false;
   2001   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   2002        UI != UE; ++UI) {
   2003     if (UI->getOpcode() != ARMISD::RET_FLAG)
   2004       return false;
   2005     HasRet = true;
   2006   }
   2007 
   2008   if (!HasRet)
   2009     return false;
   2010 
   2011   Chain = TCChain;
   2012   return true;
   2013 }
   2014 
   2015 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   2016   if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
   2017     return false;
   2018 
   2019   if (!CI->isTailCall())
   2020     return false;
   2021 
   2022   return !Subtarget->isThumb1Only();
   2023 }
   2024 
   2025 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   2026 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   2027 // one of the above mentioned nodes. It has to be wrapped because otherwise
   2028 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   2029 // be used to form addressing mode. These wrapped nodes will be selected
   2030 // into MOVi.
   2031 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
   2032   EVT PtrVT = Op.getValueType();
   2033   // FIXME there is no actual debug info here
   2034   DebugLoc dl = Op.getDebugLoc();
   2035   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2036   SDValue Res;
   2037   if (CP->isMachineConstantPoolEntry())
   2038     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2039                                     CP->getAlignment());
   2040   else
   2041     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2042                                     CP->getAlignment());
   2043   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   2044 }
   2045 
   2046 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   2047   return MachineJumpTableInfo::EK_Inline;
   2048 }
   2049 
   2050 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   2051                                              SelectionDAG &DAG) const {
   2052   MachineFunction &MF = DAG.getMachineFunction();
   2053   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2054   unsigned ARMPCLabelIndex = 0;
   2055   DebugLoc DL = Op.getDebugLoc();
   2056   EVT PtrVT = getPointerTy();
   2057   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   2058   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2059   SDValue CPAddr;
   2060   if (RelocM == Reloc::Static) {
   2061     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   2062   } else {
   2063     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2064     ARMPCLabelIndex = AFI->createPICLabelUId();
   2065     ARMConstantPoolValue *CPV =
   2066       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   2067                                       ARMCP::CPBlockAddress, PCAdj);
   2068     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2069   }
   2070   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   2071   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
   2072                                MachinePointerInfo::getConstantPool(),
   2073                                false, false, false, 0);
   2074   if (RelocM == Reloc::Static)
   2075     return Result;
   2076   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2077   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   2078 }
   2079 
   2080 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   2081 SDValue
   2082 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   2083                                                  SelectionDAG &DAG) const {
   2084   DebugLoc dl = GA->getDebugLoc();
   2085   EVT PtrVT = getPointerTy();
   2086   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2087   MachineFunction &MF = DAG.getMachineFunction();
   2088   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2089   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2090   ARMConstantPoolValue *CPV =
   2091     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2092                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   2093   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2094   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   2095   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
   2096                          MachinePointerInfo::getConstantPool(),
   2097                          false, false, false, 0);
   2098   SDValue Chain = Argument.getValue(1);
   2099 
   2100   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2101   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   2102 
   2103   // call __tls_get_addr.
   2104   ArgListTy Args;
   2105   ArgListEntry Entry;
   2106   Entry.Node = Argument;
   2107   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2108   Args.push_back(Entry);
   2109   // FIXME: is there useful debug info available here?
   2110   TargetLowering::CallLoweringInfo CLI(Chain,
   2111                 (Type *) Type::getInt32Ty(*DAG.getContext()),
   2112                 false, false, false, false,
   2113                 0, CallingConv::C, /*isTailCall=*/false,
   2114                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
   2115                 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
   2116   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2117   return CallResult.first;
   2118 }
   2119 
   2120 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2121 // "local exec" model.
   2122 SDValue
   2123 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2124                                         SelectionDAG &DAG,
   2125                                         TLSModel::Model model) const {
   2126   const GlobalValue *GV = GA->getGlobal();
   2127   DebugLoc dl = GA->getDebugLoc();
   2128   SDValue Offset;
   2129   SDValue Chain = DAG.getEntryNode();
   2130   EVT PtrVT = getPointerTy();
   2131   // Get the Thread Pointer
   2132   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2133 
   2134   if (model == TLSModel::InitialExec) {
   2135     MachineFunction &MF = DAG.getMachineFunction();
   2136     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2137     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2138     // Initial exec model.
   2139     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2140     ARMConstantPoolValue *CPV =
   2141       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2142                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2143                                       true);
   2144     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2145     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2146     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2147                          MachinePointerInfo::getConstantPool(),
   2148                          false, false, false, 0);
   2149     Chain = Offset.getValue(1);
   2150 
   2151     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2152     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2153 
   2154     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2155                          MachinePointerInfo::getConstantPool(),
   2156                          false, false, false, 0);
   2157   } else {
   2158     // local exec model
   2159     assert(model == TLSModel::LocalExec);
   2160     ARMConstantPoolValue *CPV =
   2161       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2162     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2163     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2164     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2165                          MachinePointerInfo::getConstantPool(),
   2166                          false, false, false, 0);
   2167   }
   2168 
   2169   // The address of the thread local variable is the add of the thread
   2170   // pointer with the offset of the variable.
   2171   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   2172 }
   2173 
   2174 SDValue
   2175 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   2176   // TODO: implement the "local dynamic" model
   2177   assert(Subtarget->isTargetELF() &&
   2178          "TLS not implemented for non-ELF targets");
   2179   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2180 
   2181   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
   2182 
   2183   switch (model) {
   2184     case TLSModel::GeneralDynamic:
   2185     case TLSModel::LocalDynamic:
   2186       return LowerToTLSGeneralDynamicModel(GA, DAG);
   2187     case TLSModel::InitialExec:
   2188     case TLSModel::LocalExec:
   2189       return LowerToTLSExecModels(GA, DAG, model);
   2190   }
   2191   llvm_unreachable("bogus TLS model");
   2192 }
   2193 
   2194 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   2195                                                  SelectionDAG &DAG) const {
   2196   EVT PtrVT = getPointerTy();
   2197   DebugLoc dl = Op.getDebugLoc();
   2198   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2199   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2200   if (RelocM == Reloc::PIC_) {
   2201     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
   2202     ARMConstantPoolValue *CPV =
   2203       ARMConstantPoolConstant::Create(GV,
   2204                                       UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
   2205     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2206     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2207     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   2208                                  CPAddr,
   2209                                  MachinePointerInfo::getConstantPool(),
   2210                                  false, false, false, 0);
   2211     SDValue Chain = Result.getValue(1);
   2212     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2213     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
   2214     if (!UseGOTOFF)
   2215       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
   2216                            MachinePointerInfo::getGOT(),
   2217                            false, false, false, 0);
   2218     return Result;
   2219   }
   2220 
   2221   // If we have T2 ops, we can materialize the address directly via movt/movw
   2222   // pair. This is always cheaper.
   2223   if (Subtarget->useMovt()) {
   2224     ++NumMovwMovt;
   2225     // FIXME: Once remat is capable of dealing with instructions with register
   2226     // operands, expand this into two nodes.
   2227     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2228                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2229   } else {
   2230     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2231     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2232     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2233                        MachinePointerInfo::getConstantPool(),
   2234                        false, false, false, 0);
   2235   }
   2236 }
   2237 
   2238 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   2239                                                     SelectionDAG &DAG) const {
   2240   EVT PtrVT = getPointerTy();
   2241   DebugLoc dl = Op.getDebugLoc();
   2242   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2243   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2244   MachineFunction &MF = DAG.getMachineFunction();
   2245   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2246 
   2247   // FIXME: Enable this for static codegen when tool issues are fixed.  Also
   2248   // update ARMFastISel::ARMMaterializeGV.
   2249   if (Subtarget->useMovt() && RelocM != Reloc::Static) {
   2250     ++NumMovwMovt;
   2251     // FIXME: Once remat is capable of dealing with instructions with register
   2252     // operands, expand this into two nodes.
   2253     if (RelocM == Reloc::Static)
   2254       return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2255                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2256 
   2257     unsigned Wrapper = (RelocM == Reloc::PIC_)
   2258       ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
   2259     SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
   2260                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2261     if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2262       Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   2263                            MachinePointerInfo::getGOT(),
   2264                            false, false, false, 0);
   2265     return Result;
   2266   }
   2267 
   2268   unsigned ARMPCLabelIndex = 0;
   2269   SDValue CPAddr;
   2270   if (RelocM == Reloc::Static) {
   2271     CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2272   } else {
   2273     ARMPCLabelIndex = AFI->createPICLabelUId();
   2274     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
   2275     ARMConstantPoolValue *CPV =
   2276       ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
   2277                                       PCAdj);
   2278     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2279   }
   2280   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2281 
   2282   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2283                                MachinePointerInfo::getConstantPool(),
   2284                                false, false, false, 0);
   2285   SDValue Chain = Result.getValue(1);
   2286 
   2287   if (RelocM == Reloc::PIC_) {
   2288     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2289     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2290   }
   2291 
   2292   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2293     Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
   2294                          false, false, false, 0);
   2295 
   2296   return Result;
   2297 }
   2298 
   2299 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
   2300                                                     SelectionDAG &DAG) const {
   2301   assert(Subtarget->isTargetELF() &&
   2302          "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
   2303   MachineFunction &MF = DAG.getMachineFunction();
   2304   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2305   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2306   EVT PtrVT = getPointerTy();
   2307   DebugLoc dl = Op.getDebugLoc();
   2308   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2309   ARMConstantPoolValue *CPV =
   2310     ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
   2311                                   ARMPCLabelIndex, PCAdj);
   2312   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2313   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2314   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2315                                MachinePointerInfo::getConstantPool(),
   2316                                false, false, false, 0);
   2317   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2318   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2319 }
   2320 
   2321 SDValue
   2322 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   2323   DebugLoc dl = Op.getDebugLoc();
   2324   SDValue Val = DAG.getConstant(0, MVT::i32);
   2325   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   2326                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   2327                      Op.getOperand(1), Val);
   2328 }
   2329 
   2330 SDValue
   2331 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   2332   DebugLoc dl = Op.getDebugLoc();
   2333   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   2334                      Op.getOperand(1), DAG.getConstant(0, MVT::i32));
   2335 }
   2336 
   2337 SDValue
   2338 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   2339                                           const ARMSubtarget *Subtarget) const {
   2340   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2341   DebugLoc dl = Op.getDebugLoc();
   2342   switch (IntNo) {
   2343   default: return SDValue();    // Don't custom lower most intrinsics.
   2344   case Intrinsic::arm_thread_pointer: {
   2345     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2346     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2347   }
   2348   case Intrinsic::eh_sjlj_lsda: {
   2349     MachineFunction &MF = DAG.getMachineFunction();
   2350     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2351     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2352     EVT PtrVT = getPointerTy();
   2353     DebugLoc dl = Op.getDebugLoc();
   2354     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2355     SDValue CPAddr;
   2356     unsigned PCAdj = (RelocM != Reloc::PIC_)
   2357       ? 0 : (Subtarget->isThumb() ? 4 : 8);
   2358     ARMConstantPoolValue *CPV =
   2359       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
   2360                                       ARMCP::CPLSDA, PCAdj);
   2361     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2362     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2363     SDValue Result =
   2364       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2365                   MachinePointerInfo::getConstantPool(),
   2366                   false, false, false, 0);
   2367 
   2368     if (RelocM == Reloc::PIC_) {
   2369       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2370       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2371     }
   2372     return Result;
   2373   }
   2374   case Intrinsic::arm_neon_vmulls:
   2375   case Intrinsic::arm_neon_vmullu: {
   2376     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   2377       ? ARMISD::VMULLs : ARMISD::VMULLu;
   2378     return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
   2379                        Op.getOperand(1), Op.getOperand(2));
   2380   }
   2381   }
   2382 }
   2383 
   2384 static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
   2385                                const ARMSubtarget *Subtarget) {
   2386   DebugLoc dl = Op.getDebugLoc();
   2387   if (!Subtarget->hasDataBarrier()) {
   2388     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2389     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2390     // here.
   2391     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2392            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
   2393     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2394                        DAG.getConstant(0, MVT::i32));
   2395   }
   2396 
   2397   SDValue Op5 = Op.getOperand(5);
   2398   bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
   2399   unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   2400   unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   2401   bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
   2402 
   2403   ARM_MB::MemBOpt DMBOpt;
   2404   if (isDeviceBarrier)
   2405     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
   2406   else
   2407     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
   2408   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
   2409                      DAG.getConstant(DMBOpt, MVT::i32));
   2410 }
   2411 
   2412 
   2413 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   2414                                  const ARMSubtarget *Subtarget) {
   2415   // FIXME: handle "fence singlethread" more efficiently.
   2416   DebugLoc dl = Op.getDebugLoc();
   2417   if (!Subtarget->hasDataBarrier()) {
   2418     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2419     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2420     // here.
   2421     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2422            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
   2423     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2424                        DAG.getConstant(0, MVT::i32));
   2425   }
   2426 
   2427   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
   2428                      DAG.getConstant(ARM_MB::ISH, MVT::i32));
   2429 }
   2430 
   2431 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   2432                              const ARMSubtarget *Subtarget) {
   2433   // ARM pre v5TE and Thumb1 does not have preload instructions.
   2434   if (!(Subtarget->isThumb2() ||
   2435         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   2436     // Just preserve the chain.
   2437     return Op.getOperand(0);
   2438 
   2439   DebugLoc dl = Op.getDebugLoc();
   2440   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   2441   if (!isRead &&
   2442       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   2443     // ARMv7 with MP extension has PLDW.
   2444     return Op.getOperand(0);
   2445 
   2446   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2447   if (Subtarget->isThumb()) {
   2448     // Invert the bits.
   2449     isRead = ~isRead & 1;
   2450     isData = ~isData & 1;
   2451   }
   2452 
   2453   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   2454                      Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
   2455                      DAG.getConstant(isData, MVT::i32));
   2456 }
   2457 
   2458 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   2459   MachineFunction &MF = DAG.getMachineFunction();
   2460   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   2461 
   2462   // vastart just stores the address of the VarArgsFrameIndex slot into the
   2463   // memory location argument.
   2464   DebugLoc dl = Op.getDebugLoc();
   2465   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2466   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2467   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2468   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2469                       MachinePointerInfo(SV), false, false, 0);
   2470 }
   2471 
   2472 SDValue
   2473 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
   2474                                         SDValue &Root, SelectionDAG &DAG,
   2475                                         DebugLoc dl) const {
   2476   MachineFunction &MF = DAG.getMachineFunction();
   2477   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2478 
   2479   const TargetRegisterClass *RC;
   2480   if (AFI->isThumb1OnlyFunction())
   2481     RC = &ARM::tGPRRegClass;
   2482   else
   2483     RC = &ARM::GPRRegClass;
   2484 
   2485   // Transform the arguments stored in physical registers into virtual ones.
   2486   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2487   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2488 
   2489   SDValue ArgValue2;
   2490   if (NextVA.isMemLoc()) {
   2491     MachineFrameInfo *MFI = MF.getFrameInfo();
   2492     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   2493 
   2494     // Create load node to retrieve arguments from the stack.
   2495     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2496     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
   2497                             MachinePointerInfo::getFixedStack(FI),
   2498                             false, false, false, 0);
   2499   } else {
   2500     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   2501     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2502   }
   2503 
   2504   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   2505 }
   2506 
   2507 void
   2508 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
   2509                                   unsigned &VARegSize, unsigned &VARegSaveSize)
   2510   const {
   2511   unsigned NumGPRs;
   2512   if (CCInfo.isFirstByValRegValid())
   2513     NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
   2514   else {
   2515     unsigned int firstUnalloced;
   2516     firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
   2517                                                 sizeof(GPRArgRegs) /
   2518                                                 sizeof(GPRArgRegs[0]));
   2519     NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
   2520   }
   2521 
   2522   unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
   2523   VARegSize = NumGPRs * 4;
   2524   VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
   2525 }
   2526 
   2527 // The remaining GPRs hold either the beginning of variable-argument
   2528 // data, or the beginning of an aggregate passed by value (usuall
   2529 // byval).  Either way, we allocate stack slots adjacent to the data
   2530 // provided by our caller, and store the unallocated registers there.
   2531 // If this is a variadic function, the va_list pointer will begin with
   2532 // these values; otherwise, this reassembles a (byval) structure that
   2533 // was split between registers and memory.
   2534 void
   2535 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   2536                                         DebugLoc dl, SDValue &Chain,
   2537                                         unsigned ArgOffset) const {
   2538   MachineFunction &MF = DAG.getMachineFunction();
   2539   MachineFrameInfo *MFI = MF.getFrameInfo();
   2540   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2541   unsigned firstRegToSaveIndex;
   2542   if (CCInfo.isFirstByValRegValid())
   2543     firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
   2544   else {
   2545     firstRegToSaveIndex = CCInfo.getFirstUnallocated
   2546       (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
   2547   }
   2548 
   2549   unsigned VARegSize, VARegSaveSize;
   2550   computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
   2551   if (VARegSaveSize) {
   2552     // If this function is vararg, store any remaining integer argument regs
   2553     // to their spots on the stack so that they may be loaded by deferencing
   2554     // the result of va_next.
   2555     AFI->setVarArgsRegSaveSize(VARegSaveSize);
   2556     AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
   2557                                                      ArgOffset + VARegSaveSize
   2558                                                      - VARegSize,
   2559                                                      false));
   2560     SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
   2561                                     getPointerTy());
   2562 
   2563     SmallVector<SDValue, 4> MemOps;
   2564     for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
   2565       const TargetRegisterClass *RC;
   2566       if (AFI->isThumb1OnlyFunction())
   2567         RC = &ARM::tGPRRegClass;
   2568       else
   2569         RC = &ARM::GPRRegClass;
   2570 
   2571       unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
   2572       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2573       SDValue Store =
   2574         DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2575                  MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
   2576                      false, false, 0);
   2577       MemOps.push_back(Store);
   2578       FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
   2579                         DAG.getConstant(4, getPointerTy()));
   2580     }
   2581     if (!MemOps.empty())
   2582       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2583                           &MemOps[0], MemOps.size());
   2584   } else
   2585     // This will point to the next argument passed via stack.
   2586     AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
   2587 }
   2588 
   2589 SDValue
   2590 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
   2591                                         CallingConv::ID CallConv, bool isVarArg,
   2592                                         const SmallVectorImpl<ISD::InputArg>
   2593                                           &Ins,
   2594                                         DebugLoc dl, SelectionDAG &DAG,
   2595                                         SmallVectorImpl<SDValue> &InVals)
   2596                                           const {
   2597   MachineFunction &MF = DAG.getMachineFunction();
   2598   MachineFrameInfo *MFI = MF.getFrameInfo();
   2599 
   2600   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2601 
   2602   // Assign locations to all of the incoming arguments.
   2603   SmallVector<CCValAssign, 16> ArgLocs;
   2604   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2605                     getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
   2606   CCInfo.AnalyzeFormalArguments(Ins,
   2607                                 CCAssignFnForNode(CallConv, /* Return*/ false,
   2608                                                   isVarArg));
   2609 
   2610   SmallVector<SDValue, 16> ArgValues;
   2611   int lastInsIndex = -1;
   2612 
   2613   SDValue ArgValue;
   2614   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2615     CCValAssign &VA = ArgLocs[i];
   2616 
   2617     // Arguments stored in registers.
   2618     if (VA.isRegLoc()) {
   2619       EVT RegVT = VA.getLocVT();
   2620 
   2621       if (VA.needsCustom()) {
   2622         // f64 and vector types are split up into multiple registers or
   2623         // combinations of registers and stack slots.
   2624         if (VA.getLocVT() == MVT::v2f64) {
   2625           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   2626                                                    Chain, DAG, dl);
   2627           VA = ArgLocs[++i]; // skip ahead to next loc
   2628           SDValue ArgValue2;
   2629           if (VA.isMemLoc()) {
   2630             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
   2631             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2632             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
   2633                                     MachinePointerInfo::getFixedStack(FI),
   2634                                     false, false, false, 0);
   2635           } else {
   2636             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   2637                                              Chain, DAG, dl);
   2638           }
   2639           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   2640           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   2641                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
   2642           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   2643                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
   2644         } else
   2645           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   2646 
   2647       } else {
   2648         const TargetRegisterClass *RC;
   2649 
   2650         if (RegVT == MVT::f32)
   2651           RC = &ARM::SPRRegClass;
   2652         else if (RegVT == MVT::f64)
   2653           RC = &ARM::DPRRegClass;
   2654         else if (RegVT == MVT::v2f64)
   2655           RC = &ARM::QPRRegClass;
   2656         else if (RegVT == MVT::i32)
   2657           RC = AFI->isThumb1OnlyFunction() ?
   2658             (const TargetRegisterClass*)&ARM::tGPRRegClass :
   2659             (const TargetRegisterClass*)&ARM::GPRRegClass;
   2660         else
   2661           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   2662 
   2663         // Transform the arguments in physical registers into virtual ones.
   2664         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2665         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   2666       }
   2667 
   2668       // If this is an 8 or 16-bit value, it is really passed promoted
   2669       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   2670       // truncate to the right size.
   2671       switch (VA.getLocInfo()) {
   2672       default: llvm_unreachable("Unknown loc info!");
   2673       case CCValAssign::Full: break;
   2674       case CCValAssign::BCvt:
   2675         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   2676         break;
   2677       case CCValAssign::SExt:
   2678         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   2679                                DAG.getValueType(VA.getValVT()));
   2680         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   2681         break;
   2682       case CCValAssign::ZExt:
   2683         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   2684                                DAG.getValueType(VA.getValVT()));
   2685         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   2686         break;
   2687       }
   2688 
   2689       InVals.push_back(ArgValue);
   2690 
   2691     } else { // VA.isRegLoc()
   2692 
   2693       // sanity check
   2694       assert(VA.isMemLoc());
   2695       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   2696 
   2697       int index = ArgLocs[i].getValNo();
   2698 
   2699       // Some Ins[] entries become multiple ArgLoc[] entries.
   2700       // Process them only once.
   2701       if (index != lastInsIndex)
   2702         {
   2703           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   2704           // FIXME: For now, all byval parameter objects are marked mutable.
   2705           // This can be changed with more analysis.
   2706           // In case of tail call optimization mark all arguments mutable.
   2707           // Since they could be overwritten by lowering of arguments in case of
   2708           // a tail call.
   2709           if (Flags.isByVal()) {
   2710             unsigned VARegSize, VARegSaveSize;
   2711             computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
   2712             VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
   2713             unsigned Bytes = Flags.getByValSize() - VARegSize;
   2714             if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   2715             int FI = MFI->CreateFixedObject(Bytes,
   2716                                             VA.getLocMemOffset(), false);
   2717             InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
   2718           } else {
   2719             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   2720                                             VA.getLocMemOffset(), true);
   2721 
   2722             // Create load nodes to retrieve arguments from the stack.
   2723             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2724             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2725                                          MachinePointerInfo::getFixedStack(FI),
   2726                                          false, false, false, 0));
   2727           }
   2728           lastInsIndex = index;
   2729         }
   2730     }
   2731   }
   2732 
   2733   // varargs
   2734   if (isVarArg)
   2735     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
   2736 
   2737   return Chain;
   2738 }
   2739 
   2740 /// isFloatingPointZero - Return true if this is +0.0.
   2741 static bool isFloatingPointZero(SDValue Op) {
   2742   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   2743     return CFP->getValueAPF().isPosZero();
   2744   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   2745     // Maybe this has already been legalized into the constant pool?
   2746     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   2747       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   2748       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   2749         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   2750           return CFP->getValueAPF().isPosZero();
   2751     }
   2752   }
   2753   return false;
   2754 }
   2755 
   2756 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   2757 /// the given operands.
   2758 SDValue
   2759 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   2760                              SDValue &ARMcc, SelectionDAG &DAG,
   2761                              DebugLoc dl) const {
   2762   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   2763     unsigned C = RHSC->getZExtValue();
   2764     if (!isLegalICmpImmediate(C)) {
   2765       // Constant does not fit, try adjusting it by one?
   2766       switch (CC) {
   2767       default: break;
   2768       case ISD::SETLT:
   2769       case ISD::SETGE:
   2770         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   2771           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   2772           RHS = DAG.getConstant(C-1, MVT::i32);
   2773         }
   2774         break;
   2775       case ISD::SETULT:
   2776       case ISD::SETUGE:
   2777         if (C != 0 && isLegalICmpImmediate(C-1)) {
   2778           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   2779           RHS = DAG.getConstant(C-1, MVT::i32);
   2780         }
   2781         break;
   2782       case ISD::SETLE:
   2783       case ISD::SETGT:
   2784         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   2785           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   2786           RHS = DAG.getConstant(C+1, MVT::i32);
   2787         }
   2788         break;
   2789       case ISD::SETULE:
   2790       case ISD::SETUGT:
   2791         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   2792           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   2793           RHS = DAG.getConstant(C+1, MVT::i32);
   2794         }
   2795         break;
   2796       }
   2797     }
   2798   }
   2799 
   2800   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   2801   ARMISD::NodeType CompareType;
   2802   switch (CondCode) {
   2803   default:
   2804     CompareType = ARMISD::CMP;
   2805     break;
   2806   case ARMCC::EQ:
   2807   case ARMCC::NE:
   2808     // Uses only Z Flag
   2809     CompareType = ARMISD::CMPZ;
   2810     break;
   2811   }
   2812   ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2813   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   2814 }
   2815 
   2816 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   2817 SDValue
   2818 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
   2819                              DebugLoc dl) const {
   2820   SDValue Cmp;
   2821   if (!isFloatingPointZero(RHS))
   2822     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
   2823   else
   2824     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
   2825   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   2826 }
   2827 
   2828 /// duplicateCmp - Glue values can have only one use, so this function
   2829 /// duplicates a comparison node.
   2830 SDValue
   2831 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   2832   unsigned Opc = Cmp.getOpcode();
   2833   DebugLoc DL = Cmp.getDebugLoc();
   2834   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   2835     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   2836 
   2837   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   2838   Cmp = Cmp.getOperand(0);
   2839   Opc = Cmp.getOpcode();
   2840   if (Opc == ARMISD::CMPFP)
   2841     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   2842   else {
   2843     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   2844     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
   2845   }
   2846   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   2847 }
   2848 
   2849 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   2850   SDValue Cond = Op.getOperand(0);
   2851   SDValue SelectTrue = Op.getOperand(1);
   2852   SDValue SelectFalse = Op.getOperand(2);
   2853   DebugLoc dl = Op.getDebugLoc();
   2854 
   2855   // Convert:
   2856   //
   2857   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   2858   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   2859   //
   2860   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   2861     const ConstantSDNode *CMOVTrue =
   2862       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   2863     const ConstantSDNode *CMOVFalse =
   2864       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   2865 
   2866     if (CMOVTrue && CMOVFalse) {
   2867       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   2868       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   2869 
   2870       SDValue True;
   2871       SDValue False;
   2872       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   2873         True = SelectTrue;
   2874         False = SelectFalse;
   2875       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   2876         True = SelectFalse;
   2877         False = SelectTrue;
   2878       }
   2879 
   2880       if (True.getNode() && False.getNode()) {
   2881         EVT VT = Op.getValueType();
   2882         SDValue ARMcc = Cond.getOperand(2);
   2883         SDValue CCR = Cond.getOperand(3);
   2884         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   2885         assert(True.getValueType() == VT);
   2886         return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
   2887       }
   2888     }
   2889   }
   2890 
   2891   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
   2892   // undefined bits before doing a full-word comparison with zero.
   2893   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
   2894                      DAG.getConstant(1, Cond.getValueType()));
   2895 
   2896   return DAG.getSelectCC(dl, Cond,
   2897                          DAG.getConstant(0, Cond.getValueType()),
   2898                          SelectTrue, SelectFalse, ISD::SETNE);
   2899 }
   2900 
   2901 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   2902   EVT VT = Op.getValueType();
   2903   SDValue LHS = Op.getOperand(0);
   2904   SDValue RHS = Op.getOperand(1);
   2905   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   2906   SDValue TrueVal = Op.getOperand(2);
   2907   SDValue FalseVal = Op.getOperand(3);
   2908   DebugLoc dl = Op.getDebugLoc();
   2909 
   2910   if (LHS.getValueType() == MVT::i32) {
   2911     SDValue ARMcc;
   2912     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2913     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   2914     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
   2915   }
   2916 
   2917   ARMCC::CondCodes CondCode, CondCode2;
   2918   FPCCToARMCC(CC, CondCode, CondCode2);
   2919 
   2920   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2921   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   2922   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2923   SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
   2924                                ARMcc, CCR, Cmp);
   2925   if (CondCode2 != ARMCC::AL) {
   2926     SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
   2927     // FIXME: Needs another CMP because flag can have but one use.
   2928     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
   2929     Result = DAG.getNode(ARMISD::CMOV, dl, VT,
   2930                          Result, TrueVal, ARMcc2, CCR, Cmp2);
   2931   }
   2932   return Result;
   2933 }
   2934 
   2935 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   2936 /// to morph to an integer compare sequence.
   2937 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   2938                            const ARMSubtarget *Subtarget) {
   2939   SDNode *N = Op.getNode();
   2940   if (!N->hasOneUse())
   2941     // Otherwise it requires moving the value from fp to integer registers.
   2942     return false;
   2943   if (!N->getNumValues())
   2944     return false;
   2945   EVT VT = Op.getValueType();
   2946   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   2947     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   2948     // vmrs are very slow, e.g. cortex-a8.
   2949     return false;
   2950 
   2951   if (isFloatingPointZero(Op)) {
   2952     SeenZero = true;
   2953     return true;
   2954   }
   2955   return ISD::isNormalLoad(N);
   2956 }
   2957 
   2958 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   2959   if (isFloatingPointZero(Op))
   2960     return DAG.getConstant(0, MVT::i32);
   2961 
   2962   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   2963     return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2964                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
   2965                        Ld->isVolatile(), Ld->isNonTemporal(),
   2966                        Ld->isInvariant(), Ld->getAlignment());
   2967 
   2968   llvm_unreachable("Unknown VFP cmp argument!");
   2969 }
   2970 
   2971 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   2972                            SDValue &RetVal1, SDValue &RetVal2) {
   2973   if (isFloatingPointZero(Op)) {
   2974     RetVal1 = DAG.getConstant(0, MVT::i32);
   2975     RetVal2 = DAG.getConstant(0, MVT::i32);
   2976     return;
   2977   }
   2978 
   2979   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   2980     SDValue Ptr = Ld->getBasePtr();
   2981     RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2982                           Ld->getChain(), Ptr,
   2983                           Ld->getPointerInfo(),
   2984                           Ld->isVolatile(), Ld->isNonTemporal(),
   2985                           Ld->isInvariant(), Ld->getAlignment());
   2986 
   2987     EVT PtrType = Ptr.getValueType();
   2988     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   2989     SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
   2990                                  PtrType, Ptr, DAG.getConstant(4, PtrType));
   2991     RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2992                           Ld->getChain(), NewPtr,
   2993                           Ld->getPointerInfo().getWithOffset(4),
   2994                           Ld->isVolatile(), Ld->isNonTemporal(),
   2995                           Ld->isInvariant(), NewAlign);
   2996     return;
   2997   }
   2998 
   2999   llvm_unreachable("Unknown VFP cmp argument!");
   3000 }
   3001 
   3002 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   3003 /// f32 and even f64 comparisons to integer ones.
   3004 SDValue
   3005 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   3006   SDValue Chain = Op.getOperand(0);
   3007   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3008   SDValue LHS = Op.getOperand(2);
   3009   SDValue RHS = Op.getOperand(3);
   3010   SDValue Dest = Op.getOperand(4);
   3011   DebugLoc dl = Op.getDebugLoc();
   3012 
   3013   bool LHSSeenZero = false;
   3014   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
   3015   bool RHSSeenZero = false;
   3016   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
   3017   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
   3018     // If unsafe fp math optimization is enabled and there are no other uses of
   3019     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   3020     // to an integer comparison.
   3021     if (CC == ISD::SETOEQ)
   3022       CC = ISD::SETEQ;
   3023     else if (CC == ISD::SETUNE)
   3024       CC = ISD::SETNE;
   3025 
   3026     SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
   3027     SDValue ARMcc;
   3028     if (LHS.getValueType() == MVT::f32) {
   3029       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3030                         bitcastf32Toi32(LHS, DAG), Mask);
   3031       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3032                         bitcastf32Toi32(RHS, DAG), Mask);
   3033       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3034       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3035       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3036                          Chain, Dest, ARMcc, CCR, Cmp);
   3037     }
   3038 
   3039     SDValue LHS1, LHS2;
   3040     SDValue RHS1, RHS2;
   3041     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   3042     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   3043     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
   3044     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
   3045     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3046     ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3047     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3048     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   3049     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
   3050   }
   3051 
   3052   return SDValue();
   3053 }
   3054 
   3055 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   3056   SDValue Chain = Op.getOperand(0);
   3057   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3058   SDValue LHS = Op.getOperand(2);
   3059   SDValue RHS = Op.getOperand(3);
   3060   SDValue Dest = Op.getOperand(4);
   3061   DebugLoc dl = Op.getDebugLoc();
   3062 
   3063   if (LHS.getValueType() == MVT::i32) {
   3064     SDValue ARMcc;
   3065     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3066     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3067     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3068                        Chain, Dest, ARMcc, CCR, Cmp);
   3069   }
   3070 
   3071   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
   3072 
   3073   if (getTargetMachine().Options.UnsafeFPMath &&
   3074       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   3075        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   3076     SDValue Result = OptimizeVFPBrcond(Op, DAG);
   3077     if (Result.getNode())
   3078       return Result;
   3079   }
   3080 
   3081   ARMCC::CondCodes CondCode, CondCode2;
   3082   FPCCToARMCC(CC, CondCode, CondCode2);
   3083 
   3084   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3085   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3086   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3087   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3088   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   3089   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
   3090   if (CondCode2 != ARMCC::AL) {
   3091     ARMcc = DAG.getConstant(CondCode2, MVT::i32);
   3092     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   3093     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
   3094   }
   3095   return Res;
   3096 }
   3097 
   3098 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   3099   SDValue Chain = Op.getOperand(0);
   3100   SDValue Table = Op.getOperand(1);
   3101   SDValue Index = Op.getOperand(2);
   3102   DebugLoc dl = Op.getDebugLoc();
   3103 
   3104   EVT PTy = getPointerTy();
   3105   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   3106   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
   3107   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
   3108   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   3109   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
   3110   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
   3111   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   3112   if (Subtarget->isThumb2()) {
   3113     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
   3114     // which does another jump to the destination. This also makes it easier
   3115     // to translate it to TBB / TBH later.
   3116     // FIXME: This might not work if the function is extremely large.
   3117     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   3118                        Addr, Op.getOperand(2), JTI, UId);
   3119   }
   3120   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   3121     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   3122                        MachinePointerInfo::getJumpTable(),
   3123                        false, false, false, 0);
   3124     Chain = Addr.getValue(1);
   3125     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
   3126     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3127   } else {
   3128     Addr = DAG.getLoad(PTy, dl, Chain, Addr,
   3129                        MachinePointerInfo::getJumpTable(),
   3130                        false, false, false, 0);
   3131     Chain = Addr.getValue(1);
   3132     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3133   }
   3134 }
   3135 
   3136 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3137   EVT VT = Op.getValueType();
   3138   DebugLoc dl = Op.getDebugLoc();
   3139 
   3140   if (Op.getValueType().getVectorElementType() == MVT::i32) {
   3141     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
   3142       return Op;
   3143     return DAG.UnrollVectorOp(Op.getNode());
   3144   }
   3145 
   3146   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
   3147          "Invalid type for custom lowering!");
   3148   if (VT != MVT::v4i16)
   3149     return DAG.UnrollVectorOp(Op.getNode());
   3150 
   3151   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
   3152   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
   3153 }
   3154 
   3155 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3156   EVT VT = Op.getValueType();
   3157   if (VT.isVector())
   3158     return LowerVectorFP_TO_INT(Op, DAG);
   3159 
   3160   DebugLoc dl = Op.getDebugLoc();
   3161   unsigned Opc;
   3162 
   3163   switch (Op.getOpcode()) {
   3164   default: llvm_unreachable("Invalid opcode!");
   3165   case ISD::FP_TO_SINT:
   3166     Opc = ARMISD::FTOSI;
   3167     break;
   3168   case ISD::FP_TO_UINT:
   3169     Opc = ARMISD::FTOUI;
   3170     break;
   3171   }
   3172   Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
   3173   return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3174 }
   3175 
   3176 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3177   EVT VT = Op.getValueType();
   3178   DebugLoc dl = Op.getDebugLoc();
   3179 
   3180   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
   3181     if (VT.getVectorElementType() == MVT::f32)
   3182       return Op;
   3183     return DAG.UnrollVectorOp(Op.getNode());
   3184   }
   3185 
   3186   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   3187          "Invalid type for custom lowering!");
   3188   if (VT != MVT::v4f32)
   3189     return DAG.UnrollVectorOp(Op.getNode());
   3190 
   3191   unsigned CastOpc;
   3192   unsigned Opc;
   3193   switch (Op.getOpcode()) {
   3194   default: llvm_unreachable("Invalid opcode!");
   3195   case ISD::SINT_TO_FP:
   3196     CastOpc = ISD::SIGN_EXTEND;
   3197     Opc = ISD::SINT_TO_FP;
   3198     break;
   3199   case ISD::UINT_TO_FP:
   3200     CastOpc = ISD::ZERO_EXTEND;
   3201     Opc = ISD::UINT_TO_FP;
   3202     break;
   3203   }
   3204 
   3205   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   3206   return DAG.getNode(Opc, dl, VT, Op);
   3207 }
   3208 
   3209 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3210   EVT VT = Op.getValueType();
   3211   if (VT.isVector())
   3212     return LowerVectorINT_TO_FP(Op, DAG);
   3213 
   3214   DebugLoc dl = Op.getDebugLoc();
   3215   unsigned Opc;
   3216 
   3217   switch (Op.getOpcode()) {
   3218   default: llvm_unreachable("Invalid opcode!");
   3219   case ISD::SINT_TO_FP:
   3220     Opc = ARMISD::SITOF;
   3221     break;
   3222   case ISD::UINT_TO_FP:
   3223     Opc = ARMISD::UITOF;
   3224     break;
   3225   }
   3226 
   3227   Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
   3228   return DAG.getNode(Opc, dl, VT, Op);
   3229 }
   3230 
   3231 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   3232   // Implement fcopysign with a fabs and a conditional fneg.
   3233   SDValue Tmp0 = Op.getOperand(0);
   3234   SDValue Tmp1 = Op.getOperand(1);
   3235   DebugLoc dl = Op.getDebugLoc();
   3236   EVT VT = Op.getValueType();
   3237   EVT SrcVT = Tmp1.getValueType();
   3238   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   3239     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   3240   bool UseNEON = !InGPR && Subtarget->hasNEON();
   3241 
   3242   if (UseNEON) {
   3243     // Use VBSL to copy the sign bit.
   3244     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   3245     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   3246                                DAG.getTargetConstant(EncodedVal, MVT::i32));
   3247     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   3248     if (VT == MVT::f64)
   3249       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3250                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   3251                          DAG.getConstant(32, MVT::i32));
   3252     else /*if (VT == MVT::f32)*/
   3253       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   3254     if (SrcVT == MVT::f32) {
   3255       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   3256       if (VT == MVT::f64)
   3257         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3258                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   3259                            DAG.getConstant(32, MVT::i32));
   3260     } else if (VT == MVT::f32)
   3261       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   3262                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   3263                          DAG.getConstant(32, MVT::i32));
   3264     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   3265     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   3266 
   3267     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   3268                                             MVT::i32);
   3269     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   3270     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   3271                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   3272 
   3273     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   3274                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   3275                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   3276     if (VT == MVT::f32) {
   3277       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   3278       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   3279                         DAG.getConstant(0, MVT::i32));
   3280     } else {
   3281       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   3282     }
   3283 
   3284     return Res;
   3285   }
   3286 
   3287   // Bitcast operand 1 to i32.
   3288   if (SrcVT == MVT::f64)
   3289     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3290                        &Tmp1, 1).getValue(1);
   3291   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   3292 
   3293   // Or in the signbit with integer operations.
   3294   SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
   3295   SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
   3296   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   3297   if (VT == MVT::f32) {
   3298     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   3299                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   3300     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   3301                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   3302   }
   3303 
   3304   // f64: Or the high part with signbit and then combine two parts.
   3305   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3306                      &Tmp0, 1);
   3307   SDValue Lo = Tmp0.getValue(0);
   3308   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   3309   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   3310   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   3311 }
   3312 
   3313 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   3314   MachineFunction &MF = DAG.getMachineFunction();
   3315   MachineFrameInfo *MFI = MF.getFrameInfo();
   3316   MFI->setReturnAddressIsTaken(true);
   3317 
   3318   EVT VT = Op.getValueType();
   3319   DebugLoc dl = Op.getDebugLoc();
   3320   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3321   if (Depth) {
   3322     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   3323     SDValue Offset = DAG.getConstant(4, MVT::i32);
   3324     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   3325                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   3326                        MachinePointerInfo(), false, false, false, 0);
   3327   }
   3328 
   3329   // Return LR, which contains the return address. Mark it an implicit live-in.
   3330   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   3331   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   3332 }
   3333 
   3334 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   3335   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   3336   MFI->setFrameAddressIsTaken(true);
   3337 
   3338   EVT VT = Op.getValueType();
   3339   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
   3340   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3341   unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
   3342     ? ARM::R7 : ARM::R11;
   3343   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   3344   while (Depth--)
   3345     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   3346                             MachinePointerInfo(),
   3347                             false, false, false, 0);
   3348   return FrameAddr;
   3349 }
   3350 
   3351 /// ExpandBITCAST - If the target supports VFP, this function is called to
   3352 /// expand a bit convert where either the source or destination type is i64 to
   3353 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   3354 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   3355 /// vectors), since the legalizer won't know what to do with that.
   3356 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
   3357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3358   DebugLoc dl = N->getDebugLoc();
   3359   SDValue Op = N->getOperand(0);
   3360 
   3361   // This function is only supposed to be called for i64 types, either as the
   3362   // source or destination of the bit convert.
   3363   EVT SrcVT = Op.getValueType();
   3364   EVT DstVT = N->getValueType(0);
   3365   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
   3366          "ExpandBITCAST called for non-i64 type");
   3367 
   3368   // Turn i64->f64 into VMOVDRR.
   3369   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   3370     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3371                              DAG.getConstant(0, MVT::i32));
   3372     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3373                              DAG.getConstant(1, MVT::i32));
   3374     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   3375                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   3376   }
   3377 
   3378   // Turn f64->i64 into VMOVRRD.
   3379   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   3380     SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   3381                               DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
   3382     // Merge the pieces into a single i64 value.
   3383     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   3384   }
   3385 
   3386   return SDValue();
   3387 }
   3388 
   3389 /// getZeroVector - Returns a vector of specified type with all zero elements.
   3390 /// Zero vectors are used to represent vector negation and in those cases
   3391 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   3392 /// not support i64 elements, so sometimes the zero vectors will need to be
   3393 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   3394 /// zero vector.
   3395 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   3396   assert(VT.isVector() && "Expected a vector type");
   3397   // The canonical modified immediate encoding of a zero vector is....0!
   3398   SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
   3399   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   3400   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   3401   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   3402 }
   3403 
   3404 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   3405 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   3406 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   3407                                                 SelectionDAG &DAG) const {
   3408   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   3409   EVT VT = Op.getValueType();
   3410   unsigned VTBits = VT.getSizeInBits();
   3411   DebugLoc dl = Op.getDebugLoc();
   3412   SDValue ShOpLo = Op.getOperand(0);
   3413   SDValue ShOpHi = Op.getOperand(1);
   3414   SDValue ShAmt  = Op.getOperand(2);
   3415   SDValue ARMcc;
   3416   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   3417 
   3418   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   3419 
   3420   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   3421                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   3422   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   3423   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   3424                                    DAG.getConstant(VTBits, MVT::i32));
   3425   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   3426   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   3427   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   3428 
   3429   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3430   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   3431                           ARMcc, DAG, dl);
   3432   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   3433   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
   3434                            CCR, Cmp);
   3435 
   3436   SDValue Ops[2] = { Lo, Hi };
   3437   return DAG.getMergeValues(Ops, 2, dl);
   3438 }
   3439 
   3440 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   3441 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   3442 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   3443                                                SelectionDAG &DAG) const {
   3444   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   3445   EVT VT = Op.getValueType();
   3446   unsigned VTBits = VT.getSizeInBits();
   3447   DebugLoc dl = Op.getDebugLoc();
   3448   SDValue ShOpLo = Op.getOperand(0);
   3449   SDValue ShOpHi = Op.getOperand(1);
   3450   SDValue ShAmt  = Op.getOperand(2);
   3451   SDValue ARMcc;
   3452 
   3453   assert(Op.getOpcode() == ISD::SHL_PARTS);
   3454   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   3455                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   3456   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   3457   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   3458                                    DAG.getConstant(VTBits, MVT::i32));
   3459   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   3460   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   3461 
   3462   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   3463   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3464   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   3465                           ARMcc, DAG, dl);
   3466   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   3467   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
   3468                            CCR, Cmp);
   3469 
   3470   SDValue Ops[2] = { Lo, Hi };
   3471   return DAG.getMergeValues(Ops, 2, dl);
   3472 }
   3473 
   3474 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   3475                                             SelectionDAG &DAG) const {
   3476   // The rounding mode is in bits 23:22 of the FPSCR.
   3477   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   3478   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   3479   // so that the shift + and get folded into a bitfield extract.
   3480   DebugLoc dl = Op.getDebugLoc();
   3481   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
   3482                               DAG.getConstant(Intrinsic::arm_get_fpscr,
   3483                                               MVT::i32));
   3484   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   3485                                   DAG.getConstant(1U << 22, MVT::i32));
   3486   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   3487                               DAG.getConstant(22, MVT::i32));
   3488   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   3489                      DAG.getConstant(3, MVT::i32));
   3490 }
   3491 
   3492 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   3493                          const ARMSubtarget *ST) {
   3494   EVT VT = N->getValueType(0);
   3495   DebugLoc dl = N->getDebugLoc();
   3496 
   3497   if (!ST->hasV6T2Ops())
   3498     return SDValue();
   3499 
   3500   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
   3501   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   3502 }
   3503 
   3504 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   3505                           const ARMSubtarget *ST) {
   3506   EVT VT = N->getValueType(0);
   3507   DebugLoc dl = N->getDebugLoc();
   3508 
   3509   if (!VT.isVector())
   3510     return SDValue();
   3511 
   3512   // Lower vector shifts on NEON to use VSHL.
   3513   assert(ST->hasNEON() && "unexpected vector shift");
   3514 
   3515   // Left shifts translate directly to the vshiftu intrinsic.
   3516   if (N->getOpcode() == ISD::SHL)
   3517     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   3518                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
   3519                        N->getOperand(0), N->getOperand(1));
   3520 
   3521   assert((N->getOpcode() == ISD::SRA ||
   3522           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   3523 
   3524   // NEON uses the same intrinsics for both left and right shifts.  For
   3525   // right shifts, the shift amounts are negative, so negate the vector of
   3526   // shift amounts.
   3527   EVT ShiftVT = N->getOperand(1).getValueType();
   3528   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   3529                                      getZeroVector(ShiftVT, DAG, dl),
   3530                                      N->getOperand(1));
   3531   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   3532                              Intrinsic::arm_neon_vshifts :
   3533                              Intrinsic::arm_neon_vshiftu);
   3534   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   3535                      DAG.getConstant(vshiftInt, MVT::i32),
   3536                      N->getOperand(0), NegatedCount);
   3537 }
   3538 
   3539 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   3540                                 const ARMSubtarget *ST) {
   3541   EVT VT = N->getValueType(0);
   3542   DebugLoc dl = N->getDebugLoc();
   3543 
   3544   // We can get here for a node like i32 = ISD::SHL i32, i64
   3545   if (VT != MVT::i64)
   3546     return SDValue();
   3547 
   3548   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   3549          "Unknown shift to lower!");
   3550 
   3551   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   3552   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
   3553       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
   3554     return SDValue();
   3555 
   3556   // If we are in thumb mode, we don't have RRX.
   3557   if (ST->isThumb1Only()) return SDValue();
   3558 
   3559   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   3560   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   3561                            DAG.getConstant(0, MVT::i32));
   3562   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   3563                            DAG.getConstant(1, MVT::i32));
   3564 
   3565   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   3566   // captures the result into a carry flag.
   3567   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   3568   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
   3569 
   3570   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   3571   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   3572 
   3573   // Merge the pieces into a single i64 value.
   3574  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   3575 }
   3576 
   3577 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   3578   SDValue TmpOp0, TmpOp1;
   3579   bool Invert = false;
   3580   bool Swap = false;
   3581   unsigned Opc = 0;
   3582 
   3583   SDValue Op0 = Op.getOperand(0);
   3584   SDValue Op1 = Op.getOperand(1);
   3585   SDValue CC = Op.getOperand(2);
   3586   EVT VT = Op.getValueType();
   3587   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   3588   DebugLoc dl = Op.getDebugLoc();
   3589 
   3590   if (Op.getOperand(1).getValueType().isFloatingPoint()) {
   3591     switch (SetCCOpcode) {
   3592     default: llvm_unreachable("Illegal FP comparison");
   3593     case ISD::SETUNE:
   3594     case ISD::SETNE:  Invert = true; // Fallthrough
   3595     case ISD::SETOEQ:
   3596     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   3597     case ISD::SETOLT:
   3598     case ISD::SETLT: Swap = true; // Fallthrough
   3599     case ISD::SETOGT:
   3600     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   3601     case ISD::SETOLE:
   3602     case ISD::SETLE:  Swap = true; // Fallthrough
   3603     case ISD::SETOGE:
   3604     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   3605     case ISD::SETUGE: Swap = true; // Fallthrough
   3606     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   3607     case ISD::SETUGT: Swap = true; // Fallthrough
   3608     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   3609     case ISD::SETUEQ: Invert = true; // Fallthrough
   3610     case ISD::SETONE:
   3611       // Expand this to (OLT | OGT).
   3612       TmpOp0 = Op0;
   3613       TmpOp1 = Op1;
   3614       Opc = ISD::OR;
   3615       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   3616       Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
   3617       break;
   3618     case ISD::SETUO: Invert = true; // Fallthrough
   3619     case ISD::SETO:
   3620       // Expand this to (OLT | OGE).
   3621       TmpOp0 = Op0;
   3622       TmpOp1 = Op1;
   3623       Opc = ISD::OR;
   3624       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   3625       Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
   3626       break;
   3627     }
   3628   } else {
   3629     // Integer comparisons.
   3630     switch (SetCCOpcode) {
   3631     default: llvm_unreachable("Illegal integer comparison");
   3632     case ISD::SETNE:  Invert = true;
   3633     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   3634     case ISD::SETLT:  Swap = true;
   3635     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   3636     case ISD::SETLE:  Swap = true;
   3637     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   3638     case ISD::SETULT: Swap = true;
   3639     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   3640     case ISD::SETULE: Swap = true;
   3641     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   3642     }
   3643 
   3644     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   3645     if (Opc == ARMISD::VCEQ) {
   3646 
   3647       SDValue AndOp;
   3648       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   3649         AndOp = Op0;
   3650       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   3651         AndOp = Op1;
   3652 
   3653       // Ignore bitconvert.
   3654       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   3655         AndOp = AndOp.getOperand(0);
   3656 
   3657       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   3658         Opc = ARMISD::VTST;
   3659         Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
   3660         Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
   3661         Invert = !Invert;
   3662       }
   3663     }
   3664   }
   3665 
   3666   if (Swap)
   3667     std::swap(Op0, Op1);
   3668 
   3669   // If one of the operands is a constant vector zero, attempt to fold the
   3670   // comparison to a specialized compare-against-zero form.
   3671   SDValue SingleOp;
   3672   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   3673     SingleOp = Op0;
   3674   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   3675     if (Opc == ARMISD::VCGE)
   3676       Opc = ARMISD::VCLEZ;
   3677     else if (Opc == ARMISD::VCGT)
   3678       Opc = ARMISD::VCLTZ;
   3679     SingleOp = Op1;
   3680   }
   3681 
   3682   SDValue Result;
   3683   if (SingleOp.getNode()) {
   3684     switch (Opc) {
   3685     case ARMISD::VCEQ:
   3686       Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
   3687     case ARMISD::VCGE:
   3688       Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
   3689     case ARMISD::VCLEZ:
   3690       Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
   3691     case ARMISD::VCGT:
   3692       Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
   3693     case ARMISD::VCLTZ:
   3694       Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
   3695     default:
   3696       Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   3697     }
   3698   } else {
   3699      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   3700   }
   3701 
   3702   if (Invert)
   3703     Result = DAG.getNOT(dl, Result, VT);
   3704 
   3705   return Result;
   3706 }
   3707 
   3708 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   3709 /// valid vector constant for a NEON instruction with a "modified immediate"
   3710 /// operand (e.g., VMOV).  If so, return the encoded value.
   3711 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   3712                                  unsigned SplatBitSize, SelectionDAG &DAG,
   3713                                  EVT &VT, bool is128Bits, NEONModImmType type) {
   3714   unsigned OpCmode, Imm;
   3715 
   3716   // SplatBitSize is set to the smallest size that splats the vector, so a
   3717   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   3718   // immediate instructions others than VMOV do not support the 8-bit encoding
   3719   // of a zero vector, and the default encoding of zero is supposed to be the
   3720   // 32-bit version.
   3721   if (SplatBits == 0)
   3722     SplatBitSize = 32;
   3723 
   3724   switch (SplatBitSize) {
   3725   case 8:
   3726     if (type != VMOVModImm)
   3727       return SDValue();
   3728     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   3729     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   3730     OpCmode = 0xe;
   3731     Imm = SplatBits;
   3732     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   3733     break;
   3734 
   3735   case 16:
   3736     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   3737     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   3738     if ((SplatBits & ~0xff) == 0) {
   3739       // Value = 0x00nn: Op=x, Cmode=100x.
   3740       OpCmode = 0x8;
   3741       Imm = SplatBits;
   3742       break;
   3743     }
   3744     if ((SplatBits & ~0xff00) == 0) {
   3745       // Value = 0xnn00: Op=x, Cmode=101x.
   3746       OpCmode = 0xa;
   3747       Imm = SplatBits >> 8;
   3748       break;
   3749     }
   3750     return SDValue();
   3751 
   3752   case 32:
   3753     // NEON's 32-bit VMOV supports splat values where:
   3754     // * only one byte is nonzero, or
   3755     // * the least significant byte is 0xff and the second byte is nonzero, or
   3756     // * the least significant 2 bytes are 0xff and the third is nonzero.
   3757     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   3758     if ((SplatBits & ~0xff) == 0) {
   3759       // Value = 0x000000nn: Op=x, Cmode=000x.
   3760       OpCmode = 0;
   3761       Imm = SplatBits;
   3762       break;
   3763     }
   3764     if ((SplatBits & ~0xff00) == 0) {
   3765       // Value = 0x0000nn00: Op=x, Cmode=001x.
   3766       OpCmode = 0x2;
   3767       Imm = SplatBits >> 8;
   3768       break;
   3769     }
   3770     if ((SplatBits & ~0xff0000) == 0) {
   3771       // Value = 0x00nn0000: Op=x, Cmode=010x.
   3772       OpCmode = 0x4;
   3773       Imm = SplatBits >> 16;
   3774       break;
   3775     }
   3776     if ((SplatBits & ~0xff000000) == 0) {
   3777       // Value = 0xnn000000: Op=x, Cmode=011x.
   3778       OpCmode = 0x6;
   3779       Imm = SplatBits >> 24;
   3780       break;
   3781     }
   3782 
   3783     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   3784     if (type == OtherModImm) return SDValue();
   3785 
   3786     if ((SplatBits & ~0xffff) == 0 &&
   3787         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   3788       // Value = 0x0000nnff: Op=x, Cmode=1100.
   3789       OpCmode = 0xc;
   3790       Imm = SplatBits >> 8;
   3791       SplatBits |= 0xff;
   3792       break;
   3793     }
   3794 
   3795     if ((SplatBits & ~0xffffff) == 0 &&
   3796         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   3797       // Value = 0x00nnffff: Op=x, Cmode=1101.
   3798       OpCmode = 0xd;
   3799       Imm = SplatBits >> 16;
   3800       SplatBits |= 0xffff;
   3801       break;
   3802     }
   3803 
   3804     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   3805     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   3806     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   3807     // and fall through here to test for a valid 64-bit splat.  But, then the
   3808     // caller would also need to check and handle the change in size.
   3809     return SDValue();
   3810 
   3811   case 64: {
   3812     if (type != VMOVModImm)
   3813       return SDValue();
   3814     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   3815     uint64_t BitMask = 0xff;
   3816     uint64_t Val = 0;
   3817     unsigned ImmMask = 1;
   3818     Imm = 0;
   3819     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   3820       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   3821         Val |= BitMask;
   3822         Imm |= ImmMask;
   3823       } else if ((SplatBits & BitMask) != 0) {
   3824         return SDValue();
   3825       }
   3826       BitMask <<= 8;
   3827       ImmMask <<= 1;
   3828     }
   3829     // Op=1, Cmode=1110.
   3830     OpCmode = 0x1e;
   3831     SplatBits = Val;
   3832     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   3833     break;
   3834   }
   3835 
   3836   default:
   3837     llvm_unreachable("unexpected size for isNEONModifiedImm");
   3838   }
   3839 
   3840   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   3841   return DAG.getTargetConstant(EncodedVal, MVT::i32);
   3842 }
   3843 
   3844 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
   3845                                            const ARMSubtarget *ST) const {
   3846   if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
   3847     return SDValue();
   3848 
   3849   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
   3850   assert(Op.getValueType() == MVT::f32 &&
   3851          "ConstantFP custom lowering should only occur for f32.");
   3852 
   3853   // Try splatting with a VMOV.f32...
   3854   APFloat FPVal = CFP->getValueAPF();
   3855   int ImmVal = ARM_AM::getFP32Imm(FPVal);
   3856   if (ImmVal != -1) {
   3857     DebugLoc DL = Op.getDebugLoc();
   3858     SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
   3859     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
   3860                                       NewVal);
   3861     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
   3862                        DAG.getConstant(0, MVT::i32));
   3863   }
   3864 
   3865   // If that fails, try a VMOV.i32
   3866   EVT VMovVT;
   3867   unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
   3868   SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
   3869                                      VMOVModImm);
   3870   if (NewVal != SDValue()) {
   3871     DebugLoc DL = Op.getDebugLoc();
   3872     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
   3873                                       NewVal);
   3874     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   3875                                        VecConstant);
   3876     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   3877                        DAG.getConstant(0, MVT::i32));
   3878   }
   3879 
   3880   // Finally, try a VMVN.i32
   3881   NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
   3882                              VMVNModImm);
   3883   if (NewVal != SDValue()) {
   3884     DebugLoc DL = Op.getDebugLoc();
   3885     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
   3886     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   3887                                        VecConstant);
   3888     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   3889                        DAG.getConstant(0, MVT::i32));
   3890   }
   3891 
   3892   return SDValue();
   3893 }
   3894 
   3895 
   3896 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
   3897                        bool &ReverseVEXT, unsigned &Imm) {
   3898   unsigned NumElts = VT.getVectorNumElements();
   3899   ReverseVEXT = false;
   3900 
   3901   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   3902   if (M[0] < 0)
   3903     return false;
   3904 
   3905   Imm = M[0];
   3906 
   3907   // If this is a VEXT shuffle, the immediate value is the index of the first
   3908   // element.  The other shuffle indices must be the successive elements after
   3909   // the first one.
   3910   unsigned ExpectedElt = Imm;
   3911   for (unsigned i = 1; i < NumElts; ++i) {
   3912     // Increment the expected index.  If it wraps around, it may still be
   3913     // a VEXT but the source vectors must be swapped.
   3914     ExpectedElt += 1;
   3915     if (ExpectedElt == NumElts * 2) {
   3916       ExpectedElt = 0;
   3917       ReverseVEXT = true;
   3918     }
   3919 
   3920     if (M[i] < 0) continue; // ignore UNDEF indices
   3921     if (ExpectedElt != static_cast<unsigned>(M[i]))
   3922       return false;
   3923   }
   3924 
   3925   // Adjust the index value if the source operands will be swapped.
   3926   if (ReverseVEXT)
   3927     Imm -= NumElts;
   3928 
   3929   return true;
   3930 }
   3931 
   3932 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   3933 /// instruction with the specified blocksize.  (The order of the elements
   3934 /// within each block of the vector is reversed.)
   3935 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   3936   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   3937          "Only possible block sizes for VREV are: 16, 32, 64");
   3938 
   3939   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3940   if (EltSz == 64)
   3941     return false;
   3942 
   3943   unsigned NumElts = VT.getVectorNumElements();
   3944   unsigned BlockElts = M[0] + 1;
   3945   // If the first shuffle index is UNDEF, be optimistic.
   3946   if (M[0] < 0)
   3947     BlockElts = BlockSize / EltSz;
   3948 
   3949   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   3950     return false;
   3951 
   3952   for (unsigned i = 0; i < NumElts; ++i) {
   3953     if (M[i] < 0) continue; // ignore UNDEF indices
   3954     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   3955       return false;
   3956   }
   3957 
   3958   return true;
   3959 }
   3960 
   3961 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
   3962   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   3963   // range, then 0 is placed into the resulting vector. So pretty much any mask
   3964   // of 8 elements can work here.
   3965   return VT == MVT::v8i8 && M.size() == 8;
   3966 }
   3967 
   3968 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   3969   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3970   if (EltSz == 64)
   3971     return false;
   3972 
   3973   unsigned NumElts = VT.getVectorNumElements();
   3974   WhichResult = (M[0] == 0 ? 0 : 1);
   3975   for (unsigned i = 0; i < NumElts; i += 2) {
   3976     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   3977         (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
   3978       return false;
   3979   }
   3980   return true;
   3981 }
   3982 
   3983 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   3984 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   3985 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   3986 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   3987   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3988   if (EltSz == 64)
   3989     return false;
   3990 
   3991   unsigned NumElts = VT.getVectorNumElements();
   3992   WhichResult = (M[0] == 0 ? 0 : 1);
   3993   for (unsigned i = 0; i < NumElts; i += 2) {
   3994     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   3995         (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
   3996       return false;
   3997   }
   3998   return true;
   3999 }
   4000 
   4001 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4002   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4003   if (EltSz == 64)
   4004     return false;
   4005 
   4006   unsigned NumElts = VT.getVectorNumElements();
   4007   WhichResult = (M[0] == 0 ? 0 : 1);
   4008   for (unsigned i = 0; i != NumElts; ++i) {
   4009     if (M[i] < 0) continue; // ignore UNDEF indices
   4010     if ((unsigned) M[i] != 2 * i + WhichResult)
   4011       return false;
   4012   }
   4013 
   4014   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4015   if (VT.is64BitVector() && EltSz == 32)
   4016     return false;
   4017 
   4018   return true;
   4019 }
   4020 
   4021 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   4022 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4023 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   4024 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4025   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4026   if (EltSz == 64)
   4027     return false;
   4028 
   4029   unsigned Half = VT.getVectorNumElements() / 2;
   4030   WhichResult = (M[0] == 0 ? 0 : 1);
   4031   for (unsigned j = 0; j != 2; ++j) {
   4032     unsigned Idx = WhichResult;
   4033     for (unsigned i = 0; i != Half; ++i) {
   4034       int MIdx = M[i + j * Half];
   4035       if (MIdx >= 0 && (unsigned) MIdx != Idx)
   4036         return false;
   4037       Idx += 2;
   4038     }
   4039   }
   4040 
   4041   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4042   if (VT.is64BitVector() && EltSz == 32)
   4043     return false;
   4044 
   4045   return true;
   4046 }
   4047 
   4048 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4049   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4050   if (EltSz == 64)
   4051     return false;
   4052 
   4053   unsigned NumElts = VT.getVectorNumElements();
   4054   WhichResult = (M[0] == 0 ? 0 : 1);
   4055   unsigned Idx = WhichResult * NumElts / 2;
   4056   for (unsigned i = 0; i != NumElts; i += 2) {
   4057     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4058         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
   4059       return false;
   4060     Idx += 1;
   4061   }
   4062 
   4063   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4064   if (VT.is64BitVector() && EltSz == 32)
   4065     return false;
   4066 
   4067   return true;
   4068 }
   4069 
   4070 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   4071 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4072 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   4073 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4074   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4075   if (EltSz == 64)
   4076     return false;
   4077 
   4078   unsigned NumElts = VT.getVectorNumElements();
   4079   WhichResult = (M[0] == 0 ? 0 : 1);
   4080   unsigned Idx = WhichResult * NumElts / 2;
   4081   for (unsigned i = 0; i != NumElts; i += 2) {
   4082     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4083         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
   4084       return false;
   4085     Idx += 1;
   4086   }
   4087 
   4088   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4089   if (VT.is64BitVector() && EltSz == 32)
   4090     return false;
   4091 
   4092   return true;
   4093 }
   4094 
   4095 // If N is an integer constant that can be moved into a register in one
   4096 // instruction, return an SDValue of such a constant (will become a MOV
   4097 // instruction).  Otherwise return null.
   4098 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   4099                                      const ARMSubtarget *ST, DebugLoc dl) {
   4100   uint64_t Val;
   4101   if (!isa<ConstantSDNode>(N))
   4102     return SDValue();
   4103   Val = cast<ConstantSDNode>(N)->getZExtValue();
   4104 
   4105   if (ST->isThumb1Only()) {
   4106     if (Val <= 255 || ~Val <= 255)
   4107       return DAG.getConstant(Val, MVT::i32);
   4108   } else {
   4109     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   4110       return DAG.getConstant(Val, MVT::i32);
   4111   }
   4112   return SDValue();
   4113 }
   4114 
   4115 // If this is a case we can't handle, return null and let the default
   4116 // expansion code take care of it.
   4117 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   4118                                              const ARMSubtarget *ST) const {
   4119   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   4120   DebugLoc dl = Op.getDebugLoc();
   4121   EVT VT = Op.getValueType();
   4122 
   4123   APInt SplatBits, SplatUndef;
   4124   unsigned SplatBitSize;
   4125   bool HasAnyUndefs;
   4126   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   4127     if (SplatBitSize <= 64) {
   4128       // Check if an immediate VMOV works.
   4129       EVT VmovVT;
   4130       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   4131                                       SplatUndef.getZExtValue(), SplatBitSize,
   4132                                       DAG, VmovVT, VT.is128BitVector(),
   4133                                       VMOVModImm);
   4134       if (Val.getNode()) {
   4135         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   4136         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4137       }
   4138 
   4139       // Try an immediate VMVN.
   4140       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   4141       Val = isNEONModifiedImm(NegatedImm,
   4142                                       SplatUndef.getZExtValue(), SplatBitSize,
   4143                                       DAG, VmovVT, VT.is128BitVector(),
   4144                                       VMVNModImm);
   4145       if (Val.getNode()) {
   4146         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   4147         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4148       }
   4149 
   4150       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
   4151       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
   4152         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
   4153         if (ImmVal != -1) {
   4154           SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
   4155           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
   4156         }
   4157       }
   4158     }
   4159   }
   4160 
   4161   // Scan through the operands to see if only one value is used.
   4162   //
   4163   // As an optimisation, even if more than one value is used it may be more
   4164   // profitable to splat with one value then change some lanes.
   4165   //
   4166   // Heuristically we decide to do this if the vector has a "dominant" value,
   4167   // defined as splatted to more than half of the lanes.
   4168   unsigned NumElts = VT.getVectorNumElements();
   4169   bool isOnlyLowElement = true;
   4170   bool usesOnlyOneValue = true;
   4171   bool hasDominantValue = false;
   4172   bool isConstant = true;
   4173 
   4174   // Map of the number of times a particular SDValue appears in the
   4175   // element list.
   4176   DenseMap<SDValue, unsigned> ValueCounts;
   4177   SDValue Value;
   4178   for (unsigned i = 0; i < NumElts; ++i) {
   4179     SDValue V = Op.getOperand(i);
   4180     if (V.getOpcode() == ISD::UNDEF)
   4181       continue;
   4182     if (i > 0)
   4183       isOnlyLowElement = false;
   4184     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   4185       isConstant = false;
   4186 
   4187     ValueCounts.insert(std::make_pair(V, 0));
   4188     unsigned &Count = ValueCounts[V];
   4189 
   4190     // Is this value dominant? (takes up more than half of the lanes)
   4191     if (++Count > (NumElts / 2)) {
   4192       hasDominantValue = true;
   4193       Value = V;
   4194     }
   4195   }
   4196   if (ValueCounts.size() != 1)
   4197     usesOnlyOneValue = false;
   4198   if (!Value.getNode() && ValueCounts.size() > 0)
   4199     Value = ValueCounts.begin()->first;
   4200 
   4201   if (ValueCounts.size() == 0)
   4202     return DAG.getUNDEF(VT);
   4203 
   4204   if (isOnlyLowElement)
   4205     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   4206 
   4207   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4208 
   4209   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   4210   // i32 and try again.
   4211   if (hasDominantValue && EltSize <= 32) {
   4212     if (!isConstant) {
   4213       SDValue N;
   4214 
   4215       // If we are VDUPing a value that comes directly from a vector, that will
   4216       // cause an unnecessary move to and from a GPR, where instead we could
   4217       // just use VDUPLANE.
   4218       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT)
   4219         N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   4220                         Value->getOperand(0), Value->getOperand(1));
   4221       else
   4222         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   4223 
   4224       if (!usesOnlyOneValue) {
   4225         // The dominant value was splatted as 'N', but we now have to insert
   4226         // all differing elements.
   4227         for (unsigned I = 0; I < NumElts; ++I) {
   4228           if (Op.getOperand(I) == Value)
   4229             continue;
   4230           SmallVector<SDValue, 3> Ops;
   4231           Ops.push_back(N);
   4232           Ops.push_back(Op.getOperand(I));
   4233           Ops.push_back(DAG.getConstant(I, MVT::i32));
   4234           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
   4235         }
   4236       }
   4237       return N;
   4238     }
   4239     if (VT.getVectorElementType().isFloatingPoint()) {
   4240       SmallVector<SDValue, 8> Ops;
   4241       for (unsigned i = 0; i < NumElts; ++i)
   4242         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   4243                                   Op.getOperand(i)));
   4244       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   4245       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
   4246       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   4247       if (Val.getNode())
   4248         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4249     }
   4250     if (usesOnlyOneValue) {
   4251       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   4252       if (isConstant && Val.getNode())
   4253         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   4254     }
   4255   }
   4256 
   4257   // If all elements are constants and the case above didn't get hit, fall back
   4258   // to the default expansion, which will generate a load from the constant
   4259   // pool.
   4260   if (isConstant)
   4261     return SDValue();
   4262 
   4263   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   4264   if (NumElts >= 4) {
   4265     SDValue shuffle = ReconstructShuffle(Op, DAG);
   4266     if (shuffle != SDValue())
   4267       return shuffle;
   4268   }
   4269 
   4270   // Vectors with 32- or 64-bit elements can be built by directly assigning
   4271   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   4272   // will be legalized.
   4273   if (EltSize >= 32) {
   4274     // Do the expansion with floating-point types, since that is what the VFP
   4275     // registers are defined to use, and since i64 is not legal.
   4276     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   4277     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   4278     SmallVector<SDValue, 8> Ops;
   4279     for (unsigned i = 0; i < NumElts; ++i)
   4280       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   4281     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
   4282     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4283   }
   4284 
   4285   return SDValue();
   4286 }
   4287 
   4288 // Gather data to see if the operation can be modelled as a
   4289 // shuffle in combination with VEXTs.
   4290 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   4291                                               SelectionDAG &DAG) const {
   4292   DebugLoc dl = Op.getDebugLoc();
   4293   EVT VT = Op.getValueType();
   4294   unsigned NumElts = VT.getVectorNumElements();
   4295 
   4296   SmallVector<SDValue, 2> SourceVecs;
   4297   SmallVector<unsigned, 2> MinElts;
   4298   SmallVector<unsigned, 2> MaxElts;
   4299 
   4300   for (unsigned i = 0; i < NumElts; ++i) {
   4301     SDValue V = Op.getOperand(i);
   4302     if (V.getOpcode() == ISD::UNDEF)
   4303       continue;
   4304     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   4305       // A shuffle can only come from building a vector from various
   4306       // elements of other vectors.
   4307       return SDValue();
   4308     } else if (V.getOperand(0).getValueType().getVectorElementType() !=
   4309                VT.getVectorElementType()) {
   4310       // This code doesn't know how to handle shuffles where the vector
   4311       // element types do not match (this happens because type legalization
   4312       // promotes the return type of EXTRACT_VECTOR_ELT).
   4313       // FIXME: It might be appropriate to extend this code to handle
   4314       // mismatched types.
   4315       return SDValue();
   4316     }
   4317 
   4318     // Record this extraction against the appropriate vector if possible...
   4319     SDValue SourceVec = V.getOperand(0);
   4320     // If the element number isn't a constant, we can't effectively
   4321     // analyze what's going on.
   4322     if (!isa<ConstantSDNode>(V.getOperand(1)))
   4323       return SDValue();
   4324     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   4325     bool FoundSource = false;
   4326     for (unsigned j = 0; j < SourceVecs.size(); ++j) {
   4327       if (SourceVecs[j] == SourceVec) {
   4328         if (MinElts[j] > EltNo)
   4329           MinElts[j] = EltNo;
   4330         if (MaxElts[j] < EltNo)
   4331           MaxElts[j] = EltNo;
   4332         FoundSource = true;
   4333         break;
   4334       }
   4335     }
   4336 
   4337     // Or record a new source if not...
   4338     if (!FoundSource) {
   4339       SourceVecs.push_back(SourceVec);
   4340       MinElts.push_back(EltNo);
   4341       MaxElts.push_back(EltNo);
   4342     }
   4343   }
   4344 
   4345   // Currently only do something sane when at most two source vectors
   4346   // involved.
   4347   if (SourceVecs.size() > 2)
   4348     return SDValue();
   4349 
   4350   SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
   4351   int VEXTOffsets[2] = {0, 0};
   4352 
   4353   // This loop extracts the usage patterns of the source vectors
   4354   // and prepares appropriate SDValues for a shuffle if possible.
   4355   for (unsigned i = 0; i < SourceVecs.size(); ++i) {
   4356     if (SourceVecs[i].getValueType() == VT) {
   4357       // No VEXT necessary
   4358       ShuffleSrcs[i] = SourceVecs[i];
   4359       VEXTOffsets[i] = 0;
   4360       continue;
   4361     } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
   4362       // It probably isn't worth padding out a smaller vector just to
   4363       // break it down again in a shuffle.
   4364       return SDValue();
   4365     }
   4366 
   4367     // Since only 64-bit and 128-bit vectors are legal on ARM and
   4368     // we've eliminated the other cases...
   4369     assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
   4370            "unexpected vector sizes in ReconstructShuffle");
   4371 
   4372     if (MaxElts[i] - MinElts[i] >= NumElts) {
   4373       // Span too large for a VEXT to cope
   4374       return SDValue();
   4375     }
   4376 
   4377     if (MinElts[i] >= NumElts) {
   4378       // The extraction can just take the second half
   4379       VEXTOffsets[i] = NumElts;
   4380       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4381                                    SourceVecs[i],
   4382                                    DAG.getIntPtrConstant(NumElts));
   4383     } else if (MaxElts[i] < NumElts) {
   4384       // The extraction can just take the first half
   4385       VEXTOffsets[i] = 0;
   4386       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4387                                    SourceVecs[i],
   4388                                    DAG.getIntPtrConstant(0));
   4389     } else {
   4390       // An actual VEXT is needed
   4391       VEXTOffsets[i] = MinElts[i];
   4392       SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4393                                      SourceVecs[i],
   4394                                      DAG.getIntPtrConstant(0));
   4395       SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4396                                      SourceVecs[i],
   4397                                      DAG.getIntPtrConstant(NumElts));
   4398       ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
   4399                                    DAG.getConstant(VEXTOffsets[i], MVT::i32));
   4400     }
   4401   }
   4402 
   4403   SmallVector<int, 8> Mask;
   4404 
   4405   for (unsigned i = 0; i < NumElts; ++i) {
   4406     SDValue Entry = Op.getOperand(i);
   4407     if (Entry.getOpcode() == ISD::UNDEF) {
   4408       Mask.push_back(-1);
   4409       continue;
   4410     }
   4411 
   4412     SDValue ExtractVec = Entry.getOperand(0);
   4413     int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
   4414                                           .getOperand(1))->getSExtValue();
   4415     if (ExtractVec == SourceVecs[0]) {
   4416       Mask.push_back(ExtractElt - VEXTOffsets[0]);
   4417     } else {
   4418       Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
   4419     }
   4420   }
   4421 
   4422   // Final check before we try to produce nonsense...
   4423   if (isShuffleMaskLegal(Mask, VT))
   4424     return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
   4425                                 &Mask[0]);
   4426 
   4427   return SDValue();
   4428 }
   4429 
   4430 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   4431 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   4432 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   4433 /// are assumed to be legal.
   4434 bool
   4435 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   4436                                       EVT VT) const {
   4437   if (VT.getVectorNumElements() == 4 &&
   4438       (VT.is128BitVector() || VT.is64BitVector())) {
   4439     unsigned PFIndexes[4];
   4440     for (unsigned i = 0; i != 4; ++i) {
   4441       if (M[i] < 0)
   4442         PFIndexes[i] = 8;
   4443       else
   4444         PFIndexes[i] = M[i];
   4445     }
   4446 
   4447     // Compute the index in the perfect shuffle table.
   4448     unsigned PFTableIndex =
   4449       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4450     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4451     unsigned Cost = (PFEntry >> 30);
   4452 
   4453     if (Cost <= 4)
   4454       return true;
   4455   }
   4456 
   4457   bool ReverseVEXT;
   4458   unsigned Imm, WhichResult;
   4459 
   4460   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4461   return (EltSize >= 32 ||
   4462           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   4463           isVREVMask(M, VT, 64) ||
   4464           isVREVMask(M, VT, 32) ||
   4465           isVREVMask(M, VT, 16) ||
   4466           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   4467           isVTBLMask(M, VT) ||
   4468           isVTRNMask(M, VT, WhichResult) ||
   4469           isVUZPMask(M, VT, WhichResult) ||
   4470           isVZIPMask(M, VT, WhichResult) ||
   4471           isVTRN_v_undef_Mask(M, VT, WhichResult) ||
   4472           isVUZP_v_undef_Mask(M, VT, WhichResult) ||
   4473           isVZIP_v_undef_Mask(M, VT, WhichResult));
   4474 }
   4475 
   4476 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   4477 /// the specified operations to build the shuffle.
   4478 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   4479                                       SDValue RHS, SelectionDAG &DAG,
   4480                                       DebugLoc dl) {
   4481   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   4482   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   4483   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   4484 
   4485   enum {
   4486     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   4487     OP_VREV,
   4488     OP_VDUP0,
   4489     OP_VDUP1,
   4490     OP_VDUP2,
   4491     OP_VDUP3,
   4492     OP_VEXT1,
   4493     OP_VEXT2,
   4494     OP_VEXT3,
   4495     OP_VUZPL, // VUZP, left result
   4496     OP_VUZPR, // VUZP, right result
   4497     OP_VZIPL, // VZIP, left result
   4498     OP_VZIPR, // VZIP, right result
   4499     OP_VTRNL, // VTRN, left result
   4500     OP_VTRNR  // VTRN, right result
   4501   };
   4502 
   4503   if (OpNum == OP_COPY) {
   4504     if (LHSID == (1*9+2)*9+3) return LHS;
   4505     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   4506     return RHS;
   4507   }
   4508 
   4509   SDValue OpLHS, OpRHS;
   4510   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   4511   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   4512   EVT VT = OpLHS.getValueType();
   4513 
   4514   switch (OpNum) {
   4515   default: llvm_unreachable("Unknown shuffle opcode!");
   4516   case OP_VREV:
   4517     // VREV divides the vector in half and swaps within the half.
   4518     if (VT.getVectorElementType() == MVT::i32 ||
   4519         VT.getVectorElementType() == MVT::f32)
   4520       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   4521     // vrev <4 x i16> -> VREV32
   4522     if (VT.getVectorElementType() == MVT::i16)
   4523       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   4524     // vrev <4 x i8> -> VREV16
   4525     assert(VT.getVectorElementType() == MVT::i8);
   4526     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   4527   case OP_VDUP0:
   4528   case OP_VDUP1:
   4529   case OP_VDUP2:
   4530   case OP_VDUP3:
   4531     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   4532                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
   4533   case OP_VEXT1:
   4534   case OP_VEXT2:
   4535   case OP_VEXT3:
   4536     return DAG.getNode(ARMISD::VEXT, dl, VT,
   4537                        OpLHS, OpRHS,
   4538                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
   4539   case OP_VUZPL:
   4540   case OP_VUZPR:
   4541     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4542                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   4543   case OP_VZIPL:
   4544   case OP_VZIPR:
   4545     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4546                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   4547   case OP_VTRNL:
   4548   case OP_VTRNR:
   4549     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4550                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   4551   }
   4552 }
   4553 
   4554 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   4555                                        ArrayRef<int> ShuffleMask,
   4556                                        SelectionDAG &DAG) {
   4557   // Check to see if we can use the VTBL instruction.
   4558   SDValue V1 = Op.getOperand(0);
   4559   SDValue V2 = Op.getOperand(1);
   4560   DebugLoc DL = Op.getDebugLoc();
   4561 
   4562   SmallVector<SDValue, 8> VTBLMask;
   4563   for (ArrayRef<int>::iterator
   4564          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   4565     VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
   4566 
   4567   if (V2.getNode()->getOpcode() == ISD::UNDEF)
   4568     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   4569                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
   4570                                    &VTBLMask[0], 8));
   4571 
   4572   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   4573                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
   4574                                  &VTBLMask[0], 8));
   4575 }
   4576 
   4577 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   4578   SDValue V1 = Op.getOperand(0);
   4579   SDValue V2 = Op.getOperand(1);
   4580   DebugLoc dl = Op.getDebugLoc();
   4581   EVT VT = Op.getValueType();
   4582   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   4583 
   4584   // Convert shuffles that are directly supported on NEON to target-specific
   4585   // DAG nodes, instead of keeping them as shuffles and matching them again
   4586   // during code selection.  This is more efficient and avoids the possibility
   4587   // of inconsistencies between legalization and selection.
   4588   // FIXME: floating-point vectors should be canonicalized to integer vectors
   4589   // of the same time so that they get CSEd properly.
   4590   ArrayRef<int> ShuffleMask = SVN->getMask();
   4591 
   4592   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4593   if (EltSize <= 32) {
   4594     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
   4595       int Lane = SVN->getSplatIndex();
   4596       // If this is undef splat, generate it via "just" vdup, if possible.
   4597       if (Lane == -1) Lane = 0;
   4598 
   4599       // Test if V1 is a SCALAR_TO_VECTOR.
   4600       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   4601         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   4602       }
   4603       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
   4604       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
   4605       // reaches it).
   4606       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
   4607           !isa<ConstantSDNode>(V1.getOperand(0))) {
   4608         bool IsScalarToVector = true;
   4609         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
   4610           if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
   4611             IsScalarToVector = false;
   4612             break;
   4613           }
   4614         if (IsScalarToVector)
   4615           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   4616       }
   4617       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   4618                          DAG.getConstant(Lane, MVT::i32));
   4619     }
   4620 
   4621     bool ReverseVEXT;
   4622     unsigned Imm;
   4623     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   4624       if (ReverseVEXT)
   4625         std::swap(V1, V2);
   4626       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   4627                          DAG.getConstant(Imm, MVT::i32));
   4628     }
   4629 
   4630     if (isVREVMask(ShuffleMask, VT, 64))
   4631       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   4632     if (isVREVMask(ShuffleMask, VT, 32))
   4633       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   4634     if (isVREVMask(ShuffleMask, VT, 16))
   4635       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   4636 
   4637     // Check for Neon shuffles that modify both input vectors in place.
   4638     // If both results are used, i.e., if there are two shuffles with the same
   4639     // source operands and with masks corresponding to both results of one of
   4640     // these operations, DAG memoization will ensure that a single node is
   4641     // used for both shuffles.
   4642     unsigned WhichResult;
   4643     if (isVTRNMask(ShuffleMask, VT, WhichResult))
   4644       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4645                          V1, V2).getValue(WhichResult);
   4646     if (isVUZPMask(ShuffleMask, VT, WhichResult))
   4647       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4648                          V1, V2).getValue(WhichResult);
   4649     if (isVZIPMask(ShuffleMask, VT, WhichResult))
   4650       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4651                          V1, V2).getValue(WhichResult);
   4652 
   4653     if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4654       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4655                          V1, V1).getValue(WhichResult);
   4656     if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4657       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4658                          V1, V1).getValue(WhichResult);
   4659     if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4660       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4661                          V1, V1).getValue(WhichResult);
   4662   }
   4663 
   4664   // If the shuffle is not directly supported and it has 4 elements, use
   4665   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   4666   unsigned NumElts = VT.getVectorNumElements();
   4667   if (NumElts == 4) {
   4668     unsigned PFIndexes[4];
   4669     for (unsigned i = 0; i != 4; ++i) {
   4670       if (ShuffleMask[i] < 0)
   4671         PFIndexes[i] = 8;
   4672       else
   4673         PFIndexes[i] = ShuffleMask[i];
   4674     }
   4675 
   4676     // Compute the index in the perfect shuffle table.
   4677     unsigned PFTableIndex =
   4678       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4679     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4680     unsigned Cost = (PFEntry >> 30);
   4681 
   4682     if (Cost <= 4)
   4683       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   4684   }
   4685 
   4686   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   4687   if (EltSize >= 32) {
   4688     // Do the expansion with floating-point types, since that is what the VFP
   4689     // registers are defined to use, and since i64 is not legal.
   4690     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   4691     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   4692     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   4693     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   4694     SmallVector<SDValue, 8> Ops;
   4695     for (unsigned i = 0; i < NumElts; ++i) {
   4696       if (ShuffleMask[i] < 0)
   4697         Ops.push_back(DAG.getUNDEF(EltVT));
   4698       else
   4699         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   4700                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   4701                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   4702                                                   MVT::i32)));
   4703     }
   4704     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
   4705     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4706   }
   4707 
   4708   if (VT == MVT::v8i8) {
   4709     SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
   4710     if (NewOp.getNode())
   4711       return NewOp;
   4712   }
   4713 
   4714   return SDValue();
   4715 }
   4716 
   4717 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   4718   // INSERT_VECTOR_ELT is legal only for immediate indexes.
   4719   SDValue Lane = Op.getOperand(2);
   4720   if (!isa<ConstantSDNode>(Lane))
   4721     return SDValue();
   4722 
   4723   return Op;
   4724 }
   4725 
   4726 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   4727   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   4728   SDValue Lane = Op.getOperand(1);
   4729   if (!isa<ConstantSDNode>(Lane))
   4730     return SDValue();
   4731 
   4732   SDValue Vec = Op.getOperand(0);
   4733   if (Op.getValueType() == MVT::i32 &&
   4734       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
   4735     DebugLoc dl = Op.getDebugLoc();
   4736     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   4737   }
   4738 
   4739   return Op;
   4740 }
   4741 
   4742 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   4743   // The only time a CONCAT_VECTORS operation can have legal types is when
   4744   // two 64-bit vectors are concatenated to a 128-bit vector.
   4745   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   4746          "unexpected CONCAT_VECTORS");
   4747   DebugLoc dl = Op.getDebugLoc();
   4748   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   4749   SDValue Op0 = Op.getOperand(0);
   4750   SDValue Op1 = Op.getOperand(1);
   4751   if (Op0.getOpcode() != ISD::UNDEF)
   4752     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   4753                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   4754                       DAG.getIntPtrConstant(0));
   4755   if (Op1.getOpcode() != ISD::UNDEF)
   4756     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   4757                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   4758                       DAG.getIntPtrConstant(1));
   4759   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   4760 }
   4761 
   4762 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   4763 /// element has been zero/sign-extended, depending on the isSigned parameter,
   4764 /// from an integer type half its size.
   4765 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   4766                                    bool isSigned) {
   4767   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   4768   EVT VT = N->getValueType(0);
   4769   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   4770     SDNode *BVN = N->getOperand(0).getNode();
   4771     if (BVN->getValueType(0) != MVT::v4i32 ||
   4772         BVN->getOpcode() != ISD::BUILD_VECTOR)
   4773       return false;
   4774     unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   4775     unsigned HiElt = 1 - LoElt;
   4776     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   4777     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   4778     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   4779     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   4780     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   4781       return false;
   4782     if (isSigned) {
   4783       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   4784           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   4785         return true;
   4786     } else {
   4787       if (Hi0->isNullValue() && Hi1->isNullValue())
   4788         return true;
   4789     }
   4790     return false;
   4791   }
   4792 
   4793   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4794     return false;
   4795 
   4796   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   4797     SDNode *Elt = N->getOperand(i).getNode();
   4798     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   4799       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4800       unsigned HalfSize = EltSize / 2;
   4801       if (isSigned) {
   4802         if (!isIntN(HalfSize, C->getSExtValue()))
   4803           return false;
   4804       } else {
   4805         if (!isUIntN(HalfSize, C->getZExtValue()))
   4806           return false;
   4807       }
   4808       continue;
   4809     }
   4810     return false;
   4811   }
   4812 
   4813   return true;
   4814 }
   4815 
   4816 /// isSignExtended - Check if a node is a vector value that is sign-extended
   4817 /// or a constant BUILD_VECTOR with sign-extended elements.
   4818 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   4819   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   4820     return true;
   4821   if (isExtendedBUILD_VECTOR(N, DAG, true))
   4822     return true;
   4823   return false;
   4824 }
   4825 
   4826 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   4827 /// or a constant BUILD_VECTOR with zero-extended elements.
   4828 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   4829   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   4830     return true;
   4831   if (isExtendedBUILD_VECTOR(N, DAG, false))
   4832     return true;
   4833   return false;
   4834 }
   4835 
   4836 /// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
   4837 /// load, or BUILD_VECTOR with extended elements, return the unextended value.
   4838 static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
   4839   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   4840     return N->getOperand(0);
   4841   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
   4842     return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
   4843                        LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
   4844                        LD->isNonTemporal(), LD->isInvariant(),
   4845                        LD->getAlignment());
   4846   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   4847   // have been legalized as a BITCAST from v4i32.
   4848   if (N->getOpcode() == ISD::BITCAST) {
   4849     SDNode *BVN = N->getOperand(0).getNode();
   4850     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   4851            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   4852     unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   4853     return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
   4854                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
   4855   }
   4856   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   4857   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   4858   EVT VT = N->getValueType(0);
   4859   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
   4860   unsigned NumElts = VT.getVectorNumElements();
   4861   MVT TruncVT = MVT::getIntegerVT(EltSize);
   4862   SmallVector<SDValue, 8> Ops;
   4863   for (unsigned i = 0; i != NumElts; ++i) {
   4864     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   4865     const APInt &CInt = C->getAPIntValue();
   4866     // Element types smaller than 32 bits are not legal, so use i32 elements.
   4867     // The values are implicitly truncated so sext vs. zext doesn't matter.
   4868     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
   4869   }
   4870   return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
   4871                      MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
   4872 }
   4873 
   4874 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   4875   unsigned Opcode = N->getOpcode();
   4876   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   4877     SDNode *N0 = N->getOperand(0).getNode();
   4878     SDNode *N1 = N->getOperand(1).getNode();
   4879     return N0->hasOneUse() && N1->hasOneUse() &&
   4880       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   4881   }
   4882   return false;
   4883 }
   4884 
   4885 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   4886   unsigned Opcode = N->getOpcode();
   4887   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   4888     SDNode *N0 = N->getOperand(0).getNode();
   4889     SDNode *N1 = N->getOperand(1).getNode();
   4890     return N0->hasOneUse() && N1->hasOneUse() &&
   4891       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   4892   }
   4893   return false;
   4894 }
   4895 
   4896 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   4897   // Multiplications are only custom-lowered for 128-bit vectors so that
   4898   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   4899   EVT VT = Op.getValueType();
   4900   assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
   4901   SDNode *N0 = Op.getOperand(0).getNode();
   4902   SDNode *N1 = Op.getOperand(1).getNode();
   4903   unsigned NewOpc = 0;
   4904   bool isMLA = false;
   4905   bool isN0SExt = isSignExtended(N0, DAG);
   4906   bool isN1SExt = isSignExtended(N1, DAG);
   4907   if (isN0SExt && isN1SExt)
   4908     NewOpc = ARMISD::VMULLs;
   4909   else {
   4910     bool isN0ZExt = isZeroExtended(N0, DAG);
   4911     bool isN1ZExt = isZeroExtended(N1, DAG);
   4912     if (isN0ZExt && isN1ZExt)
   4913       NewOpc = ARMISD::VMULLu;
   4914     else if (isN1SExt || isN1ZExt) {
   4915       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   4916       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   4917       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   4918         NewOpc = ARMISD::VMULLs;
   4919         isMLA = true;
   4920       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   4921         NewOpc = ARMISD::VMULLu;
   4922         isMLA = true;
   4923       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   4924         std::swap(N0, N1);
   4925         NewOpc = ARMISD::VMULLu;
   4926         isMLA = true;
   4927       }
   4928     }
   4929 
   4930     if (!NewOpc) {
   4931       if (VT == MVT::v2i64)
   4932         // Fall through to expand this.  It is not legal.
   4933         return SDValue();
   4934       else
   4935         // Other vector multiplications are legal.
   4936         return Op;
   4937     }
   4938   }
   4939 
   4940   // Legalize to a VMULL instruction.
   4941   DebugLoc DL = Op.getDebugLoc();
   4942   SDValue Op0;
   4943   SDValue Op1 = SkipExtension(N1, DAG);
   4944   if (!isMLA) {
   4945     Op0 = SkipExtension(N0, DAG);
   4946     assert(Op0.getValueType().is64BitVector() &&
   4947            Op1.getValueType().is64BitVector() &&
   4948            "unexpected types for extended operands to VMULL");
   4949     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   4950   }
   4951 
   4952   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   4953   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   4954   //   vmull q0, d4, d6
   4955   //   vmlal q0, d5, d6
   4956   // is faster than
   4957   //   vaddl q0, d4, d5
   4958   //   vmovl q1, d6
   4959   //   vmul  q0, q0, q1
   4960   SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
   4961   SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
   4962   EVT Op1VT = Op1.getValueType();
   4963   return DAG.getNode(N0->getOpcode(), DL, VT,
   4964                      DAG.getNode(NewOpc, DL, VT,
   4965                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   4966                      DAG.getNode(NewOpc, DL, VT,
   4967                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   4968 }
   4969 
   4970 static SDValue
   4971 LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
   4972   // Convert to float
   4973   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   4974   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   4975   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   4976   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   4977   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   4978   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   4979   // Get reciprocal estimate.
   4980   // float4 recip = vrecpeq_f32(yf);
   4981   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4982                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
   4983   // Because char has a smaller range than uchar, we can actually get away
   4984   // without any newton steps.  This requires that we use a weird bias
   4985   // of 0xb000, however (again, this has been exhaustively tested).
   4986   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   4987   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   4988   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   4989   Y = DAG.getConstant(0xb000, MVT::i32);
   4990   Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
   4991   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   4992   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   4993   // Convert back to short.
   4994   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   4995   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   4996   return X;
   4997 }
   4998 
   4999 static SDValue
   5000 LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
   5001   SDValue N2;
   5002   // Convert to float.
   5003   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   5004   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   5005   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   5006   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   5007   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   5008   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   5009 
   5010   // Use reciprocal estimate and one refinement step.
   5011   // float4 recip = vrecpeq_f32(yf);
   5012   // recip *= vrecpsq_f32(yf, recip);
   5013   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5014                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
   5015   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5016                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   5017                    N1, N2);
   5018   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   5019   // Because short has a smaller range than ushort, we can actually get away
   5020   // with only a single newton step.  This requires that we use a weird bias
   5021   // of 89, however (again, this has been exhaustively tested).
   5022   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   5023   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   5024   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   5025   N1 = DAG.getConstant(0x89, MVT::i32);
   5026   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   5027   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   5028   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   5029   // Convert back to integer and return.
   5030   // return vmovn_s32(vcvt_s32_f32(result));
   5031   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   5032   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   5033   return N0;
   5034 }
   5035 
   5036 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   5037   EVT VT = Op.getValueType();
   5038   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   5039          "unexpected type for custom-lowering ISD::SDIV");
   5040 
   5041   DebugLoc dl = Op.getDebugLoc();
   5042   SDValue N0 = Op.getOperand(0);
   5043   SDValue N1 = Op.getOperand(1);
   5044   SDValue N2, N3;
   5045 
   5046   if (VT == MVT::v8i8) {
   5047     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   5048     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   5049 
   5050     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5051                      DAG.getIntPtrConstant(4));
   5052     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5053                      DAG.getIntPtrConstant(4));
   5054     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5055                      DAG.getIntPtrConstant(0));
   5056     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5057                      DAG.getIntPtrConstant(0));
   5058 
   5059     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   5060     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   5061 
   5062     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   5063     N0 = LowerCONCAT_VECTORS(N0, DAG);
   5064 
   5065     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   5066     return N0;
   5067   }
   5068   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   5069 }
   5070 
   5071 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   5072   EVT VT = Op.getValueType();
   5073   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   5074          "unexpected type for custom-lowering ISD::UDIV");
   5075 
   5076   DebugLoc dl = Op.getDebugLoc();
   5077   SDValue N0 = Op.getOperand(0);
   5078   SDValue N1 = Op.getOperand(1);
   5079   SDValue N2, N3;
   5080 
   5081   if (VT == MVT::v8i8) {
   5082     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   5083     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   5084 
   5085     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5086                      DAG.getIntPtrConstant(4));
   5087     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5088                      DAG.getIntPtrConstant(4));
   5089     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5090                      DAG.getIntPtrConstant(0));
   5091     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5092                      DAG.getIntPtrConstant(0));
   5093 
   5094     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   5095     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   5096 
   5097     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   5098     N0 = LowerCONCAT_VECTORS(N0, DAG);
   5099 
   5100     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   5101                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
   5102                      N0);
   5103     return N0;
   5104   }
   5105 
   5106   // v4i16 sdiv ... Convert to float.
   5107   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   5108   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   5109   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   5110   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   5111   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   5112   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   5113 
   5114   // Use reciprocal estimate and two refinement steps.
   5115   // float4 recip = vrecpeq_f32(yf);
   5116   // recip *= vrecpsq_f32(yf, recip);
   5117   // recip *= vrecpsq_f32(yf, recip);
   5118   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5119                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
   5120   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5121                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   5122                    BN1, N2);
   5123   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   5124   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5125                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   5126                    BN1, N2);
   5127   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   5128   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   5129   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   5130   // and that it will never cause us to return an answer too large).
   5131   // float4 result = as_float4(as_int4(xf*recip) + 2);
   5132   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   5133   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   5134   N1 = DAG.getConstant(2, MVT::i32);
   5135   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   5136   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   5137   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   5138   // Convert back to integer and return.
   5139   // return vmovn_u32(vcvt_s32_f32(result));
   5140   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   5141   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   5142   return N0;
   5143 }
   5144 
   5145 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   5146   EVT VT = Op.getNode()->getValueType(0);
   5147   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   5148 
   5149   unsigned Opc;
   5150   bool ExtraOp = false;
   5151   switch (Op.getOpcode()) {
   5152   default: llvm_unreachable("Invalid code");
   5153   case ISD::ADDC: Opc = ARMISD::ADDC; break;
   5154   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
   5155   case ISD::SUBC: Opc = ARMISD::SUBC; break;
   5156   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
   5157   }
   5158 
   5159   if (!ExtraOp)
   5160     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   5161                        Op.getOperand(1));
   5162   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   5163                      Op.getOperand(1), Op.getOperand(2));
   5164 }
   5165 
   5166 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   5167   // Monotonic load/store is legal for all targets
   5168   if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
   5169     return Op;
   5170 
   5171   // Aquire/Release load/store is not legal for targets without a
   5172   // dmb or equivalent available.
   5173   return SDValue();
   5174 }
   5175 
   5176 
   5177 static void
   5178 ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
   5179                     SelectionDAG &DAG, unsigned NewOp) {
   5180   DebugLoc dl = Node->getDebugLoc();
   5181   assert (Node->getValueType(0) == MVT::i64 &&
   5182           "Only know how to expand i64 atomics");
   5183 
   5184   SmallVector<SDValue, 6> Ops;
   5185   Ops.push_back(Node->getOperand(0)); // Chain
   5186   Ops.push_back(Node->getOperand(1)); // Ptr
   5187   // Low part of Val1
   5188   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5189                             Node->getOperand(2), DAG.getIntPtrConstant(0)));
   5190   // High part of Val1
   5191   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5192                             Node->getOperand(2), DAG.getIntPtrConstant(1)));
   5193   if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
   5194     // High part of Val1
   5195     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5196                               Node->getOperand(3), DAG.getIntPtrConstant(0)));
   5197     // High part of Val2
   5198     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5199                               Node->getOperand(3), DAG.getIntPtrConstant(1)));
   5200   }
   5201   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   5202   SDValue Result =
   5203     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
   5204                             cast<MemSDNode>(Node)->getMemOperand());
   5205   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
   5206   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   5207   Results.push_back(Result.getValue(2));
   5208 }
   5209 
   5210 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   5211   switch (Op.getOpcode()) {
   5212   default: llvm_unreachable("Don't know how to custom lower this!");
   5213   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
   5214   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   5215   case ISD::GlobalAddress:
   5216     return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
   5217       LowerGlobalAddressELF(Op, DAG);
   5218   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   5219   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   5220   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   5221   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   5222   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   5223   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   5224   case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
   5225   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   5226   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   5227   case ISD::SINT_TO_FP:
   5228   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   5229   case ISD::FP_TO_SINT:
   5230   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   5231   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   5232   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   5233   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   5234   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
   5235   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   5236   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   5237   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   5238                                                                Subtarget);
   5239   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
   5240   case ISD::SHL:
   5241   case ISD::SRL:
   5242   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   5243   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   5244   case ISD::SRL_PARTS:
   5245   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   5246   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   5247   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   5248   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
   5249   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   5250   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   5251   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
   5252   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   5253   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   5254   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   5255   case ISD::MUL:           return LowerMUL(Op, DAG);
   5256   case ISD::SDIV:          return LowerSDIV(Op, DAG);
   5257   case ISD::UDIV:          return LowerUDIV(Op, DAG);
   5258   case ISD::ADDC:
   5259   case ISD::ADDE:
   5260   case ISD::SUBC:
   5261   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   5262   case ISD::ATOMIC_LOAD:
   5263   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   5264   }
   5265 }
   5266 
   5267 /// ReplaceNodeResults - Replace the results of node with an illegal result
   5268 /// type with new values built out of custom code.
   5269 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   5270                                            SmallVectorImpl<SDValue>&Results,
   5271                                            SelectionDAG &DAG) const {
   5272   SDValue Res;
   5273   switch (N->getOpcode()) {
   5274   default:
   5275     llvm_unreachable("Don't know how to custom expand this!");
   5276   case ISD::BITCAST:
   5277     Res = ExpandBITCAST(N, DAG);
   5278     break;
   5279   case ISD::SRL:
   5280   case ISD::SRA:
   5281     Res = Expand64BitShift(N, DAG, Subtarget);
   5282     break;
   5283   case ISD::ATOMIC_LOAD_ADD:
   5284     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
   5285     return;
   5286   case ISD::ATOMIC_LOAD_AND:
   5287     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
   5288     return;
   5289   case ISD::ATOMIC_LOAD_NAND:
   5290     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
   5291     return;
   5292   case ISD::ATOMIC_LOAD_OR:
   5293     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
   5294     return;
   5295   case ISD::ATOMIC_LOAD_SUB:
   5296     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
   5297     return;
   5298   case ISD::ATOMIC_LOAD_XOR:
   5299     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
   5300     return;
   5301   case ISD::ATOMIC_SWAP:
   5302     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
   5303     return;
   5304   case ISD::ATOMIC_CMP_SWAP:
   5305     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
   5306     return;
   5307   }
   5308   if (Res.getNode())
   5309     Results.push_back(Res);
   5310 }
   5311 
   5312 //===----------------------------------------------------------------------===//
   5313 //                           ARM Scheduler Hooks
   5314 //===----------------------------------------------------------------------===//
   5315 
   5316 MachineBasicBlock *
   5317 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
   5318                                      MachineBasicBlock *BB,
   5319                                      unsigned Size) const {
   5320   unsigned dest    = MI->getOperand(0).getReg();
   5321   unsigned ptr     = MI->getOperand(1).getReg();
   5322   unsigned oldval  = MI->getOperand(2).getReg();
   5323   unsigned newval  = MI->getOperand(3).getReg();
   5324   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5325   DebugLoc dl = MI->getDebugLoc();
   5326   bool isThumb2 = Subtarget->isThumb2();
   5327 
   5328   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5329   unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
   5330     (const TargetRegisterClass*)&ARM::rGPRRegClass :
   5331     (const TargetRegisterClass*)&ARM::GPRRegClass);
   5332 
   5333   if (isThumb2) {
   5334     MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
   5335     MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
   5336     MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
   5337   }
   5338 
   5339   unsigned ldrOpc, strOpc;
   5340   switch (Size) {
   5341   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5342   case 1:
   5343     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5344     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5345     break;
   5346   case 2:
   5347     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5348     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5349     break;
   5350   case 4:
   5351     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5352     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5353     break;
   5354   }
   5355 
   5356   MachineFunction *MF = BB->getParent();
   5357   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5358   MachineFunction::iterator It = BB;
   5359   ++It; // insert the new blocks after the current block
   5360 
   5361   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5362   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5363   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5364   MF->insert(It, loop1MBB);
   5365   MF->insert(It, loop2MBB);
   5366   MF->insert(It, exitMBB);
   5367 
   5368   // Transfer the remainder of BB and its successor edges to exitMBB.
   5369   exitMBB->splice(exitMBB->begin(), BB,
   5370                   llvm::next(MachineBasicBlock::iterator(MI)),
   5371                   BB->end());
   5372   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5373 
   5374   //  thisMBB:
   5375   //   ...
   5376   //   fallthrough --> loop1MBB
   5377   BB->addSuccessor(loop1MBB);
   5378 
   5379   // loop1MBB:
   5380   //   ldrex dest, [ptr]
   5381   //   cmp dest, oldval
   5382   //   bne exitMBB
   5383   BB = loop1MBB;
   5384   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5385   if (ldrOpc == ARM::t2LDREX)
   5386     MIB.addImm(0);
   5387   AddDefaultPred(MIB);
   5388   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   5389                  .addReg(dest).addReg(oldval));
   5390   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5391     .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5392   BB->addSuccessor(loop2MBB);
   5393   BB->addSuccessor(exitMBB);
   5394 
   5395   // loop2MBB:
   5396   //   strex scratch, newval, [ptr]
   5397   //   cmp scratch, #0
   5398   //   bne loop1MBB
   5399   BB = loop2MBB;
   5400   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
   5401   if (strOpc == ARM::t2STREX)
   5402     MIB.addImm(0);
   5403   AddDefaultPred(MIB);
   5404   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5405                  .addReg(scratch).addImm(0));
   5406   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5407     .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5408   BB->addSuccessor(loop1MBB);
   5409   BB->addSuccessor(exitMBB);
   5410 
   5411   //  exitMBB:
   5412   //   ...
   5413   BB = exitMBB;
   5414 
   5415   MI->eraseFromParent();   // The instruction is gone now.
   5416 
   5417   return BB;
   5418 }
   5419 
   5420 MachineBasicBlock *
   5421 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   5422                                     unsigned Size, unsigned BinOpcode) const {
   5423   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   5424   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5425 
   5426   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5427   MachineFunction *MF = BB->getParent();
   5428   MachineFunction::iterator It = BB;
   5429   ++It;
   5430 
   5431   unsigned dest = MI->getOperand(0).getReg();
   5432   unsigned ptr = MI->getOperand(1).getReg();
   5433   unsigned incr = MI->getOperand(2).getReg();
   5434   DebugLoc dl = MI->getDebugLoc();
   5435   bool isThumb2 = Subtarget->isThumb2();
   5436 
   5437   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5438   if (isThumb2) {
   5439     MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
   5440     MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
   5441   }
   5442 
   5443   unsigned ldrOpc, strOpc;
   5444   switch (Size) {
   5445   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5446   case 1:
   5447     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5448     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5449     break;
   5450   case 2:
   5451     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5452     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5453     break;
   5454   case 4:
   5455     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5456     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5457     break;
   5458   }
   5459 
   5460   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5461   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5462   MF->insert(It, loopMBB);
   5463   MF->insert(It, exitMBB);
   5464 
   5465   // Transfer the remainder of BB and its successor edges to exitMBB.
   5466   exitMBB->splice(exitMBB->begin(), BB,
   5467                   llvm::next(MachineBasicBlock::iterator(MI)),
   5468                   BB->end());
   5469   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5470 
   5471   const TargetRegisterClass *TRC = isThumb2 ?
   5472     (const TargetRegisterClass*)&ARM::rGPRRegClass :
   5473     (const TargetRegisterClass*)&ARM::GPRRegClass;
   5474   unsigned scratch = MRI.createVirtualRegister(TRC);
   5475   unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
   5476 
   5477   //  thisMBB:
   5478   //   ...
   5479   //   fallthrough --> loopMBB
   5480   BB->addSuccessor(loopMBB);
   5481 
   5482   //  loopMBB:
   5483   //   ldrex dest, ptr
   5484   //   <binop> scratch2, dest, incr
   5485   //   strex scratch, scratch2, ptr
   5486   //   cmp scratch, #0
   5487   //   bne- loopMBB
   5488   //   fallthrough --> exitMBB
   5489   BB = loopMBB;
   5490   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5491   if (ldrOpc == ARM::t2LDREX)
   5492     MIB.addImm(0);
   5493   AddDefaultPred(MIB);
   5494   if (BinOpcode) {
   5495     // operand order needs to go the other way for NAND
   5496     if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
   5497       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
   5498                      addReg(incr).addReg(dest)).addReg(0);
   5499     else
   5500       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
   5501                      addReg(dest).addReg(incr)).addReg(0);
   5502   }
   5503 
   5504   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
   5505   if (strOpc == ARM::t2STREX)
   5506     MIB.addImm(0);
   5507   AddDefaultPred(MIB);
   5508   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5509                  .addReg(scratch).addImm(0));
   5510   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5511     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5512 
   5513   BB->addSuccessor(loopMBB);
   5514   BB->addSuccessor(exitMBB);
   5515 
   5516   //  exitMBB:
   5517   //   ...
   5518   BB = exitMBB;
   5519 
   5520   MI->eraseFromParent();   // The instruction is gone now.
   5521 
   5522   return BB;
   5523 }
   5524 
   5525 MachineBasicBlock *
   5526 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
   5527                                           MachineBasicBlock *BB,
   5528                                           unsigned Size,
   5529                                           bool signExtend,
   5530                                           ARMCC::CondCodes Cond) const {
   5531   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5532 
   5533   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5534   MachineFunction *MF = BB->getParent();
   5535   MachineFunction::iterator It = BB;
   5536   ++It;
   5537 
   5538   unsigned dest = MI->getOperand(0).getReg();
   5539   unsigned ptr = MI->getOperand(1).getReg();
   5540   unsigned incr = MI->getOperand(2).getReg();
   5541   unsigned oldval = dest;
   5542   DebugLoc dl = MI->getDebugLoc();
   5543   bool isThumb2 = Subtarget->isThumb2();
   5544 
   5545   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5546   if (isThumb2) {
   5547     MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
   5548     MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
   5549   }
   5550 
   5551   unsigned ldrOpc, strOpc, extendOpc;
   5552   switch (Size) {
   5553   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5554   case 1:
   5555     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5556     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5557     extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
   5558     break;
   5559   case 2:
   5560     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5561     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5562     extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
   5563     break;
   5564   case 4:
   5565     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5566     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5567     extendOpc = 0;
   5568     break;
   5569   }
   5570 
   5571   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5572   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5573   MF->insert(It, loopMBB);
   5574   MF->insert(It, exitMBB);
   5575 
   5576   // Transfer the remainder of BB and its successor edges to exitMBB.
   5577   exitMBB->splice(exitMBB->begin(), BB,
   5578                   llvm::next(MachineBasicBlock::iterator(MI)),
   5579                   BB->end());
   5580   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5581 
   5582   const TargetRegisterClass *TRC = isThumb2 ?
   5583     (const TargetRegisterClass*)&ARM::rGPRRegClass :
   5584     (const TargetRegisterClass*)&ARM::GPRRegClass;
   5585   unsigned scratch = MRI.createVirtualRegister(TRC);
   5586   unsigned scratch2 = MRI.createVirtualRegister(TRC);
   5587 
   5588   //  thisMBB:
   5589   //   ...
   5590   //   fallthrough --> loopMBB
   5591   BB->addSuccessor(loopMBB);
   5592 
   5593   //  loopMBB:
   5594   //   ldrex dest, ptr
   5595   //   (sign extend dest, if required)
   5596   //   cmp dest, incr
   5597   //   cmov.cond scratch2, dest, incr
   5598   //   strex scratch, scratch2, ptr
   5599   //   cmp scratch, #0
   5600   //   bne- loopMBB
   5601   //   fallthrough --> exitMBB
   5602   BB = loopMBB;
   5603   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5604   if (ldrOpc == ARM::t2LDREX)
   5605     MIB.addImm(0);
   5606   AddDefaultPred(MIB);
   5607 
   5608   // Sign extend the value, if necessary.
   5609   if (signExtend && extendOpc) {
   5610     oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
   5611     AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
   5612                      .addReg(dest)
   5613                      .addImm(0));
   5614   }
   5615 
   5616   // Build compare and cmov instructions.
   5617   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   5618                  .addReg(oldval).addReg(incr));
   5619   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
   5620          .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
   5621 
   5622   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
   5623   if (strOpc == ARM::t2STREX)
   5624     MIB.addImm(0);
   5625   AddDefaultPred(MIB);
   5626   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5627                  .addReg(scratch).addImm(0));
   5628   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5629     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5630 
   5631   BB->addSuccessor(loopMBB);
   5632   BB->addSuccessor(exitMBB);
   5633 
   5634   //  exitMBB:
   5635   //   ...
   5636   BB = exitMBB;
   5637 
   5638   MI->eraseFromParent();   // The instruction is gone now.
   5639 
   5640   return BB;
   5641 }
   5642 
   5643 MachineBasicBlock *
   5644 ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
   5645                                       unsigned Op1, unsigned Op2,
   5646                                       bool NeedsCarry, bool IsCmpxchg) const {
   5647   // This also handles ATOMIC_SWAP, indicated by Op1==0.
   5648   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5649 
   5650   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5651   MachineFunction *MF = BB->getParent();
   5652   MachineFunction::iterator It = BB;
   5653   ++It;
   5654 
   5655   unsigned destlo = MI->getOperand(0).getReg();
   5656   unsigned desthi = MI->getOperand(1).getReg();
   5657   unsigned ptr = MI->getOperand(2).getReg();
   5658   unsigned vallo = MI->getOperand(3).getReg();
   5659   unsigned valhi = MI->getOperand(4).getReg();
   5660   DebugLoc dl = MI->getDebugLoc();
   5661   bool isThumb2 = Subtarget->isThumb2();
   5662 
   5663   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5664   if (isThumb2) {
   5665     MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
   5666     MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
   5667     MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
   5668   }
   5669 
   5670   unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
   5671   unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
   5672 
   5673   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5674   MachineBasicBlock *contBB = 0, *cont2BB = 0;
   5675   if (IsCmpxchg) {
   5676     contBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5677     cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
   5678   }
   5679   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5680   MF->insert(It, loopMBB);
   5681   if (IsCmpxchg) {
   5682     MF->insert(It, contBB);
   5683     MF->insert(It, cont2BB);
   5684   }
   5685   MF->insert(It, exitMBB);
   5686 
   5687   // Transfer the remainder of BB and its successor edges to exitMBB.
   5688   exitMBB->splice(exitMBB->begin(), BB,
   5689                   llvm::next(MachineBasicBlock::iterator(MI)),
   5690                   BB->end());
   5691   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5692 
   5693   const TargetRegisterClass *TRC = isThumb2 ?
   5694     (const TargetRegisterClass*)&ARM::tGPRRegClass :
   5695     (const TargetRegisterClass*)&ARM::GPRRegClass;
   5696   unsigned storesuccess = MRI.createVirtualRegister(TRC);
   5697 
   5698   //  thisMBB:
   5699   //   ...
   5700   //   fallthrough --> loopMBB
   5701   BB->addSuccessor(loopMBB);
   5702 
   5703   //  loopMBB:
   5704   //   ldrexd r2, r3, ptr
   5705   //   <binopa> r0, r2, incr
   5706   //   <binopb> r1, r3, incr
   5707   //   strexd storesuccess, r0, r1, ptr
   5708   //   cmp storesuccess, #0
   5709   //   bne- loopMBB
   5710   //   fallthrough --> exitMBB
   5711   //
   5712   // Note that the registers are explicitly specified because there is not any
   5713   // way to force the register allocator to allocate a register pair.
   5714   //
   5715   // FIXME: The hardcoded registers are not necessary for Thumb2, but we
   5716   // need to properly enforce the restriction that the two output registers
   5717   // for ldrexd must be different.
   5718   BB = loopMBB;
   5719   // Load
   5720   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
   5721                  .addReg(ARM::R2, RegState::Define)
   5722                  .addReg(ARM::R3, RegState::Define).addReg(ptr));
   5723   // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
   5724   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
   5725   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
   5726 
   5727   if (IsCmpxchg) {
   5728     // Add early exit
   5729     for (unsigned i = 0; i < 2; i++) {
   5730       AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
   5731                                                          ARM::CMPrr))
   5732                      .addReg(i == 0 ? destlo : desthi)
   5733                      .addReg(i == 0 ? vallo : valhi));
   5734       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5735         .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5736       BB->addSuccessor(exitMBB);
   5737       BB->addSuccessor(i == 0 ? contBB : cont2BB);
   5738       BB = (i == 0 ? contBB : cont2BB);
   5739     }
   5740 
   5741     // Copy to physregs for strexd
   5742     unsigned setlo = MI->getOperand(5).getReg();
   5743     unsigned sethi = MI->getOperand(6).getReg();
   5744     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
   5745     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
   5746   } else if (Op1) {
   5747     // Perform binary operation
   5748     AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
   5749                    .addReg(destlo).addReg(vallo))
   5750         .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
   5751     AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
   5752                    .addReg(desthi).addReg(valhi)).addReg(0);
   5753   } else {
   5754     // Copy to physregs for strexd
   5755     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
   5756     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
   5757   }
   5758 
   5759   // Store
   5760   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
   5761                  .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
   5762   // Cmp+jump
   5763   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5764                  .addReg(storesuccess).addImm(0));
   5765   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5766     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5767 
   5768   BB->addSuccessor(loopMBB);
   5769   BB->addSuccessor(exitMBB);
   5770 
   5771   //  exitMBB:
   5772   //   ...
   5773   BB = exitMBB;
   5774 
   5775   MI->eraseFromParent();   // The instruction is gone now.
   5776 
   5777   return BB;
   5778 }
   5779 
   5780 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   5781 /// registers the function context.
   5782 void ARMTargetLowering::
   5783 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
   5784                        MachineBasicBlock *DispatchBB, int FI) const {
   5785   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5786   DebugLoc dl = MI->getDebugLoc();
   5787   MachineFunction *MF = MBB->getParent();
   5788   MachineRegisterInfo *MRI = &MF->getRegInfo();
   5789   MachineConstantPool *MCP = MF->getConstantPool();
   5790   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   5791   const Function *F = MF->getFunction();
   5792 
   5793   bool isThumb = Subtarget->isThumb();
   5794   bool isThumb2 = Subtarget->isThumb2();
   5795 
   5796   unsigned PCLabelId = AFI->createPICLabelUId();
   5797   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   5798   ARMConstantPoolValue *CPV =
   5799     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
   5800   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   5801 
   5802   const TargetRegisterClass *TRC = isThumb ?
   5803     (const TargetRegisterClass*)&ARM::tGPRRegClass :
   5804     (const TargetRegisterClass*)&ARM::GPRRegClass;
   5805 
   5806   // Grab constant pool and fixed stack memory operands.
   5807   MachineMemOperand *CPMMO =
   5808     MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
   5809                              MachineMemOperand::MOLoad, 4, 4);
   5810 
   5811   MachineMemOperand *FIMMOSt =
   5812     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   5813                              MachineMemOperand::MOStore, 4, 4);
   5814 
   5815   // Load the address of the dispatch MBB into the jump buffer.
   5816   if (isThumb2) {
   5817     // Incoming value: jbuf
   5818     //   ldr.n  r5, LCPI1_1
   5819     //   orr    r5, r5, #1
   5820     //   add    r5, pc
   5821     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   5822     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5823     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   5824                    .addConstantPoolIndex(CPI)
   5825                    .addMemOperand(CPMMO));
   5826     // Set the low bit because of thumb mode.
   5827     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5828     AddDefaultCC(
   5829       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   5830                      .addReg(NewVReg1, RegState::Kill)
   5831                      .addImm(0x01)));
   5832     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5833     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   5834       .addReg(NewVReg2, RegState::Kill)
   5835       .addImm(PCLabelId);
   5836     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   5837                    .addReg(NewVReg3, RegState::Kill)
   5838                    .addFrameIndex(FI)
   5839                    .addImm(36)  // &jbuf[1] :: pc
   5840                    .addMemOperand(FIMMOSt));
   5841   } else if (isThumb) {
   5842     // Incoming value: jbuf
   5843     //   ldr.n  r1, LCPI1_4
   5844     //   add    r1, pc
   5845     //   mov    r2, #1
   5846     //   orrs   r1, r2
   5847     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   5848     //   str    r1, [r2]
   5849     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5850     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   5851                    .addConstantPoolIndex(CPI)
   5852                    .addMemOperand(CPMMO));
   5853     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5854     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   5855       .addReg(NewVReg1, RegState::Kill)
   5856       .addImm(PCLabelId);
   5857     // Set the low bit because of thumb mode.
   5858     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5859     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   5860                    .addReg(ARM::CPSR, RegState::Define)
   5861                    .addImm(1));
   5862     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   5863     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   5864                    .addReg(ARM::CPSR, RegState::Define)
   5865                    .addReg(NewVReg2, RegState::Kill)
   5866                    .addReg(NewVReg3, RegState::Kill));
   5867     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   5868     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
   5869                    .addFrameIndex(FI)
   5870                    .addImm(36)); // &jbuf[1] :: pc
   5871     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   5872                    .addReg(NewVReg4, RegState::Kill)
   5873                    .addReg(NewVReg5, RegState::Kill)
   5874                    .addImm(0)
   5875                    .addMemOperand(FIMMOSt));
   5876   } else {
   5877     // Incoming value: jbuf
   5878     //   ldr  r1, LCPI1_1
   5879     //   add  r1, pc, r1
   5880     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   5881     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5882     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
   5883                    .addConstantPoolIndex(CPI)
   5884                    .addImm(0)
   5885                    .addMemOperand(CPMMO));
   5886     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5887     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   5888                    .addReg(NewVReg1, RegState::Kill)
   5889                    .addImm(PCLabelId));
   5890     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   5891                    .addReg(NewVReg2, RegState::Kill)
   5892                    .addFrameIndex(FI)
   5893                    .addImm(36)  // &jbuf[1] :: pc
   5894                    .addMemOperand(FIMMOSt));
   5895   }
   5896 }
   5897 
   5898 MachineBasicBlock *ARMTargetLowering::
   5899 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
   5900   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5901   DebugLoc dl = MI->getDebugLoc();
   5902   MachineFunction *MF = MBB->getParent();
   5903   MachineRegisterInfo *MRI = &MF->getRegInfo();
   5904   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   5905   MachineFrameInfo *MFI = MF->getFrameInfo();
   5906   int FI = MFI->getFunctionContextIndex();
   5907 
   5908   const TargetRegisterClass *TRC = Subtarget->isThumb() ?
   5909     (const TargetRegisterClass*)&ARM::tGPRRegClass :
   5910     (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
   5911 
   5912   // Get a mapping of the call site numbers to all of the landing pads they're
   5913   // associated with.
   5914   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
   5915   unsigned MaxCSNum = 0;
   5916   MachineModuleInfo &MMI = MF->getMMI();
   5917   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
   5918        ++BB) {
   5919     if (!BB->isLandingPad()) continue;
   5920 
   5921     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   5922     // pad.
   5923     for (MachineBasicBlock::iterator
   5924            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   5925       if (!II->isEHLabel()) continue;
   5926 
   5927       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   5928       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
   5929 
   5930       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
   5931       for (SmallVectorImpl<unsigned>::iterator
   5932              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   5933            CSI != CSE; ++CSI) {
   5934         CallSiteNumToLPad[*CSI].push_back(BB);
   5935         MaxCSNum = std::max(MaxCSNum, *CSI);
   5936       }
   5937       break;
   5938     }
   5939   }
   5940 
   5941   // Get an ordered list of the machine basic blocks for the jump table.
   5942   std::vector<MachineBasicBlock*> LPadList;
   5943   SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
   5944   LPadList.reserve(CallSiteNumToLPad.size());
   5945   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   5946     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   5947     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   5948            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   5949       LPadList.push_back(*II);
   5950       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   5951     }
   5952   }
   5953 
   5954   assert(!LPadList.empty() &&
   5955          "No landing pad destinations for the dispatch jump table!");
   5956 
   5957   // Create the jump table and associated information.
   5958   MachineJumpTableInfo *JTI =
   5959     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   5960   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   5961   unsigned UId = AFI->createJumpTableUId();
   5962 
   5963   // Create the MBBs for the dispatch code.
   5964 
   5965   // Shove the dispatch's address into the return slot in the function context.
   5966   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   5967   DispatchBB->setIsLandingPad();
   5968 
   5969   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   5970   BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
   5971   DispatchBB->addSuccessor(TrapBB);
   5972 
   5973   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   5974   DispatchBB->addSuccessor(DispContBB);
   5975 
   5976   // Insert and MBBs.
   5977   MF->insert(MF->end(), DispatchBB);
   5978   MF->insert(MF->end(), DispContBB);
   5979   MF->insert(MF->end(), TrapBB);
   5980 
   5981   // Insert code into the entry block that creates and registers the function
   5982   // context.
   5983   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   5984 
   5985   MachineMemOperand *FIMMOLd =
   5986     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   5987                              MachineMemOperand::MOLoad |
   5988                              MachineMemOperand::MOVolatile, 4, 4);
   5989 
   5990   if (AFI->isThumb1OnlyFunction())
   5991     BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
   5992   else if (!Subtarget->hasVFP2())
   5993     BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
   5994   else
   5995     BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
   5996 
   5997   unsigned NumLPads = LPadList.size();
   5998   if (Subtarget->isThumb2()) {
   5999     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6000     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   6001                    .addFrameIndex(FI)
   6002                    .addImm(4)
   6003                    .addMemOperand(FIMMOLd));
   6004 
   6005     if (NumLPads < 256) {
   6006       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   6007                      .addReg(NewVReg1)
   6008                      .addImm(LPadList.size()));
   6009     } else {
   6010       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6011       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   6012                      .addImm(NumLPads & 0xFFFF));
   6013 
   6014       unsigned VReg2 = VReg1;
   6015       if ((NumLPads & 0xFFFF0000) != 0) {
   6016         VReg2 = MRI->createVirtualRegister(TRC);
   6017         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   6018                        .addReg(VReg1)
   6019                        .addImm(NumLPads >> 16));
   6020       }
   6021 
   6022       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   6023                      .addReg(NewVReg1)
   6024                      .addReg(VReg2));
   6025     }
   6026 
   6027     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   6028       .addMBB(TrapBB)
   6029       .addImm(ARMCC::HI)
   6030       .addReg(ARM::CPSR);
   6031 
   6032     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6033     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
   6034                    .addJumpTableIndex(MJTI)
   6035                    .addImm(UId));
   6036 
   6037     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6038     AddDefaultCC(
   6039       AddDefaultPred(
   6040         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   6041         .addReg(NewVReg3, RegState::Kill)
   6042         .addReg(NewVReg1)
   6043         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   6044 
   6045     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   6046       .addReg(NewVReg4, RegState::Kill)
   6047       .addReg(NewVReg1)
   6048       .addJumpTableIndex(MJTI)
   6049       .addImm(UId);
   6050   } else if (Subtarget->isThumb()) {
   6051     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6052     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   6053                    .addFrameIndex(FI)
   6054                    .addImm(1)
   6055                    .addMemOperand(FIMMOLd));
   6056 
   6057     if (NumLPads < 256) {
   6058       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   6059                      .addReg(NewVReg1)
   6060                      .addImm(NumLPads));
   6061     } else {
   6062       MachineConstantPool *ConstantPool = MF->getConstantPool();
   6063       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6064       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   6065 
   6066       // MachineConstantPool wants an explicit alignment.
   6067       unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
   6068       if (Align == 0)
   6069         Align = getTargetData()->getTypeAllocSize(C->getType());
   6070       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6071 
   6072       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6073       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   6074                      .addReg(VReg1, RegState::Define)
   6075                      .addConstantPoolIndex(Idx));
   6076       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   6077                      .addReg(NewVReg1)
   6078                      .addReg(VReg1));
   6079     }
   6080 
   6081     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   6082       .addMBB(TrapBB)
   6083       .addImm(ARMCC::HI)
   6084       .addReg(ARM::CPSR);
   6085 
   6086     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6087     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   6088                    .addReg(ARM::CPSR, RegState::Define)
   6089                    .addReg(NewVReg1)
   6090                    .addImm(2));
   6091 
   6092     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6093     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   6094                    .addJumpTableIndex(MJTI)
   6095                    .addImm(UId));
   6096 
   6097     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6098     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   6099                    .addReg(ARM::CPSR, RegState::Define)
   6100                    .addReg(NewVReg2, RegState::Kill)
   6101                    .addReg(NewVReg3));
   6102 
   6103     MachineMemOperand *JTMMOLd =
   6104       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6105                                MachineMemOperand::MOLoad, 4, 4);
   6106 
   6107     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6108     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   6109                    .addReg(NewVReg4, RegState::Kill)
   6110                    .addImm(0)
   6111                    .addMemOperand(JTMMOLd));
   6112 
   6113     unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
   6114     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   6115                    .addReg(ARM::CPSR, RegState::Define)
   6116                    .addReg(NewVReg5, RegState::Kill)
   6117                    .addReg(NewVReg3));
   6118 
   6119     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   6120       .addReg(NewVReg6, RegState::Kill)
   6121       .addJumpTableIndex(MJTI)
   6122       .addImm(UId);
   6123   } else {
   6124     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6125     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   6126                    .addFrameIndex(FI)
   6127                    .addImm(4)
   6128                    .addMemOperand(FIMMOLd));
   6129 
   6130     if (NumLPads < 256) {
   6131       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   6132                      .addReg(NewVReg1)
   6133                      .addImm(NumLPads));
   6134     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   6135       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6136       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   6137                      .addImm(NumLPads & 0xFFFF));
   6138 
   6139       unsigned VReg2 = VReg1;
   6140       if ((NumLPads & 0xFFFF0000) != 0) {
   6141         VReg2 = MRI->createVirtualRegister(TRC);
   6142         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   6143                        .addReg(VReg1)
   6144                        .addImm(NumLPads >> 16));
   6145       }
   6146 
   6147       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6148                      .addReg(NewVReg1)
   6149                      .addReg(VReg2));
   6150     } else {
   6151       MachineConstantPool *ConstantPool = MF->getConstantPool();
   6152       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6153       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   6154 
   6155       // MachineConstantPool wants an explicit alignment.
   6156       unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
   6157       if (Align == 0)
   6158         Align = getTargetData()->getTypeAllocSize(C->getType());
   6159       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6160 
   6161       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6162       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   6163                      .addReg(VReg1, RegState::Define)
   6164                      .addConstantPoolIndex(Idx)
   6165                      .addImm(0));
   6166       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6167                      .addReg(NewVReg1)
   6168                      .addReg(VReg1, RegState::Kill));
   6169     }
   6170 
   6171     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   6172       .addMBB(TrapBB)
   6173       .addImm(ARMCC::HI)
   6174       .addReg(ARM::CPSR);
   6175 
   6176     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6177     AddDefaultCC(
   6178       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   6179                      .addReg(NewVReg1)
   6180                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   6181     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6182     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   6183                    .addJumpTableIndex(MJTI)
   6184                    .addImm(UId));
   6185 
   6186     MachineMemOperand *JTMMOLd =
   6187       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6188                                MachineMemOperand::MOLoad, 4, 4);
   6189     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6190     AddDefaultPred(
   6191       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   6192       .addReg(NewVReg3, RegState::Kill)
   6193       .addReg(NewVReg4)
   6194       .addImm(0)
   6195       .addMemOperand(JTMMOLd));
   6196 
   6197     BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   6198       .addReg(NewVReg5, RegState::Kill)
   6199       .addReg(NewVReg4)
   6200       .addJumpTableIndex(MJTI)
   6201       .addImm(UId);
   6202   }
   6203 
   6204   // Add the jump table entries as successors to the MBB.
   6205   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
   6206   for (std::vector<MachineBasicBlock*>::iterator
   6207          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   6208     MachineBasicBlock *CurMBB = *I;
   6209     if (SeenMBBs.insert(CurMBB))
   6210       DispContBB->addSuccessor(CurMBB);
   6211   }
   6212 
   6213   // N.B. the order the invoke BBs are processed in doesn't matter here.
   6214   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   6215   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   6216   const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
   6217   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   6218   for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
   6219          I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
   6220     MachineBasicBlock *BB = *I;
   6221 
   6222     // Remove the landing pad successor from the invoke block and replace it
   6223     // with the new dispatch block.
   6224     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
   6225                                                   BB->succ_end());
   6226     while (!Successors.empty()) {
   6227       MachineBasicBlock *SMBB = Successors.pop_back_val();
   6228       if (SMBB->isLandingPad()) {
   6229         BB->removeSuccessor(SMBB);
   6230         MBBLPads.push_back(SMBB);
   6231       }
   6232     }
   6233 
   6234     BB->addSuccessor(DispatchBB);
   6235 
   6236     // Find the invoke call and mark all of the callee-saved registers as
   6237     // 'implicit defined' so that they're spilled. This prevents code from
   6238     // moving instructions to before the EH block, where they will never be
   6239     // executed.
   6240     for (MachineBasicBlock::reverse_iterator
   6241            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   6242       if (!II->isCall()) continue;
   6243 
   6244       DenseMap<unsigned, bool> DefRegs;
   6245       for (MachineInstr::mop_iterator
   6246              OI = II->operands_begin(), OE = II->operands_end();
   6247            OI != OE; ++OI) {
   6248         if (!OI->isReg()) continue;
   6249         DefRegs[OI->getReg()] = true;
   6250       }
   6251 
   6252       MachineInstrBuilder MIB(&*II);
   6253 
   6254       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   6255         unsigned Reg = SavedRegs[i];
   6256         if (Subtarget->isThumb2() &&
   6257             !ARM::tGPRRegClass.contains(Reg) &&
   6258             !ARM::hGPRRegClass.contains(Reg))
   6259           continue;
   6260         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
   6261           continue;
   6262         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
   6263           continue;
   6264         if (!DefRegs[Reg])
   6265           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
   6266       }
   6267 
   6268       break;
   6269     }
   6270   }
   6271 
   6272   // Mark all former landing pads as non-landing pads. The dispatch is the only
   6273   // landing pad now.
   6274   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   6275          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   6276     (*I)->setIsLandingPad(false);
   6277 
   6278   // The instruction is gone now.
   6279   MI->eraseFromParent();
   6280 
   6281   return MBB;
   6282 }
   6283 
   6284 static
   6285 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   6286   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   6287        E = MBB->succ_end(); I != E; ++I)
   6288     if (*I != Succ)
   6289       return *I;
   6290   llvm_unreachable("Expecting a BB with two successors!");
   6291 }
   6292 
   6293 MachineBasicBlock *ARMTargetLowering::
   6294 EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
   6295   // This pseudo instruction has 3 operands: dst, src, size
   6296   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
   6297   // Otherwise, we will generate unrolled scalar copies.
   6298   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6299   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6300   MachineFunction::iterator It = BB;
   6301   ++It;
   6302 
   6303   unsigned dest = MI->getOperand(0).getReg();
   6304   unsigned src = MI->getOperand(1).getReg();
   6305   unsigned SizeVal = MI->getOperand(2).getImm();
   6306   unsigned Align = MI->getOperand(3).getImm();
   6307   DebugLoc dl = MI->getDebugLoc();
   6308 
   6309   bool isThumb2 = Subtarget->isThumb2();
   6310   MachineFunction *MF = BB->getParent();
   6311   MachineRegisterInfo &MRI = MF->getRegInfo();
   6312   unsigned ldrOpc, strOpc, UnitSize = 0;
   6313 
   6314   const TargetRegisterClass *TRC = isThumb2 ?
   6315     (const TargetRegisterClass*)&ARM::tGPRRegClass :
   6316     (const TargetRegisterClass*)&ARM::GPRRegClass;
   6317   const TargetRegisterClass *TRC_Vec = 0;
   6318 
   6319   if (Align & 1) {
   6320     ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
   6321     strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
   6322     UnitSize = 1;
   6323   } else if (Align & 2) {
   6324     ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
   6325     strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
   6326     UnitSize = 2;
   6327   } else {
   6328     // Check whether we can use NEON instructions.
   6329     if (!MF->getFunction()->hasFnAttr(Attribute::NoImplicitFloat) &&
   6330         Subtarget->hasNEON()) {
   6331       if ((Align % 16 == 0) && SizeVal >= 16) {
   6332         ldrOpc = ARM::VLD1q32wb_fixed;
   6333         strOpc = ARM::VST1q32wb_fixed;
   6334         UnitSize = 16;
   6335         TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
   6336       }
   6337       else if ((Align % 8 == 0) && SizeVal >= 8) {
   6338         ldrOpc = ARM::VLD1d32wb_fixed;
   6339         strOpc = ARM::VST1d32wb_fixed;
   6340         UnitSize = 8;
   6341         TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
   6342       }
   6343     }
   6344     // Can't use NEON instructions.
   6345     if (UnitSize == 0) {
   6346       ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
   6347       strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
   6348       UnitSize = 4;
   6349     }
   6350   }
   6351 
   6352   unsigned BytesLeft = SizeVal % UnitSize;
   6353   unsigned LoopSize = SizeVal - BytesLeft;
   6354 
   6355   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
   6356     // Use LDR and STR to copy.
   6357     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
   6358     // [destOut] = STR_POST(scratch, destIn, UnitSize)
   6359     unsigned srcIn = src;
   6360     unsigned destIn = dest;
   6361     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
   6362       unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
   6363       unsigned srcOut = MRI.createVirtualRegister(TRC);
   6364       unsigned destOut = MRI.createVirtualRegister(TRC);
   6365       if (UnitSize >= 8) {
   6366         AddDefaultPred(BuildMI(*BB, MI, dl,
   6367           TII->get(ldrOpc), scratch)
   6368           .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
   6369 
   6370         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
   6371           .addReg(destIn).addImm(0).addReg(scratch));
   6372       } else if (isThumb2) {
   6373         AddDefaultPred(BuildMI(*BB, MI, dl,
   6374           TII->get(ldrOpc), scratch)
   6375           .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
   6376 
   6377         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
   6378           .addReg(scratch).addReg(destIn)
   6379           .addImm(UnitSize));
   6380       } else {
   6381         AddDefaultPred(BuildMI(*BB, MI, dl,
   6382           TII->get(ldrOpc), scratch)
   6383           .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
   6384           .addImm(UnitSize));
   6385 
   6386         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
   6387           .addReg(scratch).addReg(destIn)
   6388           .addReg(0).addImm(UnitSize));
   6389       }
   6390       srcIn = srcOut;
   6391       destIn = destOut;
   6392     }
   6393 
   6394     // Handle the leftover bytes with LDRB and STRB.
   6395     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
   6396     // [destOut] = STRB_POST(scratch, destIn, 1)
   6397     ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
   6398     strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
   6399     for (unsigned i = 0; i < BytesLeft; i++) {
   6400       unsigned scratch = MRI.createVirtualRegister(TRC);
   6401       unsigned srcOut = MRI.createVirtualRegister(TRC);
   6402       unsigned destOut = MRI.createVirtualRegister(TRC);
   6403       if (isThumb2) {
   6404         AddDefaultPred(BuildMI(*BB, MI, dl,
   6405           TII->get(ldrOpc),scratch)
   6406           .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
   6407 
   6408         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
   6409           .addReg(scratch).addReg(destIn)
   6410           .addReg(0).addImm(1));
   6411       } else {
   6412         AddDefaultPred(BuildMI(*BB, MI, dl,
   6413           TII->get(ldrOpc),scratch)
   6414           .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
   6415 
   6416         AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
   6417           .addReg(scratch).addReg(destIn)
   6418           .addReg(0).addImm(1));
   6419       }
   6420       srcIn = srcOut;
   6421       destIn = destOut;
   6422     }
   6423     MI->eraseFromParent();   // The instruction is gone now.
   6424     return BB;
   6425   }
   6426 
   6427   // Expand the pseudo op to a loop.
   6428   // thisMBB:
   6429   //   ...
   6430   //   movw varEnd, # --> with thumb2
   6431   //   movt varEnd, #
   6432   //   ldrcp varEnd, idx --> without thumb2
   6433   //   fallthrough --> loopMBB
   6434   // loopMBB:
   6435   //   PHI varPhi, varEnd, varLoop
   6436   //   PHI srcPhi, src, srcLoop
   6437   //   PHI destPhi, dst, destLoop
   6438   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   6439   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
   6440   //   subs varLoop, varPhi, #UnitSize
   6441   //   bne loopMBB
   6442   //   fallthrough --> exitMBB
   6443   // exitMBB:
   6444   //   epilogue to handle left-over bytes
   6445   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   6446   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   6447   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   6448   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   6449   MF->insert(It, loopMBB);
   6450   MF->insert(It, exitMBB);
   6451 
   6452   // Transfer the remainder of BB and its successor edges to exitMBB.
   6453   exitMBB->splice(exitMBB->begin(), BB,
   6454                   llvm::next(MachineBasicBlock::iterator(MI)),
   6455                   BB->end());
   6456   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   6457 
   6458   // Load an immediate to varEnd.
   6459   unsigned varEnd = MRI.createVirtualRegister(TRC);
   6460   if (isThumb2) {
   6461     unsigned VReg1 = varEnd;
   6462     if ((LoopSize & 0xFFFF0000) != 0)
   6463       VReg1 = MRI.createVirtualRegister(TRC);
   6464     AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
   6465                    .addImm(LoopSize & 0xFFFF));
   6466 
   6467     if ((LoopSize & 0xFFFF0000) != 0)
   6468       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
   6469                      .addReg(VReg1)
   6470                      .addImm(LoopSize >> 16));
   6471   } else {
   6472     MachineConstantPool *ConstantPool = MF->getConstantPool();
   6473     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6474     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
   6475 
   6476     // MachineConstantPool wants an explicit alignment.
   6477     unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
   6478     if (Align == 0)
   6479       Align = getTargetData()->getTypeAllocSize(C->getType());
   6480     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6481 
   6482     AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
   6483                    .addReg(varEnd, RegState::Define)
   6484                    .addConstantPoolIndex(Idx)
   6485                    .addImm(0));
   6486   }
   6487   BB->addSuccessor(loopMBB);
   6488 
   6489   // Generate the loop body:
   6490   //   varPhi = PHI(varLoop, varEnd)
   6491   //   srcPhi = PHI(srcLoop, src)
   6492   //   destPhi = PHI(destLoop, dst)
   6493   MachineBasicBlock *entryBB = BB;
   6494   BB = loopMBB;
   6495   unsigned varLoop = MRI.createVirtualRegister(TRC);
   6496   unsigned varPhi = MRI.createVirtualRegister(TRC);
   6497   unsigned srcLoop = MRI.createVirtualRegister(TRC);
   6498   unsigned srcPhi = MRI.createVirtualRegister(TRC);
   6499   unsigned destLoop = MRI.createVirtualRegister(TRC);
   6500   unsigned destPhi = MRI.createVirtualRegister(TRC);
   6501 
   6502   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
   6503     .addReg(varLoop).addMBB(loopMBB)
   6504     .addReg(varEnd).addMBB(entryBB);
   6505   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
   6506     .addReg(srcLoop).addMBB(loopMBB)
   6507     .addReg(src).addMBB(entryBB);
   6508   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
   6509     .addReg(destLoop).addMBB(loopMBB)
   6510     .addReg(dest).addMBB(entryBB);
   6511 
   6512   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   6513   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
   6514   unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
   6515   if (UnitSize >= 8) {
   6516     AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
   6517       .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
   6518 
   6519     AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
   6520       .addReg(destPhi).addImm(0).addReg(scratch));
   6521   } else if (isThumb2) {
   6522     AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
   6523       .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
   6524 
   6525     AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
   6526       .addReg(scratch).addReg(destPhi)
   6527       .addImm(UnitSize));
   6528   } else {
   6529     AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
   6530       .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
   6531       .addImm(UnitSize));
   6532 
   6533     AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
   6534       .addReg(scratch).addReg(destPhi)
   6535       .addReg(0).addImm(UnitSize));
   6536   }
   6537 
   6538   // Decrement loop variable by UnitSize.
   6539   MachineInstrBuilder MIB = BuildMI(BB, dl,
   6540     TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
   6541   AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
   6542   MIB->getOperand(5).setReg(ARM::CPSR);
   6543   MIB->getOperand(5).setIsDef(true);
   6544 
   6545   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   6546     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   6547 
   6548   // loopMBB can loop back to loopMBB or fall through to exitMBB.
   6549   BB->addSuccessor(loopMBB);
   6550   BB->addSuccessor(exitMBB);
   6551 
   6552   // Add epilogue to handle BytesLeft.
   6553   BB = exitMBB;
   6554   MachineInstr *StartOfExit = exitMBB->begin();
   6555   ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
   6556   strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
   6557 
   6558   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   6559   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   6560   unsigned srcIn = srcLoop;
   6561   unsigned destIn = destLoop;
   6562   for (unsigned i = 0; i < BytesLeft; i++) {
   6563     unsigned scratch = MRI.createVirtualRegister(TRC);
   6564     unsigned srcOut = MRI.createVirtualRegister(TRC);
   6565     unsigned destOut = MRI.createVirtualRegister(TRC);
   6566     if (isThumb2) {
   6567       AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
   6568         TII->get(ldrOpc),scratch)
   6569         .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
   6570 
   6571       AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
   6572         .addReg(scratch).addReg(destIn)
   6573         .addImm(1));
   6574     } else {
   6575       AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
   6576         TII->get(ldrOpc),scratch)
   6577         .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
   6578 
   6579       AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
   6580         .addReg(scratch).addReg(destIn)
   6581         .addReg(0).addImm(1));
   6582     }
   6583     srcIn = srcOut;
   6584     destIn = destOut;
   6585   }
   6586 
   6587   MI->eraseFromParent();   // The instruction is gone now.
   6588   return BB;
   6589 }
   6590 
   6591 MachineBasicBlock *
   6592 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   6593                                                MachineBasicBlock *BB) const {
   6594   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6595   DebugLoc dl = MI->getDebugLoc();
   6596   bool isThumb2 = Subtarget->isThumb2();
   6597   switch (MI->getOpcode()) {
   6598   default: {
   6599     MI->dump();
   6600     llvm_unreachable("Unexpected instr type to insert");
   6601   }
   6602   // The Thumb2 pre-indexed stores have the same MI operands, they just
   6603   // define them differently in the .td files from the isel patterns, so
   6604   // they need pseudos.
   6605   case ARM::t2STR_preidx:
   6606     MI->setDesc(TII->get(ARM::t2STR_PRE));
   6607     return BB;
   6608   case ARM::t2STRB_preidx:
   6609     MI->setDesc(TII->get(ARM::t2STRB_PRE));
   6610     return BB;
   6611   case ARM::t2STRH_preidx:
   6612     MI->setDesc(TII->get(ARM::t2STRH_PRE));
   6613     return BB;
   6614 
   6615   case ARM::STRi_preidx:
   6616   case ARM::STRBi_preidx: {
   6617     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
   6618       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
   6619     // Decode the offset.
   6620     unsigned Offset = MI->getOperand(4).getImm();
   6621     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   6622     Offset = ARM_AM::getAM2Offset(Offset);
   6623     if (isSub)
   6624       Offset = -Offset;
   6625 
   6626     MachineMemOperand *MMO = *MI->memoperands_begin();
   6627     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   6628       .addOperand(MI->getOperand(0))  // Rn_wb
   6629       .addOperand(MI->getOperand(1))  // Rt
   6630       .addOperand(MI->getOperand(2))  // Rn
   6631       .addImm(Offset)                 // offset (skip GPR==zero_reg)
   6632       .addOperand(MI->getOperand(5))  // pred
   6633       .addOperand(MI->getOperand(6))
   6634       .addMemOperand(MMO);
   6635     MI->eraseFromParent();
   6636     return BB;
   6637   }
   6638   case ARM::STRr_preidx:
   6639   case ARM::STRBr_preidx:
   6640   case ARM::STRH_preidx: {
   6641     unsigned NewOpc;
   6642     switch (MI->getOpcode()) {
   6643     default: llvm_unreachable("unexpected opcode!");
   6644     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   6645     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   6646     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   6647     }
   6648     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   6649     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
   6650       MIB.addOperand(MI->getOperand(i));
   6651     MI->eraseFromParent();
   6652     return BB;
   6653   }
   6654   case ARM::ATOMIC_LOAD_ADD_I8:
   6655      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6656   case ARM::ATOMIC_LOAD_ADD_I16:
   6657      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6658   case ARM::ATOMIC_LOAD_ADD_I32:
   6659      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6660 
   6661   case ARM::ATOMIC_LOAD_AND_I8:
   6662      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6663   case ARM::ATOMIC_LOAD_AND_I16:
   6664      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6665   case ARM::ATOMIC_LOAD_AND_I32:
   6666      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6667 
   6668   case ARM::ATOMIC_LOAD_OR_I8:
   6669      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6670   case ARM::ATOMIC_LOAD_OR_I16:
   6671      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6672   case ARM::ATOMIC_LOAD_OR_I32:
   6673      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6674 
   6675   case ARM::ATOMIC_LOAD_XOR_I8:
   6676      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6677   case ARM::ATOMIC_LOAD_XOR_I16:
   6678      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6679   case ARM::ATOMIC_LOAD_XOR_I32:
   6680      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6681 
   6682   case ARM::ATOMIC_LOAD_NAND_I8:
   6683      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6684   case ARM::ATOMIC_LOAD_NAND_I16:
   6685      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6686   case ARM::ATOMIC_LOAD_NAND_I32:
   6687      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6688 
   6689   case ARM::ATOMIC_LOAD_SUB_I8:
   6690      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6691   case ARM::ATOMIC_LOAD_SUB_I16:
   6692      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6693   case ARM::ATOMIC_LOAD_SUB_I32:
   6694      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6695 
   6696   case ARM::ATOMIC_LOAD_MIN_I8:
   6697      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
   6698   case ARM::ATOMIC_LOAD_MIN_I16:
   6699      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
   6700   case ARM::ATOMIC_LOAD_MIN_I32:
   6701      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
   6702 
   6703   case ARM::ATOMIC_LOAD_MAX_I8:
   6704      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
   6705   case ARM::ATOMIC_LOAD_MAX_I16:
   6706      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
   6707   case ARM::ATOMIC_LOAD_MAX_I32:
   6708      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
   6709 
   6710   case ARM::ATOMIC_LOAD_UMIN_I8:
   6711      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
   6712   case ARM::ATOMIC_LOAD_UMIN_I16:
   6713      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
   6714   case ARM::ATOMIC_LOAD_UMIN_I32:
   6715      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
   6716 
   6717   case ARM::ATOMIC_LOAD_UMAX_I8:
   6718      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
   6719   case ARM::ATOMIC_LOAD_UMAX_I16:
   6720      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
   6721   case ARM::ATOMIC_LOAD_UMAX_I32:
   6722      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
   6723 
   6724   case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
   6725   case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
   6726   case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
   6727 
   6728   case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
   6729   case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
   6730   case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
   6731 
   6732 
   6733   case ARM::ATOMADD6432:
   6734     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
   6735                               isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
   6736                               /*NeedsCarry*/ true);
   6737   case ARM::ATOMSUB6432:
   6738     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
   6739                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
   6740                               /*NeedsCarry*/ true);
   6741   case ARM::ATOMOR6432:
   6742     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
   6743                               isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6744   case ARM::ATOMXOR6432:
   6745     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
   6746                               isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6747   case ARM::ATOMAND6432:
   6748     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
   6749                               isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6750   case ARM::ATOMSWAP6432:
   6751     return EmitAtomicBinary64(MI, BB, 0, 0, false);
   6752   case ARM::ATOMCMPXCHG6432:
   6753     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
   6754                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
   6755                               /*NeedsCarry*/ false, /*IsCmpxchg*/true);
   6756 
   6757   case ARM::tMOVCCr_pseudo: {
   6758     // To "insert" a SELECT_CC instruction, we actually have to insert the
   6759     // diamond control-flow pattern.  The incoming instruction knows the
   6760     // destination vreg to set, the condition code register to branch on, the
   6761     // true/false values to select between, and a branch opcode to use.
   6762     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6763     MachineFunction::iterator It = BB;
   6764     ++It;
   6765 
   6766     //  thisMBB:
   6767     //  ...
   6768     //   TrueVal = ...
   6769     //   cmpTY ccX, r1, r2
   6770     //   bCC copy1MBB
   6771     //   fallthrough --> copy0MBB
   6772     MachineBasicBlock *thisMBB  = BB;
   6773     MachineFunction *F = BB->getParent();
   6774     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6775     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   6776     F->insert(It, copy0MBB);
   6777     F->insert(It, sinkMBB);
   6778 
   6779     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6780     sinkMBB->splice(sinkMBB->begin(), BB,
   6781                     llvm::next(MachineBasicBlock::iterator(MI)),
   6782                     BB->end());
   6783     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   6784 
   6785     BB->addSuccessor(copy0MBB);
   6786     BB->addSuccessor(sinkMBB);
   6787 
   6788     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
   6789       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
   6790 
   6791     //  copy0MBB:
   6792     //   %FalseValue = ...
   6793     //   # fallthrough to sinkMBB
   6794     BB = copy0MBB;
   6795 
   6796     // Update machine-CFG edges
   6797     BB->addSuccessor(sinkMBB);
   6798 
   6799     //  sinkMBB:
   6800     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   6801     //  ...
   6802     BB = sinkMBB;
   6803     BuildMI(*BB, BB->begin(), dl,
   6804             TII->get(ARM::PHI), MI->getOperand(0).getReg())
   6805       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   6806       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   6807 
   6808     MI->eraseFromParent();   // The pseudo instruction is gone now.
   6809     return BB;
   6810   }
   6811 
   6812   case ARM::BCCi64:
   6813   case ARM::BCCZi64: {
   6814     // If there is an unconditional branch to the other successor, remove it.
   6815     BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
   6816 
   6817     // Compare both parts that make up the double comparison separately for
   6818     // equality.
   6819     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
   6820 
   6821     unsigned LHS1 = MI->getOperand(1).getReg();
   6822     unsigned LHS2 = MI->getOperand(2).getReg();
   6823     if (RHSisZero) {
   6824       AddDefaultPred(BuildMI(BB, dl,
   6825                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   6826                      .addReg(LHS1).addImm(0));
   6827       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   6828         .addReg(LHS2).addImm(0)
   6829         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6830     } else {
   6831       unsigned RHS1 = MI->getOperand(3).getReg();
   6832       unsigned RHS2 = MI->getOperand(4).getReg();
   6833       AddDefaultPred(BuildMI(BB, dl,
   6834                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   6835                      .addReg(LHS1).addReg(RHS1));
   6836       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   6837         .addReg(LHS2).addReg(RHS2)
   6838         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6839     }
   6840 
   6841     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
   6842     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   6843     if (MI->getOperand(0).getImm() == ARMCC::NE)
   6844       std::swap(destMBB, exitMBB);
   6845 
   6846     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   6847       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6848     if (isThumb2)
   6849       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
   6850     else
   6851       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   6852 
   6853     MI->eraseFromParent();   // The pseudo instruction is gone now.
   6854     return BB;
   6855   }
   6856 
   6857   case ARM::Int_eh_sjlj_setjmp:
   6858   case ARM::Int_eh_sjlj_setjmp_nofp:
   6859   case ARM::tInt_eh_sjlj_setjmp:
   6860   case ARM::t2Int_eh_sjlj_setjmp:
   6861   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   6862     EmitSjLjDispatchBlock(MI, BB);
   6863     return BB;
   6864 
   6865   case ARM::ABS:
   6866   case ARM::t2ABS: {
   6867     // To insert an ABS instruction, we have to insert the
   6868     // diamond control-flow pattern.  The incoming instruction knows the
   6869     // source vreg to test against 0, the destination vreg to set,
   6870     // the condition code register to branch on, the
   6871     // true/false values to select between, and a branch opcode to use.
   6872     // It transforms
   6873     //     V1 = ABS V0
   6874     // into
   6875     //     V2 = MOVS V0
   6876     //     BCC                      (branch to SinkBB if V0 >= 0)
   6877     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   6878     //     SinkBB: V1 = PHI(V2, V3)
   6879     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6880     MachineFunction::iterator BBI = BB;
   6881     ++BBI;
   6882     MachineFunction *Fn = BB->getParent();
   6883     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   6884     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   6885     Fn->insert(BBI, RSBBB);
   6886     Fn->insert(BBI, SinkBB);
   6887 
   6888     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
   6889     unsigned int ABSDstReg = MI->getOperand(0).getReg();
   6890     bool isThumb2 = Subtarget->isThumb2();
   6891     MachineRegisterInfo &MRI = Fn->getRegInfo();
   6892     // In Thumb mode S must not be specified if source register is the SP or
   6893     // PC and if destination register is the SP, so restrict register class
   6894     unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
   6895       (const TargetRegisterClass*)&ARM::rGPRRegClass :
   6896       (const TargetRegisterClass*)&ARM::GPRRegClass);
   6897 
   6898     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6899     SinkBB->splice(SinkBB->begin(), BB,
   6900       llvm::next(MachineBasicBlock::iterator(MI)),
   6901       BB->end());
   6902     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   6903 
   6904     BB->addSuccessor(RSBBB);
   6905     BB->addSuccessor(SinkBB);
   6906 
   6907     // fall through to SinkMBB
   6908     RSBBB->addSuccessor(SinkBB);
   6909 
   6910     // insert a cmp at the end of BB
   6911     AddDefaultPred(BuildMI(BB, dl,
   6912                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   6913                    .addReg(ABSSrcReg).addImm(0));
   6914 
   6915     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   6916     BuildMI(BB, dl,
   6917       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   6918       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   6919 
   6920     // insert rsbri in RSBBB
   6921     // Note: BCC and rsbri will be converted into predicated rsbmi
   6922     // by if-conversion pass
   6923     BuildMI(*RSBBB, RSBBB->begin(), dl,
   6924       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   6925       .addReg(ABSSrcReg, RegState::Kill)
   6926       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
   6927 
   6928     // insert PHI in SinkBB,
   6929     // reuse ABSDstReg to not change uses of ABS instruction
   6930     BuildMI(*SinkBB, SinkBB->begin(), dl,
   6931       TII->get(ARM::PHI), ABSDstReg)
   6932       .addReg(NewRsbDstReg).addMBB(RSBBB)
   6933       .addReg(ABSSrcReg).addMBB(BB);
   6934 
   6935     // remove ABS instruction
   6936     MI->eraseFromParent();
   6937 
   6938     // return last added BB
   6939     return SinkBB;
   6940   }
   6941   case ARM::COPY_STRUCT_BYVAL_I32:
   6942     ++NumLoopByVals;
   6943     return EmitStructByval(MI, BB);
   6944   }
   6945 }
   6946 
   6947 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
   6948                                                       SDNode *Node) const {
   6949   if (!MI->hasPostISelHook()) {
   6950     assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
   6951            "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
   6952     return;
   6953   }
   6954 
   6955   const MCInstrDesc *MCID = &MI->getDesc();
   6956   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   6957   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   6958   // operand is still set to noreg. If needed, set the optional operand's
   6959   // register to CPSR, and remove the redundant implicit def.
   6960   //
   6961   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
   6962 
   6963   // Rename pseudo opcodes.
   6964   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
   6965   if (NewOpc) {
   6966     const ARMBaseInstrInfo *TII =
   6967       static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
   6968     MCID = &TII->get(NewOpc);
   6969 
   6970     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
   6971            "converted opcode should be the same except for cc_out");
   6972 
   6973     MI->setDesc(*MCID);
   6974 
   6975     // Add the optional cc_out operand
   6976     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   6977   }
   6978   unsigned ccOutIdx = MCID->getNumOperands() - 1;
   6979 
   6980   // Any ARM instruction that sets the 's' bit should specify an optional
   6981   // "cc_out" operand in the last operand position.
   6982   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   6983     assert(!NewOpc && "Optional cc_out operand required");
   6984     return;
   6985   }
   6986   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   6987   // since we already have an optional CPSR def.
   6988   bool definesCPSR = false;
   6989   bool deadCPSR = false;
   6990   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
   6991        i != e; ++i) {
   6992     const MachineOperand &MO = MI->getOperand(i);
   6993     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   6994       definesCPSR = true;
   6995       if (MO.isDead())
   6996         deadCPSR = true;
   6997       MI->RemoveOperand(i);
   6998       break;
   6999     }
   7000   }
   7001   if (!definesCPSR) {
   7002     assert(!NewOpc && "Optional cc_out operand required");
   7003     return;
   7004   }
   7005   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   7006   if (deadCPSR) {
   7007     assert(!MI->getOperand(ccOutIdx).getReg() &&
   7008            "expect uninitialized optional cc_out operand");
   7009     return;
   7010   }
   7011 
   7012   // If this instruction was defined with an optional CPSR def and its dag node
   7013   // had a live implicit CPSR def, then activate the optional CPSR def.
   7014   MachineOperand &MO = MI->getOperand(ccOutIdx);
   7015   MO.setReg(ARM::CPSR);
   7016   MO.setIsDef(true);
   7017 }
   7018 
   7019 //===----------------------------------------------------------------------===//
   7020 //                           ARM Optimization Hooks
   7021 //===----------------------------------------------------------------------===//
   7022 
   7023 // Helper function that checks if N is a null or all ones constant.
   7024 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
   7025   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   7026   if (!C)
   7027     return false;
   7028   return AllOnes ? C->isAllOnesValue() : C->isNullValue();
   7029 }
   7030 
   7031 // Return true if N is conditionally 0 or all ones.
   7032 // Detects these expressions where cc is an i1 value:
   7033 //
   7034 //   (select cc 0, y)   [AllOnes=0]
   7035 //   (select cc y, 0)   [AllOnes=0]
   7036 //   (zext cc)          [AllOnes=0]
   7037 //   (sext cc)          [AllOnes=0/1]
   7038 //   (select cc -1, y)  [AllOnes=1]
   7039 //   (select cc y, -1)  [AllOnes=1]
   7040 //
   7041 // Invert is set when N is the null/all ones constant when CC is false.
   7042 // OtherOp is set to the alternative value of N.
   7043 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
   7044                                        SDValue &CC, bool &Invert,
   7045                                        SDValue &OtherOp,
   7046                                        SelectionDAG &DAG) {
   7047   switch (N->getOpcode()) {
   7048   default: return false;
   7049   case ISD::SELECT: {
   7050     CC = N->getOperand(0);
   7051     SDValue N1 = N->getOperand(1);
   7052     SDValue N2 = N->getOperand(2);
   7053     if (isZeroOrAllOnes(N1, AllOnes)) {
   7054       Invert = false;
   7055       OtherOp = N2;
   7056       return true;
   7057     }
   7058     if (isZeroOrAllOnes(N2, AllOnes)) {
   7059       Invert = true;
   7060       OtherOp = N1;
   7061       return true;
   7062     }
   7063     return false;
   7064   }
   7065   case ISD::ZERO_EXTEND:
   7066     // (zext cc) can never be the all ones value.
   7067     if (AllOnes)
   7068       return false;
   7069     // Fall through.
   7070   case ISD::SIGN_EXTEND: {
   7071     EVT VT = N->getValueType(0);
   7072     CC = N->getOperand(0);
   7073     if (CC.getValueType() != MVT::i1)
   7074       return false;
   7075     Invert = !AllOnes;
   7076     if (AllOnes)
   7077       // When looking for an AllOnes constant, N is an sext, and the 'other'
   7078       // value is 0.
   7079       OtherOp = DAG.getConstant(0, VT);
   7080     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   7081       // When looking for a 0 constant, N can be zext or sext.
   7082       OtherOp = DAG.getConstant(1, VT);
   7083     else
   7084       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
   7085     return true;
   7086   }
   7087   }
   7088 }
   7089 
   7090 // Combine a constant select operand into its use:
   7091 //
   7092 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
   7093 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
   7094 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
   7095 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
   7096 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
   7097 //
   7098 // The transform is rejected if the select doesn't have a constant operand that
   7099 // is null, or all ones when AllOnes is set.
   7100 //
   7101 // Also recognize sext/zext from i1:
   7102 //
   7103 //   (add (zext cc), x) -> (select cc (add x, 1), x)
   7104 //   (add (sext cc), x) -> (select cc (add x, -1), x)
   7105 //
   7106 // These transformations eventually create predicated instructions.
   7107 //
   7108 // @param N       The node to transform.
   7109 // @param Slct    The N operand that is a select.
   7110 // @param OtherOp The other N operand (x above).
   7111 // @param DCI     Context.
   7112 // @param AllOnes Require the select constant to be all ones instead of null.
   7113 // @returns The new node, or SDValue() on failure.
   7114 static
   7115 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   7116                             TargetLowering::DAGCombinerInfo &DCI,
   7117                             bool AllOnes = false) {
   7118   SelectionDAG &DAG = DCI.DAG;
   7119   EVT VT = N->getValueType(0);
   7120   SDValue NonConstantVal;
   7121   SDValue CCOp;
   7122   bool SwapSelectOps;
   7123   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
   7124                                   NonConstantVal, DAG))
   7125     return SDValue();
   7126 
   7127   // Slct is now know to be the desired identity constant when CC is true.
   7128   SDValue TrueVal = OtherOp;
   7129   SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
   7130                                  OtherOp, NonConstantVal);
   7131   // Unless SwapSelectOps says CC should be false.
   7132   if (SwapSelectOps)
   7133     std::swap(TrueVal, FalseVal);
   7134 
   7135   return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
   7136                      CCOp, TrueVal, FalseVal);
   7137 }
   7138 
   7139 // Attempt combineSelectAndUse on each operand of a commutative operator N.
   7140 static
   7141 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
   7142                                        TargetLowering::DAGCombinerInfo &DCI) {
   7143   SDValue N0 = N->getOperand(0);
   7144   SDValue N1 = N->getOperand(1);
   7145   if (N0.getNode()->hasOneUse()) {
   7146     SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
   7147     if (Result.getNode())
   7148       return Result;
   7149   }
   7150   if (N1.getNode()->hasOneUse()) {
   7151     SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
   7152     if (Result.getNode())
   7153       return Result;
   7154   }
   7155   return SDValue();
   7156 }
   7157 
   7158 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
   7159 // (only after legalization).
   7160 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   7161                                  TargetLowering::DAGCombinerInfo &DCI,
   7162                                  const ARMSubtarget *Subtarget) {
   7163 
   7164   // Only perform optimization if after legalize, and if NEON is available. We
   7165   // also expected both operands to be BUILD_VECTORs.
   7166   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   7167       || N0.getOpcode() != ISD::BUILD_VECTOR
   7168       || N1.getOpcode() != ISD::BUILD_VECTOR)
   7169     return SDValue();
   7170 
   7171   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   7172   EVT VT = N->getValueType(0);
   7173   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   7174     return SDValue();
   7175 
   7176   // Check that the vector operands are of the right form.
   7177   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   7178   // operands, where N is the size of the formed vector.
   7179   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   7180   // index such that we have a pair wise add pattern.
   7181 
   7182   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   7183   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7184     return SDValue();
   7185   SDValue Vec = N0->getOperand(0)->getOperand(0);
   7186   SDNode *V = Vec.getNode();
   7187   unsigned nextIndex = 0;
   7188 
   7189   // For each operands to the ADD which are BUILD_VECTORs,
   7190   // check to see if each of their operands are an EXTRACT_VECTOR with
   7191   // the same vector and appropriate index.
   7192   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   7193     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   7194         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   7195 
   7196       SDValue ExtVec0 = N0->getOperand(i);
   7197       SDValue ExtVec1 = N1->getOperand(i);
   7198 
   7199       // First operand is the vector, verify its the same.
   7200       if (V != ExtVec0->getOperand(0).getNode() ||
   7201           V != ExtVec1->getOperand(0).getNode())
   7202         return SDValue();
   7203 
   7204       // Second is the constant, verify its correct.
   7205       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   7206       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   7207 
   7208       // For the constant, we want to see all the even or all the odd.
   7209       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   7210           || C1->getZExtValue() != nextIndex+1)
   7211         return SDValue();
   7212 
   7213       // Increment index.
   7214       nextIndex+=2;
   7215     } else
   7216       return SDValue();
   7217   }
   7218 
   7219   // Create VPADDL node.
   7220   SelectionDAG &DAG = DCI.DAG;
   7221   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7222 
   7223   // Build operand list.
   7224   SmallVector<SDValue, 8> Ops;
   7225   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
   7226                                 TLI.getPointerTy()));
   7227 
   7228   // Input is the vector.
   7229   Ops.push_back(Vec);
   7230 
   7231   // Get widened type and narrowed type.
   7232   MVT widenType;
   7233   unsigned numElem = VT.getVectorNumElements();
   7234   switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
   7235     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   7236     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   7237     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   7238     default:
   7239       llvm_unreachable("Invalid vector element type for padd optimization.");
   7240   }
   7241 
   7242   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   7243                             widenType, &Ops[0], Ops.size());
   7244   return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
   7245 }
   7246 
   7247 static SDValue findMUL_LOHI(SDValue V) {
   7248   if (V->getOpcode() == ISD::UMUL_LOHI ||
   7249       V->getOpcode() == ISD::SMUL_LOHI)
   7250     return V;
   7251   return SDValue();
   7252 }
   7253 
   7254 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
   7255                                      TargetLowering::DAGCombinerInfo &DCI,
   7256                                      const ARMSubtarget *Subtarget) {
   7257 
   7258   if (Subtarget->isThumb1Only()) return SDValue();
   7259 
   7260   // Only perform the checks after legalize when the pattern is available.
   7261   if (DCI.isBeforeLegalize()) return SDValue();
   7262 
   7263   // Look for multiply add opportunities.
   7264   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
   7265   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
   7266   // a glue link from the first add to the second add.
   7267   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
   7268   // a S/UMLAL instruction.
   7269   //          loAdd   UMUL_LOHI
   7270   //            \    / :lo    \ :hi
   7271   //             \  /          \          [no multiline comment]
   7272   //              ADDC         |  hiAdd
   7273   //                 \ :glue  /  /
   7274   //                  \      /  /
   7275   //                    ADDE
   7276   //
   7277   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
   7278   SDValue AddcOp0 = AddcNode->getOperand(0);
   7279   SDValue AddcOp1 = AddcNode->getOperand(1);
   7280 
   7281   // Check if the two operands are from the same mul_lohi node.
   7282   if (AddcOp0.getNode() == AddcOp1.getNode())
   7283     return SDValue();
   7284 
   7285   assert(AddcNode->getNumValues() == 2 &&
   7286          AddcNode->getValueType(0) == MVT::i32 &&
   7287          AddcNode->getValueType(1) == MVT::Glue &&
   7288          "Expect ADDC with two result values: i32, glue");
   7289 
   7290   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
   7291   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
   7292       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
   7293       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
   7294       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
   7295     return SDValue();
   7296 
   7297   // Look for the glued ADDE.
   7298   SDNode* AddeNode = AddcNode->getGluedUser();
   7299   if (AddeNode == NULL)
   7300     return SDValue();
   7301 
   7302   // Make sure it is really an ADDE.
   7303   if (AddeNode->getOpcode() != ISD::ADDE)
   7304     return SDValue();
   7305 
   7306   assert(AddeNode->getNumOperands() == 3 &&
   7307          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
   7308          "ADDE node has the wrong inputs");
   7309 
   7310   // Check for the triangle shape.
   7311   SDValue AddeOp0 = AddeNode->getOperand(0);
   7312   SDValue AddeOp1 = AddeNode->getOperand(1);
   7313 
   7314   // Make sure that the ADDE operands are not coming from the same node.
   7315   if (AddeOp0.getNode() == AddeOp1.getNode())
   7316     return SDValue();
   7317 
   7318   // Find the MUL_LOHI node walking up ADDE's operands.
   7319   bool IsLeftOperandMUL = false;
   7320   SDValue MULOp = findMUL_LOHI(AddeOp0);
   7321   if (MULOp == SDValue())
   7322    MULOp = findMUL_LOHI(AddeOp1);
   7323   else
   7324     IsLeftOperandMUL = true;
   7325   if (MULOp == SDValue())
   7326      return SDValue();
   7327 
   7328   // Figure out the right opcode.
   7329   unsigned Opc = MULOp->getOpcode();
   7330   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
   7331 
   7332   // Figure out the high and low input values to the MLAL node.
   7333   SDValue* HiMul = &MULOp;
   7334   SDValue* HiAdd = NULL;
   7335   SDValue* LoMul = NULL;
   7336   SDValue* LowAdd = NULL;
   7337 
   7338   if (IsLeftOperandMUL)
   7339     HiAdd = &AddeOp1;
   7340   else
   7341     HiAdd = &AddeOp0;
   7342 
   7343 
   7344   if (AddcOp0->getOpcode() == Opc) {
   7345     LoMul = &AddcOp0;
   7346     LowAdd = &AddcOp1;
   7347   }
   7348   if (AddcOp1->getOpcode() == Opc) {
   7349     LoMul = &AddcOp1;
   7350     LowAdd = &AddcOp0;
   7351   }
   7352 
   7353   if (LoMul == NULL)
   7354     return SDValue();
   7355 
   7356   if (LoMul->getNode() != HiMul->getNode())
   7357     return SDValue();
   7358 
   7359   // Create the merged node.
   7360   SelectionDAG &DAG = DCI.DAG;
   7361 
   7362   // Build operand list.
   7363   SmallVector<SDValue, 8> Ops;
   7364   Ops.push_back(LoMul->getOperand(0));
   7365   Ops.push_back(LoMul->getOperand(1));
   7366   Ops.push_back(*LowAdd);
   7367   Ops.push_back(*HiAdd);
   7368 
   7369   SDValue MLALNode =  DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
   7370                                  DAG.getVTList(MVT::i32, MVT::i32),
   7371                                  &Ops[0], Ops.size());
   7372 
   7373   // Replace the ADDs' nodes uses by the MLA node's values.
   7374   SDValue HiMLALResult(MLALNode.getNode(), 1);
   7375   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
   7376 
   7377   SDValue LoMLALResult(MLALNode.getNode(), 0);
   7378   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
   7379 
   7380   // Return original node to notify the driver to stop replacing.
   7381   SDValue resNode(AddcNode, 0);
   7382   return resNode;
   7383 }
   7384 
   7385 /// PerformADDCCombine - Target-specific dag combine transform from
   7386 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
   7387 static SDValue PerformADDCCombine(SDNode *N,
   7388                                  TargetLowering::DAGCombinerInfo &DCI,
   7389                                  const ARMSubtarget *Subtarget) {
   7390 
   7391   return AddCombineTo64bitMLAL(N, DCI, Subtarget);
   7392 
   7393 }
   7394 
   7395 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   7396 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   7397 /// called with the default operands, and if that fails, with commuted
   7398 /// operands.
   7399 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   7400                                           TargetLowering::DAGCombinerInfo &DCI,
   7401                                           const ARMSubtarget *Subtarget){
   7402 
   7403   // Attempt to create vpaddl for this add.
   7404   SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
   7405   if (Result.getNode())
   7406     return Result;
   7407 
   7408   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   7409   if (N0.getNode()->hasOneUse()) {
   7410     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
   7411     if (Result.getNode()) return Result;
   7412   }
   7413   return SDValue();
   7414 }
   7415 
   7416 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   7417 ///
   7418 static SDValue PerformADDCombine(SDNode *N,
   7419                                  TargetLowering::DAGCombinerInfo &DCI,
   7420                                  const ARMSubtarget *Subtarget) {
   7421   SDValue N0 = N->getOperand(0);
   7422   SDValue N1 = N->getOperand(1);
   7423 
   7424   // First try with the default operand order.
   7425   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
   7426   if (Result.getNode())
   7427     return Result;
   7428 
   7429   // If that didn't work, try again with the operands commuted.
   7430   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   7431 }
   7432 
   7433 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   7434 ///
   7435 static SDValue PerformSUBCombine(SDNode *N,
   7436                                  TargetLowering::DAGCombinerInfo &DCI) {
   7437   SDValue N0 = N->getOperand(0);
   7438   SDValue N1 = N->getOperand(1);
   7439 
   7440   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   7441   if (N1.getNode()->hasOneUse()) {
   7442     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
   7443     if (Result.getNode()) return Result;
   7444   }
   7445 
   7446   return SDValue();
   7447 }
   7448 
   7449 /// PerformVMULCombine
   7450 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   7451 /// special multiplier accumulator forwarding.
   7452 ///   vmul d3, d0, d2
   7453 ///   vmla d3, d1, d2
   7454 /// is faster than
   7455 ///   vadd d3, d0, d1
   7456 ///   vmul d3, d3, d2
   7457 static SDValue PerformVMULCombine(SDNode *N,
   7458                                   TargetLowering::DAGCombinerInfo &DCI,
   7459                                   const ARMSubtarget *Subtarget) {
   7460   if (!Subtarget->hasVMLxForwarding())
   7461     return SDValue();
   7462 
   7463   SelectionDAG &DAG = DCI.DAG;
   7464   SDValue N0 = N->getOperand(0);
   7465   SDValue N1 = N->getOperand(1);
   7466   unsigned Opcode = N0.getOpcode();
   7467   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   7468       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   7469     Opcode = N1.getOpcode();
   7470     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   7471         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   7472       return SDValue();
   7473     std::swap(N0, N1);
   7474   }
   7475 
   7476   EVT VT = N->getValueType(0);
   7477   DebugLoc DL = N->getDebugLoc();
   7478   SDValue N00 = N0->getOperand(0);
   7479   SDValue N01 = N0->getOperand(1);
   7480   return DAG.getNode(Opcode, DL, VT,
   7481                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   7482                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   7483 }
   7484 
   7485 static SDValue PerformMULCombine(SDNode *N,
   7486                                  TargetLowering::DAGCombinerInfo &DCI,
   7487                                  const ARMSubtarget *Subtarget) {
   7488   SelectionDAG &DAG = DCI.DAG;
   7489 
   7490   if (Subtarget->isThumb1Only())
   7491     return SDValue();
   7492 
   7493   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   7494     return SDValue();
   7495 
   7496   EVT VT = N->getValueType(0);
   7497   if (VT.is64BitVector() || VT.is128BitVector())
   7498     return PerformVMULCombine(N, DCI, Subtarget);
   7499   if (VT != MVT::i32)
   7500     return SDValue();
   7501 
   7502   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   7503   if (!C)
   7504     return SDValue();
   7505 
   7506   int64_t MulAmt = C->getSExtValue();
   7507   unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
   7508 
   7509   ShiftAmt = ShiftAmt & (32 - 1);
   7510   SDValue V = N->getOperand(0);
   7511   DebugLoc DL = N->getDebugLoc();
   7512 
   7513   SDValue Res;
   7514   MulAmt >>= ShiftAmt;
   7515 
   7516   if (MulAmt >= 0) {
   7517     if (isPowerOf2_32(MulAmt - 1)) {
   7518       // (mul x, 2^N + 1) => (add (shl x, N), x)
   7519       Res = DAG.getNode(ISD::ADD, DL, VT,
   7520                         V,
   7521                         DAG.getNode(ISD::SHL, DL, VT,
   7522                                     V,
   7523                                     DAG.getConstant(Log2_32(MulAmt - 1),
   7524                                                     MVT::i32)));
   7525     } else if (isPowerOf2_32(MulAmt + 1)) {
   7526       // (mul x, 2^N - 1) => (sub (shl x, N), x)
   7527       Res = DAG.getNode(ISD::SUB, DL, VT,
   7528                         DAG.getNode(ISD::SHL, DL, VT,
   7529                                     V,
   7530                                     DAG.getConstant(Log2_32(MulAmt + 1),
   7531                                                     MVT::i32)),
   7532                         V);
   7533     } else
   7534       return SDValue();
   7535   } else {
   7536     uint64_t MulAmtAbs = -MulAmt;
   7537     if (isPowerOf2_32(MulAmtAbs + 1)) {
   7538       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   7539       Res = DAG.getNode(ISD::SUB, DL, VT,
   7540                         V,
   7541                         DAG.getNode(ISD::SHL, DL, VT,
   7542                                     V,
   7543                                     DAG.getConstant(Log2_32(MulAmtAbs + 1),
   7544                                                     MVT::i32)));
   7545     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
   7546       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   7547       Res = DAG.getNode(ISD::ADD, DL, VT,
   7548                         V,
   7549                         DAG.getNode(ISD::SHL, DL, VT,
   7550                                     V,
   7551                                     DAG.getConstant(Log2_32(MulAmtAbs-1),
   7552                                                     MVT::i32)));
   7553       Res = DAG.getNode(ISD::SUB, DL, VT,
   7554                         DAG.getConstant(0, MVT::i32),Res);
   7555 
   7556     } else
   7557       return SDValue();
   7558   }
   7559 
   7560   if (ShiftAmt != 0)
   7561     Res = DAG.getNode(ISD::SHL, DL, VT,
   7562                       Res, DAG.getConstant(ShiftAmt, MVT::i32));
   7563 
   7564   // Do not add new nodes to DAG combiner worklist.
   7565   DCI.CombineTo(N, Res, false);
   7566   return SDValue();
   7567 }
   7568 
   7569 static SDValue PerformANDCombine(SDNode *N,
   7570                                  TargetLowering::DAGCombinerInfo &DCI,
   7571                                  const ARMSubtarget *Subtarget) {
   7572 
   7573   // Attempt to use immediate-form VBIC
   7574   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   7575   DebugLoc dl = N->getDebugLoc();
   7576   EVT VT = N->getValueType(0);
   7577   SelectionDAG &DAG = DCI.DAG;
   7578 
   7579   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   7580     return SDValue();
   7581 
   7582   APInt SplatBits, SplatUndef;
   7583   unsigned SplatBitSize;
   7584   bool HasAnyUndefs;
   7585   if (BVN &&
   7586       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   7587     if (SplatBitSize <= 64) {
   7588       EVT VbicVT;
   7589       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   7590                                       SplatUndef.getZExtValue(), SplatBitSize,
   7591                                       DAG, VbicVT, VT.is128BitVector(),
   7592                                       OtherModImm);
   7593       if (Val.getNode()) {
   7594         SDValue Input =
   7595           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   7596         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   7597         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   7598       }
   7599     }
   7600   }
   7601 
   7602   if (!Subtarget->isThumb1Only()) {
   7603     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
   7604     SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
   7605     if (Result.getNode())
   7606       return Result;
   7607   }
   7608 
   7609   return SDValue();
   7610 }
   7611 
   7612 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   7613 static SDValue PerformORCombine(SDNode *N,
   7614                                 TargetLowering::DAGCombinerInfo &DCI,
   7615                                 const ARMSubtarget *Subtarget) {
   7616   // Attempt to use immediate-form VORR
   7617   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   7618   DebugLoc dl = N->getDebugLoc();
   7619   EVT VT = N->getValueType(0);
   7620   SelectionDAG &DAG = DCI.DAG;
   7621 
   7622   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   7623     return SDValue();
   7624 
   7625   APInt SplatBits, SplatUndef;
   7626   unsigned SplatBitSize;
   7627   bool HasAnyUndefs;
   7628   if (BVN && Subtarget->hasNEON() &&
   7629       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   7630     if (SplatBitSize <= 64) {
   7631       EVT VorrVT;
   7632       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   7633                                       SplatUndef.getZExtValue(), SplatBitSize,
   7634                                       DAG, VorrVT, VT.is128BitVector(),
   7635                                       OtherModImm);
   7636       if (Val.getNode()) {
   7637         SDValue Input =
   7638           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   7639         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   7640         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   7641       }
   7642     }
   7643   }
   7644 
   7645   if (!Subtarget->isThumb1Only()) {
   7646     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
   7647     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   7648     if (Result.getNode())
   7649       return Result;
   7650   }
   7651 
   7652   // The code below optimizes (or (and X, Y), Z).
   7653   // The AND operand needs to have a single user to make these optimizations
   7654   // profitable.
   7655   SDValue N0 = N->getOperand(0);
   7656   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
   7657     return SDValue();
   7658   SDValue N1 = N->getOperand(1);
   7659 
   7660   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   7661   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   7662       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   7663     APInt SplatUndef;
   7664     unsigned SplatBitSize;
   7665     bool HasAnyUndefs;
   7666 
   7667     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   7668     APInt SplatBits0;
   7669     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   7670                                   HasAnyUndefs) && !HasAnyUndefs) {
   7671       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   7672       APInt SplatBits1;
   7673       if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   7674                                     HasAnyUndefs) && !HasAnyUndefs &&
   7675           SplatBits0 == ~SplatBits1) {
   7676         // Canonicalize the vector type to make instruction selection simpler.
   7677         EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   7678         SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   7679                                      N0->getOperand(1), N0->getOperand(0),
   7680                                      N1->getOperand(0));
   7681         return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   7682       }
   7683     }
   7684   }
   7685 
   7686   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   7687   // reasonable.
   7688 
   7689   // BFI is only available on V6T2+
   7690   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   7691     return SDValue();
   7692 
   7693   DebugLoc DL = N->getDebugLoc();
   7694   // 1) or (and A, mask), val => ARMbfi A, val, mask
   7695   //      iff (val & mask) == val
   7696   //
   7697   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   7698   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   7699   //          && mask == ~mask2
   7700   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   7701   //          && ~mask == mask2
   7702   //  (i.e., copy a bitfield value into another bitfield of the same width)
   7703 
   7704   if (VT != MVT::i32)
   7705     return SDValue();
   7706 
   7707   SDValue N00 = N0.getOperand(0);
   7708 
   7709   // The value and the mask need to be constants so we can verify this is
   7710   // actually a bitfield set. If the mask is 0xffff, we can do better
   7711   // via a movt instruction, so don't use BFI in that case.
   7712   SDValue MaskOp = N0.getOperand(1);
   7713   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   7714   if (!MaskC)
   7715     return SDValue();
   7716   unsigned Mask = MaskC->getZExtValue();
   7717   if (Mask == 0xffff)
   7718     return SDValue();
   7719   SDValue Res;
   7720   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   7721   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   7722   if (N1C) {
   7723     unsigned Val = N1C->getZExtValue();
   7724     if ((Val & ~Mask) != Val)
   7725       return SDValue();
   7726 
   7727     if (ARM::isBitFieldInvertedMask(Mask)) {
   7728       Val >>= CountTrailingZeros_32(~Mask);
   7729 
   7730       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   7731                         DAG.getConstant(Val, MVT::i32),
   7732                         DAG.getConstant(Mask, MVT::i32));
   7733 
   7734       // Do not add new nodes to DAG combiner worklist.
   7735       DCI.CombineTo(N, Res, false);
   7736       return SDValue();
   7737     }
   7738   } else if (N1.getOpcode() == ISD::AND) {
   7739     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   7740     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   7741     if (!N11C)
   7742       return SDValue();
   7743     unsigned Mask2 = N11C->getZExtValue();
   7744 
   7745     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   7746     // as is to match.
   7747     if (ARM::isBitFieldInvertedMask(Mask) &&
   7748         (Mask == ~Mask2)) {
   7749       // The pack halfword instruction works better for masks that fit it,
   7750       // so use that when it's available.
   7751       if (Subtarget->hasT2ExtractPack() &&
   7752           (Mask == 0xffff || Mask == 0xffff0000))
   7753         return SDValue();
   7754       // 2a
   7755       unsigned amt = CountTrailingZeros_32(Mask2);
   7756       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   7757                         DAG.getConstant(amt, MVT::i32));
   7758       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   7759                         DAG.getConstant(Mask, MVT::i32));
   7760       // Do not add new nodes to DAG combiner worklist.
   7761       DCI.CombineTo(N, Res, false);
   7762       return SDValue();
   7763     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   7764                (~Mask == Mask2)) {
   7765       // The pack halfword instruction works better for masks that fit it,
   7766       // so use that when it's available.
   7767       if (Subtarget->hasT2ExtractPack() &&
   7768           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   7769         return SDValue();
   7770       // 2b
   7771       unsigned lsb = CountTrailingZeros_32(Mask);
   7772       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   7773                         DAG.getConstant(lsb, MVT::i32));
   7774       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   7775                         DAG.getConstant(Mask2, MVT::i32));
   7776       // Do not add new nodes to DAG combiner worklist.
   7777       DCI.CombineTo(N, Res, false);
   7778       return SDValue();
   7779     }
   7780   }
   7781 
   7782   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   7783       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   7784       ARM::isBitFieldInvertedMask(~Mask)) {
   7785     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   7786     // where lsb(mask) == #shamt and masked bits of B are known zero.
   7787     SDValue ShAmt = N00.getOperand(1);
   7788     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   7789     unsigned LSB = CountTrailingZeros_32(Mask);
   7790     if (ShAmtC != LSB)
   7791       return SDValue();
   7792 
   7793     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   7794                       DAG.getConstant(~Mask, MVT::i32));
   7795 
   7796     // Do not add new nodes to DAG combiner worklist.
   7797     DCI.CombineTo(N, Res, false);
   7798   }
   7799 
   7800   return SDValue();
   7801 }
   7802 
   7803 static SDValue PerformXORCombine(SDNode *N,
   7804                                  TargetLowering::DAGCombinerInfo &DCI,
   7805                                  const ARMSubtarget *Subtarget) {
   7806   EVT VT = N->getValueType(0);
   7807   SelectionDAG &DAG = DCI.DAG;
   7808 
   7809   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   7810     return SDValue();
   7811 
   7812   if (!Subtarget->isThumb1Only()) {
   7813     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
   7814     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   7815     if (Result.getNode())
   7816       return Result;
   7817   }
   7818 
   7819   return SDValue();
   7820 }
   7821 
   7822 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   7823 /// the bits being cleared by the AND are not demanded by the BFI.
   7824 static SDValue PerformBFICombine(SDNode *N,
   7825                                  TargetLowering::DAGCombinerInfo &DCI) {
   7826   SDValue N1 = N->getOperand(1);
   7827   if (N1.getOpcode() == ISD::AND) {
   7828     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   7829     if (!N11C)
   7830       return SDValue();
   7831     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   7832     unsigned LSB = CountTrailingZeros_32(~InvMask);
   7833     unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
   7834     unsigned Mask = (1 << Width)-1;
   7835     unsigned Mask2 = N11C->getZExtValue();
   7836     if ((Mask & (~Mask2)) == 0)
   7837       return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
   7838                              N->getOperand(0), N1.getOperand(0),
   7839                              N->getOperand(2));
   7840   }
   7841   return SDValue();
   7842 }
   7843 
   7844 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   7845 /// ARMISD::VMOVRRD.
   7846 static SDValue PerformVMOVRRDCombine(SDNode *N,
   7847                                      TargetLowering::DAGCombinerInfo &DCI) {
   7848   // vmovrrd(vmovdrr x, y) -> x,y
   7849   SDValue InDouble = N->getOperand(0);
   7850   if (InDouble.getOpcode() == ARMISD::VMOVDRR)
   7851     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   7852 
   7853   // vmovrrd(load f64) -> (load i32), (load i32)
   7854   SDNode *InNode = InDouble.getNode();
   7855   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   7856       InNode->getValueType(0) == MVT::f64 &&
   7857       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   7858       !cast<LoadSDNode>(InNode)->isVolatile()) {
   7859     // TODO: Should this be done for non-FrameIndex operands?
   7860     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   7861 
   7862     SelectionDAG &DAG = DCI.DAG;
   7863     DebugLoc DL = LD->getDebugLoc();
   7864     SDValue BasePtr = LD->getBasePtr();
   7865     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
   7866                                  LD->getPointerInfo(), LD->isVolatile(),
   7867                                  LD->isNonTemporal(), LD->isInvariant(),
   7868                                  LD->getAlignment());
   7869 
   7870     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   7871                                     DAG.getConstant(4, MVT::i32));
   7872     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
   7873                                  LD->getPointerInfo(), LD->isVolatile(),
   7874                                  LD->isNonTemporal(), LD->isInvariant(),
   7875                                  std::min(4U, LD->getAlignment() / 2));
   7876 
   7877     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   7878     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   7879     DCI.RemoveFromWorklist(LD);
   7880     DAG.DeleteNode(LD);
   7881     return Result;
   7882   }
   7883 
   7884   return SDValue();
   7885 }
   7886 
   7887 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   7888 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   7889 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   7890   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   7891   SDValue Op0 = N->getOperand(0);
   7892   SDValue Op1 = N->getOperand(1);
   7893   if (Op0.getOpcode() == ISD::BITCAST)
   7894     Op0 = Op0.getOperand(0);
   7895   if (Op1.getOpcode() == ISD::BITCAST)
   7896     Op1 = Op1.getOperand(0);
   7897   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   7898       Op0.getNode() == Op1.getNode() &&
   7899       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   7900     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
   7901                        N->getValueType(0), Op0.getOperand(0));
   7902   return SDValue();
   7903 }
   7904 
   7905 /// PerformSTORECombine - Target-specific dag combine xforms for
   7906 /// ISD::STORE.
   7907 static SDValue PerformSTORECombine(SDNode *N,
   7908                                    TargetLowering::DAGCombinerInfo &DCI) {
   7909   StoreSDNode *St = cast<StoreSDNode>(N);
   7910   if (St->isVolatile())
   7911     return SDValue();
   7912 
   7913   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
   7914   // pack all of the elements in one place.  Next, store to memory in fewer
   7915   // chunks.
   7916   SDValue StVal = St->getValue();
   7917   EVT VT = StVal.getValueType();
   7918   if (St->isTruncatingStore() && VT.isVector()) {
   7919     SelectionDAG &DAG = DCI.DAG;
   7920     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7921     EVT StVT = St->getMemoryVT();
   7922     unsigned NumElems = VT.getVectorNumElements();
   7923     assert(StVT != VT && "Cannot truncate to the same type");
   7924     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
   7925     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
   7926 
   7927     // From, To sizes and ElemCount must be pow of two
   7928     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
   7929 
   7930     // We are going to use the original vector elt for storing.
   7931     // Accumulated smaller vector elements must be a multiple of the store size.
   7932     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
   7933 
   7934     unsigned SizeRatio  = FromEltSz / ToEltSz;
   7935     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
   7936 
   7937     // Create a type on which we perform the shuffle.
   7938     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
   7939                                      NumElems*SizeRatio);
   7940     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   7941 
   7942     DebugLoc DL = St->getDebugLoc();
   7943     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
   7944     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   7945     for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
   7946 
   7947     // Can't shuffle using an illegal type.
   7948     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   7949 
   7950     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
   7951                                 DAG.getUNDEF(WideVec.getValueType()),
   7952                                 ShuffleVec.data());
   7953     // At this point all of the data is stored at the bottom of the
   7954     // register. We now need to save it to mem.
   7955 
   7956     // Find the largest store unit
   7957     MVT StoreType = MVT::i8;
   7958     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   7959          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   7960       MVT Tp = (MVT::SimpleValueType)tp;
   7961       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
   7962         StoreType = Tp;
   7963     }
   7964     // Didn't find a legal store type.
   7965     if (!TLI.isTypeLegal(StoreType))
   7966       return SDValue();
   7967 
   7968     // Bitcast the original vector into a vector of store-size units
   7969     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   7970             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   7971     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   7972     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
   7973     SmallVector<SDValue, 8> Chains;
   7974     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   7975                                         TLI.getPointerTy());
   7976     SDValue BasePtr = St->getBasePtr();
   7977 
   7978     // Perform one or more big stores into memory.
   7979     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
   7980     for (unsigned I = 0; I < E; I++) {
   7981       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
   7982                                    StoreType, ShuffWide,
   7983                                    DAG.getIntPtrConstant(I));
   7984       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
   7985                                 St->getPointerInfo(), St->isVolatile(),
   7986                                 St->isNonTemporal(), St->getAlignment());
   7987       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
   7988                             Increment);
   7989       Chains.push_back(Ch);
   7990     }
   7991     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
   7992                        Chains.size());
   7993   }
   7994 
   7995   if (!ISD::isNormalStore(St))
   7996     return SDValue();
   7997 
   7998   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
   7999   // ARM stores of arguments in the same cache line.
   8000   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   8001       StVal.getNode()->hasOneUse()) {
   8002     SelectionDAG  &DAG = DCI.DAG;
   8003     DebugLoc DL = St->getDebugLoc();
   8004     SDValue BasePtr = St->getBasePtr();
   8005     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
   8006                                   StVal.getNode()->getOperand(0), BasePtr,
   8007                                   St->getPointerInfo(), St->isVolatile(),
   8008                                   St->isNonTemporal(), St->getAlignment());
   8009 
   8010     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   8011                                     DAG.getConstant(4, MVT::i32));
   8012     return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
   8013                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
   8014                         St->isNonTemporal(),
   8015                         std::min(4U, St->getAlignment() / 2));
   8016   }
   8017 
   8018   if (StVal.getValueType() != MVT::i64 ||
   8019       StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   8020     return SDValue();
   8021 
   8022   // Bitcast an i64 store extracted from a vector to f64.
   8023   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   8024   SelectionDAG &DAG = DCI.DAG;
   8025   DebugLoc dl = StVal.getDebugLoc();
   8026   SDValue IntVec = StVal.getOperand(0);
   8027   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   8028                                  IntVec.getValueType().getVectorNumElements());
   8029   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   8030   SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   8031                                Vec, StVal.getOperand(1));
   8032   dl = N->getDebugLoc();
   8033   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   8034   // Make the DAGCombiner fold the bitcasts.
   8035   DCI.AddToWorklist(Vec.getNode());
   8036   DCI.AddToWorklist(ExtElt.getNode());
   8037   DCI.AddToWorklist(V.getNode());
   8038   return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   8039                       St->getPointerInfo(), St->isVolatile(),
   8040                       St->isNonTemporal(), St->getAlignment(),
   8041                       St->getTBAAInfo());
   8042 }
   8043 
   8044 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   8045 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   8046 /// i64 vector to have f64 elements, since the value can then be loaded
   8047 /// directly into a VFP register.
   8048 static bool hasNormalLoadOperand(SDNode *N) {
   8049   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   8050   for (unsigned i = 0; i < NumElts; ++i) {
   8051     SDNode *Elt = N->getOperand(i).getNode();
   8052     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   8053       return true;
   8054   }
   8055   return false;
   8056 }
   8057 
   8058 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   8059 /// ISD::BUILD_VECTOR.
   8060 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   8061                                           TargetLowering::DAGCombinerInfo &DCI){
   8062   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   8063   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   8064   // into a pair of GPRs, which is fine when the value is used as a scalar,
   8065   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   8066   SelectionDAG &DAG = DCI.DAG;
   8067   if (N->getNumOperands() == 2) {
   8068     SDValue RV = PerformVMOVDRRCombine(N, DAG);
   8069     if (RV.getNode())
   8070       return RV;
   8071   }
   8072 
   8073   // Load i64 elements as f64 values so that type legalization does not split
   8074   // them up into i32 values.
   8075   EVT VT = N->getValueType(0);
   8076   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   8077     return SDValue();
   8078   DebugLoc dl = N->getDebugLoc();
   8079   SmallVector<SDValue, 8> Ops;
   8080   unsigned NumElts = VT.getVectorNumElements();
   8081   for (unsigned i = 0; i < NumElts; ++i) {
   8082     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   8083     Ops.push_back(V);
   8084     // Make the DAGCombiner fold the bitcast.
   8085     DCI.AddToWorklist(V.getNode());
   8086   }
   8087   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   8088   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
   8089   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   8090 }
   8091 
   8092 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   8093 /// ISD::INSERT_VECTOR_ELT.
   8094 static SDValue PerformInsertEltCombine(SDNode *N,
   8095                                        TargetLowering::DAGCombinerInfo &DCI) {
   8096   // Bitcast an i64 load inserted into a vector to f64.
   8097   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   8098   EVT VT = N->getValueType(0);
   8099   SDNode *Elt = N->getOperand(1).getNode();
   8100   if (VT.getVectorElementType() != MVT::i64 ||
   8101       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   8102     return SDValue();
   8103 
   8104   SelectionDAG &DAG = DCI.DAG;
   8105   DebugLoc dl = N->getDebugLoc();
   8106   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   8107                                  VT.getVectorNumElements());
   8108   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   8109   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   8110   // Make the DAGCombiner fold the bitcasts.
   8111   DCI.AddToWorklist(Vec.getNode());
   8112   DCI.AddToWorklist(V.getNode());
   8113   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   8114                                Vec, V, N->getOperand(2));
   8115   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   8116 }
   8117 
   8118 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   8119 /// ISD::VECTOR_SHUFFLE.
   8120 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   8121   // The LLVM shufflevector instruction does not require the shuffle mask
   8122   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   8123   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   8124   // operands do not match the mask length, they are extended by concatenating
   8125   // them with undef vectors.  That is probably the right thing for other
   8126   // targets, but for NEON it is better to concatenate two double-register
   8127   // size vector operands into a single quad-register size vector.  Do that
   8128   // transformation here:
   8129   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   8130   //   shuffle(concat(v1, v2), undef)
   8131   SDValue Op0 = N->getOperand(0);
   8132   SDValue Op1 = N->getOperand(1);
   8133   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   8134       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   8135       Op0.getNumOperands() != 2 ||
   8136       Op1.getNumOperands() != 2)
   8137     return SDValue();
   8138   SDValue Concat0Op1 = Op0.getOperand(1);
   8139   SDValue Concat1Op1 = Op1.getOperand(1);
   8140   if (Concat0Op1.getOpcode() != ISD::UNDEF ||
   8141       Concat1Op1.getOpcode() != ISD::UNDEF)
   8142     return SDValue();
   8143   // Skip the transformation if any of the types are illegal.
   8144   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8145   EVT VT = N->getValueType(0);
   8146   if (!TLI.isTypeLegal(VT) ||
   8147       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   8148       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   8149     return SDValue();
   8150 
   8151   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
   8152                                   Op0.getOperand(0), Op1.getOperand(0));
   8153   // Translate the shuffle mask.
   8154   SmallVector<int, 16> NewMask;
   8155   unsigned NumElts = VT.getVectorNumElements();
   8156   unsigned HalfElts = NumElts/2;
   8157   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   8158   for (unsigned n = 0; n < NumElts; ++n) {
   8159     int MaskElt = SVN->getMaskElt(n);
   8160     int NewElt = -1;
   8161     if (MaskElt < (int)HalfElts)
   8162       NewElt = MaskElt;
   8163     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   8164       NewElt = HalfElts + MaskElt - NumElts;
   8165     NewMask.push_back(NewElt);
   8166   }
   8167   return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
   8168                               DAG.getUNDEF(VT), NewMask.data());
   8169 }
   8170 
   8171 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
   8172 /// NEON load/store intrinsics to merge base address updates.
   8173 static SDValue CombineBaseUpdate(SDNode *N,
   8174                                  TargetLowering::DAGCombinerInfo &DCI) {
   8175   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   8176     return SDValue();
   8177 
   8178   SelectionDAG &DAG = DCI.DAG;
   8179   bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   8180                       N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   8181   unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
   8182   SDValue Addr = N->getOperand(AddrOpIdx);
   8183 
   8184   // Search for a use of the address operand that is an increment.
   8185   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   8186          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   8187     SDNode *User = *UI;
   8188     if (User->getOpcode() != ISD::ADD ||
   8189         UI.getUse().getResNo() != Addr.getResNo())
   8190       continue;
   8191 
   8192     // Check that the add is independent of the load/store.  Otherwise, folding
   8193     // it would create a cycle.
   8194     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   8195       continue;
   8196 
   8197     // Find the new opcode for the updating load/store.
   8198     bool isLoad = true;
   8199     bool isLaneOp = false;
   8200     unsigned NewOpc = 0;
   8201     unsigned NumVecs = 0;
   8202     if (isIntrinsic) {
   8203       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   8204       switch (IntNo) {
   8205       default: llvm_unreachable("unexpected intrinsic for Neon base update");
   8206       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   8207         NumVecs = 1; break;
   8208       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   8209         NumVecs = 2; break;
   8210       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   8211         NumVecs = 3; break;
   8212       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   8213         NumVecs = 4; break;
   8214       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   8215         NumVecs = 2; isLaneOp = true; break;
   8216       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   8217         NumVecs = 3; isLaneOp = true; break;
   8218       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   8219         NumVecs = 4; isLaneOp = true; break;
   8220       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   8221         NumVecs = 1; isLoad = false; break;
   8222       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   8223         NumVecs = 2; isLoad = false; break;
   8224       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   8225         NumVecs = 3; isLoad = false; break;
   8226       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   8227         NumVecs = 4; isLoad = false; break;
   8228       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   8229         NumVecs = 2; isLoad = false; isLaneOp = true; break;
   8230       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   8231         NumVecs = 3; isLoad = false; isLaneOp = true; break;
   8232       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   8233         NumVecs = 4; isLoad = false; isLaneOp = true; break;
   8234       }
   8235     } else {
   8236       isLaneOp = true;
   8237       switch (N->getOpcode()) {
   8238       default: llvm_unreachable("unexpected opcode for Neon base update");
   8239       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   8240       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   8241       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   8242       }
   8243     }
   8244 
   8245     // Find the size of memory referenced by the load/store.
   8246     EVT VecTy;
   8247     if (isLoad)
   8248       VecTy = N->getValueType(0);
   8249     else
   8250       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   8251     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   8252     if (isLaneOp)
   8253       NumBytes /= VecTy.getVectorNumElements();
   8254 
   8255     // If the increment is a constant, it must match the memory ref size.
   8256     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   8257     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   8258       uint64_t IncVal = CInc->getZExtValue();
   8259       if (IncVal != NumBytes)
   8260         continue;
   8261     } else if (NumBytes >= 3 * 16) {
   8262       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   8263       // separate instructions that make it harder to use a non-constant update.
   8264       continue;
   8265     }
   8266 
   8267     // Create the new updating load/store node.
   8268     EVT Tys[6];
   8269     unsigned NumResultVecs = (isLoad ? NumVecs : 0);
   8270     unsigned n;
   8271     for (n = 0; n < NumResultVecs; ++n)
   8272       Tys[n] = VecTy;
   8273     Tys[n++] = MVT::i32;
   8274     Tys[n] = MVT::Other;
   8275     SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
   8276     SmallVector<SDValue, 8> Ops;
   8277     Ops.push_back(N->getOperand(0)); // incoming chain
   8278     Ops.push_back(N->getOperand(AddrOpIdx));
   8279     Ops.push_back(Inc);
   8280     for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
   8281       Ops.push_back(N->getOperand(i));
   8282     }
   8283     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
   8284     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
   8285                                            Ops.data(), Ops.size(),
   8286                                            MemInt->getMemoryVT(),
   8287                                            MemInt->getMemOperand());
   8288 
   8289     // Update the uses.
   8290     std::vector<SDValue> NewResults;
   8291     for (unsigned i = 0; i < NumResultVecs; ++i) {
   8292       NewResults.push_back(SDValue(UpdN.getNode(), i));
   8293     }
   8294     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   8295     DCI.CombineTo(N, NewResults);
   8296     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   8297 
   8298     break;
   8299   }
   8300   return SDValue();
   8301 }
   8302 
   8303 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   8304 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   8305 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   8306 /// return true.
   8307 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   8308   SelectionDAG &DAG = DCI.DAG;
   8309   EVT VT = N->getValueType(0);
   8310   // vldN-dup instructions only support 64-bit vectors for N > 1.
   8311   if (!VT.is64BitVector())
   8312     return false;
   8313 
   8314   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   8315   SDNode *VLD = N->getOperand(0).getNode();
   8316   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   8317     return false;
   8318   unsigned NumVecs = 0;
   8319   unsigned NewOpc = 0;
   8320   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   8321   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   8322     NumVecs = 2;
   8323     NewOpc = ARMISD::VLD2DUP;
   8324   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   8325     NumVecs = 3;
   8326     NewOpc = ARMISD::VLD3DUP;
   8327   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   8328     NumVecs = 4;
   8329     NewOpc = ARMISD::VLD4DUP;
   8330   } else {
   8331     return false;
   8332   }
   8333 
   8334   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   8335   // numbers match the load.
   8336   unsigned VLDLaneNo =
   8337     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   8338   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   8339        UI != UE; ++UI) {
   8340     // Ignore uses of the chain result.
   8341     if (UI.getUse().getResNo() == NumVecs)
   8342       continue;
   8343     SDNode *User = *UI;
   8344     if (User->getOpcode() != ARMISD::VDUPLANE ||
   8345         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   8346       return false;
   8347   }
   8348 
   8349   // Create the vldN-dup node.
   8350   EVT Tys[5];
   8351   unsigned n;
   8352   for (n = 0; n < NumVecs; ++n)
   8353     Tys[n] = VT;
   8354   Tys[n] = MVT::Other;
   8355   SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
   8356   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   8357   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   8358   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
   8359                                            Ops, 2, VLDMemInt->getMemoryVT(),
   8360                                            VLDMemInt->getMemOperand());
   8361 
   8362   // Update the uses.
   8363   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   8364        UI != UE; ++UI) {
   8365     unsigned ResNo = UI.getUse().getResNo();
   8366     // Ignore uses of the chain result.
   8367     if (ResNo == NumVecs)
   8368       continue;
   8369     SDNode *User = *UI;
   8370     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   8371   }
   8372 
   8373   // Now the vldN-lane intrinsic is dead except for its chain result.
   8374   // Update uses of the chain.
   8375   std::vector<SDValue> VLDDupResults;
   8376   for (unsigned n = 0; n < NumVecs; ++n)
   8377     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   8378   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   8379   DCI.CombineTo(VLD, VLDDupResults);
   8380 
   8381   return true;
   8382 }
   8383 
   8384 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   8385 /// ARMISD::VDUPLANE.
   8386 static SDValue PerformVDUPLANECombine(SDNode *N,
   8387                                       TargetLowering::DAGCombinerInfo &DCI) {
   8388   SDValue Op = N->getOperand(0);
   8389 
   8390   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   8391   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   8392   if (CombineVLDDUP(N, DCI))
   8393     return SDValue(N, 0);
   8394 
   8395   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   8396   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   8397   while (Op.getOpcode() == ISD::BITCAST)
   8398     Op = Op.getOperand(0);
   8399   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   8400     return SDValue();
   8401 
   8402   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   8403   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
   8404   // The canonical VMOV for a zero vector uses a 32-bit element size.
   8405   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   8406   unsigned EltBits;
   8407   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   8408     EltSize = 8;
   8409   EVT VT = N->getValueType(0);
   8410   if (EltSize > VT.getVectorElementType().getSizeInBits())
   8411     return SDValue();
   8412 
   8413   return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
   8414 }
   8415 
   8416 // isConstVecPow2 - Return true if each vector element is a power of 2, all
   8417 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
   8418 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
   8419 {
   8420   integerPart cN;
   8421   integerPart c0 = 0;
   8422   for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
   8423        I != E; I++) {
   8424     ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
   8425     if (!C)
   8426       return false;
   8427 
   8428     bool isExact;
   8429     APFloat APF = C->getValueAPF();
   8430     if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
   8431         != APFloat::opOK || !isExact)
   8432       return false;
   8433 
   8434     c0 = (I == 0) ? cN : c0;
   8435     if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
   8436       return false;
   8437   }
   8438   C = c0;
   8439   return true;
   8440 }
   8441 
   8442 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   8443 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   8444 /// when the VMUL has a constant operand that is a power of 2.
   8445 ///
   8446 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   8447 ///  vmul.f32        d16, d17, d16
   8448 ///  vcvt.s32.f32    d16, d16
   8449 /// becomes:
   8450 ///  vcvt.s32.f32    d16, d16, #3
   8451 static SDValue PerformVCVTCombine(SDNode *N,
   8452                                   TargetLowering::DAGCombinerInfo &DCI,
   8453                                   const ARMSubtarget *Subtarget) {
   8454   SelectionDAG &DAG = DCI.DAG;
   8455   SDValue Op = N->getOperand(0);
   8456 
   8457   if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
   8458       Op.getOpcode() != ISD::FMUL)
   8459     return SDValue();
   8460 
   8461   uint64_t C;
   8462   SDValue N0 = Op->getOperand(0);
   8463   SDValue ConstVec = Op->getOperand(1);
   8464   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   8465 
   8466   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   8467       !isConstVecPow2(ConstVec, isSigned, C))
   8468     return SDValue();
   8469 
   8470   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   8471     Intrinsic::arm_neon_vcvtfp2fxu;
   8472   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   8473                      N->getValueType(0),
   8474                      DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
   8475                      DAG.getConstant(Log2_64(C), MVT::i32));
   8476 }
   8477 
   8478 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   8479 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   8480 /// when the VDIV has a constant operand that is a power of 2.
   8481 ///
   8482 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   8483 ///  vcvt.f32.s32    d16, d16
   8484 ///  vdiv.f32        d16, d17, d16
   8485 /// becomes:
   8486 ///  vcvt.f32.s32    d16, d16, #3
   8487 static SDValue PerformVDIVCombine(SDNode *N,
   8488                                   TargetLowering::DAGCombinerInfo &DCI,
   8489                                   const ARMSubtarget *Subtarget) {
   8490   SelectionDAG &DAG = DCI.DAG;
   8491   SDValue Op = N->getOperand(0);
   8492   unsigned OpOpcode = Op.getNode()->getOpcode();
   8493 
   8494   if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
   8495       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   8496     return SDValue();
   8497 
   8498   uint64_t C;
   8499   SDValue ConstVec = N->getOperand(1);
   8500   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   8501 
   8502   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   8503       !isConstVecPow2(ConstVec, isSigned, C))
   8504     return SDValue();
   8505 
   8506   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   8507     Intrinsic::arm_neon_vcvtfxu2fp;
   8508   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   8509                      Op.getValueType(),
   8510                      DAG.getConstant(IntrinsicOpcode, MVT::i32),
   8511                      Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
   8512 }
   8513 
   8514 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   8515 /// operand of a vector shift operation, where all the elements of the
   8516 /// build_vector must have the same constant integer value.
   8517 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   8518   // Ignore bit_converts.
   8519   while (Op.getOpcode() == ISD::BITCAST)
   8520     Op = Op.getOperand(0);
   8521   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   8522   APInt SplatBits, SplatUndef;
   8523   unsigned SplatBitSize;
   8524   bool HasAnyUndefs;
   8525   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   8526                                       HasAnyUndefs, ElementBits) ||
   8527       SplatBitSize > ElementBits)
   8528     return false;
   8529   Cnt = SplatBits.getSExtValue();
   8530   return true;
   8531 }
   8532 
   8533 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   8534 /// operand of a vector shift left operation.  That value must be in the range:
   8535 ///   0 <= Value < ElementBits for a left shift; or
   8536 ///   0 <= Value <= ElementBits for a long left shift.
   8537 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   8538   assert(VT.isVector() && "vector shift count is not a vector type");
   8539   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   8540   if (! getVShiftImm(Op, ElementBits, Cnt))
   8541     return false;
   8542   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   8543 }
   8544 
   8545 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   8546 /// operand of a vector shift right operation.  For a shift opcode, the value
   8547 /// is positive, but for an intrinsic the value count must be negative. The
   8548 /// absolute value must be in the range:
   8549 ///   1 <= |Value| <= ElementBits for a right shift; or
   8550 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   8551 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   8552                          int64_t &Cnt) {
   8553   assert(VT.isVector() && "vector shift count is not a vector type");
   8554   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   8555   if (! getVShiftImm(Op, ElementBits, Cnt))
   8556     return false;
   8557   if (isIntrinsic)
   8558     Cnt = -Cnt;
   8559   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   8560 }
   8561 
   8562 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   8563 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   8564   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   8565   switch (IntNo) {
   8566   default:
   8567     // Don't do anything for most intrinsics.
   8568     break;
   8569 
   8570   // Vector shifts: check for immediate versions and lower them.
   8571   // Note: This is done during DAG combining instead of DAG legalizing because
   8572   // the build_vectors for 64-bit vector element shift counts are generally
   8573   // not legal, and it is hard to see their values after they get legalized to
   8574   // loads from a constant pool.
   8575   case Intrinsic::arm_neon_vshifts:
   8576   case Intrinsic::arm_neon_vshiftu:
   8577   case Intrinsic::arm_neon_vshiftls:
   8578   case Intrinsic::arm_neon_vshiftlu:
   8579   case Intrinsic::arm_neon_vshiftn:
   8580   case Intrinsic::arm_neon_vrshifts:
   8581   case Intrinsic::arm_neon_vrshiftu:
   8582   case Intrinsic::arm_neon_vrshiftn:
   8583   case Intrinsic::arm_neon_vqshifts:
   8584   case Intrinsic::arm_neon_vqshiftu:
   8585   case Intrinsic::arm_neon_vqshiftsu:
   8586   case Intrinsic::arm_neon_vqshiftns:
   8587   case Intrinsic::arm_neon_vqshiftnu:
   8588   case Intrinsic::arm_neon_vqshiftnsu:
   8589   case Intrinsic::arm_neon_vqrshiftns:
   8590   case Intrinsic::arm_neon_vqrshiftnu:
   8591   case Intrinsic::arm_neon_vqrshiftnsu: {
   8592     EVT VT = N->getOperand(1).getValueType();
   8593     int64_t Cnt;
   8594     unsigned VShiftOpc = 0;
   8595 
   8596     switch (IntNo) {
   8597     case Intrinsic::arm_neon_vshifts:
   8598     case Intrinsic::arm_neon_vshiftu:
   8599       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   8600         VShiftOpc = ARMISD::VSHL;
   8601         break;
   8602       }
   8603       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   8604         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   8605                      ARMISD::VSHRs : ARMISD::VSHRu);
   8606         break;
   8607       }
   8608       return SDValue();
   8609 
   8610     case Intrinsic::arm_neon_vshiftls:
   8611     case Intrinsic::arm_neon_vshiftlu:
   8612       if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
   8613         break;
   8614       llvm_unreachable("invalid shift count for vshll intrinsic");
   8615 
   8616     case Intrinsic::arm_neon_vrshifts:
   8617     case Intrinsic::arm_neon_vrshiftu:
   8618       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   8619         break;
   8620       return SDValue();
   8621 
   8622     case Intrinsic::arm_neon_vqshifts:
   8623     case Intrinsic::arm_neon_vqshiftu:
   8624       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   8625         break;
   8626       return SDValue();
   8627 
   8628     case Intrinsic::arm_neon_vqshiftsu:
   8629       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   8630         break;
   8631       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   8632 
   8633     case Intrinsic::arm_neon_vshiftn:
   8634     case Intrinsic::arm_neon_vrshiftn:
   8635     case Intrinsic::arm_neon_vqshiftns:
   8636     case Intrinsic::arm_neon_vqshiftnu:
   8637     case Intrinsic::arm_neon_vqshiftnsu:
   8638     case Intrinsic::arm_neon_vqrshiftns:
   8639     case Intrinsic::arm_neon_vqrshiftnu:
   8640     case Intrinsic::arm_neon_vqrshiftnsu:
   8641       // Narrowing shifts require an immediate right shift.
   8642       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   8643         break;
   8644       llvm_unreachable("invalid shift count for narrowing vector shift "
   8645                        "intrinsic");
   8646 
   8647     default:
   8648       llvm_unreachable("unhandled vector shift");
   8649     }
   8650 
   8651     switch (IntNo) {
   8652     case Intrinsic::arm_neon_vshifts:
   8653     case Intrinsic::arm_neon_vshiftu:
   8654       // Opcode already set above.
   8655       break;
   8656     case Intrinsic::arm_neon_vshiftls:
   8657     case Intrinsic::arm_neon_vshiftlu:
   8658       if (Cnt == VT.getVectorElementType().getSizeInBits())
   8659         VShiftOpc = ARMISD::VSHLLi;
   8660       else
   8661         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
   8662                      ARMISD::VSHLLs : ARMISD::VSHLLu);
   8663       break;
   8664     case Intrinsic::arm_neon_vshiftn:
   8665       VShiftOpc = ARMISD::VSHRN; break;
   8666     case Intrinsic::arm_neon_vrshifts:
   8667       VShiftOpc = ARMISD::VRSHRs; break;
   8668     case Intrinsic::arm_neon_vrshiftu:
   8669       VShiftOpc = ARMISD::VRSHRu; break;
   8670     case Intrinsic::arm_neon_vrshiftn:
   8671       VShiftOpc = ARMISD::VRSHRN; break;
   8672     case Intrinsic::arm_neon_vqshifts:
   8673       VShiftOpc = ARMISD::VQSHLs; break;
   8674     case Intrinsic::arm_neon_vqshiftu:
   8675       VShiftOpc = ARMISD::VQSHLu; break;
   8676     case Intrinsic::arm_neon_vqshiftsu:
   8677       VShiftOpc = ARMISD::VQSHLsu; break;
   8678     case Intrinsic::arm_neon_vqshiftns:
   8679       VShiftOpc = ARMISD::VQSHRNs; break;
   8680     case Intrinsic::arm_neon_vqshiftnu:
   8681       VShiftOpc = ARMISD::VQSHRNu; break;
   8682     case Intrinsic::arm_neon_vqshiftnsu:
   8683       VShiftOpc = ARMISD::VQSHRNsu; break;
   8684     case Intrinsic::arm_neon_vqrshiftns:
   8685       VShiftOpc = ARMISD::VQRSHRNs; break;
   8686     case Intrinsic::arm_neon_vqrshiftnu:
   8687       VShiftOpc = ARMISD::VQRSHRNu; break;
   8688     case Intrinsic::arm_neon_vqrshiftnsu:
   8689       VShiftOpc = ARMISD::VQRSHRNsu; break;
   8690     }
   8691 
   8692     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
   8693                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
   8694   }
   8695 
   8696   case Intrinsic::arm_neon_vshiftins: {
   8697     EVT VT = N->getOperand(1).getValueType();
   8698     int64_t Cnt;
   8699     unsigned VShiftOpc = 0;
   8700 
   8701     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   8702       VShiftOpc = ARMISD::VSLI;
   8703     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   8704       VShiftOpc = ARMISD::VSRI;
   8705     else {
   8706       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   8707     }
   8708 
   8709     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
   8710                        N->getOperand(1), N->getOperand(2),
   8711                        DAG.getConstant(Cnt, MVT::i32));
   8712   }
   8713 
   8714   case Intrinsic::arm_neon_vqrshifts:
   8715   case Intrinsic::arm_neon_vqrshiftu:
   8716     // No immediate versions of these to check for.
   8717     break;
   8718   }
   8719 
   8720   return SDValue();
   8721 }
   8722 
   8723 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   8724 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   8725 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   8726 /// vector element shift counts are generally not legal, and it is hard to see
   8727 /// their values after they get legalized to loads from a constant pool.
   8728 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   8729                                    const ARMSubtarget *ST) {
   8730   EVT VT = N->getValueType(0);
   8731   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
   8732     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
   8733     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
   8734     SDValue N1 = N->getOperand(1);
   8735     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   8736       SDValue N0 = N->getOperand(0);
   8737       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
   8738           DAG.MaskedValueIsZero(N0.getOperand(0),
   8739                                 APInt::getHighBitsSet(32, 16)))
   8740         return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
   8741     }
   8742   }
   8743 
   8744   // Nothing to be done for scalar shifts.
   8745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8746   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   8747     return SDValue();
   8748 
   8749   assert(ST->hasNEON() && "unexpected vector shift");
   8750   int64_t Cnt;
   8751 
   8752   switch (N->getOpcode()) {
   8753   default: llvm_unreachable("unexpected shift opcode");
   8754 
   8755   case ISD::SHL:
   8756     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
   8757       return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
   8758                          DAG.getConstant(Cnt, MVT::i32));
   8759     break;
   8760 
   8761   case ISD::SRA:
   8762   case ISD::SRL:
   8763     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   8764       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   8765                             ARMISD::VSHRs : ARMISD::VSHRu);
   8766       return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
   8767                          DAG.getConstant(Cnt, MVT::i32));
   8768     }
   8769   }
   8770   return SDValue();
   8771 }
   8772 
   8773 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   8774 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   8775 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   8776                                     const ARMSubtarget *ST) {
   8777   SDValue N0 = N->getOperand(0);
   8778 
   8779   // Check for sign- and zero-extensions of vector extract operations of 8-
   8780   // and 16-bit vector elements.  NEON supports these directly.  They are
   8781   // handled during DAG combining because type legalization will promote them
   8782   // to 32-bit types and it is messy to recognize the operations after that.
   8783   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   8784     SDValue Vec = N0.getOperand(0);
   8785     SDValue Lane = N0.getOperand(1);
   8786     EVT VT = N->getValueType(0);
   8787     EVT EltVT = N0.getValueType();
   8788     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8789 
   8790     if (VT == MVT::i32 &&
   8791         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   8792         TLI.isTypeLegal(Vec.getValueType()) &&
   8793         isa<ConstantSDNode>(Lane)) {
   8794 
   8795       unsigned Opc = 0;
   8796       switch (N->getOpcode()) {
   8797       default: llvm_unreachable("unexpected opcode");
   8798       case ISD::SIGN_EXTEND:
   8799         Opc = ARMISD::VGETLANEs;
   8800         break;
   8801       case ISD::ZERO_EXTEND:
   8802       case ISD::ANY_EXTEND:
   8803         Opc = ARMISD::VGETLANEu;
   8804         break;
   8805       }
   8806       return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
   8807     }
   8808   }
   8809 
   8810   return SDValue();
   8811 }
   8812 
   8813 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
   8814 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
   8815 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
   8816                                        const ARMSubtarget *ST) {
   8817   // If the target supports NEON, try to use vmax/vmin instructions for f32
   8818   // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
   8819   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
   8820   // a NaN; only do the transformation when it matches that behavior.
   8821 
   8822   // For now only do this when using NEON for FP operations; if using VFP, it
   8823   // is not obvious that the benefit outweighs the cost of switching to the
   8824   // NEON pipeline.
   8825   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
   8826       N->getValueType(0) != MVT::f32)
   8827     return SDValue();
   8828 
   8829   SDValue CondLHS = N->getOperand(0);
   8830   SDValue CondRHS = N->getOperand(1);
   8831   SDValue LHS = N->getOperand(2);
   8832   SDValue RHS = N->getOperand(3);
   8833   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   8834 
   8835   unsigned Opcode = 0;
   8836   bool IsReversed;
   8837   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
   8838     IsReversed = false; // x CC y ? x : y
   8839   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
   8840     IsReversed = true ; // x CC y ? y : x
   8841   } else {
   8842     return SDValue();
   8843   }
   8844 
   8845   bool IsUnordered;
   8846   switch (CC) {
   8847   default: break;
   8848   case ISD::SETOLT:
   8849   case ISD::SETOLE:
   8850   case ISD::SETLT:
   8851   case ISD::SETLE:
   8852   case ISD::SETULT:
   8853   case ISD::SETULE:
   8854     // If LHS is NaN, an ordered comparison will be false and the result will
   8855     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
   8856     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   8857     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
   8858     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   8859       break;
   8860     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
   8861     // will return -0, so vmin can only be used for unsafe math or if one of
   8862     // the operands is known to be nonzero.
   8863     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
   8864         !DAG.getTarget().Options.UnsafeFPMath &&
   8865         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   8866       break;
   8867     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
   8868     break;
   8869 
   8870   case ISD::SETOGT:
   8871   case ISD::SETOGE:
   8872   case ISD::SETGT:
   8873   case ISD::SETGE:
   8874   case ISD::SETUGT:
   8875   case ISD::SETUGE:
   8876     // If LHS is NaN, an ordered comparison will be false and the result will
   8877     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
   8878     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   8879     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
   8880     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   8881       break;
   8882     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
   8883     // will return +0, so vmax can only be used for unsafe math or if one of
   8884     // the operands is known to be nonzero.
   8885     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
   8886         !DAG.getTarget().Options.UnsafeFPMath &&
   8887         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   8888       break;
   8889     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
   8890     break;
   8891   }
   8892 
   8893   if (!Opcode)
   8894     return SDValue();
   8895   return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
   8896 }
   8897 
   8898 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   8899 SDValue
   8900 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   8901   SDValue Cmp = N->getOperand(4);
   8902   if (Cmp.getOpcode() != ARMISD::CMPZ)
   8903     // Only looking at EQ and NE cases.
   8904     return SDValue();
   8905 
   8906   EVT VT = N->getValueType(0);
   8907   DebugLoc dl = N->getDebugLoc();
   8908   SDValue LHS = Cmp.getOperand(0);
   8909   SDValue RHS = Cmp.getOperand(1);
   8910   SDValue FalseVal = N->getOperand(0);
   8911   SDValue TrueVal = N->getOperand(1);
   8912   SDValue ARMcc = N->getOperand(2);
   8913   ARMCC::CondCodes CC =
   8914     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   8915 
   8916   // Simplify
   8917   //   mov     r1, r0
   8918   //   cmp     r1, x
   8919   //   mov     r0, y
   8920   //   moveq   r0, x
   8921   // to
   8922   //   cmp     r0, x
   8923   //   movne   r0, y
   8924   //
   8925   //   mov     r1, r0
   8926   //   cmp     r1, x
   8927   //   mov     r0, x
   8928   //   movne   r0, y
   8929   // to
   8930   //   cmp     r0, x
   8931   //   movne   r0, y
   8932   /// FIXME: Turn this into a target neutral optimization?
   8933   SDValue Res;
   8934   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   8935     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   8936                       N->getOperand(3), Cmp);
   8937   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   8938     SDValue ARMcc;
   8939     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   8940     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   8941                       N->getOperand(3), NewCmp);
   8942   }
   8943 
   8944   if (Res.getNode()) {
   8945     APInt KnownZero, KnownOne;
   8946     DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
   8947     // Capture demanded bits information that would be otherwise lost.
   8948     if (KnownZero == 0xfffffffe)
   8949       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8950                         DAG.getValueType(MVT::i1));
   8951     else if (KnownZero == 0xffffff00)
   8952       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8953                         DAG.getValueType(MVT::i8));
   8954     else if (KnownZero == 0xffff0000)
   8955       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8956                         DAG.getValueType(MVT::i16));
   8957   }
   8958 
   8959   return Res;
   8960 }
   8961 
   8962 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   8963                                              DAGCombinerInfo &DCI) const {
   8964   switch (N->getOpcode()) {
   8965   default: break;
   8966   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
   8967   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   8968   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   8969   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   8970   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   8971   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
   8972   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
   8973   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   8974   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
   8975   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   8976   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   8977   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
   8978   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   8979   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   8980   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   8981   case ISD::FP_TO_SINT:
   8982   case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
   8983   case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
   8984   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   8985   case ISD::SHL:
   8986   case ISD::SRA:
   8987   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   8988   case ISD::SIGN_EXTEND:
   8989   case ISD::ZERO_EXTEND:
   8990   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   8991   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
   8992   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   8993   case ARMISD::VLD2DUP:
   8994   case ARMISD::VLD3DUP:
   8995   case ARMISD::VLD4DUP:
   8996     return CombineBaseUpdate(N, DCI);
   8997   case ISD::INTRINSIC_VOID:
   8998   case ISD::INTRINSIC_W_CHAIN:
   8999     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9000     case Intrinsic::arm_neon_vld1:
   9001     case Intrinsic::arm_neon_vld2:
   9002     case Intrinsic::arm_neon_vld3:
   9003     case Intrinsic::arm_neon_vld4:
   9004     case Intrinsic::arm_neon_vld2lane:
   9005     case Intrinsic::arm_neon_vld3lane:
   9006     case Intrinsic::arm_neon_vld4lane:
   9007     case Intrinsic::arm_neon_vst1:
   9008     case Intrinsic::arm_neon_vst2:
   9009     case Intrinsic::arm_neon_vst3:
   9010     case Intrinsic::arm_neon_vst4:
   9011     case Intrinsic::arm_neon_vst2lane:
   9012     case Intrinsic::arm_neon_vst3lane:
   9013     case Intrinsic::arm_neon_vst4lane:
   9014       return CombineBaseUpdate(N, DCI);
   9015     default: break;
   9016     }
   9017     break;
   9018   }
   9019   return SDValue();
   9020 }
   9021 
   9022 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   9023                                                           EVT VT) const {
   9024   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   9025 }
   9026 
   9027 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
   9028   if (!Subtarget->allowsUnalignedMem())
   9029     return false;
   9030 
   9031   switch (VT.getSimpleVT().SimpleTy) {
   9032   default:
   9033     return false;
   9034   case MVT::i8:
   9035   case MVT::i16:
   9036   case MVT::i32:
   9037     return true;
   9038   case MVT::f64:
   9039     return Subtarget->hasNEON();
   9040   // FIXME: VLD1 etc with standard alignment is legal.
   9041   }
   9042 }
   9043 
   9044 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   9045                        unsigned AlignCheck) {
   9046   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   9047           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   9048 }
   9049 
   9050 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
   9051                                            unsigned DstAlign, unsigned SrcAlign,
   9052                                            bool IsZeroVal,
   9053                                            bool MemcpyStrSrc,
   9054                                            MachineFunction &MF) const {
   9055   const Function *F = MF.getFunction();
   9056 
   9057   // See if we can use NEON instructions for this...
   9058   if (IsZeroVal &&
   9059       !F->hasFnAttr(Attribute::NoImplicitFloat) &&
   9060       Subtarget->hasNEON()) {
   9061     if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
   9062       return MVT::v4i32;
   9063     } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
   9064       return MVT::v2i32;
   9065     }
   9066   }
   9067 
   9068   // Lowering to i32/i16 if the size permits.
   9069   if (Size >= 4) {
   9070     return MVT::i32;
   9071   } else if (Size >= 2) {
   9072     return MVT::i16;
   9073   }
   9074 
   9075   // Let the target-independent logic figure it out.
   9076   return MVT::Other;
   9077 }
   9078 
   9079 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   9080   if (V < 0)
   9081     return false;
   9082 
   9083   unsigned Scale = 1;
   9084   switch (VT.getSimpleVT().SimpleTy) {
   9085   default: return false;
   9086   case MVT::i1:
   9087   case MVT::i8:
   9088     // Scale == 1;
   9089     break;
   9090   case MVT::i16:
   9091     // Scale == 2;
   9092     Scale = 2;
   9093     break;
   9094   case MVT::i32:
   9095     // Scale == 4;
   9096     Scale = 4;
   9097     break;
   9098   }
   9099 
   9100   if ((V & (Scale - 1)) != 0)
   9101     return false;
   9102   V /= Scale;
   9103   return V == (V & ((1LL << 5) - 1));
   9104 }
   9105 
   9106 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   9107                                       const ARMSubtarget *Subtarget) {
   9108   bool isNeg = false;
   9109   if (V < 0) {
   9110     isNeg = true;
   9111     V = - V;
   9112   }
   9113 
   9114   switch (VT.getSimpleVT().SimpleTy) {
   9115   default: return false;
   9116   case MVT::i1:
   9117   case MVT::i8:
   9118   case MVT::i16:
   9119   case MVT::i32:
   9120     // + imm12 or - imm8
   9121     if (isNeg)
   9122       return V == (V & ((1LL << 8) - 1));
   9123     return V == (V & ((1LL << 12) - 1));
   9124   case MVT::f32:
   9125   case MVT::f64:
   9126     // Same as ARM mode. FIXME: NEON?
   9127     if (!Subtarget->hasVFP2())
   9128       return false;
   9129     if ((V & 3) != 0)
   9130       return false;
   9131     V >>= 2;
   9132     return V == (V & ((1LL << 8) - 1));
   9133   }
   9134 }
   9135 
   9136 /// isLegalAddressImmediate - Return true if the integer value can be used
   9137 /// as the offset of the target addressing mode for load / store of the
   9138 /// given type.
   9139 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   9140                                     const ARMSubtarget *Subtarget) {
   9141   if (V == 0)
   9142     return true;
   9143 
   9144   if (!VT.isSimple())
   9145     return false;
   9146 
   9147   if (Subtarget->isThumb1Only())
   9148     return isLegalT1AddressImmediate(V, VT);
   9149   else if (Subtarget->isThumb2())
   9150     return isLegalT2AddressImmediate(V, VT, Subtarget);
   9151 
   9152   // ARM mode.
   9153   if (V < 0)
   9154     V = - V;
   9155   switch (VT.getSimpleVT().SimpleTy) {
   9156   default: return false;
   9157   case MVT::i1:
   9158   case MVT::i8:
   9159   case MVT::i32:
   9160     // +- imm12
   9161     return V == (V & ((1LL << 12) - 1));
   9162   case MVT::i16:
   9163     // +- imm8
   9164     return V == (V & ((1LL << 8) - 1));
   9165   case MVT::f32:
   9166   case MVT::f64:
   9167     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   9168       return false;
   9169     if ((V & 3) != 0)
   9170       return false;
   9171     V >>= 2;
   9172     return V == (V & ((1LL << 8) - 1));
   9173   }
   9174 }
   9175 
   9176 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   9177                                                       EVT VT) const {
   9178   int Scale = AM.Scale;
   9179   if (Scale < 0)
   9180     return false;
   9181 
   9182   switch (VT.getSimpleVT().SimpleTy) {
   9183   default: return false;
   9184   case MVT::i1:
   9185   case MVT::i8:
   9186   case MVT::i16:
   9187   case MVT::i32:
   9188     if (Scale == 1)
   9189       return true;
   9190     // r + r << imm
   9191     Scale = Scale & ~1;
   9192     return Scale == 2 || Scale == 4 || Scale == 8;
   9193   case MVT::i64:
   9194     // r + r
   9195     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   9196       return true;
   9197     return false;
   9198   case MVT::isVoid:
   9199     // Note, we allow "void" uses (basically, uses that aren't loads or
   9200     // stores), because arm allows folding a scale into many arithmetic
   9201     // operations.  This should be made more precise and revisited later.
   9202 
   9203     // Allow r << imm, but the imm has to be a multiple of two.
   9204     if (Scale & 1) return false;
   9205     return isPowerOf2_32(Scale);
   9206   }
   9207 }
   9208 
   9209 /// isLegalAddressingMode - Return true if the addressing mode represented
   9210 /// by AM is legal for this target, for a load/store of the specified type.
   9211 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   9212                                               Type *Ty) const {
   9213   EVT VT = getValueType(Ty, true);
   9214   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   9215     return false;
   9216 
   9217   // Can never fold addr of global into load/store.
   9218   if (AM.BaseGV)
   9219     return false;
   9220 
   9221   switch (AM.Scale) {
   9222   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   9223     break;
   9224   case 1:
   9225     if (Subtarget->isThumb1Only())
   9226       return false;
   9227     // FALL THROUGH.
   9228   default:
   9229     // ARM doesn't support any R+R*scale+imm addr modes.
   9230     if (AM.BaseOffs)
   9231       return false;
   9232 
   9233     if (!VT.isSimple())
   9234       return false;
   9235 
   9236     if (Subtarget->isThumb2())
   9237       return isLegalT2ScaledAddressingMode(AM, VT);
   9238 
   9239     int Scale = AM.Scale;
   9240     switch (VT.getSimpleVT().SimpleTy) {
   9241     default: return false;
   9242     case MVT::i1:
   9243     case MVT::i8:
   9244     case MVT::i32:
   9245       if (Scale < 0) Scale = -Scale;
   9246       if (Scale == 1)
   9247         return true;
   9248       // r + r << imm
   9249       return isPowerOf2_32(Scale & ~1);
   9250     case MVT::i16:
   9251     case MVT::i64:
   9252       // r + r
   9253       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   9254         return true;
   9255       return false;
   9256 
   9257     case MVT::isVoid:
   9258       // Note, we allow "void" uses (basically, uses that aren't loads or
   9259       // stores), because arm allows folding a scale into many arithmetic
   9260       // operations.  This should be made more precise and revisited later.
   9261 
   9262       // Allow r << imm, but the imm has to be a multiple of two.
   9263       if (Scale & 1) return false;
   9264       return isPowerOf2_32(Scale);
   9265     }
   9266   }
   9267   return true;
   9268 }
   9269 
   9270 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   9271 /// icmp immediate, that is the target has icmp instructions which can compare
   9272 /// a register against the immediate without having to materialize the
   9273 /// immediate into a register.
   9274 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   9275   // Thumb2 and ARM modes can use cmn for negative immediates.
   9276   if (!Subtarget->isThumb())
   9277     return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
   9278   if (Subtarget->isThumb2())
   9279     return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
   9280   // Thumb1 doesn't have cmn, and only 8-bit immediates.
   9281   return Imm >= 0 && Imm <= 255;
   9282 }
   9283 
   9284 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
   9285 /// *or sub* immediate, that is the target has add or sub instructions which can
   9286 /// add a register with the immediate without having to materialize the
   9287 /// immediate into a register.
   9288 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   9289   // Same encoding for add/sub, just flip the sign.
   9290   int64_t AbsImm = llvm::abs64(Imm);
   9291   if (!Subtarget->isThumb())
   9292     return ARM_AM::getSOImmVal(AbsImm) != -1;
   9293   if (Subtarget->isThumb2())
   9294     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
   9295   // Thumb1 only has 8-bit unsigned immediate.
   9296   return AbsImm >= 0 && AbsImm <= 255;
   9297 }
   9298 
   9299 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   9300                                       bool isSEXTLoad, SDValue &Base,
   9301                                       SDValue &Offset, bool &isInc,
   9302                                       SelectionDAG &DAG) {
   9303   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   9304     return false;
   9305 
   9306   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   9307     // AddressingMode 3
   9308     Base = Ptr->getOperand(0);
   9309     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   9310       int RHSC = (int)RHS->getZExtValue();
   9311       if (RHSC < 0 && RHSC > -256) {
   9312         assert(Ptr->getOpcode() == ISD::ADD);
   9313         isInc = false;
   9314         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   9315         return true;
   9316       }
   9317     }
   9318     isInc = (Ptr->getOpcode() == ISD::ADD);
   9319     Offset = Ptr->getOperand(1);
   9320     return true;
   9321   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   9322     // AddressingMode 2
   9323     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   9324       int RHSC = (int)RHS->getZExtValue();
   9325       if (RHSC < 0 && RHSC > -0x1000) {
   9326         assert(Ptr->getOpcode() == ISD::ADD);
   9327         isInc = false;
   9328         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   9329         Base = Ptr->getOperand(0);
   9330         return true;
   9331       }
   9332     }
   9333 
   9334     if (Ptr->getOpcode() == ISD::ADD) {
   9335       isInc = true;
   9336       ARM_AM::ShiftOpc ShOpcVal=
   9337         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   9338       if (ShOpcVal != ARM_AM::no_shift) {
   9339         Base = Ptr->getOperand(1);
   9340         Offset = Ptr->getOperand(0);
   9341       } else {
   9342         Base = Ptr->getOperand(0);
   9343         Offset = Ptr->getOperand(1);
   9344       }
   9345       return true;
   9346     }
   9347 
   9348     isInc = (Ptr->getOpcode() == ISD::ADD);
   9349     Base = Ptr->getOperand(0);
   9350     Offset = Ptr->getOperand(1);
   9351     return true;
   9352   }
   9353 
   9354   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   9355   return false;
   9356 }
   9357 
   9358 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   9359                                      bool isSEXTLoad, SDValue &Base,
   9360                                      SDValue &Offset, bool &isInc,
   9361                                      SelectionDAG &DAG) {
   9362   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   9363     return false;
   9364 
   9365   Base = Ptr->getOperand(0);
   9366   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   9367     int RHSC = (int)RHS->getZExtValue();
   9368     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   9369       assert(Ptr->getOpcode() == ISD::ADD);
   9370       isInc = false;
   9371       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   9372       return true;
   9373     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   9374       isInc = Ptr->getOpcode() == ISD::ADD;
   9375       Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
   9376       return true;
   9377     }
   9378   }
   9379 
   9380   return false;
   9381 }
   9382 
   9383 /// getPreIndexedAddressParts - returns true by value, base pointer and
   9384 /// offset pointer and addressing mode by reference if the node's address
   9385 /// can be legally represented as pre-indexed load / store address.
   9386 bool
   9387 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   9388                                              SDValue &Offset,
   9389                                              ISD::MemIndexedMode &AM,
   9390                                              SelectionDAG &DAG) const {
   9391   if (Subtarget->isThumb1Only())
   9392     return false;
   9393 
   9394   EVT VT;
   9395   SDValue Ptr;
   9396   bool isSEXTLoad = false;
   9397   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   9398     Ptr = LD->getBasePtr();
   9399     VT  = LD->getMemoryVT();
   9400     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   9401   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   9402     Ptr = ST->getBasePtr();
   9403     VT  = ST->getMemoryVT();
   9404   } else
   9405     return false;
   9406 
   9407   bool isInc;
   9408   bool isLegal = false;
   9409   if (Subtarget->isThumb2())
   9410     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   9411                                        Offset, isInc, DAG);
   9412   else
   9413     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   9414                                         Offset, isInc, DAG);
   9415   if (!isLegal)
   9416     return false;
   9417 
   9418   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   9419   return true;
   9420 }
   9421 
   9422 /// getPostIndexedAddressParts - returns true by value, base pointer and
   9423 /// offset pointer and addressing mode by reference if this node can be
   9424 /// combined with a load / store to form a post-indexed load / store.
   9425 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   9426                                                    SDValue &Base,
   9427                                                    SDValue &Offset,
   9428                                                    ISD::MemIndexedMode &AM,
   9429                                                    SelectionDAG &DAG) const {
   9430   if (Subtarget->isThumb1Only())
   9431     return false;
   9432 
   9433   EVT VT;
   9434   SDValue Ptr;
   9435   bool isSEXTLoad = false;
   9436   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   9437     VT  = LD->getMemoryVT();
   9438     Ptr = LD->getBasePtr();
   9439     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   9440   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   9441     VT  = ST->getMemoryVT();
   9442     Ptr = ST->getBasePtr();
   9443   } else
   9444     return false;
   9445 
   9446   bool isInc;
   9447   bool isLegal = false;
   9448   if (Subtarget->isThumb2())
   9449     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   9450                                        isInc, DAG);
   9451   else
   9452     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   9453                                         isInc, DAG);
   9454   if (!isLegal)
   9455     return false;
   9456 
   9457   if (Ptr != Base) {
   9458     // Swap base ptr and offset to catch more post-index load / store when
   9459     // it's legal. In Thumb2 mode, offset must be an immediate.
   9460     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   9461         !Subtarget->isThumb2())
   9462       std::swap(Base, Offset);
   9463 
   9464     // Post-indexed load / store update the base pointer.
   9465     if (Ptr != Base)
   9466       return false;
   9467   }
   9468 
   9469   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   9470   return true;
   9471 }
   9472 
   9473 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   9474                                                        APInt &KnownZero,
   9475                                                        APInt &KnownOne,
   9476                                                        const SelectionDAG &DAG,
   9477                                                        unsigned Depth) const {
   9478   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   9479   switch (Op.getOpcode()) {
   9480   default: break;
   9481   case ARMISD::CMOV: {
   9482     // Bits are known zero/one if known on the LHS and RHS.
   9483     DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
   9484     if (KnownZero == 0 && KnownOne == 0) return;
   9485 
   9486     APInt KnownZeroRHS, KnownOneRHS;
   9487     DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
   9488     KnownZero &= KnownZeroRHS;
   9489     KnownOne  &= KnownOneRHS;
   9490     return;
   9491   }
   9492   }
   9493 }
   9494 
   9495 //===----------------------------------------------------------------------===//
   9496 //                           ARM Inline Assembly Support
   9497 //===----------------------------------------------------------------------===//
   9498 
   9499 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   9500   // Looking for "rev" which is V6+.
   9501   if (!Subtarget->hasV6Ops())
   9502     return false;
   9503 
   9504   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   9505   std::string AsmStr = IA->getAsmString();
   9506   SmallVector<StringRef, 4> AsmPieces;
   9507   SplitString(AsmStr, AsmPieces, ";\n");
   9508 
   9509   switch (AsmPieces.size()) {
   9510   default: return false;
   9511   case 1:
   9512     AsmStr = AsmPieces[0];
   9513     AsmPieces.clear();
   9514     SplitString(AsmStr, AsmPieces, " \t,");
   9515 
   9516     // rev $0, $1
   9517     if (AsmPieces.size() == 3 &&
   9518         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   9519         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   9520       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   9521       if (Ty && Ty->getBitWidth() == 32)
   9522         return IntrinsicLowering::LowerToByteSwap(CI);
   9523     }
   9524     break;
   9525   }
   9526 
   9527   return false;
   9528 }
   9529 
   9530 /// getConstraintType - Given a constraint letter, return the type of
   9531 /// constraint it is for this target.
   9532 ARMTargetLowering::ConstraintType
   9533 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
   9534   if (Constraint.size() == 1) {
   9535     switch (Constraint[0]) {
   9536     default:  break;
   9537     case 'l': return C_RegisterClass;
   9538     case 'w': return C_RegisterClass;
   9539     case 'h': return C_RegisterClass;
   9540     case 'x': return C_RegisterClass;
   9541     case 't': return C_RegisterClass;
   9542     case 'j': return C_Other; // Constant for movw.
   9543       // An address with a single base register. Due to the way we
   9544       // currently handle addresses it is the same as an 'r' memory constraint.
   9545     case 'Q': return C_Memory;
   9546     }
   9547   } else if (Constraint.size() == 2) {
   9548     switch (Constraint[0]) {
   9549     default: break;
   9550     // All 'U+' constraints are addresses.
   9551     case 'U': return C_Memory;
   9552     }
   9553   }
   9554   return TargetLowering::getConstraintType(Constraint);
   9555 }
   9556 
   9557 /// Examine constraint type and operand type and determine a weight value.
   9558 /// This object must already have been set up with the operand type
   9559 /// and the current alternative constraint selected.
   9560 TargetLowering::ConstraintWeight
   9561 ARMTargetLowering::getSingleConstraintMatchWeight(
   9562     AsmOperandInfo &info, const char *constraint) const {
   9563   ConstraintWeight weight = CW_Invalid;
   9564   Value *CallOperandVal = info.CallOperandVal;
   9565     // If we don't have a value, we can't do a match,
   9566     // but allow it at the lowest weight.
   9567   if (CallOperandVal == NULL)
   9568     return CW_Default;
   9569   Type *type = CallOperandVal->getType();
   9570   // Look at the constraint type.
   9571   switch (*constraint) {
   9572   default:
   9573     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   9574     break;
   9575   case 'l':
   9576     if (type->isIntegerTy()) {
   9577       if (Subtarget->isThumb())
   9578         weight = CW_SpecificReg;
   9579       else
   9580         weight = CW_Register;
   9581     }
   9582     break;
   9583   case 'w':
   9584     if (type->isFloatingPointTy())
   9585       weight = CW_Register;
   9586     break;
   9587   }
   9588   return weight;
   9589 }
   9590 
   9591 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
   9592 RCPair
   9593 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   9594                                                 EVT VT) const {
   9595   if (Constraint.size() == 1) {
   9596     // GCC ARM Constraint Letters
   9597     switch (Constraint[0]) {
   9598     case 'l': // Low regs or general regs.
   9599       if (Subtarget->isThumb())
   9600         return RCPair(0U, &ARM::tGPRRegClass);
   9601       return RCPair(0U, &ARM::GPRRegClass);
   9602     case 'h': // High regs or no regs.
   9603       if (Subtarget->isThumb())
   9604         return RCPair(0U, &ARM::hGPRRegClass);
   9605       break;
   9606     case 'r':
   9607       return RCPair(0U, &ARM::GPRRegClass);
   9608     case 'w':
   9609       if (VT == MVT::f32)
   9610         return RCPair(0U, &ARM::SPRRegClass);
   9611       if (VT.getSizeInBits() == 64)
   9612         return RCPair(0U, &ARM::DPRRegClass);
   9613       if (VT.getSizeInBits() == 128)
   9614         return RCPair(0U, &ARM::QPRRegClass);
   9615       break;
   9616     case 'x':
   9617       if (VT == MVT::f32)
   9618         return RCPair(0U, &ARM::SPR_8RegClass);
   9619       if (VT.getSizeInBits() == 64)
   9620         return RCPair(0U, &ARM::DPR_8RegClass);
   9621       if (VT.getSizeInBits() == 128)
   9622         return RCPair(0U, &ARM::QPR_8RegClass);
   9623       break;
   9624     case 't':
   9625       if (VT == MVT::f32)
   9626         return RCPair(0U, &ARM::SPRRegClass);
   9627       break;
   9628     }
   9629   }
   9630   if (StringRef("{cc}").equals_lower(Constraint))
   9631     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
   9632 
   9633   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   9634 }
   9635 
   9636 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   9637 /// vector.  If it is invalid, don't add anything to Ops.
   9638 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   9639                                                      std::string &Constraint,
   9640                                                      std::vector<SDValue>&Ops,
   9641                                                      SelectionDAG &DAG) const {
   9642   SDValue Result(0, 0);
   9643 
   9644   // Currently only support length 1 constraints.
   9645   if (Constraint.length() != 1) return;
   9646 
   9647   char ConstraintLetter = Constraint[0];
   9648   switch (ConstraintLetter) {
   9649   default: break;
   9650   case 'j':
   9651   case 'I': case 'J': case 'K': case 'L':
   9652   case 'M': case 'N': case 'O':
   9653     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   9654     if (!C)
   9655       return;
   9656 
   9657     int64_t CVal64 = C->getSExtValue();
   9658     int CVal = (int) CVal64;
   9659     // None of these constraints allow values larger than 32 bits.  Check
   9660     // that the value fits in an int.
   9661     if (CVal != CVal64)
   9662       return;
   9663 
   9664     switch (ConstraintLetter) {
   9665       case 'j':
   9666         // Constant suitable for movw, must be between 0 and
   9667         // 65535.
   9668         if (Subtarget->hasV6T2Ops())
   9669           if (CVal >= 0 && CVal <= 65535)
   9670             break;
   9671         return;
   9672       case 'I':
   9673         if (Subtarget->isThumb1Only()) {
   9674           // This must be a constant between 0 and 255, for ADD
   9675           // immediates.
   9676           if (CVal >= 0 && CVal <= 255)
   9677             break;
   9678         } else if (Subtarget->isThumb2()) {
   9679           // A constant that can be used as an immediate value in a
   9680           // data-processing instruction.
   9681           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   9682             break;
   9683         } else {
   9684           // A constant that can be used as an immediate value in a
   9685           // data-processing instruction.
   9686           if (ARM_AM::getSOImmVal(CVal) != -1)
   9687             break;
   9688         }
   9689         return;
   9690 
   9691       case 'J':
   9692         if (Subtarget->isThumb()) {  // FIXME thumb2
   9693           // This must be a constant between -255 and -1, for negated ADD
   9694           // immediates. This can be used in GCC with an "n" modifier that
   9695           // prints the negated value, for use with SUB instructions. It is
   9696           // not useful otherwise but is implemented for compatibility.
   9697           if (CVal >= -255 && CVal <= -1)
   9698             break;
   9699         } else {
   9700           // This must be a constant between -4095 and 4095. It is not clear
   9701           // what this constraint is intended for. Implemented for
   9702           // compatibility with GCC.
   9703           if (CVal >= -4095 && CVal <= 4095)
   9704             break;
   9705         }
   9706         return;
   9707 
   9708       case 'K':
   9709         if (Subtarget->isThumb1Only()) {
   9710           // A 32-bit value where only one byte has a nonzero value. Exclude
   9711           // zero to match GCC. This constraint is used by GCC internally for
   9712           // constants that can be loaded with a move/shift combination.
   9713           // It is not useful otherwise but is implemented for compatibility.
   9714           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   9715             break;
   9716         } else if (Subtarget->isThumb2()) {
   9717           // A constant whose bitwise inverse can be used as an immediate
   9718           // value in a data-processing instruction. This can be used in GCC
   9719           // with a "B" modifier that prints the inverted value, for use with
   9720           // BIC and MVN instructions. It is not useful otherwise but is
   9721           // implemented for compatibility.
   9722           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   9723             break;
   9724         } else {
   9725           // A constant whose bitwise inverse can be used as an immediate
   9726           // value in a data-processing instruction. This can be used in GCC
   9727           // with a "B" modifier that prints the inverted value, for use with
   9728           // BIC and MVN instructions. It is not useful otherwise but is
   9729           // implemented for compatibility.
   9730           if (ARM_AM::getSOImmVal(~CVal) != -1)
   9731             break;
   9732         }
   9733         return;
   9734 
   9735       case 'L':
   9736         if (Subtarget->isThumb1Only()) {
   9737           // This must be a constant between -7 and 7,
   9738           // for 3-operand ADD/SUB immediate instructions.
   9739           if (CVal >= -7 && CVal < 7)
   9740             break;
   9741         } else if (Subtarget->isThumb2()) {
   9742           // A constant whose negation can be used as an immediate value in a
   9743           // data-processing instruction. This can be used in GCC with an "n"
   9744           // modifier that prints the negated value, for use with SUB
   9745           // instructions. It is not useful otherwise but is implemented for
   9746           // compatibility.
   9747           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   9748             break;
   9749         } else {
   9750           // A constant whose negation can be used as an immediate value in a
   9751           // data-processing instruction. This can be used in GCC with an "n"
   9752           // modifier that prints the negated value, for use with SUB
   9753           // instructions. It is not useful otherwise but is implemented for
   9754           // compatibility.
   9755           if (ARM_AM::getSOImmVal(-CVal) != -1)
   9756             break;
   9757         }
   9758         return;
   9759 
   9760       case 'M':
   9761         if (Subtarget->isThumb()) { // FIXME thumb2
   9762           // This must be a multiple of 4 between 0 and 1020, for
   9763           // ADD sp + immediate.
   9764           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   9765             break;
   9766         } else {
   9767           // A power of two or a constant between 0 and 32.  This is used in
   9768           // GCC for the shift amount on shifted register operands, but it is
   9769           // useful in general for any shift amounts.
   9770           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   9771             break;
   9772         }
   9773         return;
   9774 
   9775       case 'N':
   9776         if (Subtarget->isThumb()) {  // FIXME thumb2
   9777           // This must be a constant between 0 and 31, for shift amounts.
   9778           if (CVal >= 0 && CVal <= 31)
   9779             break;
   9780         }
   9781         return;
   9782 
   9783       case 'O':
   9784         if (Subtarget->isThumb()) {  // FIXME thumb2
   9785           // This must be a multiple of 4 between -508 and 508, for
   9786           // ADD/SUB sp = sp + immediate.
   9787           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   9788             break;
   9789         }
   9790         return;
   9791     }
   9792     Result = DAG.getTargetConstant(CVal, Op.getValueType());
   9793     break;
   9794   }
   9795 
   9796   if (Result.getNode()) {
   9797     Ops.push_back(Result);
   9798     return;
   9799   }
   9800   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   9801 }
   9802 
   9803 bool
   9804 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   9805   // The ARM target isn't yet aware of offsets.
   9806   return false;
   9807 }
   9808 
   9809 bool ARM::isBitFieldInvertedMask(unsigned v) {
   9810   if (v == 0xffffffff)
   9811     return 0;
   9812   // there can be 1's on either or both "outsides", all the "inside"
   9813   // bits must be 0's
   9814   unsigned int lsb = 0, msb = 31;
   9815   while (v & (1 << msb)) --msb;
   9816   while (v & (1 << lsb)) ++lsb;
   9817   for (unsigned int i = lsb; i <= msb; ++i) {
   9818     if (v & (1 << i))
   9819       return 0;
   9820   }
   9821   return 1;
   9822 }
   9823 
   9824 /// isFPImmLegal - Returns true if the target can instruction select the
   9825 /// specified FP immediate natively. If false, the legalizer will
   9826 /// materialize the FP immediate as a load from a constant pool.
   9827 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   9828   if (!Subtarget->hasVFP3())
   9829     return false;
   9830   if (VT == MVT::f32)
   9831     return ARM_AM::getFP32Imm(Imm) != -1;
   9832   if (VT == MVT::f64)
   9833     return ARM_AM::getFP64Imm(Imm) != -1;
   9834   return false;
   9835 }
   9836 
   9837 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   9838 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   9839 /// specified in the intrinsic calls.
   9840 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   9841                                            const CallInst &I,
   9842                                            unsigned Intrinsic) const {
   9843   switch (Intrinsic) {
   9844   case Intrinsic::arm_neon_vld1:
   9845   case Intrinsic::arm_neon_vld2:
   9846   case Intrinsic::arm_neon_vld3:
   9847   case Intrinsic::arm_neon_vld4:
   9848   case Intrinsic::arm_neon_vld2lane:
   9849   case Intrinsic::arm_neon_vld3lane:
   9850   case Intrinsic::arm_neon_vld4lane: {
   9851     Info.opc = ISD::INTRINSIC_W_CHAIN;
   9852     // Conservatively set memVT to the entire set of vectors loaded.
   9853     uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
   9854     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   9855     Info.ptrVal = I.getArgOperand(0);
   9856     Info.offset = 0;
   9857     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   9858     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   9859     Info.vol = false; // volatile loads with NEON intrinsics not supported
   9860     Info.readMem = true;
   9861     Info.writeMem = false;
   9862     return true;
   9863   }
   9864   case Intrinsic::arm_neon_vst1:
   9865   case Intrinsic::arm_neon_vst2:
   9866   case Intrinsic::arm_neon_vst3:
   9867   case Intrinsic::arm_neon_vst4:
   9868   case Intrinsic::arm_neon_vst2lane:
   9869   case Intrinsic::arm_neon_vst3lane:
   9870   case Intrinsic::arm_neon_vst4lane: {
   9871     Info.opc = ISD::INTRINSIC_VOID;
   9872     // Conservatively set memVT to the entire set of vectors stored.
   9873     unsigned NumElts = 0;
   9874     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   9875       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   9876       if (!ArgTy->isVectorTy())
   9877         break;
   9878       NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
   9879     }
   9880     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   9881     Info.ptrVal = I.getArgOperand(0);
   9882     Info.offset = 0;
   9883     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   9884     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   9885     Info.vol = false; // volatile stores with NEON intrinsics not supported
   9886     Info.readMem = false;
   9887     Info.writeMem = true;
   9888     return true;
   9889   }
   9890   case Intrinsic::arm_strexd: {
   9891     Info.opc = ISD::INTRINSIC_W_CHAIN;
   9892     Info.memVT = MVT::i64;
   9893     Info.ptrVal = I.getArgOperand(2);
   9894     Info.offset = 0;
   9895     Info.align = 8;
   9896     Info.vol = true;
   9897     Info.readMem = false;
   9898     Info.writeMem = true;
   9899     return true;
   9900   }
   9901   case Intrinsic::arm_ldrexd: {
   9902     Info.opc = ISD::INTRINSIC_W_CHAIN;
   9903     Info.memVT = MVT::i64;
   9904     Info.ptrVal = I.getArgOperand(0);
   9905     Info.offset = 0;
   9906     Info.align = 8;
   9907     Info.vol = true;
   9908     Info.readMem = true;
   9909     Info.writeMem = false;
   9910     return true;
   9911   }
   9912   default:
   9913     break;
   9914   }
   9915 
   9916   return false;
   9917 }
   9918